RU2477001C2 - Система с множеством входов и множеством выходов (mimo) с множеством режимов пространственного мультиплексирования - Google Patents

Система с множеством входов и множеством выходов (mimo) с множеством режимов пространственного мультиплексирования Download PDF

Info

Publication number
RU2477001C2
RU2477001C2 RU2008106942/07A RU2008106942A RU2477001C2 RU 2477001 C2 RU2477001 C2 RU 2477001C2 RU 2008106942/07 A RU2008106942/07 A RU 2008106942/07A RU 2008106942 A RU2008106942 A RU 2008106942A RU 2477001 C2 RU2477001 C2 RU 2477001C2
Authority
RU
Russia
Prior art keywords
data
spatial
user terminal
streams
spatial multiplexing
Prior art date
Application number
RU2008106942/07A
Other languages
English (en)
Other versions
RU2008106942A (ru
Inventor
Джей Родни УОЛТОН
Джон У. КЕТЧУМ
Марк УОЛЛЭЙС
Стивен Дж. ГОВАРД
Original Assignee
Квэлкомм Инкорпорейтед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Квэлкомм Инкорпорейтед filed Critical Квэлкомм Инкорпорейтед
Publication of RU2008106942A publication Critical patent/RU2008106942A/ru
Application granted granted Critical
Publication of RU2477001C2 publication Critical patent/RU2477001C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0697Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using spatial multiplexing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • H04B7/0848Joint weighting
    • H04B7/0854Joint weighting using error minimizing algorithms, e.g. minimum mean squared error [MMSE], "cross-correlation" or matrix inversion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/0871Hybrid systems, i.e. switching and combining using different reception schemes, at least one of them being a diversity reception scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0017Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy where the mode-switching is based on Quality of Service requirement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/024Channel estimation channel estimation algorithms
    • H04L25/0242Channel estimation channel estimation algorithms using matrix methods
    • H04L25/0248Eigen-space methods
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/04Scheduled or contention-free access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • H04B7/0421Feedback systems utilizing implicit feedback, e.g. steered pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/043Power distribution using best eigenmode, e.g. beam forming or beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0426Power distribution
    • H04B7/0434Power distribution using multiple eigenmodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0667Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
    • H04B7/0669Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different channel coding between antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/0026Interference mitigation or co-ordination of multi-user interference
    • H04J11/003Interference mitigation or co-ordination of multi-user interference at the transmitter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination
    • H04J11/005Interference mitigation or co-ordination of intercell interference
    • H04J11/0053Interference mitigation or co-ordination of intercell interference using co-ordinated multipoint transmission/reception
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • H04L25/0226Channel estimation using sounding signals sounding signals per se
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/50TPC being performed in particular situations at the moment of starting communication in a multiple access environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams

Abstract

Изобретение относится к технике связи и может использоваться в системах с множеством входов и множеством выходов (MIMO). Технический результат состоит в повышении пропускной способности каналов передачи. Для этого система поддерживает множество режимов пространственного мультиплексирования для улучшения производительности и большей гибкости. Такие режимы могут включать в себя однопользовательский направленный режим, в котором передают множество потоков данных через ортогональные пространственные каналы в один приемник, однопользовательский ненаправленный режим, при котором передают множество потоков данных через множество антенн в один приемник без пространственной обработки в передатчике, многопользовательский направленный режим, в котором передают множество потоков данных одновременно в множество приемников с пространственной обработкой в передатчике, и многопользовательский направленный режим, в котором передают множество потоков данных через множество антенн, совместно расположенных или не совместно расположенных без пространственной обработки в передатчиках в приемники, имеющие множество антенн. 8 н. и 21 з.п. ф-лы, 14 ил.

Description

Притязание на приоритет по §119 U.S.C 35
Настоящая заявка на патент притязает на приоритет предварительной заявки на патент США № 60/421309, называемой "MIMO WLAN System", поданной 25 октября 2002 г., право на которую передано правопреемнику настоящего изобретения и которая включена в настоящее описание во всей своей полноте в качестве ссылки.
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение в общем случае относится к связи, более конкретно к коммуникационной системе с множеством входов и множеством выходов (MIMO).
УРОВЕНЬ ТЕХНИКИ
MIMO система как правило использует для передачи данных несколько (NT) передающих антенн и несколько (NR) приемных антенн и обозначается как система (NT, NR). MIMO канал, сформированный NT передающими и NR приемными антеннами, может быть разложен на NS пространственных каналов, где NS ≤ min{NT, NR}. Для достижения большей общей пропускной способности, для передачи NS независимых потоков данных могут использоваться NS пространственных каналов. В общем случае, для одновременной передачи и восстановления нескольких потоков данных, пространственная обработка обычно выполняется в приемнике и может выполняться или не выполняться в передатчике.
Известная MIMO система обычно использует определенную схему передачи для одновременной передачи нескольких потоков данных. Эта схема передачи может быть выбрана на основе компромисса между различными факторами, такими как требования к системе, объем обратной связи из приемника в передатчик, возможности передатчика и приемника, и т.д. Передатчик, приемник и система, к тому же, разработаны с возможностью поддержки выбранной схемы передачи и функционирования в соответствии с нею. Указанная схема передачи обычно имеет предпочтительные признаки, а также неблагоприятные признаки, которые могут влиять на производительность системы.
Таким образом, в данной области техники существует потребность в MIMO системе, выполненной с возможностью достижения повышенной эффективности.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Описана MIMO система, которая поддерживает несколько режимов пространственного мультиплексирования (SM) для повышения производительности и большей гибкости. Пространственное мультиплексирование относится к одновременной передаче нескольких потоков данных через несколько пространственных каналов MIMO-канала. Несколько режимов пространственного мультиплексирования могут включать в себя (1) однопользовательский направленный режим, при котором осуществляется передача нескольких потоков данных по ортогональным пространственным каналам в один приемник, (2) однопользовательский ненаправленный режим, при котором осуществляется передача нескольких потоков данных через несколько антенн в один приемник без пространственной обработки в передатчике, (3) многопользовательский направленный режим, при котором осуществляется одновременная передача нескольких потоков данных в множество приемников с пространственной обработкой в передатчике, и (4) многопользовательский ненаправленный режим, при котором осуществляется передача нескольких потоков данных через несколько антенн (совместно расположенных или раздельно расположенных) без пространственной обработки в передатчике (передатчиках) в приемник (приемники), имеющий несколько антенн.
Для передачи данных по нисходящей и/или восходящей линии выбирают набор по меньшей мере из одного пользовательского терминала. Выбирают режим пространственного мультиплексирования для набора пользовательских терминалов из множества режимов пространственного мультиплексирования, поддерживаемых системой. Также выбирают множество скоростей для множества потоков данных, предназначенных для передачи через множество пространственных каналов канала MIMO набору пользовательских терминалов. Набор пользовательских терминалов планируют для передачи данных по нисходящей и/или восходящей линии с выбранными скоростями и выбранным режимом пространственного мультиплексирования. После этого множество потоков данных обрабатывают (например, выполняют кодирование, перемежение и модуляцию) в соответствии с выбранными скоростями и дополнительно подвергают пространственной обработке в соответствии с выбранным режимом пространственного мультиплексирования для передачи через множество пространственных каналов.
Ниже более подробно описаны различные аспекты, варианты осуществления и отличительные признаки изобретения.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
На Фиг.1 показана MIMO система с множественным доступом.
На Фиг.2 показана структура кадра и канала для MIMO системы.
На Фиг.3 показана точка доступа и два пользовательских терминала в MIMO системе.
На Фиг.4 показан передающий (TX) процессор данных в точке доступа.
На Фиг.5 показан TX пространственный процессор и модуляторы в точке доступа.
На Фиг.6 показаны демодуляторы и приемный (RX) пространственный процессор в многоантенном пользовательском терминале.
На Фиг.7 показан RX процессор данных в многоантенном пользовательском терминале.
На Фиг.8 показан RX пространственный процессор и RX процессор данных реализующие способ последовательного удаления помех (SIC).
На Фиг.9 показаны приемная/передающие цепи в точке доступа и пользовательском терминале.
На Фиг.10 показан механизм управления скоростью передачи с замкнутым контуром управления.
На Фиг.11 показан контроллер и планировщик для планирования пользовательских терминалов.
На Фиг.12 показан процесс планирования пользовательских терминалов для передачи данных.
На Фиг.13 показан процесс передачи данных по нисходящей линии.
На Фиг.14 показан процесс приема данных по восходящей линии.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
Слово “иллюстративный” используется в настоящем описании как означающее “служащий в качестве примера, иллюстрации”. Любой вариант осуществления, изложенный в настоящем описании как “иллюстративный”, не следует с необходимостью рассматривать как предпочтительный или преимущественный перед другими вариантами осуществления.
MIMO Система может использовать одну несущую или множество несущих для передачи данных. Множество несущих может применяться в мультиплексировании с ортогональным делением частот (OFDM), в других способах модуляции с множеством несущих или в других системах. OFDM эффективно разделяет полосу частот системы на множество (N F) ортогональных поддиапазонов, которые обычно называются тонами, бинами, несущими и частотными каналами. В случае OFDM каждый поддиапазон связан с соответствующей несущей, которая может быть модулирована данными. Нижеследующее описание дано для MIMO системы, использующей OFDM. Однако концепции, изложенные в настоящем описании равным образом, применимы к MIMO системе с одной несущей.
MIMO система поддерживает множество режимов пространственного мультиплексирования для увеличения производительности и большей гибкости. В Таблице 1 перечислены поддерживаемые режимы пространственного мультиплексирования и даны их краткие описания.
Таблица 1
Режим пространственного мультиплексирования Описание
однопользовательский направленный Множество потоков данных передают по ортогональным пространственным каналам в один приемник
однопользовательский ненаправленный Множество потоков данных передают через множество антенн в один приемник без пространственной обработки в передатчике
многопользовательский направленный Множество потоков данных передают одновременно (1) из одного передатчика во множество приемников или (2) из множества передатчиков в один приемник, в обоих случаях с пространственной обработкой в передатчике (передатчиках)
многопользовательский ненаправленный Множество потоков данных передают одновременно (1) из множества передатчиков в один приемник или (2) из одного передатчика во множество приемников, в обоих случаях без пространственной обработки в передатчике (передатчиках)
MIMO система также может поддерживать другие и/или различные режимы пространственного мультиплексирования, и это находится в пределах объема настоящего изобретения.
Каждый режим пространственного мультиплексирования имеет различные калибровки и требования. Режимы направленного пространственного мультиплексирования как правило позволяют достичь лучшей производительности, но могут применяться только если передатчик имеет достаточную информацию о состоянии канала для ортогонализации пространственных каналов при помощи разложения или какого-либо другого способа, как описано ниже. В случае режимов ненаправленного пространственного мультиплексирования требуется очень мало информации для одновременной передачи множества потоков данных, но производительность может быть не такой высокой, как в случае режимов направленного пространственного мультиплексирования. Подходящий режим пространственного мультиплексирования может быть выбран для использования в зависимости от доступной информации о состоянии канала, от возможностей передатчика и приемника, системных требований и т.д. Каждый из режимов пространственного мультиплексирования описан ниже.
1. Однопользовательский режим направленного пространственного мультиплексирования
Частотно-селективный MIMO канал, сформированный N T передающими антеннами и N R приемными антеннами, может быть охарактеризован N F матрицами откликов канала в частотном домене,
Figure 00000001
, для k=1 … N F, каждая из которых имеет размерность N R×N T. Матрица откликов канала для каждого поддиапазона может быть выражена как:
Figure 00000002
, уравнение (1)
где элемент
Figure 00000003
для i=1 … N R, j=1 … N T и k=1 … N F представляет собой связь (т.е. комплексное усиление) между передающей антенной j и приемной антенной i для поддиапазона k.
Матрица
Figure 00000001
отклика канала для каждого поддиапазона может быть “диагонализирована” для получения N S собственных мод для этого поддиапазона. Такая диагонализация может быть произведена путем выполнения либо разложения по сингулярным значениям матрицы
Figure 00000001
отклика канала или разложения по собственным векторам корреляционной матрицы для матрицы
Figure 00000001
, которая представляет собой
Figure 00000004
, где “H” обозначает транспонирование с комплексным сопряжением.
Разложение по сингулярным значениям матрицы
Figure 00000001
откликов канала для каждого поддиапазона может быть выражено как:
Figure 00000005
, уравнение (2)
где
Figure 00000006
представляет собой (N R×N R) унитарную матрицу левых собственных векторов для
Figure 00000007
;
Figure 00000008
представляет собой (N R×N T) диагональную матрицу сингулярных значений для
Figure 00000007
;
Figure 00000009
представляет собой (N T×N T) унитарную матрицу правых собственных векторов для
Figure 00000007
;
Унитарность матрицы
Figure 00000010
характеризуется свойством
Figure 00000011
, где
Figure 00000012
представляет собой единичную матрицу.
Разложение по собственным векторам корреляционной матрицы
Figure 00000007
для каждого поддиапазона может быть выражено как:
Figure 00000013
, уравнение (3)
где
Figure 00000014
представляет собой (N T×N T) диагональную матрицу собственных векторов для
Figure 00000015
. Как показано в уравнениях (2) и (3), столбцы
Figure 00000016
являются собственными векторами для
Figure 00000017
, а также правыми собственными векторами для
Figure 00000001
.
Разложение по сингулярным значениям и разложение по собственным векторам описано Gilbert Strang в книге озаглавленной “Linear Algebra and Its Applications”, второе издание, Academic Press, 1980. Однопользовательский режим направленного пространственного мультиплексирования реализован либо посредством разложения по сингулярным значениям, либо посредством разложения по собственным векторам. Для простоты в нижеследующем описании используется разложение по сингулярным значениям.
Правые собственные вектора для
Figure 00000001
также называются “направляющими” векторами и могут быть использованы передатчиком для пространственной обработки при передаче данных по N S собственным модам для
Figure 00000001
. Левые собственные вектора для
Figure 00000001
могут быть использованы для пространственной обработки в приемнике для восстановления данных, переданных по N S собственным модам. Собственные моды можно рассматривать как ортогональные пространственные каналы, получаемые в результате разложения. Диагональная матрица
Figure 00000018
содержит неотрицательное вещественное значение по диагонали и нули в других позициях. Указанные диагональные элементы называются сингулярными значениями для
Figure 00000001
и представляют усиления канала для N S собственных мод
Figure 00000001
. Сингулярные значения для
Figure 00000001
,
Figure 00000019
, также представляют собой корень квадратный из собственных значений для
Figure 00000015
,
Figure 00000020
, где
Figure 00000021
. Декомпозиция по сингулярным значениям может выполняться для матрицы
Figure 00000001
отклика канала независимо для каждого из N F поддиапазонов для определения N S собственных мод для этого поддиапазона.
Для каждого поддиапазона сингулярные значения в матрице
Figure 00000018
могут быть упорядочены от больших к меньшим и собственные вектора в матрицах
Figure 00000016
и
Figure 00000022
могут быть упорядочены соответствующим образом. “Широкополосная” собственная мода может быть определена как набор собственных мод для всех N F поддиапазонов, имеющих выполнения пространственной обработки в приемнике одинаковый порядковый номер после упорядочения (т.е. широкополосная собственная мода m включает в себя собственные моды m всех поддиапазонов). В общем случае, для передачи могут использоваться все N F поддиапазонов или меньшее количество, причем неиспользуемые поддиапазоны заполняют сигналами с нулевым значением. Для простоты в нижеследующем описании предполагается, что все N F поддиапазоны используются для передачи.
В однопользовательском режиме направленного пространственного мультиплексирования (или просто “однопользовательский направленный режим”) передают N S потоков символов данных по N S собственным модам MIMO канала. Это требует пространственной обработки как в передатчике, так и в приемнике.
Пространственная обработка в передатчике для каждого поддиапазона в случае однопользовательского направленного режима может быть выражена как:
Figure 00000023
, уравнение (4)
где
Figure 00000024
представляет собой (N T×1) вектор с N S ненулевыми элементами для N S символов данных, предназначенных для передачи по N S собственным модам поддиапазона k; и
Figure 00000025
представляет собой (N T×1) вектор с N T элементами для N T символов передачи, предназначенных для передачи через N T передающих антенн в поддиапазоне k.
N S элементов
Figure 00000024
могут представлять N S потоков символов данных, а оставшиеся элементы
Figure 00000024
, если они есть заполняют нулями.
Принятые символы, полученные приемником для каждого поддиапазона, могут быть выражены как:
Figure 00000026
, уравнение (5)
где
Figure 00000027
представляет собой (N R×1) вектор с N R элементами для N R принятых символов, полученных через N R приемных антенн для поддиапазона k;
Figure 00000028
представляет собой вектор шума для поддиапазона k.
Пространственная обработка в приемнике для восстановления вектора
Figure 00000024
для каждого поддиапазона может быть выражена как:
Figure 00000029
уравнение (6)
или
Figure 00000030
и
Figure 00000031
,
где
Figure 00000032
представляет собой (N T×1) вектор с N S детектированными символами данных для поддиапазона k;
Figure 00000033
представляет собой (N T×1) вектор с N S восстановленными символами данных для поддиапазона k;
Figure 00000034
представляет собой вектор шума после обработки для поддиапазона k.
Figure 00000032
представляет собой ненормированную оценку вектора
Figure 00000024
данных, а вектор
Figure 00000033
представляет собой нормированную оценку
Figure 00000024
.
Умножение на
Figure 00000035
в уравнении (6) учитывает (возможно, различные) усиления N S пространственных каналов и нормирует результат пространственной обработки в приемнике таким образом, что в последующий блок обработки предоставляются восстановленные символы данных, имеющие подходящую величину.
Для однопользовательского направленного режима матрица
Figure 00000036
направляющих векторов, используемая в передатчике для каждого поддиапазона, может быть выражена как:
Figure 00000037
уравнение (7)
Матрица пространственной фильтрации, используемая в приемнике для каждого поддиапазона, может быть выражена как:
Figure 00000038
уравнение (8)
Однопользовательский направленный режим может быть использован, если передатчик имеет информацию о состоянии канала либо в виде матрицы
Figure 00000001
отклика канала, либо матрицы
Figure 00000016
правых собственных векторов для
Figure 00000001
, для k=1 … N F. Передатчик может оценить
Figure 00000001
или
Figure 00000016
для каждого поддиапазона, основываясь на пилот-сигнале, передаваемом приемником, как описано ниже, или может получить эту информацию от приемника по каналу обратной связи. Как правило, приемник может получить
Figure 00000001
или
Figure 00000039
для каждого поддиапазона, основываясь на пилот-сигнале, передаваемом передатчиком. Из уравнения (6) видно, что N S потоков
Figure 00000024
символов данных, искаженных только шумом
Figure 00000034
канала после обработки, могут быть получены в случае однопользовательского направленного режима посредством подходящей пространственной обработки как в передатчик, так и в приемнике.
Отношение сигнал/шум-и-помехи (ОСШ) для однопользовательского направленного режима может быть выражено как:
Figure 00000040
m=1 … N S, уравнение (9)
где
Figure 00000041
представляет собой мощность передачи, используемую для символа данных, переданного в поддиапазоне k широкополосной собственной моды m;
Figure 00000042
представляет собой собственное значение для поддиапазона k широкополосной собственной моды m, которое является m-м диагональным элементом для
Figure 00000043
;
Figure 00000044
представляет собой ОСШ для поддиапазона k широкополосной собственной моды m.
2. Однопользовательский режим ненаправленного пространственного мультиплексирования
Однопользовательский режим ненаправленного пространственного мультиплексирования (или просто “однопользовательский ненаправленный режим”) может быть использован, если передатчик не имеет достаточно информации о состоянии канала, или однопользовательский направленный режим не поддерживается по каким-либо другим причинам. В случае однопользовательского ненаправленного режима передают N S потоков символов данных через N T передающих антенн без какой-либо пространственной обработки в передатчике.
В случае однопользовательского ненаправленного режима матрица
Figure 00000045
направляющих векторов, используемая передатчиком для каждого поддиапазона, может быть выражена как:
Figure 00000046
уравнение (10)
Пространственная обработка в передатчике для каждого поддиапазона может быть выражена как:
Figure 00000047
, уравнение (11)
где
Figure 00000048
представляет собой вектор символов передачи для однопользовательского ненаправленного режима.
“Широкополосный” пространственный канал для этого режима может быть определен как пространственный канал, соответствующий данной передающей антенне (т.е. широкополосный пространственный канал m для однопользовательского ненаправленного режима включает в себя все поддиапазоны передающей антенны m).
Принятые символы, полученные приемником для каждого поддиапазона могут быть выражены как:
Figure 00000049
уравнение (12)
Приемник может восстановить вектор
Figure 00000024
данных, используя различные способы обработки, такие как способ инверсии корреляционной матрицы канала (CCMI) (который также известен как способ “обращения в нуль незначащих коэффициентов”), способ минимальной средней квадратичной ошибки (MMSE), корректор с решающей обратной связью (DFE) и способ последовательного удаления помех (SIC) и т.д.
А. Пространственная обработка CCMI
Приемник может использовать способ CCMI для выделения потоков символов данных. CCMI приемник использует пространственный фильтр, имеющий отклик
Figure 00000050
, для k=1 … N F, который может быть выражен как:
Figure 00000051
уравнение (13)
Пространственная обработка в CCMI приемнике в случае однопользовательского ненаправленного режима может быть выражена как:
Figure 00000052
уравнение (14)
где
Figure 00000053
представляет собой (N T×1) вектор с N S восстановленными символами данных для поддиапазона k;
Figure 00000054
представляет собой шум после CCMI фильтрации для поддиапазона k.
Автоковариационная матрица
Figure 00000055
шума после CCMI фильтрации для каждого поддиапазона может быть выражена как
Figure 00000056
уравнение (15)
где
Figure 00000057
представляет собой математическое ожидание для x. В последнем равенстве уравнения (15) предполагается, что шум
Figure 00000058
представляет собой аддитивный белый гауссовский шум (AWGN) с нулевым средним, дисперсией σ2 и автоковариационной матрицей
Figure 00000059
. В этом случае ОСШ для CCMI приемника может быть выражено как:
Figure 00000060
, m=1 … N S, уравнение (16)
где
Figure 00000061
представляет собой мощность передачи, используемую для символа данных, переданного в поддиапазоне k широкополосного пространственного канала m;
Figure 00000062
представляет собой m-й диагональный элемент
Figure 00000063
для поддиапазона k;
Figure 00000064
представляет собой ОСШ для поддиапазона k широкополосного пространственного канала m.
Из-за структуры
Figure 00000065
способ CCMI может усиливать шум.
В. Пространственная обработка MMSE
Приемник может использовать MMSE для подавления перекрестных помех между потоками символов данных и максимизировать ОСШ восстановленных потоков символов данных. MMSE приемник использует пространственный фильтр, имеющий отклик матрицы
Figure 00000066
, для k=1 … N F, которую выводят таким образом, что среднеквадратичная ошибка между оцененным вектором данных из пространственного фильтра и вектором
Figure 00000067
данных минимизирована. MMSE критерий может быть выражен как:
Figure 00000068
уравнение (17)
Решение задачи оптимизации, описанной уравнением (17), может быть получено различными способами. В одном из иллюстративных способов матрица
Figure 00000066
MMSE пространственного фильтра для каждого поддиапазона может быть выражена как:
Figure 00000069
уравнение (18)
Во втором равенстве уравнения (18) предполагается, что вектор
Figure 00000070
шума представляет собой AWGN с нулевым средним и дисперсией
Figure 00000071
.
Пространственная обработка в MMSE приемнике в случае однопользовательского ненаправленного режима состоит из двух этапов. На первом этапе MMSE приемник умножает вектор
Figure 00000072
для N R потоков принятых символов на матрицу
Figure 00000066
MMSE пространственного фильтра для получения вектора
Figure 00000073
для N S потоков детектированных символов следующим образом:
Figure 00000074
уравнение (19)
где
Figure 00000075
представляет собой шум после MMSE фильтрации и
Figure 00000076
. N S потоков детектированных символов представляют собой ненормированные оценки N S потоков символов данных.
На втором этапе MMSE приемник умножает вектор
Figure 00000073
на масштабирующую матрицу
Figure 00000077
для получения вектора
Figure 00000078
для N S потоков восстановленных символов данных следующим образом:
Figure 00000079
, уравнение (20)
где
Figure 00000080
представляет собой диагональную матрицу, чьи диагональные элементы являются диагональными элементами
Figure 00000081
, т.е.,
Figure 00000082
. N S потоков восстановленных символов данных представляет собой нормированные оценки N S потоков символов данных.
Используя определение обратной матрицы, матрица
Figure 00000081
может быть представлена следующим образом:
Figure 00000083
уравнение (21)
Во втором равенстве уравнения (21) предполагается, что шум представляет собой AWGN с нулевым средним и дисперсией
Figure 00000071
.
ОСШ для MMSE приемника может быть выражено как:
Figure 00000084
, m=1 … N S, уравнение (22)
где
Figure 00000085
представляет собой m-й диагональный элемент
Figure 00000081
для поддиапазона k; и
Figure 00000086
представляет собой ОСШ для поддиапазона k для широкополосного пространственного канала m.
С. Обработка в приемнике при последовательном удалении помех
Приемник может обрабатывать N R потоков принятых символов, используя способ SIC для восстановления N S потоков символов данных. В случае способа SIC приемник сначала выполняет пространственную обработку N R потоков принятых символов (например, используя CCMI, MMSE или какой-либо другой способ) и получает один поток восстановленных символов данных. Приемник выполняет дополнительную обработку (например, выполняет демодуляцию, обратное перемежение и декодирование) потока восстановленных символов данных для получения потока декодированных данных. Затем приемник оценивает помеху, которую этот поток создает для других N S-1 потоков символов данных и удаляет оцененную помеху из N R потоков принятых символов для получения N R потоков модифицированных символов. Затем приемник повторяет такую же обработку для N R потоков модифицированных символов для восстановления другого потока символов данных.
Для SIC приемника потоки входных (т.е., принятых или модифицированных) символов для этапа
Figure 00000087
, где
Figure 00000088
=1 … N S, могут быть выражены как:
Figure 00000089
, уравнение (23)
где
Figure 00000090
представляет собой вектор N R модифицированных символов для поддиапазона k на этапе
Figure 00000087
, и
Figure 00000091
для первого этапа;
Figure 00000092
представляет собой вектор (N Т-
Figure 00000087
+1) символов данных, еще не восстановленных, для поддиапазона k на этапе
Figure 00000087
; и
Figure 00000093
представляет собой N R×(N Т-
Figure 00000087
+1) редуцированную матрицу отклика канала для поддиапазона k на этапе
Figure 00000087
.
В уравнении (23) предполагается, что потоки символов данных, восстановленные на предшествующих (
Figure 00000087
-1) этапах, удалены. Размерность матрицы
Figure 00000094
отклика канала последовательно редуцируется на один столбец для каждого при восстановлении и удалении потока символов данных. Для этапа
Figure 00000087
редуцированная матрица
Figure 00000093
отклика канала получается путем удаления (
Figure 00000087
-1) из исходной матрицы
Figure 00000095
, соответствующих (
Figure 00000087
-1) потокам предварительно восстановленных символов данных, т.е.,
Figure 00000096
, где
Figure 00000097
представляет собой N R×1 вектор отклика канала между передающей антенной j n и N R приемными антеннами. Для этапа
Figure 00000087
, (
Figure 00000087
-1) потокам символов данных, восстановленных на предыдущих этапах, присваивают индексы
Figure 00000098
и (N Т-
Figure 00000087
+1) потокам символов данных, еще не восстановленных, присваивают индексы
Figure 00000099
.
Для этапа
Figure 00000087
SIC приемник выводит матрицу
Figure 00000100
пространственной фильтрации, для k=1 … N F, основываясь на редуцированной матрице
Figure 00000093
отклика канала (вместо исходной матрицы
Figure 00000094
), используя способ CCMI, как показано в уравнении (13), способ MMSE, как показано в уравнении (18), или какой-либо другой способ. Матрица
Figure 00000100
имеет размерность (N Т-
Figure 00000087
+1)×N R. Поскольку
Figure 00000093
является разной для каждого этапа, матрица
Figure 00000100
пространственной фильтрации также является разной для каждого этапа.
SIC приемник умножает вектор
Figure 00000090
для N R потоков модифицированных символов на матрицу
Figure 00000100
пространственной фильтрации для получения вектора
Figure 00000101
для (N Т-
Figure 00000087
+1) потоков детектированных символов следующим образом:
Figure 00000102
уравнение (24)
где
Figure 00000103
представляет собой шум после фильтрации для поддиапазона k на этапе
Figure 00000087
,
Figure 00000104
представляет собой редуцированный вектор
Figure 00000105
, и
Figure 00000106
. Затем SIC приемник выбирает один из потоков детектированных символов для восстановления. Поскольку на каждом этапе восстанавливают только один поток символов данных, SIC приемник может просто вывести один (1×N R) вектор-строку
Figure 00000107
пространственной фильтрации для потока
Figure 00000108
символов данных, предназначенных для восстановления на этапе
Figure 00000087
. Вектор-строка
Figure 00000109
представляет собой одну строку матрицы
Figure 00000100
. В этом случае пространственная обработка для этапа
Figure 00000087
для восстановления потока
Figure 00000110
символов данных может быть выражена как:
Figure 00000111
, уравнение (25)
где
Figure 00000112
представляет собой строку
Figure 00000113
, соответствующую потоку
Figure 00000108
символов данных.
В любом случае приемник выполняет масштабирование потока
Figure 00000114
детектированных символов для получения потока
Figure 00000115
восстановленных символов данных и выполняет дополнительную обработку (например, выполняет демодуляцию, обратное перемежение и декодирование) потока
Figure 00000116
для получения потока
Figure 00000117
декодированных данных. Приемник также формирует оценку помехи, которую этот поток создает для других потоков символов данных, еще не восстановленных. Для оценки помехи приемник выполняет повторное кодирование, перемежение и отображение символов потока
Figure 00000118
декодированных данных таким же способом, который выполняется в передатчике и получает поток
Figure 00000119
“повторно модулированных” символов, который представляет собой оценку только что восстановленного потока символов данных. Затем приемник выполняет свертку потока повторно модулированных символов с каждым из N R элементов в векторе
Figure 00000120
отклика канала для потока
Figure 00000108
для получения N R компонентов
Figure 00000121
помехи, создаваемой этим потоком. Затем N R компонентов помехи вычитают из N R потоков
Figure 00000090
модифицированных символов для этапа
Figure 00000087
для получения N R потоков
Figure 00000122
для следующего этапа
Figure 00000087
+1, т.е.,
Figure 00000123
. Потоки
Figure 00000124
модифицированных символов представляют потоки, которые были бы приняты, если бы поток
Figure 00000108
символов данных не передавался (т.е. предполагается, что удаление помехи было выполнено эффективно).
SIC приемник обрабатывает N R потоков принятых символов на N S последовательных этапах. Для каждого этапа SIC приемник (1) выполняет пространственную обработку либо N R потоков принятых символов, либо N R потоков модифицированных символов из предшествующего этапа для получения одного потока восстановленных символов данных, (2) декодирует этот поток восстановленных символов данных для получения соответствующего потока декодированных данных, (3) выполняет оценку и удаляет помеху, связанную с этим потоком, и (4) получает N R потоков модифицированных символов для следующего этапа. В случае если помеха, связанная с каждым потоком данных, может быть точно оценена и удалена, то позже восстановленные потоки данных в меньшей степени подвержены влиянию помех и могут иметь более высокое ОСШ.
В случае способа SIC ОСШ каждого потока восстановленных символов данных зависит от (1) способа пространственной обработки (например, CCMI или MMSE) используемого на каждом этапе, (2) конкретного этапа, на котором восстанавливают данный поток символов данных, и (3) величины помехи, связанной с потоками символов данных, восстановленных на более ранних этапах. ОСШ для SIC приемника с CCMI может быть выражено как:
Figure 00000125
, m=1 … N S, уравнение (26)
где
Figure 00000126
представляет собой m-й диагональный элемент
Figure 00000127
для поддиапазона k, где
Figure 00000128
.
ОСШ для SIC приемника с MMSE может быть выражено как:
Figure 00000129
, m=1 … N S, уравнение (27)
где
Figure 00000130
представляет собой m-й диагональный элемент
Figure 00000131
для поддиапазона k, где
Figure 00000131
, как показано в уравнении (21), но основываясь на редуцированной матрице
Figure 00000093
отклика канала вместо исходной матрицы
Figure 00000094
.
В общем случае, ОСШ прогрессивно улучшается для потоков символов данных, восстановленных на поздних этапах, поскольку удаляются помехи от потоков символов данных, восстановленных на предшествующих этапах. Это позволяет использовать более высокие скорости передачи данных для потоков символов данных, восстановленных позднее.
3. Многопользовательский режим направленного пространственного мультиплексирования
Многопользовательский режим направленного пространственного мультиплексирования (или просто, “многопользовательский направленный режим”) поддерживает одновременную передачу данных от одного передатчика ко множеству приемников, основываясь на “пространственных сигнатурах” приемников. Пространственная сигнатура для приемника дается вектором отклика канала (для каждого поддиапазона) между N T передающими антеннами и каждой приемной антенной в приемнике. Передатчик может получить пространственные сигнатуры для приемников, как это описано ниже. Затем передатчик может (1) выбрать набор приемников для одновременной передачи данных и (2) вывести направляющие вектора для потоков символов данных, предназначенных для передачи в выбранные приемники таким образом, что перекрестные помехи для передаваемых потоков адекватно подавляются в приемниках.
Направляющие вектора в случае многопользовательского направленного режима могут быть выведены различными способами. Ниже описаны две иллюстративные схемы. Для простоты приведенное ниже описание дано для одного поддиапазона и предполагается, что каждый приемник оборудован одной антенной.
В схеме инверсии канала передатчик получает направляющие вектора для множества приемников, используя инверсию канала. Сначала передатчик выбирает N T одноантенных приемников для одновременной передачи. Передатчик получает 1×N T вектор-строку
Figure 00000132
отклика канала для каждого выбранного приемника и формирует N T×N T матрицу
Figure 00000133
отклика канала с N T векторами-строками для N T приемников. Затем передатчик использует инверсию канала для получения матрицы
Figure 00000134
из N T направляющих векторов для N T выбранных приемников следующим образом:
Figure 00000135
. уравнение (28)
Пространственная обработка в передатчике для каждого поддиапазона для многопользовательского направленного режима может быть выражена как:
Figure 00000136
. уравнение (29)
где
Figure 00000137
представляет собой вектор символов передачи для многопользовательского направленного режима.
Принятые символы в N T выбранных приемниках для каждого поддиапазона могут быть выражены как:
Figure 00000138
уравнение (30)
где
Figure 00000139
представляет собой (N T×1) вектор принятых символов для поддиапазона k и N T выбранных приемников, и
Figure 00000140
представляет перекрестную помеху вследствие неидеальности оценки
Figure 00000134
в передатчике. Каждый выбранный приемник должен был бы получить только один элемент вектора
Figure 00000139
для каждой приемной антенны. Если пространственная обработка в передатчике является эффективной, то мощность, содержащаяся в
Figure 00000141
, является малой, и каждый поток восстановленных символов данных подвержен малому влиянию перекрестных помех от (N T-1) других потоков символов данных, передаваемых в другие приемники.
Передатчик также может передавать направленный пилот-сигнал в каждый выбранный приемник, как описано ниже. Затем каждый приемник может обрабатывать свой направленный пилот-сигнал для оценки усиления и фазы канала и выполняет когерентную демодуляцию принятых символов от своей одной антенны с оценками усиления и фазы для получения потоков восстановленных данных.
ОСШ, достижимые для многопользовательского направленного режима, представляют собой ковариационную функцию матрицы
Figure 00000133
отклика канала. Более высокие ОСШ могут быть достигнуты при выборе “совместимых” пользовательских терминалов. Могут оцениваться различные наборы и/или комбинации пользовательских терминалов и для передачи данных может выбираться набор/комбинация с наивысшими ОСШ.
Хотя схема инверсии канала является привлекательной в силу своей простоты, в общем случае, она обеспечивает низкую производительность вследствие того, что предварительная обработка потоков символов данных с обращенной матрицей отклика канала в уравнении (29) вынуждает передатчик направлять основную долю его мощности в наихудшие собственные моды MIMO канала. Также в некоторых каналах, главным образом, в имеющих высокую корреляцию между элементами
Figure 00000133
, матрица отклика канала имеет неполный ранг, и вычисление обратной к ней не является возможным.
В схеме предварительного кодирования передатчик выполняет предварительное кодирование N T потоков символов данных, предназначенных для передачи в N T выбранных приемниках таким образом, что эти потоки символов данных испытывают в приемниках малые перекрестные помехи. Передатчик может формировать матрицу
Figure 00000142
отклика канала для N T выбранных приемников. Затем передатчик выполняет QR факторизацию для
Figure 00000143
таким образом, что
Figure 00000144
, где
Figure 00000145
представляет собой нижнюю левую треугольную матрицу, а
Figure 00000146
представляет собой унитарную матрицу.
Передатчик выполняет операцию предварительного кодирования вектора символа данных, предназначенного для передачи,
Figure 00000147
, для получения вектора предварительно кодированных символов
Figure 00000148
следующим образом:
Figure 00000149
, для
Figure 00000087
=1 … N T, уравнение (31)
где M представляет собой количество уровней, разделенных единичными интервалами, в синфазной или квадратурной размерности квадрата сигнального созвездия QAM; и
Figure 00000150
представляет собой элемент
Figure 00000151
в строке i и столбце j.
Операция (mod) добавляет достаточное количество целых сомножителей M в аргумент таким образом, что результат удовлетворяет
Figure 00000152
.
Figure 00000153
Figure 00000154
Figure 00000155
.
Вектор принятых символов для схемы предварительного кодирования может быть выражен как:
Figure 00000156
уравнение (32)
Можно показать, что
Figure 00000157
. Таким образом вектор символов данных может быть оценен как
Figure 00000158
. Каждый из N T выбранных приемников получает только один из N T элементов
Figure 00000159
и может оценить символы данных, переданные ему посредством выполнения операции mod(M/2) для его принятых символов.
В многопользовательском направленном режиме передатчик также может передавать множество потоков символов данных в многоантенный приемник. Матрица
Figure 00000142
отклика канала при этом включает в себя один вектор-строку для каждой приемной антенны многоантенного приемника.
Многопользовательский направленный режим также поддерживает передачу данных от множества многоантенных передатчиков в один приемник. Каждый многоантенный передатчик выполняет пространственную обработку своего потока символов данных для ориентации потока в направлении приемника. Каждый передатчик также передает в приемник направленный пилот-сигнал. Для приемника каждый передатчик выглядит как единичная передача. Приемник выполняет пространственную обработку (например, CCMI, MMSE и т.д.) для восстановления направленных потоков символов данных для всех передатчиков.
4. Многопользовательский режим ненаправленного пространственного мультиплексирования
Многопользовательский режим ненаправленного пространственного мультиплексирования (или просто, “многопользовательский ненаправленный режим”) поддерживает одновременную передачу данных (1) одним передатчиком во множество приемников (например, для нисходящей линии) и (2) множеством передатчиков в один приемник (например, для восходящей линии).
При ненаправленной передаче от одного передатчика во множество приемников передатчик передает один поток символов данных через каждую передающую антенну для принимающего приемника. Для каждого принимающего приемника могут передаваться один или несколько потоков символов данных. Каждый принимающий приемник включает в себя, по меньшей мере, N T и может выполнять пространственную обработку для изоляции и восстановления его потока (потоков) символов данных. Каждый приемник, требующий передачу данных, оценивает ОСШ для каждой из N T передающих антенн и посылает N T оценок ОСШ в передатчик. Передатчик выбирает набор приемников для передачи данных, основываясь на оценках ОСШ от всех приемников, требующих передачу данных (например, максимизируя общую пропускную способность).
При ненаправленной передаче от множества передатчиков в один приемник передатчики передают потоки символов данных через их антенны (т.е. без пространственной обработки) таким образом, что эти потоки прибывают в приемник приблизительно выровненные по времени. Приемник может оценить матрицу отклика канала для всех передатчиков, как если бы они были одним передатчиком. Передатчик может восстановить множество потоков символов данных, используя любой из способов, описанных выше для однопользовательского ненаправленного режима (например, способы CCMI, MMSE и SIC).
5. Пространственная обработка
В таблице 2 сведены способы пространственной обработки в передатчике и приемнике для четырех режимов пространственного мультиплексирования, описанных выше. Для ненаправленных режимов также могут быть использованы способы обработки в приемнике, отличные от CCMI и MMSE. Последний столбец в таблице 2 указывает, может ли применяться в приемнике способ SIC.
Таблица 2
Режим
пространственного мультиплексирования
Передача
Figure 00000160
Прием
Figure 00000161
Масштабирование SIC
однопользовательский направленный
Figure 00000162
Figure 00000163
Figure 00000164
нет
однопользовательский ненаправленный
Figure 00000165
Figure 00000166
-
Figure 00000167
да
многопользовательский направленный
(один передатчик
во множество
приемников)
Figure 00000168
- - нет
многопользовательский ненаправленный (множество передатчиков в один приемник)
Figure 00000169
Figure 00000170
-
Figure 00000171
да
Для простоты пространственная обработка для многопользовательского направленного режима от множества передатчиков в один приемник и многопользовательского ненаправленного режима от одного передатчика в множество приемников в таблице 2 не показана.
В нижеследующем описании широкополосный пространственный канал может соответствовать (1) широкополосной собственной моде для режима направленного пространственного мультиплексирования (2) передающей антенне для режима ненаправленного пространственного мультиплексирования или (3) комбинации одного или нескольких пространственных каналов для одного или нескольких поддиапазонов. Широкополосный пространственный канал может быть использован для передачи одного независимого потока данных.
6. MIMO система
На Фиг.1 показана MIMO система 100 множественного доступа с несколькими точками 110 доступа (AP), которые поддерживают обмен данными с несколькими пользовательскими терминалами (UT) 120. Для простоты на Фиг.1 показаны только две точки 110а и 110b доступа. Точка доступа в общем случае представляет собой неподвижную станцию, которая используется для связи с пользовательскими терминалами и также может называться базовой станцией или каким-либо другим термином. Пользовательский терминал может быть фиксированным или мобильным и также может называться мобильной станцией, беспроводным устройством или каким-либо другим термином. Контроллер 130 системы соединен с точками 110 доступа и обеспечивает их координацию и управление для них.
MIMO система 100 может представлять собой систему дуплексной передачи с временным разделением каналов (TDD) или систему дуплексной передачи с частотным разделением каналов (FDD). Прямая и обратная линия (1) для системы TDD связи совместно используют один диапазон частот и (2) используют разные диапазоны частот для системы FDD. В нижеследующем описании предполагается, что MIMO система 100 представляет собой систему TDD.
MIMO система 100 использует набор транспортных каналов для передачи различных типов данных. Транспортные каналы могут быть реализованы различными способами.
На Фиг.2 показана иллюстративная структура 200 кадра и канала, которая может использоваться в MIMO системе 100. Передача данных происходит в кадрах TDD. Каждый TDD кадр длится заданный промежуток времени, например, 2 мсек, и разделен на фазу нисходящей линии и фазу восходящей линии. Каждая фаза дополнительно разделена на множество сегментов, 210, 220, 230, 240 и 250 для множества транспортных каналов.
В фазе нисходящей линии широковещательный канал (BCH) несет маяк пилот-сигнала 214, MIMO пилот-сигнала 216 и BCH сообщение 218. Маяк пилот-сигнала используют для получения таймирования и частоты. MIMO пилот-сигнала используют для оценки канала. BCH сообщение содержит системные параметры для пользовательских терминалов. Прямой управляющий канал (FCCH) несет информацию планировщика для назначения ресурсов нисходящей линии и восходящей линии и другую сигнализацию для пользовательских терминалов. Прямой канал (FCH) несет FCH блоки данных протокола (PDU) для нисходящей линии. FCH PDU 232a включает в себя пилот-сигнал 234a и пакет 236a данных, а FCH PDU 232b включает в себя только пакет 236b данных. В фазе восходящей линии обратный канал (RCH) несет RCH PDU для восходящей линии. RCH PDU 242а включает в себя только пакет 246а данных, и RCH PDU 242b включает в себя пилот-сигнал 244b и пакет 246b данных. Канал произвольного доступа (RACH) используется пользовательскими терминалами для получения доступа в систему и для отправки коротких сообщений по восходящей линии. RACH PDU 252, передаваемый по RACH, включает в себя пилот-сигнал 254 и сообщение 256.
На Фиг.2 показана блок-схема в точке 110x доступа и двух пользовательских терминалов 120x и 120y в MIMO системе 100. Точка 110x доступа является одной из точек доступа по Фиг.1 и оборудована множеством (N ap) антенн 324a-324ap. Пользовательский терминал 120x оборудован одной антенной 352x, а пользовательский терминал 120y оборудован множеством (N ut) антенн 352a-352ut.
В случае нисходящей линии в точке 110x доступа TX процессор 310 данных принимает данные трафика для одного или нескольких пользовательских терминалов из источника 308 данных, управляющие данные из контроллера 330 и, возможно, другие данные из планировщика 334. Различные типы данных могут передаваться по различным транспортным каналам. TX процессор 310 данных выполняет обработку (например, выполняет кодирование, перемежение и отображение символов) различных типов данных, основываясь на одной или нескольких схемах кодирования и модуляции для получения N S потоков символов данных. Как используется в настоящем описании “символ данных” относится к символу модуляции для данных, а “пилотный символ” относится к символу модуляции для пилот-сигнала. TX пространственный процессор 320 принимает N S потоков символов данных от TX процессора 310 данных, выполняет пространственную обработку символов данных с матрицами
Figure 00000172
, для k=1 … N F, дополнительно мультиплексирует пилотные символы и предоставляет N ap потоков символов передачи для N ap антенн. Матрицы
Figure 00000173
выводят в соответствии с режимом пространственного мультиплексирования, выбранного для использования. Обработка в TX процессоре 310 данных и TX пространственном процессоре 320 описана ниже.
Каждый модулятор MOD) 322 принимает и обрабатывает соответствующий поток символов передачи для получения потока OFDM символов, и выполняет дополнительную обработку (например, усиливает, фильтрует и повышает частоту) потока OFDM символов для генерации сигнала нисходящей линии. N ap модуляторов 322a-322ap предоставляют N ap сигналов нисходящей линии для передачи через N ap антенн 324a-324ap, соответственно, в пользовательские терминалы.
В каждом пользовательском терминале 120 одна или несколько антенн 352 принимают N ap сигналов нисходящей линии и каждая антенна предоставляет принятый сигнал в соответствующий демодулятор (DEMOD) 354. Каждый демодулятор 354 выполняет обработку, комплиментарную выполняемой модулятором 322, и предоставляет поток принятых символов. Для одноантенного пользовательского терминала 120x RX пространственный процессор 360x выполняет когерентную демодуляцию потока принятых символов из единственного демодулятора 354x и предоставляет один поток восстановленных символов данных. Для многоантенного пользовательского терминала 120y RX пространственный процессор 360y выполняет пространственную обработку N ut потоков принятых символов от N ut демодуляторов 354 с матрицами
Figure 00000174
пространственной фильтрации, для k=1 … N F, и предоставляет N ut потоков восстановленных символов данных. В любом случае каждый поток
Figure 00000175
восстановленных символов данных представляет собой оценку потока
Figure 00000176
символов данных, переданных точкой 110x доступа в данный пользовательский терминал 120. RX процессор 370 данных принимает и демультиплексирует восстановленные символы данных в соответствующие транспортные каналы. Затем восстановленные символы данных для каждого транспортного канала обрабатывают (например, выполняют обратное отображение, обратное перемежение и декодирование) для получения декодированных данных для данного транспортного канала. Декодированные данные для каждого транспортного канала могут включать в себя восстановленные данные трафика, управляющие данные и т.д., которые могут быть направлены в потребитель 372 данных для сохранения и/или в контроллер 380 для дальнейшей обработки.
В каждом пользовательском терминале 120 устройство 378 оценки канала оценивает отклик нисходящего канала и предоставляет оценки канала, которые могут включать в себя оценки усиления канала, оценки ОСШ и т.д. Контроллер 380 принимает оценки канала, выводит вектора и/или коэффициенты, используемые при пространственной обработке в передающей и приемной цепях, и определяет подходящую скорость для каждого потока символов данных нисходящей линии. Например, контроллер 380y в многоантенном пользовательском терминале 120y может выводить матрицы
Figure 00000174
пространственной фильтрации для нисходящей линии и матрицы
Figure 00000177
направляющих векторов для восходящей линии, основываясь на матрицах
Figure 00000178
отклика нисходящего канала, для k=1 … N F. Контроллер 380 также может принимать статус каждого пакета/кадра, принятого по нисходящей линии, и компоновать информацию обратной связи для точки 110x доступа. Информация обратной связи и данные восходящей линии обрабатываются в TX процессоре 390 данных, подвергаются пространственной обработке в TX пространственном процессоре 392 (если он присутствует в пользовательском терминале 120), дополнительно мультиплексируются с пилотными символами, дополнительно обрабатываются в одном или нескольких модуляторах 354 и передаются через одну или несколько антенн 352 в точку 110x доступа.
В точке 110x доступа переданные сигналы восходящей линии принимаются антеннами 324, демодулируются демодуляторами 322 и обрабатываются в RX пространственном процессоре 340 и RX процессоре 342 данных способом, комплиментарным выполняемому в пользовательских терминалах 120. Восстановленная информация обратной связи предоставляется в контроллер 330 и планировщик 334. Планировщик 334 может использовать информацию обратной связи для выполнения функций, таких как (1) планирование набора пользовательских терминалов для передачи данных по нисходящей линии и восходящей линии и (2) назначение доступных ресурсов нисходящей линии и восходящей линии запланированным терминалам.
Контроллеры 330 и 380 управляют работой различных блоков обработки в точке 110x доступа и пользовательском терминале 120 соответственно. Например, контроллер 380 может определять наивысшие скорости, поддерживаемые пространственными каналами нисходящей линии для пользовательского терминала 120. Контроллер 330 может выбирать скорость, размер полезной нагрузки и размер OFDM символа для каждого пространственного канала каждого запланированного пользовательского терминала.
Обработка в точке 110x доступа и пользовательских терминалов 120x и 120y для восходящей линии может быть такой же, как обработка для нисходящей линии, или отличной от нее. Для простоты ниже подробно описана обработка для нисходящей линии.
На Фиг.4 показана блок-схема варианта осуществления TX процессора 310 данных в точке 110x доступа. Для этого варианта осуществления TX процессор 310 данных включает в себя один набор из кодера 412, канального перемежителя 414 и блока 416 отображения символов для каждого из N S потоков данных. Для каждого потока
Figure 00000179
данных, где m=1 … N S, кодер 412 принимает и кодирует поток данных, основываясь на схеме кодирования, выбранной для этого потока, и предоставляет кодированные биты. Схема кодирования может включать в себя CRC кодирование, сверточное кодирование, турбокодирование, кодирование с низкой плотностью проверок на четность (LDPC), блочное кодирование и другие виды кодирования или их комбинации. Канальный перемежитель 414 выполняет перемежение (т.е. меняет порядок следования) кодированных битов, основываясь на схеме перемежения. Блок 416 отображения символов отображает подвергнутые перемежению биты, основываясь на схеме модуляции, выбранной для этого потока, и предоставляет поток
Figure 00000176
символов данных. Блок 416 группирует каждый набор из В подвергнутых перемежению битов для формирования В-битного двоичного значения, где B≥1, и далее отображает каждое В-битное двоичное значение на определенный символ данных, основываясь на выбранной схеме модуляции (например, QPSK, M-PSK или M-QAM, где M=2B). Кодирование и модуляцию для каждого потока данных выполняют в соответствии с сигналами управления кодированием и модуляцией, предоставляемыми контроллером 330.
На Фиг.5 показана блок-схема варианта осуществления TX пространственного процессора 320 и модуляторов 322а-322ap в точке 110x доступа. Для этого варианта осуществления TX пространственный процессор 320 включает в себя N S демультиплексоров (Demux) 510a-510s, N F TX пространственных процессоров 520a-520f поддиапазонов и N ap мультиплексоров (MUX) 530а-530ар. Каждый демультиплексор 510 принимает соответствующий поток
Figure 00000176
символов данных от TX пространственного процессора 320, демультиплексирует поток на N F подпотоков символов данных для N F поддиапазонов и предоставляет N F подпотоков в N F пространственных процессоров 520a-520f. Каждый пространственный процессор 520 принимает N S подпотоков символов данных для его поддиапазона от N S демультиплексоров 510a-510s, выполняет пространственную обработку в передатчике для этих подпотоков и предоставляет N ap подпотоков символов передачи для N ap антенн в точке доступа. Каждый пространственный процессор 520 умножает вектор
Figure 00000180
данных на матрицу
Figure 00000173
для получения вектора
Figure 00000181
передачи. Матрица
Figure 00000173
соответствует (1) матрице
Figure 00000182
правых собственных векторов для
Figure 00000178
для однопользовательского направленного режима, (2) матрице
Figure 00000183
для многопользовательского направленного режима или (3) единичной матрице
Figure 00000184
для однопользовательского ненаправленного режима.
Каждый мультиплексор 530 принимает N F подпотоков символов передачи для его передающей антенны от N F пространственных процессоров 520a-520f, мультиплексирует эти подпотоки и пилотные символы и предоставляет поток
Figure 00000185
символов передачи для его передающей антенны. Пилотные символы могут быть мультиплексированы по частоте (т.е. в некоторые поддиапазоны), по времени (т.е. в некоторые периоды символов) и/или в кодовом пространстве (т.е. с ортогональными кодами). N ap мультиплексоров 530a-530ap предоставляют N ap потоков
Figure 00000186
символов передачи, для j=1 … N ap, для N ap антенн 324a-324ap.
Для варианта осуществления, показанного на Фиг.5, каждый модулятор 322 включает в себя блок 542 обратного быстрого преобразования Фурье (IFFT), генератор 544 циклического префикса и блок TX RF. Блок 542 IFFT и генератор 544 циклического префикса образуют OFDM модулятор. Каждый модулятор 322 принимает соответствующий поток
Figure 00000185
символов передачи из TX пространственного процессора 320 и группирует каждый набор из N F символов передачи для N F поддиапазонов. Блок 542 IFFT преобразует каждый набор N F символов передачи во временной домен, используя N F точечное обратное быстрое преобразование Фурье, и предоставляет соответствующий преобразованный символ, который содержит N F элементарных сигналов. Генератор 544 циклического префикса повторяет часть каждого преобразованного символа для получения соответствующего OFDM символа, который содержит N F+N cp элементарных сигналов. Повторяемая часть (т.е. циклический префикс) гарантирует, что OFDM символ сохранит свои ортогональные свойства в присутствии многолучевого разброса задержек, вызванного частотно-селективным замиранием. Блок 546 TX RF принимает и дополнительно обрабатывает поток OFDM символов из генератора 544 для генерации модулированного сигнала нисходящей линии. N ap модулированных сигналов нисходящей линии передают через N ap антенн 354a-354ap соответственно.
На Фиг.6 показана блок-схема варианта осуществления демодуляторов 354a-354ut и RX пространственного процессора 360y для многоантенного пользовательского терминала 120y. В пользовательском терминале 120y N ut антенн 354a-354ut принимают N ap модулированных сигналов, переданных точкой 110x доступа, и предоставляют N ut принятых сигналов в N ut демодуляторов 354a-354ut соответственно. Каждый демодулятор 354 включает в себя блок 612 RX RF, блок 614 удаления циклического префикса и блок 616 быстрого преобразования Фурье (FFT). Блоки 614 и 616 образуют OFDM демодулятор. В каждом демодуляторе 354 блок 612 RX RF принимает, обрабатывает и оцифровывает соответствующий принятый сигнал и предоставляет поток элементарных сигналов. Блок 614 удаления циклического префикса удаляет циклический префикс в каждом принятом OFDM символе для получения принятого преобразованного символа. Затем блок 616 FFT преобразует каждый принятый преобразованный символ в частотный домен при помощи N F точечного быстрого преобразования Фурье для получения N F принятых символов для N F поддиапазонов. Блок 616 FFT предоставляет поток принятых символов в RX пространственный процессор 360y и поток принятых пилотных символов в устройство 378y оценки канала.
Для варианта осуществления, показанного на Фиг.6, RX пространственный процессор 360y включает в себя N ut демультиплексоров 630a-630ut для N ut антенн в пользовательском терминале 120y, N F RX пространственных процессоров 640a-640f поддиапазонов и N F устройств 642a-642f масштабирования для N F поддиапазонов, N S мультиплексоров 650a-650s для N S потоков данных. RX пространственный процессор 360y получает N ut потоков
Figure 00000187
принятых символов, для i=1 … N ut, из демодуляторов 354a-354ut. Каждый демультиплексор 630 принимает соответствующий поток
Figure 00000188
принятых символов, демультиплексирует поток на N F подпотоков принятых символов для N F поддиапазонов и предоставляет N F подпотоков в N F пространственных процессоров 640a-640f. Каждый пространственный процессор 640 получает N ut подпотоков принятых символов для его поддиапазона из N ut демультиплексоров 630a-630ut, выполняет пространственную обработку в приемнике для этих подпотоков и предоставляет N S подпотоков детектированных символов для его поддиапазона. Каждый пространственный процессор 640 умножает принятый вектор
Figure 00000189
на матрицу
Figure 00000174
для получения вектора
Figure 00000190
детектированных символов. Матрица
Figure 00000174
соответствует (1) матрице
Figure 00000191
левых собственных векторов для
Figure 00000178
в случае однопользовательского направленного режима или (2) матрице
Figure 00000192
,
Figure 00000193
или какой-либо другой матрице в случае однопользовательского ненаправленного режима.
Каждый блок 642 масштабирования принимает N S подпотоков детектированных символов для своего поддиапазона, масштабирует эти подпотоки и предоставляет N S подпотоков восстановленных символов данных для своего поддиапазона. Каждый блок 642 масштабирования выполняет масштабирование сигнала для вектора
Figure 00000194
детектированных символов с помощью диагональной матрицы
Figure 00000195
и предоставляет вектор
Figure 00000196
восстановленных символов данных. Каждый мультиплексор 650 принимает и мультиплексирует N F подпотоков восстановленных символов данных для его потока данных из N F блоков 642a-642f масштабирования и предоставляет поток восстановленных символов данных. N S мультиплексоров 650a-650s предоставляют N S потоков
Figure 00000197
восстановленных символов данных, для m=1 … N S.
На Фиг.7 показана блок-схема варианта осуществления RX процессора 370y данных в пользовательском терминале 120y. RX процессор 370y данных включает в себя один набор из блока 712 обратного отображения символов, обратного перемежителя 714 канала и декодера 716 для каждого из N S потоков данных. Для каждого потока
Figure 00000198
восстановленных символов данных, где m=1…N S, блок 712 обратного отображения символов выполняет демодуляцию восстановленных символов данных в соответствии со схемой модуляции, используемой для этого потока, и предоставляет демодулированные данные. Обратный перемежитель 714 канала выполняет обратное перемежение демодулированных данных способом комплиментарным перемежению, выполняемому для этого потока в точке 110x доступа. Затем декодер 716 декодирует подвергнутые обратному перемежению данные способом, комплиментарным кодированию, выполняемому для этого потока в точке 110x доступа. Например, в качестве декодера 716 могут использоваться турбодекодер или декодер Витерби, если в точке 110х доступа выполняется турбокодирование или сверточное кодирование, соответственно. Декодер 716 предоставляет декодированный пакет для каждого пакета принятых данных. Декодер 716 дополнительно выполняет проверку каждого декодированного пакета для определения, был ли пакет декодирован верно или с ошибкой, и предоставляет статус декодированного пакета. Демодуляция и декодирование для каждого потока восстановленных символов данных выполняют в соответствии с сигналами управления демодуляцией и декодированием, предоставляемыми контроллером 380y.
На Фиг.8 показана блок-схема RX пространственного процессора 360z и RX процессора 370z данных, которые реализуют способ SIC. RX пространственный процессор 360z и RX процессор 370z данных реализуют N S последовательных (т.е. каскадированных) этапов (каскадов) обработки в приемнике для N S потоков символов данных. Каждый из этапов (каскадов) с 1 по N S-1 включает в себя пространственный процессор 810, устройство 820 удаления помехи, RX процессор 830 потока данных и TX процессор 840 потока данных. Последний этап включает в себя только пространственный процессор 810s и RX процессор 830s потока данных. Каждый RX 830 потока данных включает в себя блок 712 обратного отображения символов, обратный перемежитель 714 канала и декодер 716, как показано на Фиг.7. Каждый TX процессор 840 потока данных включает в себя кодер 412, перемежитель 414 канала и блок 416 отображения символов, как показано на Фиг.4.
На этапе 1 пространственный процессор 810a выполняет пространственную обработку в приемнике N ut потоков принятых символов и предоставляет один поток
Figure 00000199
восстановленных символов данных, где подстрочный индекс j 1 обозначает антенну в точке доступа, используемую для передачи потока
Figure 00000200
символов данных. RX процессор 830a потока данных выполняет демодуляцию, обратное перемежение и декодирование потока
Figure 00000201
восстановленных символов данных и предоставляет соответствующий поток
Figure 00000202
декодированных данных. TX процессор 840a потока данных выполняет кодирование, перемежение и модуляцию потока
Figure 00000203
декодированных данных тем же способом, который выполняется в точке 110x доступа для этого потока и предоставляет
Figure 00000204
повторно модулированных символов. Устройство 820a удаления помехи выполняет пространственную обработку потока
Figure 00000205
повторно модулированных символов тем же способом (если он выполняется), который выполняется в точке 110x доступа и дополнительно обрабатывает результат при помощи матрицы
Figure 00000178
отклика канала для получения N ut компонентов помехи, связанной с потоком
Figure 00000206
символов. N ut компонентов помехи вычитают из N ut потоков принятых символов для получения N ut потоков модифицированных символов, которые предоставляются на этап 2.
Каждый из этапов с 2 по N S-1 выполняет ту же самую обработку, что и этап 1, за исключением того, что получают N ut потоков модифицированных символов из предшествующего этапа вместо N ut потоков принятых символов. Последний этап выполняет пространственную обработку и декодирование N ut потоков модифицированных символов из этапа N S-1 и не выполняет оценки и удаления помехи.
Пространственные процессоры 810a-810s каждый могут реализовывать способы CCMI, MMSE или какой-либо другой способ обработки в приемнике. Каждый пространственный процессор 810 умножает вектор
Figure 00000207
входных (принятых или модифицированных) символов на матрицу
Figure 00000208
для получения вектора
Figure 00000209
детектированных символов, выбирает и масштабирует один из потоков детектированных символов и предоставляет поток масштабированных символов в качестве потока восстановленных символов данных для этого этапа. Матрицу
Figure 00000210
выводят, основываясь на редуцированной матрице
Figure 00000211
отклика канала для этого этапа.
Блоки обработки в точке 110x доступа и пользовательском терминале 120y для восходящей линии могут быть реализованы, как описано выше для нисходящей линии. TX процессор 390y данных и TX пространственный процессор 392y могут быть реализованы в виде TX процессора 310 данных по Фиг.4 и TX пространственного процессора 320 по Фиг.5 соответственно. RX пространственный процессор 340 может быть реализован в виде RX пространственного процессора 360y или 360z и RX процессор 342 данных может быть реализован в виде процессора 370y или 370z.
Для одноантенного пользовательского терминала 120x RX пространственный процессор 360x выполняет когерентную демодуляцию одного потока принятых символов с оценками канала для получения потока восстановленных символов данных.
А. Оценка канала
Отклик канала для нисходящей линии и восходящей линии может быть оценен различными способами, например при помощи MIMO пилот-сигнала или направленного пилот-сигнала. Для TDD MIMO системы для упрощения оценки канала могут использоваться определенные способы.
В случае нисходящей линии точка 110x доступа может передавать MIMO пилот-сигнал пользовательским терминалам 120. MIMO пилот-сигнал содержит N ap передач пилот-сигнала от N ap антенн точек доступа, причем передача пилот-сигнала через каждую антенну “покрыта” различными ортогональными последовательностями (например, последовательностями Уолша). Покрытие представляет собой процесс, посредством которого данный символ модуляции (или набор из L символов модуляции с одинаковым значением), предназначенный для передачи, умножают на L элементарных сигналов L-сигнальной ортогональной последовательности для получения L покрытых символов, которые затем передаются. При покрытии достигается ортогональность для N ap передач пилот-сигнала, отправленных через N ap антенн точки доступа, что позволяет пользовательским терминалам различать передачу пилот-сигнала от каждой антенны.
В каждом пользовательском терминале 120 устройство 378 оценки канала “снимает покрытие” принятых пилотных символов для каждой антенны i пользовательского терминала при помощи таких же N ap ортогональных последовательностей, которые использовались в точке 110x доступа для N ap антенн, для получения оценок комплексного усиления канала между антенной i пользовательского терминала и каждой из N ap антенн в точке доступа. Снятие покрытия является комплиментарным к покрытию и представляет собой процесс, посредством которого принятые (пилотные) символы умножают на L элементарных сигналов L-сигнальной ортогональной последовательности для получения L символов со снятым покрытием, которые затем суммируют для получения оценки переданного (пилотного) символа. Устройство 378 оценки канала выполняет такую же обработку пилот-сигнала для каждого поддиапазона, используемого для передачи пилот-сигнала. Если пилотные символы передают только в подмножестве N F поддиапазонов, то устройство 378 оценки канала может выполнить интерполяцию оценок отклика канала для поддиапазонов с передачей пилот-сигнала для получения оценок отклика канала для поддиапазонов без передачи пилот-сигнала. Для одноантенного пользовательского терминала 120х устройство 378х оценки канала предоставляет вектора
Figure 00000212
оценок откликов нисходящего канала, для k=1 … N F, для одной антенны 352. Для многоантенного пользовательского терминала 120y устройство 378y оценки канала выполняет такую же обработку пилот-сигнала для всех N ut антенн 352a-352ut и предоставляет матрицы
Figure 00000213
оценок откликов нисходящего канала, для k=1 … N F. Каждый пользовательский терминал 120 также может оценивать дисперсию шума для нисходящей линии, основываясь на принятых пилотных символах, и предоставляет оценку шума нисходящей линии,
Figure 00000214
.
В случае восходящей линии многоантенный пользовательский терминал 120y может передавать MIMO пилот-сигнал, который может быть использован в точке 110x доступа для оценки отклика
Figure 00000215
восходящего канала для пользовательского терминала 120y. Одноантенный пользовательский терминал 120x может передавать пилот-сигнал через свою единственную антенну. Множество одноантенных пользовательских терминалов 120 могут передавать ортогональные пилот-сигналы одновременно по восходящей линии, причем ортогональность может достигаться по времени и/или частоте. Временная ортогональность может быть получена при помощи покрытия каждым пользовательским терминалом своего пилот-сигнала восходящей линии различными ортогональными последовательностями, связанными с данным пользовательским терминалом. Частотная ортогональность может быть получена при передаче каждым пользовательским терминалом своего пилот-сигнала восходящей линии в различном наборе поддиапазонов. Одновременные передачи пилот-сигналов по восходящей линии от множества пользовательских терминалов должны быть приблизительно выровнены по времени в точке 110x доступа (например, выровнены по времени в пределах циклического префикса).
Для TDD MIMO системы обычно присутствует высокая степень корреляции между откликами канала для нисходящей линии и восходящей линии, поскольку эти линии совместно используют один и тот же диапазон частот. Однако отклики передающих/приемных цепей в точке доступа, как правило, не совпадают с откликами передающих/приемных цепей в пользовательском терминале. Если указанное различие определяют и учитывают при помощи калибровки, то общие отклики нисходящей линии и восходящей линии могут рассматриваться как взаимообратные (т.е. транспонированные) по отношению друг к другу.
На Фиг.9 показаны приемные/передающие цепи точки 110x доступа и пользовательском терминале 120y. В точке 110x доступа передающий тракт моделируется N ap×N ap матрицей
Figure 00000216
, и приемный тракт моделируется N ap×N ap матрицей
Figure 00000217
. В пользовательском терминале 120y приемный тракт моделируется N ut×N ut матрицей
Figure 00000218
, и передающий тракт моделируется N ut×N ut матрицей
Figure 00000219
. Вектор принятых символов для нисходящей линии и восходящей линии для каждого поддиапазона может быть выражен как:
Figure 00000220
уравнение (33)
где “T” обозначает транспонирование. В уравнении (34) допускается, что нисходящая линия и восходящая линия являются транспонированными по отношению друг к другу. “Эффективные” отклики нисходящего и восходящего каналов,
Figure 00000221
и
Figure 00000222
для каждого поддиапазона включают в себя отклики передающей и приемной цепей и могут быть выражены как:
Figure 00000223
. уравнение (34)
Эффективные отклики нисходящего и восходящего каналов не являются взаимообратными по отношению друг к другу (т.е.,
Figure 00000221
Figure 00000222
), если отклики передающих/приемных цепей нисходящей линии и восходящей линии не равны друг другу.
Точка 110x доступа и пользовательский терминал 120y могут выполнить калибровку для получения поправочных матриц
Figure 00000224
и
Figure 00000225
для каждого поддиапазона, которые могут быть выражены как:
Figure 00000226
. уравнение (35)
Поправочные матрицы могут быть получены при помощи передачи MIMO пилот-сигналов как по нисходящей линии, так и по восходящей линии, и вывода поправочных матриц, используя критерий MMSE или какие-либо другие способы. Поправочные матрицы
Figure 00000224
и
Figure 00000225
используют в точке 110x доступа и пользовательском терминале 120y сответственно, как показано на Фиг.9. Отклики “калиброванных” нисходящего и восходящего каналов,
Figure 00000227
и
Figure 00000228
, при этом являются взаимообратными по отношению друг к другу и могут быть выражены как:
Figure 00000229
уравнение (36)
Разложение по сингулярным значениям матриц откликов восходящего и нисходящего каналов,
Figure 00000227
и
Figure 00000228
, для каждого поддиапазона может быть выражено как:
Figure 00000230
уравнение (37)
Как показано в системе уравнений (37), матрицы
Figure 00000231
и
Figure 00000232
левых и правых собственных векторов для
Figure 00000227
являются комплексно сопряженными матрицам в
Figure 00000233
и
Figure 00000234
правых и левых собственных векторов
Figure 00000228
. Матрица
Figure 00000235
может быть использована в точке 110x доступа для пространственной обработки как при передаче, так и при приеме. Матрица
Figure 00000236
может быть использована в пользовательском терминале 120y для пространственной обработки как при передаче, так и при приеме.
Вследствие взаимообратной природы MIMO канала для TDD MIMO системы и после выполнения калибровки для учета различий в передающих/приемных цепях разложение по сингулярным значениям должно быть выполнено только либо в пользовательском терминале 120y, либо в точке 110x доступа. В случае выполнения в пользовательском терминале 120y матрицы
Figure 00000237
, для k=1 … N F, используются для пространственной обработки в пользовательском терминале, а матрица
Figure 00000234
, для k=1 … N F, может быть предоставлена в точку доступа, либо непосредственно (т.е. путем передачи элементов матрицы
Figure 00000234
), либо в косвенной форме (например, при помощи направленного пилот-сигнала). Реально пользовательский терминал 120y может получить только
Figure 00000238
, что является оценкой
Figure 00000227
, и может вывести только
Figure 00000239
,
Figure 00000240
и
Figure 00000241
, которые представляют собой оценки
Figure 00000236
,
Figure 00000242
и
Figure 00000235
соответственно. Для простоты в приведенном ниже описании делается допущение, что оценка канала выполнена без ошибок.
Направленный пилот-сигнал восходящей линии, передаваемый пользовательским терминалом 120y, может быть выражен как:
Figure 00000243
, уравнение (38)
где
Figure 00000244
представляет собой m-й столбец
Figure 00000237
и
Figure 00000245
представляет собой пилотный символ. Принятый направленный пилот-сигнал восходящей линии в точке 110x доступа может быть выражен как:
Figure 00000246
уравнение (39)
Из уравнения (39) следует, что точка 110x доступа может получить матрицу
Figure 00000235
, один вектор единовременно, основываясь на направленном пилот-сигнале восходящей линии от пользовательского терминала 120y.
Также может быть выполнен комплиментарный процесс, при котором пользовательский терминал 120y передает MIMO пилот-сигнал по восходящей линии, а точка 110x доступа выполняет разложение по сингулярным значениям и передает направленный пилот-сигнал по нисходящей линии. Оценки канала для нисходящей линии и восходящей линии также могут быть выполнены другими способами.
В каждом пользовательском терминале 120 устройство 378 оценки канала может выполнить оценку отклика нисходящего канала (например, основываясь на MIMO пилот-сигнале или направленном пилот-сигнале, передаваемом точкой 110x доступа) и предоставить оценки нисходящего канала в контроллер 380. Для одноантенного пользовательского терминала 120x контроллер 380х может вывести комплексные усиления канала, используемые для когерентной демодуляции. Для многоантенного пользовательского терминала 120y контроллер 380y может вывести матрицу
Figure 00000174
, используемую для пространственной обработки при приеме, и матрицу
Figure 00000247
, используемую для пространственной обработки при передаче, основываясь на оценках нисходящего канала. В точке 110x доступа устройство 328 оценки канала может выполнить оценку отклика восходящего канала (например, основываясь на направленном пилот-сигнале или MIMO пилот-сигнале, передаваемым пользовательским терминалом 120) и предоставить оценки восходящего канала в контроллер 380. Контроллер 380 может вывести матрицу
Figure 00000248
, используемую для пространственной обработки при передаче, и матрицу
Figure 00000249
, используемую для пространственной обработки при приеме, основываясь на оценках восходящего канала.
На Фиг.10 показана пространственная обработка в точке 110x доступа и пользовательском терминале 120y для нисходящей линии и восходящей линии для одного поддиапазона k. В случае нисходящей линии в TX пространственном процессоре 320 в точке 110x доступа вектор
Figure 00000180
данных сначала умножают на матрицу
Figure 00000248
в блоке 910 и далее умножают на поправочную матрицу
Figure 00000224
в блоке 912 для получения вектора
Figure 00000250
передачи. Вектор
Figure 00000251
обрабатывается передающей цепью 914 в модуляторах 322 и передается по MIMO каналу в пользовательский терминал 120y. Блоки 910 и 912 выполняют пространственную обработку при передаче для нисходящей линии и могут быть реализованы в TX пространственном процессоре 520 поддиапазона по Фиг.5.
В пользовательском терминале 120y сигналы нисходящей линии обрабатываются приемной цепью 954 в демодуляторах 354 для получения принятого вектора
Figure 00000189
. В RX пространственном процессоре 360y принятый вектор
Figure 00000189
сначала умножают на матрицу
Figure 00000174
в блоке 956 и затем масштабируют при помощи обратной диагональной матрицы
Figure 00000195
в блоке 958 для получения вектора
Figure 00000252
, который представляет собой оценку вектора
Figure 00000180
данных. Блоки 956 и 958 выполняют пространственную обработку при приеме для нисходящей линии и могут быть реализованы в RX пространственном процессоре 640 поддиапазона по Фиг.6.
В случае восходящей линии в TX пространственном процессоре 392y в пользовательском терминале 120y вектор
Figure 00000253
данных сначала умножают на матрицу
Figure 00000247
в блоке 960 и далее умножают на поправочную матрицу
Figure 00000225
в блоке 962 для получения вектора
Figure 00000254
передачи. Вектор
Figure 00000255
обрабатывается в передающей цепи 964 в модуляторах 354 и передается по MIMO каналу в точку 110x доступа. Блоки 960 и 962 выполняют пространственную обработку при передаче для восходящей линии.
В точке 110x доступа сигналы восходящей линии обрабатываются приемной цепью 924 в демодуляторах 322 для получения принятого вектора
Figure 00000256
. В RX пространственном процессоре 340 принятый вектор
Figure 00000257
сначала умножают на матрицу
Figure 00000258
в блоке 926 и затем масштабируют при помощи обратной диагональной матрицы
Figure 00000259
в блоке 928 для получения вектора
Figure 00000260
, который представляет собой оценку вектора
Figure 00000261
данных. Блоки 926 и 928 выполняют пространственную обработку при приеме для восходящей линии.
В. Пространственная обработка для TDD MIMO системы
В таблице 3 сведены иллюстративные варианты передачи пилот-сигнала и пространственной обработки, выполняемой в точке доступа и пользовательских терминалах при передаче данных по нисходящей линии и восходящей линии для различных режимов пространственного мультиплексирования в TDD MIMO системе. Для однопользовательского направленного режима точка доступа передает MIMO пилот-сигнал, давая возможность пользовательскому терминалу оценить отклик нисходящего канала. Пользовательский терминал передает направленный пилот-сигнал, давая возможность точке доступа оценить отклик восходящего канала. Точка доступа выполняет пространственную обработку при передаче и приеме с помощью
Figure 00000234
. Пользовательский терминал выполняет пространственную обработку при передаче и приеме с помощью
Figure 00000237
.
Для однопользовательского ненаправленного режима для передачи данных по нисходящей линии точка доступа передает MIMO пилот-сигнал через все антенны и поток символов данных через каждую антенну. Пользовательский терминал оценивает отклик нисходящего канала при помощи MIMO пилот-сигнала и выполняет пространственную обработку при приеме, используя оценки нисходящего канала. Для передачи данных по восходящей линии выполняется комплиментарная обработка.
Таблица 3
Режим пространственного мультиплексирования Передача данных по нисходящей линии Передача данных по восходящей линии
однопользовательский направленный AP передает MIMO пилот-сигнал
UT передает направленный пилот-сигнал
AP передает данные с
Figure 00000234

UT принимает данные с
Figure 00000237
AP передает MIMO пилот-сигнал
UT передает направленный пилот-сигнал
UT передает данные с
Figure 00000237

AP принимает данные с
Figure 00000234
однопользовательский ненаправленный AP передает MIMO пилот-сигнал
AP передает данные через каждую антенну
UT использует CCMI, MMSE и т.д.
UT передает MIMO пилот-сигнал
UT передает данные через каждую антенну
AP использует CCMI, MMSE и т.д.
многопользовательский направленный UT передают ортогональный пилот-сигнал
AP передает направленные данные
AP передает направленный пилот-сигнал
UT принимают с помощью направленного пилот-сигнала
AP передает MIMO пилот-сигнал
UT передает направленный пилот-сигнал
UT передает направленные данные
AP использует CCMI, MMSE и т.д.
многопользовательский ненаправленный AP передает MIMO пилот-сигнал
UT передают скорость для каждой AP антенны
AP передает данные через каждую антенну
UT используют CCMI, MMSE и т.д.
UT передают ортогональный пилот-сигнал
AP выбирают совместимые UT
UT передают данные через каждую антенну
AP использует CCMI, MMSE и т.д.
Для многопользовательского направленного режима для передачи данных по нисходящей линии в одноантенные и/или многоантенные пользовательские терминалы пользовательские терминалы передают ортогональные пилот-сигналы по восходящей линии, давая возможность точке доступа оценить отклик нисходящего канала. Одноантенный пользовательский терминал передает ненаправленный пилот-сигнал, а многоантенный пользовательский терминал передает направленный пилот-сигнал. Точка доступа выводит направляющие вектора нисходящей линии, основываясь на ортогональных пилот-сигналах восходящей линии, и использует направляющие вектора для передачи направленных пилот-сигналов и направленных потоков символов данных в выбранные пользовательские терминалы. Каждый пользовательский терминал использует направленный пилот-сигнал для приема направленного потока символов данных, переданного в данный пользовательский терминал. Для передачи данных по восходящей линии от многоантенных пользовательских терминалов точка доступа передает MIMO пилот-сигнал. Каждый многоантенный пользовательский терминал передает направленный пилот-сигнал и направленный поток символов данных по восходящей линии. Точка доступа выполняет пространственную обработку в приемнике (например, CCMI, MMSE и т.д.) для восстановления потоков символов данных.
Для многопользовательского ненаправленного режима для передачи данных по нисходящей линии в многоантенные пользовательские терминалы точка доступа передает MIMO пилот-сигнал по нисходящей линии. Каждый пользовательский терминал определяет и отсылает обратно скорость, с которой он может вести прием от каждой антенны в точке доступа. Точка доступа выбирает набор пользовательских терминалов и передает потоки символов данных для выбранных пользовательских терминалов через антенны точки доступа. Каждый многоантенный пользовательский терминал выполняет пространственную обработку в приемнике (например, CCMI, MMSE и т.д.) для восстановления своего потока символов данных. Для передачи данных по восходящей линии от одноантенных и/или многоантенных пользовательских терминалов пользовательские терминалы передают ортогональные (ненаправленные) пилот сигналы по восходящей линии. Точка доступа оценивает отклик восходящего канала, основываясь на пилот-сигналах восходящей линии, и выбирает набор совместимых пользовательских терминалов. Каждый выбранный пользовательский терминал передает поток символов данных через антенну пользовательского терминала. Точка доступа выполняет пространственную обработку в приемнике (например, CCMI, MMSE и т.д.) для восстановления потоков символов данных.
С. Выбор скорости
Каждый поток данных для нисходящей линии и всходящей линии передают по широкополосному пространственному каналу m, используя один из режимов пространственного мультиплексирования. Каждый поток данных также передают на скорости, которую выбирают таким образом, что для данного потока может быть достигнут целевой уровень производительности (например, 1 процент пакетных ошибок (PER)). Скорость для каждого потока данных может быть определена, основываясь на ОСШ, достижимом в приемнике для этого потока (т.е. ОСШ при приеме), где ОСШ зависит от пространственной обработки, выполняемой в передатчике и приемнике, как описано выше.
В иллюстративной схеме выбора скорости для определения скорости для широкополосного пространственного канала m, сначала получают оценку ОСШ,
Figure 00000262
, (например, в единицах дБ) для каждого поддиапазона k широкополосного пространственного канала, как описано выше. Затем вычисляют среднее ОСШ,
Figure 00000263
, для широкополосного пространственного канала m следующим образом:
Figure 00000264
уравнение (40)
Дисперсию оценок ОСШ,
Figure 00000265
, также вычисляют следующим образом:
Figure 00000266
уравнение (41)
Фактор запаса для ОСШ,
Figure 00000267
, определяют, основываясь на функции
Figure 00000268
среднего ОСШ и дисперсии ОСШ. Например, может быть использована функция
Figure 00000269
, где
Figure 00000270
представляет собой масштабирующий фактор, который может быть выбран, основываясь на одной или нескольких характеристиках MIMO системы, таких как перемежение, размер пакета и/или схема кодирования, используемые для данного потока данных. Фактор запаса ОСШ учитывает изменения ОСШ в широкополосном пространственном канале. Затем вычисляют рабочее ОСШ,
Figure 00000271
, для широкополосного канала m следующим образом:
Figure 00000272
уравнение (42)
Затем, основываясь на рабочем ОСШ, определяют скорость для данного потока данных. Например, в таблице просмотра (LUT) может храниться набор скоростей, поддерживаемых MIMO системой, и требуемые для них ОСШ. Требуемое ОСШ для каждой скорости может быть определено при помощи компьютерного моделирования, эмпирических измерений и т.д. и основывается на допущении того, что канал является каналом AWGN. Наивысшая скорость в таблице просмотра с требуемым ОСШ, который равен или меньше рабочего ОСШ, выбирают в качестве скорости для потока данных, передаваемого по широкополосному пространственному каналу m.
Также могут быть использованы другие схемы выбора скорости.
D. Управление скоростью с замкнутым контуром управления
Управление скоростью с замкнутым контуром управления может быть использовано для каждого потока данных, передаваемого по множеству широкополосных пространственных каналов. Управление скоростью с замкнутым контуром управления может быть выполнено при помощи одного или множества контуров.
На Фиг.10 показана блок-схема варианта осуществления механизма 1000 управления скоростью с замкнутым контуром управления, который содержит внутренний контур 1010, который работает совместно с внешним контуром 1020. Внутренний контур 1010 выполняет оценку состояния канала и определяет скорость, поддерживаемую каждым широкополосным пространственным каналом. Внешний контур 1020 выполняет оценку качества передачи данных, принятых по каждому широкополосному пространственному каналу, и соответственно настраивает работу внутреннего контура. Для простоты работа контуров 1010 и 1020 показана на Фиг.10 и описана ниже для одного нисходящего широкополосного пространственного канала m.
Для внешнего контура 1010 устройство 378 оценки канала в пользовательском терминале 120 выполняет оценку широкополосного пространственного канала m и предоставляет оценки канала (например, оценки усиления канала и оценку дисперсии шума). Устройство 1030 выбора скорости в контроллере 380 определяет скорость, поддерживаемую широкополосным пространственным каналом m, основываясь на (1) оценках канала из устройства 378 оценки канала, (2) фактора запаса ОСШ и/или настройки скорости для широкополосного пространственного канала m из устройства 1032 оценки качества и (3) таблицы просмотра (LUT) 1036 скоростей, поддерживаемых MIMO системой, и ОСШ, требуемых для них. Поддерживаемые скорости для широкополосного пространственного канала m отправляются контроллером 380 в точку 110 доступа. В точке 110 доступа контроллер 330 принимает поддерживаемую скорость для широкополосного пространственного канала m и определяет сигналы управления скоростью передачи данных, кодированием и модуляцией для потока данных, предназначенного для передачи по этому пространственному каналу. Затем поток данных обрабатывают в соответствии с этими сигналами управления в TX процессоре 310 данных, подвергают пространственной обработке и мультиплексируют с пилотными символами в ТХ пространственном процессоре 320, обрабатываются в модуляторе 322 и передаются в пользовательский терминал 120.
Внешний контур 1020 выполняет оценку качества потока декодированных данных, принятых по широкополосному пространственному каналу m, и настраивает работу внутреннего контура 1010. Принятые символы для широкополосного пространственного канала m подвергаются пространственной обработке в RX пространственном процессоре 360 и далее обрабатываются RX процессором 370 данных. RX процессор 370 данных предоставляет статус каждого пакета, принятого по широкополосному пространственному каналу m и/или метрику декодера в устройство 1032 оценки качества. Внешний контур 1020 может обеспечивать различные типы информации (например, фактор запаса ОСШ, настройка скорости и т.д.), используемые для управления работой внутреннего контура 1010.
Управление скоростью замкнутым контуром управления, описанное выше, может таким образом выполняться независимо для каждого нисходящего и восходящего широкополосного пространственного канала, который может соответствовать (1) широкополосной собственной моде для однопользовательского направленного режима или (2) передающей антенне для однопользовательского и многопользовательского ненаправленных режимов.
Е. Планирование пользовательских терминалов
На Фиг.11 показана блок-схема варианта осуществления контроллера 330 и планировщика 334 для планирования пользовательских терминалов для передачи данных по нисходящей линии и восходящей линии. В контроллере 330 процессор 1110 запросов получает запросы на доступ, передаваемые пользовательским терминалом 120 по RACH, и, возможно, запросы на доступ от других источников. Такие запросы на доступ предназначены для передачи данных по нисходящей линии и/или восходящей линии. Процессор 1110 запроса обрабатывает полученные запросы на доступ и предоставляет идентификаторы (ID) и статусы всех запрашивающих пользовательских терминалов. Статус для пользовательского терминала может указывать количество антенн доступных в данном терминале, откалиброван ли данный терминал, и т.д.
Селектор 1120 скорости принимает оценки каналов от устройства оценки каналов 328 и определяет скорости, поддерживаемые широкополосными пространственными каналами восходящей линии и/или нисходящей линии для запрашивающих пользовательских терминалов, как описано выше. Для нисходящей линии каждый пользовательский терминал 120 может определить скорость, поддерживаемую каждым его широкополосным пространственным каналом, как описано выше. Поддерживаемая скорость является максимальной скоростью, которая может быть использована для передачи данных по широкополосному пространственному каналу для достижения целевого уровня выполнения. Каждый пользовательский терминал 120 может посылать поддерживаемые скорости для всех своих широкополосных пространственных каналов нисходящей линии в точку 110 доступа, например, через RACH. В качестве альтернативы, точка 110 доступа может определять поддерживаемые скорости для широкополосных пространственных каналов нисходящей линии, если (1) нисходящая линия и восходящая линия являются взаимообратными и (2) точке 110 доступа предоставляется дисперсия шума или уровень шума в пользовательском терминале 120. Для восходящей линии точка 110 доступа может определять поддерживаемую скорость для каждого широкополосного пространственного канала для каждого запрашивающего пользовательского терминала 120.
Селектор 1140 пользователя выбирает различные наборы из одного или нескольких терминалов из всех запрашивающих терминалов для возможной передачи данных по нисходящей линии и/или восходящей линии. Пользовательские терминалы могут быть выбраны, исходя из различных критериев, таких как требования системы, возможности пользовательских терминалов и поддерживаемые скорости, приоритет пользователя, количество данных, предназначенных для отправки, и т.д. Для многопользовательских режимов пространственного мультиплексирования пользовательские терминалы для каждого набора также могут выбираться, основываясь на их векторах откликов каналов.
Селектор 1130 режима выбирает конкретный режим пространственного мультиплексирования для использования для каждого набора пользовательских терминалов, исходя из рабочего состояния и возможностей пользовательских терминалов в наборе и, возможно, других факторов. Например, однопользовательский направленный режим может быть использован для “калиброванного” многоантенного пользовательского терминала, который выполнил калибровку таким образом, что отклик канала для одной линии (например, нисходящей линии) может быть оценен, основываясь на (например, направленном) пилот-сигнале, полученном по другой линии (например, восходящей линии). Однопользовательский ненаправленный режим может быть использован для “некалиброванного” многоантенного пользовательского терминала, который не выполнил калибровку или не может поддерживать однопользовательский направленный режим по какой-либо причине. Многопользовательский направленный режим может быть использован для передачи по нисходящей линии во множество пользовательских терминалов, каждый из которых оборудован одной или несколькими антеннами. Многопользовательский ненаправленный режим может быть использован для передачи по восходящей линии множеством пользовательских терминалов.
Планировщик 334 принимает наборы пользовательских терминалов из селектора 1140 пользователя, выбранный режим пространственного мультиплексирования для каждого набора пользовательских терминалов из селектора 1130 режима и выбранные скорости для каждого набора пользовательских терминалов из селектора 1120 скорости. Планировщик 334 планирует пользовательские терминалы для передачи данных по нисходящей линии и/или восходящей линии. Планировщик 334 выбирает один или несколько наборов пользовательских терминалов для передачи данных по нисходящей линии и один или несколько наборов пользовательских терминалов для передачи данных по восходящей линии для каждого TDD кадра. Каждый набор включает в себя один или несколько пользовательских терминалов и планируется для передачи данных параллельно в назначенном интервале передачи в TDD кадре.
Планировщик 334 формирует элемент информации (IE) для каждого пользовательского терминала, запланированного для передачи данных по нисходящей линии и/или восходящей линии. Каждый элемент информации включает в себя (1) режим пространственного мультиплексирования для использования для передачи данных, (2) скорость для использования для потока данных, посылаемого по каждому широкополосному пространственному каналу, (3) начало и длительность передачи данных, и (4) возможно, другую информацию (например, тип пилот-сигнала, предназначенного для передачи совместно с передачей данных). Планировщик 334 посылает элементы информации для всех запланированных пользовательских терминалов через FCCH. Каждый пользовательский терминал обрабатывает FCCH для восстановления своего элемента информации и затем принимает передачу по нисходящей линии и/или посылает передачу по восходящей линии в соответствии с полученной информацией планировщика.
На Фиг.11 показан вариант осуществления планирования пользовательских терминалов для передачи данных, если поддерживаются режимы пространственного мультиплексирования. Планирование может выполняться другими способами, и это находится в пределах объема настоящего изобретения.
На Фиг.12 показана блок-схема последовательности операций процесса 1200 планирования пользовательских терминалов для передачи данных в MIMO системе 100. Набор, по меньшей мере, из одного пользовательского терминала выбирают для передачи данных по нисходящей линии и/или восходящей линии (блок 1212). Для набора пользовательских терминалов выбирают режим пространственного мультиплексирования из множества режимов пространственного мультиплексирования, поддерживаемых данной системой (блок 1214). Также для набора пользовательских терминалов выбирают множество скоростей для множества потоков данных, предназначенных для передачи через множество пространственных каналов (блок 1216). Набор пользовательских терминалов планируют для передачи данных по нисходящей линии и/или восходящей линии с выбранными скоростями и выбранным режимом пространственного мультиплексирования (блок 1218).
На Фиг.13 показана блок-схема последовательности операций процесса 1300 передачи данных по нисходящей линии в MIMO системе 100. Процесс 1300 может выполняться точкой 110х доступа. Первое множество потоков данных кодируют и модулируют в соответствии с первым набором скоростей для получения первого множества потоков символов данных (блок 1312). В случае однопользовательского направленного режима для первого множества потоков символов данных выполняют пространственную обработку при помощи первого множества направляющих векторов для получения первого множества потоков символов передачи для передачи через множество антенн в первый пользовательский терминал в первом интервале передачи (блок 1314). Первый набор направляющих векторов выводят таким образом, что первое множество потоков данных передают по ортогональным пространственным каналам в первый пользовательский терминал. Второе множество потоков данных кодируют и модулируют в соответствии со вторым множеством скоростей для получения второго множества потоков символов данных (блок 1316). Для однопользовательского ненаправленного режима второе множество потоков символов данных предоставляют в качестве второго множества потоков символов передачи для передачи через множество антенн во второй пользовательский терминал во втором интервале передачи (блок 1318). Третье множество потоков данных кодируют и модулируют для получения третьего множества потоков символов данных (блок 1320). В случае многопользовательского направленного режима для третьего множества потоков символов данных выполняют пространственную обработку при помощи второго множества направляющих векторов для получения третьего множества потоков символов передачи для передачи через множество антенн во множество пользовательских терминалов в третьем интервале передачи (блок 1322). Второе множество направляющих векторов выводят таким образом, что третье множество потоков символов данных во множестве пользовательских терминалов принимают с подавленными перекрестными помехами.
На Фиг.14 показана блок-схема последовательности операций процесса 1400 приема данных по восходящей линии в MIMO системе 100. Процесс 1400 также может выполняться точкой 110х доступа. Пространственную обработку в приемнике выполняют для первого множества потоков принятых символов в соответствии с первым режимом пространственного мультиплексирования (например, однопользовательским направленным режимом) для получения первого множества потоков восстановленных символов данных (блок 1412). Первое множество потоков восстановленных символов данных демодулируют и декодируют в соответствии с первым множеством скоростей для получения первого множества потоков декодированных данных (блок 1414). Пространственную обработку в приемнике выполняют для второго множества потоков принятых символов в соответствии со вторым режимом пространственного мультиплексирования (например, ненаправленным режимом) для получения второго множества потоков восстановленных символов данных (блок 1416). Второе множество потоков восстановленных символов данных демодулируют и декодируют в соответствии со вторым множеством скоростей для получения второго множества потоков декодированных данных, которые представляют собой оценки потоков данных, передаваемых одним или множеством пользовательских терминалов (блок 1418).
Каждый пользовательский терминал выполняет соответствующие операции при передаче данных по одному или нескольким восходящим широкополосным пространственным каналам и при приеме данных по одному или нескольким нисходящим широкополосным пространственным каналам.
Передача данных с использованием нескольких режимов пространственного мультиплексирования, изложенная в настоящем описании, может быть реализована при помощи различных средств. Например, обработка может быть реализована в виде аппаратных средств, программных средств или их комбинации. В случае реализации в виде аппаратных средств элементы, используемые для выполнения обработки данных, пространственной обработки и планирования в точке доступа, могут быть реализованы в одной или нескольких ориентированных на приложение интегральных схемах (ASIC), цифровых сигнальных процессорах (DSP), цифровых сигнальных процессорных устройствах (DSPD), программируемых логических устройствах (PLD), внутрисхемно программируемых вентильных матрицах (FPGA), процессорах, контроллерах, микроконтроллерах, других электронных блоках, выполненных с возможностью выполнения функций, изложенных в настоящем описании или их комбинации. Блоки обработки в пользовательском терминале также могут быть реализованы в одной или нескольких ASIC, DSP и т.д.
В случае осуществления в виде программных средств обработка в точке доступа и пользовательском терминале при передачи данных с использованием нескольких режимов пространственного мультиплексирования, может быть реализована при помощи модулей (например, процедур, функций и т.д.), которые выполняют функции, изложенные в настоящем описании. Программные коды могут храниться в запоминающем устройстве (например, запоминающем устройстве, 332 и 382 по Фиг.8) и исполняться процессором (например, контроллерами 330 и 380). Запоминающее устройство может быть выполнено в процессоре или как внешнее по отношению к процессору.
Заголовки включены в настоящее описание для ссылки и для помощи в поиске определенных разделов. Указанные заголовки не следует рассматривать как ограничивающие объем концепций в озаглавленных ими разделах, и эти концепции могут применяться в других разделах по всему описанию.
Приведенное выше описание раскрытых вариантов осуществления представлено для того, чтобы дать возможность любому специалисту в данной области техники использовать настоящее изобретение. Различные модификации в отношении указанных вариантов осуществления должны быть очевидны для специалистов в данной области техники, и общие принципы, изложенные в настоящем описании, применимы к другим вариантам осуществления без отступления от сущности и объема настоящего изобретения, таким образом, настоящее изобретение не следует ограничивать вариантами осуществления, раскрытыми в настоящем описании, но напротив, соответствует самому широкому объему, совместимому с принципами и новыми отличительными особенностями, раскрытыми в настоящем описании.

Claims (29)

1. Способ передачи данных в беспроводной коммуникационной системе с множественным доступом с множеством входов и множеством выходов (MIMO), содержащий этапы на которых: выбирают первый пользовательский терминал для передачи данных в первом интервале передачи; выбирают первый режим пространственного мультиплексирования для использования для первого пользовательского терминала; выбирают второй пользовательский терминал для передачи данных во втором интервале передачи; выбирают второй режим пространственного мультиплексирования для использования для второго пользовательского терминала; причем по меньшей мере один из первого и второго режимов пространственного мультиплексирования представляет собой режим направленного пространственного мультиплексирования; планируют первый пользовательский терминал для передачи данных в первом интервале передачи с первым режимом пространственного мультиплексирования; и планируют второй пользовательский терминал для передачи данных во втором интервале передачи со вторым режимом пространственного мультиплексирования.
2. Способ по п.1, в котором первый режим пространственного мультиплексирования представляет собой режим направленного пространственного мультиплексирования, второй режим пространственного мультиплексирования представляет собой режим ненаправленного пространственного мультиплексирования.
3. Способ по п.2, дополнительно содержащий этапы, на которых: выполняют пространственную обработку первого множества потоков данных с множеством направляющих векторов для передачи первого множества потоков данных по ортогональным пространственным каналам канала MIMO для первого пользовательского терминала; и обеспечивают второе множество потоков данных для передачи через множество антенн во второй пользовательский терминал.
4. Способ по п.2, дополнительно содержащий этапы, на которых: выполняют пространственную обработку в приемнике в отношении первого множества потоков принятых символов с множеством собственных векторов для получения оценок первого множества потоков данных, переданных первым пользовательским терминалом; и выполняют пространственную обработку в приемнике в отношении второго множества потоков принятых символов в соответствии с пространственным фильтром для получения оценок второго множества потоков данных, переданных вторым пользовательским терминалом.
5. Способ по п.2, дополнительно содержащий этапы, на которых: выбирают первое множество скоростей для первого множества потоков данных, предназначенных для передачи через первое множество пространственных каналов первого канала MIMO для первого пользовательского терминала; и выбирают второе множество скоростей для второго множества потоков данных, предназначенных для передачи через второе множество пространственных каналов второго канала MIMO для второго пользовательского терминала; причем первый пользовательский терминал дополнительно планируют с первым множеством скоростей, а второй пользовательский терминал планируют со вторым множеством скоростей.
6. Устройство для передачи данных в беспроводной коммуникационной системе с множественным доступом с множеством входов и множеством выходов (MIMO), содержащее: пользовательское устройство выбора, выполненное с возможностью выбора первого пользовательского терминала для передачи данных в первом интервале передачи и выбора второго пользовательского терминала для передачи данных во втором интервале передачи; устройство выбора режима, выполненное с возможностью выбора первого режима пространственного мультиплексирования для использования для первого пользовательского терминала и выбора второго режима пространственного мультиплексирования для использования для второго пользовательского терминала, причем по меньшей мере один из первого и второго режимов пространственного мультиплексирования представляет собой режим направленного пространственного мультиплексирования; и планировщик, выполненный с возможностью планирования первого пользовательского терминала для передачи данных в первом интервале передачи с первым режимом пространственного мультиплексирования и планирования второго пользовательского терминала для передачи данных во втором интервале передачи со вторым режимом пространственного мультиплексирования.
7. Устройство по п.6, в котором первый режим пространственного мультиплексирования представляет собой режим направленного пространственного мультиплексирования, и второй режим пространственного мультиплексирования представляет собой режим ненаправленного пространственного мультиплексирования.
8. Устройство по п.7, дополнительно содержащее: процессор пространственной передачи, выполненный с возможностью пространственной обработки первого множества потоков данных с множеством направляющих векторов для передачи первого множества потоков данных по ортогональным пространственным каналам канала MIMO для первого пользовательского терминала; и обеспечения второго множества потоков данных для передачи через множество антенн во второй пользовательский терминал.
9. Устройство по п.7, дополнительно содержащее: процессор пространственного приема, выполненный с возможностью выполнения пространственной обработки в приемнике в отношении первого множества потоков принятых символов с множеством собственных векторов для получения оценок первого множества потоков данных, переданных первым пользовательским терминалом; и выполнения пространственной обработки в приемнике в отношении второго множества потоков принятых символов в соответствии с пространственным фильтром для получения оценок второго множества потоков данных, переданных вторым пользовательским терминалом.
10. Устройство для передачи данных в беспроводной коммуникационной системе с множественным доступом с множеством входов и множеством выходов (MIMO), содержащее: средство выбора первого пользовательского терминала для передачи данных в первом интервале передачи; средство выбора первого режима пространственного мультиплексирования для использования для первого пользовательского терминала; средство выбора второго пользовательского терминала для передачи данных во втором интервале передачи; средство выбора второго режима пространственного мультиплексирования для использования для второго пользовательского терминала, причем по меньшей мере один из первого и второго режимов пространственного мультиплексирования представляет собой режим направленного пространственного мультиплексирования; средство планирования первого пользовательского терминала для передачи данных в первом интервале передачи с первым режимом пространственного мультиплексирования; и средство планирования второго пользовательского терминала для передачи данных во втором интервале передачи со вторым режимом пространственного мультиплексирования.
11. Устройство по п.10, в котором первый режим пространственного мультиплексирования представляет собой режим направленного пространственного мультиплексирования, и второй режим пространственного мультиплексирования представляет собой режим ненаправленного пространственного мультиплексирования.
12. Устройство по п.11, дополнительно содержащее: средство для пространственной обработки первого множества потоков данных с множеством направляющих векторов для передачи первого множества потоков данных по ортогональным пространственным каналам канала MIMO для первого пользовательского терминала; и средство для обеспечения второго множества потоков данных для передачи через множество антенн во второй пользовательский терминал.
13. Устройство по п.11, дополнительно содержащее: средство для выполнения пространственной обработки в приемнике в отношении первого множества потоков принятых символов с множеством собственных векторов для получения оценок первого множества потоков данных, переданных первым пользовательским терминалом; и средство для выполнения пространственной обработки в приемнике в отношении второго множества потоков принятых символов в соответствии с пространственным фильтром для получения оценок второго множества потоков данных, переданных вторым пользовательским терминалом.
14. Способ передачи данных в беспроводной коммуникационной системе с множественным доступом с множеством входов и множеством выходов (MIMO), содержащий этапы на которых: кодируют и модулируют первое множество потоков данных для получения первого множества потоков символов данных; выполняют пространственную обработку первого множества потоков символов данных с первым множеством направляющих векторов для получения первого множества потоков символов передачи для передачи через множество антенн в первый пользовательский терминал в первом интервале передачи; кодируют и модулируют второе множество потоков данных для получения второго множества потоков символов данных; и обеспечивают второе множество потоков символов данных в качестве второго множества потоков символов передачи для передачи через множество антенн во второй пользовательский терминал во втором интервале передачи.
15. Способ по п.14, дополнительно содержащий этап, на котором: выводят первое множество направляющих векторов таким образом, что первое множество потоков данных передают по множеству ортогональных пространственных каналов первого MIMO канала для первого пользовательского терминала.
16. Способ по п.14, дополнительно содержащий этапы, на которых: кодируют и модулируют третье множество потоков данных для получения третьего множества потоков символов данных; и выполняют пространственную обработку третьего множества потоков символов данных со вторым множеством направляющих векторов для получения третьего множества потоков символов передачи для передачи через множество антенн во множество пользовательских терминалов в третьем интервале передачи.
17. Способ по п.16, дополнительно содержащий этап, на котором выводят второе множество направляющих векторов таким образом, что третье множество потоков данных принимают во множестве пользовательских терминалов с подавленными перекрестными помехами.
18. Устройство для передачи данных в беспроводной коммуникационной системе с множественным доступом с множеством входов и множеством выходов (MIMO), содержащее: процессор передачи данных, выполненный с возможностью кодирования и модулирования первого множества потоков данных для получения первого множества потоков символов данных, и кодирования и модулирования второго множества потоков данных для получения второго множества потоков символов данных; и процессор пространственной передачи, выполненный с возможностью выполнения пространственной обработки первого множества потоков символов данных с первым множеством направляющих векторов для получения первого множества потоков символов передачи для передачи через множество антенн в первый пользовательский терминал в первом интервале передачи, и обеспечения второго множества потоков символов данных в качестве второго множества потоков символов передачи для передачи через множество антенн во второй пользовательский терминал во втором интервале передачи.
19. Устройство по п.18, в котором процессор пространственной передачи выполнен с возможностью вывода первого множества направляющих векторов таким образом, что первое множество потоков данных передают по множеству ортогональных пространственных каналов первого MIMO канала для первого пользовательского терминала.
20. Способ приема данных в беспроводной коммуникационной системе с множественным доступом с множеством входов и множеством выходов (MIMO), содержащий этапы на которых: принимают информацию, указывающую режим направленного пространственного мультиплексирования и по меньшей мере одну скорость для использования для передачи данных, причем режим направленного пространственного мультиплексирования выбирают из множества режимов пространственного мультиплексирования, поддерживаемых системой, при этом каждую из упомянутой по меньшей мере одной скорости выбирают из набора скоростей, поддерживаемого данной системой; выполняют пространственную обработку по меньшей мере одного потока принятых символов в соответствии с режимом направленного пространственного мультиплексирования для получения по меньшей мере одного потока восстановленных символов данных; и демодулируют и декодируют по меньшей мере один поток восстановленных символов данных в соответствии с упомянутой по меньшей мере одной скоростью для получения по меньшей мере одного потока декодированных данных.
21. Способ по п.20, в котором выполняют пространственную обработку множества потоков принятых символов с множеством собственных векторов для множества пространственных каналов MIMO канала для получения множества потоков восстановленных символов данных.
22. Способ по п.20, в котором упомянутый по меньшей мере один из множества режимов пространственного мультиплексирования представляет собой режим ненаправленного пространственного мультиплексирования.
23. Способ по п.22, в котором для получения множества потоков восстановленных символов данных выполняют пространственную обработку множества потоков принятых символов, основываясь на способе инверсии корреляционной матрицы канала (CCMI), способе минимальной средней квадратичной ошибки (MMSE) или способе последовательного удаления помех (SIC).
24. Способ по п.22, в котором по меньшей мере один поток принятых символов обрабатывают с оценками усиления канала для получения по меньшей мере одного потока восстановленных символов данных.
25. Устройство для приема данных в беспроводной коммуникационной системе с множественным доступом с множеством входов и множеством выходов (MIMO), содержащее: контроллер, выполненный с возможностью приема информации, указывающей режим направленного пространственного мультиплексирования и по меньшей мере одну скорость для использования для передачи данных, причем режим направленного пространственного мультиплексирования выбирают из множества режимов пространственного мультиплексирования, поддерживаемых системой, и при этом каждую из упомянутой по меньшей мере одной скорости выбирают из набора скоростей, поддерживаемого данной системой; процессор пространственного приема, выполненный с возможностью выполнения пространственной обработки по меньшей мере одного потока принятых символов в соответствии с режимом направленного пространственного мультиплексирования для получения по меньшей мере одного потока восстановленных символов данных; и процессор данных приема, выполненный с возможностью демодулирования и декодирования упомянутого по меньшей мере одного потока восстановленных символов данных в соответствии с упомянутой по меньшей мере одной скоростью для получения по меньшей мере одного потока декодированных данных.
26. Устройство для приема данных в беспроводной коммуникационной системе с множественным доступом с множеством входов и множеством выходов (MIMO), содержащее: средство приема информации, указывающее режим направленного пространственного мультиплексирования и по меньшей мере одну скорость для использования для передачи данных, причем режим направленного пространственного мультиплексирования выбирают из множества режимов пространственного мультиплексирования, поддерживаемых системой, и причем каждую из упомянутой по меньшей мере одной скорости выбирают из набора скоростей, поддерживаемых данной системой, средство для выполнения пространственной обработки по меньшей мере одного потока принятых символов в соответствии с режимом направленного пространственного мультиплексирования для получения по меньшей мере одного потока восстановленных символов данных; и средство для выполнения демодулирования и декодирования по меньшей мере одного потока восстановленных символов данных в соответствии с по меньшей мере одной скоростью для получения по меньшей мере одного потока декодированных данных.
27. Устройство по п.26, в котором по меньшей мере один из множества режимов пространственного мультиплексирования представляет собой режим ненаправленного пространственного мультиплексирования.
28. Устройство по п.27, в котором средство для выполнения пространственной обработки содержит средство для выполнения пространственной обработки, основываясь на способе инверсии корреляционной матрицы канала (CCMI), способе минимальной средней квадратичной ошибки (MMSE) или способе последовательного удаления помех (SIC) для получения множества потоков восстановленных символов данных.
29. Устройство по п.26, в котором средство для выполнения демодулирования и декодирования содержит средство для выполнения обработки по меньшей мере одного потока принятых символов с оценками усиления канала для получения одного потока восстановленных символов данных.
RU2008106942/07A 2002-10-25 2003-10-24 Система с множеством входов и множеством выходов (mimo) с множеством режимов пространственного мультиплексирования RU2477001C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US42130902P 2002-10-25 2002-10-25
US60/421,309 2002-10-25
US10/693,429 2003-10-23
US10/693,429 US8208364B2 (en) 2002-10-25 2003-10-23 MIMO system with multiple spatial multiplexing modes

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
RU2005115873/09A Division RU2330381C2 (ru) 2002-10-25 2003-10-24 Система с множеством входов и множеством выходов (mimo) с множеством режимов пространственного мультиплексирования

Publications (2)

Publication Number Publication Date
RU2008106942A RU2008106942A (ru) 2009-08-27
RU2477001C2 true RU2477001C2 (ru) 2013-02-27

Family

ID=32179858

Family Applications (2)

Application Number Title Priority Date Filing Date
RU2008106942/07A RU2477001C2 (ru) 2002-10-25 2003-10-24 Система с множеством входов и множеством выходов (mimo) с множеством режимов пространственного мультиплексирования
RU2005115873/09A RU2330381C2 (ru) 2002-10-25 2003-10-24 Система с множеством входов и множеством выходов (mimo) с множеством режимов пространственного мультиплексирования

Family Applications After (1)

Application Number Title Priority Date Filing Date
RU2005115873/09A RU2330381C2 (ru) 2002-10-25 2003-10-24 Система с множеством входов и множеством выходов (mimo) с множеством режимов пространственного мультиплексирования

Country Status (20)

Country Link
US (5) US8208364B2 (ru)
EP (4) EP2061173B1 (ru)
JP (2) JP4860924B2 (ru)
KR (1) KR100965347B1 (ru)
CN (3) CN101917245B (ru)
AT (1) ATE425603T1 (ru)
AU (2) AU2003287296C1 (ru)
BR (2) BR0315535A (ru)
CA (1) CA2501921C (ru)
DE (1) DE60326627D1 (ru)
DK (1) DK2267926T3 (ru)
ES (3) ES2323058T3 (ru)
HU (1) HUE031607T2 (ru)
MX (1) MXPA05004401A (ru)
PT (1) PT2267926T (ru)
RU (2) RU2477001C2 (ru)
SI (1) SI2267926T1 (ru)
TW (2) TWI467956B (ru)
UA (1) UA83201C2 (ru)
WO (1) WO2004038984A2 (ru)

Families Citing this family (346)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7260369B2 (en) 2005-08-03 2007-08-21 Kamilo Feher Location finder, tracker, communication and remote control system
US7295509B2 (en) 2000-09-13 2007-11-13 Qualcomm, Incorporated Signaling method in an OFDM multiple access system
US9130810B2 (en) 2000-09-13 2015-09-08 Qualcomm Incorporated OFDM communications methods and apparatus
US7248559B2 (en) 2001-10-17 2007-07-24 Nortel Networks Limited Scattered pilot pattern and channel estimation method for MIMO-OFDM systems
US7095709B2 (en) * 2002-06-24 2006-08-22 Qualcomm, Incorporated Diversity transmission modes for MIMO OFDM communication systems
US8194770B2 (en) 2002-08-27 2012-06-05 Qualcomm Incorporated Coded MIMO systems with selective channel inversion applied per eigenmode
US8320301B2 (en) 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US7986742B2 (en) 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
US8134976B2 (en) 2002-10-25 2012-03-13 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US7324429B2 (en) * 2002-10-25 2008-01-29 Qualcomm, Incorporated Multi-mode terminal in a wireless MIMO system
US8218609B2 (en) 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
US8170513B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Data detection and demodulation for wireless communication systems
US8208364B2 (en) 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US8169944B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Random access for wireless multiple-access communication systems
US7002900B2 (en) 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US8570988B2 (en) 2002-10-25 2013-10-29 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US20040081131A1 (en) 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
DE10254384B4 (de) * 2002-11-17 2005-11-17 Siemens Ag Bidirektionales Signalverarbeitungsverfahren für ein MIMO-System mit einer rangadaptiven Anpassung der Datenübertragungsrate
US7885228B2 (en) * 2003-03-20 2011-02-08 Qualcomm Incorporated Transmission mode selection for data transmission in a multi-channel communication system
US7483675B2 (en) * 2004-10-06 2009-01-27 Broadcom Corporation Method and system for weight determination in a spatial multiplexing MIMO system for WCDMA/HSDPA
WO2005004376A1 (ja) * 2003-06-30 2005-01-13 Fujitsu Limited 多入力多出力伝送システム
US7453946B2 (en) * 2003-09-03 2008-11-18 Intel Corporation Communication system and method for channel estimation and beamforming using a multi-element array antenna
US8908496B2 (en) * 2003-09-09 2014-12-09 Qualcomm Incorporated Incremental redundancy transmission in a MIMO communication system
US7440510B2 (en) * 2003-09-15 2008-10-21 Intel Corporation Multicarrier transmitter, multicarrier receiver, and methods for communicating multiple spatial signal streams
US7680461B2 (en) * 2003-11-05 2010-03-16 Sony Corporation Wireless communications system, wireless communications method, and wireless communications apparatus
US7298805B2 (en) * 2003-11-21 2007-11-20 Qualcomm Incorporated Multi-antenna transmission for spatial division multiple access
US9473269B2 (en) 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
US7443818B2 (en) * 2003-12-15 2008-10-28 Intel Corporation Method, apparatus and system of multiple-input-multiple-output wireless communication
US7302009B2 (en) * 2003-12-17 2007-11-27 Qualcomm Incorporated Broadcast transmission with spatial spreading in a multi-antenna communication system
US8204149B2 (en) * 2003-12-17 2012-06-19 Qualcomm Incorporated Spatial spreading in a multi-antenna communication system
US20050141495A1 (en) * 2003-12-30 2005-06-30 Lin Xintian E. Filling the space-time channels in SDMA
US7324605B2 (en) * 2004-01-12 2008-01-29 Intel Corporation High-throughput multicarrier communication systems and methods for exchanging channel state information
US7336746B2 (en) * 2004-12-09 2008-02-26 Qualcomm Incorporated Data transmission with spatial spreading in a MIMO communication system
US8169889B2 (en) 2004-02-18 2012-05-01 Qualcomm Incorporated Transmit diversity and spatial spreading for an OFDM-based multi-antenna communication system
US7418053B2 (en) 2004-07-30 2008-08-26 Rearden, Llc System and method for distributed input-distributed output wireless communications
US9819403B2 (en) * 2004-04-02 2017-11-14 Rearden, Llc System and method for managing handoff of a client between different distributed-input-distributed-output (DIDO) networks based on detected velocity of the client
US11394436B2 (en) 2004-04-02 2022-07-19 Rearden, Llc System and method for distributed antenna wireless communications
US8542763B2 (en) 2004-04-02 2013-09-24 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10886979B2 (en) * 2004-04-02 2021-01-05 Rearden, Llc System and method for link adaptation in DIDO multicarrier systems
US8160121B2 (en) * 2007-08-20 2012-04-17 Rearden, Llc System and method for distributed input-distributed output wireless communications
US8571086B2 (en) * 2004-04-02 2013-10-29 Rearden, Llc System and method for DIDO precoding interpolation in multicarrier systems
US7711030B2 (en) * 2004-07-30 2010-05-04 Rearden, Llc System and method for spatial-multiplexed tropospheric scatter communications
US11451275B2 (en) 2004-04-02 2022-09-20 Rearden, Llc System and method for distributed antenna wireless communications
US7633994B2 (en) 2004-07-30 2009-12-15 Rearden, LLC. System and method for distributed input-distributed output wireless communications
US10200094B2 (en) * 2004-04-02 2019-02-05 Rearden, Llc Interference management, handoff, power control and link adaptation in distributed-input distributed-output (DIDO) communication systems
US10277290B2 (en) 2004-04-02 2019-04-30 Rearden, Llc Systems and methods to exploit areas of coherence in wireless systems
US7636381B2 (en) * 2004-07-30 2009-12-22 Rearden, Llc System and method for distributed input-distributed output wireless communications
US11309943B2 (en) 2004-04-02 2022-04-19 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US7599420B2 (en) * 2004-07-30 2009-10-06 Rearden, Llc System and method for distributed input distributed output wireless communications
US9826537B2 (en) * 2004-04-02 2017-11-21 Rearden, Llc System and method for managing inter-cluster handoff of clients which traverse multiple DIDO clusters
US7885354B2 (en) * 2004-04-02 2011-02-08 Rearden, Llc System and method for enhancing near vertical incidence skywave (“NVIS”) communication using space-time coding
US10425134B2 (en) 2004-04-02 2019-09-24 Rearden, Llc System and methods for planned evolution and obsolescence of multiuser spectrum
US9312929B2 (en) 2004-04-02 2016-04-12 Rearden, Llc System and methods to compensate for Doppler effects in multi-user (MU) multiple antenna systems (MAS)
US8170081B2 (en) 2004-04-02 2012-05-01 Rearden, LLC. System and method for adjusting DIDO interference cancellation based on signal strength measurements
US8654815B1 (en) 2004-04-02 2014-02-18 Rearden, Llc System and method for distributed antenna wireless communications
US10187133B2 (en) * 2004-04-02 2019-01-22 Rearden, Llc System and method for power control and antenna grouping in a distributed-input-distributed-output (DIDO) network
US10749582B2 (en) 2004-04-02 2020-08-18 Rearden, Llc Systems and methods to coordinate transmissions in distributed wireless systems via user clustering
US10985811B2 (en) 2004-04-02 2021-04-20 Rearden, Llc System and method for distributed antenna wireless communications
US20050238111A1 (en) * 2004-04-09 2005-10-27 Wallace Mark S Spatial processing with steering matrices for pseudo-random transmit steering in a multi-antenna communication system
US7729233B2 (en) * 2004-04-14 2010-06-01 Webster Mark A Dual mode communication systems and methods
US8923785B2 (en) * 2004-05-07 2014-12-30 Qualcomm Incorporated Continuous beamforming for a MIMO-OFDM system
US8285226B2 (en) * 2004-05-07 2012-10-09 Qualcomm Incorporated Steering diversity for an OFDM-based multi-antenna communication system
KR100633483B1 (ko) * 2004-06-09 2006-10-16 한국전자통신연구원 셀룰러 시스템 수신기에서의 이레이져 검출 및 연판정복호 장치와 그 방법
EP1608099B1 (en) * 2004-06-14 2012-08-15 Samsung Electronics Co., Ltd. Adaptive Modulation and Coding (AMC) in a MIMO system
US9525977B2 (en) * 2004-06-15 2016-12-20 Texas Instruments Incorporated Broadcast multicast mode
US7110463B2 (en) * 2004-06-30 2006-09-19 Qualcomm, Incorporated Efficient computation of spatial filter matrices for steering transmit diversity in a MIMO communication system
US7738595B2 (en) * 2004-07-02 2010-06-15 James Stuart Wight Multiple input, multiple output communications systems
US7548592B2 (en) * 2004-07-02 2009-06-16 James Stuart Wight Multiple input, multiple output communications systems
US7978649B2 (en) * 2004-07-15 2011-07-12 Qualcomm, Incorporated Unified MIMO transmission and reception
US9137822B2 (en) 2004-07-21 2015-09-15 Qualcomm Incorporated Efficient signaling over access channel
US9148256B2 (en) 2004-07-21 2015-09-29 Qualcomm Incorporated Performance based rank prediction for MIMO design
US9685997B2 (en) * 2007-08-20 2017-06-20 Rearden, Llc Systems and methods to enhance spatial diversity in distributed-input distributed-output wireless systems
US7864659B2 (en) 2004-08-02 2011-01-04 Interdigital Technology Corporation Quality control scheme for multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems
US8218694B2 (en) 2004-08-03 2012-07-10 Agency For Science, Technology And Research Method for transmitting a digital signal, method for receiving a digital signal, transmitter and receiver
US8270512B2 (en) * 2004-08-12 2012-09-18 Interdigital Technology Corporation Method and apparatus for subcarrier and antenna selection in MIMO-OFDM system
US7978778B2 (en) * 2004-09-03 2011-07-12 Qualcomm, Incorporated Receiver structures for spatial spreading with space-time or space-frequency transmit diversity
US7894548B2 (en) * 2004-09-03 2011-02-22 Qualcomm Incorporated Spatial spreading with space-time and space-frequency transmit diversity schemes for a wireless communication system
JP2008512963A (ja) * 2004-09-09 2008-04-24 アギア システムズ インコーポレーテッド マルチ・アンテナ通信システムにおいて直交パイロット・トーンを伝達するための方法および装置
WO2006029546A2 (en) * 2004-09-16 2006-03-23 Eth Zurich Method and device for decoding a signal of a multiple input/multiple output system
CN1753493A (zh) * 2004-09-24 2006-03-29 松下电器产业株式会社 无线多媒体通信系统的跨层联合方法
JP4469700B2 (ja) * 2004-11-02 2010-05-26 株式会社エヌ・ティ・ティ・ドコモ 無線制御装置、サーバ及び移動通信方法
JP4065276B2 (ja) 2004-11-12 2008-03-19 三洋電機株式会社 送信方法およびそれを利用した無線装置
CN102170329B (zh) * 2004-11-16 2014-09-10 高通股份有限公司 Mimo通信系统的闭环速率控制
US10270511B2 (en) * 2004-11-17 2019-04-23 Koninklijke Philips N.V. Robust wireless multimedia transmission in multiple in multiple-out (MIMO) system assisted by channel state information
JP2006165775A (ja) * 2004-12-03 2006-06-22 Nec Corp 無線基地局装置及び無線送受信機、無線通信システム
WO2006062356A1 (en) * 2004-12-08 2006-06-15 Electronics And Telecommunications Research Institute Transmitter, receiver and method for controlling multiple input multiple output system
JP4589711B2 (ja) * 2004-12-14 2010-12-01 富士通株式会社 無線通信システム及び無線通信装置
FR2879865B1 (fr) * 2004-12-16 2008-12-19 Wavecom Sa Procedes et dispositifs de codage et decodage spatial, produit programme d'ordinateur et moyen de stockage correspondants
CN1790976A (zh) * 2004-12-17 2006-06-21 松下电器产业株式会社 用于多天线传输中的重传方法
US7543197B2 (en) 2004-12-22 2009-06-02 Qualcomm Incorporated Pruned bit-reversal interleaver
JP4494190B2 (ja) * 2004-12-24 2010-06-30 日本電信電話株式会社 空間多重伝送用送信方法および空間多重伝送用送信装置
CN1797987B (zh) * 2004-12-30 2011-02-16 都科摩(北京)通信技术研究中心有限公司 自适应调度的mimo通信系统及其自适应用户调度方法
US8279985B2 (en) * 2005-02-22 2012-10-02 Adaptix, Inc. Intelligent demodulation systems and methods in an OFDMA multicell network
KR100950644B1 (ko) * 2005-03-04 2010-04-01 삼성전자주식회사 다중사용자 다중입출력 시스템의 피드백 방법
JP4646680B2 (ja) * 2005-03-04 2011-03-09 三洋電機株式会社 キャリブレーション方法ならびにそれを利用した無線装置および通信システム
US9246560B2 (en) 2005-03-10 2016-01-26 Qualcomm Incorporated Systems and methods for beamforming and rate control in a multi-input multi-output communication systems
US8995547B2 (en) * 2005-03-11 2015-03-31 Qualcomm Incorporated Systems and methods for reducing uplink resources to provide channel performance feedback for adjustment of downlink MIMO channel data rates
US8724740B2 (en) 2005-03-11 2014-05-13 Qualcomm Incorporated Systems and methods for reducing uplink resources to provide channel performance feedback for adjustment of downlink MIMO channel data rates
US9154211B2 (en) 2005-03-11 2015-10-06 Qualcomm Incorporated Systems and methods for beamforming feedback in multi antenna communication systems
US7742444B2 (en) 2005-03-15 2010-06-22 Qualcomm Incorporated Multiple other sector information combining for power control in a wireless communication system
US8446892B2 (en) 2005-03-16 2013-05-21 Qualcomm Incorporated Channel structures for a quasi-orthogonal multiple-access communication system
US9520972B2 (en) 2005-03-17 2016-12-13 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9461859B2 (en) 2005-03-17 2016-10-04 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
US9143305B2 (en) 2005-03-17 2015-09-22 Qualcomm Incorporated Pilot signal transmission for an orthogonal frequency division wireless communication system
JP2006287756A (ja) 2005-04-01 2006-10-19 Ntt Docomo Inc 送信装置、送信方法、受信装置及び受信方法
US9184870B2 (en) 2005-04-01 2015-11-10 Qualcomm Incorporated Systems and methods for control channel signaling
KR101049440B1 (ko) * 2005-04-13 2011-07-15 연세대학교 산학협력단 공간 분할 다중화 심볼 검출 장치 및 그 방법
JP4646682B2 (ja) * 2005-04-13 2011-03-09 三洋電機株式会社 キャリブレーション方法ならびにそれを利用した無線装置および通信システム
US9036538B2 (en) 2005-04-19 2015-05-19 Qualcomm Incorporated Frequency hopping design for single carrier FDMA systems
US9408220B2 (en) 2005-04-19 2016-08-02 Qualcomm Incorporated Channel quality reporting for adaptive sectorization
US7466749B2 (en) 2005-05-12 2008-12-16 Qualcomm Incorporated Rate selection with margin sharing
US7872981B2 (en) * 2005-05-12 2011-01-18 Qualcomm Incorporated Rate selection for eigensteering in a MIMO communication system
US9130706B2 (en) * 2005-05-26 2015-09-08 Unwired Planet, Llc Method and apparatus for signal quality loss compensation in multiplexing transmission systems
US8879511B2 (en) 2005-10-27 2014-11-04 Qualcomm Incorporated Assignment acknowledgement for a wireless communication system
US8565194B2 (en) 2005-10-27 2013-10-22 Qualcomm Incorporated Puncturing signaling channel for a wireless communication system
US8611284B2 (en) 2005-05-31 2013-12-17 Qualcomm Incorporated Use of supplemental assignments to decrement resources
US8462859B2 (en) 2005-06-01 2013-06-11 Qualcomm Incorporated Sphere decoding apparatus
US9055552B2 (en) 2005-06-16 2015-06-09 Qualcomm Incorporated Quick paging channel with reduced probability of missed page
US8599945B2 (en) 2005-06-16 2013-12-03 Qualcomm Incorporated Robust rank prediction for a MIMO system
US20060285531A1 (en) * 2005-06-16 2006-12-21 Howard Steven J Efficient filter weight computation for a MIMO system
US8730877B2 (en) * 2005-06-16 2014-05-20 Qualcomm Incorporated Pilot and data transmission in a quasi-orthogonal single-carrier frequency division multiple access system
US8358714B2 (en) 2005-06-16 2013-01-22 Qualcomm Incorporated Coding and modulation for multiple data streams in a communication system
US8750908B2 (en) 2005-06-16 2014-06-10 Qualcomm Incorporated Quick paging channel with reduced probability of missed page
US9179319B2 (en) 2005-06-16 2015-11-03 Qualcomm Incorporated Adaptive sectorization in cellular systems
EP1897310B1 (en) * 2005-06-30 2010-02-17 Nokia Corporation Multi-stream fft for mimo-ofdm systems
CN1893308A (zh) * 2005-07-06 2007-01-10 都科摩(北京)通信技术研究中心有限公司 Mimo通信系统以及用户调度方法
JP4671790B2 (ja) * 2005-07-07 2011-04-20 パナソニック株式会社 通信装置、基地局装置及び通信方法
US10009956B1 (en) 2017-09-02 2018-06-26 Kamilo Feher OFDM, 3G and 4G cellular multimode systems and wireless mobile networks
KR100726340B1 (ko) * 2005-08-08 2007-06-11 인하대학교 산학협력단 다중입력 다중출력 시스템의 안테나 선택장치 및 방법
US8885628B2 (en) 2005-08-08 2014-11-11 Qualcomm Incorporated Code division multiplexing in a single-carrier frequency division multiple access system
US8073068B2 (en) * 2005-08-22 2011-12-06 Qualcomm Incorporated Selective virtual antenna transmission
US20070041457A1 (en) 2005-08-22 2007-02-22 Tamer Kadous Method and apparatus for providing antenna diversity in a wireless communication system
US9209956B2 (en) 2005-08-22 2015-12-08 Qualcomm Incorporated Segment sensitive scheduling
US8644292B2 (en) 2005-08-24 2014-02-04 Qualcomm Incorporated Varied transmission time intervals for wireless communication system
US9136974B2 (en) 2005-08-30 2015-09-15 Qualcomm Incorporated Precoding and SDMA support
JP4776311B2 (ja) * 2005-09-09 2011-09-21 Okiセミコンダクタ株式会社 尤度補正器及び尤度補正方法
US8942153B2 (en) * 2005-09-30 2015-01-27 Lg Electronics Inc. Method for transmitting and receiving data using a plurality of carriers
JP2007110456A (ja) * 2005-10-14 2007-04-26 Hitachi Ltd 無線通信装置
US9144060B2 (en) 2005-10-27 2015-09-22 Qualcomm Incorporated Resource allocation for shared signaling channels
EP1941647B1 (en) * 2005-10-27 2013-06-19 Qualcomm Incorporated Precoding for segment sensitive scheduling in wireless communication systems
US9210651B2 (en) 2005-10-27 2015-12-08 Qualcomm Incorporated Method and apparatus for bootstraping information in a communication system
US20090305664A1 (en) 2005-10-27 2009-12-10 Qualcomm Incorporated method and apparatus for attempting access in wireless communication systems
US9225488B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Shared signaling channel
US8045512B2 (en) 2005-10-27 2011-10-25 Qualcomm Incorporated Scalable frequency band operation in wireless communication systems
US9172453B2 (en) 2005-10-27 2015-10-27 Qualcomm Incorporated Method and apparatus for pre-coding frequency division duplexing system
US20090207790A1 (en) 2005-10-27 2009-08-20 Qualcomm Incorporated Method and apparatus for settingtuneawaystatus in an open state in wireless communication system
US9088384B2 (en) 2005-10-27 2015-07-21 Qualcomm Incorporated Pilot symbol transmission in wireless communication systems
US9225416B2 (en) 2005-10-27 2015-12-29 Qualcomm Incorporated Varied signaling channels for a reverse link in a wireless communication system
US8477684B2 (en) 2005-10-27 2013-07-02 Qualcomm Incorporated Acknowledgement of control messages in a wireless communication system
US8335272B2 (en) * 2005-10-28 2012-12-18 Koninklijke Philips Electronics N.V. Multiple antenna transmission with variable diversity gain
US7499426B2 (en) * 2005-11-04 2009-03-03 Intel Corporation Uplink throughput for wireless network interfaces
KR100761818B1 (ko) * 2005-11-07 2007-09-28 한국전자통신연구원 두 개의 유니터리 행렬로 구성되는 프리코딩 행렬을 이용한폐루프 mimo 방식의 데이터 전송 방법 및 송신 장치
US8582548B2 (en) 2005-11-18 2013-11-12 Qualcomm Incorporated Frequency division multiple access schemes for wireless communication
US8831607B2 (en) 2006-01-05 2014-09-09 Qualcomm Incorporated Reverse link other sector communication
US7940640B2 (en) 2006-01-20 2011-05-10 Nortel Networks Limited Adaptive orthogonal scheduling for virtual MIMO system
KR101221706B1 (ko) 2006-01-25 2013-01-11 삼성전자주식회사 고속 패킷 데이터 시스템의 순방향 링크에서 다중 입력 다중 출력 기술을 지원하는 송수신 장치 및 방법
KR100735373B1 (ko) * 2006-02-06 2007-07-04 삼성전자주식회사 통신 시스템에서 데이터 전송 방법 및 시스템
WO2007091317A1 (ja) * 2006-02-08 2007-08-16 Fujitsu Limited マルチアンテナ送信技術を用いた無線通信システム及び,これに適用するマルチユーザスケジューラ
US8116267B2 (en) * 2006-02-09 2012-02-14 Samsung Electronics Co., Ltd. Method and system for scheduling users based on user-determined ranks in a MIMO system
BRPI0708106A2 (pt) 2006-02-21 2011-05-17 Qualcomm Inc projeto de canal de realimentação para sistemas de comunicação de múltiplas entradas e múltiplas saìdas
US9461736B2 (en) 2006-02-21 2016-10-04 Qualcomm Incorporated Method and apparatus for sub-slot packets in wireless communication
US8077595B2 (en) 2006-02-21 2011-12-13 Qualcomm Incorporated Flexible time-frequency multiplexing structure for wireless communication
US8689025B2 (en) 2006-02-21 2014-04-01 Qualcomm Incorporated Reduced terminal power consumption via use of active hold state
US9130791B2 (en) 2006-03-20 2015-09-08 Qualcomm Incorporated Uplink channel estimation using a signaling channel
ES2395547T3 (es) * 2006-03-20 2013-02-13 Qualcomm Incorporated Estimación del canal ascendente utilizando un canal de señalización
US8428156B2 (en) 2006-03-20 2013-04-23 Qualcomm Incorporated Rate control for multi-channel communication systems
US8914015B2 (en) 2006-03-20 2014-12-16 Qualcomm Incorporated Grouping of users for MIMO transmission in a wireless communication system
US8059609B2 (en) * 2006-03-20 2011-11-15 Qualcomm Incorporated Resource allocation to support single-user and multi-user MIMO transmission
US8543070B2 (en) 2006-04-24 2013-09-24 Qualcomm Incorporated Reduced complexity beam-steered MIMO OFDM system
US8331342B2 (en) * 2006-04-28 2012-12-11 Samsung Electronics Co., Ltd. Apparatus and method for switching between single user and multi-user MIMO operation in a wireless network
WO2007124566A1 (en) * 2006-04-28 2007-11-08 Nortel Networks Limited Adaptive transmission systems and methods
US8290089B2 (en) * 2006-05-22 2012-10-16 Qualcomm Incorporated Derivation and feedback of transmit steering matrix
CN101047416B (zh) * 2006-06-15 2011-09-28 华为技术有限公司 数据传输系统和方法
US8929485B2 (en) * 2006-06-16 2015-01-06 Samsung Electronics Co., Ltd. System and method for broadcast pre-coding in a MIMO system
US20080003948A1 (en) * 2006-06-29 2008-01-03 Patrick Mitran Calibration systems and techniques for distributed beamforming
KR101269201B1 (ko) * 2006-06-30 2013-05-28 삼성전자주식회사 폐 루프 방식의 다중 안테나 시스템에서 데이터송/수신장치 및 방법
EP2056505B1 (en) * 2006-07-07 2014-08-27 Mitsubishi Electric Corporation Wireless communication system
US8326339B2 (en) * 2006-08-04 2012-12-04 Broadcom Corporation Method and apparatus to compute a noise power estimate in a WCDMA network
CN101127747B (zh) * 2006-08-14 2010-09-08 大唐移动通信设备有限公司 一种时分双工复用系统中实现频域调度的方法及系统
US8111782B2 (en) 2006-08-31 2012-02-07 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving data in a multi-antenna system, and system using the same
KR101099881B1 (ko) * 2006-09-06 2011-12-28 고려대학교 산학협력단 직교 공간 다중화 시스템에서의 안테나 선택 방법 및 장치
CA2820472A1 (en) * 2006-09-06 2008-03-13 Qualcomm Incorporated Codeword permutation and reduced feedback for grouped antennas
CN101155393B (zh) * 2006-09-28 2010-06-16 上海无线通信研究中心 演进的通用陆地无线接入系统的上行调度通讯方法
US7903615B2 (en) * 2006-10-10 2011-03-08 Qualcomm Incorporated Space division multiple access channelization in wireless communication systems
KR20080036493A (ko) * 2006-10-23 2008-04-28 엘지전자 주식회사 이동통신 시스템에서의 망 접속 방법 및 이를 지원하는단말기
ES2603090T3 (es) * 2006-11-01 2017-02-23 Fujitsu Limited Sistema de comunicaciones inalámbricas
US20080109694A1 (en) * 2006-11-07 2008-05-08 Innovative Sonic Limited Method and apparatus for performing uplink transmission in a multi-input multi-output user equipment of a wireless communications system
US20080112375A1 (en) * 2006-11-09 2008-05-15 Broadcom Corporation, A California Corporation Wireless network that adapts concurrent interfering transmission parameters based on channel conditions
US20080112342A1 (en) * 2006-11-09 2008-05-15 Broadcom Corporation, A California Corporation Cell supporting simultaneous and differing concurrent interfering transmission parameters and techniques
US8126396B2 (en) * 2006-11-09 2012-02-28 Broadcom Corporation Wireless network that utilizes concurrent interfering transmission and MIMO techniques
US8194587B2 (en) * 2006-11-09 2012-06-05 Broadcom Corporation Adaptive network supporting single to concurrent interfering wireless transmissions
US8077788B2 (en) 2006-12-01 2011-12-13 Rockstar Bidco, LP Soft demapping for MIMO decoding
US7746952B2 (en) * 2007-01-08 2010-06-29 Samsung Electronics, Co., Ltd. Apparatus for generating precoding codebook for MIMO system and method using the apparatus
EP3174221B1 (en) * 2007-01-12 2018-09-26 Telefonaktiebolaget LM Ericsson (publ) Method and arrangement in a wireless communications system
KR100954819B1 (ko) * 2007-01-22 2010-04-28 이노베이티브 소닉 리미티드 무선통신시스템에서 다중입력다중출력(mimo)프로세스를 개선하는 방법 및 장치
JP4882790B2 (ja) * 2007-02-23 2012-02-22 住友電気工業株式会社 通信装置及びウェイト更新方法
JP4882791B2 (ja) * 2007-02-23 2012-02-22 住友電気工業株式会社 通信装置及びウェイト更新方法
US8861356B2 (en) 2007-03-13 2014-10-14 Ntt Docomo, Inc. Method and apparatus for prioritized information delivery with network coding over time-varying network topologies
EP2143227A1 (en) * 2007-04-30 2010-01-13 Telefonaktiebolaget LM Ericsson (PUBL) Method and arrangement relating to communications network
JP5039831B2 (ja) 2007-04-30 2012-10-03 テレフオンアクチーボラゲット エル エム エリクソン(パブル) マルチアンテナ送信を適応させるための方法及び配置
US20080273452A1 (en) * 2007-05-04 2008-11-06 Farooq Khan Antenna mapping in a MIMO wireless communication system
CN101340265B (zh) * 2007-07-03 2012-12-26 株式会社Ntt都科摩 无线通信中的数据流处理方法及装置
EP2017973A1 (en) * 2007-07-20 2009-01-21 Lucent Technologies Inc. Method and apparatuses for selecting a subchannels subset in wireless communications network using relays
US8989155B2 (en) * 2007-08-20 2015-03-24 Rearden, Llc Systems and methods for wireless backhaul in distributed-input distributed-output wireless systems
CN101836369A (zh) 2007-08-27 2010-09-15 北方电讯网络有限公司 使用基于mimo的网络编码的通信系统
CN101378281B (zh) * 2007-08-30 2012-09-26 中兴通讯股份有限公司 一种多输入多输出系统信号处理方法及装置
CN101388752B (zh) * 2007-09-11 2011-08-17 电信科学技术研究院 基于时分双工系统的上行空间传输方法、终端和基站
KR20090030200A (ko) 2007-09-19 2009-03-24 엘지전자 주식회사 위상천이 기반의 프리코딩을 이용한 데이터 송수신 방법 및이를 지원하는 송수신기
US20090075686A1 (en) * 2007-09-19 2009-03-19 Gomadam Krishna S Method and apparatus for wideband transmission based on multi-user mimo and two-way training
CN101394254B (zh) * 2007-09-20 2011-04-20 鼎桥通信技术有限公司 多用户多输入多输出系统中的线性预编码方法
EP2193611B1 (fr) * 2007-09-20 2011-03-09 France Telecom Procede d'emission et de reception d'un signal dans un systeme multi-antennes mettant en oeuvre un precodage spatial, emetteur, recepteur, et produits programme d'ordinateur correspondants
US8848913B2 (en) * 2007-10-04 2014-09-30 Qualcomm Incorporated Scrambling sequence generation in a communication system
EP3934123A1 (en) 2007-10-31 2022-01-05 Telefonaktiebolaget LM Ericsson (publ) Selection of transmit mode during a random access procedure
US7970355B2 (en) * 2007-12-04 2011-06-28 Designart Networks Ltd Method and device for wireless communication using MIMO techniques
CN101471708B (zh) * 2007-12-28 2012-09-05 华为技术有限公司 时分双工多输入多输出的下行波束形成方法、装置和系统
US8787181B2 (en) * 2008-01-14 2014-07-22 Qualcomm Incorporated Resource allocation randomization
WO2009107985A1 (en) 2008-02-28 2009-09-03 Lg Electronics Inc. Method for multiplexing data and control information
WO2009114391A1 (en) * 2008-03-07 2009-09-17 Interdigital Patent Holdings, Inc. Partial channel precoding and successive interference cancellation for multi-input multi-output orthogonal frequency division modulation (mimo-ofdm) systems
CN104158617A (zh) * 2008-03-10 2014-11-19 蔚蓝公司 高效及一致的无线下行链路信道配置
US8958460B2 (en) 2008-03-18 2015-02-17 On-Ramp Wireless, Inc. Forward error correction media access control system
US8477830B2 (en) 2008-03-18 2013-07-02 On-Ramp Wireless, Inc. Light monitoring system using a random phase multiple access system
US8520721B2 (en) 2008-03-18 2013-08-27 On-Ramp Wireless, Inc. RSSI measurement mechanism in the presence of pulsed jammers
US8923249B2 (en) * 2008-03-26 2014-12-30 Qualcomm Incorporated Method and apparatus for scrambling sequence generation in a communication system
EP2267925B1 (en) * 2008-04-04 2017-05-03 Ntt Docomo, Inc. Mobile communication system, reception device, and method
US8634384B2 (en) * 2008-04-11 2014-01-21 Wi-Lan Inc. Efficient determination of a link performance parameter
US8712334B2 (en) 2008-05-20 2014-04-29 Micron Technology, Inc. RFID device using single antenna for multiple resonant frequency ranges
US8315229B2 (en) 2008-07-07 2012-11-20 Research In Motion Limited Methods and apparatus for wireless communication
US8547861B2 (en) 2008-07-07 2013-10-01 Apple Inc. Optimizing downlink communications between a base station and a remote terminal by power sharing
CN101626608B (zh) * 2008-07-07 2012-07-04 中兴通讯美国公司 在无线通信系统中使用认证序列
US8811339B2 (en) 2008-07-07 2014-08-19 Blackberry Limited Handover schemes for wireless systems
KR101208549B1 (ko) * 2008-08-05 2012-12-05 엘지전자 주식회사 하향링크 mimo시스템에 있어서 기준 신호 송신 방법
US9755705B2 (en) * 2008-08-07 2017-09-05 Qualcomm Incorporated Method and apparatus for supporting multi-user and single-user MIMO in a wireless communication system
KR101580004B1 (ko) * 2008-08-08 2015-12-24 파나소닉 인텔렉츄얼 프로퍼티 코포레이션 오브 아메리카 단말 장치 및 수신 방법
US9294160B2 (en) 2008-08-11 2016-03-22 Qualcomm Incorporated Method and apparatus for supporting distributed MIMO in a wireless communication system
US9883511B1 (en) * 2012-12-05 2018-01-30 Origin Wireless, Inc. Waveform design for time-reversal systems
US7924754B2 (en) * 2008-09-23 2011-04-12 Telefonaktiebolaget L M Ericsson Multiple carrier acknowledgment signaling
US8340235B2 (en) 2008-09-25 2012-12-25 Research In Motion Limited X-MIMO systems with multi-transmitters and multi-receivers
US20100080317A1 (en) * 2008-10-01 2010-04-01 Quantenna Communications, Inc. Symbol mixing across multiple parallel channels
JP4670934B2 (ja) * 2008-10-10 2011-04-13 ソニー株式会社 無線通信システム、無線通信装置、無線通信方法およびコンピュータプログラム
US8848764B2 (en) 2008-11-13 2014-09-30 Blackberry Limited Reduced complexity channel estimation for uplink receiver
KR20100088554A (ko) * 2009-01-30 2010-08-09 엘지전자 주식회사 무선 통신 시스템에서 신호 수신 및 전송 방법 및 장치
US8217802B2 (en) * 2009-02-03 2012-07-10 Schlumberger Technology Corporation Methods and systems for borehole telemetry
JP5418929B2 (ja) * 2009-03-17 2014-02-19 ▲ホア▼▲ウェイ▼技術有限公司 伝送モードを決定する方法、装置、および端末
US8363699B2 (en) 2009-03-20 2013-01-29 On-Ramp Wireless, Inc. Random timing offset determination
US20100239032A1 (en) * 2009-03-20 2010-09-23 Industrial Technology Research Institute System and method for precoding and data exchange in wireless communication
US9160426B2 (en) * 2009-04-24 2015-10-13 Electronics And Telecommunications Research Institute Cooperative communication method in cellular wireless communication system and terminal for performing the method
US8599803B1 (en) 2009-05-01 2013-12-03 Marvell International Ltd. Open loop multiple access for WLAN
US8836601B2 (en) 2013-02-04 2014-09-16 Ubiquiti Networks, Inc. Dual receiver/transmitter radio devices with choke
US9634373B2 (en) 2009-06-04 2017-04-25 Ubiquiti Networks, Inc. Antenna isolation shrouds and reflectors
US9496620B2 (en) 2013-02-04 2016-11-15 Ubiquiti Networks, Inc. Radio system for long-range high-speed wireless communication
KR101921755B1 (ko) * 2009-07-03 2018-11-23 파나소닉 인텔렉츄얼 프로퍼티 코포레이션 오브 아메리카 무선 통신 장치 및 무선 통신 방법
US8885551B2 (en) 2009-07-06 2014-11-11 Qualcomm Incorporated Multiuser scheduling in WLAN systems
CN101621322B (zh) * 2009-07-23 2013-05-22 北京航空航天大学 协作多点mimo传输中的低反馈量多用户调度方法
AU2010274573B2 (en) * 2009-07-24 2014-05-15 Apple Inc. Wireless communication device and wireless communication method
JP5008702B2 (ja) * 2009-08-14 2012-08-22 日本電信電話株式会社 空間多重伝送用送信方法および空間多重伝送用送信装置
US9137802B2 (en) * 2009-08-18 2015-09-15 Qualcomm Incorporated DL MU-MIMO operation in LTE-A
WO2011035439A1 (en) * 2009-09-24 2011-03-31 Nortel Networks Limited X-mimo systems with multi-transmitters and multi- receivers
WO2011055024A1 (fr) * 2009-11-09 2011-05-12 Time Reversal Communications Procédé pour émettre des données numériques pre-egalisées, et base émettrice mettant en oeuvre un tel procédé
US9474082B2 (en) * 2009-11-09 2016-10-18 Apple Inc. Method and apparatus for co-scheduling transmissions in a wireless network
US20120008510A1 (en) * 2010-01-07 2012-01-12 Interdigital Patent Holdings, Inc. Method and Apparatus for Performing Uplink Antenna Transmit Diversity
KR101694985B1 (ko) * 2010-01-22 2017-01-12 인하대학교 산학협력단 부분공간 간섭 정렬 방법 및 간섭 정렬 시스템
JP5391335B2 (ja) * 2010-01-27 2014-01-15 ゼットティーイー コーポレーション 多入力多出力ビーム形成のデータ送信方法及び装置
GB201004947D0 (en) * 2010-03-24 2010-05-12 Pace Plc Receiver with high performance channel estimation
KR101695023B1 (ko) * 2010-03-29 2017-01-10 삼성전자주식회사 다중 안테나 기술을 지원하는 무선 통신 시스템의 상향 링크에서 재전송 제어 방법 및 장치
US8953522B2 (en) 2010-03-29 2015-02-10 Samsung Electronics Co., Ltd. Method and apparatus for controlling retransmission on uplink in a wireless communication system supporting MIMO
CA2801007C (en) 2010-06-08 2016-01-05 Samsung Electronics Co., Ltd. Multiplexing control and data information from a user equipment in mimo transmission mode
JP2012014009A (ja) * 2010-07-01 2012-01-19 Ricoh Co Ltd 電磁アクチュエータ検査装置及び画像形成装置
JP5521841B2 (ja) 2010-07-12 2014-06-18 株式会社リコー 無線アクセスシステム
US10511887B2 (en) 2010-08-30 2019-12-17 Saturn Licensing Llc Reception apparatus, reception method, transmission apparatus, transmission method, program, and broadcasting system
US8699644B1 (en) * 2010-10-28 2014-04-15 Marvell International Ltd. Adaptive low-complexity channel estimation
CN104081795B (zh) 2011-11-07 2018-12-21 大力系统有限公司 虚拟化无线网络
US9420628B2 (en) * 2011-11-07 2016-08-16 Dali Systems Co. Ltd. Virtualized wireless network with pilot beacons
CN103188768A (zh) * 2011-12-30 2013-07-03 华为终端有限公司 一种通信模式选择方法及装置
US9026161B2 (en) * 2012-04-19 2015-05-05 Raytheon Company Phased array antenna having assignment based control and related techniques
US9240853B2 (en) 2012-11-16 2016-01-19 Huawei Technologies Co., Ltd. Systems and methods for sparse code multiple access
US11189917B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for distributing radioheads
US10194346B2 (en) 2012-11-26 2019-01-29 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US11190947B2 (en) 2014-04-16 2021-11-30 Rearden, Llc Systems and methods for concurrent spectrum usage within actively used spectrum
US11050468B2 (en) 2014-04-16 2021-06-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US9397820B2 (en) 2013-02-04 2016-07-19 Ubiquiti Networks, Inc. Agile duplexing wireless radio devices
US9543635B2 (en) 2013-02-04 2017-01-10 Ubiquiti Networks, Inc. Operation of radio devices for long-range high-speed wireless communication
US20160218406A1 (en) 2013-02-04 2016-07-28 John R. Sanford Coaxial rf dual-polarized waveguide filter and method
US9055459B2 (en) * 2013-02-07 2015-06-09 Qualcomm Incorporated Method and system for dual-mode rate control in a wireless communication system
US9373885B2 (en) 2013-02-08 2016-06-21 Ubiquiti Networks, Inc. Radio system for high-speed wireless communication
US9973246B2 (en) 2013-03-12 2018-05-15 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US9923657B2 (en) * 2013-03-12 2018-03-20 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10164698B2 (en) 2013-03-12 2018-12-25 Rearden, Llc Systems and methods for exploiting inter-cell multiplexing gain in wireless cellular systems via distributed input distributed output technology
US10488535B2 (en) 2013-03-12 2019-11-26 Rearden, Llc Apparatus and method for capturing still images and video using diffraction coded imaging techniques
RU2767777C2 (ru) 2013-03-15 2022-03-21 Риарден, Ллк Системы и способы радиочастотной калибровки с использованием принципа взаимности каналов в беспроводной связи с распределенным входом - распределенным выходом
EP2785077B1 (en) * 2013-03-27 2017-08-30 Alcatel Lucent Implicit addressing for sporadic machine-type access
BR112016007701B1 (pt) 2013-10-11 2023-01-31 Ubiquiti Inc Método para controlar a recepção de um rádio de banda larga sem fio
KR102228883B1 (ko) * 2013-11-29 2021-03-17 삼성전자주식회사 백홀을 통하여 기지국들 간 정보를 공유하는 멀티 셀 시스템에서 셀 간 간섭을 제거하는 장치 및 방법
US9306654B2 (en) 2014-01-10 2016-04-05 Qualcomm Incorporated Opportunistic active interference cancellation using RX diversity antenna
US20150256355A1 (en) 2014-03-07 2015-09-10 Robert J. Pera Wall-mounted interactive sensing and audio-visual node devices for networked living and work spaces
US9172605B2 (en) 2014-03-07 2015-10-27 Ubiquiti Networks, Inc. Cloud device identification and authentication
US10574474B2 (en) 2014-03-07 2020-02-25 Ubiquiti Inc. Integrated power receptacle wireless access point (AP) adapter devices
WO2015142723A1 (en) 2014-03-17 2015-09-24 Ubiquiti Networks, Inc. Array antennas having a plurality of directional beams
DK3127187T3 (da) 2014-04-01 2021-02-08 Ubiquiti Inc Antenneanordning
US11290162B2 (en) 2014-04-16 2022-03-29 Rearden, Llc Systems and methods for mitigating interference within actively used spectrum
US9985701B2 (en) * 2014-05-07 2018-05-29 National Instruments Corporation Signaling and frame structure for massive MIMO cellular telecommunication systems
US10425536B2 (en) 2014-05-08 2019-09-24 Ubiquiti Networks, Inc. Phone systems and methods of communication
WO2016003864A1 (en) 2014-06-30 2016-01-07 Ubiquiti Networks, Inc. Wireless radio device alignment tools and methods
CN105993183B (zh) 2014-06-30 2019-08-13 优倍快网络公司 用于在无线电网络的配置中使用功能图协助的方法和工具
CN105874839B (zh) 2014-08-31 2019-11-15 优倍快网络公司 用于监测及改善无线网络健康的方法和装置
EP3188393B1 (en) * 2014-09-19 2019-04-17 Huawei Technologies Co., Ltd. Multiplexing method for multiple users, base station, and user terminal
US10164332B2 (en) 2014-10-14 2018-12-25 Ubiquiti Networks, Inc. Multi-sector antennas
CN104393908B (zh) * 2014-11-26 2018-04-27 成都中远信电子科技有限公司 一种用于无人机遥测、遥控和数传系统的方法
CN104393912B (zh) * 2014-11-26 2018-06-22 成都中远信电子科技有限公司 一种用于无人机的地空宽带通信系统及其方法
EP3863350A1 (en) 2015-02-02 2021-08-11 Huawei Technologies Co., Ltd. Resource indication method and apparatus
US10284268B2 (en) 2015-02-23 2019-05-07 Ubiquiti Networks, Inc. Radio apparatuses for long-range communication of radio-frequency information
JP6666331B2 (ja) * 2015-03-26 2020-03-13 株式会社Nttドコモ 無線通信制御方法および無線通信システム
US10212751B2 (en) * 2015-04-22 2019-02-19 Mediatek Inc. Method of configuring transmission data streams and wireless communication system
CN106330649B (zh) * 2015-06-18 2019-08-02 新华三技术有限公司 一种跨软件定义网络的数据报文转发方法和装置
TWI565271B (zh) * 2015-06-26 2017-01-01 晨星半導體股份有限公司 可修正信雜特徵值估計的接收電路與相關方法
CN108353232B (zh) 2015-09-11 2020-09-29 优倍快公司 紧凑型播音接入点装置
WO2017053956A1 (en) 2015-09-25 2017-03-30 Ubiquiti Networks, Inc. Compact and integrated key controller apparatus for monitoring networks
US9654188B2 (en) 2015-09-30 2017-05-16 National Instruments Corporation Scalable massive MIMO
CN107040294B (zh) 2015-10-09 2020-10-16 优倍快公司 同步多无线电天线系统和方法
WO2018020405A1 (en) * 2016-07-26 2018-02-01 Karthik Muralidhar Method for improving signal to noise ratio in an uplink transmission
KR102255878B1 (ko) * 2016-08-31 2021-05-24 후아웨이 테크놀러지 컴퍼니 리미티드 포스 터치 기반 통신 강화 방법 및 단말
US10020839B2 (en) 2016-11-14 2018-07-10 Rampart Communications, LLC Reliable orthogonal spreading codes in wireless communications
US10270625B2 (en) 2016-12-19 2019-04-23 Futurewei Technologies, Inc. Hardware virtualization for mean and variance estimations of QAM symbols
EP3586470A4 (en) * 2017-02-24 2021-03-10 AMI Research & Development, LLC DIRECTIONAL MIMO ANTENNA
US9942020B1 (en) * 2017-04-26 2018-04-10 Cisco Technology, Inc. Minimum delay spatio-temporal filtering for interference rejection
WO2019014229A1 (en) 2017-07-10 2019-01-17 Ubiquiti Networks, Inc. PORTABLE VIDEO CAMERA MEDALLION WITH CIRCULAR DISPLAY
CN111466108B (zh) 2017-09-27 2022-12-06 优倍快公司 用于自动安全远程访问本地网络的系统
WO2019076513A1 (en) 2017-10-17 2019-04-25 Telefonaktiebolaget Lm Ericsson (Publ) DISTRIBUTED MIMO SYNCHRONIZATION
EP3714551A1 (en) 2017-11-21 2020-09-30 Telefonaktiebolaget LM Ericsson (publ) Improved antenna arrangement for distributed massive mimo
WO2019139993A1 (en) 2018-01-09 2019-07-18 Ubiquiti Networks, Inc. Quick connecting twisted pair cables
FR3079375B1 (fr) * 2018-03-22 2020-03-13 Thales Procede adaptatif robuste de suppression d'interferences en presence de signal utile
US10727911B2 (en) * 2018-08-20 2020-07-28 Nokia Solutions And Networks Oy Beamforming in MIMO radio networks
US10873361B2 (en) 2019-05-17 2020-12-22 Rampart Communications, Inc. Communication system and methods using multiple-in-multiple-out (MIMO) antennas within unitary braid divisional multiplexing (UBDM)
US11641269B2 (en) 2020-06-30 2023-05-02 Rampart Communications, Inc. Modulation-agnostic transformations using unitary braid divisional multiplexing (UBDM)
US11050604B2 (en) 2019-07-01 2021-06-29 Rampart Communications, Inc. Systems, methods and apparatuses for modulation-agnostic unitary braid division multiplexing signal transformation
US11025470B2 (en) 2019-07-01 2021-06-01 Rampart Communications, Inc. Communication system and method using orthogonal frequency division multiplexing (OFDM) with non-linear transformation
US10917148B2 (en) * 2019-07-01 2021-02-09 Rampart Communications, Inc. Systems, methods and apparatus for secure and efficient wireless communication of signals using a generalized approach within unitary braid division multiplexing
US10833749B1 (en) 2019-07-01 2020-11-10 Rampart Communications, Inc. Communication system and method using layered construction of arbitrary unitary matrices
US10951442B2 (en) * 2019-07-31 2021-03-16 Rampart Communications, Inc. Communication system and method using unitary braid divisional multiplexing (UBDM) with physical layer security
US10735062B1 (en) 2019-09-04 2020-08-04 Rampart Communications, Inc. Communication system and method for achieving high data rates using modified nearly-equiangular tight frame (NETF) matrices
JP2022547955A (ja) 2019-09-13 2022-11-16 ユービキティ インコーポレイテッド インターネット接続設定のための拡張現実
US10965352B1 (en) 2019-09-24 2021-03-30 Rampart Communications, Inc. Communication system and methods using very large multiple-in multiple-out (MIMO) antenna systems with extremely large class of fast unitary transformations
CN110912587B (zh) * 2019-11-08 2021-12-14 杭州电子科技大学 Fdd系统中已知导向矩阵条件下预编码设计方法
US11159220B2 (en) 2020-02-11 2021-10-26 Rampart Communications, Inc. Single input single output (SISO) physical layer key exchange
US20230155742A1 (en) * 2020-04-24 2023-05-18 Telefonaktiebolaget Lm Ericsson (Publ) Hybrid Automatic Repeat Request (ARQ) with Spatial Diversity
BR112023005015A2 (pt) 2020-09-17 2023-04-18 Samsung Electronics Co Ltd Método e aparelho de transmissão para sistema mimo
US11626908B2 (en) * 2020-12-30 2023-04-11 Qualcomm Incorporated Techniques for antenna selection in non-co-located dual-polarized antenna arrays

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239677A (en) * 1991-07-01 1993-08-24 Motorola, Inc. Method and apparatus for initiating communication on an assigned frequency
US5422733A (en) * 1994-02-04 1995-06-06 Motorola, Inc. Method and apparatus for facsimile communication of first and second type information with selective call communication systems
RU2134489C1 (ru) * 1995-07-05 1999-08-10 Моторола, Инк. Способ и устройство для выбора входящего канала в системе связи
US6351499B1 (en) * 1999-12-15 2002-02-26 Iospan Wireless, Inc. Method and wireless systems using multiple antennas and adaptive control for maximizing a communication parameter

Family Cites Families (543)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US174981A (en) * 1876-03-21 Improvement in methods of raising and screening sand
US4679227A (en) 1985-05-20 1987-07-07 Telebit Corporation Ensemble modem structure for imperfect transmission media
CA1261080A (en) * 1985-12-30 1989-09-26 Shunichiro Tejima Satellite communications system with random multiple access and time slot reservation
US4750198A (en) 1986-12-12 1988-06-07 Astronet Corporation/Plessey U.K. Cellular radiotelephone system providing diverse separately-accessible groups of channels
US4797879A (en) 1987-06-05 1989-01-10 American Telephone And Telegraph Company At&T Bell Laboratories Packet switched interconnection protocols for a star configured optical lan
JP2873320B2 (ja) 1989-09-19 1999-03-24 日本電信電話株式会社 移動局の在圏セクタ判定方式
IL100213A (en) 1990-12-07 1995-03-30 Qualcomm Inc Mikrata Kedma phone system and its antenna distribution system
IT1250515B (it) 1991-10-07 1995-04-08 Sixtel Spa Rete per area locale senza fili.
US5241544A (en) 1991-11-01 1993-08-31 Motorola, Inc. Multi-channel tdm communication system slot phase correction
US5592490A (en) 1991-12-12 1997-01-07 Arraycomm, Inc. Spectrally efficient high capacity wireless communication systems
US6850252B1 (en) 1999-10-05 2005-02-01 Steven M. Hoffberg Intelligent electronic appliance system and method
US5295159A (en) * 1992-04-17 1994-03-15 Bell Communications Research, Inc. Coordinated coding for digital transmission
RU2015281C1 (ru) 1992-09-22 1994-06-30 Борис Михайлович Кондрашов Запорное устройство
US5404355A (en) * 1992-10-05 1995-04-04 Ericsson Ge Mobile Communications, Inc. Method for transmitting broadcast information in a digital control channel
GB2300337B (en) 1992-10-05 1997-03-26 Ericsson Ge Mobile Communicat Digital control channel
DE69327837T2 (de) 1992-12-01 2000-10-12 Koninkl Philips Electronics Nv Teilband-Diversityübertragungssystem
US5471647A (en) 1993-04-14 1995-11-28 The Leland Stanford Junior University Method for minimizing cross-talk in adaptive transmission antennas
US5479447A (en) 1993-05-03 1995-12-26 The Board Of Trustees Of The Leland Stanford, Junior University Method and apparatus for adaptive, variable bandwidth, high-speed data transmission of a multicarrier signal over digital subscriber lines
US5483667A (en) 1993-07-08 1996-01-09 Northern Telecom Limited Frequency plan for a cellular network
DE69423546T2 (de) * 1993-07-09 2000-09-21 Koninkl Philips Electronics Nv Telekommunikationsnetzwerk, Hauptstation und Nebenstation zum Gebrauch in solchem Netzwerk
ZA946674B (en) 1993-09-08 1995-05-02 Qualcomm Inc Method and apparatus for determining the transmission data rate in a multi-user communication system
US5506861A (en) * 1993-11-22 1996-04-09 Ericsson Ge Mobile Comminications Inc. System and method for joint demodulation of CDMA signals
US5490087A (en) 1993-12-06 1996-02-06 Motorola, Inc. Radio channel access control
US5418813A (en) 1993-12-06 1995-05-23 Motorola, Inc. Method and apparatus for creating a composite waveform
US5491837A (en) * 1994-03-07 1996-02-13 Ericsson Inc. Method and system for channel allocation using power control and mobile-assisted handover measurements
US5493712A (en) * 1994-03-23 1996-02-20 At&T Corp. Fast AGC for TDMA radio systems
JP3055085B2 (ja) * 1994-04-22 2000-06-19 株式会社アドバンテスト デジタル変調解析装置
CN1149375A (zh) 1994-05-02 1997-05-07 摩托罗拉公司 多路子信道通用协议的方法和装置
US5677909A (en) 1994-05-11 1997-10-14 Spectrix Corporation Apparatus for exchanging data between a central station and a plurality of wireless remote stations on a time divided commnication channel
US6157343A (en) * 1996-09-09 2000-12-05 Telefonaktiebolaget Lm Ericsson Antenna array calibration
DE4425713C1 (de) 1994-07-20 1995-04-20 Inst Rundfunktechnik Gmbh Verfahren zur Vielträger Modulation und Demodulation von digital codierten Daten
FR2724084B1 (fr) 1994-08-31 1997-01-03 Alcatel Mobile Comm France Systeme de transmission d'informations par un canal de transmission variant dans le temps, et equipements d'emission et de reception correspondants
US5710768A (en) 1994-09-30 1998-01-20 Qualcomm Incorporated Method of searching for a bursty signal
MY120873A (en) 1994-09-30 2005-12-30 Qualcomm Inc Multipath search processor for a spread spectrum multiple access communication system
JP3231575B2 (ja) * 1995-04-18 2001-11-26 三菱電機株式会社 無線データ伝送装置
KR0155818B1 (ko) 1995-04-29 1998-11-16 김광호 다중 반송파 전송시스템에서 적응형 전력 분배 방법 및 장치
US6018317A (en) * 1995-06-02 2000-01-25 Trw Inc. Cochannel signal processing system
US5606729A (en) * 1995-06-21 1997-02-25 Motorola, Inc. Method and apparatus for implementing a received signal quality measurement in a radio communication system
US5729542A (en) 1995-06-28 1998-03-17 Motorola, Inc. Method and apparatus for communication system access
US7929498B2 (en) * 1995-06-30 2011-04-19 Interdigital Technology Corporation Adaptive forward power control and adaptive reverse power control for spread-spectrum communications
DE69535033T2 (de) 1995-07-11 2007-03-08 Alcatel Zuweisung von Kapazität bei OFDM
GB9514659D0 (en) 1995-07-18 1995-09-13 Northern Telecom Ltd An antenna downlink beamsteering arrangement
US5867539A (en) * 1995-07-21 1999-02-02 Hitachi America, Ltd. Methods and apparatus for reducing the effect of impulse noise on receivers
FI98674C (fi) * 1995-08-18 1997-07-25 Nokia Mobile Phones Ltd Menetelmä lähetystehon säätämiseksi yhteydenmuodostuksen aikana sekä solukkoradiojärjestelmä
JP2802255B2 (ja) 1995-09-06 1998-09-24 株式会社次世代デジタルテレビジョン放送システム研究所 直交周波数分割多重伝送方式及びそれを用いる送信装置と受信装置
GB9521739D0 (en) 1995-10-24 1996-01-03 Nat Transcommunications Ltd Decoding carriers encoded using orthogonal frequency division multiplexing
US6005876A (en) 1996-03-08 1999-12-21 At&T Corp Method and apparatus for mobile data communication
US5699365A (en) 1996-03-27 1997-12-16 Motorola, Inc. Apparatus and method for adaptive forward error correction in data communications
JPH09266466A (ja) 1996-03-28 1997-10-07 Sumitomo Electric Ind Ltd デジタル伝送システム
US5799005A (en) * 1996-04-30 1998-08-25 Qualcomm Incorporated System and method for determining received pilot power and path loss in a CDMA communication system
US5924015A (en) 1996-04-30 1999-07-13 Trw Inc Power control method and apparatus for satellite based telecommunications system
EP0807989B1 (en) 1996-05-17 2001-06-27 Motorola Ltd Devices for transmitter path weights and methods therefor
JPH09307526A (ja) 1996-05-17 1997-11-28 Mitsubishi Electric Corp デジタル放送受信機
US5822374A (en) 1996-06-07 1998-10-13 Motorola, Inc. Method for fine gains adjustment in an ADSL communications system
JPH09327073A (ja) 1996-06-07 1997-12-16 N T T Ido Tsushinmo Kk Cdma移動通信システムにおけるパイロットチャネル配置および送信方法
FI101920B (fi) 1996-06-07 1998-09-15 Nokia Telecommunications Oy Kanavanvarausmenetelmä pakettiverkkoa varten
US6798735B1 (en) 1996-06-12 2004-09-28 Aware, Inc. Adaptive allocation for variable bandwidth multicarrier communication
US6072779A (en) 1997-06-12 2000-06-06 Aware, Inc. Adaptive allocation for variable bandwidth multicarrier communication
US6097771A (en) 1996-07-01 2000-08-01 Lucent Technologies Inc. Wireless communications system having a layered space-time architecture employing multi-element antennas
JPH1028077A (ja) 1996-07-11 1998-01-27 Takuro Sato 通信装置
JPH1051402A (ja) 1996-08-01 1998-02-20 Nec Corp 受信電界検出回路
US6067292A (en) 1996-08-20 2000-05-23 Lucent Technologies Inc Pilot interference cancellation for a coherent wireless code division multiple access receiver
US6144711A (en) * 1996-08-29 2000-11-07 Cisco Systems, Inc. Spatio-temporal processing for communication
JP2001359152A (ja) 2000-06-14 2001-12-26 Sony Corp 無線通信システム、無線基地局装置、無線移動局装置、無線ゾーン割当て方法及び無線通信方法
JP2846860B2 (ja) * 1996-10-01 1999-01-13 ユニデン株式会社 スペクトル拡散通信方式を用いた送信機、受信機、通信システム及び通信方法
US6275543B1 (en) 1996-10-11 2001-08-14 Arraycomm, Inc. Method for reference signal generation in the presence of frequency offsets in a communications station with spatial processing
TW496620U (en) 1996-10-16 2002-07-21 Behavior Tech Computer Corp Wireless data transmitting apparatus
US5886988A (en) 1996-10-23 1999-03-23 Arraycomm, Inc. Channel assignment and call admission control for spatial division multiple access communication systems
US6049548A (en) * 1996-11-22 2000-04-11 Stanford Telecommunications, Inc. Multi-access CS-P/CD-E system and protocols on satellite channels applicable to a group of mobile users in close proximity
WO1998024192A1 (en) 1996-11-26 1998-06-04 Trw Inc. Cochannel signal processing system
US5896376A (en) 1996-12-13 1999-04-20 Ericsson Inc. Optimal use of logical channels within a mobile telecommunications network
US6232918B1 (en) * 1997-01-08 2001-05-15 Us Wireless Corporation Antenna array calibration in wireless communication systems
JPH10209956A (ja) 1997-01-28 1998-08-07 Nippon Telegr & Teleph Corp <Ntt> 無線パケット通信方法
US6128276A (en) * 1997-02-24 2000-10-03 Radix Wireless, Inc. Stacked-carrier discrete multiple tone communication technology and combinations with code nulling, interference cancellation, retrodirective communication and adaptive antenna arrays
JPH10303794A (ja) 1997-02-27 1998-11-13 Mitsubishi Electric Corp 既知系列検出器
US6084915A (en) 1997-03-03 2000-07-04 3Com Corporation Signaling method having mixed-base shell map indices
US6175550B1 (en) 1997-04-01 2001-01-16 Lucent Technologies, Inc. Orthogonal frequency division multiplexing system with dynamically scalable operating parameters and method thereof
KR100267856B1 (ko) 1997-04-16 2000-10-16 윤종용 이동통신시스템에서오버헤드채널관리방법및장치
US6308080B1 (en) 1997-05-16 2001-10-23 Texas Instruments Incorporated Power control in point-to-multipoint systems
US6347217B1 (en) * 1997-05-22 2002-02-12 Telefonaktiebolaget Lm Ericsson (Publ) Link quality reporting using frame erasure rates
US6008760A (en) * 1997-05-23 1999-12-28 Genghis Comm Cancellation system for frequency reuse in microwave communications
FR2764143A1 (fr) 1997-05-27 1998-12-04 Philips Electronics Nv Procede de determination d'un format d'emission de symboles dans un systeme de transmission et systeme
US6141555A (en) * 1997-06-09 2000-10-31 Nec Corporation Cellular communication system, and mobile and base stations used in the same
US5867478A (en) * 1997-06-20 1999-02-02 Motorola, Inc. Synchronous coherent orthogonal frequency division multiplexing system, method, software and device
US6067458A (en) 1997-07-01 2000-05-23 Qualcomm Incorporated Method and apparatus for pre-transmission power control using lower rate for high rate communication
US6108369A (en) 1997-07-11 2000-08-22 Telefonaktiebolaget Lm Ericsson Channelization code allocation for radio communication systems
US6333953B1 (en) 1997-07-21 2001-12-25 Ericsson Inc. System and methods for selecting an appropriate detection technique in a radiocommunication system
EP0895387A1 (de) 1997-07-28 1999-02-03 Deutsche Thomson-Brandt Gmbh Erkennung des Übertragungsmodus eines DVB-Signales
US6141542A (en) 1997-07-31 2000-10-31 Motorola, Inc. Method and apparatus for controlling transmit diversity in a communication system
CN1086061C (zh) 1997-08-12 2002-06-05 鸿海精密工业股份有限公司 电连接器的固持装置
EP0899896A1 (de) 1997-08-27 1999-03-03 Siemens Aktiengesellschaft Verfahren und Einrichtung zur Schätzung räumlicher Parameter von Überstragungskanälen
JP2991167B2 (ja) 1997-08-27 1999-12-20 三菱電機株式会社 Tdma可変スロット割当方法
US6131016A (en) 1997-08-27 2000-10-10 At&T Corp Method and apparatus for enhancing communication reception at a wireless communication terminal
US6167031A (en) 1997-08-29 2000-12-26 Telefonaktiebolaget Lm Ericsson (Publ) Method for selecting a combination of modulation and channel coding schemes in a digital communication system
BR9812816A (pt) * 1997-09-15 2000-08-08 Adaptive Telecom Inc Processos para comunicação sem fio, e para eficientemente determinar na estação base um canal espacial da unidade móvel em um sistema de comunicação sem fio, e, estação base de cdma
US6389000B1 (en) 1997-09-16 2002-05-14 Qualcomm Incorporated Method and apparatus for transmitting and receiving high speed data in a CDMA communication system using multiple carriers
US6590928B1 (en) 1997-09-17 2003-07-08 Telefonaktiebolaget Lm Ericsson (Publ) Frequency hopping piconets in an uncoordinated wireless multi-user system
AUPO932297A0 (en) 1997-09-19 1997-10-09 Commonwealth Scientific And Industrial Research Organisation Medium access control protocol for data communications
KR100234329B1 (ko) 1997-09-30 1999-12-15 윤종용 Ofdm 시스템 수신기의 fft 윈도우 위치 복원장치 및 그 방법_
US6178196B1 (en) * 1997-10-06 2001-01-23 At&T Corp. Combined interference cancellation and maximum likelihood decoding of space-time block codes
US6574211B2 (en) 1997-11-03 2003-06-03 Qualcomm Incorporated Method and apparatus for high rate packet data transmission
US6377812B1 (en) * 1997-11-20 2002-04-23 University Of Maryland Combined power control and space-time diversity in mobile cellular communications
US6122247A (en) 1997-11-24 2000-09-19 Motorola Inc. Method for reallocating data in a discrete multi-tone communication system
JPH11163823A (ja) 1997-11-26 1999-06-18 Victor Co Of Japan Ltd 直交周波数分割多重信号伝送方法、送信装置及び受信装置
US5936569A (en) 1997-12-02 1999-08-10 Nokia Telecommunications Oy Method and arrangement for adjusting antenna pattern
US6154661A (en) * 1997-12-10 2000-11-28 Arraycomm, Inc. Transmitting on the downlink using one or more weight vectors determined to achieve a desired radiation pattern
US6084917A (en) 1997-12-16 2000-07-04 Integrated Telecom Express Circuit for configuring and dynamically adapting data and energy parameters in a multi-channel communications system
JPH11185476A (ja) * 1997-12-18 1999-07-09 Toshiba Corp 半導体記憶装置
US5929810A (en) * 1997-12-19 1999-07-27 Northrop Grumman Corporation In-flight antenna optimization
US6175588B1 (en) 1997-12-30 2001-01-16 Motorola, Inc. Communication device and method for interference suppression using adaptive equalization in a spread spectrum communication system
US6088387A (en) 1997-12-31 2000-07-11 At&T Corp. Multi-channel parallel/serial concatenated convolutional codes and trellis coded modulation encoder/decoder
EP2254300B1 (en) 1998-01-06 2013-05-15 Mosaid Technologies Incorporated Multicarrier modulation system with variable symbol rates
JP3724940B2 (ja) 1998-01-08 2005-12-07 株式会社東芝 Ofdmダイバーシチ受信装置
US5982327A (en) 1998-01-12 1999-11-09 Motorola, Inc. Adaptive array method, device, base station and subscriber unit
US6608874B1 (en) 1998-01-12 2003-08-19 Hughes Electronics Corporation Method and apparatus for quadrature multi-pulse modulation of data for spectrally efficient communication
EP0930752A3 (en) 1998-01-14 1999-10-20 Motorola, Inc. Method for allocating data and power in a discrete multitone communication system
US5973638A (en) 1998-01-30 1999-10-26 Micronetics Wireless, Inc. Smart antenna channel simulator and test system
EP0938208A1 (en) * 1998-02-22 1999-08-25 Sony International (Europe) GmbH Multicarrier transmission, compatible with the existing GSM system
WO1999044379A1 (en) 1998-02-27 1999-09-02 Telefonaktiebolaget Lm Ericsson (Publ) Multiple access categorization for mobile station
JP3082756B2 (ja) 1998-02-27 2000-08-28 日本電気株式会社 マルチキャリア伝送システム及びその方法
US6141388A (en) 1998-03-11 2000-10-31 Ericsson Inc. Received signal quality determination method and systems for convolutionally encoded communication channels
US6058107A (en) 1998-04-08 2000-05-02 Motorola, Inc. Method for updating forward power control in a communication system
US6317466B1 (en) 1998-04-15 2001-11-13 Lucent Technologies Inc. Wireless communications system having a space-time architecture employing multi-element antennas at both the transmitter and receiver
US6615024B1 (en) 1998-05-01 2003-09-02 Arraycomm, Inc. Method and apparatus for determining signatures for calibrating a communication station having an antenna array
US7123628B1 (en) 1998-05-06 2006-10-17 Lg Electronics Inc. Communication system with improved medium access control sub-layer
JP3286247B2 (ja) * 1998-05-08 2002-05-27 松下電器産業株式会社 無線通信システム
US6205410B1 (en) 1998-06-01 2001-03-20 Globespan Semiconductor, Inc. System and method for bit loading with optimal margin assignment
EE200000757A (et) 1998-06-19 2002-04-15 Telefonaktiebolaget Lm Ericsson (Publ) Kaadri sünkroniseerimise tehnikad ja süsteemid laiendatud spektriga raadioside jaoks
US6795424B1 (en) 1998-06-30 2004-09-21 Tellabs Operations, Inc. Method and apparatus for interference suppression in orthogonal frequency division multiplexed (OFDM) wireless communication systems
JP2000092009A (ja) 1998-07-13 2000-03-31 Sony Corp 通信方法、送信機及び受信機
CN1192651C (zh) * 1998-07-16 2005-03-09 三星电子株式会社 移动通信系统中处理分组数据的装置及方法
US6154443A (en) 1998-08-11 2000-11-28 Industrial Technology Research Institute FFT-based CDMA RAKE receiver system and method
US6594620B1 (en) * 1998-08-17 2003-07-15 Aspen Technology, Inc. Sensor validation apparatus and method
CA2340716A1 (en) 1998-08-18 2000-03-02 Beamreach Networks, Inc. Stacked-carrier discrete multiple tone communication technology
KR100429540B1 (ko) 1998-08-26 2004-08-09 삼성전자주식회사 이동통신시스템의패킷데이터통신장치및방법
US6515617B1 (en) * 1998-09-01 2003-02-04 Hughes Electronics Corporation Method and system for position determination using geostationary earth orbit satellite
DE19842712C1 (de) * 1998-09-17 2000-05-04 Siemens Ag Verfahren und Anordnung zur Minimierung des Autokorrelationsfehlers bei der Demodulation eines Spreizspektrum-Signals unter Mehrwegeausbreitung
US6292917B1 (en) 1998-09-30 2001-09-18 Agere Systems Guardian Corp. Unequal error protection for digital broadcasting using channel classification
EP0993211B1 (en) 1998-10-05 2005-01-12 Sony International (Europe) GmbH Random access channel partitioning scheme for CDMA system
EP0993212B1 (en) * 1998-10-05 2006-05-24 Sony Deutschland GmbH Random access channel partitioning scheme for CDMA system
US6711121B1 (en) * 1998-10-09 2004-03-23 At&T Corp. Orthogonal code division multiplexing for twisted pair channels
EP1108317B1 (de) 1998-10-27 2002-08-28 Siemens Aktiengesellschaft Kanalzuweisungsverfahren und vorrichtung für kodierte und kombinierte informationssätze
JP4287536B2 (ja) * 1998-11-06 2009-07-01 パナソニック株式会社 Ofdm送受信装置及びofdm送受信方法
ES2185244T3 (es) 1998-12-03 2003-04-16 Fraunhofer Ges Forschung Aparato y procedimiento para transmitir informacion y aparato y procedimiento para recibir informacion.
GB9827182D0 (en) * 1998-12-10 1999-02-03 Philips Electronics Nv Radio communication system
FI108588B (fi) 1998-12-15 2002-02-15 Nokia Corp Menetelmä ja radiojärjestelmä digitaalisen signaalin siirtoon
JP2000244441A (ja) 1998-12-22 2000-09-08 Matsushita Electric Ind Co Ltd Ofdm送受信装置
US6266528B1 (en) 1998-12-23 2001-07-24 Arraycomm, Inc. Performance monitor for antenna arrays
US6310909B1 (en) 1998-12-23 2001-10-30 Broadcom Corporation DSL rate adaptation
US6463290B1 (en) 1999-01-08 2002-10-08 Trueposition, Inc. Mobile-assisted network based techniques for improving accuracy of wireless location system
US6348036B1 (en) * 1999-01-24 2002-02-19 Genzyme Corporation Surgical retractor and tissue stabilization device
RU2152132C1 (ru) 1999-01-26 2000-06-27 Государственное унитарное предприятие Воронежский научно-исследовательский институт связи Линия радиосвязи с пространственной модуляцией
JP3619729B2 (ja) 2000-01-19 2005-02-16 松下電器産業株式会社 無線受信装置および無線受信方法
KR100651457B1 (ko) 1999-02-13 2006-11-28 삼성전자주식회사 부호분할다중접속 이동통신시스템의 불연속 전송모드에서 연속적인 외부순환 전력제어장치 및 방법
US6574267B1 (en) 1999-03-22 2003-06-03 Golden Bridge Technology, Inc. Rach ramp-up acknowledgement
US6169759B1 (en) * 1999-03-22 2001-01-02 Golden Bridge Technology Common packet channel
US6363267B1 (en) * 1999-04-07 2002-03-26 Telefonaktiebolaget Lm Ericsson (Publ) Mobile terminal decode failure procedure in a wireless local area network
US6346910B1 (en) * 1999-04-07 2002-02-12 Tei Ito Automatic array calibration scheme for wireless point-to-multipoint communication networks
AU765329B2 (en) 1999-04-12 2003-09-18 Qualcomm Incorporated Apparatus and method for gated transmission in a CDMA communication system
EP1075093A1 (en) 1999-08-02 2001-02-07 Interuniversitair Micro-Elektronica Centrum Vzw A method and apparatus for multi-user transmission
US6594798B1 (en) 1999-05-21 2003-07-15 Microsoft Corporation Receiver-driven layered error correction multicast over heterogeneous packet networks
US6532562B1 (en) * 1999-05-21 2003-03-11 Microsoft Corp Receiver-driven layered error correction multicast over heterogeneous packet networks
US6594473B1 (en) 1999-05-28 2003-07-15 Texas Instruments Incorporated Wireless system with transmitter having multiple transmit antennas and combining open loop and closed loop transmit diversities
KR100605978B1 (ko) 1999-05-29 2006-07-28 삼성전자주식회사 부호분할다중접속 이동통신시스템의 불연속 전송모드에서 연속적인 외부순환 전력제어를 위한 송수신 장치 및 방법
US7072410B1 (en) 1999-06-01 2006-07-04 Peter Monsen Multiple access system and method for multibeam digital radio systems
US6141567A (en) 1999-06-07 2000-10-31 Arraycomm, Inc. Apparatus and method for beamforming in a changing-interference environment
US6385264B1 (en) * 1999-06-08 2002-05-07 Qualcomm Incorporated Method and apparatus for mitigating interference between base stations in a wideband CDMA system
US6976262B1 (en) 1999-06-14 2005-12-13 Sun Microsystems, Inc. Web-based enterprise management with multiple repository capability
RU2214688C2 (ru) 1999-07-08 2003-10-20 Самсунг Электроникс Ко., Лтд. Устройство и способ обнаружения скорости передачи данных для системы подвижной связи
US6163296A (en) 1999-07-12 2000-12-19 Lockheed Martin Corp. Calibration and integrated beam control/conditioning system for phased-array antennas
RU2168278C2 (ru) 1999-07-16 2001-05-27 Корпорация "Самсунг Электроникс" Способ произвольного доступа абонентов мобильной станции
US6532225B1 (en) * 1999-07-27 2003-03-11 At&T Corp Medium access control layer for packetized wireless systems
US7027464B1 (en) 1999-07-30 2006-04-11 Matsushita Electric Industrial Co., Ltd. OFDM signal transmission scheme, and OFDM signal transmitter/receiver
JP2001044930A (ja) 1999-07-30 2001-02-16 Matsushita Electric Ind Co Ltd 無線通信装置および無線通信方法
US6067290A (en) 1999-07-30 2000-05-23 Gigabit Wireless, Inc. Spatial multiplexing in a cellular network
US6721339B2 (en) 1999-08-17 2004-04-13 Lucent Technologies Inc. Method of providing downlink transmit diversity
US6735188B1 (en) * 1999-08-27 2004-05-11 Tachyon, Inc. Channel encoding and decoding method and apparatus
US6278726B1 (en) 1999-09-10 2001-08-21 Interdigital Technology Corporation Interference cancellation in a spread spectrum communication system
US6115406A (en) 1999-09-10 2000-09-05 Interdigital Technology Corporation Transmission using an antenna array in a CDMA communication system
US6426971B1 (en) 1999-09-13 2002-07-30 Qualcomm Incorporated System and method for accurately predicting signal to interference and noise ratio to improve communications system performance
SG80071A1 (en) * 1999-09-24 2001-04-17 Univ Singapore Downlink beamforming method
JP3421671B2 (ja) 1999-09-30 2003-06-30 独立行政法人通信総合研究所 通信システム、選択装置、送信装置、受信装置、選択方法、送信方法、受信方法、および、情報記録媒体
EP1219058B1 (en) 1999-10-02 2011-08-10 Samsung Electronics Co., Ltd. Apparatus and method for gating data on a control channel in a cdma communication system
DE19950005A1 (de) 1999-10-18 2001-04-19 Bernhard Walke Verfahren zum Betrieb drahtloser Basisstationen für paketvermittelnde Funksysteme mit garantierter Dienstgüte
DE19951525C2 (de) 1999-10-26 2002-01-24 Siemens Ag Verfahren zum Kalibrieren einer elektronisch phasengesteuerten Gruppenantenne in Funk-Kommunikationssystemen
US6492942B1 (en) 1999-11-09 2002-12-10 Com Dev International, Inc. Content-based adaptive parasitic array antenna system
JP3416597B2 (ja) 1999-11-19 2003-06-16 三洋電機株式会社 無線基地局
US7088671B1 (en) 1999-11-24 2006-08-08 Peter Monsen Multiple access technique for downlink multibeam digital radio systems
US7110785B1 (en) 1999-12-03 2006-09-19 Nortel Networks Limited Performing power control in a mobile communications system
US6298092B1 (en) 1999-12-15 2001-10-02 Iospan Wireless, Inc. Methods of controlling communication parameters of wireless systems
EP1109326A1 (en) 1999-12-15 2001-06-20 Lucent Technologies Inc. Peamble detector for a CDMA receiver
JP3975629B2 (ja) * 1999-12-16 2007-09-12 ソニー株式会社 画像復号装置及び画像復号方法
US6298035B1 (en) 1999-12-21 2001-10-02 Nokia Networks Oy Estimation of two propagation channels in OFDM
JP2001186051A (ja) 1999-12-24 2001-07-06 Toshiba Corp データ信号判定回路及び方法
KR100467543B1 (ko) 1999-12-28 2005-01-24 엔티티 도꼬모 인코퍼레이티드 채널추정 방법 및 통신장치
US6718160B2 (en) 1999-12-29 2004-04-06 Airnet Communications Corp. Automatic configuration of backhaul and groundlink frequencies in a wireless repeater
US6888809B1 (en) 2000-01-13 2005-05-03 Lucent Technologies Inc. Space-time processing for multiple-input, multiple-output, wireless systems
US7254171B2 (en) 2000-01-20 2007-08-07 Nortel Networks Limited Equaliser for digital communications systems and method of equalisation
JP3581072B2 (ja) * 2000-01-24 2004-10-27 株式会社エヌ・ティ・ティ・ドコモ チャネル構成方法及びその方法を利用する基地局
KR100325367B1 (ko) * 2000-01-28 2002-03-04 박태진 직교 주파수 분할 다중 통신 시스템에서의 비트 오율 측정장치및 방법
JP2001217896A (ja) 2000-01-31 2001-08-10 Matsushita Electric Works Ltd 無線データ通信システム
US7003044B2 (en) 2000-02-01 2006-02-21 Sasken Communication Technologies Ltd. Method for allocating bits and power in multi-carrier communication system
FI117465B (fi) 2000-02-03 2006-10-31 Danisco Sweeteners Oy Menetelmä pureskeltavien ytimien kovapinnoittamiseksi
US6868120B2 (en) 2000-02-08 2005-03-15 Clearwire Corporation Real-time system for measuring the Ricean K-factor
US6704374B1 (en) 2000-02-16 2004-03-09 Thomson Licensing S.A. Local oscillator frequency correction in an orthogonal frequency division multiplexing system
DE10008653A1 (de) * 2000-02-24 2001-09-06 Siemens Ag Verbesserungen an einem Funkkommunikationssystem
US6956814B1 (en) 2000-02-29 2005-10-18 Worldspace Corporation Method and apparatus for mobile platform reception and synchronization in direct digital satellite broadcast system
JP2001244879A (ja) 2000-03-02 2001-09-07 Matsushita Electric Ind Co Ltd 送信電力制御装置及びその方法
US6963546B2 (en) 2000-03-15 2005-11-08 Interdigital Technology Corp. Multi-user detection using an adaptive combination of joint detection and successive interface cancellation
EP1137217A1 (en) 2000-03-20 2001-09-26 Telefonaktiebolaget Lm Ericsson ARQ parameter negociation in a data packet transmission system using link adaptation
US7149253B2 (en) 2000-03-21 2006-12-12 Texas Instruments Incorporated Wireless communication
US6473467B1 (en) 2000-03-22 2002-10-29 Qualcomm Incorporated Method and apparatus for measuring reporting channel state information in a high efficiency, high performance communications system
US20020154705A1 (en) 2000-03-22 2002-10-24 Walton Jay R. High efficiency high performance communications system employing multi-carrier modulation
US6952454B1 (en) 2000-03-22 2005-10-04 Qualcomm, Incorporated Multiplexing of real time services and non-real time services for OFDM systems
DE10014676C2 (de) 2000-03-24 2002-02-07 Polytrax Inf Technology Ag Datenübertragung über ein Stromversorgungsnetz
US7113499B2 (en) 2000-03-29 2006-09-26 Texas Instruments Incorporated Wireless communication
EP1843622B1 (en) 2000-04-04 2009-12-30 Sony Deutschland Gmbh Event triggered change of access service class in a random access channel
US7403748B1 (en) 2000-04-07 2008-07-22 Nokia Coporation Multi-antenna transmission method and system
US7289570B2 (en) 2000-04-10 2007-10-30 Texas Instruments Incorporated Wireless communications
US6757263B1 (en) 2000-04-13 2004-06-29 Motorola, Inc. Wireless repeating subscriber units
SE518028C2 (sv) * 2000-04-17 2002-08-20 Ericsson Telefon Ab L M Förfarande och metod för att undvika överbelastning i ett cellulärt radiosystem med makrodiversitet
ATE357802T1 (de) 2000-04-18 2007-04-15 Aware Inc Datenzuweisung mit änderbaren signal- rauschabstand
US6751199B1 (en) 2000-04-24 2004-06-15 Qualcomm Incorporated Method and apparatus for a rate control in a high data rate communication system
JP3414357B2 (ja) 2000-04-25 2003-06-09 日本電気株式会社 Cdma移動通信システムにおける送信電力制御方式
EP1455493B1 (en) * 2000-04-25 2005-11-30 Nortel Networks Limited Radio telecommunications system with reduced delays for data transmission
US7068628B2 (en) 2000-05-22 2006-06-27 At&T Corp. MIMO OFDM system
DE60135183D1 (de) * 2000-05-23 2008-09-18 Ntt Docomo Inc Raummultiplex Übertragungsverfahren und System
US7139324B1 (en) 2000-06-02 2006-11-21 Nokia Networks Oy Closed loop feedback system for improved down link performance
EP1198908B1 (en) 2000-06-12 2017-08-09 Samsung Electronics Co., Ltd. Method of assigning an uplink random access channel in a cdma mobile communication system
US6744811B1 (en) 2000-06-12 2004-06-01 Actelis Networks Inc. Bandwidth management for DSL modem pool
US7248841B2 (en) 2000-06-13 2007-07-24 Agee Brian G Method and apparatus for optimization of wireless multipoint electromagnetic communication networks
US6317467B1 (en) * 2000-06-14 2001-11-13 Lloyd C. Cox Beamforming and interference cancellation system using general purpose filter architecture
US6628702B1 (en) 2000-06-14 2003-09-30 Qualcomm, Incorporated Method and apparatus for demodulating signals processed in a transmit diversity mode
US6760313B1 (en) 2000-06-19 2004-07-06 Qualcomm Incorporated Method and apparatus for adaptive rate selection in a communication system
SE519303C2 (sv) * 2000-06-20 2003-02-11 Ericsson Telefon Ab L M Anordning för smalbandig kommunikation i ett multicarrier- system
US6891858B1 (en) 2000-06-30 2005-05-10 Cisco Technology Inc. Dynamic modulation of modulation profiles for communication channels in an access network
AU2001255253A1 (en) 2000-06-30 2002-01-14 Iospan Wireless, Inc. Method and system for mode adaptation in wireless communication
CN1140147C (zh) * 2000-07-01 2004-02-25 信息产业部电信传输研究所 一种外环功率控制的方法和系统
AU2001267891A1 (en) * 2000-07-03 2002-01-14 Matsushita Electric Industrial Co., Ltd. Base station unit and method for radio communication
JP3583353B2 (ja) * 2000-07-03 2004-11-04 松下電器産業株式会社 通信端末装置および基地局装置
KR100627188B1 (ko) 2000-07-04 2006-09-22 에스케이 텔레콤주식회사 무선통신 역방향 동기 방식에서의 코드 할당 방법
EP2262157A3 (en) * 2000-07-05 2011-03-23 Sony Deutschland Gmbh Pilot pattern design for a STTD scheme in an OFDM system
KR101038406B1 (ko) 2000-07-12 2011-06-01 퀄컴 인코포레이티드 Ofdm 시스템의 실시간 서비스 및 비-실시간 서비스의멀티플렉싱
FI109393B (fi) 2000-07-14 2002-07-15 Nokia Corp Menetelmä mediavirran enkoodaamiseksi skaalautuvasti, skaalautuva enkooderi ja päätelaite
WO2002007327A1 (en) 2000-07-17 2002-01-24 Koninklijke Philips Electronics N.V. Coding of data stream
KR100493152B1 (ko) 2000-07-21 2005-06-02 삼성전자주식회사 이동 통신 시스템에서의 전송 안테나 다이버시티 방법 및이를 위한 기지국 장치 및 이동국 장치
EP1176750A1 (en) * 2000-07-25 2002-01-30 Telefonaktiebolaget L M Ericsson (Publ) Link quality determination of a transmission link in an OFDM transmission system
EP1178641B1 (en) 2000-08-01 2007-07-25 Sony Deutschland GmbH Frequency reuse scheme for OFDM systems
US6920192B1 (en) 2000-08-03 2005-07-19 Lucent Technologies Inc. Adaptive antenna array methods and apparatus for use in a multi-access wireless communication system
EP1746850B1 (en) 2000-08-03 2009-10-21 Infineon Technologies AG Dynamically reconfigurable universal transmitter system
US6582088B2 (en) * 2000-08-10 2003-06-24 Benq Corporation Optical path folding apparatus
JP4176463B2 (ja) 2000-08-10 2008-11-05 富士通株式会社 送信ダイバーシチ通信装置
US7013165B2 (en) * 2000-08-16 2006-03-14 Samsung Electronics Co., Ltd. Antenna array apparatus and beamforming method using GPS signal for base station in mobile telecommunication system
EP1182799A3 (en) * 2000-08-22 2002-06-26 Lucent Technologies Inc. Method for enhancing mobile cdma communications using space-time transmit diversity
KR100526499B1 (ko) * 2000-08-22 2005-11-08 삼성전자주식회사 두 개 이상 안테나를 사용하는 안테나 전송 다이버시티방법 및 장치
JP3886709B2 (ja) 2000-08-29 2007-02-28 三菱電機株式会社 スペクトル拡散受信装置
US7120657B2 (en) * 2000-08-29 2006-10-10 Science Applications International Corporation System and method for adaptive filtering
IT1318790B1 (it) 2000-08-29 2003-09-10 Cit Alcatel Metodo per gestire il cambio di allocazione dei time-slot in reti adanello ms-spring di tipo transoceanico.
US7233625B2 (en) 2000-09-01 2007-06-19 Nortel Networks Limited Preamble design for multiple input—multiple output (MIMO), orthogonal frequency division multiplexing (OFDM) system
US6985434B2 (en) 2000-09-01 2006-01-10 Nortel Networks Limited Adaptive time diversity and spatial diversity for OFDM
US6850481B2 (en) 2000-09-01 2005-02-01 Nortel Networks Limited Channels estimation for multiple input—multiple output, orthogonal frequency division multiplexing (OFDM) system
JP2002077098A (ja) 2000-09-01 2002-03-15 Mitsubishi Electric Corp 通信装置および通信方法
US6937592B1 (en) * 2000-09-01 2005-08-30 Intel Corporation Wireless communications system that supports multiple modes of operation
US7009931B2 (en) * 2000-09-01 2006-03-07 Nortel Networks Limited Synchronization in a multiple-input/multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) system for wireless applications
FR2814014B1 (fr) * 2000-09-14 2002-10-11 Mitsubishi Electric Inf Tech Methode de detection multi-utilisateur
US6802035B2 (en) 2000-09-19 2004-10-05 Intel Corporation System and method of dynamically optimizing a transmission mode of wirelessly transmitted information
US6760882B1 (en) 2000-09-19 2004-07-06 Intel Corporation Mode selection for data transmission in wireless communication channels based on statistical parameters
US6956897B1 (en) * 2000-09-27 2005-10-18 Northwestern University Reduced rank adaptive filter
US6650714B2 (en) * 2000-11-30 2003-11-18 Arraycomm, Inc. Spatial processing and timing estimation using a training sequence in a radio communications system
US7062294B1 (en) 2000-09-29 2006-06-13 Arraycomm, Llc. Downlink transmission in a wireless data communication system having a base station with a smart antenna system
US7043259B1 (en) * 2000-09-29 2006-05-09 Arraycomm, Inc. Repetitive paging from a wireless data base station having a smart antenna system
US7110378B2 (en) 2000-10-03 2006-09-19 Wisconsin Alumni Research Foundation Channel aware optimal space-time signaling for wireless communication over wideband multipath channels
US7016296B2 (en) 2000-10-16 2006-03-21 Broadcom Corporation Adaptive modulation for fixed wireless link in cable transmission system
US6907270B1 (en) 2000-10-23 2005-06-14 Qualcomm Inc. Method and apparatus for reduced rank channel estimation in a communications system
US6369758B1 (en) 2000-11-01 2002-04-09 Unique Broadband Systems, Inc. Adaptive antenna array for mobile communication
JP3553038B2 (ja) 2000-11-06 2004-08-11 株式会社エヌ・ティ・ティ・ドコモ 信号送信方法、信号受信方法、送信装置、受信装置および記録媒体
US6768727B1 (en) 2000-11-09 2004-07-27 Ericsson Inc. Fast forward link power control for CDMA system
US8634481B1 (en) 2000-11-16 2014-01-21 Alcatel Lucent Feedback technique for wireless systems with multiple transmit and receive antennas
US6980601B2 (en) 2000-11-17 2005-12-27 Broadcom Corporation Rate adaptation and parameter optimization for multi-band single carrier transmission
US7006464B1 (en) * 2000-11-17 2006-02-28 Lucent Technologies Inc. Downlink and uplink channel structures for downlink shared channel system
JP3695316B2 (ja) 2000-11-24 2005-09-14 株式会社日本自動車部品総合研究所 スペクトラム拡散受信機の相関検出器
US6751480B2 (en) 2000-12-01 2004-06-15 Lucent Technologies Inc. Method for simultaneously conveying information to multiple mobiles with multiple antennas
US8019068B2 (en) * 2000-12-01 2011-09-13 Alcatel Lucent Method of allocating power for the simultaneous downlink conveyance of information between multiple antennas and multiple destinations
GB0029424D0 (en) * 2000-12-02 2001-01-17 Koninkl Philips Electronics Nv Radio communication system
JP4505677B2 (ja) 2000-12-06 2010-07-21 ソフトバンクテレコム株式会社 送信ダイバーシチ装置および送信電力調整方法
US6952426B2 (en) 2000-12-07 2005-10-04 Nortel Networks Limited Method and apparatus for the transmission of short data bursts in CDMA/HDR networks
KR100353641B1 (ko) 2000-12-21 2002-09-28 삼성전자 주식회사 부호분할다중접속 이동통신시스템의 기지국 전송 안테나다이버시티 장치 및 방법
US20040242472A1 (en) 2000-12-22 2004-12-02 Shelton David L. Use of artemin, a member of the gdnf ligand family
US6850498B2 (en) * 2000-12-22 2005-02-01 Intel Corporation Method and system for evaluating a wireless link
WO2002054783A1 (en) * 2000-12-28 2002-07-11 Thomson Licensing S.A. On screen display as diagnostic aid
US6987819B2 (en) 2000-12-29 2006-01-17 Motorola, Inc. Method and device for multiple input/multiple output transmit and receive weights for equal-rate data streams
US7050510B2 (en) 2000-12-29 2006-05-23 Lucent Technologies Inc. Open-loop diversity technique for systems employing four transmitter antennas
GB0031841D0 (en) * 2000-12-29 2001-02-14 Nokia Networks Oy Interference power estimation for adaptive antenna system
US20020085641A1 (en) 2000-12-29 2002-07-04 Motorola, Inc Method and system for interference averaging in a wireless communication system
US6731668B2 (en) * 2001-01-05 2004-05-04 Qualcomm Incorporated Method and system for increased bandwidth efficiency in multiple input—multiple output channels
EP1223776A1 (en) * 2001-01-12 2002-07-17 Siemens Information and Communication Networks S.p.A. A collision free access scheduling in cellular TDMA-CDMA networks
US6693992B2 (en) * 2001-01-16 2004-02-17 Mindspeed Technologies Line probe signal and method of use
US6801790B2 (en) 2001-01-17 2004-10-05 Lucent Technologies Inc. Structure for multiple antenna configurations
US7164669B2 (en) * 2001-01-19 2007-01-16 Adaptix, Inc. Multi-carrier communication with time division multiplexing and carrier-selective loading
US7054662B2 (en) 2001-01-24 2006-05-30 Qualcomm, Inc. Method and system for forward link beam forming in wireless communications
JP2002232943A (ja) 2001-01-29 2002-08-16 Sony Corp データ送信処理方法、データ受信処理方法、送信機、受信機、およびセルラー無線通信システム
GB0102316D0 (en) * 2001-01-30 2001-03-14 Koninkl Philips Electronics Nv Radio communication system
US6961388B2 (en) 2001-02-01 2005-11-01 Qualcomm, Incorporated Coding scheme for a wireless communication system
US6885654B2 (en) * 2001-02-06 2005-04-26 Interdigital Technology Corporation Low complexity data detection using fast fourier transform of channel correlation matrix
US7120134B2 (en) 2001-02-15 2006-10-10 Qualcomm, Incorporated Reverse link channel architecture for a wireless communication system
US6975868B2 (en) 2001-02-21 2005-12-13 Qualcomm Incorporated Method and apparatus for IS-95B reverse link supplemental code channel frame validation and fundamental code channel rate decision improvement
JP3736429B2 (ja) * 2001-02-21 2006-01-18 日本電気株式会社 セルラシステム、基地局、移動局並びに通信制御方法
US7006483B2 (en) 2001-02-23 2006-02-28 Ipr Licensing, Inc. Qualifying available reverse link coding rates from access channel power setting
AU2002240506A1 (en) 2001-02-26 2002-09-12 Magnolia Broadband, Inc Smart antenna based spectrum multiplexing using a pilot signal
GB0105019D0 (en) 2001-03-01 2001-04-18 Koninkl Philips Electronics Nv Antenna diversity in a wireless local area network
US7039125B2 (en) 2001-03-12 2006-05-02 Analog Devices, Inc. Equalized SNR power back-off
EP1241824A1 (en) 2001-03-14 2002-09-18 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Multiplexing method in a multicarrier transmit diversity system
US6763244B2 (en) 2001-03-15 2004-07-13 Qualcomm Incorporated Method and apparatus for adjusting power control setpoint in a wireless communication system
US7046746B1 (en) 2001-03-19 2006-05-16 Cisco Systems Wireless Networking (Australia) Pty Limited Adaptive Viterbi decoder for a wireless data network receiver
US6478422B1 (en) 2001-03-19 2002-11-12 Richard A. Hansen Single bifocal custom shooters glasses
US6771706B2 (en) 2001-03-23 2004-08-03 Qualcomm Incorporated Method and apparatus for utilizing channel state information in a wireless communication system
US7248638B1 (en) 2001-03-23 2007-07-24 Lsi Logic Transmit antenna multi-mode tracking
US7386076B2 (en) 2001-03-29 2008-06-10 Texas Instruments Incorporated Space time encoded wireless communication system with multipath resolution receivers
GB2373973B (en) 2001-03-30 2003-06-11 Toshiba Res Europ Ltd Adaptive antenna
US8290098B2 (en) 2001-03-30 2012-10-16 Texas Instruments Incorporated Closed loop multiple transmit, multiple receive antenna wireless communication system
US20020176485A1 (en) 2001-04-03 2002-11-28 Hudson John E. Multi-cast communication system and method of estimating channel impulse responses therein
US6785513B1 (en) 2001-04-05 2004-08-31 Cowave Networks, Inc. Method and system for clustered wireless networks
US6859503B2 (en) 2001-04-07 2005-02-22 Motorola, Inc. Method and system in a transceiver for controlling a multiple-input, multiple-output communications channel
KR100510434B1 (ko) 2001-04-09 2005-08-26 니폰덴신뎅와 가부시키가이샤 Ofdm신호전달 시스템, ofdm신호 송신장치 및ofdm신호 수신장치
FR2823620B1 (fr) 2001-04-12 2003-08-15 France Telecom Procede de codage/decodage d'un flux de donnees numeriques codees avec entrelacement sur bits en emission et en reception multiple en presence d'interference intersymboles et systeme correspondant
US7310304B2 (en) 2001-04-24 2007-12-18 Bae Systems Information And Electronic Systems Integration Inc. Estimating channel parameters in multi-input, multi-output (MIMO) systems
FI20010874A (fi) 2001-04-26 2002-10-27 Nokia Corp Tiedonsiirtomenetelmä ja -laitteisto
GB0110223D0 (en) 2001-04-26 2001-06-20 Sensor Highway Ltd Method and apparatus for leak detection and location
US6611231B2 (en) 2001-04-27 2003-08-26 Vivato, Inc. Wireless packet switched communication systems and networks using adaptively steered antenna arrays
US7133459B2 (en) 2001-05-01 2006-11-07 Texas Instruments Incorporated Space-time transmit diversity
EP1255369A1 (en) 2001-05-04 2002-11-06 TELEFONAKTIEBOLAGET LM ERICSSON (publ) Link adaptation for wireless MIMO transmission schemes
CN100446612C (zh) * 2001-05-04 2008-12-24 诺基亚公司 借助定向天线的许可控制
DE10122788A1 (de) 2001-05-10 2002-06-06 Basf Ag Verfahren der kristallisativen Reinigung einer Roh-Schmelze wenigstens eines Monomeren
US6785341B2 (en) 2001-05-11 2004-08-31 Qualcomm Incorporated Method and apparatus for processing data in a multiple-input multiple-output (MIMO) communication system utilizing channel state information
US7047016B2 (en) * 2001-05-16 2006-05-16 Qualcomm, Incorporated Method and apparatus for allocating uplink resources in a multiple-input multiple-output (MIMO) communication system
US7688899B2 (en) 2001-05-17 2010-03-30 Qualcomm Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion
US7072413B2 (en) 2001-05-17 2006-07-04 Qualcomm, Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion
US6751187B2 (en) 2001-05-17 2004-06-15 Qualcomm Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel transmission
US6718493B1 (en) 2001-05-17 2004-04-06 3Com Corporation Method and apparatus for selection of ARQ parameters and estimation of improved communications
US7492737B1 (en) * 2001-05-23 2009-02-17 Nortel Networks Limited Service-driven air interface protocol architecture for wireless systems
ES2188373B1 (es) 2001-05-25 2004-10-16 Diseño De Sistemas En Silencio, S.A. Procedimiento de optimizacion de la comunicacion para sistema de transmision digital ofdm multiusuario sobre red electrica.
US6920194B2 (en) 2001-05-29 2005-07-19 Tioga Technologies, Ltd. Method and system for detecting, timing, and correcting impulse noise
US7158563B2 (en) * 2001-06-01 2007-01-02 The Board Of Trustees Of The Leland Stanford Junior University Dynamic digital communication system control
US20020183010A1 (en) 2001-06-05 2002-12-05 Catreux Severine E. Wireless communication systems with adaptive channelization and link adaptation
GB2376315B (en) 2001-06-05 2003-08-06 3Com Corp Data bus system including posted reads and writes
US7190749B2 (en) 2001-06-06 2007-03-13 Qualcomm Incorporated Method and apparatus for canceling pilot interference in a wireless communication system
US20020193146A1 (en) 2001-06-06 2002-12-19 Mark Wallace Method and apparatus for antenna diversity in a wireless communication system
EP1265411B1 (en) 2001-06-08 2007-04-18 Sony Deutschland GmbH Multicarrier system with adaptive bit-wise interleaving
US20030012308A1 (en) * 2001-06-13 2003-01-16 Sampath Hemanth T. Adaptive channel estimation for wireless systems
US7027523B2 (en) * 2001-06-22 2006-04-11 Qualcomm Incorporated Method and apparatus for transmitting data in a time division duplexed (TDD) communication system
US6842460B1 (en) 2001-06-27 2005-01-11 Nokia Corporation Ad hoc network discovery menu
KR20040008230A (ko) * 2001-06-27 2004-01-28 노오텔 네트웍스 리미티드 무선 통신 시스템에서 제어 정보의 통신
US7149190B1 (en) * 2001-06-28 2006-12-12 Nortel Networks Limited MAC channel operation employable for receiving on more than one forward link channel
US6751444B1 (en) 2001-07-02 2004-06-15 Broadstorm Telecommunications, Inc. Method and apparatus for adaptive carrier allocation and power control in multi-carrier communication systems
FR2827731B1 (fr) 2001-07-23 2004-01-23 Nexo Haut-parleur a radiation directe et rayonnement optimise
US6996380B2 (en) * 2001-07-26 2006-02-07 Ericsson Inc. Communication system employing transmit macro-diversity
US6738020B1 (en) 2001-07-31 2004-05-18 Arraycomm, Inc. Estimation of downlink transmission parameters in a radio communications system with an adaptive antenna array
EP1284545B1 (en) 2001-08-13 2008-07-02 Motorola, Inc. Transmit diversity wireless communication
KR100703295B1 (ko) 2001-08-18 2007-04-03 삼성전자주식회사 이동통신시스템에서 안테나 어레이를 이용한 데이터 송/수신 장치 및 방법
US20030039317A1 (en) 2001-08-21 2003-02-27 Taylor Douglas Hamilton Method and apparatus for constructing a sub-carrier map
US6807429B2 (en) * 2001-08-22 2004-10-19 Qualcomm Incorporated Method and apparatus for combining power control commands received in a wireless communication system
FR2828981B1 (fr) 2001-08-23 2004-05-21 Commissariat Energie Atomique Creuset a chauffage par induction et refroidissement par caloducs
KR100459573B1 (ko) * 2001-08-25 2004-12-03 삼성전자주식회사 고속 순방향 패킷 접속 방식을 사용하는 통신 시스템에서역방향 전송 전력 오프셋과 고속 순방향 공통 채널 전력레벨을 송수신하는 장치 및 방법
EP1289328A1 (en) * 2001-08-28 2003-03-05 Lucent Technologies Inc. A method of sending control information in a wireless telecommunications network, and corresponding apparatus
US6990059B1 (en) * 2001-09-05 2006-01-24 Cisco Technology, Inc. Interference mitigation in a wireless communication system
FR2829326A1 (fr) 2001-09-06 2003-03-07 France Telecom Procede et systeme de reception iterative sous optimale pour systeme de transmission haut debit cdma
US7149254B2 (en) 2001-09-06 2006-12-12 Intel Corporation Transmit signal preprocessing based on transmit antennae correlations for multiple antennae systems
US7133070B2 (en) * 2001-09-20 2006-11-07 Eastman Kodak Company System and method for deciding when to correct image-specific defects based on camera, scene, display and demographic data
US6788948B2 (en) 2001-09-28 2004-09-07 Arraycomm, Inc. Frequency dependent calibration of a wideband radio system using narrowband channels
US7277679B1 (en) * 2001-09-28 2007-10-02 Arraycomm, Llc Method and apparatus to provide multiple-mode spatial processing to a terminal unit
US7039363B1 (en) * 2001-09-28 2006-05-02 Arraycomm Llc Adaptive antenna array with programmable sensitivity
US7024163B1 (en) 2001-09-28 2006-04-04 Arraycomm Llc Method and apparatus for adjusting feedback of a remote unit
US7035359B2 (en) * 2001-10-11 2006-04-25 Telefonaktiebolaget L.M. Ericsson Methods and apparatus for demodulation of a signal in a signal slot subject to a discontinuous interference signal
US7548506B2 (en) 2001-10-17 2009-06-16 Nortel Networks Limited System access and synchronization methods for MIMO OFDM communications systems and physical layer packet and preamble design
KR100533205B1 (ko) * 2001-10-17 2005-12-05 닛본 덴끼 가부시끼가이샤 이동 통신 시스템, 통신 제어 방법, 이것에 사용되는기지국 및 이동국
US7773699B2 (en) 2001-10-17 2010-08-10 Nortel Networks Limited Method and apparatus for channel quality measurements
US7248559B2 (en) 2001-10-17 2007-07-24 Nortel Networks Limited Scattered pilot pattern and channel estimation method for MIMO-OFDM systems
US7116652B2 (en) 2001-10-18 2006-10-03 Lucent Technologies Inc. Rate control technique for layered architectures with multiple transmit and receive antennas
KR20030032875A (ko) 2001-10-19 2003-04-26 삼성전자주식회사 멀티캐스트 멀티미디어 방송 서비스를 제공하는 이동 통신시스템에서 순방향 데이터 채널 송신 전력을 제어하는장치 및 방법
US7349667B2 (en) * 2001-10-19 2008-03-25 Texas Instruments Incorporated Simplified noise estimation and/or beamforming for wireless communications
JP3607238B2 (ja) * 2001-10-22 2005-01-05 株式会社東芝 Ofdm信号受信システム
WO2003039031A1 (fr) 2001-10-31 2003-05-08 Matsushita Electric Industrial Co., Ltd. Dispositif d'emission radio et procede de communication radio
US7218684B2 (en) * 2001-11-02 2007-05-15 Interdigital Technology Corporation Method and system for code reuse and capacity enhancement using null steering
US7164649B2 (en) * 2001-11-02 2007-01-16 Qualcomm, Incorporated Adaptive rate control for OFDM communication system
US20030125040A1 (en) 2001-11-06 2003-07-03 Walton Jay R. Multiple-access multiple-input multiple-output (MIMO) communication system
US8018903B2 (en) 2001-11-21 2011-09-13 Texas Instruments Incorporated Closed-loop transmit diversity scheme in frequency selective multipath channels
US7346126B2 (en) * 2001-11-28 2008-03-18 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for channel estimation using plural channels
AU2002224120A1 (en) 2001-11-28 2003-06-10 Fujitsu Limited Orthogonal frequency-division multiplex transmission method
US7263119B1 (en) 2001-11-29 2007-08-28 Marvell International Ltd. Decoding method and apparatus
US7154936B2 (en) 2001-12-03 2006-12-26 Qualcomm, Incorporated Iterative detection and decoding for a MIMO-OFDM system
US6760388B2 (en) 2001-12-07 2004-07-06 Qualcomm Incorporated Time-domain transmit and receive processing with channel eigen-mode decomposition for MIMO systems
US7155171B2 (en) 2001-12-12 2006-12-26 Saraband Wireless Vector network analyzer applique for adaptive communications in wireless networks
US20030112745A1 (en) 2001-12-17 2003-06-19 Xiangyang Zhuang Method and system of operating a coded OFDM communication system
US7099398B1 (en) 2001-12-18 2006-08-29 Vixs, Inc. Method and apparatus for establishing non-standard data rates in a wireless communication system
US7076514B2 (en) 2001-12-18 2006-07-11 Conexant, Inc. Method and system for computing pre-equalizer coefficients
KR100444730B1 (ko) * 2001-12-24 2004-08-16 한국전자통신연구원 광대역 부호 분할 다중 접속 시스템용 기지국의 복조 장치및 방법
US7573805B2 (en) 2001-12-28 2009-08-11 Motorola, Inc. Data transmission and reception method and apparatus
JP4052835B2 (ja) 2001-12-28 2008-02-27 株式会社日立製作所 多地点中継を行う無線伝送システム及びそれに使用する無線装置
CA2366397A1 (en) 2001-12-31 2003-06-30 Tropic Networks Inc. An interface for data transfer between integrated circuits
US7209433B2 (en) 2002-01-07 2007-04-24 Hitachi, Ltd. Channel estimation and compensation techniques for use in frequency division multiplexed systems
US7020110B2 (en) * 2002-01-08 2006-03-28 Qualcomm Incorporated Resource allocation for MIMO-OFDM communication systems
US7020482B2 (en) 2002-01-23 2006-03-28 Qualcomm Incorporated Reallocation of excess power for full channel-state information (CSI) multiple-input, multiple-output (MIMO) systems
US7058116B2 (en) 2002-01-25 2006-06-06 Intel Corporation Receiver architecture for CDMA receiver downlink
KR100547845B1 (ko) 2002-02-07 2006-01-31 삼성전자주식회사 고속 순방향 패킷 접속 방식을 사용하는 통신 시스템에서서빙 고속 공통 제어 채널 셋 정보를 송수신하는 장치 및방법
US7046978B2 (en) 2002-02-08 2006-05-16 Qualcomm, Inc. Method and apparatus for transmit pre-correction in wireless communications
US6650691B2 (en) * 2002-02-12 2003-11-18 Motorola, Inc. Power control in spread spectrum communications systems
US6980800B2 (en) 2002-02-12 2005-12-27 Hughes Network Systems System and method for providing contention channel organization for broadband satellite access in a communications network
US7292854B2 (en) 2002-02-15 2007-11-06 Lucent Technologies Inc. Express signaling in a wireless communication system
US7076263B2 (en) 2002-02-19 2006-07-11 Qualcomm, Incorporated Power control for partial channel-state information (CSI) multiple-input, multiple-output (MIMO) systems
US20030162519A1 (en) 2002-02-26 2003-08-28 Martin Smith Radio communications device
US6862271B2 (en) * 2002-02-26 2005-03-01 Qualcomm Incorporated Multiple-input, multiple-output (MIMO) systems with multiple transmission modes
US6959171B2 (en) 2002-02-28 2005-10-25 Intel Corporation Data transmission rate control
US6873651B2 (en) * 2002-03-01 2005-03-29 Cognio, Inc. System and method for joint maximal ratio combining using time-domain signal processing
US6636568B2 (en) 2002-03-01 2003-10-21 Qualcomm Data transmission with non-uniform distribution of data rates for a multiple-input multiple-output (MIMO) system
US6687492B1 (en) 2002-03-01 2004-02-03 Cognio, Inc. System and method for antenna diversity using joint maximal ratio combining
US20040047284A1 (en) 2002-03-13 2004-03-11 Eidson Donald Brian Transmit diversity framing structure for multipath channels
US7406065B2 (en) * 2002-03-14 2008-07-29 Qualcomm, Incorporated Method and apparatus for reducing inter-channel interference in a wireless communication system
US7035284B2 (en) * 2002-03-14 2006-04-25 Qualcomm Incorporated Method and apparatus for reducing inter-channel interference in a wireless communication system employing a non-periodic interleaver
US7042858B1 (en) 2002-03-22 2006-05-09 Jianglei Ma Soft handoff for OFDM
JP3561510B2 (ja) 2002-03-22 2004-09-02 松下電器産業株式会社 基地局装置及びパケット伝送方法
US7012978B2 (en) * 2002-03-26 2006-03-14 Intel Corporation Robust multiple chain receiver
US20040198276A1 (en) 2002-03-26 2004-10-07 Jose Tellado Multiple channel wireless receiver
US7197084B2 (en) * 2002-03-27 2007-03-27 Qualcomm Incorporated Precoding for a multipath channel in a MIMO system
KR100456693B1 (ko) 2002-03-28 2004-11-10 삼성전자주식회사 다중채널 통신 시스템의 비트 할당을 최적화하여 셋업시간을 최소화하는 방법
US20030186650A1 (en) * 2002-03-29 2003-10-02 Jung-Tao Liu Closed loop multiple antenna system
US7224704B2 (en) 2002-04-01 2007-05-29 Texas Instruments Incorporated Wireless network scheduling data frames including physical layer configuration
US7099377B2 (en) 2002-04-03 2006-08-29 Stmicroelectronics N.V. Method and device for interference cancellation in a CDMA wireless communication system
US6850741B2 (en) * 2002-04-04 2005-02-01 Agency For Science, Technology And Research Method for selecting switched orthogonal beams for downlink diversity transmission
US7020226B1 (en) 2002-04-04 2006-03-28 Nortel Networks Limited I/Q distortion compensation for the reception of OFDM signals
US7103325B1 (en) 2002-04-05 2006-09-05 Nortel Networks Limited Adaptive modulation and coding
US6804191B2 (en) 2002-04-05 2004-10-12 Flarion Technologies, Inc. Phase sequences for timing and access signals
US6987849B2 (en) * 2002-04-09 2006-01-17 Tekelec Method and systems for intelligent signaling router-based surveillance
US7623871B2 (en) 2002-04-24 2009-11-24 Qualcomm Incorporated Position determination for a wireless terminal in a hybrid position determination system
US7876726B2 (en) 2002-04-29 2011-01-25 Texas Instruments Incorporated Adaptive allocation of communications link channels to I- or Q-subchannel
US7352722B2 (en) * 2002-05-13 2008-04-01 Qualcomm Incorporated Mitigation of link imbalance in a wireless communication system
US6690660B2 (en) * 2002-05-22 2004-02-10 Interdigital Technology Corporation Adaptive algorithm for a Cholesky approximation
US7327800B2 (en) * 2002-05-24 2008-02-05 Vecima Networks Inc. System and method for data detection in wireless communication systems
US6862440B2 (en) * 2002-05-29 2005-03-01 Intel Corporation Method and system for multiple channel wireless transmitter and receiver phase and amplitude calibration
US7421039B2 (en) 2002-06-04 2008-09-02 Lucent Technologies Inc. Method and system employing antenna arrays
KR100498326B1 (ko) 2002-06-18 2005-07-01 엘지전자 주식회사 이동통신 단말기의 적응 변조 코딩 장치 및 방법
US7184713B2 (en) 2002-06-20 2007-02-27 Qualcomm, Incorporated Rate control for multi-channel communication systems
US7359313B2 (en) 2002-06-24 2008-04-15 Agere Systems Inc. Space-time bit-interleaved coded modulation for wideband transmission
US7613248B2 (en) 2002-06-24 2009-11-03 Qualcomm Incorporated Signal processing with channel eigenmode decomposition and channel inversion for MIMO systems
US7095709B2 (en) 2002-06-24 2006-08-22 Qualcomm, Incorporated Diversity transmission modes for MIMO OFDM communication systems
US7551546B2 (en) 2002-06-27 2009-06-23 Nortel Networks Limited Dual-mode shared OFDM methods/transmitters, receivers and systems
DE60311464T2 (de) 2002-06-27 2007-08-30 Koninklijke Philips Electronics N.V. Messung von kanaleigenschaften in einem kommunikationssystem
US7342912B1 (en) * 2002-06-28 2008-03-11 Arraycomm, Llc. Selection of user-specific transmission parameters for optimization of transmit performance in wireless communications using a common pilot channel
US7912999B2 (en) * 2002-07-03 2011-03-22 Freescale Semiconductor, Inc. Buffering method and apparatus for processing digital communication signals
EP1379020A1 (en) 2002-07-03 2004-01-07 National University Of Singapore A wireless communication apparatus and method
US20040017785A1 (en) 2002-07-16 2004-01-29 Zelst Allert Van System for transporting multiple radio frequency signals of a multiple input, multiple output wireless communication system to/from a central processing base station
US6683916B1 (en) * 2002-07-17 2004-01-27 Philippe Jean-Marc Sartori Adaptive modulation/coding and power allocation system
US6885708B2 (en) * 2002-07-18 2005-04-26 Motorola, Inc. Training prefix modulation method and receiver
KR20040011653A (ko) 2002-07-29 2004-02-11 삼성전자주식회사 채널 특성에 적응적인 직교 주파수 분할 다중 통신 방법및 장치
DE60325612D1 (de) * 2002-07-30 2009-02-12 Ipr Licensing Inc System und verfahren zur funkkommunikation mit mehreren eingängen und mehreren ausgängen (mimo)
US6961595B2 (en) 2002-08-08 2005-11-01 Flarion Technologies, Inc. Methods and apparatus for operating mobile nodes in multiple states
US7653415B2 (en) * 2002-08-21 2010-01-26 Broadcom Corporation Method and system for increasing data rate in a mobile terminal using spatial multiplexing for DVB-H communication
US6970722B1 (en) * 2002-08-22 2005-11-29 Cisco Technology, Inc. Array beamforming with wide nulls
DE60325921D1 (de) 2002-08-22 2009-03-12 Imec Inter Uni Micro Electr Verfahren zur MIMO-Übertragung für mehrere Benutzer und entsprechende Vorrichtungen
US20040037257A1 (en) * 2002-08-23 2004-02-26 Koninklijke Philips Electronics N.V. Method and apparatus for assuring quality of service in wireless local area networks
US6940917B2 (en) 2002-08-27 2005-09-06 Qualcomm, Incorporated Beam-steering and beam-forming for wideband MIMO/MISO systems
US8194770B2 (en) * 2002-08-27 2012-06-05 Qualcomm Incorporated Coded MIMO systems with selective channel inversion applied per eigenmode
EP1535410A1 (en) * 2002-09-06 2005-06-01 Nokia Corporation Antenna selection method
US7260153B2 (en) 2002-09-09 2007-08-21 Mimopro Ltd. Multi input multi output wireless communication method and apparatus providing extended range and extended rate across imperfectly estimated channels
US20040052228A1 (en) * 2002-09-16 2004-03-18 Jose Tellado Method and system of frequency and time synchronization of a transceiver to signals received by the transceiver
US7426176B2 (en) 2002-09-30 2008-09-16 Lucent Technologies Inc. Method of power allocation and rate control in OFDMA systems
FR2845626B1 (fr) 2002-10-14 2005-12-16 Rotelec Sa Procede pour la maitrise des mouvements du metal, dans une lingotiere de coulee continue de brames
US6850511B2 (en) 2002-10-15 2005-02-01 Intech 21, Inc. Timely organized ad hoc network and protocol for timely organized ad hoc network
US7961774B2 (en) 2002-10-15 2011-06-14 Texas Instruments Incorporated Multipath interference-resistant receivers for closed-loop transmit diversity (CLTD) in code-division multiple access (CDMA) systems
US20040121730A1 (en) 2002-10-16 2004-06-24 Tamer Kadous Transmission scheme for multi-carrier MIMO systems
US7453844B1 (en) 2002-10-22 2008-11-18 Hong Kong Applied Science and Technology Research Institute, Co., Ltd. Dynamic allocation of channels in a wireless network
US7274938B2 (en) * 2002-10-22 2007-09-25 Texas Instruments Incorporated Wired control channel for supporting wireless communication in non-exclusive spectrum
US8570988B2 (en) 2002-10-25 2013-10-29 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US7151809B2 (en) 2002-10-25 2006-12-19 Qualcomm, Incorporated Channel estimation and spatial processing for TDD MIMO systems
US8320301B2 (en) 2002-10-25 2012-11-27 Qualcomm Incorporated MIMO WLAN system
US8169944B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Random access for wireless multiple-access communication systems
AU2003285112B2 (en) 2002-10-25 2009-04-02 Qualcomm Incorporated Data detection and demodulation for wireless communication systems
US7002900B2 (en) * 2002-10-25 2006-02-21 Qualcomm Incorporated Transmit diversity processing for a multi-antenna communication system
US8208364B2 (en) 2002-10-25 2012-06-26 Qualcomm Incorporated MIMO system with multiple spatial multiplexing modes
US7986742B2 (en) 2002-10-25 2011-07-26 Qualcomm Incorporated Pilots for MIMO communication system
US8218609B2 (en) 2002-10-25 2012-07-10 Qualcomm Incorporated Closed-loop rate control for a multi-channel communication system
US7324429B2 (en) 2002-10-25 2008-01-29 Qualcomm, Incorporated Multi-mode terminal in a wireless MIMO system
US8170513B2 (en) 2002-10-25 2012-05-01 Qualcomm Incorporated Data detection and demodulation for wireless communication systems
US8134976B2 (en) 2002-10-25 2012-03-13 Qualcomm Incorporated Channel calibration for a time division duplexed communication system
US20040081131A1 (en) 2002-10-25 2004-04-29 Walton Jay Rod OFDM communication system with multiple OFDM symbol sizes
AU2002353638A1 (en) 2002-10-26 2004-05-13 Electronics And Telecommunications Research Institute Frequency hopping ofdma method using symbols of comb pattern
US7317750B2 (en) * 2002-10-31 2008-01-08 Lot 41 Acquisition Foundation, Llc Orthogonal superposition coding for direct-sequence communications
EP1416688A1 (en) 2002-10-31 2004-05-06 Motorola Inc. Iterative channel estimation in multicarrier receivers
US7280625B2 (en) 2002-12-11 2007-10-09 Qualcomm Incorporated Derivation of eigenvectors for spatial processing in MIMO communication systems
US7280467B2 (en) 2003-01-07 2007-10-09 Qualcomm Incorporated Pilot transmission schemes for wireless multi-carrier communication systems
US7058367B1 (en) 2003-01-31 2006-06-06 At&T Corp. Rate-adaptive methods for communicating over multiple input/multiple output wireless systems
US7583637B2 (en) 2003-01-31 2009-09-01 Alcatel-Lucent Usa Inc. Methods of controlling data rate in wireless communications systems
US20040176097A1 (en) 2003-02-06 2004-09-09 Fiona Wilson Allocation of sub channels of MIMO channels of a wireless network
EP1447934A1 (en) 2003-02-12 2004-08-18 Institut Eurecom G.I.E. Transmission and reception diversity process for wireless communications
JP2004266586A (ja) 2003-03-03 2004-09-24 Hitachi Ltd 移動通信システムのデータ送受信方法
JP4250002B2 (ja) 2003-03-05 2009-04-08 富士通株式会社 適応型変調伝送システム及び適応型変調制御方法
US6927728B2 (en) 2003-03-13 2005-08-09 Motorola, Inc. Method and apparatus for multi-antenna transmission
US7822140B2 (en) * 2003-03-17 2010-10-26 Broadcom Corporation Multi-antenna communication systems utilizing RF-based and baseband signal weighting and combining
US7885228B2 (en) 2003-03-20 2011-02-08 Qualcomm Incorporated Transmission mode selection for data transmission in a multi-channel communication system
JP4259897B2 (ja) 2003-03-25 2009-04-30 シャープ株式会社 無線データ伝送システム及び無線データ送受信装置
US7242727B2 (en) 2003-03-31 2007-07-10 Lucent Technologies Inc. Method of determining transmit power for transmit eigenbeams in a multiple-input multiple-output communications system
US7403503B2 (en) 2003-07-09 2008-07-22 Interdigital Technology Corporation Resource allocation in wireless communication systems
MXPA06000434A (es) 2003-07-11 2006-04-05 Qualcomm Inc Canal de enlace de avance compartido dinamico para un sistema de comunicacion inalambrico.
WO2005014820A1 (fr) 2003-08-08 2005-02-17 Si Chuan Heben Biotic Engineering Co. Ltd. 5-enolpyruvyl-3-phosphoshikimate synthase a bioresistance eleve au glyphosate et sequence de codage
ATE487291T1 (de) * 2003-08-27 2010-11-15 Wavion Ltd Wlan-kapazitäts-erweiterung durch verwendung von sdm
US7065144B2 (en) 2003-08-27 2006-06-20 Qualcomm Incorporated Frequency-independent spatial processing for wideband MISO and MIMO systems
US7356089B2 (en) 2003-09-05 2008-04-08 Nortel Networks Limited Phase offset spatial multiplexing
KR100995031B1 (ko) 2003-10-01 2010-11-19 엘지전자 주식회사 다중입력 다중출력 시스템에 적용되는 신호 전송 제어 방법
US8233462B2 (en) 2003-10-15 2012-07-31 Qualcomm Incorporated High speed media access control and direct link protocol
US8483105B2 (en) 2003-10-15 2013-07-09 Qualcomm Incorporated High speed media access control
US8842657B2 (en) 2003-10-15 2014-09-23 Qualcomm Incorporated High speed media access control with legacy system interoperability
WO2005041515A1 (en) 2003-10-24 2005-05-06 Qualcomm Incorporated Frequency division multiplexing of multiple data streams in a wireless multi-carrier communication system
US7508748B2 (en) 2003-10-24 2009-03-24 Qualcomm Incorporated Rate selection for a multi-carrier MIMO system
US8526412B2 (en) 2003-10-24 2013-09-03 Qualcomm Incorporated Frequency division multiplexing of multiple data streams in a wireless multi-carrier communication system
US7616698B2 (en) 2003-11-04 2009-11-10 Atheros Communications, Inc. Multiple-input multiple output system and method
US7298805B2 (en) 2003-11-21 2007-11-20 Qualcomm Incorporated Multi-antenna transmission for spatial division multiple access
US9473269B2 (en) 2003-12-01 2016-10-18 Qualcomm Incorporated Method and apparatus for providing an efficient control channel structure in a wireless communication system
US7231184B2 (en) 2003-12-05 2007-06-12 Texas Instruments Incorporated Low overhead transmit channel estimation
JP4425925B2 (ja) 2003-12-27 2010-03-03 韓國電子通信研究院 固有ビーム形成技術を使用するmimo−ofdmシステム
US7333556B2 (en) 2004-01-12 2008-02-19 Intel Corporation System and method for selecting data rates to provide uniform bit loading of subcarriers of a multicarrier communication channel
JP2005223829A (ja) 2004-02-09 2005-08-18 Nec Electronics Corp 分数分周回路及びこれを用いたデータ伝送装置
US7746886B2 (en) 2004-02-19 2010-06-29 Broadcom Corporation Asymmetrical MIMO wireless communications
US7206354B2 (en) * 2004-02-19 2007-04-17 Qualcomm Incorporated Calibration of downlink and uplink channel responses in a wireless MIMO communication system
US7274734B2 (en) 2004-02-20 2007-09-25 Aktino, Inc. Iterative waterfiling with explicit bandwidth constraints
US7848442B2 (en) 2004-04-02 2010-12-07 Lg Electronics Inc. Signal processing apparatus and method in multi-input/multi-output communications systems
US7486740B2 (en) 2004-04-02 2009-02-03 Qualcomm Incorporated Calibration of transmit and receive chains in a MIMO communication system
US7110463B2 (en) 2004-06-30 2006-09-19 Qualcomm, Incorporated Efficient computation of spatial filter matrices for steering transmit diversity in a MIMO communication system
US7606319B2 (en) 2004-07-15 2009-10-20 Nokia Corporation Method and detector for a novel channel quality indicator for space-time encoded MIMO spread spectrum systems in frequency selective channels
US20060018247A1 (en) * 2004-07-22 2006-01-26 Bas Driesen Method and apparatus for space interleaved communication in a multiple antenna communication system
US7599443B2 (en) 2004-09-13 2009-10-06 Nokia Corporation Method and apparatus to balance maximum information rate with quality of service in a MIMO system
KR100905605B1 (ko) 2004-09-24 2009-07-02 삼성전자주식회사 직교주파수분할다중화 다중입출력 통신 시스템의 전송 방법
TWI296753B (en) 2004-10-26 2008-05-11 Via Tech Inc Usb control circuit for saving power and the method thereof
US8498215B2 (en) 2004-11-16 2013-07-30 Qualcomm Incorporated Open-loop rate control for a TDD communication system
CN102170329B (zh) 2004-11-16 2014-09-10 高通股份有限公司 Mimo通信系统的闭环速率控制
US7525988B2 (en) 2005-01-17 2009-04-28 Broadcom Corporation Method and system for rate selection algorithm to maximize throughput in closed loop multiple input multiple output (MIMO) wireless local area network (WLAN) system
US7466749B2 (en) 2005-05-12 2008-12-16 Qualcomm Incorporated Rate selection with margin sharing
US7603141B2 (en) 2005-06-02 2009-10-13 Qualcomm, Inc. Multi-antenna station with distributed antennas
US8358714B2 (en) 2005-06-16 2013-01-22 Qualcomm Incorporated Coding and modulation for multiple data streams in a communication system
US20090161613A1 (en) 2007-11-30 2009-06-25 Mark Kent Method and system for constructing channel quality indicator tables for feedback in a communication system
US20090291642A1 (en) 2008-05-23 2009-11-26 Telefonaktiebolaget Lm Ericsson (Publ) Systems and Methods for SIR Estimation for Power Control
US8619620B2 (en) 2008-09-16 2013-12-31 Qualcomm Incorporated Methods and systems for transmission mode selection in a multi channel communication system
ES2355347B1 (es) 2009-01-30 2012-02-10 Vodafone España, S.A.U. Método para detectar interferencias en un sistema de comunicación inal�?mbrico.
US20100260060A1 (en) 2009-04-08 2010-10-14 Qualcomm Incorporated Integrated calibration protocol for wireless lans
KR20130018079A (ko) 2011-08-10 2013-02-20 삼성전자주식회사 무선 통신 시스템에서 빔 고정 장치 및 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5239677A (en) * 1991-07-01 1993-08-24 Motorola, Inc. Method and apparatus for initiating communication on an assigned frequency
US5422733A (en) * 1994-02-04 1995-06-06 Motorola, Inc. Method and apparatus for facsimile communication of first and second type information with selective call communication systems
WO1995021501A1 (en) * 1994-02-04 1995-08-10 Motorola Inc. Method and apparatus for facsimile communication of first and second type information with selective call communication systems
RU2134489C1 (ru) * 1995-07-05 1999-08-10 Моторола, Инк. Способ и устройство для выбора входящего канала в системе связи
US6351499B1 (en) * 1999-12-15 2002-02-26 Iospan Wireless, Inc. Method and wireless systems using multiple antennas and adaptive control for maximizing a communication parameter

Also Published As

Publication number Publication date
KR100965347B1 (ko) 2010-06-22
AU2009200382A1 (en) 2009-02-19
CN102833049A (zh) 2012-12-19
CN102833049B (zh) 2015-10-07
EP2267926B1 (en) 2017-02-22
SI2267926T1 (sl) 2017-05-31
WO2004038984A9 (en) 2005-07-28
EP2061173B1 (en) 2013-11-20
EP2267926A2 (en) 2010-12-29
EP1559231B1 (en) 2009-03-11
BR0315535A (pt) 2006-01-17
US9048892B2 (en) 2015-06-02
WO2004038984A2 (en) 2004-05-06
RU2005115873A (ru) 2006-01-20
TWI467956B (zh) 2015-01-01
EP2278731A2 (en) 2011-01-26
CA2501921A1 (en) 2004-05-06
US8355313B2 (en) 2013-01-15
US20080267138A1 (en) 2008-10-30
DE60326627D1 (de) 2009-04-23
CN1717888B (zh) 2012-04-25
EP2061173A1 (en) 2009-05-20
US8208364B2 (en) 2012-06-26
ES2626125T3 (es) 2017-07-24
WO2004038984A3 (en) 2004-11-11
RU2330381C2 (ru) 2008-07-27
AU2003287296B2 (en) 2009-02-19
RU2008106942A (ru) 2009-08-27
US8483188B2 (en) 2013-07-09
US20130235825A1 (en) 2013-09-12
CN101917245B (zh) 2013-01-02
HUE031607T2 (en) 2017-07-28
US20080267098A1 (en) 2008-10-30
CN101917245A (zh) 2010-12-15
TW201025910A (en) 2010-07-01
EP2278731A3 (en) 2012-05-09
DK2267926T3 (en) 2017-04-10
JP4860924B2 (ja) 2012-01-25
EP1559231A2 (en) 2005-08-03
ES2323058T3 (es) 2009-07-06
JP2006504339A (ja) 2006-02-02
JP2010226736A (ja) 2010-10-07
AU2003287296C1 (en) 2009-07-16
EP2267926A3 (en) 2012-05-23
BRPI0315535B1 (pt) 2019-09-17
PT2267926T (pt) 2017-06-09
ATE425603T1 (de) 2009-03-15
AU2003287296A1 (en) 2004-05-13
US9031097B2 (en) 2015-05-12
ES2440542T3 (es) 2014-01-29
MXPA05004401A (es) 2005-11-23
JP5043979B2 (ja) 2012-10-10
EP2278731B1 (en) 2016-10-05
UA83201C2 (ru) 2008-06-25
KR20050071620A (ko) 2005-07-07
CA2501921C (en) 2012-07-17
US20100119001A1 (en) 2010-05-13
TW200425671A (en) 2004-11-16
AU2009200382B2 (en) 2010-07-22
US20040136349A1 (en) 2004-07-15
CN1717888A (zh) 2006-01-04
TWI335155B (en) 2010-12-21

Similar Documents

Publication Publication Date Title
RU2477001C2 (ru) Система с множеством входов и множеством выходов (mimo) с множеством режимов пространственного мультиплексирования
EP2899897B1 (en) Methods and systems for combined precoding and cyclic delay diversity
US8837568B2 (en) Method of transmitting feedback information in wireless communication system
JP2007512773A (ja) 空間分割多重アクセスのためのマルチアンテナ送信
EP1269665A2 (en) Method and apparatus for measuring channel state information