TW201419512A - 生長於背側照明影像感測器上之奈米線光偵測器 - Google Patents

生長於背側照明影像感測器上之奈米線光偵測器 Download PDF

Info

Publication number
TW201419512A
TW201419512A TW103102171A TW103102171A TW201419512A TW 201419512 A TW201419512 A TW 201419512A TW 103102171 A TW103102171 A TW 103102171A TW 103102171 A TW103102171 A TW 103102171A TW 201419512 A TW201419512 A TW 201419512A
Authority
TW
Taiwan
Prior art keywords
nanowire
substrate
layer
wavelength
light
Prior art date
Application number
TW103102171A
Other languages
English (en)
Other versions
TWI557889B (zh
Inventor
Young-June Yu
Munib Wober
Original Assignee
Zena Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zena Technologies Inc filed Critical Zena Technologies Inc
Publication of TW201419512A publication Critical patent/TW201419512A/zh
Application granted granted Critical
Publication of TWI557889B publication Critical patent/TWI557889B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/107Subwavelength-diameter waveguides, e.g. nanowires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14629Reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14649Infrared imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02327Optical elements or arrangements associated with the device the optical elements being integrated or being directly associated to the device, e.g. back reflectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Nanotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Materials Engineering (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

一實施例係關於一種裝置,該裝置包括:一基板,其具有一前側及曝露至傳入輻射之一背側;一奈米線,其安置於該基板上;及一影像感測電路,其安置於該前側上,其中該奈米線係組態為用以傳輸高達一選擇性波長之波長之一通道及用以偵測傳輸穿過該奈米線之高達該選擇性波長之該等波長之一主動元件兩者。

Description

生長於背側照明影像感測器上之奈米線光偵測器
本發明實施例係關於由生長於一背側照明影像感測器上之一奈米線構成之光偵測裝置,諸如一光電二極體(PD)。
本申請案係關於2008年11月13日提出申請、標題為「VERTICAL WAVEGUIDES WITH VARIOUS FUNCTIONALITY ON INTEGRATED CIRCUITS」之美國申請案號12/270,233,該申請案以全文引用之方式併入本文中。本申請案係關於___提出申請、代理人檔案號碼095035-0383507、標題為「MANUFACTURING NANOWIRE PHOTO-DETECTOR GROWN ON A BACK-SIDE ILLUMINATED IMAGE SENSOR」之美國申請案號___,該申請案以全文引用之方式併入本文中。本申請案係關於___提出申請、代理人檔案號碼095035-0381955、標題為「NANOWIRE CORE-SHELL LIGHT PIPES」之美國申請案號___,該申請案以全文引用之方式併入本文中。
一影像感測器具有呈一笛卡爾(正方形)柵格之大量(通常多於100萬)相同感測器元件(像素)。毗鄰像素之間的距離稱作間距(p)。對於正方形像素而言,一像素之面積係p2。光敏元件之面積(亦即,對光敏感以轉換為一電信號之像素之面積)通常僅係像素之總表面面積之 約20%至30%。
習用色彩影像感測器經製作而具有配置成一拜耳(Bayer)組態之若干色彩濾光器。一習用拜耳濾光器圖案之一常見實例具有包含紅色、綠色及藍色濾光器(RGB)之一色彩方案。該拜耳濾光器圖案係50%綠色、25%紅色及25%藍色,藉此亦用GRGB或諸如RGGB等其他排列來表示。在此配置中,存在兩倍於紅色或藍色之綠色元件。此用以模仿人眼對綠色光之較大敏感度。
互補金屬氧化物半導體(CMOS)影像感測器(CIS)已係提供用於手機及其他應用之低成本/高容量相機之3D積體電路(IC)整合之早期採用者中之一者。一種類型CIS係背側照明(BSI)CIS。較小像素導致較高解析度、較小裝置及較低功率及成本。應在不使效能及影像品質降級之情況下設計縮減CMOS影像感測器中之像素大小。然而,隨著越來越小之像素製作於CMOS影像感測器上,光敏區之面積變小因此導致影像品質劣化。
BSI CIS之趨勢闡述於2008年8月3日Semiconductor International 之標題為「Backside Illumination(BSI)Architecture next for CMOS Image Sensors」之一論文中。
為解決此問題,若干公司致力於背側照明(BSI)技術。OmniVision係此等公司中之一圖解說明性實施例。2008年5月OmniVision宣佈其已開發了OmniBSITM技術,該技術涉及將影像感測器顛倒且將色彩濾光器及微透鏡應用至像素之背側以使得感測器可收集穿過不具有電路之區域(亦即,背側)之光。
BSI之較佳效能之原因係較高填充因數,亦即,可收集於一單個像素中之光之量。一前面照明感測器之頂部上之各種金屬層限制可收集於一像素中之光。隨著像素大小變小,填充因數變差。BSI為光行進至像素中提供最直接之路徑,從而避免感測器晶粒之頂部側上之金 屬互連件及電介質層阻擋光(參見圖1;來源:OmniVision)。在圖1中,FSI像素係一前側照明像素而BSI像素係一背側照明像素。注意,如圖1中所示,BSI及FSI中之術語背面及前面係關於其中照明像素之側相對於使各種金屬層位於其中之側。
OmniVision之BSI CMOS感測器針對8百萬像素產品具有0.9微米至1.4微米之一像素大小。緊接著OmniVision之宣佈,Sony宣佈一種用於5百萬像素攝錄影機或數位相機之CMOS感測器之BSI技術與1.75微米CMOS像素技術。
ST Micro亦已示範使用BSI技術來製造3百萬像素1.45微米CMOS影像感測器之可行性。ST Micro自稱能獲得大於60%之一量子效率(QE)(QE=轉換成電子之光子之百分比)。
ST Micro之技術係基於SOi(絕緣體上覆矽)、晶圓接合及薄化技術。在ST Micro BSI方案中,在形成最後金屬層之後,沈積一鈍化層及後續氧化物晶圓接合層(WBL)。將WBL平坦化且將一支撐晶圓接合至經處理晶圓,然後將CIS晶圓薄化。所報告之ST Micro製程流程:‧SOI晶圓
‧CMOS製程
‧晶圓接合層(WBL)沈積及平坦化
‧晶圓接合
‧薄化
‧抗反射塗層(ARC)
‧墊開口
‧色彩濾光器及微透鏡附著
快速搜尋專利動向(patent landscape)找到了美國專利第6,429,036號「Backside illumination of CMOS image sensor」(Micron);美國專利第5,244,817號「Method of making backside illuminated image sensors」(Kodak);美國公開案第2007/0152250號「CMOS image sensor with backside illumination」(MagnaChip);美國公開案第2008/0044984號「Methods of avoiding wafer breakage during manufacture of backside illuminated image sensors.」(TSMC);美國專利第6,168,965號「Method for Making Backside Illuminated Image Sensor」(Tower Semi);美國公開案第2007/0052050號「Backside thinned image sensor with integrated lens stack」(IMEC)。
Sarnoff(現在係SRI International之一子公司)亦已宣佈進入至CIS技術界中。在2008年《Semicon West》上,Sarnoff推出Ultra-SenseTM,該公司針對高效能基於SOI之背面照明影像感測器所開發之一種薄化技術。在完成關於CIS晶圓之前側之製程之後,將晶圓背側薄化。Sarnoff指示,其使用SOI晶圓之背側薄化製程給出薄化製程之較佳控制從而改良像素品質、降低成本且改良良率。為區分光之三種分量以使得可再現來自一全色場景之色彩,RBG濾光器使用影像感測器以使得使用一濾光器來針對每一像素濾除光之分量中之兩種分量。舉例而言,紅色像素具有吸收綠色光及藍色光之一濾光器,從而僅允許紅色光通過到達感測器。因此,通常照射於影像感測器上之光子之少於約三分之一被傳輸至諸如一光電二極體之光敏元件且轉換成電子。
本文中之實施例係關於一種裝置,該裝置包括:一基板,其具有一前側及曝露至傳入輻射之一背側;一波導,其包括安置於該基板上之一奈米線;及一影像感測電路,其安置於該前側上,其中該奈米線係組態為用以傳輸該傳入輻射之高達一選擇性波長之波長之一通道及用以偵測該傳入輻射之傳輸穿過該奈米線之高達該選擇性波長之該等波長之一主動元件兩者。
在一項圖解說明性實施例中,該奈米線係不透明且安置於該基板中之一腔內,該前側係曝露至該傳入輻射,且該影像感測電路係在該基板之該前側上之一層上或在該基板之該前側上之一層內。
在一項圖解說明性實施例中,該裝置既不包含一色彩濾光器又不包含紅外光(IR)濾光器。
在一項圖解說明性實施例中,該奈米線包括一半導體。
舉例而言,該裝置可進一步包括在該奈米線上方之一透鏡結構或一光學耦合器。
在一項圖解說明性實施例中,該透鏡結構或該光學耦合器係操作地耦合至該奈米線。
舉例而言,該裝置可進一步包括安置於該基板上之一抗反射層。
在一項圖解說明性實施例中,該主動元件係組態為一光電二極體、一電荷儲存電容器或其組合。
在一項圖解說明性實施例中,該裝置係一影像感測器。
在一項圖解說明性實施例中,該選擇性波長係該奈米線之直徑之一函數。
舉例而言,該裝置可進一步包括一垂直光閘極。
在一項圖解說明性實施例中,該奈米線經組態以轉換傳輸穿過該奈米線之該電磁輻射之能量且產生電子電洞對(激子)。
在一項圖解說明性實施例中,該奈米線包括一pn或pin接面,其經組態以偵測產生於該奈米線中之該等激子。
舉例而言,該裝置可進一步包括在該奈米線周圍之一絕緣體層及在該絕緣體層周圍之一金屬層以形成一電容器,該電容器經組態以收集產生於該奈米線中之該等激子並將電荷儲存於該電容器中。
舉例而言,該裝置可進一步包括連接至該金屬層及奈米線之金 屬觸點以控制並偵測儲存於該電容器中之該電荷。
舉例而言,該裝置可進一步包括一包覆層。在一項圖解說明性實施例中,該包覆層係組態為用以傳輸該電磁輻射束之不傳輸穿過該奈米線之該等波長之一通道。
舉例而言,該裝置可進一步包括一包覆層。
在一項圖解說明性實施例中,該包覆層包括一被動波導。
舉例而言,該裝置可進一步包括一周邊光敏元件。在一項圖解說明性實施例中,該周邊光敏元件係操作地耦合至該包覆層。
在一項圖解說明性實施例中,包覆層包括一個以上層。在一項圖解說明性實施例中,該一個以上層具有連續小於該奈米線之一折射率之折射率。
在一項圖解說明性實施例中,該周邊光敏元件位於一基板上或位於一基板內。
在一項圖解說明性實施例中,該透鏡結構或該光學耦合器包括一第一開口及一第二開口以及延伸於該第一開口與該第二開口之間的一連接表面,其中該第一開口大於該第二開口。
在一項圖解說明性實施例中,該連接表面包括一反射表面。
舉例而言,該裝置可進一步包括一色彩濾光器或IR濾光器。
另一實施例係關於一種包括至少兩個不同裝置之複合光偵測器,每一裝置包括:一基板,其具有一前側及曝露至傳入輻射之一背側;一波導,其包括安置於該基板上或該基板內之一奈米線;及一影像感測電路,其安置於該前側上,其中該奈米線係組態為用以傳輸該傳入輻射之高達一選擇性波長之波長之一通道及用以偵測該傳入輻射之傳輸穿過該奈米線之高達該選擇性波長之該等波長之一主動元件兩者,且該複合光偵測器經組態以重新建構一電磁輻射束之一波長光譜。
在一項圖解說明性實施例中,該至少兩個不同裝置具有具有不同直徑之奈米線。
舉例而言,該複合光偵測器可進一步包括環繞該奈米線且由一種或多種不同材料形成之一包覆層。在一項圖解說明性實施例中,該包覆層准許超過該選擇性波長之波長之電磁輻射保持於該包覆層內且被傳輸至一周邊光敏元件。
在一項圖解說明性實施例中,將複數個光偵測器配置於一規則棋盤形方格、一正方形晶格、一六邊形晶格上或配置成一不同晶格配置。
在一項圖解說明性實施例中,該波長光譜包括可見光、IR或其組合之波長。
在一項圖解說明性實施例中,該第一裝置包括其一直徑不同於該第二裝置之直徑之一核心且該波長光譜包括可見光、IR或其組合之波長。
在一項圖解說明性實施例中,該複合光偵測器經組態以解析該電磁輻射束中所含有之黑色及白色或螢光資訊。
在一項圖解說明性實施例中,該複合光偵測器經組態以偵測四個不同波長範圍之電磁輻射之能量。
在一項圖解說明性實施例中,該四個不同波長範圍之電磁輻射之能量經組合以建構紅色、綠色及藍色色彩。
在一項圖解說明性實施例中,該等裝置中之至少一者中之至少某一者不包含一色彩濾光器或紅外光濾光器。
又一實施例係關於一種波導,該波導包括一基板及自該基板伸出之至少一個豎立奈米線以及有助於形成一主動區以吸收光之一pn-接面。
在一項圖解說明性實施例中,一殼狀結構包圍該奈米線或其部 分。
在一項圖解說明性實施例中,該奈米線具有一第一有效折射率nw及環繞該奈米線之至少一部分以形成具有一第二有效折射率nc之一包覆層之一材料,且該第一折射率大於該第二折射率,nw>nc,此經組態以形成該波導之波導性質。
在一項圖解說明性實施例中,該波導與該基板形成一經界定角度且奈米線與基板之間的該經界定角度經選擇以形成一垂直定向或接近於垂直定向。
在一項圖解說明性實施例中,該波導具備至少一個包覆層。
在一項圖解說明性實施例中,該一個包覆層係經組態以增強該波導之波導性質之一光學包覆層。
在一項圖解說明性實施例中,複數個包覆層朝向該波導之一邊界提供一遞級折射率以增強該波導之波導性質。
在一項圖解說明性實施例中,該包覆層包括一金屬以形成電連接及/或減少毗鄰像素之間的串擾。
在一項圖解說明性實施例中,該波導之一直徑大於λ/2 nw,其中λ係經侷限光之波長且nw係該波導之折射率。
在一項圖解說明性實施例中,該主動區係配置於該奈米線內。
在一項圖解說明性實施例中,與該主動區相關聯之該pn接面係藉由對矽奈米線進行摻雜而形成。
在一項圖解說明性實施例中,該奈米線經配置以沿向下方向朝向該基板引導光。
舉例而言,該波導可進一步包括一平面光偵測器及以一豎立組態配置於該平面光偵測器表面上且與該平面光偵測器層磊晶地連接之複數個奈米線。
上述摘要僅係圖解說明性的且並非意欲以任一方式限制本發 明。除上述圖解說明性態樣、實施例及特徵之外,參考圖式及以下詳細說明將顯而易見其他態樣、實施例及特徵。
圖1展示一習用前面照明感測器及一背面照明感測器之一剖視圖之一圖解說明性實施例;圖2展示一背面照明影像感測器之一剖視圖之一圖解說明性實施例;圖3A展示一像素結構與一背側波導結構(諸如,一奈米線及雙垂直光閘極)之一剖視圖之一圖解說明性實施例;圖3B展示一像素結構與一背側奈米線及一垂直閘極之一剖視圖之一圖解說明性實施例;圖3C及圖3D展示含有背側照明影像感測器之一波導結構(諸如,一奈米線)之一剖視圖之圖解說明性實施例,其中奈米線位於該影像感測器之背側上;圖4A至圖4B展示其中具有光電二極體之不同背側照明影像感測器之圖解說明性實施例;圖4C展示其中具有尺寸之一奈米結構波導之一圖解說明性實施例;圖5展示一實施例之影像感測器之一單個腔內之一奈米線陣列之一圖解說明性實施例;圖6展示本文中所揭示實施例之含有影像像素之一裝置之一俯視圖之一示意圖之一圖解說明性實施例,每一影像像素具有表示互補色彩之兩個輸出;及圖7展示一奈米結構波導之一圖解說明性實施例,其展示3種類型之像素(呈一棋盤形方格之紅色、綠色及藍色)。
以下之表中概括圖中所圖解說明之元件之符號。下文更詳細地闡述該等元件。
在以下詳細說明中,參考形成本發明之一部分之附圖。在圖式中,除非上下文另有規定,否則相同符號通常識別相同組件。在詳細說明、圖式及申請專利範圍中所闡述之圖解說明性實施例並非意在限制本發明。在不背離本文所呈現標的物之精神或範疇之情況下可利用其他實施例且可做出其他改變。
術語奈米線係指具有約為數奈米(舉例而言,100奈米或更少)之一厚度或直徑及一不受約束之長度之一結構。奈米線可包含金屬(例如,Ni、Pt、Au)、半導電(例如,Si、InP、GaN等)及絕緣(例如,SiO2,TiO2)材料。分子奈米線係由重複分子單元(有機或無機)組成。奈米線可展現1000或更大之縱橫比(長度與寬度比)。因此,其等可稱為1維(1D)材料。奈米線可具有在塊狀或3-D材料中看不到之諸多引起 關注之性質。此乃因奈米線中之電子可橫向地受量子侷限且因此佔用可不同於在塊狀材料中所發現之傳統連續能級或能帶之能級。因此,奈米線可具有電及光學傳導之離散值。奈米線之實例包含無機分子奈米線(Mo6S9-xIx、Li2Mo6Se6),其可具有數奈米之範圍之一直徑,且長度可係數百微米。其他重要實例係基於半導體(諸如,InP、Si、GaN等)、電介質(例如,SiO2、TiO2)或金屬(例如,Ni、Pt)。
術語激子係指電子-電洞對。
一主動元件係具有電控制電子及/或電洞流動(電控制電或光,或反之亦然)之能力之任一類型之電路組件。不能夠憑藉另一電信號控制電流之組件稱作被動元件。電阻器、電容器、電感器、變壓器及甚至二極體皆被視為被動元件。在本文中所揭示之實施例中,主動元件包含(但不限於)一主動波導、電晶體、矽控整流器(SCR)、發光二極體及光電二極體。
一波導係經設計以沿由其實體邊界判定之一方向侷限及引導選擇性波長之電磁輻射之一系統或材料。較佳地,該選擇性波長係該波導之直徑之一函數。一主動波導係具有電控制電子及/或電洞流動(電控制電或光,或反之亦然)之能力之一波導。舉例而言,該主動波導之此能力係可將該主動波導視為係「主動」且屬於一主動元件類之一個原因。
一光學導管係用以侷限及傳輸照射於該光學導管上之一電磁輻射之一元件。該光學導管可包含一核心及一包覆層。該核心可係一奈米線。該光學導管經組態以經由該核心及該包覆層以一選擇性波長分離入射於該光學導管上之一電磁輻射束之波長,其中該核心係組態為用以傳輸高達該選擇性波長之該等波長之一通道及用以偵測傳輸穿過該核心之高達該選擇性波長之該等波長之一主動元件兩者。一核心與一包覆層通常係該光學導管之互補組件且經組態以經由該核心及包覆 層以一選擇性波長分離入射於該光學導管上之一電磁輻射束之波長。
一光閘極係用於一光電子裝置中之一閘極。通常,該光閘極包括一金屬氧化物半導體(MOS)結構。該光閘極在光電二極體之整合時間期間累積光產生之電荷且在整合結束時控制電荷之轉移。一光電二極體包括一pn接面,然而,一光閘極可係放置於任一類型半導體材料上。一垂直光閘極係一新結構。通常,光閘極係放置於一平面光電二極體裝置上。然而,在一奈米線裝置中,該光閘極可係沿一垂直方向形成。亦即,豎立地覆蓋該奈米線之橫向表面。
一轉移閘極係用於一像素中之一開關電晶體之一閘極。該轉移閘極之作用係將電荷自一裝置之一個側轉移至另一側。在某些實施例中,該轉移閘極用以將電荷自光電二極體轉移至感測節點(或浮動擴散部)。一重設閘極係用於重設一裝置之一閘極。在某些實施例中,該裝置係由一n+區形成之感測節點。重設意指恢復至藉由某一電壓設定之原始電壓位準。在某些實施例中,重設汲極(RD)之電壓係用作一重設位準之電壓。
一浮動電容器係相對於基板浮動之一電容器。通常,一電容器由兩個電極及其等之間的一絕緣體組成。通常,該兩個電極皆連接至其他裝置或信號線。在一像素中,通常該等電極中之一者可不連接至一結構。此不連接、隔離之區域相對於基板形成浮動電容器。換言之,該隔離之區域包括浮動之一個電極。該基板包括通常連接至接地之另一電極。電極之間的一空乏區包括該絕緣體。
一全域連接係其中將諸多分支節點電連接至一單個線以使得一個信號線可同時控制多個分支裝置之一連接。一源極隨耦器放大器係一共同汲極電晶體放大器。亦即,其源極節點隨耦與閘極節點相同之相位之一電晶體放大器。電晶體之閘極端子充當輸入端,源極係輸出端且汲極係兩者(輸入及輸出)所共用。一淺層係實體地位於靠近基板 之表面處之一經摻雜層。舉例而言,可藉由在使用離子植入時使用低能量來故意地淺形成一p+層。通常,一淺層之接面深度係0.01微米~0.2微米。相比之下,一深層可係深至幾微米至數十微米。
一純質半導體(亦稱作一未經摻雜之半導體或i型半導體)係一純半導體而不存在任何顯著摻雜劑物質。因此,電荷載子之數目係由材料本身之性質(而非雜質之量)來判定。在純質半導體中,受激電子之數目與電洞之數目係相等:n=p。純質半導體之導電性可歸因於晶體缺陷或熱激發。在一純質半導體中,導電帶中之電子之數目等於價帶中之電洞之數目。
淺渠溝隔離(STI)(亦稱為「箱式隔離技術(Box Isolation Technique)」)係防止毗鄰半導體裝置組件之間的電流洩漏之一積體電路特徵。STI通常用於250奈米及更小之CMOS製程技術節點上。較舊之CMOS技術及非MOS技術通常使用基於局部矽氧化(LOCOS)之隔離。通常係在半導體裝置製作製程期間早期、在形成電晶體之前形成STI。STI製程之步驟包含在矽中蝕刻渠溝之一圖案、沈積一種或多種電介質材料(諸如,二氧化矽)以填充該等渠溝及使用諸如化學機械平坦化之一技術來移除過量電介質。
在又其他實施例中,將複數個奈米線配置於一規則棋盤形方格上。
在又其他實施例中,有效地採取一微透鏡之形狀之一耦合器可位於光學導管上以收集電磁輻射並將其導引至該光學導管中。該光學導管可由折射率n1之一奈米線核心組成,該奈米線核心由折射率n2之一包覆層環繞。
在本發明之實施例之光學導管之組態中,可消除吸收照射於影像感測器上之光之大約2/3之經著色色彩濾光器。該核心用作一主動波導且該光學導管之包覆層可用作一被動波導,其中一周邊光敏元件 環繞該核心以偵測傳輸穿過該包覆層之被動波導之電磁輻射。被動波導不像色彩濾光器一樣吸收光,但可經設計以選擇性地傳輸選定波長。
一波導(不論是被動還是主動)皆具有一截止波長,該截止波長係該波導可傳播之最低頻率。該核心之半導體奈米線之直徑充當該奈米線之該截止波長之控制參數。
該核心亦可藉由吸收經侷限光且產生電子-電洞對(激子)來充當一光電二極體。
可藉由使用以下兩個設計中之至少一者來偵測如此產生之激子:
(1)一核心係由三個層(半導體、絕緣體及金屬)組成,因此形成一電容器以收集由光誘致載子所產生之電荷。製成至金屬及至半導體之觸點以控制及偵測所儲存之電荷。可藉由生長一奈米線且沈積包圍該奈米線之一絕緣體層及一金屬層來形成該核心。
(2)一核心具有在核心線中誘致一電位梯度之一pin接面。可藉由以下方式來形成該核心中之該pin接面:生長一奈米線且在該奈米線核心正生長為一pin接面時對其進行摻雜,且使用係任一裝置之部分之各種金屬層來在適當點處接觸該pin接面。ITO(氧化銦錫)亦可用作一導電材料。
實施例之光敏元件通常包括一光電二極體,但不僅限於一光電二極體。通常,使用一適當摻雜劑將該光電二極體摻雜至自約1×1016至約1×1018個摻雜劑原子/立方公分之一濃度。
該影像感測器可具有不同之堆疊層。該等堆疊層可包括含電介質材料之層及含金屬之層。該等電介質材料包含(如)但不限於具有自約4至約20(在真空中量測)之一電介質常數之矽之氧化物、氮化物及氧氮化物。亦包含且亦不限於具有自約20至至少約100之一電介質常 數之通常較高電介質常數閘極電介質材料。此等較高電介質常數電介質材料可包含(但不限於)氧化鉿、矽酸鉿、氧化鈦、鈦酸鋇鍶(BST)及鋯鈦酸鉛(PZT)。
含電介質材料之層可係使用適於其等組合物材料之方法來形成。方法之非限制性實例包含熱氧化或電漿氧化或者熱氮化或電漿氮化法、化學氣相沈積法(包含原子層化學氣相沈積法)及物理氣相沈積法。
該等含金屬之層可用作電極。非限制性實例包含某些金屬、金屬合金、金屬矽化物及金屬氮化物,以及經摻雜之多晶矽材料(亦即,具有自約1×1018至約1×1022個摻雜劑原子/立方公分之一摻雜劑濃度)及多晶矽化物(亦即,經摻雜之多晶矽/金屬矽化物堆疊)材料。可使用數種方法中之任一者來沈積含金屬之層。非限制性實例包含化學氣相沈積法(亦包含原子層化學氣相沈積法)及物理氣相沈積法。含金屬之層可包括一經摻雜之多晶矽材料(具有通常在範圍1000埃至1500埃內之一厚度)。
電介質及金屬化堆疊層包括一系列電介質鈍化層。同樣嵌入於該堆疊層內的係互連金屬化層。用於互連金屬化層對之組件包含(但不限於)接觸凸柱、互連層、互連凸柱。
可用於互連金屬化層內之個別金屬化互連凸柱及金屬化互連層可包括半導體製作技術中習用之數種金屬化材料中之任一者。非限制性實例包含某些金屬、金屬合金、金屬氮化物及金屬矽化物。如下文中更詳細地論述,最常見的係鋁金屬化材料及銅金屬化材料,該兩者中之任一者通常包含一障壁金屬化材料。金屬化材料之類型可依據在一半導體結構中之大小及位置而不同。較小及下部敷設金屬化特徵通常包括含銅導體材料。較大及上部敷設金屬化特徵通常包括含鋁導體材料。
該系列電介質鈍化層亦可包括半導體製作技術中習用之數種電介質材料中之任一者。包含具有自4至約20之一電介質常數之通常較高電介質常數電介質材料。包含於此群組內之非限制性實例係矽之氧化物、氮化物及氧氮化物。舉例而言,該系列電介質層亦可包括具有自約2至約4之一電介質常數之通常較低電介質常數電介質材料。包含於但不限於此群組內的係諸如矽水凝膠等水凝膠、如同矽Al或碳氣凝膠之氣凝膠、倍半矽氧烷旋塗玻璃電介質材料、氟化玻璃材料、有機聚合物材料及諸如經摻雜之二氧化矽(例如,摻雜有碳、氟)及多孔二氧化矽等其他低電介質常數材料。
該電介質及金屬化堆疊層可包括互連金屬化層及離散金屬化層,其包括銅金屬化材料及鋁金屬化材料中之至少一者。該電介質及金屬化堆疊層亦包括電介質鈍化層,該等電介質鈍化層亦包括上文所揭示之通常較低電介質常數電介質材料中之至少一者。該電介質及金屬化堆疊層可具有自約1微米至約4微米之一總厚度。該電介質及金屬化堆疊層可在一堆疊內包括自約2至約4之離散水平電介質及金屬化組件層。
可使用半導體製作技術中習用且適於形成該系列電介質鈍化層之材料之方法及材料來圖案化該堆疊層之該等層以形成經圖案化電介質及金屬化堆疊層。可不在包含完全位於其中之一金屬化特徵之一位置處圖案化該電介質及金屬化堆疊層。可使用濕式化學蝕刻法、乾式電漿蝕刻法或其綜合方法來圖案化該電介質及金屬化堆疊層。若需要尺寸較小,則乾式電漿蝕刻法以及電子束蝕刻就其等在形成該系列經圖案化電介質及金屬化堆疊層時提供增強之側壁輪廓控制而言通常係較佳。
一平坦化層可包括數種透光平坦化材料中之任一者。非限制性實例包含旋塗玻璃平坦化材料及有機聚合物平坦化材料。該平坦化層 可在該光學導管上面延伸以使得該平坦化層可具有足以至少平坦化該光學導管之開口之一厚度,因此提供一平面表面以用於製作該CMOS影像感測器內之額外結構。該平坦化層可經圖案化以形成經圖案化之平坦化層。
視情況,可存在位於經圖案化之平坦化層上之一系列色彩濾光器層。該系列色彩濾光器層(若存在)通常將包含原色紅色、綠色及藍色或者互補色彩黃色、青色及洋紅色。該系列色彩濾光器層通常將包括一系列經染色或經著色之經圖案化光阻劑層,該等光阻劑層經本質上成像以形成該系列色彩濾光器層。另一選擇係,該系列色彩濾光器層可包括經染色或經著色之有機聚合物材料,該等材料以其他方式透光但在使用一適當遮罩層時其等經非本質上成像。亦可使用替代色彩濾光器材料。該濾光器亦可係用於一黑色及白色或IR感測器之濾光器,其中該濾光器主要截止可見光並使IR通過。
間隔件層可係由實體地(而非光學地)將該等堆疊層與該光學導管之靠近該影像感測器之入射電磁輻射束接收端之頂部上之一微透鏡分離之任一材料製成之一個或多個層。該微透鏡之功能或更一般術語係一耦合器,亦即,將該入射電磁輻射束耦合至該光學導管中。若在此實施例中挑選一微透鏡作為耦合器,則其距該光學導管之距離將比至光敏元件之距離短得多,因此對微透鏡之曲率之約束係較不嚴格的,藉此使其可與現有製作技術一起實施。該間隔件層可係由一電介質間隔件材料或電介質間隔件材料之一壓層形成,但亦已知由導電材料形成之間隔件層。矽之氧化物、氮化物及氧氮化物通常用作電介質間隔件材料。不排除其他元素之氧化物、氮化物及氧氮化物(諸如,ITO(氧化銦錫))。可使用與上文所述之方法類似、等效或相同之方法來沈積該電介質間隔件材料。可使用給間隔件層提供特性內指形狀之一毯覆層沈積及回蝕方法來形成該間隔件層。
微透鏡可包括此項技術中已知之數種透光透鏡材料中之任一者。非限制性實例包含透光無機材料、透光有機材料及透光複合材料。最常見的係透光有機材料。通常,該等透鏡層可經形成而易於圖案化且回流具有低於該系列色彩濾光器層(若存在)或該經圖案化之平坦化層之一玻璃轉變溫度之一有機聚合物材料。
在該光學導管中,舉例而言,核心中之高折射率材料可係具有約2.0之一折射率之氮化矽。舉例而言,較低折射率包覆層材料可係具有約1.5之一折射率之一玻璃,舉例而言,選自表I之一材料。該核心可係具有範圍5至6中之折射率之矽,且該包覆層可係具有約1.5之一折射率之氧化矽。
在該光學導管中,該核心中之高折射率材料可係由具有兩個或兩個以上包覆層之一包覆層環繞,該兩個或兩個以上包覆層具有連續較小折射率之不同材料。舉例而言,若矽係核心之材料,則可使用氮化矽之一第一層,隨後使用氧化矽之另一層。在此組態中,折射率係自核心中之5至6減少至第一層中之約2且然後減少至第二包覆層中之約1.5。
在此實施例中,兩個或兩個以上同心電介質層執行一光導引功能。因此,此實施例之一項態樣係不存在一金屬層。在另一態樣中,該兩個或兩個以上同心電介質層之接連同心電介質層隨增加半徑而具有一較低折射率。亦即,具有一較大半徑之同心電介質層具有低於具有一較小半徑之同心電介質層之一折射率。在另一態樣中,毗鄰同心電介質層具有交替之較高及較低折射率。
在一項實施例中,波導奈米線結構包含一高折射率核心與具有小於該核心之折射率之折射率之一個或多個環繞包覆層。該結構具有一圓形對稱性或接近於具有圓形對稱性。該奈米結構之線之不同元件之材料係使得該奈米線將相對於該等環繞材料具有良好波導性質,亦 即,該奈米線中之材料之折射率應大於該等環繞材料之折射率。若該奈米線具有一第一折射率nw,則環繞該奈米線之材料通常涵蓋一個或多個層遞級折射率,舉例而言,n3<n2<n1<nw
在表I中,PESin係指電漿增強之Sin且PESiO係指電漿增強之SiO。
該光學導管之形狀可針對不同實施例係不同。在一項組態中,該光學導管可係圓柱形,亦即,該導管之直徑在該光學導管之整個長度上保持大致相同。在另一組態中,該光學導管可係圓錐形,其中該光學導管之橫截面面積之上部直徑可大於或小於該光學導管之橫截面面積之下部直徑。術語「上部(upper)」及「下部(lower)」係指該光學導管之位於較接近於該影像感測器之入射電磁輻射束接收端及出射端處之端。其他形狀包含一圓錐形區段堆疊。
表I列舉數種不同玻璃及其等之折射率。此等玻璃可用於製造光學導管以使得核心之折射率高於包覆層之折射率。可在不使用經著色色彩濾光器之情況下使用具有不同折射率之不同透明玻璃來製作該等實施例之該等影像感測器。
藉由嵌套用作波導之光學導管及使用一微透鏡耦合器,一影像感測器陣列可經組態以獲得具有在每一影像感測器之每一光學導管之核心及包覆層中以一截止波長分離之電磁輻射之波長之互補色彩。該 等互補色彩通常係當以適合比例混合時產生一中性色彩(灰色)、白色或黑色之兩種色彩。此組態亦使得能夠捕獲照射於微透鏡上之大多數電磁輻射入射束且將其導引至位於光學導管之下部端處之光敏元件(亦即,光電二極體)。具有不同色彩互補分離之兩個毗鄰或大致毗鄰影像感測器可提供用以根據本文中所述之實施例重新建構一全色場景之完整資訊。本文中所揭示實施例之此技術可進一步取代用於影像感測之基於顏料之色彩重新建構,其遭受不能有效地擯棄(經由吸收)針對每一像素之未選色彩。
含有本文中所揭示實施例之一影像感測器之一裝置之每一實體像素可具有表示互補色彩之兩個輸出,例如,指定為輸出類型1之青色及指定為輸出類型2之黃色。此等輸出將配置成如下棋盤形方格: 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2...
2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1...
1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2...
..................................
..........................
每一實體像素可具有藉由組合其兩個互補輸出所獲得之全照度資訊。該兩個互補輸出可由光學導管中之光電二極體及由基板中之一個或多個光電二極體量測。因此,同一影像感測器可用作一全解析度黑色及白色感測器或全色感測器。
在本文中所揭示之影像感測器之實施例中,相對於習用拜耳圖案之4個像素,可藉由適當地組合兩個水平或垂直毗鄰像素來獲得該入射電磁輻射束之波長之全光譜(例如,入射光之全色資訊)。
端視最小電晶體大小,含有本文中所揭示實施例之一影像感測器之每一像素在間距上可係小至1微米或更小且還具有充分敏感度。此可開創用於諸如生物系統等較小結構之接觸成像之方式。
在以下說明之上下文中將進一步詳細地闡述包含一影像感測器以及用於製作該影像感測器之方法之複數項實施例之實施例。在以上所述之圖式之上下文內進一步理解該說明。該等圖式係出於圖解說明性目的且因此不必按比例繪製。
一複合像素之一實施例包括兩個像素之一系統,每一像素具有一不同直徑之一核心以使得該等核心具有直徑d1及d2以引導不同波長(舉例而言,λG、λB或λR)之光。兩個核心亦可充當光電二極體以捕獲波長λB、λG或λR之光。兩個影像感測器之包覆層用於傳輸波長λw-B、λw-G或λw-R之光。由環繞該等核心之周邊光敏元件來偵測傳輸穿過該包覆層之波長λw-B、λw-G或λw-R之光。注意,(w)係指白色光之光譜。來自複合像素中之4個光電二極體(兩個位於核心中且兩個位於環繞核心之基板中或基板上)之信號用以建構色彩。
該等實施例包含一奈米結構光電二極體(PD),根據該等實施例,奈米結構光電二極體(PD)包括一基板及自該基板伸出之一豎立奈米線。
在該結構內可存在給出用以偵測光之一主動區之一pn-接面。該奈米線、該奈米線之一部分或與該奈米線連接之一結構形成一波導,該波導引導及偵測照射於裝置上之光之至少一部分。另外,該波導兼作使得能夠判定照射光之色彩範圍之光譜濾光器。
根據該等實施例之一奈米結構PD由一豎立奈米線構成。出於本申請案之目的,應將一豎立奈米線理解為以某一角度自該基板伸出之一奈米線,舉例而言,該豎立奈米線(舉例而言)藉由作為氣-液-固(VLS)生長之奈米線而自該基板磊晶地生長。與該基板之角度通常將係該基板及該奈米線中之材料、該基板之表面及生長條件之一結果。藉由控制此等參數,可產生僅指向一個方向(舉例而言,垂直)或指向有限組之方向之奈米線。半導體奈米線可經生長而正交於該基板,且 矽奈米線可沿[111]方向生長,其中基板在(111)晶體平面中。由來自週期表之行III、V及IV之元素構成閃鋅礦及金剛石半導體之奈米線及基板,此等奈米線可沿[111]方向生長且然後沿正交於任一{111}基板表面之方向生長。作為該表面之法線與該奈米線之軸向方向之間的角度所給出之其他方向包含70,53°{111}、54,73°{100}以及35,27°{110}及90°{110}。因此,該等奈米線界定一個或有限組之方向。
根據該等實施例,該奈米線或由該奈米線形成之結構之一部分可用作一波導,其沿由該豎立奈米線所給出之一方向引導且侷限照射於該奈米結構PD上之光之至少一部分。該波導奈米結構PD結構可包含一高折射率核心與具有小於該核心之折射率之折射率之一個或多個環繞包覆層。該結構可係圓形對稱或接近於圓形對稱。眾所周知呈圓形對稱結構之光波導用於光纖應用且可對經稀土摻雜光纖裝置之區域做出諸多平行結構。然而,一個差異係光纖放大器經光學抽吸以增強導引穿過其之光,而所述之奈米結構PD可視為一高效光至電轉換器。一個眾所周知之優點特徵係所謂的數值孔徑NA。NA判定由波導所捕獲之光之角度。NA及所捕獲光之角度係一新PD結構之最佳化中之重要參數。
對於在IR中及高於IR操作之一PD,使用GaAs可係較好,但對於在可見光區中操作之一PD,矽將係較佳。舉例而言,為形成電路,Si及經摻雜之Si材料係較佳。類似地,對於在可見光範圍中工作之一PD,將更喜歡使用Si。
在一項實施例中,當與具有介於自1.4至2.3之範圍內之折射率之玻璃類型之包覆層材料(諸如,SiO2或Si3N4)組合時,III-V半導體核心材料之折射率之典型值係在自2.5至5.5之範圍內。一較大捕獲角度意指以較大角度照射之光可耦合至波導中以達成較佳捕獲效率。
光捕獲之最佳化中之一個考慮因素係提供一耦合器至該奈米線 結構中以最佳化至該結構中之光捕獲。一般而言,使NA最高將係較佳,其中發生光收集。此將最大化捕獲且導引至PD中之光。
根據該等實施例之一奈米結構PD可包括一基板及以一經界定角度θ自該基板磊晶地生長之一奈米線。該奈米線之一部分或全部可經配置以充當沿由該奈米線之延長方向所給出之一方向引導照射光之至少一部分之一波導部分,且將稱為一波導。在一項可能實施方案中,藉由在線正生長時沿其長度改變使對其之摻雜來形成二極體功能性所必需之一pn-接面。可在該奈米線上提供兩個觸點,舉例而言,一觸點在頂部上或在圓周外部表面上呈一捲繞組態,且另一觸點可提供於該基板中。該基板及該豎立結構之部分可由一覆蓋層覆蓋,舉例而言,該覆蓋層作為如所圖解說明之一薄膜或作為填充環繞奈米結構PD之空間之材料。
該奈米線可具有約為50奈米至500奈米之一直徑。該奈米線之長度可約為1微米至10微米。該奈米線之長度較佳約為4微米至10微米,從而提供足夠體積以用於形成一主動pn接面。該pn-接面產生配置於該奈米線中之一主動區。該奈米線中之照射光子被轉換為電子電洞對且在一項實施方案中隨後由該PN接面沿該奈米線之長度產生之電場分離。奈米結構PD之不同部件之材料經挑選以使得該奈米線將相對於環繞材料具有良好波導性質,亦即,該奈米線中之材料之折射率較佳應大於該等環繞材料之折射率。
另外,該奈米線可具備一個或多個層。一第一層可經引入以改良該奈米線之表面性質(亦即,減少電荷洩漏)。進一步之層(舉例而言,一光學層)可經具體引入以便以類似於在光纖區域中良好創建之方式改良該奈米線之波導性質。該光學層通常具有在該奈米線之折射率與該環繞包覆層區材料之折射率之間的一折射率。另一選擇係,中間層具有一遞級折射率,經展示其在某些情形下改良光傳輸。若利用 一光學層,則該奈米線之折射率nw應針對該奈米線及該等層兩者界定一有效折射率。
如上文所述及下文所例示,生長具有經良好界定直徑之奈米線之能力可用以相對於由該奈米結構PD侷限及轉換之光之波長最佳化該奈米線或至少該波導之波導性質。該奈米線之直徑可經挑選以便具有對所期望光之波長之一有利對應。較佳地,該奈米線之尺寸係使得沿該奈米線提供一均勻光學腔(針對所產生光之具體波長最佳化)。該核心奈米線必須充分寬以捕獲所期望之光。一經驗規則將係直徑必須大於λ/2nw,其中λ係所期望光之波長且nw係該奈米線之折射率。作為一實例,約60奈米之一直徑可適於僅侷限藍色光,且80奈米之直徑可適於僅將藍色及綠色光兩者侷限於矽奈米線中。
在紅外光及接近紅外光中,高於100奈米之一直徑將係充分的。該奈米線之直徑之一接近最佳上限由生長約束給出且可約為500奈米。該奈米線之長度通常且較佳約為1至10微米,從而為光轉換區提供足夠體積。
在一項實施例中,一反射層可提供於該基板上且在該線下方延伸。該反射層之目的係反射由該線導引但尚未在奈米結構PD中被吸收且轉換為載子之光。舉例而言,該反射層較佳係以包括重複矽酸鹽層之一多層結構之形式提供或提供為一金屬膜。若該奈米線之直徑充分地小於光之波長,則經引導光模式之一大分率將在該波導外部延伸,從而達成藉由環繞窄奈米線波導之一反射層之高效反射。
用以在該波導核心之下部端中得到一反射之一替代方法可係在該奈米線下面將一反射層配置於該基板中。又一替代方案可係在該波導內引入反射構件。此反射構件可係在奈米線之生長製程期間提供之一多層結構,該多層結構包括(舉例而言)SiNx/SiOx(電介質)之重複層。
為形成光偵測所必需之pn-接面,較佳對該奈米結構之至少部分進行摻雜。此可係藉由在生長奈米線期間改變摻雜劑或一旦生長奈米線即對其使用一徑向淺植入方法而完成。
考量其中藉由一物質局部地增強奈米線生長之系統(如氣-液-固(VLS)生長之奈米線),藉由更改生長條件在徑向生長與軸向生長之間改變之能力達成重複該程序(奈米線生長、遮罩形成及後續選擇性生長)以形成更高級之奈米線/3D序列。對於其中未藉由個別生長條件來區分奈米線軸向生長與選擇性徑向生長之系統,首先沿長度生長奈米線且藉由不同選擇性生長步驟生長不同類型之3D區可係較佳。
根據實施例之具有由Si形成之主動奈米線區之一光偵測pn二極體/陣列之一製作方法包括以下步驟:
1.藉由微影在矽基板上界定局部催化劑。
2.自局部催化劑生長矽奈米線。針對催化線生長調整生長參數。
3.在該奈米線周圍徑向生長其他半導體、鈍化、薄絕緣體或金屬同心層(包覆層)。
4.在PD奈米線上且至基板及至一CMOS電路中之其他金屬層地形成觸點。
可以習知方式改變該生長製程以(舉例而言)包含奈米線中之異質結構、提供反射層等。
端視奈米結構PD之既定使用、適合產生製程之可用性、材料之成本等,寬範圍之材料可用於該結構之不同部分。另外,基於奈米線之技術允許否則將不可能組合之材料之無缺陷組合。III-V半導體因其等促進高速度及低功率電子器件之性質而受到特別關注。用於基板之適合材料包含(但不限於):Si、GaAs、GaP、GaP:Zn、GaAs、InAs、InP、GaN、Al2O3、SiC、Ge、GaSb、ZnO、InSb、SOI(絕緣體上覆矽)、CdS、ZnSe、CdTe。用於奈米線110之適合材料包含(但不限 於):Si、GaAs(p)、InAs、Ge、ZnO、InN、GaInN、GaN、AlGaInN、BN、InP、InAsP、GaInP、InGaP:Si、InGaP:Zn、GaInAs、AlInP、GaAlInP、GaAlInAsP、GaInSb、InSb。用於例如GaP、Te、Se、S等之可能供體摻雜劑及用於相同材料之受體摻雜劑係Zn、Fe、Mg、Be、Cd等。應注意,奈米線技術使得可使用諸如SiN、GaN、InN及AlN等氮化物,其促進偵測波長區中不可由習用技術容易地接近之光之PD之製作。受到商業特別關注之其他組合包含(但不限於)GaAs、GaInP、GaAlInP、GaP系統。典型摻雜位準介於自1018至1020/立方公分之範圍內。一熟習此項技術者完全通曉此等及其他材料且認識到其他材料及材料組合係可能。
低電阻率觸點材料之適當性取決於欲沈積上之材料,但可使用金屬、金屬合金以及非金屬化合物(如同Al、Al-Si、TiSi2、Tin、W、ITO(InSnO)、MoSi2、PtSi、CoSi2、WSi2、In、AuGa、AuSb、AuGe、PeGe、Ti/Pt/Au、Ti/Al/Ti/Au、Pd/Au等等)以及例如金屬及ITO之組合。
基板可係裝置之一整合部分,此乃因基板亦含有偵測尚未侷限於奈米線之光所必需之光電二極體。另外,基板亦含有用以控制PD之偏壓、放大及讀出之標準CMOS電路以及認為必需且有用之任一其他CMOS電路。基板包含其中有主動裝置之基板。用於基板之適合材料包含矽材料及含矽材料。通常,該等實施例之每一感測器元件包含一奈米結構PD結構,其包括一奈米線、包圍該奈米線之至少一部分之一包覆層、一耦合器及兩個觸點。
在矽上製作奈米結構PD在奈米線沿正交於基板之(111)方向均勻地對準且基本上無奈米線沿亦自基板延伸出之三個傾斜(111)方向生長之程度內係可能。矽基板上呈預界定陣列結構之III-V奈米線之良好對準之生長對於光學裝置以及大多數其他應用之成功大規模製作係較 佳。
建立於矽奈米線上之PD裝置因其偵測對於其他材料組合係不可能之選定波長之光之能力而受到高度商業關注。另外,該等PD裝置允許設計一複合光電二極體,其允許偵測大多數照射於一影像感測器上之光。
實例
實例1
圖2中展示具有一經完全處理晶圓之一背側照明影像感測器之一實例,該晶圓含有一基板光電二極體但在該基板之背側上不具有奈米線。
圖3A展示一實施例,其展示含有一基板光電二極體之一經完全處理晶圓之背側上之一奈米線(諸多此等奈米線將係以一緊密裝填方式構成)。在諸如圖3A中所示之實施例之一實施例中,奈米線光電二極體感測器可包含一個或多個垂直光閘極。垂直光閘極具有諸多優點。垂直光閘極可在不使用一複雜離子植入製程之情況下修改並控制半導體中之電位分佈。習用光閘極像素遭受不良量子效率及不良藍色回應。習用光閘極通常係由吸收接近於藍色光之短波長,因此減少到達光二極體之藍色光之多晶矽製成。此外,習用光閘極像素係放置於光電二極體之頂部上且可阻擋光路徑。相比之下,垂直光閘極(VPG)結構不阻擋光路徑。此乃因垂直光閘極(VPG)不橫向地橫跨光電二極體以控制半導體中之電位分佈。
另外,隨著影像感測器之像素大小按比例減小,該影像感測器之孔徑大小變得與波長相當。對於一習用平面類型光電二極體,此導致一不良量子效率(QE)。然而,一垂直光閘極結構與一奈米線感測器之組合允許具有良好量子效率之一超小像素。
在諸如圖3A中所示之實施例之一項實施例中,一奈米線像素可 具有一雙垂直光閘極結構。此實施例可包含兩個光電二極體、一奈米線光電二極體及一基板光電二極體。此實施例亦包含兩個垂直光閘極(Vp閘極1、Vp閘極2)、一轉移閘極(TX)及一重設閘極(RG)。較佳地,光電二極體中之兩者係輕摻雜。此乃因一輕摻雜區可係在一低偏壓電壓下容易空乏。如所圖解說明,光電二極體中之兩者係(n-)。然而,另一選擇係,奈米線像素可經組態以使得兩個光電二極體皆係(p-)。
該基板光電二極體之表面區可因製作期間所產生之製程誘致損壞及與奈米線之生長相關聯之晶格應力而易具有缺陷。此等缺陷充當暗電流之一源。為抑制(n-)光電二極體之表面處之暗電流,在該基板之n-光電二極體之頂部上製作一(p+)區。
較佳地,將該基板連接至接地,亦即,零電壓。在此實施例中,該重設閘極較佳係經摻雜(n+)且係受正偏壓。當轉移閘極TX及重設閘極係接通時,基板中之(n-)區變為受正偏壓。此導致(n-)區因p摻雜基板與(n-)區之間的反向偏壓條件而變成空乏的。當轉移閘極TX及重設閘極RG係關斷時,(n-)區保持其正偏壓,從而相對於p-基板(p-sub)區形成一浮動電容器。
第一垂直光閘極Vp閘極1可經組態以控制奈米線中之電位以使得可在奈米線光電二極體與基板光電二極體之間形成一電位差。以此方式,奈米線中之電子可在讀出期間快速地漂移至基板之(n-)區。
第二光閘極Vp閘極-2可係一接通/關斷開關。此開關可經組態以分離產生於奈米線中之信號電荷與整合於基板光電二極體中之信號電荷。光電荷係同時地但於分開電位井中整合於奈米線光電二極體與基板光電二極體兩者中,此乃因第二光閘極Vp閘極-2之關斷狀態在該等電位井之間形成一電位障壁。以此方式,奈米線光電二極體及基板光電二極體不混合在一起。
本實施例之奈米線光感測器使用兩步驟製程以在奈米線光電二極體與基板光電二極體之間分開地讀出信號。在第一步驟中,讀出該基板光電二極體中之信號電荷。然後,使該基板中之(n-)區空乏。在第二步驟中,可首先接通第二光閘極Vp閘極2。然後,讀出該奈米線中之信號電荷。
在一「快照」操作中,較佳同時接通或關斷所有第二光閘極Vp閘極2。對於轉移閘極TX,同樣較佳同時接通或關斷所有轉移閘極TX。為達成此,所有第二光閘極Vp閘極2係與一全域連接相連接。此外,所有轉移閘極TX係與一第二全域連接相連接。
通常,應出於實際原因而(通常)避免重設閘極RG之全域操作。在像素陣列中,逐列全域地重設該陣列係一常見實踐。亦即,通常不係同時重設整個像素陣列。若不使用快照操作,則個別像素操作係可能。在此情形下,不必具有全域連接。
為製成圖3A之背側照明影像感測器,藉由移除含有光電二極體陣列之區域上方之矽來使晶圓薄化。舉例而言,可使圖3A之一經摻雜p-基板(p-sub)薄化至3微米與50微米之間(更佳地,6微米與20微米之間)的一厚度。該基板光電二極體現可得到來自背側(而非來自其中所有金屬線所在之側(如習用影像感測器中))之其所有光。
奈米線可係形成於圖3A中所示之經摻雜(p-)基板之背側處。在前側處,可存在一緩衝器放大器及其上具有一(p+)層之一(n-)二極體,如圖3A中所示。在基板之兩側處具有(p+)之目的係抑制暗電流。可將一隱埋p-層放置於(n+)擴散層下面以阻擋來自背側之傳入電荷流且使電荷朝向(n-)層轉向。較佳地,該隱埋p-層之摻雜高於該經摻雜p-基板之摻雜,但不高至該p+層之摻雜。前側光電二極體不係用於光吸收,而用於收集來自其中發生光吸收之背側p-基板之電荷。該奈米線可具有環繞該奈米線之氧化物層(包覆層)及兩個垂直光閘極,一垂直 光閘極用於開關且另一垂直光閘極於控制該奈米線中之電位。
通常,在圖3A之實施例中,將採取兩步驟製程以自該等光電二極體中之至少某些光電二極體分開地讀出信號電荷。第一步驟將係自p-基板二極體讀出電荷。緊鄰此後,藉由接通Vp閘極-1,將讀出來自奈米線之電荷。
較佳地,圖3A之實施例應具有在中心具有一孔之一淺p+層,以使得該p+層可不阻擋來自背側奈米線之載子。此外,較佳地在前側處,應在該淺(p+)層下面存在N-井或低摻雜之n-層。該低摻雜之N-井可係容易空乏。若(p+)層與(n+)層相遇在一起,則可在類似於一齊納(Zener)二極體之電壓之低電壓下存在一故障。
該等實施例係關於在預定區域中垂直地生長一奈米線陣列(Si、或其他III-V化合物)以充當光偵測或發光裝置。此一結構可需要可用來達到諸如光通道化(如在先前專利申請案中所述)等重要目的之其他環繞被動或主動層、電觸點及諸如此類。
圖3B展示一背側照明影像感測器之另一實施例。在此實施例中,替代針對奈米線具有一垂直光閘極,可將(p+)層塗佈於該奈米線之表面處以幫助在奈米線中形成一內建電場以使得電子可容易地沿向上方向漂移。該背側照明影像感測器之特徵類似於圖3A之影像感測器之彼等特徵。
圖3C係展示含有基板光電二極體之一經完全處理晶圓之背側上之奈米線之一實施例。在圖3C中,生長不同直徑之三個奈米線,且該三個奈米線用以選擇並吸收不同波長紅色、綠色及藍色之輻射。
圖3D係展示含有基板光電二極體之一經完全處理晶圓之背側上之奈米線之一實施例。在圖3D中,生長不同直徑之兩個奈米線,且該兩個奈米線用以選擇並吸收輻射,且對於每一奈米線,存在建立於該基板中之一(或一個以上)平面光電二極體。該等平面光電二極體吸 收不允許在奈米線中傳播之輻射。
圖4A及圖4A中展示其中具有光電二極體之背側薄化影像感測器之結構之實例。圖4C展示其中具有尺寸之一奈米結構波導之一圖解說明性實施例。其中之尺寸純係出於圖解說明性目的以展示可用於一圖解說明性實施例中之尺寸。然而,亦可在不脫離本發明之範疇之情況下使用其他尺寸。
BSI影像感測器可用於各種實施例。舉例而言,作為光偵測器裝置,藉由:(A)使用BSI影像感測器來在位於一習用CMOS感測器電路之背面上之矽區域上形成奈米線及相關聯結構。背面照明之此方法可用於CCD及用於增強一習用CMOS成像器之效能。舉例而言,參見:2007年B.Pain等人在Proc 2007 Int.Image sensor Workshop第5至8頁中之「A Back-Illuminated Mega Pixel CMOS Image Sensor」;Jon Hyuk Park之「Back-illuminated ultraviolet image sensor in silicon-on-sapphire」;E.Culurciello在2008年5月18至21日IEEE International Symposium on Circuits and Systems(ISCAS 2008)Seattle,WA第1854至1857頁。(B)在位於通常指定用於一光電二極體之區域之頂部上之一區域上形成奈米線及相關聯結構。因此,基板可係一電介質。
此處之製程圖係針對生長於矽層上之矽奈米線(NW)之一情形。該製程可適用於在電介質層上生長矽奈米線(Si NW),或適用於生長於適當基板(包含具有或不具有一薄鉬層之Si基板)上之III-V化合物。
該裝置結構可包含一低摻雜(~3×1014/cm3)之磊晶p型矽連同由一前面植入之n井與該p型磊晶矽所形成之光偵測接面。光子自背側進入偵測器,且在該前側p-n井接面中收集所得光電子。
一項實施例可係關於一種在基板之背側上具有一光學導管之背側照明影像感測器,該光學導管包括一核心及一包覆層以便形成環繞奈米線之一電容器。該核心可由三個層(一半導體奈米線、一絕緣體 及金屬)構成,因此形成一電容器以收集該奈米線中之光誘致載子所產生之電荷。製成至金屬及至半導體奈米線之觸點以控制及偵測所儲存之電荷。該等實施例之核心可用作一波導及一光電二極體。該包覆層可包括位於該光學感測器之矽基板中或位於該光學感測器之矽基板上之一周邊波導及一周邊光電二極體。
矽晶圓基板中之積體電路(IC)可視情況具有其中之主動裝置、該矽晶圓中或該矽晶圓上之一周邊光電二極體、含有金屬化層及金屬間電介質層及一鈍化層之堆疊層。該等堆疊層之厚度通常可係大約6微米至10微米。藉由平面沈積技術製造IC之方法係熟習此項技術者所習知。含有圖2中所示之IC之一基板可係製造背側照明感測器之實施例之起點。
然後,可使用一框薄化方法來使該基板以一個別晶粒級薄化。可使像素區域之厚度薄化降至約7微米至10微米(對應於磊晶矽厚度),從而留下一厚周邊區(寬約1毫米)。然後,可將一表面鈍化步驟應用於該薄化之矽層。所得結構提供增加之機械穩定性、顯著易於進行晶粒處置及防止薄化之晶粒起皺。此方法極適合於一CMOS成像器,此乃因該成像器不僅由像素組成,而且亦包括沿像素陣列之周邊之支撐及信號鏈電子器件。
可如下執行背側薄化。首先,將晶粒之前側附著至一保護蠟。然後,將經由Si3N4遮罩之沈積及圖案化來形成背側上之一保護框。然後,可使用熱KOH(舉例而言)來將未遮罩之p+矽基板(具有約1019/cm3之摻雜劑)蝕刻降至約10微米之最後矽厚度。可在具有氫氟酸、硝酸及醋酸溶液(稱作HNA之HF:HN03:CH3COOH)之一浴槽中執行蝕刻之剩餘部分。HNA經由氧化還原反應來蝕刻矽,其中矽氧化速率取決於摻雜濃度。由於其摻雜濃度之相依性,因此蝕刻速率在蝕刻矽基板時顯著地減慢,從而留下一光學扁平薄(厚約10皮米)磊晶矽 層。在薄化之後,可將前側蠟移除,且可使用一標準線接合技術將晶粒封裝於一標準引腳柵格陣列(PGA)封裝(其中移除其中心部分以使光進入)中。
在薄化之後,可視情況將△(delta)摻雜技術用於表面鈍化。該技術包含一低溫分子束磊晶(MBE),其將一極高密度之摻雜劑原子(>1014硼/cm2)施加於表面之幾個原子層內而不具有可觀察之晶體缺陷且不需要生長後退火,從而使得其可與金屬化後處理相容。應使用元素矽之電子束蒸鍍及元素硼之熱蒸鍍在超高真空條件(10-10托)下執行△摻雜。製程步驟可係如下。可首先生長厚1奈米(p+)之矽層,隨後沈積約30%之單層硼原子。然後,生長厚1.5奈米之磊晶矽包覆層。在自MBE系統移除之後,矽包覆層之氧化保護隱埋之△摻雜層。所得光學扁平表面允許使用沈積之氧化物及電漿增強之氮化矽來容易地沈積抗反射塗層。
用於製造背側照明感測器之實施例之後續步驟可係如下。可如下製成本文中所揭示實施例之矽奈米線。一基板可係視情況具有二氧化矽表面之矽。舉例而言,對於生長垂直定向之奈米線,可使用沿(111)定向之Si基板。通常可在此表面上沈積金補片。可憑藉一表面處理修改該表面以促進金奈米顆粒之吸收。在此經修改表面上,可藉由沈積金層、隨後移除非金奈米顆粒之所期望位置之區上方之金層來形成金奈米顆粒。該金奈米顆粒可經表面處理以提供立體穩定(steric stabilization)。換言之,經拴繫之立體穩定之金奈米顆粒可用作用於進一步合成奈米線之晶種,其中該等金奈米顆粒被吸收至經修改矽基板。二苯基矽烷(DPS)之降解形成矽原子。該等矽原子附著至金奈米顆粒,且在金奈米顆粒飽和有矽原子之後矽奈米線自金奈米顆粒晶種結晶。注意,留在背側表面上之金顆粒之厚度及直徑判定奈米線之直徑。
在某些實施例中,使用氣-液-固(VLS)生長方法來生長矽奈米線(SiNW)。在此方法中,一金屬熔滴催化含Si之源氣體之分解。來自該氣體之矽原子溶解成形成一共晶液體之熔滴。該共晶液體用作Si儲槽。隨著更多矽原子進入至溶液中,該共晶液體變成矽過飽和,從而最終造成Si原子之沈澱。通常,Si自該滴之底部沈澱出,從而在金屬催化劑滴在頂部上之情況下導致矽奈米線之由底向上生長。
在某些實施例中,將金用作用於生長矽奈米線之金屬催化劑。然而,可使用其他金屬,包含但不限於Al、GA、In、Pt、Pd、Cu、Ni、Ag及其組合。可使用諸如濺鍍、化學氣相沈積(CVD)、電漿增強型化學氣相沈積(PECVD)、蒸鍍等習用CMOS技術來將固態金沈積及圖案化於矽晶圓上。舉例而言,可憑藉光學微影、電子束微影或任一其他適合技術來執行圖案化。然後,可加熱該矽晶圓,從而致使金在該矽晶圓上形成熔滴。矽及金形成具有363℃之一熔化溫度之19% Au之一共晶。亦即,Si-Au共晶體之一液滴在363℃(適合於處理矽裝置之一適中溫度)下形成。
在某些實施例中,基板具有一(111)定向。然而,亦可使用其他定向,包含但不限於(100)。用於奈米線產生之一常見矽源氣體係SiH4。然而,可使用其他氣體,包含但不限於SiCl4。在某些實施例中,舉例而言,可在80毫托至400毫托之壓力及450℃至600℃之範圍內之溫度下用SiH4來進行奈米線生長。在某些實施例中,溫度係在470℃至540℃之一範圍內。通常,SiH4之較低分壓力導致產生垂直奈米線(NW)之一較高百分比。舉例而言,在80毫托分壓力及470℃下,矽奈米線之高達60%沿垂直<111>方向生長。在某些實施例中,可生長基本上圓環形之奈米線。在其他實施例中,奈米線係六邊形。
在一項實施例中,奈米線生長係在一熱壁低壓CVD反應器中進行。在憑藉丙酮及異丙醇清潔Si基板之後,可將樣品浸入一緩衝HF溶 液中以移除任何自然氧化物。可藉由熱蒸鍍來將接連之薄Ga及Au金屬層(標稱厚1奈米至4奈米)沈積於基板上。通常,Ga層係在Au層之前沈積。在一實施例中,在將CVD室抽空降至約10-7托之後,可在真空中將該等基板加熱高達600℃以形成金屬熔滴。舉例而言,可使用100sccm之SiH4流(He混合物中之2%)在自500℃至700℃之一溫度範圍內在3毫巴之一總壓力下生長矽奈米線。
憑藉Au-Ga催化劑生長之矽奈米線之大小及長度係相對同質的,其中大多數該等線沿四個<111>方向定向。為進行比較,憑藉一純Au催化劑生長之矽奈米線成核且生長有更隨機散佈之奈米線之長度及直徑。此外,憑藉Au-Ga催化劑生長之奈米線往往具有沿軸向方向之一錐形。生長達一長時間之奈米線之尖端直徑係與生長達一短時間之彼等奈米線之尖端直徑相同且由催化劑直徑判定。然而,奈米線之佔用面積往往在生長過程期間增加。此指示奈米線漸細主要係由矽之側壁沈積(徑向生長)所造成。奈米線可經生長而在底部(基底)處具有1500奈米之一直徑,而尖端之直徑可在15微米之一長度上小於70奈米。此外,奈米線直徑係生長溫度之一函數。較高生長溫度導致具有較小直徑之奈米線。舉例而言,憑藉Ga/Au催化劑在600℃下生長之奈米線之平均直徑係約60奈米,但對於500℃下之生長而言,平均直徑減小降至約30奈米。另外,直徑之變化往往隨降低沈積溫度而變窄。
使用VLS製程,可生長垂直奈米線。亦即,基本上垂直於基板表面之奈米線。通常,並非所有奈米線皆將係完全地垂直。亦即,奈米線可以除90度之外的一角度傾斜於該表面。通常觀測傾斜之奈米線包含(但不限於)三個70.5°-斜向<111>磊晶生長方向及旋轉60°之三個額外70.5°-斜向方向。
除生長垂直奈米線之外,該VLS製程亦可用以生長經摻雜之奈米線。實際上,藉由改變源氣體之組合物,可產生生長線之一摻雜分 佈。舉例而言,奈米線可係藉由將乙硼烷(B2H2)或三甲基硼烷(TMB)添加至源氣體而製成為p型。亦可使用將受體原子添加至矽奈米線之其他氣體。奈米線可係藉由將PH3或AsH3添加至源氣體而製成為n型。亦可使用將供體原子施加至矽奈米線之其他氣體。可產生之摻雜分佈包含(但不限於)n-p-n、p-n-p及p-i-n。
另外,可使用其他方法或VLS方法之變化形式來生長奈米線。其他方法或變化形式包含(但不限於)(1)CVD、(2)反應性氛圍、(3)蒸鍍、(4)分子束磊晶(MBE)、(5)雷射燒蝕及(6)溶液方法。在CVD製程中,提供一揮發性氣態矽前體。實例性矽前體氣體包含SiH4及SiCl4。CVD可用於磊晶生長。此外,可藉由將揮發性摻雜前體添加至矽前體來達成摻雜。在反應性氛圍中退火包括在與基板反應之一氣體中加熱基板。舉例而言,若在包含氫之一氛圍中將矽退火,則該氫與矽基板局部地反應,從而形成SiH4。然後,SiH4可與催化劑金屬滴反應,藉此起始奈米線生長。此生長製程可用於非CMOS製程。
在蒸鍍方法中,在導致產生SiO氣體之條件下加熱SiO2源。當SiO氣體吸收於金屬催化劑熔滴上時,其形成Si及SiO2。亦可在不具有一金屬催化劑滴之情況下執行此方法,不存在一金屬催化劑,觀測到SiO2催化矽奈米線生長。在MBE方法中,加熱一高純度矽源直至Si原子蒸鍍。朝向該基板引導一氣態Si束。該氣態矽原子吸收至金屬熔滴上且溶解成金屬熔滴,藉此起始奈米線之生長。
在雷射燒蝕方法中,一雷射束瞄準包含矽及催化劑原子兩者之源。經燒蝕之原子藉由與惰性氣體分子衝突而冷卻及凝結以形成具有與原始目標相同組合物之熔滴。亦即,具有矽及催化劑原子兩者之熔滴。亦可憑藉基本上由純矽組成之目標來執行該雷射燒蝕方法。基於溶液之技術通常使用有機液體。具體而言,該等有機液體通常包括富含有矽源及催化劑顆粒之高壓超臨界有機液體。在高於金屬-矽共晶 之一反應溫度下,該矽前體分解,從而形成具有該金屬之一合金。在超飽和之後,矽沈澱出,從而生長奈米線。
以上奈米線生長技術皆係由底向上技術。然而,亦可憑藉由頂向下技術來製作奈米線。由頂向下技術通常涉及圖案化及蝕刻一適合基板,舉例而言,矽。可經由微影(舉例而言,電子束微影、奈米球微影及奈米印刷微影)來達成圖案化。可執行乾式或濕式蝕刻。乾式蝕刻技術包含(但不限於)反應性離子蝕刻。可憑藉標準蝕刻或經由金屬輔助之蝕刻製程來執行濕式蝕刻。在金屬輔助之蝕刻製程中,濕式化學蝕刻Si,其中藉由存在作為一鹽添加至蝕刻溶液之一貴金屬來催化該Si溶解反應。
後續步驟可係關於在基板之背側上形成奈米線周圍之電介質層中之一者或多者。舉例而言,在該奈米線周圍製成藉由化學氣相沈積(CVD)、原子層沈積(ALD)、氧化或氮化塗佈之一保形電介質塗層。然後,可藉由電漿增強型化學氣相沈積、旋塗或濺鍍(視情況)與一初始原子層沈積來在該保形電介質塗層上形成經摻雜玻璃電介質層。可藉由化學機械平坦化或其他蝕刻方法來回蝕所沈積之經摻雜玻璃電介質層。
然後,可如下製成用以將電磁輻射(諸如,光)以通道方式導引至奈米線波導中之一漏斗及該漏斗上之一透鏡:藉由CVD、濺鍍沈積或旋塗來沈積一玻璃/氧化物/電介質層;將一光阻劑施加於所沈積之玻璃/氧化物/電介質層上;移除深腔內之奈米線上方所集中之一開口外部之光阻劑;及藉由半各向同性蝕刻來在該玻璃/氧化物/電介質層中形成一耦合器。
後續步驟可係關於藉由在奈米線之環繞一個或多個電介質層之垂直壁上沈積一金屬(諸如,銅)來在該一個或多個電介質層周圍形成一金屬層。
另一實施例可係關於一種具有一光學導管之背側照明影像感測器,該光學導管包括一核心及一包覆層,其中一pin或pn光電二極體位於該核心中之一奈米線中。
該核心可具有在核心線中誘致一電位梯度之一pn或pin接面。可藉由生長一奈米線並在該奈米線核心正生長為一pin接面時對其進行摻雜來形成該核心中之pn或pin接面。舉例而言,奈米線之摻雜可具有兩個摻雜位準以形成n及p,或在其他實施例中,該奈米線可包括p、i及n區以形成一pin光電二極體。而,另一可能性係沿線之長度以同心圓對線進行摻雜以形成p及n或p、i及n區以形成一pn或pin光電二極體。使用各種金屬層(其係用以偵測由pn或pin接面奈米線中之光誘致載子所產生之電荷之任一裝置之部分)在沿pn或pin接面奈米線之適當點處接觸該pn或pin接面奈米線(亦稱為一pn或pin光電二極體)。該等實施例之包覆層可包括位於光學感測器之矽基板中或位於光學感測器之矽基板上之一周邊波導及一周邊光電二極體。
製成其中奈米線具有一pn或pin接面之實施例之方法在諸多方面類似於上文所述之製成其中光學導管具有一電容器類型光電二極體之實施例之方法,惟執行奈米線生長步驟之一經修改版本、省略了沈積一保形電介質塗層之步驟且省略了在奈米線之垂直壁上沈積一金屬之步驟除外。
該奈米線生長步驟包含生長具有兩個或兩個以上不同摻雜區之一奈米線以藉由生長一N摻雜(n摻雜)奈米線、隨後生長一P摻雜(p摻雜)奈米線來形成一pn光電二極體或藉由首先生長一N摻雜(n摻雜)奈米線、然後生長一I摻雜奈米線(亦稱為奈米線之I區)及最後生長一p摻雜奈米線來形成一pin光電二極體。可藉由此項技術中眾所周知之方法來實施奈米線之摻雜。
在一項實施例中,可在基板之背側中安置一淺p型植入物。P型 植入物可防止來自基板內之電子在基板之背側表面處積聚。若允許在背側表面處積聚電子,則此等可致使入射光之一部分被反射,從而減少入射於像素陣列上之光之量。
雖然較佳不在BSI影像感測器中安置色彩濾光器,但在一項實施例中,可在基板之背側上安置一色彩濾光器陣列。在光照明基板之背側之前,色彩濾光器陣列依色彩濾光。在一項實施例中,可在基板上安置一抗反射層。該抗反射層進一步降低對來自基板之背側表面之入射光之反射。另一選擇係,可在其他區中,舉例而言,在影像感測器與一整合式透鏡堆疊之間,安置一抗反射層。
整合式透鏡堆疊可用於達到諸多目的,諸如使光聚焦、使光減弱或使一個波長之光集中於基板之背側上。整合式透鏡堆疊可包含諸如準直透鏡、聚焦透鏡、間隔件及鏡層等若干層。在一項實施例中,可使用一熱固性樹脂將整合式透鏡堆疊之該等層接合在一起。另一選擇係,可使用一UV設定接合製程或另一類型之接合製程將整合式透鏡堆疊之該等層耦合在一起。整合式透鏡堆疊亦提供額外機械支撐。具有五個透鏡層或兩個透鏡層之整合式透鏡堆疊之實施例可經由荷蘭Anteryon BV在市場上購得。另一選擇係,可使用來自其他透鏡製造商之具有不同數目個透鏡層之整合式透鏡堆疊。
在一項實施例中,可將背側表面薄化直至影像感測器晶圓之基板係厚約1微米至10微米,從而促進對可見光之偵測。在一替代實施例中,影像感測器晶圓之背側係適合深度以促進對選定波長之電磁輻射(諸如,紅外光)之偵測。
在一項實施例中,憑藉環繞像素陣列之電子器件使像素陣列大約位於(儘可能地)一晶粒之中心處。另一選擇係,可憑藉散佈於晶粒之剩餘部分上之電子器件使像素陣列位於偏離晶粒之中心處。
應注意,具有本文中所論述之一整合式透鏡堆疊之背側薄化影 像感測器可用於各種應用中。在一項實施例中,具有一整合式透明堆疊之背側薄化影像感測器可用於一數位相機系統中,舉例而言,用於通用照相術(例如,相機電話、照相機、攝影機)或專用照相術。數位相機可包含經由一匯流排耦合在一起之一顯示器裝置及子系統。舉例而言,該等子系統可包含用於相機系統中之熟習此項技術者所習知之儲存、控制及介接操作之硬體、韌體及/或軟體;因此,未提供一詳細說明。另一選擇係,影像感測器可用於其他類型之應用中,舉例而言,機器視覺、文件掃描、顯微鏡檢查、保全、生物辨識等。
根據本發明之實施例,用於最小化腔之基板上之入射光之反射之策略係在腔之基板中或在腔之基板上提供一抗反射塗層。一抗反射塗層用以減少表面處之反射,從而允許一較高級之可見光傳輸。抗反射(AR)塗層係施加至光學裝置之表面以減少反射之一類型之光學塗層。此因損失較少光而改良系統之效率。用於實施抗反射塗層之方法包含使用一低折射率材料(如同,矽石)及一較高折射率材料之交替層以在一單個波長或在一波長範圍內獲得低至0.1%之反射率。
在一項實施例中,抗反射材料可接近於一單個光頻率地工作。其他實施例可(舉例而言)在腔之基板上使用含有藍色吸收奈米線之一綠色抗反射塗層及具有一青色吸收奈米線之一紅色抗反射塗層。
諸多AR塗層具有透明之薄膜結構,其具有對比折射率之交替層。層厚度經挑選以產生自介面所反射之束中之相消干涉及對應傳輸束中之相長干涉。此使得結構之效能隨波長及入射角度而改變,以使得色彩效應通常以斜角出現。必須在設計或排序此等塗層時規定一波長範圍,但針對一相對寬頻率範圍通常可達成良好效能:通常提供IR、可見光或UV中之一選項。
最簡單之干涉AR塗層可係一單個1/4波透明材料層,其折射率係基板之折射率之平方根。此在理論上給出中心波長處之零反射比及針 對中心周圍之一寬頻帶中之波長之經減小反射比。藉由使用一低折射率材料(如同,矽石)及一較高折射率材料之交替層,可在一單個波長上獲得低至0.1%之反射率。
AR塗層之一項實施例可係紫外線抗反射(UAR)塗層。此紫外線抗反射塗層可將自石英、熔融矽石、半導體矽基板之表面反射減少至小於自0.2微米至0.3微米之0.3%。UAR塗層經設計以促進紫外線波長之光之有效傳輸。
抗反射塗層包含數個不同子層,其包括諸多不同材料,諸如(但不限於)Al2O3、ZrO3、MgF2、SiO2、冰晶石、LiF、ThF4、CeF3、PbF2、ZnS、ZnSc、Si、Te、MgO、Y2O3、Sc2O3、SiO、HfO2、ZrO2、CeO2、Nb2O3、Ta2O5及TiO2。每一子層之厚度通常與最佳傳輸穿過所塗佈材料之光之波長之一偶數整數除數相關。
在其他實施例中,可在如圖5中所示之一單個深腔(其中底部處係矽基板)中存在多個奈米線,該矽基板上存在其上方係一耦合器之一奈米線陣列,且在該耦合器上方可係光穿過其到達該耦合器之一區(展示為矩形框)。
可藉由色彩重新建構來完成影像感測器之實施例對色彩及照度之辨識。每一複合像素具有藉由組合其兩個互補輸出所獲得之全照度資訊。因此,同一影像感測器可用作一全解析度黑色及白色感測器或全色感測器。
可藉由適當水平地或垂直地組合兩個毗鄰像素(其可係一複合像素之一項實施例)來進行色彩重新建構以獲得全色資訊。獲得色彩資訊所經由之支援係小於兩個像素之尺寸,而非針對拜耳圖案之4個像素之尺寸。
含有本文中所揭示之實施例之一影像感測器之一裝置之每一實體像素可具有表示互補色彩之兩個輸出,例如,指定為輸出類型1之 青色、紅色(C、R),或指定為輸出類型2之黃色、藍色(Y、B),如圖6中所示。一複合像素之兩個像素之此等四個輸出可經解析以重新建構由含有本文中所述實施例之影像感測器之一裝置所觀看之一影像之一全色場景。該兩個像素中之至少某一像素可具有表示互補色彩之兩個輸出,例如,指定為輸出類型1之白色-紅色、紅色(W-R、R),或指定為輸出類型2之白色-藍色、藍色(W-B、B)。圖7展示一奈米結構波導陣列,其展示3種類型之色彩像素(呈習用棋盤形方格之紅色、綠色及藍色)。注意,當在每一像素中將平面光電二極體添加至奈米線光偵測器時,亦可使用僅2個色彩像素(舉例而言,藍色及綠色)。
所有參考物(包含但不限於專利、專利申請案及非專利文獻)藉此皆以全文引用之方式併入本文中。
雖然本文中已揭示了各種態樣及實施例,但熟習此項技術者應明瞭其他態樣及實施例。本文中所揭示之各種態樣及實施例皆係出於圖解說明之目的且並非意欲加以限制,其中真實範疇及精神皆係由以下申請專利範圍指示。

Claims (48)

  1. 一種裝置,該裝置包括:一基板;一波導,其包括安置於該基板上或該基板內之一奈米線,其中該奈米線包含一核心;其中該奈米線經組態以一選擇性波長分離入射於該奈米線上之一電磁輻射,俾使該電磁輻射之不高於該選擇性波長之一第一部分波長經由該核心傳送,且該電磁輻射之高於該選擇性波長之一第二部分波長在該核心外傳送。
  2. 如請求項1之裝置,其進一步包含一第一影像感測電路,該第一影像感測電路經組態以偵測該電磁輻射之該第一部份。
  3. 如請求項1之裝置,其進一步包含一第二影像感測電路,該第二影像感測電路經組態以偵測該電磁輻射之該第二部份。
  4. 如請求項2之裝置,其中該第一影像感測電路位於該核心內。
  5. 如請求項3之裝置,其中該第二影像感測電路環繞該核心。
  6. 如請求項1之裝置,其進一步包含一透鏡結構或位於該奈米線上方之一光學耦合器,其中該透鏡結構或該光學耦合器係可操作地耦合至該奈米線。
  7. 如請求項1之裝置,其進一步包含安置於該基板上之一抗反射層。
  8. 如請求項2或3之裝置,其中該第一影像感測電路或該第二影像感測電路係選自包含一光二極體、一電荷儲存電容器及其組合之群組。
  9. 如請求項1之裝置,其中該裝置係為一影像感測器。
  10. 如請求項1之裝置,其中該選擇性波長係為該奈米線之直徑之一函數。
  11. 如請求項1之裝置,其進一步包括一垂直光閘(photogate)。
  12. 如請求項1之裝置,其中該第一影像電路包含一pn或pin接面。
  13. 如請求項11之裝置,其進一步包括一包覆層及環繞該核心之一金屬層,其中該核心、該包覆層及該金屬層形成一電容器,該電容器經組態以收集產生於該奈米線中之激子(excitons)並將電荷儲存於該電容器中。
  14. 如請求項13之裝置,其進一步包括連接至該金屬層及奈米線之金屬觸點以控制並偵測儲存於該電容器中之該電荷。
  15. 如請求項1之裝置,其進一步包括環繞該核心之一包覆層,其中該包覆層包含一被動波導。
  16. 如請求項3之裝置,其中該第二影像感測電路係位於該基板上或該基板內。
  17. 如請求項1之裝置,其進一步包含一色彩濾光器或紅外光濾光器。
  18. 一種包括至少兩個不同裝置之複合光偵測器(compound light detector),該裝置包括:一基板,其具有一前側及曝露至傳入輻射之一背側;一波導,其包括安置於該基板上或該基板內之一奈米線;及一影像感測電路,其安置於該前側上,其中該奈米線經組態以作為用以傳輸不高於一選擇性波長之該傳入輻射之波長之一通道及作為用以偵測透過該奈米線傳輸之不高於該選擇性波長之該傳入輻射之波長之一主動元件,且該複合光偵測器經組態以重新建構一電磁輻射束之一波長光譜,其中位於該核心外之一區域經組態以作為用以傳輸不經由該奈米線傳輸之該電磁輻射束之波長之一通道。
  19. 如請求項18之複合光偵測器,其中該至少兩個不同裝置具有不同直徑之奈米線。
  20. 如請求項18之複合光偵測器,其中該區域包括一包覆層,該包 覆層包括一個以上之層,其中該一個以上之層之折射率連續地小於該奈米線之一折射率,其中該包覆層包含一或多個不同材料,其中該包覆層准許超過該選擇性波長之電磁輻射保持於該包覆層內且被傳輸至一周邊光敏(photosensitive)元件。
  21. 如請求項18之複合光偵測器,其中該波長光譜包括可見光、IR或其組合之波長。
  22. 如請求項18之複合光偵測器,其中一第一裝置包括一核心,該核心之直徑不同於一第二裝置之核心之直徑,且該波長光譜包括可見光、IR或其組合之波長。
  23. 如請求項18之複合光偵測器,其中該複合光偵測器經組態以解析該電磁輻射束中所含有之黑色及白色或螢光資訊。
  24. 如請求項18之複合光偵測器,其中該複合光偵測器經組態以偵測四個不同波長範圍之該電磁輻射之能量。
  25. 如請求項24之複合光偵測器,其中該四個不同波長範圍之該電磁輻射之該等能量經組合以建構紅色、綠色及藍色色彩。
  26. 如請求項18之複合光偵測器,其中該至少一裝置中之至少部分裝置不包含一色彩濾光器或紅外光濾光器。
  27. 一種裝置,該裝置包括:一基板,其具有一前側及曝露至包含紅外光之傳入輻射之一背側;一波導,其包括安置於該基板上或該基板內之一奈米線;及一影像感測電路,其安置於該前側上,其中該奈米線經組態以作為用以傳輸紅外光之一通道及作為用以偵測該紅外光之一主動元件。
  28. 如請求項27之裝置,其進一步包含一濾光器,該濾光器主要切斷(cut off)可見光,而使紅外光通過。
  29. 如請求項27之裝置,其中該奈米線包含GaAs。
  30. 如請求項27之裝置,其進一步包含一平面光偵測器,該平面光 偵測器經組態以偵測紅外光。
  31. 如請求項30之裝置,其中該平面光偵測器包含GaAs。
  32. 如請求項27之裝置,其中該裝置進一步包含一包覆層。
  33. 如請求項32之裝置,其中該包覆層經組態以作為傳輸不經由該奈米線傳輸之該電磁輻射束之波長之一通道。
  34. 如請求項32之裝置,其中該包覆層包括一個以上之層。
  35. 如請求項34之裝置,其中該一個以上之層之折射率連續地(consecutively)小於該奈米線之一折射率。
  36. 如請求項27之裝置,其中該奈米線包含一半導體。
  37. 如請求項27之裝置,其進一步包含一透鏡結構或位於該奈米線上方之一光學耦合器,其中該透鏡結構或該光學耦合器係可操作地耦合至該奈米線。
  38. 如請求項27之裝置,其進一步包含安置於該基板上之一抗反射層。
  39. 如請求項27之裝置,其中該主動元件經組態以作為一光二極體、一電荷儲存電容器或其組合。
  40. 如請求項27之裝置,其中該裝置係為一影像感測器。
  41. 如請求項27之裝置,其進一步包括一垂直光閘。
  42. 如請求項27之裝置,其中該奈米線經組態以轉換經由該奈米線傳輸之電磁輻射之能量且產生電子電洞對(激子)。
  43. 如請求項42之裝置,其中該奈米線包括經組態以偵測產生於該奈米線中之該等激子之一pn或pin接面。
  44. 如請求項42之裝置,其進一步包括在該奈米線周圍之一絕緣體層及在該絕緣體層周圍之一金屬層以形成一電容器,該電容器經組態以收集產生於該奈米線中之該等激子並將電荷儲存於該電容器中。
  45. 如請求項44之裝置,其進一步包括連接至該金屬層及奈米線之金屬觸點以控制並偵測儲存於該電容器中之該電荷。
  46. 如請求項32之裝置,其中該包覆層包括一被動波導。
  47. 如請求項32之裝置,其進一步包括一周邊光敏元件,其中該周邊光敏元件係可操作地耦合至該包覆層。
  48. 如請求項47之裝置,其中該周邊光敏元件係位於一基板上或該基板內。
TW103102171A 2009-12-08 2010-12-08 生長於背側照明影像感測器上之奈米線光偵測器 TWI557889B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/633,323 US8735797B2 (en) 2009-12-08 2009-12-08 Nanowire photo-detector grown on a back-side illuminated image sensor

Publications (2)

Publication Number Publication Date
TW201419512A true TW201419512A (zh) 2014-05-16
TWI557889B TWI557889B (zh) 2016-11-11

Family

ID=44081098

Family Applications (3)

Application Number Title Priority Date Filing Date
TW103102171A TWI557889B (zh) 2009-12-08 2010-12-08 生長於背側照明影像感測器上之奈米線光偵測器
TW103139449A TWI559516B (zh) 2009-12-08 2010-12-08 光偵測裝置、複合光偵測器及波導
TW99142852A TWI466279B (zh) 2009-12-08 2010-12-08 光偵測裝置、複合光偵測器及波導

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW103139449A TWI559516B (zh) 2009-12-08 2010-12-08 光偵測裝置、複合光偵測器及波導
TW99142852A TWI466279B (zh) 2009-12-08 2010-12-08 光偵測裝置、複合光偵測器及波導

Country Status (3)

Country Link
US (5) US8735797B2 (zh)
TW (3) TWI557889B (zh)
WO (1) WO2011072029A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106960854A (zh) * 2016-01-12 2017-07-18 豪威科技股份有限公司 等离子纳米结构传感器像素
TWI727650B (zh) * 2019-02-15 2021-05-11 台灣積體電路製造股份有限公司 影像感測器及形成影像感測器的方法

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9343490B2 (en) * 2013-08-09 2016-05-17 Zena Technologies, Inc. Nanowire structured color filter arrays and fabrication method of the same
US9299866B2 (en) 2010-12-30 2016-03-29 Zena Technologies, Inc. Nanowire array based solar energy harvesting device
US8748799B2 (en) 2010-12-14 2014-06-10 Zena Technologies, Inc. Full color single pixel including doublet or quadruplet si nanowires for image sensors
US8866065B2 (en) 2010-12-13 2014-10-21 Zena Technologies, Inc. Nanowire arrays comprising fluorescent nanowires
US8299472B2 (en) 2009-12-08 2012-10-30 Young-June Yu Active pixel sensor with nanowire structured photodetectors
US9515218B2 (en) 2008-09-04 2016-12-06 Zena Technologies, Inc. Vertical pillar structured photovoltaic devices with mirrors and optical claddings
US8274039B2 (en) 2008-11-13 2012-09-25 Zena Technologies, Inc. Vertical waveguides with various functionality on integrated circuits
US8835831B2 (en) 2010-06-22 2014-09-16 Zena Technologies, Inc. Polarized light detecting device and fabrication methods of the same
US9406709B2 (en) 2010-06-22 2016-08-02 President And Fellows Of Harvard College Methods for fabricating and using nanowires
US8229255B2 (en) 2008-09-04 2012-07-24 Zena Technologies, Inc. Optical waveguides in image sensors
US9000353B2 (en) 2010-06-22 2015-04-07 President And Fellows Of Harvard College Light absorption and filtering properties of vertically oriented semiconductor nano wires
US8546742B2 (en) 2009-06-04 2013-10-01 Zena Technologies, Inc. Array of nanowires in a single cavity with anti-reflective coating on substrate
US9478685B2 (en) 2014-06-23 2016-10-25 Zena Technologies, Inc. Vertical pillar structured infrared detector and fabrication method for the same
US8735797B2 (en) 2009-12-08 2014-05-27 Zena Technologies, Inc. Nanowire photo-detector grown on a back-side illuminated image sensor
US9082673B2 (en) 2009-10-05 2015-07-14 Zena Technologies, Inc. Passivated upstanding nanostructures and methods of making the same
US8464952B2 (en) * 2009-11-18 2013-06-18 Hand Held Products, Inc. Optical reader having improved back-illuminated image sensor
US9024344B2 (en) * 2010-06-15 2015-05-05 California Institute Of Technology Surface passivation by quantum exclusion using multiple layers
US9209314B2 (en) 2010-06-16 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Field effect transistor
EP2613186B1 (en) * 2010-08-31 2020-05-20 Kyocera Corporation Optical transmission structure, method of manufacturing same, and optical transmission module
JP4969711B2 (ja) 2010-08-31 2012-07-04 京セラ株式会社 光伝送体およびその製造方法、ならびに光伝送モジュール
GB201021112D0 (en) 2010-12-13 2011-01-26 Ntnu Technology Transfer As Nanowires
US9800805B2 (en) * 2011-02-02 2017-10-24 The Boeing Company Frequency selective imaging system
GB201200355D0 (en) * 2012-01-10 2012-02-22 Norwegian Univ Sci & Tech Ntnu Nanowires
KR101931658B1 (ko) * 2012-02-27 2018-12-21 삼성전자주식회사 이미지 센서의 단위 픽셀 및 이를 포함하는 이미지 센서
GB201211038D0 (en) 2012-06-21 2012-08-01 Norwegian Univ Sci & Tech Ntnu Solar cells
US8686527B2 (en) * 2012-06-22 2014-04-01 Taiwan Semiconductor Manufacturing Company, Ltd. Porous Si as CMOS image sensor ARC layer
US9112087B2 (en) * 2012-09-16 2015-08-18 Shalom Wretsberger Waveguide-based energy converters, and energy conversion cells using same
DE102012109460B4 (de) 2012-10-04 2024-03-07 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zur Herstellung eines Leuchtdioden-Displays und Leuchtdioden-Display
WO2014071244A1 (en) * 2012-11-01 2014-05-08 The Regents Of The University Of California Semiconductor infrared photodetectors
GB201311101D0 (en) 2013-06-21 2013-08-07 Norwegian Univ Sci & Tech Ntnu Semiconducting Films
US9123604B2 (en) * 2013-10-17 2015-09-01 Omnivision Technologies, Inc. Image sensor with doped semiconductor region for reducing image noise
US9725310B2 (en) * 2013-12-20 2017-08-08 Taiwan Semiconductor Manufacturing Company, Ltd. Micro electromechanical system sensor and method of forming the same
US9812603B2 (en) * 2014-05-30 2017-11-07 Klaus Y. J. Hsu Photosensing device with graphene
US9812604B2 (en) * 2014-05-30 2017-11-07 Klaus Y. J. Hsu Photosensing device with graphene
DE102014113037B4 (de) * 2014-09-10 2018-02-08 Infineon Technologies Ag Bildgebende Schaltungen und ein Verfahren zum Betrieb einer bildgebenden Schaltung
US9373561B1 (en) 2014-12-18 2016-06-21 International Business Machines Corporation Integrated circuit barrierless microfluidic channel
US9666748B2 (en) * 2015-01-14 2017-05-30 International Business Machines Corporation Integrated on chip detector and zero waveguide module structure for use in DNA sequencing
US9490282B2 (en) 2015-03-19 2016-11-08 Omnivision Technologies, Inc. Photosensitive capacitor pixel for image sensor
TWI588085B (zh) * 2015-03-26 2017-06-21 環球晶圓股份有限公司 微奈米化晶片及其製造方法
US9515116B1 (en) * 2015-05-22 2016-12-06 Taiwan Semiconductor Manufacturing Co., Ltd. Vertical transfer gate structure for a back-side illumination (BSI) complementary metal-oxide-semiconductor (CMOS) image sensor using global shutter capture
US9564464B2 (en) * 2015-06-03 2017-02-07 Semiconductor Components Industries, Llc Monolithically stacked image sensors
US9865642B2 (en) * 2015-06-05 2018-01-09 Omnivision Technologies, Inc. RGB-IR photosensor with nonuniform buried P-well depth profile for reduced cross talk and enhanced infrared sensitivity
AU2016292850B2 (en) 2015-07-13 2019-05-16 Crayonano As Nanowires or nanopyramids grown on graphitic substrate
BR112018000603A2 (pt) 2015-07-13 2018-09-11 Crayonano As fotodetetores e diodos emitindo luz com forma de nanofios/nanopirâmides
CA2993884A1 (en) 2015-07-31 2017-02-09 Crayonano As Process for growing nanowires or nanopyramids on graphitic substrates
US9709748B2 (en) 2015-09-03 2017-07-18 International Business Machines Corporation Frontside coupled waveguide with backside optical connection using a curved spacer
US10163959B2 (en) * 2015-11-16 2018-12-25 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor and method for manufacturing the same
US10269990B2 (en) 2016-12-13 2019-04-23 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device with nanostructures and methods of forming the same
CN108242470B (zh) * 2016-12-23 2023-10-13 Imec 非营利协会 形成水平纳米线的方法以及由水平纳米线制备的器件
GB201705755D0 (en) 2017-04-10 2017-05-24 Norwegian Univ Of Science And Tech (Ntnu) Nanostructure
KR101950114B1 (ko) * 2017-10-27 2019-02-19 고려대학교 산학협력단 반도체 나노와이어 광전 소자
US10711342B2 (en) * 2017-12-13 2020-07-14 National Chung Shan Institute Of Science And Technology Method of producing secondary lens with hollow nano structures for uniform illuminance
US10892295B2 (en) 2018-01-10 2021-01-12 Microsoft Technology Licensing, Llc Germanium-modified, back-side illuminated optical sensor
TWI663390B (zh) * 2018-04-24 2019-06-21 國立臺灣科技大學 Sensing method, sensing element and manufacturing method thereof
CN111446267B (zh) 2019-01-17 2023-01-03 联华电子股份有限公司 光检测器及其制作方法
CN110265509B (zh) 2019-07-02 2022-02-01 京东方科技集团股份有限公司 一种光电探测器件、及其制备方法、显示面板及显示装置
EP3770660A1 (en) 2019-07-24 2021-01-27 Imec VZW A detector comprising a waveguide
TWI740241B (zh) * 2019-10-22 2021-09-21 國立勤益科技大學 可撓式可見光檢測器之製造方法
CN110767668B (zh) * 2019-12-30 2020-03-27 杭州美迪凯光电科技股份有限公司 含纳米级表面的clcc封装体盖板、封装体和摄像模组
EP3832537A1 (en) * 2019-12-05 2021-06-09 Axis AB Thermal camera health monitoring
CN111640768B (zh) * 2020-05-09 2021-06-25 北京科技大学 一种垂直双异质结光探测器面阵及其制作方法
JP2023526019A (ja) * 2020-05-14 2023-06-20 マジック リープ, インコーポレイテッド 屈折光学系と回折接眼レンズ導波管ディスプレイの統合のための方法およびシステム
CN114530465A (zh) * 2020-11-23 2022-05-24 联华电子股份有限公司 影像感测元件及其制作方法
TWI775332B (zh) * 2021-03-02 2022-08-21 力晶積成電子製造股份有限公司 背照式影像感測器及其製造方法
US11619857B2 (en) 2021-05-25 2023-04-04 Apple Inc. Electrically-tunable optical filter
TWI792529B (zh) * 2021-09-01 2023-02-11 國立陽明交通大學 光感測器及其製法

Family Cites Families (481)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1918848A (en) 1929-04-26 1933-07-18 Norwich Res Inc Polarizing refracting bodies
US3903427A (en) 1973-12-28 1975-09-02 Hughes Aircraft Co Solar cell connections
US4017332A (en) * 1975-02-27 1977-04-12 Varian Associates Solar cells employing stacked opposite conductivity layers
US4292512A (en) 1978-06-19 1981-09-29 Bell Telephone Laboratories, Incorporated Optical monitoring photodiode system
US4357415A (en) 1980-03-06 1982-11-02 Eastman Kodak Company Method of making a solid-state color imaging device having a color filter array using a photocrosslinkable barrier
US4316048A (en) 1980-06-20 1982-02-16 International Business Machines Corporation Energy conversion
FR2495412A1 (fr) * 1980-12-02 1982-06-04 Thomson Csf Systeme de transmission d'informations a modulation directe de la lumiere a liaison optique a bande passante etendue vers les frequences basses et le continu
US4394571A (en) 1981-05-18 1983-07-19 Honeywell Inc. Optically enhanced Schottky barrier IR detector
US4400221A (en) 1981-07-08 1983-08-23 The United States Of America As Represented By The Secretary Of The Air Force Fabrication of gallium arsenide-germanium heteroface junction device
US4387265A (en) 1981-07-17 1983-06-07 University Of Delaware Tandem junction amorphous semiconductor photovoltaic cell
US5696863A (en) 1982-08-06 1997-12-09 Kleinerman; Marcos Y. Distributed fiber optic temperature sensors and systems
US5247349A (en) 1982-11-16 1993-09-21 Stauffer Chemical Company Passivation and insulation of III-V devices with pnictides, particularly amorphous pnictides having a layer-like structure
US4531055A (en) 1983-01-05 1985-07-23 The United States Of America As Represented By The Secretary Of The Air Force Self-guarding Schottky barrier infrared detector array
US4678772A (en) 1983-02-28 1987-07-07 Yissum Research Development Company Of The Hebrew University Of Jerusalem Compositions containing glycyrrhizin
US4513168A (en) 1984-04-19 1985-04-23 Varian Associates, Inc. Three-terminal solar cell circuit
US4620237A (en) 1984-10-22 1986-10-28 Xerox Corporation Fast scan jitter measuring system for raster scanners
US4638484A (en) 1984-11-20 1987-01-20 Hughes Aircraft Company Solid state laser employing diamond having color centers as a laser active material
JPS61250605A (ja) * 1985-04-27 1986-11-07 Power Reactor & Nuclear Fuel Dev Corp 導光路付きイメ−ジフアイバ
US4827335A (en) * 1986-08-29 1989-05-02 Kabushiki Kaisha Toshiba Color image reading apparatus with two color separation filters each having two filter elements
EP0275063A3 (en) 1987-01-12 1992-05-27 Sumitomo Electric Industries Limited Light emitting element comprising diamond and method for producing the same
US4857973A (en) 1987-05-14 1989-08-15 The United States Of America As Represented By The Secretary Of The Air Force Silicon waveguide with monolithically integrated Schottky barrier photodetector
JPH0721562B2 (ja) 1987-05-14 1995-03-08 凸版印刷株式会社 カラ−フイルタ
US4876586A (en) 1987-12-21 1989-10-24 Sangamo-Weston, Incorporated Grooved Schottky barrier photodiode for infrared sensing
US5071490A (en) 1988-03-18 1991-12-10 Sharp Kabushiki Kaisha Tandem stacked amorphous solar cell device
JPH0288498A (ja) 1988-06-13 1990-03-28 Sumitomo Electric Ind Ltd ダイヤモンドレーザ結晶およびその作製方法
FR2633101B1 (fr) 1988-06-16 1992-02-07 Commissariat Energie Atomique Photodiode et matrice de photodiodes sur hgcdte et leurs procedes de fabrication
US5081049A (en) 1988-07-18 1992-01-14 Unisearch Limited Sculpted solar cell surfaces
US5311047A (en) * 1988-11-16 1994-05-10 National Science Council Amorphous SI/SIC heterojunction color-sensitive phototransistor
US4990988A (en) 1989-06-09 1991-02-05 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Laterally stacked Schottky diodes for infrared sensor applications
US5124543A (en) 1989-08-09 1992-06-23 Ricoh Company, Ltd. Light emitting element, image sensor and light receiving element with linearly varying waveguide index
US5401968A (en) * 1989-12-29 1995-03-28 Honeywell Inc. Binary optical microlens detector array
US4971928A (en) 1990-01-16 1990-11-20 General Motors Corporation Method of making a light emitting semiconductor having a rear reflecting surface
US5362972A (en) 1990-04-20 1994-11-08 Hitachi, Ltd. Semiconductor device using whiskers
JP2809826B2 (ja) 1990-06-29 1998-10-15 三菱電機株式会社 半導体装置の製造方法
US5096520A (en) * 1990-08-01 1992-03-17 Faris Sades M Method for producing high efficiency polarizing filters
GB9025837D0 (en) 1990-11-28 1991-01-09 De Beers Ind Diamond Light emitting diamond device
US5272518A (en) 1990-12-17 1993-12-21 Hewlett-Packard Company Colorimeter and calibration system
US5374841A (en) 1991-12-18 1994-12-20 Texas Instruments Incorporated HgCdTe S-I-S two color infrared detector
US5356488A (en) 1991-12-27 1994-10-18 Rudolf Hezel Solar cell and method for its manufacture
US5391896A (en) 1992-09-02 1995-02-21 Midwest Research Institute Monolithic multi-color light emission/detection device
SG50569A1 (en) * 1993-02-17 2001-02-20 Rolic Ag Optical component
US5468652A (en) 1993-07-14 1995-11-21 Sandia Corporation Method of making a back contacted solar cell
US5471515A (en) * 1994-01-28 1995-11-28 California Institute Of Technology Active pixel sensor with intra-pixel charge transfer
US5625210A (en) 1995-04-13 1997-04-29 Eastman Kodak Company Active pixel sensor integrated with a pinned photodiode
US5747796A (en) * 1995-07-13 1998-05-05 Sharp Kabushiki Kaisha Waveguide type compact optical scanner and manufacturing method thereof
JP3079969B2 (ja) * 1995-09-14 2000-08-21 日本電気株式会社 完全密着型イメージセンサ及びその製造方法
US5767507A (en) 1996-07-15 1998-06-16 Trustees Of Boston University Polarization sensitive photodetectors and detector arrays
US5671914A (en) 1995-11-06 1997-09-30 Spire Corporation Multi-band spectroscopic photodetector array
US6033582A (en) * 1996-01-22 2000-03-07 Etex Corporation Surface modification of medical implants
US5723945A (en) * 1996-04-09 1998-03-03 Electro Plasma, Inc. Flat-panel display
US5853446A (en) 1996-04-16 1998-12-29 Corning Incorporated Method for forming glass rib structures
GB2312524A (en) * 1996-04-24 1997-10-29 Northern Telecom Ltd Planar optical waveguide cladding by PECVD method
US6074892A (en) 1996-05-07 2000-06-13 Ciena Corporation Semiconductor hetero-interface photodetector
US5986297A (en) 1996-05-22 1999-11-16 Eastman Kodak Company Color active pixel sensor with electronic shuttering, anti-blooming and low cross-talk
US5612780A (en) 1996-06-05 1997-03-18 Harris Corporation Device for detecting light emission from optical fiber
US5943463A (en) 1996-06-17 1999-08-24 Sharp Kabushiki Kaisha Color image sensor and a production method of an optical waveguide array for use therein
JP2917920B2 (ja) 1996-06-27 1999-07-12 日本電気株式会社 固体撮像装置およびその製造方法
AUPO281896A0 (en) 1996-10-04 1996-10-31 Unisearch Limited Reactive ion etching of silica structures for integrated optics applications
US6388648B1 (en) * 1996-11-05 2002-05-14 Clarity Visual Systems, Inc. Color gamut and luminance matching techniques for image display systems
US5798535A (en) 1996-12-20 1998-08-25 Motorola, Inc. Monolithic integration of complementary transistors and an LED array
EP0975423B1 (en) 1997-04-17 2002-09-18 De Beers Industrial Diamonds (Proprietary) Limited Sintering process for diamond and diamond growth
GB9710062D0 (en) 1997-05-16 1997-07-09 British Tech Group Optical devices and methods of fabrication thereof
US5968528A (en) 1997-05-23 1999-10-19 The Procter & Gamble Company Skin care compositions
US5857053A (en) * 1997-06-17 1999-01-05 Lucent Technologies Inc. Optical fiber filter
US6013871A (en) 1997-07-02 2000-01-11 Curtin; Lawrence F. Method of preparing a photovoltaic device
US5900623A (en) * 1997-08-11 1999-05-04 Chrontel, Inc. Active pixel sensor using CMOS technology with reverse biased photodiodes
US6046466A (en) 1997-09-12 2000-04-04 Nikon Corporation Solid-state imaging device
KR100250448B1 (ko) 1997-11-06 2000-05-01 정선종 실리콘나이트라이드 막을 이용한 실리콘 나노 구조의형성 방법
US5880495A (en) * 1998-01-08 1999-03-09 Omnivision Technologies, Inc. Active pixel with a pinned photodiode
AU2492399A (en) * 1998-02-02 1999-08-16 Uniax Corporation Image sensors made from organic semiconductors
US6771314B1 (en) 1998-03-31 2004-08-03 Intel Corporation Orange-green-blue (OGB) color system for digital image sensor applications
US6301420B1 (en) 1998-05-01 2001-10-09 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Multicore optical fibre
TW417383B (en) 1998-07-01 2001-01-01 Cmos Sensor Inc Silicon butting contact image sensor chip with line transfer and pixel readout (LTPR) structure
US6463204B1 (en) 1998-12-18 2002-10-08 Fujitsu Network Communications, Inc. Modular lightpipe system
US6326649B1 (en) 1999-01-13 2001-12-04 Agere Systems, Inc. Pin photodiode having a wide bandwidth
US6388243B1 (en) * 1999-03-01 2002-05-14 Photobit Corporation Active pixel sensor with fully-depleted buried photoreceptor
GB2348399A (en) 1999-03-31 2000-10-04 Univ Glasgow Reactive ion etching with control of etch gas flow rate, pressure and rf power
JP4242510B2 (ja) 1999-05-06 2009-03-25 オリンパス株式会社 固体撮像素子およびその駆動方法
US20020071468A1 (en) 1999-09-27 2002-06-13 Sandstrom Richard L. Injection seeded F2 laser with pre-injection filter
JP3706527B2 (ja) 1999-06-30 2005-10-12 Hoya株式会社 電子線描画用マスクブランクス、電子線描画用マスクおよび電子線描画用マスクの製造方法
US6124167A (en) 1999-08-06 2000-09-26 Micron Technology, Inc. Method for forming an etch mask during the manufacture of a semiconductor device
US6407439B1 (en) 1999-08-19 2002-06-18 Epitaxial Technologies, Llc Programmable multi-wavelength detector array
US6805139B1 (en) 1999-10-20 2004-10-19 Mattson Technology, Inc. Systems and methods for photoresist strip and residue treatment in integrated circuit manufacturing
US6465824B1 (en) 2000-03-09 2002-10-15 General Electric Company Imager structure
US6610351B2 (en) 2000-04-12 2003-08-26 Quantag Systems, Inc. Raman-active taggants and their recognition
US20020020846A1 (en) * 2000-04-20 2002-02-21 Bo Pi Backside illuminated photodiode array
JP2002057359A (ja) 2000-06-01 2002-02-22 Sharp Corp 積層型太陽電池
US7555333B2 (en) 2000-06-19 2009-06-30 University Of Washington Integrated optical scanning image acquisition and display
AU2001268756A1 (en) 2000-06-26 2002-01-08 University Of Maryland Mgzno based uv detectors
CA2415700A1 (en) * 2000-07-10 2002-01-17 Massachusetts Institute Of Technology Graded index waveguide
DE60123979D1 (de) 2000-08-11 2006-11-30 Bellataire Internat Llc Hochdruck und hochtemperaturherstellung von diamanten
US6542231B1 (en) 2000-08-22 2003-04-01 Thermo Finnegan Llc Fiber-coupled liquid sample analyzer with liquid flow cell
US7301199B2 (en) 2000-08-22 2007-11-27 President And Fellows Of Harvard College Nanoscale wires and related devices
US20060175601A1 (en) * 2000-08-22 2006-08-10 President And Fellows Of Harvard College Nanoscale wires and related devices
KR100995457B1 (ko) 2000-08-22 2010-11-18 프레지던트 앤드 펠로우즈 오브 하버드 칼리지 나노센서 제조 방법
JP2002151715A (ja) 2000-11-08 2002-05-24 Sharp Corp 薄膜太陽電池
US6800870B2 (en) 2000-12-20 2004-10-05 Michel Sayag Light stimulating and collecting methods and apparatus for storage-phosphor image plates
EP1344392B1 (de) 2000-12-21 2006-02-22 STMicroelectronics N.V. Bildsensoreinrichtung mit zentralverschluss
EP1365455A4 (en) * 2001-01-31 2006-09-20 Shinetsu Handotai Kk SOLAR CELL AND METHOD FOR MANUFACTURING SAME
US6815736B2 (en) 2001-02-09 2004-11-09 Midwest Research Institute Isoelectronic co-doping
JP3809342B2 (ja) 2001-02-13 2006-08-16 喜萬 中山 受発光プローブ及び受発光プローブ装置
EP1367819A1 (en) 2001-02-28 2003-12-03 Sony Corporation Image input device
KR101008294B1 (ko) 2001-03-30 2011-01-13 더 리전트 오브 더 유니버시티 오브 캘리포니아 나노구조체 및 나노와이어의 제조 방법 및 그로부터 제조되는 디바이스
US6563995B2 (en) * 2001-04-02 2003-05-13 Lightwave Electronics Optical wavelength filtering apparatus with depressed-index claddings
US20040058407A1 (en) 2001-04-10 2004-03-25 Miller Scott E. Reactor systems having a light-interacting component
US20030006363A1 (en) * 2001-04-27 2003-01-09 Campbell Scott Patrick Optimization of alignment between elements in an image sensor
US6709929B2 (en) * 2001-06-25 2004-03-23 North Carolina State University Methods of forming nano-scale electronic and optoelectronic devices using non-photolithographically defined nano-channel templates
US6846565B2 (en) 2001-07-02 2005-01-25 Board Of Regents, The University Of Texas System Light-emitting nanoparticles and method of making same
US8816443B2 (en) 2001-10-12 2014-08-26 Quantum Semiconductor Llc Method of fabricating heterojunction photodiodes with CMOS
US7109517B2 (en) 2001-11-16 2006-09-19 Zaidi Saleem H Method of making an enhanced optical absorption and radiation tolerance in thin-film solar cells and photodetectors
FR2832995B1 (fr) * 2001-12-04 2004-02-27 Thales Sa Procede de croissance catalytique de nanotubes ou nanofibres comprenant une barriere de diffusion de type alliage nisi
US6987258B2 (en) * 2001-12-19 2006-01-17 Intel Corporation Integrated circuit-based compound eye image sensor using a light pipe bundle
US6720594B2 (en) * 2002-01-07 2004-04-13 Xerox Corporation Image sensor array with reduced pixel crosstalk
US6566723B1 (en) 2002-01-10 2003-05-20 Agilent Technologies, Inc. Digital color image sensor with elevated two-color photo-detector and related circuitry
CA2458124C (en) * 2002-01-14 2011-03-08 China Petroleum & Chemical Corporation A power transmission mechanism, a fluid-driven impactor and its use
US7078296B2 (en) 2002-01-16 2006-07-18 Fairchild Semiconductor Corporation Self-aligned trench MOSFETs and methods for making the same
US7192533B2 (en) 2002-03-28 2007-03-20 Koninklijke Philips Electronics N.V. Method of manufacturing nanowires and electronic device
US20040026684A1 (en) * 2002-04-02 2004-02-12 Nanosys, Inc. Nanowire heterostructures for encoding information
US20030189202A1 (en) 2002-04-05 2003-10-09 Jun Li Nanowire devices and methods of fabrication
US6852619B2 (en) 2002-05-31 2005-02-08 Sharp Kabushiki Kaisha Dual damascene semiconductor devices
US6660930B1 (en) 2002-06-12 2003-12-09 Rwe Schott Solar, Inc. Solar cell modules with improved backskin
US7311889B2 (en) 2002-06-19 2007-12-25 Fujitsu Limited Carbon nanotubes, process for their production, and catalyst for production of carbon nanotubes
US7253017B1 (en) 2002-06-22 2007-08-07 Nanosolar, Inc. Molding technique for fabrication of optoelectronic devices
EP1516368B1 (fr) 2002-06-25 2008-01-23 Commissariat A L'energie Atomique Imageur
US7335908B2 (en) 2002-07-08 2008-02-26 Qunano Ab Nanostructures and methods for manufacturing the same
US6794671B2 (en) 2002-07-17 2004-09-21 Particle Sizing Systems, Inc. Sensors and methods for high-sensitivity optical particle counting and sizing
AU2003261205A1 (en) 2002-07-19 2004-02-09 President And Fellows Of Harvard College Nanoscale coherent optical components
US6781171B2 (en) 2002-07-19 2004-08-24 Dongbu Electronics Co., Ltd. Pinned photodiode for a CMOS image sensor and fabricating method thereof
AU2003263927A1 (en) 2002-08-19 2004-03-03 Massachusetts Institute Of Technology Method of efficient carrier generation in silicon waveguide systems for switching/modulating purposes using parallel pump signal waveguides
EP2399970A3 (en) 2002-09-05 2012-04-18 Nanosys, Inc. Nanocomposites
JP3672900B2 (ja) 2002-09-11 2005-07-20 松下電器産業株式会社 パターン形成方法
US8120079B2 (en) 2002-09-19 2012-02-21 Quantum Semiconductor Llc Light-sensing device for multi-spectral imaging
US7067867B2 (en) 2002-09-30 2006-06-27 Nanosys, Inc. Large-area nonenabled macroelectronic substrates and uses therefor
JP2004128060A (ja) 2002-09-30 2004-04-22 Canon Inc シリコン膜の成長方法、太陽電池の製造方法、半導体基板及び太陽電池
US7135728B2 (en) * 2002-09-30 2006-11-14 Nanosys, Inc. Large-area nanoenabled macroelectronic substrates and uses therefor
WO2004031746A1 (en) 2002-10-02 2004-04-15 Lumen Health Innovations, Inc. Apparatus and methods relating to high speed spectroscopy and excitation-emission matrices
US7507293B2 (en) * 2002-10-28 2009-03-24 Hewlett-Packard Development Company, L.P. Photonic crystals with nanowire-based fabrication
DE60333715D1 (de) 2002-10-30 2010-09-23 Hitachi Ltd Verfahren zur Herstellung funktioneller Substrate, die kolumnare Mikrosäulen aufweisen
GB0227261D0 (en) 2002-11-21 2002-12-31 Element Six Ltd Optical quality diamond material
US7163659B2 (en) * 2002-12-03 2007-01-16 Hewlett-Packard Development Company, L.P. Free-standing nanowire sensor and method for detecting an analyte in a fluid
JP4723860B2 (ja) 2002-12-09 2011-07-13 クォンタム セミコンダクター リミテッド ライアビリティ カンパニー Cmos画像センサー
US6969897B2 (en) 2002-12-10 2005-11-29 Kim Ii John Optoelectronic devices employing fibers for light collection and emission
KR20050085579A (ko) 2002-12-13 2005-08-29 소니 가부시끼 가이샤 고체 촬상 소자 및 그 제조방법
US6837212B2 (en) 2002-12-19 2005-01-04 Caterpillar Inc. Fuel allocation at idle or light engine load
US6936898B2 (en) * 2002-12-31 2005-08-30 Transmeta Corporation Diagonal deep well region for routing body-bias voltage for MOSFETS in surface well regions
FR2850882B1 (fr) 2003-02-11 2005-03-18 Eurecat Sa Passivation de catalyseur d'hydroconversion sulfure
CA2419704A1 (en) * 2003-02-24 2004-08-24 Ignis Innovation Inc. Method of manufacturing a pixel with organic light-emitting diode
JP4144378B2 (ja) 2003-02-28 2008-09-03 ソニー株式会社 画像処理装置および方法、記録媒体、並びにプログラム
US7061028B2 (en) 2003-03-12 2006-06-13 Taiwan Semiconductor Manufacturing, Co., Ltd. Image sensor device and method to form image sensor device
US7050660B2 (en) * 2003-04-07 2006-05-23 Eksigent Technologies Llc Microfluidic detection device having reduced dispersion and method for making same
US7388147B2 (en) 2003-04-10 2008-06-17 Sunpower Corporation Metal contact structure for solar cell and method of manufacture
US6888974B2 (en) 2003-04-23 2005-05-03 Intel Corporation On-chip optical signal routing
US8212138B2 (en) 2003-05-16 2012-07-03 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Reverse bias protected solar array with integrated bypass battery
US7462774B2 (en) 2003-05-21 2008-12-09 Nanosolar, Inc. Photovoltaic devices fabricated from insulating nanostructured template
US7465661B2 (en) 2003-05-28 2008-12-16 The United States Of America As Represented By The Secretary Of The Navy High aspect ratio microelectrode arrays
US7149396B2 (en) 2003-06-16 2006-12-12 The Regents Of The University Of California Apparatus for optical measurements on low-index non-solid materials based on arrow waveguides
US7265037B2 (en) * 2003-06-20 2007-09-04 The Regents Of The University Of California Nanowire array and nanowire solar cells and methods for forming the same
WO2005014784A2 (en) 2003-06-20 2005-02-17 Tumer Tumay O System for molecular imaging
US7416911B2 (en) 2003-06-24 2008-08-26 California Institute Of Technology Electrochemical method for attaching molecular and biomolecular structures to semiconductor microstructures and nanostructures
US7170001B2 (en) 2003-06-26 2007-01-30 Advent Solar, Inc. Fabrication of back-contacted silicon solar cells using thermomigration to create conductive vias
DE102004031950A1 (de) 2003-06-26 2005-02-10 Kyocera Corp. Halbleiter/Elektroden-Kontaktstruktur und eine solche verwendendes Halbleiterbauteil
US7649141B2 (en) 2003-06-30 2010-01-19 Advent Solar, Inc. Emitter wrap-through back contact solar cells on thin silicon wafers
US7148528B2 (en) 2003-07-02 2006-12-12 Micron Technology, Inc. Pinned photodiode structure and method of formation
US7335259B2 (en) 2003-07-08 2008-02-26 Brian A. Korgel Growth of single crystal nanowires
US6927432B2 (en) 2003-08-13 2005-08-09 Motorola, Inc. Vertically integrated photosensor for CMOS imagers
US6960526B1 (en) 2003-10-10 2005-11-01 The United States Of America As Represented By The Secretary Of The Army Method of fabricating sub-100 nanometer field emitter tips comprising group III-nitride semiconductors
US7330404B2 (en) * 2003-10-10 2008-02-12 Seagate Technology Llc Near-field optical transducers for thermal assisted magnetic and optical data storage
US7019402B2 (en) * 2003-10-17 2006-03-28 International Business Machines Corporation Silicon chip carrier with through-vias using laser assisted chemical vapor deposition of conductor
US7823783B2 (en) * 2003-10-24 2010-11-02 Cognex Technology And Investment Corporation Light pipe illumination system and method
JP2005142268A (ja) 2003-11-05 2005-06-02 Canon Inc 光起電力素子およびその製造方法
US20050116271A1 (en) 2003-12-02 2005-06-02 Yoshiaki Kato Solid-state imaging device and manufacturing method thereof
US6969899B2 (en) 2003-12-08 2005-11-29 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor with light guides
US7208094B2 (en) 2003-12-17 2007-04-24 Hewlett-Packard Development Company, L.P. Methods of bridging lateral nanowires and device using same
DE10360274A1 (de) 2003-12-18 2005-06-02 Tesa Ag Optischer Datenspeicher
US20070196239A1 (en) 2003-12-22 2007-08-23 Koninklijke Philips Electronics N.V. Optical nanowire biosensor based on energy transfer
CN101330099B (zh) 2003-12-22 2010-12-08 皇家飞利浦电子股份有限公司 制造半导体纳米线组以及包括纳米线组的电器件
US20070120254A1 (en) * 2003-12-23 2007-05-31 Koninklijke Philips Electronics N.C. Semiconductor device comprising a pn-heterojunction
WO2005064664A1 (en) 2003-12-23 2005-07-14 Koninklijke Philips Electronics N.V. Semiconductor device comprising a heterojunction
US7647695B2 (en) * 2003-12-30 2010-01-19 Lockheed Martin Corporation Method of matching harnesses of conductors with apertures in connectors
TWI228782B (en) 2004-01-19 2005-03-01 Toppoly Optoelectronics Corp Method of fabricating display panel
US7052927B1 (en) * 2004-01-27 2006-05-30 Raytheon Company Pin detector apparatus and method of fabrication
US6969568B2 (en) 2004-01-28 2005-11-29 Freescale Semiconductor, Inc. Method for etching a quartz layer in a photoresistless semiconductor mask
US6927145B1 (en) 2004-02-02 2005-08-09 Advanced Micro Devices, Inc. Bitline hard mask spacer flow for memory cell scaling
JP2005252210A (ja) 2004-02-03 2005-09-15 Sharp Corp 太陽電池
US7254287B2 (en) 2004-02-12 2007-08-07 Panorama Labs, Pty Ltd. Apparatus, method, and computer program product for transverse waveguided display system
JP2005251804A (ja) 2004-03-01 2005-09-15 Canon Inc 撮像素子
US7471428B2 (en) 2004-03-12 2008-12-30 Seiko Epson Corporation Contact image sensor module and image reading device equipped with the same
US7106938B2 (en) 2004-03-16 2006-09-12 Regents Of The University Of Minnesota Self assembled three-dimensional photonic crystal
WO2005091392A1 (en) 2004-03-18 2005-09-29 Phoseon Technology, Inc. Micro-reflectors on a substrate for high-density led array
US7115971B2 (en) * 2004-03-23 2006-10-03 Nanosys, Inc. Nanowire varactor diode and methods of making same
US7223641B2 (en) 2004-03-26 2007-05-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, liquid crystal television and EL television
US7019391B2 (en) 2004-04-06 2006-03-28 Bao Tran NANO IC packaging
TWI244159B (en) 2004-04-16 2005-11-21 Ind Tech Res Inst Metal nanoline process and its application on aligned growth of carbon nanotube or silicon nanowire
US7061106B2 (en) 2004-04-28 2006-06-13 Advanced Chip Engineering Technology Inc. Structure of image sensor module and a method for manufacturing of wafer level package
US7105428B2 (en) 2004-04-30 2006-09-12 Nanosys, Inc. Systems and methods for nanowire growth and harvesting
JP4449565B2 (ja) 2004-05-12 2010-04-14 ソニー株式会社 物理量分布検知の半導体装置
US8280214B2 (en) 2004-05-13 2012-10-02 The Regents Of The University Of California Nanowires and nanoribbons as subwavelength optical waveguides and their use as components in photonic circuits and devices
WO2005122285A2 (en) 2004-06-04 2005-12-22 The Board Of Trustees Of The University Of Illinois Methods and devices for fabricating and assembling printable semiconductor elements
JP2006013403A (ja) 2004-06-29 2006-01-12 Sanyo Electric Co Ltd 太陽電池、太陽電池モジュール、その製造方法およびその修復方法
US8035142B2 (en) 2004-07-08 2011-10-11 Micron Technology, Inc. Deuterated structures for image sensors and methods for forming the same
US7427798B2 (en) * 2004-07-08 2008-09-23 Micron Technology, Inc. Photonic crystal-based lens elements for use in an image sensor
FR2873492B1 (fr) 2004-07-21 2006-11-24 Commissariat Energie Atomique Nanocomposite photoactif et son procede de fabrication
US20090046749A1 (en) * 2004-08-04 2009-02-19 Kiminori Mizuuchi Coherent light source
US20060027071A1 (en) 2004-08-06 2006-02-09 Barnett Ronald J Tensegrity musical structures
US7713849B2 (en) * 2004-08-20 2010-05-11 Illuminex Corporation Metallic nanowire arrays and methods for making and using same
US7285812B2 (en) 2004-09-02 2007-10-23 Micron Technology, Inc. Vertical transistors
EP2261650A3 (en) 2004-09-15 2011-07-06 IntegenX Inc. Microfluidic devices
US20060071290A1 (en) 2004-09-27 2006-04-06 Rhodes Howard E Photogate stack with nitride insulating cap over conductive layer
EP1643565B1 (de) 2004-09-30 2020-03-04 OSRAM Opto Semiconductors GmbH Strahlungsdetektor
US20080260225A1 (en) 2004-10-06 2008-10-23 Harold Szu Infrared Multi-Spectral Camera and Process of Using Infrared Multi-Spectral Camera
US7544977B2 (en) 2006-01-27 2009-06-09 Hewlett-Packard Development Company, L.P. Mixed-scale electronic interface
US7208783B2 (en) * 2004-11-09 2007-04-24 Micron Technology, Inc. Optical enhancement of integrated circuit photodetectors
KR100745595B1 (ko) 2004-11-29 2007-08-02 삼성전자주식회사 이미지 센서의 마이크로 렌즈 및 그 형성 방법
US7193289B2 (en) * 2004-11-30 2007-03-20 International Business Machines Corporation Damascene copper wiring image sensor
US7306963B2 (en) 2004-11-30 2007-12-11 Spire Corporation Precision synthesis of quantum dot nanostructures for fluorescent and optoelectronic devices
TWI263802B (en) 2004-12-03 2006-10-11 Innolux Display Corp Color filter
US7235475B2 (en) 2004-12-23 2007-06-26 Hewlett-Packard Development Company, L.P. Semiconductor nanowire fluid sensor and method for fabricating the same
US7342268B2 (en) * 2004-12-23 2008-03-11 International Business Machines Corporation CMOS imager with Cu wiring and method of eliminating high reflectivity interfaces therefrom
US7245370B2 (en) 2005-01-06 2007-07-17 Hewlett-Packard Development Company, L.P. Nanowires for surface-enhanced Raman scattering molecular sensors
US8115093B2 (en) 2005-02-15 2012-02-14 General Electric Company Layer-to-layer interconnects for photoelectric devices and methods of fabricating the same
JP2006261235A (ja) 2005-03-15 2006-09-28 Toshiba Corp 半導体装置
KR100688542B1 (ko) 2005-03-28 2007-03-02 삼성전자주식회사 수직형 나노튜브 반도체소자 및 그 제조방법
US7326915B2 (en) 2005-04-01 2008-02-05 Em4, Inc. Wavelength stabilization for broadband light sources
WO2006110341A2 (en) * 2005-04-01 2006-10-19 North Carolina State University Nano-structured photovoltaic solar cells and related methods
US20070238265A1 (en) 2005-04-05 2007-10-11 Keiichi Kurashina Plating apparatus and plating method
KR101145146B1 (ko) * 2005-04-07 2012-05-14 엘지디스플레이 주식회사 박막트랜지스터와 그 제조방법
US7272287B2 (en) 2005-05-11 2007-09-18 Fitel Usa Corp Optical fiber filter for suppression of amplified spontaneous emission
US7230286B2 (en) 2005-05-23 2007-06-12 International Business Machines Corporation Vertical FET with nanowire channels and a silicided bottom contact
TW201101476A (en) 2005-06-02 2011-01-01 Sony Corp Semiconductor image sensor module and method of manufacturing the same
GB0511300D0 (en) 2005-06-03 2005-07-13 Ct For Integrated Photonics Th Control of vertical axis for passive alignment of optical components with wave guides
US7262408B2 (en) 2005-06-15 2007-08-28 Board Of Trustees Of Michigan State University Process and apparatus for modifying a surface in a work region
US20090050204A1 (en) * 2007-08-03 2009-02-26 Illuminex Corporation. Photovoltaic device using nanostructured material
US8084728B2 (en) 2005-07-06 2011-12-27 Capella Microsystems, Corp. Optical sensing device
DE102005033455A1 (de) 2005-07-18 2007-01-25 GEMÜ Gebr. Müller Apparatebau GmbH & Co. KG Antriebsvorrichtung zum linearen Bewegen von länglichen Körpern
WO2007011047A1 (ja) 2005-07-22 2007-01-25 Zeon Corporation グリッド偏光子及びその製法
EP1748494B1 (en) 2005-07-29 2008-04-09 Interuniversitair Microelektronica Centrum Wavelength-sensitive detector with elongate nanostructures
US7683407B2 (en) * 2005-08-01 2010-03-23 Aptina Imaging Corporation Structure and method for building a light tunnel for use with imaging devices
US7307327B2 (en) 2005-08-04 2007-12-11 Micron Technology, Inc. Reduced crosstalk CMOS image sensors
KR100750933B1 (ko) 2005-08-14 2007-08-22 삼성전자주식회사 희토류 금속이 도핑된 투명 전도성 아연산화물의나노구조를 사용한 탑에미트형 질화물계 백색광 발광소자및 그 제조방법
US7485908B2 (en) 2005-08-18 2009-02-03 United States Of America As Represented By The Secretary Of The Air Force Insulated gate silicon nanowire transistor and method of manufacture
JP2009507397A (ja) 2005-08-22 2009-02-19 キュー・ワン・ナノシステムズ・インコーポレイテッド ナノ構造およびそれを実施する光起電力セル
US7265328B2 (en) 2005-08-22 2007-09-04 Micron Technology, Inc. Method and apparatus providing an optical guide for an imager pixel having a ring of air-filled spaced slots around a photosensor
WO2007025023A2 (en) * 2005-08-24 2007-03-01 The Trustees Of Boston College Apparatus and methods for optical switching using nanoscale optics
JP2009506546A (ja) 2005-08-24 2009-02-12 ザ トラスティーズ オブ ボストン カレッジ ナノスケール共金属構造を用いた太陽エネルギー変換のための装置および方法
US7634162B2 (en) 2005-08-24 2009-12-15 The Trustees Of Boston College Apparatus and methods for nanolithography using nanoscale optics
US7736954B2 (en) 2005-08-26 2010-06-15 Sematech, Inc. Methods for nanoscale feature imprint molding
US20070052050A1 (en) 2005-09-07 2007-03-08 Bart Dierickx Backside thinned image sensor with integrated lens stack
US7745091B2 (en) 2005-09-13 2010-06-29 Affymetrix, Inc. Miniaturized microparticles
US7608823B2 (en) * 2005-10-03 2009-10-27 Teledyne Scientific & Imaging, Llc Multimode focal plane array with electrically isolated commons for independent sub-array biasing
US8133637B2 (en) * 2005-10-06 2012-03-13 Headwaters Technology Innovation, Llc Fuel cells and fuel cell catalysts incorporating a nanoring support
US7286740B2 (en) 2005-10-07 2007-10-23 Sumitomo Electric Industries, Ltd. Optical fiber, optical transmission line, optical module and optical transmission system
US7585474B2 (en) 2005-10-13 2009-09-08 The Research Foundation Of State University Of New York Ternary oxide nanostructures and methods of making same
CN1956223A (zh) 2005-10-26 2007-05-02 松下电器产业株式会社 半导体装置及其制造方法
US20070104441A1 (en) 2005-11-08 2007-05-10 Massachusetts Institute Of Technology Laterally-integrated waveguide photodetector apparatus and related coupling methods
EP3620968A1 (en) 2005-11-08 2020-03-11 General Atomics Apparatus and methods for use in flash detection
JP2007134562A (ja) 2005-11-11 2007-05-31 Sharp Corp 固体撮像装置およびそれの製造方法
US7728277B2 (en) * 2005-11-16 2010-06-01 Eastman Kodak Company PMOS pixel structure with low cross talk for active pixel image sensors
US20070107773A1 (en) 2005-11-17 2007-05-17 Palo Alto Research Center Incorporated Bifacial cell with extruded gridline metallization
US7960251B2 (en) 2005-12-01 2011-06-14 Samsung Electronics Co., Ltd. Method for producing nanowires using a porous template
US8337721B2 (en) 2005-12-02 2012-12-25 Vanderbilt University Broad-emission nanocrystals and methods of making and using same
US7262400B2 (en) 2005-12-02 2007-08-28 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor device having an active layer overlying a substrate and an isolating region in the active layer
US7439560B2 (en) 2005-12-06 2008-10-21 Canon Kabushiki Kaisha Semiconductor device using semiconductor nanowire and display apparatus and image pick-up apparatus using the same
JP2007158119A (ja) 2005-12-06 2007-06-21 Canon Inc ナノワイヤを有する電気素子およびその製造方法並びに電気素子集合体
JP2007184566A (ja) 2005-12-06 2007-07-19 Canon Inc 半導体ナノワイヤを用いた半導体素子、それを用いた表示装置及び撮像装置
US7524694B2 (en) * 2005-12-16 2009-04-28 International Business Machines Corporation Funneled light pipe for pixel sensors
JP4745816B2 (ja) 2005-12-20 2011-08-10 富士通セミコンダクター株式会社 画像処理回路及び画像処理方法
US7368779B2 (en) 2006-01-04 2008-05-06 Taiwan Semiconductor Manufacturing Co., Ltd. Hemi-spherical structure and method for fabricating the same
US20070155025A1 (en) 2006-01-04 2007-07-05 Anping Zhang Nanowire structures and devices for use in large-area electronics and methods of making the same
KR100767629B1 (ko) 2006-01-05 2007-10-17 한국과학기술원 높은 광감도를 갖는 cmos 이미지 센서 및 이의 제조방법
JP4952227B2 (ja) * 2006-01-06 2012-06-13 富士通株式会社 微粒子サイズ選別装置
US20070290193A1 (en) 2006-01-18 2007-12-20 The Board Of Trustees Of The University Of Illinois Field effect transistor devices and methods
JP2007226935A (ja) 2006-01-24 2007-09-06 Sony Corp 音響再生装置、音響再生方法および音響再生プログラム
JP2007201091A (ja) 2006-01-25 2007-08-09 Fujifilm Corp 固体撮像素子の製造方法
US20070187787A1 (en) 2006-02-16 2007-08-16 Ackerson Kristin M Pixel sensor structure including light pipe and method for fabrication thereof
US7358583B2 (en) 2006-02-24 2008-04-15 Tower Semiconductor Ltd. Via wave guide with curved light concentrator for image sensing devices
WO2008048704A2 (en) * 2006-03-10 2008-04-24 Stc.Unm Pulsed growth of gan nanowires and applications in group iii nitride semiconductor substrate materials and devices
US7859587B2 (en) 2006-03-24 2010-12-28 Panasonic Corporation Solid-state image pickup device
US7718347B2 (en) 2006-03-31 2010-05-18 Applied Materials, Inc. Method for making an improved thin film solar cell interconnect using etch and deposition process
US20070246689A1 (en) 2006-04-11 2007-10-25 Jiaxin Ge Transparent thin polythiophene films having improved conduction through use of nanomaterials
KR20070101917A (ko) 2006-04-12 2007-10-18 엘지전자 주식회사 박막형 태양전지와 그의 제조방법
US7381966B2 (en) 2006-04-13 2008-06-03 Integrated Micro Sensors, Inc. Single-chip monolithic dual-band visible- or solar-blind photodetector
US7566875B2 (en) 2006-04-13 2009-07-28 Integrated Micro Sensors Inc. Single-chip monolithic dual-band visible- or solar-blind photodetector
WO2008020899A2 (en) 2006-04-17 2008-02-21 Cdm Optics, Inc. Arrayed imaging systems and associated methods
US7582857B2 (en) 2006-04-18 2009-09-01 The Trustees Of The University Of Pennsylvania Sensor and polarimetric filters for real-time extraction of polarimetric information at the focal plane
TWI297223B (en) 2006-04-25 2008-05-21 Gigno Technology Co Ltd Package module of light emitting diode
US7924413B2 (en) 2006-04-28 2011-04-12 Hewlett-Packard Development Company, L.P. Nanowire-based photonic devices
US20070272828A1 (en) 2006-05-24 2007-11-29 Micron Technology, Inc. Method and apparatus providing dark current reduction in an active pixel sensor
JP5060740B2 (ja) 2006-05-26 2012-10-31 シャープ株式会社 集積回路装置およびその製造方法、ならびに表示装置
US20080006319A1 (en) 2006-06-05 2008-01-10 Martin Bettge Photovoltaic and photosensing devices based on arrays of aligned nanostructures
US7696964B2 (en) 2006-06-09 2010-04-13 Philips Lumileds Lighting Company, Llc LED backlight for LCD with color uniformity recalibration over lifetime
US7718995B2 (en) 2006-06-20 2010-05-18 Panasonic Corporation Nanowire, method for fabricating the same, and device having nanowires
US7579593B2 (en) * 2006-07-25 2009-08-25 Panasonic Corporation Night-vision imaging apparatus, control method of the same, and headlight module
TWI305047B (en) 2006-08-11 2009-01-01 United Microelectronics Corp Image sensor and the method for manufacturing the same
US20080044984A1 (en) * 2006-08-16 2008-02-21 Taiwan Semiconductor Manufacturing Co., Ltd. Methods of avoiding wafer breakage during manufacture of backside illuminated image sensors
US7786376B2 (en) * 2006-08-22 2010-08-31 Solexel, Inc. High efficiency solar cells and manufacturing methods
US7893348B2 (en) * 2006-08-25 2011-02-22 General Electric Company Nanowires in thin-film silicon solar cells
JP4321568B2 (ja) * 2006-08-29 2009-08-26 ソニー株式会社 固体撮像装置および撮像装置
JP2008066497A (ja) 2006-09-07 2008-03-21 Sony Corp 受光装置および受光装置の製造方法
CN101140637A (zh) * 2006-09-08 2008-03-12 鸿富锦精密工业(深圳)有限公司 电子订单转工单的系统及方法
US8063450B2 (en) 2006-09-19 2011-11-22 Qunano Ab Assembly of nanoscaled field effect transistors
US7361989B1 (en) * 2006-09-26 2008-04-22 International Business Machines Corporation Stacked imager package
JP5116277B2 (ja) 2006-09-29 2013-01-09 株式会社半導体エネルギー研究所 半導体装置、表示装置、液晶表示装置、表示モジュール及び電子機器
KR100772114B1 (ko) * 2006-09-29 2007-11-01 주식회사 하이닉스반도체 반도체 소자의 제조방법
JP4296193B2 (ja) * 2006-09-29 2009-07-15 株式会社東芝 光デバイス
US7525170B2 (en) * 2006-10-04 2009-04-28 International Business Machines Corporation Pillar P-i-n semiconductor diodes
US20080090201A1 (en) 2006-10-11 2008-04-17 Andrews Lawrence F Dental articulator apparatus having visible coding of teeth and jaw positions with respect to post-treatment goals
WO2008147431A2 (en) * 2006-10-12 2008-12-04 Cambrios Technologies Corporation Functional films formed by highly oriented deposition of nanowires
US7427525B2 (en) * 2006-10-13 2008-09-23 Hewlett-Packard Development Company, L.P. Methods for coupling diamond structures to photonic devices
US7608905B2 (en) * 2006-10-17 2009-10-27 Hewlett-Packard Development Company, L.P. Independently addressable interdigitated nanowires
US7888159B2 (en) 2006-10-26 2011-02-15 Omnivision Technologies, Inc. Image sensor having curved micro-mirrors over the sensing photodiode and method for fabricating
US7537951B2 (en) 2006-11-15 2009-05-26 International Business Machines Corporation Image sensor including spatially different active and dark pixel interconnect patterns
US7781781B2 (en) * 2006-11-17 2010-08-24 International Business Machines Corporation CMOS imager array with recessed dielectric
EP1926211A3 (en) * 2006-11-21 2013-08-14 Imec Diamond enhanced thickness shear mode resonator
US20080128760A1 (en) 2006-12-04 2008-06-05 Electronics And Telecommunications Research Institute Schottky barrier nanowire field effect transistor and method for fabricating the same
KR101232179B1 (ko) 2006-12-04 2013-02-12 엘지디스플레이 주식회사 박막 패턴의 제조장치 및 방법
KR100993056B1 (ko) 2006-12-05 2010-11-08 주식회사 엘지화학 프리 패턴된 기판을 이용한 고해상도 잉크젯 인쇄 방법 및이 방법에 의해 제조된 도전성 기판
JP4795214B2 (ja) * 2006-12-07 2011-10-19 チェイル インダストリーズ インコーポレイテッド ワイヤーグリッド偏光子及びその製造方法
EP2126986B1 (en) 2006-12-22 2019-09-18 QuNano AB Led with upstanding nanowire structure and method of producing such
US8183587B2 (en) 2006-12-22 2012-05-22 Qunano Ab LED with upstanding nanowire structure and method of producing such
US8049203B2 (en) 2006-12-22 2011-11-01 Qunano Ab Nanoelectronic structure and method of producing such
WO2008084830A1 (ja) 2007-01-10 2008-07-17 Nec Corporation 光制御素子
KR100830587B1 (ko) 2007-01-10 2008-05-21 삼성전자주식회사 이미지 센서 및 이를 이용한 이미지 표시 방법
US8003883B2 (en) 2007-01-11 2011-08-23 General Electric Company Nanowall solar cells and optoelectronic devices
US7977568B2 (en) 2007-01-11 2011-07-12 General Electric Company Multilayered film-nanowire composite, bifacial, and tandem solar cells
US20080178924A1 (en) 2007-01-30 2008-07-31 Solasta, Inc. Photovoltaic cell and method of making thereof
US20090104160A1 (en) 2007-02-01 2009-04-23 Moraga Biotechnology Corporation Mobilization of Stem Cells After Trauma and Methods Therefor
US7960807B2 (en) 2007-02-09 2011-06-14 Intersil Americas Inc. Ambient light detectors using conventional CMOS image sensor process
KR20080079058A (ko) 2007-02-26 2008-08-29 엘지전자 주식회사 박막형 태양전지 모듈과 그의 제조방법
US8440997B2 (en) 2007-02-27 2013-05-14 The Regents Of The University Of California Nanowire photodetector and image sensor with internal gain
US8110883B2 (en) 2007-03-12 2012-02-07 Nantero Inc. Electromagnetic and thermal sensors using carbon nanotubes and methods of making same
EP1971129A1 (en) 2007-03-16 2008-09-17 STMicroelectronics (Research & Development) Limited Improvements in or relating to image sensors
US20080233280A1 (en) 2007-03-22 2008-09-25 Graciela Beatriz Blanchet Method to form a pattern of functional material on a substrate by treating a surface of a stamp
SE532485C2 (sv) * 2007-03-27 2010-02-02 Qunano Ab Nanostruktur för laddningslagring
US7906778B2 (en) 2007-04-02 2011-03-15 Hewlett-Packard Development Company, L.P. Methods of making nano-scale structures having controlled size, nanowire structures and methods of making the nanowire structures
US7803698B2 (en) 2007-04-09 2010-09-28 Hewlett-Packard Development Company, L.P. Methods for controlling catalyst nanoparticle positioning and apparatus for growing a nanowire
US8027086B2 (en) * 2007-04-10 2011-09-27 The Regents Of The University Of Michigan Roll to roll nanoimprint lithography
US7652280B2 (en) 2007-04-11 2010-01-26 General Electric Company Light-emitting device and article
EP2143141A4 (en) 2007-04-18 2011-04-13 Invisage Technologies Inc MATERIAL SYSTEMS AND METHOD FOR OPTOELECTRONIC ARRANGEMENTS
ATE545036T1 (de) 2007-04-19 2012-02-15 Oerlikon Solar Ag Testausrüstung für automatisierte qualitätskontrolle von dünnschicht-soalrmodulen
US7719688B2 (en) * 2007-04-24 2010-05-18 Hewlett-Packard Development Company, L.P. Optical device and method of making the same
US7719678B2 (en) 2007-04-25 2010-05-18 Hewlett-Packard Development Company, L.P. Nanowire configured to couple electromagnetic radiation to selected guided wave, devices using same, and methods of fabricating same
US8212235B2 (en) 2007-04-25 2012-07-03 Hewlett-Packard Development Company, L.P. Nanowire-based opto-electronic device
CN101675522B (zh) 2007-05-07 2012-08-29 Nxp股份有限公司 光敏器件以及制造光敏器件的方法
TW200915551A (en) 2007-05-10 2009-04-01 Koninkl Philips Electronics Nv Spectrum detector and manufacturing method therefore
JP2008288243A (ja) 2007-05-15 2008-11-27 Sony Corp 固体撮像装置とその製造方法および撮像装置
KR100901236B1 (ko) 2007-05-16 2009-06-08 주식회사 동부하이텍 이미지센서 및 그 제조방법
KR101426941B1 (ko) 2007-05-30 2014-08-06 주성엔지니어링(주) 태양전지 및 그의 제조방법
US7812692B2 (en) 2007-06-01 2010-10-12 Georgia Tech Research Corporation Piezo-on-diamond resonators and resonator systems
CN101803035B (zh) 2007-06-19 2016-08-24 昆南诺股份有限公司 基于纳米线的太阳能电池结构
US7736979B2 (en) 2007-06-20 2010-06-15 New Jersey Institute Of Technology Method of forming nanotube vertical field effect transistor
US7663202B2 (en) * 2007-06-26 2010-02-16 Hewlett-Packard Development Company, L.P. Nanowire photodiodes and methods of making nanowire photodiodes
US7586077B2 (en) 2007-07-18 2009-09-08 Mesa Imaging Ag Reference pixel array with varying sensitivities for time of flight (TOF) sensor
EP2171761A4 (en) * 2007-07-19 2011-11-02 California Inst Of Techn STRUCTURES OF ORDERED NETWORKS OF SEMICONDUCTORS
US8154127B1 (en) 2007-07-30 2012-04-10 Hewlett-Packard Development Company, L.P. Optical device and method of making the same
SG177175A1 (en) * 2007-08-01 2012-01-30 Silverbrook Res Pty Ltd Handheld printer
JP5285880B2 (ja) 2007-08-31 2013-09-11 シャープ株式会社 光電変換素子、光電変換素子接続体および光電変換モジュール
US8885987B2 (en) 2007-09-06 2014-11-11 Quantum Semiconductor Llc Photonic via waveguide for pixel arrays
US7786440B2 (en) * 2007-09-13 2010-08-31 Honeywell International Inc. Nanowire multispectral imaging array
US7623560B2 (en) 2007-09-27 2009-11-24 Ostendo Technologies, Inc. Quantum photonic imagers and methods of fabrication thereof
US8619168B2 (en) 2007-09-28 2013-12-31 Regents Of The University Of Minnesota Image sensor with high dynamic range imaging and integrated motion detection
US7790495B2 (en) 2007-10-26 2010-09-07 International Business Machines Corporation Optoelectronic device with germanium photodetector
KR101608953B1 (ko) 2007-11-09 2016-04-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 광전 변환 장치 및 그 제조 방법
FR2923602B1 (fr) 2007-11-12 2009-11-20 Commissariat Energie Atomique Detecteur de rayonnement electromagnetique a thermometre a nanofil et procede de realisation
KR20090048920A (ko) 2007-11-12 2009-05-15 삼성전자주식회사 카메라 모듈 및 이를 구비한 전자 기기
FR2923651A1 (fr) * 2007-11-13 2009-05-15 Commissariat Energie Atomique Procede de realisation d'une jonction pn dans un nanofil, et d'un nanofil avec au moins une jonction pn.
US7822300B2 (en) 2007-11-20 2010-10-26 Aptina Imaging Corporation Anti-resonant reflecting optical waveguide for imager light pipe
WO2009067668A1 (en) 2007-11-21 2009-05-28 The Trustees Of Boston College Apparatus and methods for visual perception using an array of nanoscale waveguides
KR101385250B1 (ko) 2007-12-11 2014-04-16 삼성전자주식회사 Cmos 이미지 센서
KR101000064B1 (ko) 2007-12-18 2010-12-10 엘지전자 주식회사 이종접합 태양전지 및 그 제조방법
US8106289B2 (en) 2007-12-31 2012-01-31 Banpil Photonics, Inc. Hybrid photovoltaic device
US7880207B2 (en) 2008-01-14 2011-02-01 International Business Machines Corporation Photo detector device
US8030729B2 (en) * 2008-01-29 2011-10-04 Hewlett-Packard Development Company, L.P. Device for absorbing or emitting light and methods of making the same
US20090189145A1 (en) 2008-01-30 2009-07-30 Shih-Yuan Wang Photodetectors, Photovoltaic Devices And Methods Of Making The Same
US20090188552A1 (en) 2008-01-30 2009-07-30 Shih-Yuan Wang Nanowire-Based Photovoltaic Cells And Methods For Fabricating The Same
US9009573B2 (en) * 2008-02-01 2015-04-14 Qualcomm Incorporated Method and apparatus for facilitating concatenated codes for beacon channels
CN101990713B (zh) 2008-02-03 2012-12-05 尼坦能源公司 薄膜光伏器件和有关的制造方法
US20090199597A1 (en) 2008-02-07 2009-08-13 Danley Jeffrey D Systems and methods for collapsing air lines in nanostructured optical fibers
US20090201400A1 (en) * 2008-02-08 2009-08-13 Omnivision Technologies, Inc. Backside illuminated image sensor with global shutter and storage capacitor
US20090206405A1 (en) 2008-02-15 2009-08-20 Doyle Brian S Fin field effect transistor structures having two dielectric thicknesses
WO2009102280A1 (en) 2008-02-15 2009-08-20 Agency For Science, Technology And Research Photodetector with valence-mending adsorbate region and a method of fabrication thereof
WO2009142787A2 (en) 2008-02-18 2009-11-26 Board Of Regents, The University Of Texas System Photovoltaic devices based on nanostructured polymer films molded from porous template
CN101527327B (zh) 2008-03-07 2012-09-19 清华大学 太阳能电池
US8101526B2 (en) 2008-03-12 2012-01-24 City University Of Hong Kong Method of making diamond nanopillars
WO2009114768A1 (en) 2008-03-14 2009-09-17 Albonia Innovative Technologies Ltd. Electrostatic desalination and water purification
CN102047436B (zh) 2008-03-21 2014-07-30 欧瑞康光伏特鲁贝屈股份有限公司 光伏电池以及用以制造光伏电池的方法
KR101448152B1 (ko) 2008-03-26 2014-10-07 삼성전자주식회사 수직 포토게이트를 구비한 거리측정 센서 및 그를 구비한입체 컬러 이미지 센서
JP4770857B2 (ja) 2008-03-27 2011-09-14 日本テキサス・インスツルメンツ株式会社 半導体装置
KR20090105732A (ko) 2008-04-03 2009-10-07 삼성전자주식회사 태양전지
JP2011523902A (ja) 2008-04-14 2011-08-25 バンドギャップ エンジニアリング, インコーポレイテッド ナノワイヤアレイを製造するためのプロセス
KR20090109980A (ko) 2008-04-17 2009-10-21 한국과학기술연구원 가시광 대역 반도체 나노선 광센서 및 이의 제조 방법
WO2009135078A2 (en) * 2008-04-30 2009-11-05 The Regents Of The University Of California Method and apparatus for fabricating optoelectromechanical devices by structural transfer using re-usable substrate
US7902540B2 (en) 2008-05-21 2011-03-08 International Business Machines Corporation Fast P-I-N photodetector with high responsitivity
US8138493B2 (en) 2008-07-09 2012-03-20 Qunano Ab Optoelectronic semiconductor device
US7863625B2 (en) 2008-07-24 2011-01-04 Hewlett-Packard Development Company, L.P. Nanowire-based light-emitting diodes and light-detection devices with nanocrystalline outer surface
KR101435519B1 (ko) * 2008-07-24 2014-08-29 삼성전자주식회사 광 포커싱 구조를 가진 이미지 센서
US8198796B2 (en) * 2008-07-25 2012-06-12 Konica Minolta Holdings, Inc. Transparent electrode and production method of same
US8198706B2 (en) * 2008-07-25 2012-06-12 Hewlett-Packard Development Company, L.P. Multi-level nanowire structure and method of making the same
JP2010040672A (ja) 2008-08-01 2010-02-18 Oki Semiconductor Co Ltd 半導体装置およびその製造方法
CN102171836B (zh) 2008-08-14 2013-12-11 布鲁克哈文科学协会 结构化柱电极
US8384007B2 (en) * 2009-10-07 2013-02-26 Zena Technologies, Inc. Nano wire based passive pixel image sensor
US8519379B2 (en) 2009-12-08 2013-08-27 Zena Technologies, Inc. Nanowire structured photodiode with a surrounding epitaxially grown P or N layer
US8274039B2 (en) 2008-11-13 2012-09-25 Zena Technologies, Inc. Vertical waveguides with various functionality on integrated circuits
US9515218B2 (en) 2008-09-04 2016-12-06 Zena Technologies, Inc. Vertical pillar structured photovoltaic devices with mirrors and optical claddings
US20100304061A1 (en) 2009-05-26 2010-12-02 Zena Technologies, Inc. Fabrication of high aspect ratio features in a glass layer by etching
US8735797B2 (en) 2009-12-08 2014-05-27 Zena Technologies, Inc. Nanowire photo-detector grown on a back-side illuminated image sensor
US20100148221A1 (en) 2008-11-13 2010-06-17 Zena Technologies, Inc. Vertical photogate (vpg) pixel structure with nanowires
US8507840B2 (en) 2010-12-21 2013-08-13 Zena Technologies, Inc. Vertically structured passive pixel arrays and methods for fabricating the same
US8835831B2 (en) 2010-06-22 2014-09-16 Zena Technologies, Inc. Polarized light detecting device and fabrication methods of the same
US8546742B2 (en) 2009-06-04 2013-10-01 Zena Technologies, Inc. Array of nanowires in a single cavity with anti-reflective coating on substrate
US9000353B2 (en) 2010-06-22 2015-04-07 President And Fellows Of Harvard College Light absorption and filtering properties of vertically oriented semiconductor nano wires
US20130112256A1 (en) 2011-11-03 2013-05-09 Young-June Yu Vertical pillar structured photovoltaic devices with wavelength-selective mirrors
US8229255B2 (en) 2008-09-04 2012-07-24 Zena Technologies, Inc. Optical waveguides in image sensors
US9082673B2 (en) 2009-10-05 2015-07-14 Zena Technologies, Inc. Passivated upstanding nanostructures and methods of making the same
US8791470B2 (en) 2009-10-05 2014-07-29 Zena Technologies, Inc. Nano structured LEDs
US8299472B2 (en) 2009-12-08 2012-10-30 Young-June Yu Active pixel sensor with nanowire structured photodetectors
US7646943B1 (en) * 2008-09-04 2010-01-12 Zena Technologies, Inc. Optical waveguides in image sensors
US8269985B2 (en) 2009-05-26 2012-09-18 Zena Technologies, Inc. Determination of optimal diameters for nanowires
WO2010027322A1 (en) 2008-09-04 2010-03-11 Qunano Ab Nanostructured photodiode
EP2332175B1 (en) 2008-09-09 2015-08-26 Vanguard Solar, Inc. Solar cells and photodetectors with semiconducting nanostructures
KR101143706B1 (ko) 2008-09-24 2012-05-09 인터내셔널 비지네스 머신즈 코포레이션 나노전자 소자
US7972885B1 (en) 2008-09-25 2011-07-05 Banpil Photonics, Inc. Broadband imaging device and manufacturing thereof
WO2010039631A1 (en) 2008-09-30 2010-04-08 The Regents Of The University Of California Photonic crystal solar cell
US8591661B2 (en) 2009-12-11 2013-11-26 Novellus Systems, Inc. Low damage photoresist strip method for low-K dielectrics
US20100090341A1 (en) * 2008-10-14 2010-04-15 Molecular Imprints, Inc. Nano-patterned active layers formed by nano-imprint lithography
EP2180526A2 (en) * 2008-10-23 2010-04-28 Samsung Electronics Co., Ltd. Photovoltaic device and method for manufacturing the same
FR2937791B1 (fr) 2008-10-24 2010-11-26 Thales Sa Dispositif d'imagerie polarimetrique optimise par rapport au contraste de polarisation
WO2010048607A2 (en) * 2008-10-24 2010-04-29 Carnegie Institution Of Washington Enhanced optical properties of chemical vapor deposited single crystal diamond by low-pressure/high-temperature annealing
WO2010062644A2 (en) 2008-10-28 2010-06-03 The Regents Of The University Of California Vertical group iii-v nanowires on si, heterostructures, flexible arrays and fabrication
JP5380546B2 (ja) 2008-11-26 2014-01-08 マイクロリンク デバイセズ, インク. エミッタ層に接触する裏面バイアを備えた太陽電池
KR20100063536A (ko) 2008-12-03 2010-06-11 삼성에스디아이 주식회사 발광 장치 및 이 발광 장치를 광원으로 사용하는 표시 장치
WO2010071658A1 (en) 2008-12-19 2010-06-24 Hewlett-Packard Development Company, Hewlett-Packard Development Company, L.P. Photovoltaic structure and method of fabrication employing nanowire on stub
KR20100079058A (ko) 2008-12-30 2010-07-08 주식회사 동부하이텍 이미지센서 및 그 제조방법
US20100200065A1 (en) 2009-02-12 2010-08-12 Kyu Hyun Choi Photovoltaic Cell and Fabrication Method Thereof
TW201034212A (en) 2009-03-13 2010-09-16 guo-hong Shen Thin-film solar cell structure
US8242353B2 (en) 2009-03-16 2012-08-14 International Business Machines Corporation Nanowire multijunction solar cell
US7888155B2 (en) 2009-03-16 2011-02-15 Industrial Technology Research Institute Phase-change memory element and method for fabricating the same
TWI425643B (zh) 2009-03-31 2014-02-01 Sony Corp 固態攝像裝置及其製造方法、攝像裝置和抗反射結構之製造方法
US20100244108A1 (en) 2009-03-31 2010-09-30 Glenn Eric Kohnke Cmos image sensor on a semiconductor-on-insulator substrate and process for making same
EP2417075A1 (en) 2009-04-09 2012-02-15 E. I. du Pont de Nemours and Company Glass compositions used in conductors for photovoltaic cells
EP2419717B1 (en) * 2009-04-13 2017-05-17 Terumo Kabushiki Kaisha Fluorescence sensor, needle-type fluorescence sensor, and method for measuring analyte
US8389388B2 (en) 2009-04-30 2013-03-05 Hewlett-Packard Development Company, L.P. Photonic device and method of making the same
EP2356696A4 (en) 2009-05-06 2013-05-15 Thinsilicon Corp PHOTOVOLTAIC CELLS AND METHOD FOR REINFORCING LIGHT DETECTION IN SEMICONDUCTOR LAYERED TABLES
US8809672B2 (en) 2009-05-27 2014-08-19 The Regents Of The University Of California Nanoneedle plasmonic photodetectors and solar cells
JP5504695B2 (ja) 2009-05-29 2014-05-28 ソニー株式会社 固体撮像装置、固体撮像装置の製造方法および電子機器
US9551650B2 (en) 2009-06-01 2017-01-24 Cornell University Integrated optofluidic system using microspheres
US8211735B2 (en) 2009-06-08 2012-07-03 International Business Machines Corporation Nano/microwire solar cell fabricated by nano/microsphere lithography
KR101247916B1 (ko) 2009-06-10 2013-03-26 씬실리콘 코포레이션 텐덤 반도체 층 스택을 구비한 광전지 모듈 및 광전지 모듈의 제작 방법
WO2010144866A2 (en) * 2009-06-11 2010-12-16 The Arizona Board Of Regents On Behalf Of The University Of Arizona Microgrid imaging polarimeters with frequency domain reconstruction
KR101139458B1 (ko) 2009-06-18 2012-04-30 엘지전자 주식회사 태양전지 및 그 제조방법
US8304759B2 (en) 2009-06-22 2012-11-06 Banpil Photonics, Inc. Integrated image sensor system on common substrate
US8558336B2 (en) 2009-08-17 2013-10-15 United Microelectronics Corp. Semiconductor photodetector structure and the fabrication method thereof
EP2290718B1 (en) * 2009-08-25 2015-05-27 Samsung Electronics Co., Ltd. Apparatus for generating electrical energy and method for manufacturing the same
US8319309B2 (en) 2009-08-28 2012-11-27 Samsung Electro-Mechanics Co., Ltd. Semiconductor device and method for manufacturing of the same
KR101067114B1 (ko) 2009-09-08 2011-09-22 삼성전기주식회사 반도체 소자 및 그 제조 방법
KR101058593B1 (ko) 2009-09-08 2011-08-22 삼성전기주식회사 반도체 소자 및 그 제조 방법
KR101051578B1 (ko) 2009-09-08 2011-07-22 삼성전기주식회사 반도체 소자 및 그 제조 방법
US20110084212A1 (en) 2009-09-22 2011-04-14 Irvine Sensors Corporation Multi-layer photon counting electronic module
WO2011047359A2 (en) 2009-10-16 2011-04-21 Cornell University Method and apparatus including nanowire structure
US8115097B2 (en) 2009-11-19 2012-02-14 International Business Machines Corporation Grid-line-free contact for a photovoltaic cell
US8563395B2 (en) 2009-11-30 2013-10-22 The Royal Institute For The Advancement Of Learning/Mcgill University Method of growing uniform semiconductor nanowires without foreign metal catalyst and devices thereof
US20120006390A1 (en) 2009-12-08 2012-01-12 Yijie Huo Nano-wire solar cell or detector
CN102652366A (zh) 2009-12-15 2012-08-29 索尼公司 光电转换器件及光电转换器件的制造方法
JP5608384B2 (ja) 2010-02-05 2014-10-15 東京エレクトロン株式会社 半導体装置の製造方法及びプラズマエッチング装置
AU2011217862B9 (en) 2010-02-19 2014-07-10 Pacific Biosciences Of California, Inc. Integrated analytical system and method
US8816324B2 (en) 2010-02-25 2014-08-26 National University Corporation Hokkaido University Semiconductor device and method for manufacturing semiconductor device
WO2011156042A2 (en) 2010-03-23 2011-12-15 California Institute Of Technology Heterojunction wire array solar cells
US20130037100A1 (en) 2010-04-09 2013-02-14 Charlotte PLATZER BJÖRKMAN Thin Film Photovoltaic Solar Cells
US8194197B2 (en) 2010-04-13 2012-06-05 Sharp Kabushiki Kaisha Integrated display and photovoltaic element
TWI409963B (zh) 2010-05-07 2013-09-21 Huang Chung Cheng 同軸奈米線結構的太陽能電池
US9182338B2 (en) 2010-05-21 2015-11-10 The Trustees Of Princeton University Structures for enhancement of local electric field, light absorption, light radiation, material detection and methods for making and using of the same
US8431817B2 (en) 2010-06-08 2013-04-30 Sundiode Inc. Multi-junction solar cell having sidewall bi-layer electrical interconnect
US8324010B2 (en) 2010-06-29 2012-12-04 Himax Imaging, Inc. Light pipe etch control for CMOS fabrication
US8878055B2 (en) 2010-08-09 2014-11-04 International Business Machines Corporation Efficient nanoscale solar cell and fabrication method
US9231133B2 (en) 2010-09-10 2016-01-05 International Business Machines Corporation Nanowires formed by employing solder nanodots
JP5884486B2 (ja) 2010-09-30 2016-03-15 三菱マテリアル株式会社 太陽電池の反射防止膜用組成物、太陽電池の反射防止膜、太陽電池の反射防止膜の製造方法、及び太陽電池
SG185248A1 (en) 2011-05-05 2012-11-29 Agency Science Tech & Res A photodetector and a method of forming the same
US20120318336A1 (en) 2011-06-17 2012-12-20 International Business Machines Corporation Contact for silicon heterojunction solar cells
US9331220B2 (en) 2011-06-30 2016-05-03 International Business Machines Corporation Three-dimensional conductive electrode for solar cell
US9406824B2 (en) 2011-11-23 2016-08-02 Quswami, Inc. Nanopillar tunneling photovoltaic cell
US20130220406A1 (en) 2012-02-27 2013-08-29 Sharp Kabushiki Kaisha Vertical junction solar cell structure and method
US9076945B2 (en) 2012-10-26 2015-07-07 Glo Ab Nanowire LED structure and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106960854A (zh) * 2016-01-12 2017-07-18 豪威科技股份有限公司 等离子纳米结构传感器像素
CN106960854B (zh) * 2016-01-12 2023-08-29 豪威科技股份有限公司 等离子纳米结构传感器像素
TWI727650B (zh) * 2019-02-15 2021-05-11 台灣積體電路製造股份有限公司 影像感測器及形成影像感測器的方法

Also Published As

Publication number Publication date
US8754359B2 (en) 2014-06-17
US20160163753A1 (en) 2016-06-09
US20140252314A1 (en) 2014-09-11
US20120298843A1 (en) 2012-11-29
US8735797B2 (en) 2014-05-27
TW201143055A (en) 2011-12-01
US20140054661A1 (en) 2014-02-27
US9123841B2 (en) 2015-09-01
US20110133061A1 (en) 2011-06-09
WO2011072029A1 (en) 2011-06-16
TW201515205A (zh) 2015-04-16
TWI559516B (zh) 2016-11-21
TWI557889B (zh) 2016-11-11
TWI466279B (zh) 2014-12-21
US9263613B2 (en) 2016-02-16

Similar Documents

Publication Publication Date Title
TWI557889B (zh) 生長於背側照明影像感測器上之奈米線光偵測器
TWI459548B (zh) 製造生長於背側照明影像感測器上之奈米線光偵測器
TWI450407B (zh) 具有一環繞磊晶生長p或n層之奈米線結構光電二極體
JP5985670B2 (ja) ナノワイヤを有する垂直フォトゲート(vpg)ピクセル構造
TWI427781B (zh) 具有奈米線結構光偵測器之主動像素感測器
JP5300344B2 (ja) 光検出素子及び撮像素子、光検出方法及び撮像方法
US20230395640A1 (en) Dielectric structure overlying image sensor element to increase quantum efficiency

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees