RU2376373C2 - Изолированная молекула нуклеиновой кислоты, кодирующая слитый полипептид, способный связывать фактор роста эндотелиальных клеток сосудов (vegf), слитый полипептид, реплицируемый экспрессионный вектор, способ получения слитого полипептида, ловушка vegf, фармацевтическая композиция, способ лечения и набор для лечения vegf-опосредованного заболевания или состояния - Google Patents

Изолированная молекула нуклеиновой кислоты, кодирующая слитый полипептид, способный связывать фактор роста эндотелиальных клеток сосудов (vegf), слитый полипептид, реплицируемый экспрессионный вектор, способ получения слитого полипептида, ловушка vegf, фармацевтическая композиция, способ лечения и набор для лечения vegf-опосредованного заболевания или состояния Download PDF

Info

Publication number
RU2376373C2
RU2376373C2 RU2006102497/13A RU2006102497A RU2376373C2 RU 2376373 C2 RU2376373 C2 RU 2376373C2 RU 2006102497/13 A RU2006102497/13 A RU 2006102497/13A RU 2006102497 A RU2006102497 A RU 2006102497A RU 2376373 C2 RU2376373 C2 RU 2376373C2
Authority
RU
Russia
Prior art keywords
vegf
trap
seq
nucleic acid
fusion polypeptide
Prior art date
Application number
RU2006102497/13A
Other languages
English (en)
Other versions
RU2006102497A (ru
Inventor
Томас Дж. ДЕЙЛИ (US)
Томас Дж. Дейли
Джеймс П. ФЭНДЛ (US)
Джеймс П. ФЭНДЛ
Николас Дж. ПАПАДОПУЛОС (US)
Николас Дж. ПАПАДОПУЛОС
Original Assignee
Ридженерон Фармасьютикалз, Инк.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=33552268&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=RU2376373(C2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ридженерон Фармасьютикалз, Инк. filed Critical Ридженерон Фармасьютикалз, Инк.
Publication of RU2006102497A publication Critical patent/RU2006102497A/ru
Application granted granted Critical
Publication of RU2376373C2 publication Critical patent/RU2376373C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/71Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Zoology (AREA)
  • Toxicology (AREA)
  • Immunology (AREA)
  • Cell Biology (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Urology & Nephrology (AREA)
  • Vascular Medicine (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicinal Preparation (AREA)

Abstract

Изобретение относится к области биотехнологии, конкретно к нуклеиновым кислотам и мультимерным белкам, способным связывать фактор роста эндотелиальных клеток сосудов (VEGF), и может быть использовано в медицине. Рекомбинантным путем получают полипептид, состоящий из компонента (R1R2)X и, необязательно, мультимеризующего компонента (МС), который представляет собой аминокислотную последовательность длиной от 1 до 200 аминокислот, имеющую по меньшей мере один остаток цистеина, где Х≥1, R1 означает иммуноглобулин-подобный (Ig) домен 2 рецептора VEGF Flt-1, a R2 означает Ig-домен 3 рецептора VEGF Flk-1. Полученный слитый полипептид не содержит мультимеризующего компонента в случае, когда Х=2, а в случае, когда Х=1, мультимеризующий компонент представляет собой аминокислотную последовательность длиной от 1 до 15 аминокислот. Полученный полипептид используют в составе фармацевтической композиции для VEGF-опосредованного заболевания или состояния. Изобретение позволяет получить высокоэффективную ловушку VEGF, специальная конструкция которой подходит для локального введения в конкретные органы, ткани и/или клетки. 9 н. и 7 з.п. ф-лы, 3 табл.

Description

УРОВЕНЬ ТЕХНИКИ
Область техники, к которой относится изобретение
Изобретение относится к слитым полипептидам, способным связывать фактор роста эндотелиальных клеток сосудов (VEGF), представителей семейства VEGF и варианты сплайсинга с конкретными требуемыми характеристиками, а также к терапевтическим способам применения.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В первом аспекте отличительным признаком изобретения является молекула нуклеиновой кислоты, кодирующая слитый полипептид, содержащий компоненты рецепторов (R1R2)X и/или (R1R3)Y, где R1 означает компонент рецептора фактора роста эндотелиальных клеток сосудов (VEGF) в виде Ig-домена 2 Flt-1 (Flt1D2), R2 означает компонент рецептора VEGF в виде Ig-домена 3 Flk-1 (Flk1D3) и R3 означает компонент рецептора VEGF в виде Ig-домена 3 Flt-4 (Flt1D3 или R3) и где Х≥1 и Y≥1.
В связанном втором аспекте отличительным признаком изобретения является мономерная ловушка VEGF или слитый полипептид, содержащий компоненты рецептора VEGF (R1R2)X и/или (R1R3)Y, где X≥1, Y≥1 и R1, R2 и R3 имеют значения, определенные выше. Компоненты рецептора VEGF R1, R2 и R3 могут быть непосредственно связаны друг с другом или связаны посредством одной или нескольких спейсерных последовательностей. В одном конкретном варианте мономерная ловушка VEGF представляет собой (R1R2)X, где X=2. В более конкретном варианте мономерной ловушкой VEGF является SEQ ID NO: 24 или ее функционально эквивалентный аминокислотный вариант. Изобретение относится к мономерной ловушке VEGF, главным образом состоящей из компонентов рецептора VEGF (R1R2)X и/или (R1R3)Y и их функционально эквивалентных аминокислотных вариантов.
В третьем аспекте отличительным признаком изобретения является изолированная молекула нуклеиновой кислоты, кодирующая слитый полипептид, содержащий компоненты рецептора VEGF (R1R2)X и/или (R1R3)Y и компонент, являющийся партнером в слиянии (FP), выбранный из группы, состоящей из мультимеризующего компонента (MC), сывороточного белка или молекулы, способной связывать сывороточный белок. В предпочтительном варианте FP является мультимеризующим компонентом (MC), способным взаимодействовать с мультимеризующим компонентом в другом слитом полипептиде с образованием мультимерной структуры, например димера или тримера. Наиболее предпочтительно MC выбран из группы, состоящей из (i) мультимеризующего компонента, содержащего расщепляемую область (C-область), (ii) укороченного мультимеризующего компонента, (iii) аминокислотной последовательности длиной от 1 до примерно 200 аминокислот, имеющей по меньшей мере один остаток цистеина, (iv) лейциновой молнии, (v) мотива спиральной петли, (vi) coil-coil мотива и (vii) домена иммуноглобулина. Кроме того, предлагаются слитые полипептиды, по существу состоящие из (R1R2)X и/или (R1R3)Y и FP. В предпочтительном варианте слитый полипептид по существу состоит из
(R1R2)X и MC.
В четвертом аспекте отличительным признаком изобретения является слитый полипептид, содержащий компоненты рецептора VEGF (R1R2)X и/или (R1R3)Y и FP, которые описаны выше. Компоненты рецептора могут быть расположены в разном порядке, например (R1R2)X-FP; (R1R2)X-FP-(R1R2)X; FP-(R2R1)X и т.д. Компоненты слитого полипептида могут быть непосредственно связаны друг с другом или связаны посредством спейсерной последовательности.
В пятом аспекте отличительным признаком изобретения является ловушка VEGF, содержащая мультимер из двух или более слитых полипептидов, состоящих из компонентов рецептора VEGF (R1R2)X и/или (R1R3)Y и FP, где компонент FP является мультимеризующим компонентом (MC), содержащим C-область. C-область может быть природного происхождения или искусственной и может находится в любой точке в мультимеризующем компоненте и функционирует, обеспечивая расщепление исходного MC до укороченного MC. Ловушка VEGF, состоящая из двух или более слитых полипептидов, имеющих по меньшей мере один укороченный MC, называется «укороченной миниловушкой».
C-область может быть создана в MC посредством инсерции, делеции или мутации так, чтобы был создан ферментативно или химически расщепляемый сайт. C-область может быть создана в любом MC и в любом положении в MC; предпочтительно C-область создают в полноразмерном домене Fc или его фрагменте или домене CH3. C-область может быть сайтом, расщепляемым ферментом, таким как тромбин, фицин, пепсин, матрилизин или пролидаза, или расщепляемым химически, например, муравьиной кислотой или CuCl2.
В шестом связанном аспекте отличительным признаком изобретения является укороченная миниловушка VEGF, которая является мультимерным белком, содержащим два или более слитых полипептида, состоящих из (R1R2)X и/или (R1R3)Y и мультимеризующего компонента, который укорочен расщеплением исходного MC, содержащего C-область (tMC).
В седьмом аспекте отличительным признаком изобретения является слитый полипептид, состоящий из компонентов рецептора VEGF (R1R2)X и/или (R1R3)Y и MC, где MC представляет собой аминокислотную последовательность длиной от 1 до примерно 200 аминокислот, содержащую по меньшей мере один остаток цистеина, где по меньшей мере один остаток цистеина способен образовывать дисульфидную связь с остатком цистеина, присутствующим в MC другого слитого полипептида (cMC). В предпочтительном варианте cMC представляет собой аминокислотную последовательность длиной 1-50 аминокислот, содержащую по меньшей мере один остаток цистеина. В более предпочтительном варианте cMC является аминокислотной последовательностью длиной 1-15 аминокислот, содержащей по меньшей мере один остаток цистеина. В еще более предпочтительном варианте cMC представляет собой аминокислотную последовательность длиной 1-10 аминокислот, содержащую 1-2 остатка цистеина. Иллюстрация данного варианта изобретения показана в SEQ ID NO: 27, имеющей сигнальную последовательность (1-26), за которой следуют компоненты R1 (27-129) и R2 (130-231), и далее следует последовательность из девяти аминокислот, заканчивающаяся остатком цистеина. В другом варианте, показанном в SEQ ID NO:28, за сигнальной последовательностью (1-26) следуют компоненты R1 (27-129) и R2 (130-231), за которыми следует последовательность из шести аминокислот, заканчивающаяся остатком цистеина.
В восьмом аспекте отличительным признаком изобретения является миниловушка VEGF, содержащая мультимер из двух или более слитых полипептидов, состоящих из (R1R2)X и/или (R1R3)Y и cMC. В более конкретном варианте миниловушка является димером. Иллюстрацией данного варианта миниловушки согласно изобретению является димер слитого полипептида, показанного в SEQ ID NO: 2, в котором каждый слитый полипептид (R1R2-cMC) имеет молекулярную массу 23,0 кДа и pI 9,22.
В другом варианте cMC имеет 4 аминокислоты в длину и включает два остатка цистеина, например XCXC (SEQ ID NO: 3). В одном иллюстративном примере данного варианта изобретения миниловушка состоит из компонентов рецептора VEGF согласно изобретению и cMC состоит из ACGC (SEQ ID NO: 4). Одним иллюстративным примером данного варианта миниловушки согласно изобретению является димер слитого полипептида, показанного в SEQ ID NO: 5, в котором каждый мономер имеет молекулярную массу 23,2 кДа и pI 9,22. Другой иллюстративный пример данного варианта изобретения показан в SEQ ID NO: 26, имеющей сигнальную последовательность (1-26), за которой следуют компоненты R1 (27-129) и R2 (130-231) с последующей последовательностью из девяти аминокислот, заканчивающейся CPPC.
Во всех вариантах ловушки VEGF согласно изобретению (включая укороченную миниловушку VEGF, миниловушки VEGF и мономерные миниловушки VEGF) сигнальная последовательность (S) может быть включена в начале (или на N-конце) слитого полипептида согласно изобретению. Сигнальная последовательность может быть нативной для клетки, рекомбинантной или синтетической. Если сигнальная последовательность связана с N-концом первого рецепторного компонента, то слитый полипептид может быть обозначен, например, как S-(R1R2)X.
Компоненты слитого полипептида могут быть непосредственно связаны друг с другом или могут быть связаны посредством спейсеров. В конкретных вариантах один или несколько рецепторных компонентов и/или компонентов, являющихся партнерами в слиянии, в слитом полипептиде непосредственно связаны друг с другом без спейсеров. В других вариантах один или несколько рецепторных компонентов и/или компонентов, являющихся партнерами в слиянии, связаны посредством спейсеров.
Изобретение относится к векторам, содержащим молекулы нуклеиновой кислоты согласно изобретению, включая экспрессирующие векторы, содержащие молекулу нуклеиновой кислоты, функционально связанную с последовательностью регуляции экспрессии. Изобретение, кроме того, относится к системам хозяин-вектор для получения слитого полипептида, которые содержат экспрессирующий вектор в подходящей клетке-хозяине; к системам хозяин-вектор, в которых подходящей клеткой-хозяином является бактериальная, дрожжевая клетка, клетка насекомых, клетка млекопитающих; клетка E. coli или клетка COS или CHO. Кроме того, предлагаются ловушки VEGF согласно изобретению, модифицированные ацетилированием или пэгилированием. Способы ацетилирования или пэгилирования белка хорошо известны в данной области.
В связанном девятом аспекте отличительным признаком изобретения является способ получения ловушки VEGF согласно изобретению, включающий культивирование клетки-хозяина, трансфицированной вектором, содержащим последовательность нуклеиновой кислоты согласно изобретению, в условиях, подходящих для экспрессии белка клеткой-хозяином, и извлечение полученного таким образом слитого полипептида.
Ловушки VEGF согласно изобретению терапевтически применимы для лечения любого заболевания или состояния, которое улучшается, становится ослабленным или подавленным при удалении, ингибировании или уменьшении количества VEGF. Неполный список конкретных состояний, улучшаемых при ингибировании или уменьшении количества VEGF, включает например нежелательное просачивание плазмы или проницаемость сосудов, нежелательный рост кровеносных сосудов, например, такой как в опухоли, отек, связанный с воспалительными заболеваниями, такими как псориаз или артрит, включая ревматоидный артрит; астму; генерализованный отек, связанный с ожогами; асцит и плевральный выпот, связанный с опухолями, воспалением или травмой; хроническое воспаление дыхательных путей; астму; синдром капиллярной утечки; сепсис; болезнь почек, связанную с повышенным просачиванием белка; аденокарциному протоков поджелудочной железы (PDAC) и глазные заболевания, такие как связанная с возрастом дегенерация желтого пятна и диабетическая ретинопатия. Миниловушка VEGF, в частности, применима для лечения заболеваний глаз и как вспомогательное средство при операциях на глазах, включая операцию по поводу глаукомы; и лечения внутриглазных опухолей, например, таких как увеальная меланома, ретинобластома, посредством доставки в стекловидное тело.
Соответственно в десятом аспекте отличительным признаком изобретения является терапевтический способ лечения связанного с VEGF заболевания или состояния, включающий введение ловушки VEGF согласно изобретению субъекту, страдающему от связанного с VEGF заболевания или состояния. Хотя любое млекопитающее можно лечить терапевтическими способами согласно изобретению, субъектом предпочтительно является больной человек, страдающий или подверженный риску развития состояния или заболевания, которое может быть улучшено, ослаблено, ингибировано или подвергнуто лечению ловушкой VEGF.
В одиннадцатом аспекте отличительным признаком изобретения являются способы диагностики и прогнозирования, а также наборы для выявления, количественного анализа и/или слежения за VEGF с использованием миниловушек согласно изобретению.
В двенадцатом аспекте отличительным признаком изобретения являются фармацевтические композиции, содержащие ловушку VEGF согласно изобретению с фармацевтически приемлемым носителем. Такие фармацевтические композиции могут содержать ловушку из димерного слитого полипептида или нуклеиновые кислоты, кодирующие слитый полипептид. Миниловушки согласно изобретению находят конкретные применения при состояниях, при которых требуется ловушка VEGF с пониженным временем полужизни в сыворотке (например, более быстрый клиренс) и/или повышенным проникновением в ткани вследствие меньшего размера. Конкретные применения миниловушки VEGF включают, например, заболевания, при которых желательно локальное введение в конкретную ткань или клетку. Примерами такого состояния являются офтальмологические болезни глаза.
Другие объекты и преимущества станут очевидными при ознакомлении со следующим подробным описанием.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Перед тем как ознакомиться с описанием предлагаемых способов, следует понимать, что данное изобретение не ограничено описанными конкретными способами и экспериментальными условиями, как таковые способы и условия могут варьироваться. Также следует понимать, что используемая в данном описании терминология применяется только с целью описания конкретных вариантов и не предназначена для ограничения, так как объем настоящего изобретения будет ограничен только прилагаемой формулой изобретения.
В используемом в данном описании и прилагаемой формуле изобретения смысле формы единственного числа включают ссылки на множественное число, если контекст четко не диктует обратное. Таким образом, например, ссылка на «способ» включает один или несколько способов и/или стадий указанного в данном описании типа и/или тех, которые станут очевидными специалистам в данной области при чтении данного описания и т.д.
Если не оговорено особо, все технические и научные термины, используемые в данном описании, имеют такое же значение, которое обычно понимается специалистом в области, к которой данное изобретение относится. Хотя на практике или при проверке настоящего изобретения могут быть использованы любые способы и вещества, сходные или эквивалентные веществам, указанным в данном описании, описаны предпочтительные способы и вещества. Все публикации, упоминаемые в данном описании, включены в него в виде ссылки, чтобы описать способы и/или вещества, в связи с которыми цитированы публикации.
Общее описание
Изобретение относится к ловушке VEGF, способной связывать и ингибировать активность VEGF, которая является мономером или мультимером одного или нескольких слитых полипептидов. Молекулы согласно изобретению связывают и ингибируют биологическую активность VEGF и/или физиологическую реакцию или ответ. Описание основанных на рецепторе VEGF антагонистических ловушек VEGF Flt1D2.Flk1D3.FcΔC1(a) (SEQ ID NO: 7-8) и VEGFR1R2-FcΔC1(a) (SEQ ID NO: 9-10) смотри в PCT WO/0075319, содержание которой включено в данное описание в виде ссылки в полном объеме.
Миниловушка согласно изобретению меньше, чем полноразмерная ловушка, примерно 50-60 кДа по сравнению с 120 кДа исходной ловушки, и включает мономерные ловушки, состоящие главным образом из доменов рецепторов VEGF (R1R2)X, (R1R3)Y или их комбинаций, ловушки, образованные отщеплением части исходной мультимерной ловушки, имеющей компонент, являющийся партнером в слиянии, который представляет собой мультимеризующий компонент (MC), содержащий область расщепления (C-область); или связыванием остатка цистеина или аминокислотной последовательности, содержащей один или несколько остатков цистеина, с доменами рецепторного компонента или между доменами рецепторного компонента. В конкретных вариантах миниловушка согласно изобретению имеет молекулярную массу меньше 60 кДа, как измерено посредством SDS-ПААГ-анализа; более предпочтительно примерно 50 кДа; еще более предпочтительно примерно 20-30 кДа или примерно 25 кДа и способна связывать VEGF с аффинностью, сравнимой с полноразмерной исходной ловушкой, описанной в PCT/US00/14142.
Конструкции нуклеиновой кислоты и экспрессия
Настоящее изобретение относится к конструкции молекул нуклеиновой кислоты, кодирующих отдельный слитый полипептид, способный связывать VEGF, или мультимерные ловушки VEGF. Молекулы нуклеиновой кислоты согласно изобретению могут кодировать компоненты рецепторов дикого типа R1, R2 и/или R3 или их функционально эквивалентные варианты. Варианты аминокислотной последовательности рецепторных компонентов R1, R2 и/или R3 ловушек согласно изобретению также могут быть получены в результате создания мутаций в кодирующих молекулах нуклеиновых кислот. Такие варианты включают, например, делеции, или инсерции, или замены аминокислотных остатков в аминокислотной последовательности R1, R2 и/или R3. Может быть осуществлена любая комбинация делеции, инсерции и замены, чтобы получить конечную конструкцию, при условии, что конечная конструкция обладает способностью связывать и ингибировать VEGF.
Указанные молекулы нуклеиновых кислот встраивают в вектор, который способен экспрессировать слитый полипептид при введении в подходящую клетку-хозяина. Подходящие клетки-хозяева включают, но не ограничены указанным, клетки бактерий, дрожжей, насекомых и млекопитающих. Можно применять любые способы, известные специалисту в данной области, для встраивания фрагментов ДНК в вектор, чтобы сконструировать экспрессирующие векторы, кодирующие слитый полипептид согласно изобретению, под контролем сигналов регуляции транскрипции/трансляции.
Экспрессия молекул нуклеиновой кислоты согласно изобретению может регулироваться второй последовательностью нуклеиновой кислоты так, чтобы молекулы экспрессировалась в хозяине, трансформированном молекулой рекомбинантной ДНК. Например, экспрессия может регулироваться любым промоторным/энхансерным элементом, известным в данной области. Промоторы, которые можно использовать для регуляции экспрессии химерных полипептидных молекул, включают без ограничения длинный концевой повтор (Squinto et al. (1991) Cell 65: 1-20); область раннего промотора SV40, промотор CMV, M-MuLV, промотор тимидинкиназы, регуляторные последовательности гена металлотионина; прокариотические экспрессирующие векторы, такие как промотор b-лактамазы или промотор tac (смотри также Scientific American (1980) 242: 74-94); промоторные элементы дрожжей или других грибов, такие как промотор Gal 4, ADH, PGK, промотор щелочной фосфатазы и области регуляции тканеспецифичной транскрипции, полученные из таких генов, как эластаза I.
Экспрессирующие векторы, способные реплицироваться в бактериальном или эукариотическом хозяине, содержащие молекулы нуклеиновой кислоты согласно изобретению, используют для трансфекции хозяина и таким образом для управления экспрессией таких нуклеиновых кислот, чтобы получить слитый полипептид согласно изобретению, который образует ловушки, способные связываться с VEGF. Трансфицированные клетки могут временно или предпочтительно конститутивно и постоянно экспрессировать ловушки VEGF согласно изобретению.
Ловушки согласно изобретению могут быть очищены любым способом, который обеспечивает последующее образование стабильной биологически активной ловушки. Например, но не с целью ограничения, факторы могут быть извлечены из клеток либо в виде растворимых белков, либо в виде тел включения, из которых их можно экстрагировать количественно 8М гидрохлоридом гуанидиния и диализом (смотри, например, патент США No. 5663304). Чтобы дополнительно очистить факторы, можно использовать обычную ионообменную хроматографию, хроматографию на основе гидрофобного взаимодействия, хроматографию с обращенной фазой или гель-фильтрацию.
Компоненты рецептора VEGF
Компоненты рецептора VEGF в миниловушках VEGF состоят из Ig-домена 2 Flt-1 (Flt1D2) (R1), Ig-домена 3 Flk-1 (Flk1D3) (R2) (вместе, R1R2), и/или R1 и Ig-домена 3 Flt-4 (Flt1D3) (R3) (вместе R1R3). Подразумевается, что термин «Ig-домен» Flt-1, Flt-4 или Flk-1 охватывает не только полный домен дикого типа, но также его варианты с инсерциями, делециями и/или заменами, которые по существу сохраняют функциональные свойства интактного домена. Специалисту в данной области без труда будет понятно, что могут быть получены многочисленные варианты указанных выше Ig-доменов, которые будут сохранять по существу такие же функциональные свойства, как и домен дикого типа.
Подразумевается, что термин «функциональные эквиваленты» при использовании со ссылкой на R1, R2 или R3, охватывает домен R1, R2 или R3 по меньшей мере с одним изменением, например делецией, присоединением и/или заменой, который сохраняет по существу такие же функциональные свойства, как и домен R1, R2 или R3 дикого типа, то есть по существу эквивалентное связывание с VEGF. Будет понятно, что могут быть сделаны различные аминокислотные замены в R1, R2 или R3, не отходя от сути изобретения в отношении способности указанных рецепторных компонентов связывать и инактивировать VEGF. Функциональные свойства ловушек согласно изобретению можно определить любым подходящим скрининговым анализом, известным в данной области для измерения требуемой характеристики. Примеры таких анализов описаны в экспериментальном разделе ниже, которые позволяют определять связывающие свойства ловушек для VEGF (Kd), а также время их полужизни в случае диссоциации комплекса ловушка-лиганд (T1/2). Другие анализы, например изменение способности специфично связываться с VEGF, можно измерить в анализе связывания VEGF конкурентного типа. Модификации свойств белка, таких как термостабильность, гидрофобность, чувствительность к протеолитической деградации или тенденция к агрегации, могут быть измерены способами, известными специалистам в данной области.
Компоненты слитого полипептида могут быть непосредственно связаны друг с другом или могут быть связаны посредством спейсеров. В общем, термин «спейсер» (или линкер) означает одну или несколько молекул, например нуклеиновых кислот, или аминокислот, или непептидных остатков, таких как полиэтиленгликоль, которые могут быть встроены между одним или несколькими составляющими доменами. Например, спейсерные последовательности могут быть использованы для обеспечения требуемого представляющего интерес сайта между компонентами для облегчения обработки. Спейсер также может быть введен, чтобы усилить экспрессию слитого полипептида клеткой-хозяином, чтобы уменьшить стерические помехи, так чтобы компонент мог принимать свою оптимальную третичную структуру и/или соответствующим образом взаимодействовать со своей молекулой-мишенью. Спейсеры и способы идентификации требуемых спейсеров смотри, например, в работе George et al. (2003) Protein Engineering 15: 871-879, включенной в данное описание в виде ссылки. Последовательность спейсера может содержать одну или несколько аминокислот, связанных в природе с рецепторным компонентом, или может представлять собой добавленную последовательность, используемую для усиления экспрессии слитого полипептида, обеспечения специальных требуемых представляющих интерес сайтов, обеспечения возможности для образования составляющими доменами оптимальных третичных структур и/или для усиления взаимодействия компонента с его молекулой-мишенью. В одном варианте спейсер содержит одну или несколько пептидных последовательностей между одним или несколькими компонентами, которые содержат 1-100 аминокислот, предпочтительно 1-25.
В более конкретных вариантах R1 представляет собой аминокислоты 27-126 SEQ ID NO: 8 или 1-126 SEQ ID NO: 8 (включая сигнальную последовательность 1-26); или аминокислоты 27-129 SEQ ID NO: 10 или 1-129 SEQ ID NO: 10 (включая сигнальную последовательность в положении 1-26). В более конкретных вариантах R2 представляет собой аминокислоты 127-228 SEQ ID NO: 8, или аминокислоты 130-231 SEQ ID NO: 10. В более конкретных вариантах R3 представляет собой аминокислоты 127-225 SEQ ID NO: 13 (без сигнальной последовательности). В том случае, когда, например, R2 помещают на N-конце слитого полипептида, может быть желательно, чтобы сигнальная последовательность предшествовала рецепторному компоненту. Рецепторный компонент(ы), связанный с мультимеризующим компонентом, кроме того, может содержать спейсерный компонент, например последовательность GPG из аминокислот 229-231 SEQ ID NO: 7.
Компоненты, являющиеся партнерами в слиянии, и мультимеризующие компоненты
Партнером в слиянии является любой компонент, который усиливает функции слитого полипептида. Таким образом, например, партнер в слиянии может усиливать биологическую активность слитого полипептида, помогать его продуцированию и/или извлечению или усиливать фармакологическое свойство или фармакокинетический профиль слитого полипептида, например, посредством увеличения его времени полужизни в сыворотке, проницаемости в ткани, обеспечения отсутствия иммуногенности или обеспечения стабильности. В предпочтительных вариантах партнер в слиянии выбран из группы, состоящей из мультимеризующего компонента, сывороточного белка или молекулы, способной связывать сывороточный белок.
В том случае, когда партнер в слиянии является сывороточным белком или его фрагментом, он выбран из группы, состоящей из α-1-микроглобулина, AGP-1, орозомукоида, α-1-кислого гликопротеина, связывающего витамин D белка (DBP), гемопексина, сывороточного альбумина человека (hSA), трансферрина, ферритина, афамина, гаптоглобина, α-фетопротеина тироглобулина, α-2-HS-гликопротеина, β-2-гликопротеина, гиалуронан связывающего белка, синтаксина, C1R, цепи C1q, связывающего галектин 3-Mac2 белка, фибриногена, полимерного рецептора Ig (PIGR), α-2-макроглобулина, белка, транспортирующего мочевину, гаптоглобина, IGFBP, фагоцитарных рецепторов макрофагов, фибронектина, гиантина, Fc, α-1-антихимотрипсина, α-1-антитрипсина, антитромбина III, аполипопротеина A-1, аполипопротеина B, β-2-микоглобулина, церулоплазмина, компонента комплемента C3 или C4, ингибитора эстеразы CI, C-реактивного белка, цистатина C и белка C. В более конкретном варианте партнер в слиянии выбран из группы, состоящей из α-1-микроглобулина, AGP-1, орозомукоида, α-1-кислого гликопротеина, связывающего витамин D белка (DBP), гемопексина, сывороточного альбумина человека (hSA), афамина и гаптоглобина. Включение компонента, являющегося партнером в слиянии, может при желании продлевать время полужизни слитого полипептида согласно изобретению в сыворотке. Смотри, например, патенты США No. 6423512, 5876969, 6593295 и 6548653, специально включенные в данное описание в виде ссылки в полном объеме, в отношении примеров полипептида, слитого с сывороточным альбумином. hSA широко распределен в организме, особенно в кишечнике и компонентах крови, и играет важную роль в поддержании осмолярности и объема плазмы. Он медленно выводится из печени и у людей обычно имеет время полужизни in vivo 14-20 дней (Waldmann et al. (1977) Albumin, Structure Function and Uses; Pergamon Press; pp. 255-275).
В том случае, когда партнером в слиянии является молекула, способная связывать сывороточный белок, молекула может быть синтетической малой молекулой, липидом или липосомой, нуклеиновой кислотой, включая синтетическую нуклеиновую кислоту, такую как аптомер, пептидом или олигосахаридом. Кроме того, молекула может быть таким белком, как, например, FcγR1, FcγR2, FcγR3, полимерный рецептор Ig (PIGR), ScFv и другие фрагменты антител, специфичные по отношению к сывороточному белку.
В том случае, когда партнером в слиянии является мультимеризующий компонент (MC), он представляет собой любую природную или синтетическую последовательность, способную взаимодействовать с другим MC с образованием структуры более высокого порядка, например димера, тримера и т.д. Подходящие MC могут включать лейциновую молнию, включая домены лейциновой молнии, полученные из c-jun или c-fos; последовательности, полученные из константных областей легких цепей каппа или лямбда; синтетические последовательности, такие как мотивы спираль-петля-спираль (Muller et al. (1998) FEBS Lett. 432: 45-49), coil-coil мотивы и т.д., или другие общепринятые мультимеризующие домены, известные в данной области. В некоторых вариантах слитый компонент содержит домен, полученный из иммуноглобулина, например из IgG, IgM или IgA человека. В конкретных вариантах полученный из иммуноглобулина домен может быть выбран из группы, состоящей из Fc-домена IgG, тяжелой цепи IgG и легкой цепи IgG. Fc-домен IgG может быть выбран из изотипов IgG1, IgG2, IgG3 и IgG4, а также любого аллотипа в каждой группе изотипов. В одном примере ловушки VEGF согласно изобретению мультимеризующим компонентом является Fc-домен IgG4 (SEQ ID NO: 29).
Создание укороченных миниловушек VEGF
В одном варианте ловушки согласно изобретению укороченную миниловушку VEGF, содержащую два или более слитых полипептида согласно изобретению, создают, подвергая исходную ловушку, имеющую MC, содержащие C-область, воздействию условий, при которых отщепляются один или несколько MC, содержащих C-область. Полученная в результате укороченная миниловушка может быть продуктом полного и частичного расщепления исходной ловушки.
MC, содержащий C-область, может представлять собой любой MC, способный взаимодействовать с другим MC с образованием структуры более высокого порядка, например димера или тримера. C-область может быть создана в MC в любом требуемом положении. В свете инструкций, представленных в примерах ниже, специалист в данной области сможет выбрать требуемый сайт для создания C-области на основе требуемых свойств получаемых в результате укороченных ловушек, например молекулярной массы, мономерной или димерной структуры и т.д.
В конкретном варианте C-область представляет собой сайт расщепления тромбином (LVPRGS) (SEQ ID NO: 6), встроенный в домен FcΔC1 после N-концевой последовательности CPPC (SEQ ID NO: 1). В данном варианте конструкция полноразмерной исходной ловушки VEGF экспрессируется в клетке в виде Fc-меченого белка, обеспечивая таким образом улавливание и очистку, например, с использованием колонки с белком A. После образования димера и ковалентного связывания по одному или обоими остатками цистеина последовательности CPPC (SEQ ID NO: 1) димер подвергают воздействию тромбином в условиях, при которых отщепляются один или оба домена FcΔC1, так что образуются укороченные димерные миниловушки, имеющие молекулярную массу примерно 50-90 кДа и обладающие аффинностью по отношению к VEGF, сравнимой с аффинностью исходной ловушки. Специалист в данном области может регулировать условия расщепления, чтобы предпочтительно образовывать продукт частичного расщепления или продукт полного расщепления, при этом вариант условий расщепления выбирают на основе потребности в конкретном продукте, обладающем конкретными свойствами, такими как молекулярная масса.
В конкретном варианте C-область является сайтом расщепления тромбином (LVPRGS) (SEQ ID NO: 6), встроенным в домен FcΔC1 на N-конце по отношению к последовательности CPPC (SEQ ID NO: 1). После образования димера и ковалентного связывания по одному или обоим остаткам цистеина последовательности CPPC (SEQ ID NO: 1) димер подвергают воздействию тромбина в условиях, при которых возникают один или оба домена FcΔC1 и образуются укороченные мономерные миниловушки. Мономерная укороченная миниловушка, образованная таким образом, содержит рецепторный компонент, небольшой фрагмент Fc и имеет размер примерно 25 кДа и проявляет пониженную аффинность по отношению к VEGF по сравнению с укороченной димерной ловушкой и полноразмерной исходной ловушкой. Показано, что подобная мономерная ловушка, полученная в виде рекомбинантного белка, имеет KD примерно 1 нМ.
Создание миниловушек VEGF
В одном варианте изобретение относится к миниловушкам VEGF, имеющим один или несколько доменов рецепторных компонентов (R1R2)X и/или (R1R3)Y, где X≥1, Y≥1 и R1, R2 и R3 имеют значения, определенные выше, и необязательно партнер в слиянии, который предпочтительно является доменом MC, который представляет собой аминокислотную последовательность длиной от 1 до примерно 200 аминокислот, содержащую по меньшей мере один остаток цистеина, где по меньшей мере один остаток цистеина способен образовывать дисульфидную связь с остатком цистеина, присутствующим в MС другого слитого полипептида (cMC). cMC может находиться на N-конце или C-конце слитого полипептида или между двумя доменами рецепторных компонентов. В одном конкретном варианте цистеин добавляют к C-концу компонента рецептора VEGF, например R1R2C, который позволяет слитому полипептиду образовывать ковалентные димеры посредством образования ковалентной дисульфидной связи между остатком цистеина на C-конце одного слитого полипептида и остатком цистеина на C-конце другого слитого полипептида. В данном иллюстративном примере миниловушка является димером слитого полипептида, показанного в SEQ ID NO: 2, где каждый слитый полипептид (R1R2-cMC или R1R2C) имеет молекулярную массу примерно 23,0 кДа.
В другом варианте cMC является последовательностью 4 аминокислот (XXXX) (SEQ ID NO: 11), где X означает любую аминокислоту и последовательность содержит, по меньшей мере, один остаток цистеина. В конкретном варианте cMC добавляют к C-концу домена рецепторного компонента. В более конкретном варианте последовательность из 4 аминокислот представляет собой ACGC (SEQ ID NO: 4) и cMC образует две дисульфидные связи с остатками цистеина, присутствующими во втором слитом полипептиде. Как показано ниже (таблица 2), обе приведенные в качестве примера миниловушки проявляют аффинность по отношению к VEGF, сравнимую с аффинностью исходной ловушки.
Терапевтические применения
Миниловушки VEGF согласно изобретению терапевтически применимы для лечения любого заболевания или состояния, которое улучшается, ослабляется, подавляется или предотвращается при удалении, ингибировании или уменьшении количества VEGF. Неограничивающий список конкретных состояний, улучшаемых ингибированием или уменьшением количества VEGF, включает клинические состояния, которые характеризуются избыточной пролиферацией эндотелиальных клеток сосудов, проницаемостью сосудов, отеком или воспалением, такие как отек головного мозга, связанный с повреждением, инсультом или опухолью; отек, связанный с воспалительными заболеваниями, такими как псориаз или артрит, включая ревматоидный артрит; астму; генерализованный отек, связанный с ожогами; асцит и плевральный выпот, связанный с опухолями, воспалением или травмой; хроническое воспаление дыхательных путей; синдром капиллярной утечки; сепсис; болезнь почек, связанную с повышенным просачиванием белка; и глазные заболевания, такие как связанная с возрастом дегенерация желтого пятна и диабетическая ретинопатия.
Композиции согласно изобретению терапевтически применимы для лечения широкого множества заболеваний, связанных с повышенными уровнями VEGF. Например, воспаление с аномальным повышением Th2 и ремоделирование дыхательных путей характерны для патогенеза астмы (смотри, например, Elias et al. (1999) J. Clin. Invest. 104: 1001-6). Повышенные уровни VEGF обнаружены в тканях и биологических образцах пациентов с астмой, которые прямо коррелируют с активностью заболевания (Lee et al. (2001) J. Allergy Clin. Immunol. 107: 1106-1108) и обратно коррелируют с диаметром дыхательных путей и чувствительностью дыхательных путей. Кроме того, предполагалось, что VEGF вносит вклад в отек ткани при астме.
Другим заболеванием, связанным с повышенным уровнем VEGF, является аденокарцинома протоков поджелудочной железы (PDAC). Указанная злокачественная опухоль часто имеет очаг усиленной пролиферации эндотелиальных клеток и часто сверхэкспрессирует VEGF (Ferrara (1999) J. Mol. Med. 77: 527-543). PDAC является причиной более 20% смертельных исходов вследствие злокачественных опухолей желудочно-кишечного тракта, что делает данное заболевание четвертым из наиболее распространенных причин связанной со злокачественными опухолями смертности в США и других промышленно развитых стран. Экспериментальные данные свидетельствуют о важной роли VEGF в развитии злокачественной опухоли поджелудочной железы, таким образом, ингибитор VEGF является многообещающим в качестве терапевтического средства для ослабления роста опухоли внутри поджелудочной железы и региональных и дистальных метастазов.
Меньшая по размеру негликозилированная миниловушка, экспрессированная в E. coli (пример 4), гликозилированная миниловушка, экспрессированная в клетках CHO (пример 5), или основанная на рецепторе мономерная ловушка (пример 6) имеет оптимизированные характеристики для локальной/интравитреальной доставки, т.е. более короткое время полужизни в сыворотке для более быстрого клиренса и минимизации нежелательного системного воздействия. Кроме того, вследствие своего меньшего размера миниловушка обладает способностью проникать через внутреннюю ограничивающую мембрану (ILM) в глаз и диффундировать через стекловидное тело к сетчатке/пигментному эпителиальному слою сетчатки (RPE), что поможет лечить болезнь сетчатки. Кроме того, миниловушку можно использовать для локального введения при лечении такой глазной болезни, как неоваскуляризация сосудистой оболочки глаза, диабетический макулярный отек, пролиферативная диабетическая ретинопатия, неоваскуляризация роговицы/отторжение трансплантата. Кроме того, миниловушку можно применять в любой ситуации, когда требуется временное (кратковременное) блокирование VEGF, например, чтобы избежать хронического воздействия блокады VEGF, например, при лечении псориаза.
Серьезной проблемой, приводящей к неблагоприятному исходу после операции по поводу глаукомы, является ранее воспаление и ангиогенез, а также слишком быстрое заживление раны. Соответственно ловушки VEGF согласно изобретению могут быть эффективно использованы в качестве адъюванта при оперировании глаукомы, чтобы предотвратить ранний гем- и лимфангиогенез и рекрутирование макрофагов к фильтрационной подушке после операции по поводу глаукомы и улучшить исход операции.
Комбинированная терапия
В многочисленных вариантах ловушка VEGF может быть введена в комбинации с одним или несколькими дополнительными соединениями или терапевтическими средствами, включая вторую молекулу ловушки VEGF, хемотерапевтическое средство, хирургию, катетерные устройства и облучение. Комбинированная терапия включает в себя введение одного фармацевтического дозированного препарата, который содержит ловушку VEGF, и одного или нескольких дополнительных средств; а также введение ловушки VEGF и одного или нескольких дополнительных средства в своих отдельных фармацевтических дозированных препаратах. Например, ловушка VEGF и цитотоксическое средство, хемотерапевтическое средство или ингибирующее рост средство могут быть введены пациенту вместе в одном дозированном препарате, таким как комбинированный препарат, или каждое средство может быть введено в виде отдельного дозированного препарата. В том случае, когда используют отдельные дозированные препараты, VEGF-специфичный слитый полипептид согласно изобретению и одно или несколько дополнительных средств могут быть введены одновременно или в отдельные периоды времени со сдвигом, например последовательно.
Термин «цитотоксическое средство» в используемом в данном описании смысле относится к веществу, которое ингибирует или предотвращает функционирование клеток и/или вызывает разрушение клеток. Подразумевается, что термин включает радиоактивные изотопы (например, I131, I125, Y90 и Re186), хемотерапевтические средства и токсины, такие как ферментативно активные токсины из бактерий, грибов, растений или животных или их фрагменты.
«Хемотерапевтическим средством» является химическое соединение, применимое для лечения злокачественной опухоли. Примеры хемотерапевтических средств включают алкилирующие агенты, такие как тиотепа и циклофосфамид (Cytoxan®); алкилсульфонаты, такие как бусульфан, импросульфан и пипосульфан; азиридины, такие как бензодопа, карбоквон, метуредопа и уредопа; этиленимины и метилмеламины, включая альтретамин, триэтиленмеламин, триэтиленфосфорамид, триэтилентиофосфорамид и триметилолмеламин; азотистые иприты, такие как хлорамбуцил, хлорнафазин, хлорфосфамид, эстрамустин, ифосфамид, мехлоретамин, гидрохлорид оксида мехлоретамина, мелфалан, новембихин, фенестерин, преднимустин, трофосфамид, урациловый иприт; нитрозомочевины, такие как кармустин, хлорозотоцин, фотемустин, ломустин, нимустин, ранимустин; антибиотики, такие как аклациномицин, актиномицин, аутрамицин, азасерин, блеомицины, кактиномицин, калихеамицин, карабицин, карминомицин, карзинофилин, хромомицины, дактиномицин, даунорубицин, деторубицин, 6-диазо-5-оксо-L-норлейцин, доксорубицин, эпирубицин, эзорубицин, идарубицин, марцелломицин, митомицины, микофеноловая кислота, ногаламицин, оливомицины, пепломицин, потфиромицин, пуромицин, квеламицин, родорубицин, стрептонигрин, стрептозоцин, туберцидин, убенимекс, зиностатин, зорубицин; антиметаболиты, такие как метотрексат и 5-фторурацил (5-FU); аналоги фолиевой кислоты, такие как деноптерин, метотрексат, птероптерин, триметрексат; аналоги пурина, такие как флударабин, 6-меркаптопурин, тиамиприн, тиогуанин; аналоги пиримидина, такие как анцитабин, азацитидин, 6-азауридин, кармофур, цитарабин, дидезоксиуридин, доксифлуридин, эноцитабин, флоксуридин; андрогены, такие как калустерон, пропионат дромостанолона, эпитиостанол, мепитиостан, тестолактон; антиадренальные средства, такие как аминоглютетимид, митотан, трилостан; пополнитель фолиевой кислоты, такой как фолиновая кислота; ацеглатон; гликозид альдофосфамида; аминолевулиновая кислота; амсакрин; бестрабуцил; бисантрен; эдатраксат; дефофамин; демекольцин; диазиквон; элфорнитин; ацетат эллиптиния; этоглюцид; нитрат галлия; гидроксимочевину; лентинан; лонидамин; митогуазон; митоксантрон; мопидамол; нитракрин; пентостатин; фенамет; пирарубицин; подофиллиновая кислота; 2-этилгидразид; прокарбазин; PSK®; разоксан; сизофиран; спирогерманий; тенуазоновую кислота; триазиквон; 2,2',2''-трихлортриэтиламин; уретан; виндезин; дакарбазин; манномустин; митобронитол; митолактол; пипоброман; гацитозин; арабинозид («Ara-C»); циклофосфамид; тиотепа; таксаны, например паклитаксел (Taxol®, Bristol-Myers Squibb Oncology, Princeton, N. J.) и доцетаксел (Taxotere®; Aventis Antony, France); хлорамбуцил; гемцитабин; 6-тиогуанин; меркаптопурин; метотрексат; аналоги платины, такие как цисплатин и карбоплатин; винбластин; платина; этопозид (VP-16); ифосфамид; митомицин C; митоксантрон; винкристин; винорелбин; навелбин; новантрон; тенипозид; дауномицин; аминоптерин; кселода; ибандронат; CPT-11; ингибитор топоизомеразы RFS 2000; дифторметилорнитин (DMFO); ретиноевая кислота; эсперамицины; капецитабин; и фармацевтически приемлемые соли, кислоты или производные любого из указанных выше средств. Также в данное определение включены антигормональные средства, которые действуют, регулируя или ингибируя действие гормонов на опухоли, такие как антиэстрогены, включая, например, тамоксифен, ралоксифен, ингибирующие ароматазу 4(5)-имидазолы, 4-гидрокситамоксифен, триоксифен, кеоксифен, LY117018, онапристон и торемифен (Fareston); и антиандрогены, такие как флутамид, нилутамид, бикалутамид, леупролид и госерелин; и фармацевтически приемлемые соли, кислоты или производные любого из указанных выше средств.
«Ингибирующее рост средство» при использовании в данном описании относится к соединению или композиции, которая ингибирует рост клетки, особенно клетки злокачественной опухоли, либо in vitro, либо in vivo. Примеры ингибирующих рост средств включают средства, которые блокируют прохождение клеточного цикла (в другой фазе, отличной от S-фазы), такие как средства, которые индуцируют задержку в G1 и задержку в M-фазе. Классические блокаторы фазы M включают алкалоиды барвинка (винкристин и винбластин), Taxol® и ингибиторы топоизомеразы II, такие как доксорубицин, эпирубицин, даунорубицин, этопозид и блеомицин. Указанные средства, которые задерживают G1, также распространяются на задержку S-фазы, например ДНК-алкилирующие агенты, такие как тамоксифен, преднизон, дакарбазин, мехлорэтамин, цисплатин, метотрексат, 5-фторурацил и ara-C.
Способы введения
Изобретение относится к способам лечения, включающим в себя введение субъекту эффективного количества ловушки VEGF согласно изобретению. В предпочтительном аспекте ловушка в значительной степени очищена (например, по существу не содержит веществ, которые ограничивают ее действие или дают нежелательные побочные эффекты). Субъектом предпочтительно является млекопитающее и наиболее предпочтительно человек.
Известны различные системы доставки, которые могут быть использованы для введения средства согласно изобретению, например инкапсулирование в липосомы, микрочастицы, микрокапсулы, рекомбинантные клетки, способные экспрессировать соединение, опосредованный рецепторами эндоцитоз (смотри, например, Wu and Wu, 1987, J. Biol. Chem. 262: 4429-4432), конструирование нуклеиновой кислоты в виде части ретровирусного или другого вектора и т.д. Способы введения могут быть энтеральными или парентеральными и включают без ограничения интрадермальный, внутримышечный, внутрибрюшинный, внутривенный, подкожный, интраназальный, внутриглазной и пероральный способы. Соединения могут быть введены любым удобным способом, например посредством инфузии или болюсной инъекции, путем всасывания через эпителиальные или кожно-слизистые выстилающие (например, слизистую оболочку ротовой полости, слизистую оболочку прямой кишки и кишечника и т.д.), и могут быть введены вместе с другими биологически активными агентами. Введение может быть системным или локальным. Введение может быть срочным или хроническим (например, ежедневно, еженедельно, ежемесячно и т.д.) или в комбинации с другими средствами. Также может быть применено легочное введение, например, с использованием ингалятора или распылителя и препарат с агентом для аэрозоля.
В другом варианте активный агент может быть доставлен в везикулах, в частности липосомах, в системе контролируемого высвобождения или в насосе. В другом варианте, когда активным агентом согласно изобретению является нуклеиновая кислота, кодирующая белок, нуклеиновая кислота может быть введена in vivo, чтобы поддерживать экспрессию кодируемого ею белка, посредством конструирования ее в виде части соответствующего вектора для экспрессии нуклеиновой кислоты и введения его таким образом, чтобы он стал внутриклеточным, например, используя ретровирусный вектор (смотри, например, патент США No. 4980286), прямой инъекцией или используя бомбардировку микрочастицами, или покрывание липидами, или посредством рецепторов клеточной поверхности или трансфицирующих агентов, или путем введения его в связи с пептидом, подобным гомеобоксу, который, как известно, проникает в ядро (смотри, например, Joliot et al., 1991, Proc. Natl. Acad. Sci. USA 88: 1864-1868) и т.д. Альтернативно нуклеиновая кислота может быть введена внутрь клетки и включена в ДНК клетки-хозяина для экспрессии посредством гомологичной рекомбинации.
В конкретном варианте может быть желательным введение фармацевтических композиций согласно изобретению локально в необходимую для лечения область; указанное можно осуществить, например, без ограничения посредством локальной инфузии во время операции, местным применением, например, посредством инъекции, с помощью катетера или с помощью имплантата, при этом имплантат является пористым, непористым или гелеобразным материалом, включая мембраны, такие как силиконовые мембраны, волокна или промышленные заменители кожи.
Композиция, применимая при практическом осуществлении способов согласно изобретению, может быть жидкостью, содержащей агент согласно изобретению в растворе, в суспензии или и в том и в другом. Термин «раствор/суспензия» относится к жидкой композиции, в которой первая часть активного агента присутствует в растворе, а вторая часть активного агента присутствует в форме частиц в суспензии в жидком матриксе. Жидкая композиция также включает гель. Жидкая композиция может быть водной или в форме мази. Кроме того, композиция может принимать форму твердой частицы, которая может быть введена в глаз, например между глазом и веком или в конъюнктивальный мешок, где высвобождается ловушка VEGF. Высвобождение из такой частицы обычно происходит к роговой оболочке либо через слезную жидкость, либо непосредственно к самой роговице, с которой твердая частица обычно находится в прямом контакте. Твердые частицы, подходящие для имплантации в глаз, обычно главным образом состоят из биоразрушаемых или небиоразрушаемых полимеров. Водный раствор и/или суспензия могут быть в форме глазных капель. Требуемая доза активного агента может быть измерена введением известного количества капель в глаз. Например, в случае объема капли 25 мкл введение 1-6 капель будет доставлять 25-150 мкл композиции.
Водная суспензия или раствор/суспензия, применимые при практическом осуществлении способов согласно изобретению, могут содержать один или несколько полимеров в качестве суспендирующих агентов. Применимые полимеры включают водорастворимые полимеры, такие как полимеры целлюлозы, и водонерастворимые полимеры, такие как перекрестно сшитые карбоксилсодержащие полимеры. Водная суспензия или раствор/суспензия согласно настоящему изобретению предпочтительно являются вязкими или мукоадгезивными или еще более предпочтительно как вязкими, так и мукоадгезивными.
В другом варианте композиция, применимая при практическом осуществлении способов согласно изобретению, является желатинизируемой in situ водной композицией. Такая композиция содержит желатинизирующий агент в концентрации, эффективной для стимулирования гелеобразования при контакте с глазом или с слезной жидкостью. Подходящие желатинизирующие агенты включают, но не ограничены указанным, термоотверждающиеся полимеры. Термин «желатинизируемый in situ» в используемом в данном описании смысле включает не только жидкости с низкой вязкостью, которые образуют гели при контакте с глазом или слезной жидкостью, но также включает более вязкие жидкости, такие как полутекучие и тиксотропные гели, которые имеют в значительной степени повышенную вязкость или плотность геля при введении в глаз.
Способы диагностики и скрининга
Ловушки VEGF согласно изобретению можно использовать диагностически и/или в способах скрининга. Например, ловушка может быть использована для наблюдения за уровнями VEGF во время клинического исследования, чтобы оценить эффективность лечения. В другом варианте способы и композиции согласно настоящему изобретению используют для отбора индивидуумов для введения в клиническое исследование, чтобы идентифицировать людей, имеющих, например, слишком высокий или слишком низкий уровень VEGF. Ловушки можно использовать в способах, известных в данной области, связанных с локализацией и активностью VEGF, например, при визуализации, измерении его уровней в соответствующих физиологических образцах, в диагностических способах и т.д.
Ловушки согласно изобретению можно использовать в скрининговом анализе in vivo и in vitro, чтобы оценить количество присутствующего несвязанного VEGF, например, в скрининговом способе для идентификации тестируемых агентов, способных снижать экспрессию VEGF. Более широко ловушки согласно изобретению можно использовать в любом анализе или способе, в котором требуется количественное измерение и/или выделение VEGF.
Фармацевтические композиции
Настоящее изобретение также относится к фармацевтическим композициям, содержащим миниловушку VEGF согласно изобретению. Такие композиции содержат терапевтически эффективное количество одной или нескольких миниловушек и фармацевтически приемлемый носитель. Термин «фармацевтически приемлемый» означает одобренный регулирующим ведомством федерального правительства или правительства штата или указанный в фармакопейном списке США или другой общепризнанной фармакопее для применения на животных и более конкретно на человеке. Термин «носитель» относится к разбавителю, адъюванту, эксципиенту или наполнителю, с которым вводят терапевтическое средство. Такими фармацевтическими носителями могут быть стерильные жидкости, такие как вода и масла, включая масла из нефти, масла животного, растительного или синтетического происхождения, такие как арахисовое масло, соевое масло, минеральное масло, кунжутное масло и тому подобные. Подходящие фармацевтические эксципиенты включают крахмал, глюкозу, лактозу, сахарозу, желатин, солод, рис, муку, мел, силикагель, стеарат натрия, моностеарат глицерина, тальк, хлорид натрия, сухое обезжиренное молоко, глицерин, пропиленгликоль, воду, этанол и тому подобное. Композиция при желании также может содержать небольшие количества увлажнителей, или эмульгаторов, или агентов для забуферивания pH. Указанные композиции могут иметь форму растворов, суспензий, эмульсии, таблеток, пилюль, капсул, порошков, препаратов длительного высвобождения и тому подобные. Примеры подходящих фармацевтических носителей описаны в «Remington's Pharmaceutical Sciences», E. W. Martin.
Миниловушка VEGF согласно изобретению может быть приготовлена в виде нейтральной или солевой формы. Фармацевтически приемлемые соли включают соли, образованные со свободными аминогруппами, такие как соли, полученные из соляной, фосфорной, уксусной, щавелевой, винной кислот и т.д., и соли, образованные со свободными карбоксильными группами, такие как соли, полученные с гидроксидами натрия, калия, аммония, кальция, железа, изопропиламином, триэтиламином, 2-этиламиноэтанолом, гистидином, прокаином и т.д.
Кроме того, водные композиции, применимые для практического осуществления способов согласно изобретению, имеют совместимые с глазом pH и осмотическое давление. Один или несколько приемлемых для глаз агентов для корректировки pH и/или буферных агентов могут быть введены в композицию согласно изобретению, включая кислоты, такие как уксусная, борная, лимонная, молочная, фосфорная и соляная кислоты; основания, такие как гидроксид натрия, фосфат натрия, борат натрия, цитрат натрия, ацетат натрия и лактат натрия; и буферы, такие как цитрат/декстроза, бикарбонат натрия и хлорид аммония. Такие кислоты, основания и буферы вводят в количестве, требуемом для поддержания pH композиции в приемлемых для глаза пределах. Одна или несколько приемлемых для глаза солей могут быть включены в композицию в количестве, достаточном для доведения осмотического давления композиции до приемлемых для глаза пределов. К таким солям относятся соли, имеющие катионы натрия, калия или аммония и анионы хлорида, цитрата, аскорбата, бората, фосфата, бикарбоната, сульфата, тиосульфата или бисульфата.
Количество ловушки, которое будет эффективным в случае ее планируемого терапевтического применения, можно определить стандартными клиническими способами, основанными на данном описании. Кроме того, необязательно можно использовать анализы in vitro, помогающие идентифицировать оптимальные пределы доз. В общем, подходящие пределы доз для внутривенного введения обычно составляют примерно 50-5000 мг активного соединения на килограмм массы тела. Подходящие пределы доз для интраназального введения обычно составляют примерно от 0,01 пг/кг массы тела до 1 мг/кг массы тела. Эффективные дозы могут быть экстраполированы на основе кривых дозовой зависимости, полученных в тест-системах in vitro или в моделях на животных.
Для системного введения терапевтически эффективная доза может быть сначала определена в анализах in vitro. Например, доза может быть разработана в моделях на животных, чтобы достичь пределов циркулирующей концентрации, которые включают IC50, определенную в культуре клеток. Такую информацию можно использовать для более точного определения доз, приемлемых для человека. Исходные дозы также можно оценить на основе данных in vivo, например, в моделях на животных, используя способы, которые хорошо известны в данной области. Специалист в данной области без труда может оптимизировать введение человеку на основе данных, полученных на животных.
Дозовое количество и интервал можно корректировать индивидуально, чтобы обеспечить уровни соединений в плазме, которые являются достаточными для поддержания терапевтического эффекта. В случаях локального введения или избирательного поглощения эффективная локальная концентрация соединений может быть не связана с концентрацией в плазме. Специалист в данной области сможет оптимизировать терапевтически эффективные локальные дозы без чрезмерного экспериментирования.
Количество вводимого соединения, конечно, будет варьироваться в зависимости от субъекта, подвергаемого лечению, массы субъекта, тяжести болезни, способа введения и решения лечащего врача. Терапию можно повторять периодически, пока симптомы выявляются или даже когда они не регистрируются. Терапия может проводиться отдельно или в комбинации с другими лекарственными средствами.
Трансфекция клеток и генная терапия
Настоящее изобретение относится к применению нуклеиновых кислот, кодирующих слитый полипептид согласно изобретению, для трансфекции клеток in vitro и in vivo. Указанные нуклеиновые кислоты могут быть встроены в любой из ряда хорошо известных векторов для трансфекции клеток-мишеней и организмов. Нуклеиновые кислоты трансфицируют в клетки ex vivo и in vivo посредством взаимодействия вектора и клетки-мишени. Композиции вводят (например, посредством инъекции в мышцу) субъекту в количестве, достаточном, чтобы вызвать терапевтический ответ. Количество, адекватное для осуществления указанного, определяют как «терапевтически эффективную дозу или количество».
В другом аспекте изобретение относится к способу снижения уровней VEGF у человека или другого животного, включающему в себя трансфекцию клетки нуклеиновой кислотой, кодирующей слитый полипептид согласно изобретению, при этом нуклеиновая кислота содержит индуцируемый промотор, функционально связанный с нуклеиновой кислотой, кодирующей слитый полипептид или миниловушку. Способы генной терапии при лечении или профилактике болезни человека смотри, например, в Van Brunt (1998) Biotechnology 6: 1149-1154.
Наборы
Изобретение также относится к предметам производства, содержащим упаковочный материал и фармацевтическое средство, находящееся в упаковочном материале, при этом фармацевтическое средство содержит, по меньшей мере, одну ловушку VEGF, состоящую из двух или более слитых полипептидов согласно изобретению, и упаковочный материал содержит этикетку или вкладыш в упаковку, на котором указано, что VEGF-специфичный слитый полипептид можно применять для лечения опосредованного VEGF заболевания или состояния.
Трансгенные животные
Изобретение включает трансгенных животных, отличных от человека, экспрессирующих ловушку согласно изобретению. Трансгенное животное может быть получено введением нуклеиновой кислоты в мужской пронуклеус оплодотворенной яйцеклетки, например микроинъекцией, ретровирусной инфекцией, и обеспечением возможности для развития яйцеклетки у псевдобеременной приемной самки. Любые регуляторные или другие последовательности, применяемые в экспрессирующих векторах, могут образовывать часть трансгенной последовательности. Тканеспецифичная регуляторная последовательность(ти) могут быть оперативно связаны с трансгеном, чтобы управлять экспрессией трансгена в конкретных клетках. Трансгенное животное, отличное от человека, экспрессирующее слитый полипептид или миниловушку согласно изобретению, применимо для множества применений, включая применение в качестве средств получения такого слитого полипептида. Кроме того, трансген может быть помещен под контроль индуцируемого промотора так, чтобы экспрессию слитого полипептида или миниловушки можно было регулировать, например, введением малой молекулы.
Конкретные варианты
В описанных ниже экспериментах создавали меньшие по размеру ловушки VEGF и исследовали их способность связывать VEGF. Такие миниловушки предпочтительно используются в конкретных применениях. Например, некоторые состояния или заболевания предпочтительно можно лечить с помощью локального введения ловушки VEGF в конкретный орган, ткань или клетку, а не системным введением. В одном иллюстративном примере миниловушек согласно изобретению создавали меньшую по размеру ловушку VEGF прямым расщеплением димеризованной ловушки VEGF, имеющей область расщепления (C-область), созданную в домене Fc (пример 2). Укороченная ловушка проявляла сравнимую аффинность по отношению к VEGF и время полужизни как и полноразмерная исходная ловушка. В примерах 3-5 описана конструкция слитого полипептида, имеющего компонент рецептора VEGF и мультимеризующий компонент, состоящий из одного или двух остатков цистеина. Измерения аффинности показали, что негликозилированный слитый полипептид, экспрессированный в Е. coli, или гликозилированный полипептид, экспрессированный в клетках CHO, имели сравнимую аффинность связывания для VEGF, как и полноразмерная исходная ловушка. Пример 6, кроме того, иллюстрирует мономерную ловушку VEGF, состоящую из (R1R2)2, которая способная связывать и ингибировать VEGF. В примере 7 описана конструкция миниловушки VEGF (SEQ ID NO: 26), имеющей высокую аффинность связывания VEGF по сравнению с полноразмерной ловушкой (SEQ ID NO: 10).
Другие отличительные признаки изобретения будут очевидными в ходе дальнейшего описания примерных вариантов, которые приведены для иллюстрации изобретения и не предназначены для его ограничения.
ПРИМЕРЫ
Следующий пример приведен с тем, чтобы представить специалистам в данной области полное раскрытие и описание того, как получать и применять способы и композиции согласно изобретению, и не предназначен для ограничения объема того, что авторы изобретения рассматривают как свое изобретение. Были предприняты усилия для того, чтобы обеспечить точность в отношении используемых числовых значений (например, количеств, температуры и т.д.), но следует принимать во внимание некоторые экспериментальные ошибки и отклонения. Если не оговорено особо, части являются частями по массе, молекулярная масса представляет собой среднюю молекулярную массу, температура приведена в градусах по Цельсию и давление является атмосферным или близким к атмосферному.
Пример 1. Конструкция Flt1D2.Flk1D3.FcΔC1(a)
Конструкция исходной ловушки VEGF Flt1D2.Flk1D3.FcΔC1(a) (SEQ ID NO: 7-8), VEGFR1R2.FcΔC1(a) (SEQ ID NO: 9-10) и Flt1D2.VEGFR3D3.FcΔC1(a) (SEQ ID NO: 12-13) подробно описана в публикации PCT WO/0075319, специально включенной в данное описание в виде ссылки в полном объеме. Также в WO/0075319 описаны способы конструирования и экспрессии конструкций нуклеиновой кислоты, кодирующих ловушки VEGF, способы регистрации и измерения связывания ловушки VEGF с VEGF, способы определения стехиометрии связывания VEGF с использованием анализа BIAcore и фармакокинетические анализы.
Пример 2. Расщепленная тромбином димерная миниловушка VEGF
Конструкцию VEGFR1R2.FcΔC1(a) (SEQ ID NO: 9-10) модифицировали инсерцией сайта расщепления тромбином после CPPC (SEQ ID NO: 1) домена Fc. Очищенную ловушку VEGF (5 мкг) инкубировали с тромбином (Novagen) в 20 мМ трис-HCl, pH 8,4, 50 мМ NaCl, 2,5 мМ CaCl2 в течение 16 час при 37°C. Контроли включали белок для контроля расщепления (CCP) и белок исходной ловушки VEGF, инкубированный без тромбина. SDS-ПААГ-анализ (трис-глициновый 4-20% гель; 5 мкг белка на дорожку) подтвердил правильное расщепление (результаты не показаны).
Определение аффинности. Kd связывания каждой ловушки VEGF с hVEGF165 определяли, как описано в WO/0075319, для исходной ловушки VEGF, нерасщепленной ловушки VEGF, содержащей сайт расщепления тромбином («нерасщепленная ловушка VEGF»), расщепленной миниловушки VEGF и рекомбинантной мономерной R1R2-myc myc his. Более конкретно способность ловушек блокировать VEGF165-зависимое фосфорилирование рецептора определяли, используя первичные эндотелиальные клетки человека (HUVEC). VEGF165 инкубировали в присутствии различных концентраций тестируемых ловушек и смесь добавляли к HUVEC, чтобы стимулировать фосфорилирование тирозина VEGFR2. При субстехиометрических концентрациях ловушки VEGF несвязанный VEGF индуцировал фосфорилирование рецептора. Однако при молярном отношении 1:1 или больше ловушки VEGF к лиганду наблюдали полное блокирование передачи сигнала рецептором, установив, что одна молекула димерной ловушки способна блокировать одну молекулу VEGF165 человека. Таким образом, высокая аффинность связывания ловушки VEGF в отношении VEGF приводит к образованию комплекса, который предотвращает взаимодействие VEGF с рецепторами клеточной поверхности. Эквивалентные результаты получили в случае идентичных экспериментов по ингибированию фосфорилирования для исходной ловушки VEGF, нерасщепленной ловушки VEGF и расщепленной миниловушки VEGF. Результаты показаны в таблице 1.
Таблица 1
Ловушка Кинетическая скорость диссоциации (1/с) Т1/2 (ч)
Исходная ловушка VEGF 5,51×10-5±0,94% 3,5
Нерасщепленная ловушка VEGF 4,93×10-5±0,70% 3,9
Расщепленная миниловушка VEGF 5,46×10-5±0,62% 3,53
Мономер R1R2-myc myc his 6,74×10-3±0,38% 0,028
Пример 3. Конструкция плазмид, кодирующих миниловушки VEGF
Миниловушки VEGF конструировали из предшественника исходной ловушки VEGF, VEGFR1R2.FcΔC1(a) (SEQ ID NO: 9-10), в котором три аминокислоты глицин-аланин-пролин служили в качестве линкера между Flk1D3 и FcΔC1(a). Данную плазмиду pTE115 использовали для конструирования миниловушек VEGF, так как линкерная последовательность ДНК содержала последовательность узнавания эндонуклеазой рестрикции Srf I, что облегчало конструирование ловушки VEGF. Во всех других отношениях ловушка VEGF, кодируемая pTE115, идентична ловушке VEGF VEGFR1R2.FcΔC1(a) (SEQ ID NO: 9-10), подробно описанной в публикации PCT WO/0075319.
Конструировали две миниловушки VEGF с доменами для мультимеризации, состоящими либо из одного остатка цистеина (R1R2C) (SEQ ID NO: 2), либо аминокислот ACGC (SEQ ID NO: 4) (R1R2ACGC) (SEQ ID NO: 5), добавляемых к C-концу рецепторных компонентов Flt1D2.Flk1D3. Обе полученные конструкции способны образовывать гомодимерные молекулы, стабилизированные одной (R1R2C) или двумя (R1R2ACGC) межмолекулярными дисульфидными связями.
Плазмиду pTE517 получали удалением фрагмента длиной 690 п.о., вызванного расщеплением ДНК pTE115 с помощью Srf I и Not I, и встраиванием фрагмента синтетической ДНК, образованного отжигом олигонуклеотидов R1R2NC (SEQ ID NO: 14) и R1R2CC (SEQ ID NO: 15). Полученная в результате плазмида кодирует R1R2C, которая состоит из доменов Flt1D2.Flk1D3, за которыми следует остаток цистеина (SEQ ID NO: 23). Подобным образом получали плазмиду pTE518 удалением фрагмента длиной 690 п.о., вызванного расщеплением ДНК pTE115 с помощью Srf I и NotI, с последующим лигированием фрагмента синтетической ДНК, образованного отжигом олигонуклеотидов R1R2NACGC (SEQ ID NO: 16) и R1R2CACGC (SEQ ID NO: 17). Полученная в результате плазмида кодирует R1R2ACGC, которая состоит из доменов Flt1D2.Flk1D3, за которыми следуют аминокислоты ACGC (SEQ ID NO: 25).
Также конструировали плазмиды для управления экспрессией указанных миниловушек в E. coli. Использовали праймеры R1R2N-Nco1 (SEQ ID NO: 18) и R1R2CNot1 (SEQ ID NO: 19), чтобы амплифицировать фрагмент ДНК pTE115, который кодирует аминокислоты с G30 по K231 относительно исходной ловушки VEGF (SEQ ID NO: 10). Амплификация данной последовательности приводила к слиянию начального кодона метионина на 5'-конце и слиянию кодона цистеина с последующим стоп-кодоном на 3'-конце (SEQ ID NO: 2). Затем полученный фрагмент ДНК клонировали в сайтах Nco I и Not I экспрессирующей плазмиды E. coli pRG663, получая pRG1102, так чтобы экспрессия R1R2C была зависима от транскрипции с промотора Φ1.1 фага T7. Индукция генной экспрессии с pRG1102 приводит к накоплению R1R2cys в цитоплазме штамма-хозяина E. coli RFJ238. Подобным образом праймеры R1R2N-Nco1 (SEQ ID NO: 18) и R1R2ACGC-Not1 (SEQ ID NO: 20) использовали для амплификации фрагмента ДНК из pTE115, который кодирует аминокислоты с G30 по K231 (SEQ ID NO: 10), получая в результате слияние начального кодона метионина на 5'-конце и слияние кодонов ACGC (SEQ ID NO: 4) с последующим стоп-кодоном на 3'-конце (SEQ ID NO: 5). Затем полученный фрагмент клонировали в сайтах Nco I и Not I экспрессирующей плазмиды E. coli pRG663, получая pRG1103, так чтобы экспрессия R1R2ACGC зависела от транскрипции с промотора Φ1.1. фага T7. Индукция генной экспрессии как с pRG1102, так и с pRG1103 приводила к накоплению R1R2C или R1R2ACGC соответственно в цитоплазме штамма-хозяина E. coli RFJ238.
Пример 4. Очистка и характеристика миниловушек VEGF из E. coli
И R1R2C, и R1R2ACGC экспрессировали в виде цитоплазматических белков в E. coli и очищали одним и тем же способом. Индукция промотора Φ1.1 фага T7 либо в pRG1102, либо в pRG1103 в E. coli K12 штамма RFJ238 приводила к накоплению белка в цитоплазме. После индукции клетки собирали центрифугированием, ресуспендировали в 50 мМ трис-HCl, pH 7,5, 20 мМ EDTA и лизировали пропусканием через гомогенизатор для клеток Niro-Soavi. Тельца включения собирали из лизированных клеток центрифугированием, один раз промывали дистиллированной H2O, затем растворяли в 8М гуанидиний-HCl, 50 мМ трис-HCl, pH 8,5, 100 мМ сульфите натрия, 10 мМ тетратионате натрия и инкубировали при комнатной температуре в течение 16 часов. Осветленный надосадок фракционировали на колонке S300, уравновешенной 6М гуанидинием-HCl, 50 мМ трис-HCl, pH 7,5. Фракции, содержащие R1R2C, объединяли и диализовали против 6М мочевины, 50 мМ трис-HCl, pH 7,5. Диализованный белок разбавляли до 2М мочевины, 50 мМ трис-HCl, pH 8,5, 2 мМ цистеин, затем медленно перемешивали в течение 7 дней при 4°C. Подвергнутый рефолдингу белок диализовали против 50 мМ трис-HCl, pH 7,5, затем наносили на колонку с SP-сефарозой, уравновешенную 50 мМ трис-HCl, pH 7,5, и элюировали градиентом NaCl от 0 до 1М в 50 мМ трис-HCl, pH 7,5. Фракции, содержащие R1R2C, объединяли, концентрировали и наносили на колонку Superdex 200, уравновешенную 50 мМ трис-HCl, pH 7,5, 150 мМ NaCl. Фракции, содержащие димер миниловушки, собирали и объединяли. С помощью SDS-ПААГ определили молекулярную массу очищенной миниловушки, составляющую примерно 46 кДа.
Проводили анализ BIAcore (как описано в WO/0075319), чтобы определить аффинность ловушки по отношению к VEGF, и результаты показали, что миниловушки R1R2C и R1R2ACGC имели аффинность к VEGF, сравнимую с аффинностью полноразмерной ловушки VEGF (таблица 2).
Таблица 2
Ловушка Кинетическая скорость диссоциации (1/с) Т1/2 (ч)
Ловушка VEGF 4,23×10-5 4,53
R1R2C 3,39×10-5 5,68
R1R2ACGC 3,41×10-5 5,65
Пример 5. Экспрессия миниловушек VEGF в CHO K1
Экспрессия миниловушек VEGF, кодируемых pTE517 и pTE518, зависит от транскрипции с промотора CMV-MIE человека и приводит к секреции миниловушек в культуральную среду при экспрессии в клетках CHO. При экспрессии в виде секретируемых белков в CHO K1 обе миниловушки обнаруживали в кондиционированных средах, и определение их молекулярной массы в SDS-ПААГ свидетельствовало, как и ожидалось, что белки были гликозилированы. Анализ в SDS-ПААГ также показал, что миниловушки способны образовывать гомодимерные молекулы, стабилизированные межмолекулярной дисульфидной связью(ями) между C-концевыми цистеинами. В частности, миниловушка R1R2C эффективно образовывала ковалентные димеры при экспрессии в виде секретируемого белка в клетках CHO.
Пример 6. Конструирование и экспрессия одноцепочечной миниловушки VEGF
Также конструировали миниловушку VEGF, в которой не требуется домен для мультимеризации (SEQ ID NO: 24). Данную миниловушку конструировали непосредственным слиянием одного домена Flt1D2.Flk1D3 (R1R2) (аминокислоты 30-231 SEQ ID NO: 24) со вторым доменом Flt1D2.Flk1D3 (R1R2) (аминокислоты 234-435 SEQ ID NO: 24) с помощью линкера Gly-Pro между рецепторными доменами тандема (аминокислоты 232-233 SEQ ID NO: 24).
Чтобы сконструировать ген, кодирующий тандемные домены Flt1D2.Flk1D3, синтезировали фрагмент ДНК (Blue Heron Biotechnology), который кодировал один домен Flt1D2.Flk1D3, который минимизировал гомологию ДНК с ДНК, кодирующей домен Flt1D2.Flk1D3, обнаруженной в pTE115. Полученный синтезированный фрагмент ДНК клонировали в виде фрагмента Srf I-Not I в сайтах Srf I-Not I pTE115, чтобы получить pTE570, которая экспрессирует миниловушку VEGF R1R2-R1R2 с промотора CMV-MIE. Когда данную плазмиду трансфицируют в клетки CHO K1, миниловушка VEGF R1R2-R1R2 накапливается в культуральной среде.
Пример 7. Конструирование и экспрессия миниловушки VEGF
Миниловушку VEGF конструировали, как описано выше, непосредственным слиянием одного домена Flt1D2.Flk1D3 (R1R2) (аминокислоты 30-231 SEQ ID NO: 26) с C-концевой последовательностью из девяти аминокислот, заканчивающейся CPPC. Когда такую плазмиду трансфицируют в клетки CHO K1, миниловушка VEGF с SEQ ID NO: 26 секретируется в культуральную среду. Последующая очистка электрофорезом в невосстанавливающем SDS-ПААГ, а также простой анализ светорассеяния выявляли молекулу ловушки с молекулярной массой примерно 64 кДа. Указанная молекулярная масса свидетельствует, что был образован ковалентный димер между двумя слитыми полипептидами с SEQ ID NO: 26. Сходные эксперименты проводили с плазмидами, кодирующими слитые полипептиды с SEQ ID NO: 27 и 28, и подобным образом показали, что указанные молекулы образовывали гомодимерные ловушки. Определения аффинности для связывания VEGF-165 человека с ловушками EGF, состоящими из димеров с SEQ ID NO: 10 и SEQ ID NO: 26, показаны в таблице 3.
Таблица 3
Ловушка VEGF ka (1/Ms) kd (1/с) KD (M)
SEQ ID NO: 10 2,73×10+7 1,79×10-5 6,55×10-13
SEQ ID NO: 26 2,00×10+7 6,56×10-6 3,28×10-13
SEQ ID NO: 26 2,61×10+7 5,77×10-6 2,21×10-13
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Figure 00000005
Figure 00000006
Figure 00000007
Figure 00000008
Figure 00000009
Figure 00000010
Figure 00000011
Figure 00000012
Figure 00000013
Figure 00000014
Figure 00000015
Figure 00000016
Figure 00000017
Figure 00000018

Claims (16)

1. Изолированная молекула нуклеиновой кислоты, кодирующая слитый полипептид, способный связывать фактор роста эндотелиальных клеток сосудов (VEGF), где полипептид состоит из компонента (R1R2)X и, необязательно, мультимеризующего компонента (МС), который представляет собой аминокислотную последовательность длиной от 1 до 200 аминокислот, имеющую по меньшей мере один остаток цистеина, где Х≥1, R1 означает иммуноглобулин-подобный (Ig) домен 2 рецептора VEGF Flt-1, представляющий собой аминокислоты 27-126 SEQ ID NO:8, 27-129 SEQ ID NO:10; и R2 означает Ig-домен 3 рецептора VEGF Flk-1, представляющий собой аминокислоты 127-228 SEQ ID NO:8 или 130-231 SEQ ID NO:10 и, где слитый полипептид не содержит мультимеризующего компонента в случае, когда Х=2, и мультимеризующий компонент представляет собой аминокислотную последовательность длиной от 1 до 15 аминокислот в случае, когда Х=1.
2. Изолированная молекула нуклеиновой кислоты по п.1, где мультимеризующий компонент (МС) выбран из группы, состоящей из ХСХС, ACGC и СРРС.
3. Изолированная молекула нуклеиновой кислоты по п.1, в которой Х равно 1 и мультимеризующим компонентом является аминокислотная последовательность длиной 1-15 аминокислот с 1-2 остатками цистеина.
4. Изолированная молекула нуклеиновой кислоты по п.1, в которой Х равно 2 и которая не содержит мультимеризующего компонента.
5. Слитый полипептид, способный связывать фактор роста эндотелиальных клеток сосудов (VEGF), имеющий аминокислотную последовательность, определяемую последовательностью нуклеиновой кислоты по пп.1-4.
6. Слитый полипептид по п.5, имеющий аминокислотную последовательность SEQ ID NO:26, 27 или 28.
7. Реплицируемый экспрессионный вектор, способный к экспрессии в трансформированной клетке-хозяине, содержащий молекулу нуклеиновой кислоты по пп.1-4.
8. Способ получения слитого полипептида, способного связывать фактор роста эндотелиальных клеток сосудов (VEGF), включающий стадии введения в подходящую систему экспрессии экспрессирующего вектора по п.7, осуществления экспрессии слитого полипептида VEGF и извлечения полученного слитого полипептида.
9. Ловушка фактора роста эндотелиальных клеток сосудов (VEGF), содержащая мультимер из двух или более слитых полипептидов по п.5.
10. Ловушка VEGF по п.9, которая является димером.
11. Димерная ловушка VEGF, содержащая два слитых полипептида, имеющих аминокислотную последовательность SEQ ID NO:26, 27 или 28.
12. Фармацевтическая композиция для лечения VEGF-опосредованного заболевания или состояния, содержащая эффективное количество ловушки VEGF по п.9 или 10 и фармацевтически приемлемый носитель.
13. Способ лечения VEGF-опосредованного заболевания или состояния, включающий введение фармацевтической композиции по п.12 нуждающемуся в этом субъекту.
14. Способ по п.13, в котором VEGF-опосредованным заболеванием или состоянием является заболевание или состояние глаз.
15. Способ по п.14, в котором заболеванием или состоянием глаз является связанная с возрастом дегенерация желтого пятна.
16. Набор для лечения VEGF-опосредованного заболевания или состояния, содержащий:
(a) упаковочный материал; и
(b) фармацевтическое средство, находящееся в упаковочном материале; при этом фармацевтическое средство содержит, по меньшей мере, одну ловушку VEGF по любому из пп.9-11, и где упаковочный материал содержит этикетку или вкладыш в упаковку, в котором написано, что указанный VEGF-специфичный слитый полипептид можно применять для лечения VEGF-опосредованного заболевания или состояния.
RU2006102497/13A 2003-06-30 2004-06-29 Изолированная молекула нуклеиновой кислоты, кодирующая слитый полипептид, способный связывать фактор роста эндотелиальных клеток сосудов (vegf), слитый полипептид, реплицируемый экспрессионный вектор, способ получения слитого полипептида, ловушка vegf, фармацевтическая композиция, способ лечения и набор для лечения vegf-опосредованного заболевания или состояния RU2376373C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/609,775 2003-06-30
US10/609,775 US7087411B2 (en) 1999-06-08 2003-06-30 Fusion protein capable of binding VEGF

Publications (2)

Publication Number Publication Date
RU2006102497A RU2006102497A (ru) 2006-06-10
RU2376373C2 true RU2376373C2 (ru) 2009-12-20

Family

ID=33552268

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006102497/13A RU2376373C2 (ru) 2003-06-30 2004-06-29 Изолированная молекула нуклеиновой кислоты, кодирующая слитый полипептид, способный связывать фактор роста эндотелиальных клеток сосудов (vegf), слитый полипептид, реплицируемый экспрессионный вектор, способ получения слитого полипептида, ловушка vegf, фармацевтическая композиция, способ лечения и набор для лечения vegf-опосредованного заболевания или состояния

Country Status (28)

Country Link
US (4) US7087411B2 (ru)
EP (2) EP1639007B1 (ru)
JP (2) JP2007528708A (ru)
KR (1) KR101131429B1 (ru)
CN (1) CN1816566B (ru)
AR (1) AR044938A1 (ru)
AT (2) ATE486091T1 (ru)
AU (1) AU2004252175B2 (ru)
BR (1) BRPI0412125A (ru)
CA (1) CA2529660C (ru)
CY (2) CY1109204T1 (ru)
DE (2) DE602004020474D1 (ru)
DK (2) DK1639007T3 (ru)
ES (2) ES2323468T3 (ru)
IL (2) IL172404A (ru)
MX (1) MXPA05013641A (ru)
MY (1) MY154826A (ru)
NO (1) NO339766B1 (ru)
NZ (2) NZ572107A (ru)
PL (2) PL1639007T3 (ru)
PT (2) PT1947118E (ru)
RU (1) RU2376373C2 (ru)
SI (2) SI1947118T1 (ru)
TW (1) TWI330197B (ru)
UA (2) UA90657C2 (ru)
UY (1) UY28396A1 (ru)
WO (1) WO2005000895A2 (ru)
ZA (1) ZA200600157B (ru)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2472522C2 (ru) * 2007-08-24 2013-01-20 Онкотерапи Сайенс, Инк. Комбинированная терапия рака поджелудочной железы с использованием антигенного пептида и химиотерапевтического средства
RU2542385C2 (ru) * 2012-08-31 2015-02-20 Общество с ограниченной ответственностью "НекстГен" Способ получения фармацевтической композиции для индукции развития кровеносных сосудов в тканях, фармацевтическая композиция, полученная этим способом, и способ лечения ишемии тканей и/или органов человека
US9896493B2 (en) 2015-05-26 2018-02-20 “Nextgen” Company Limited Nucleotide sequence and pharmaceutical composition based thereon with prolonged VEGF transgene expression
RU2699007C2 (ru) * 2013-02-18 2019-09-02 Ведженикс Пти Лимитед Молекулы, связывающие лиганды, и их применение
RU2785994C1 (ru) * 2019-12-06 2022-12-15 Ридженерон Фармасьютикалз, Инк. Белковые композиции против vegf и способы их получения
US11912784B2 (en) 2019-10-10 2024-02-27 Kodiak Sciences Inc. Methods of treating an eye disorder
US12071476B2 (en) 2018-03-02 2024-08-27 Kodiak Sciences Inc. IL-6 antibodies and fusion constructs and conjugates thereof

Families Citing this family (248)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100071A (en) 1996-05-07 2000-08-08 Genentech, Inc. Receptors as novel inhibitors of vascular endothelial growth factor activity and processes for their production
US7087411B2 (en) * 1999-06-08 2006-08-08 Regeneron Pharmaceuticals, Inc. Fusion protein capable of binding VEGF
US7070959B1 (en) 1999-06-08 2006-07-04 Regeneron Pharmaceuticals, Inc. Modified chimeric polypeptides with improved pharmacokinetic properties
WO2005069906A2 (en) * 2004-01-16 2005-08-04 Yale University Methods and compositions relating to vascular endothelial growth factor and th2 mediated inflammatory diseases
WO2005087808A2 (en) * 2004-03-05 2005-09-22 Ludwig Institute For Cancer Research Growth factor binding constructs materials and methods
CA2567686A1 (en) * 2004-06-10 2005-12-29 Regeneron Pharmaceuticals, Inc. Use of vegf inhibitors for the treatment of human cancer
EP1804835B9 (en) 2004-09-13 2010-09-29 Genzyme Corporation Multimeric constructs
US20060134121A1 (en) * 2004-10-29 2006-06-22 Gavin Thurston DII4 antagonists, assays, and therapeutic methods thereof
US8048418B2 (en) 2004-10-29 2011-11-01 Regeneron Pharmaceuticals, Inc. Therapeutic methods for inhibiting tumor growth with combination of Dll4 antagonists and VEGF antagonists
FR2878749B1 (fr) * 2004-12-03 2007-12-21 Aventis Pharma Sa Combinaisons antitumorales contenant en agent inhibiteur de vegt et du 5fu ou un de ses derives
JP2008537538A (ja) 2005-02-11 2008-09-18 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Vegf拮抗剤及び降圧剤の治療的組み合わせ
ZA200708845B (en) * 2005-03-25 2010-07-28 Regeneron Pharma Vegf antogonist formulations
CN101237880B (zh) 2005-08-12 2011-09-21 瑞泽恩制药公司 通过vegf拮抗剂的皮下给药治疗疾病
US8329866B2 (en) * 2005-10-03 2012-12-11 Bolder Biotechnology, Inc. Long acting VEGF inhibitors and methods of use
AU2006326417B2 (en) * 2005-12-16 2012-05-24 Regeneron Pharmaceuticals, Inc. Therapeutic methods for inhibiting tumor growth with Dll4 antagonists
FR2895258B1 (fr) * 2005-12-22 2008-03-21 Aventis Pharma Sa Combinaison comprenant de la combretastatine et des agents anticancereux
CN100502945C (zh) * 2006-03-31 2009-06-24 成都康弘生物科技有限公司 Vegf受体融合蛋白在治疗眼睛疾病中的应用
US8216575B2 (en) * 2006-03-31 2012-07-10 Chengdu Kanghong Biotechnologies Co., Ltd. Inhibition of neovascularization with a soluble chimeric protein comprising VEGF FLT-1 and KDR domains
EP2364691B1 (en) 2006-06-16 2013-04-24 Regeneron Pharmaceuticals, Inc. VEGF antagonist formulations suitable for intravitreal administration
WO2008005290A2 (en) * 2006-06-29 2008-01-10 The Trustees Of Columbia University In The City Of New York Methods for testing anti-thrombotic agents
EP2091568A2 (en) 2006-10-31 2009-08-26 East Carolina University Fusion proteins comprising a anti-inflammatory cytokine and an antigen for treatment of immune disorders
KR101580937B1 (ko) 2007-06-01 2015-12-31 유니버시티 오브 매릴랜드, 발티모어 면역글로불린 불변영역 Fc 수용체 결합제
CA2722466A1 (en) 2008-04-29 2009-11-05 Tariq Ghayur Dual variable domain immunoglobulins and uses thereof
KR20110016958A (ko) 2008-06-03 2011-02-18 아보트 러보러터리즈 이원 가변 도메인 면역글로불린 및 이의 용도
CA2742241C (en) * 2008-11-03 2019-12-10 Molecular Partners Ag Binding proteins inhibiting the vegf-a receptor interaction
EP2350264A4 (en) * 2008-11-06 2012-08-29 Univ Johns Hopkins TREATMENT OF CHRONIC INFLAMMATION OF THE RESPIRATORY TRACT
US20120082644A1 (en) 2009-03-31 2012-04-05 Mannie Mark D Cytokines and neuroantigens for treatment of immune disorders
CA2760687A1 (en) * 2009-05-01 2010-11-04 Ophthotech Corporation Methods for treating or preventing ophthalmological diseases
JO3182B1 (ar) 2009-07-29 2018-03-08 Regeneron Pharma مضادات حيوية بشرية عالية الالفة مع تولد الاوعية البشرية - 2
AU2011255238B2 (en) 2010-05-21 2015-06-04 Silver Creek Pharmaceuticals, Inc. Bi-specific fusion proteins
UY33492A (es) 2010-07-09 2012-01-31 Abbott Lab Inmunoglobulinas con dominio variable dual y usos de las mismas
EP3543257A1 (en) 2010-07-28 2019-09-25 Gliknik Inc. Fusion proteins of natural human protein fragments to create orderly multimerized immunoglobulin fc compositions
TW201206473A (en) 2010-08-03 2012-02-16 Abbott Lab Dual variable domain immunoglobulins and uses thereof
LT2601214T (lt) 2010-08-06 2018-02-26 Genzyme Corporation Vegf antagonistų kompozicijos ir jų panaudojimas
CA2817015A1 (en) * 2010-11-09 2012-05-18 Altimab Therapeutics, Inc. Protein complexes for antigen binding and methods of use
KR20180023015A (ko) 2011-01-13 2018-03-06 리제너론 파아마슈티컬스, 인크. 혈관신생 눈 장애를 치료하기 위한 vegf 길항제의 용도
JO3283B1 (ar) 2011-04-26 2018-09-16 Sanofi Sa تركيب يتضمن أفليبيرسيبت, حمض فولينيك, 5- فلورويوراسيل (5- Fu) وإرينوسيتان (FOLFIRI)
CN103874709B (zh) 2011-08-19 2016-12-21 瑞泽恩制药公司 抗tie2抗体及其用途
ES2664224T3 (es) 2011-08-19 2018-04-18 Children's Medical Center Corporation Proteína de unión a VEGF para el bloqueo de la angiogénesis
EA201791393A3 (ru) 2011-09-30 2018-03-30 Ридженерон Фармасьютикалз, Инк. Антитела к erbb3 и их применение
JO3370B1 (ar) * 2011-11-10 2019-03-13 Regeneron Pharma طريقة لتثبيط نمو الورم عن طريق تثبيط مستقبل انترلوكين 6
PT3574897T (pt) 2011-11-18 2022-04-06 Regeneron Pharma Formulação de libertação prolongada compreendendo micropartículas de proteína polimérica para utilização no vítreo do olho para o tratamento de distúrbios oculares vasculares
CN110078831A (zh) * 2011-12-01 2019-08-02 圆祥生命科技股份有限公司 补体和vegf途径的蛋白质抑制剂及其使用方法
TWI613215B (zh) 2012-02-22 2018-02-01 再生元醫藥公司 抗-大-內皮素-1(big-et-1)抗體及其用途
KR102494534B1 (ko) 2012-03-14 2023-02-06 리제너론 파마슈티칼스 인코포레이티드 다중특이성 항원-결합 분자 및 그것의 용도
TWI702955B (zh) 2012-05-15 2020-09-01 澳大利亞商艾佛蘭屈澳洲私營有限公司 使用腺相關病毒(aav)sflt-1治療老年性黃斑部退化(amd)
TW201843172A (zh) 2012-06-25 2018-12-16 美商再生元醫藥公司 抗-egfr抗體及其用途
CN104718223A (zh) 2012-08-20 2015-06-17 格利克尼克股份有限公司 具有抗原结合和多价FCγ受体结合活性的分子
JOP20200236A1 (ar) 2012-09-21 2017-06-16 Regeneron Pharma الأجسام المضادة لمضاد cd3 وجزيئات ربط الأنتيجين ثنائية التحديد التي تربط cd3 وcd20 واستخداماتها
CN104781280A (zh) 2012-11-13 2015-07-15 瑞泽恩制药公司 抗前动力蛋白受体(prokr)抗体及其使用
JO3405B1 (ar) 2013-01-09 2019-10-20 Regeneron Pharma الأجسام المضادة لمضاد مستقبل عامل النمو المشتق من الصفائح الدموية - بيتا واستخداماتها
ES2898620T3 (es) 2013-03-14 2022-03-08 Regeneron Pharma Anticuerpos humanos contra GREM 1
AR095196A1 (es) 2013-03-15 2015-09-30 Regeneron Pharma Medio de cultivo celular libre de suero
KR102049990B1 (ko) 2013-03-28 2019-12-03 삼성전자주식회사 c-Met 항체 및 VEGF 결합 단편이 연결된 융합 단백질
EP3628373A1 (en) 2013-07-12 2020-04-01 IVERIC bio, Inc. Methods for treating or preventing opthalmological conditions
KR102060187B1 (ko) 2013-07-19 2019-12-27 삼성전자주식회사 Vegf-c, vegf-d 및/또는 안지오포이에틴-2를 동시에 저해하는 융합 폴리펩타이드 및 이의 용도
WO2015058369A1 (en) * 2013-10-23 2015-04-30 Sanofi (China) Investment Co., Ltd. Use of aflibercept and docetaxel for the treatment of nasopharyngeal carcinoma
TWI681969B (zh) 2014-01-23 2020-01-11 美商再生元醫藥公司 針對pd-1的人類抗體
TWI680138B (zh) 2014-01-23 2019-12-21 美商再生元醫藥公司 抗pd-l1之人類抗體
CA2940685C (en) 2014-03-11 2023-10-24 Regeneron Pharmaceuticals, Inc. Anti-egfrviii antibodies and uses thereof
AU2015231439B2 (en) 2014-03-17 2019-11-14 Adverum Biotechnologies, Inc. Compositions and methods for enhanced gene expression in cone cells
TWI701042B (zh) 2014-03-19 2020-08-11 美商再生元醫藥公司 用於腫瘤治療之方法及抗體組成物
RS58957B1 (sr) 2014-07-18 2019-08-30 Sanofi Sa Postupak za predviđanje ishoda tretmana sa afliberceptom kod pacijenta za kog se sumnja da boluje od raka
US20170224777A1 (en) 2014-08-12 2017-08-10 Massachusetts Institute Of Technology Synergistic tumor treatment with il-2, a therapeutic antibody, and a cancer vaccine
AU2015301753B2 (en) 2014-08-12 2021-04-08 Massachusetts Institute Of Technology Synergistic tumor treatment with IL-2 and integrin-binding-Fc-fusion protein
TW201628649A (zh) 2014-10-09 2016-08-16 再生元醫藥公司 減少醫藥調配物中微可見顆粒之方法
ES2809455T3 (es) 2014-11-17 2021-03-04 Regeneron Pharma Métodos para tratamiento tumoral usando anticuerpo biespecífico CD3xCD20
US20160144025A1 (en) * 2014-11-25 2016-05-26 Regeneron Pharmaceuticals, Inc. Methods and formulations for treating vascular eye diseases
EP3265178A4 (en) 2015-03-02 2018-09-05 Adverum Biotechnologies, Inc. Compositions and methods for intravitreal delivery of polynucleotides to retinal cones
TWI867535B (zh) 2015-03-27 2024-12-21 美商再生元醫藥公司 偵測生物污染物之組成物及方法
MX386328B (es) 2015-03-27 2025-03-18 Regeneron Pharma Derivados de maitansinoide, conjugados de los mismos, y metodos de uso.
EP3285711A4 (en) * 2015-04-23 2018-11-07 New Health Sciences, Inc. Anaerobic blood storage containers
MA56416A (fr) 2015-05-12 2022-05-04 Regeneron Pharma Détermination de la pureté de protéines multimériques
KR102794242B1 (ko) 2015-07-24 2025-04-11 글리크닉 인코포레이티드 향상된 상보체 결합을 갖는 규칙적으로 다형체화된 면역글로불린 fc 조성물을 생성하기 위한 인간 단백질 단편의 융합 단백질
JOP20160154B1 (ar) 2015-07-31 2021-08-17 Regeneron Pharma أجسام ضادة مضاد لل psma، وجزيئات رابطة لمستضد ثنائي النوعية الذي يربط psma و cd3، واستخداماتها
TW202440904A (zh) * 2015-08-04 2024-10-16 美商再生元醫藥公司 補充牛磺酸之細胞培養基及用法(二)
CN108290951B (zh) 2015-09-23 2022-04-01 瑞泽恩制药公司 优化抗cd3双特异性抗体和其用途
US10940200B2 (en) 2015-09-28 2021-03-09 East Carolina University Aluminum based adjuvants for tolerogenic vaccination
JP7005019B2 (ja) 2015-10-02 2022-02-04 シルバー・クリーク・ファーマシューティカルズ・インコーポレイテッド 組織修復のための二重特異性治療用タンパク質
TWI756187B (zh) 2015-10-09 2022-03-01 美商再生元醫藥公司 抗lag3抗體及其用途
WO2017070866A1 (zh) * 2015-10-28 2017-05-04 黄志清 一种抗血管内皮生长因子的氧化石墨烯与其用途
CA3005391A1 (en) * 2015-11-19 2017-05-26 Zhuhai Tairuishang Biopharm Ltd. Methods and compositions for binding vegf
AU2016364817B2 (en) 2015-12-03 2020-05-07 Regeneron Pharmaceuticals, Inc. Methods of associating genetic variants with a clinical outcome in patients suffering from age-related macular degeneration treated with anti-VEGF
AU2016366521A1 (en) 2015-12-11 2018-06-21 Regeneron Pharmaceuticals, Inc. Methods for reducing or preventing growth of tumors resistant to EGFR and/or ErbB3 blockade
MY200764A (en) 2015-12-16 2024-01-14 Regeneron Pharma Compositions and methods of manufacturing protein microparticles
SMT202300304T1 (it) 2015-12-22 2023-11-13 Regeneron Pharma Combinazione di anticorpi anti-pd-1 e anticorpi bispecifici anti-cd20/anti-cd3 per il trattamento del cancro
GB2545763A (en) 2015-12-23 2017-06-28 Adverum Biotechnologies Inc Mutant viral capsid libraries and related systems and methods
BR112018014759B1 (pt) 2016-01-25 2024-02-27 Regeneron Pharmaceuticals, Inc Compostos derivados de maitasinoide e seus conjugados, composição compreendendo os mesmos, seus métodos de fabricação e uso
WO2017190079A1 (en) 2016-04-28 2017-11-02 Regeneron Pharmaceuticals, Inc. Methods of making multispecific antigen-binding molecules
ES2908467T3 (es) 2016-04-29 2022-04-29 Adverum Biotechnologies Inc Evasión de anticuerpos neutralizantes por un virus adenoasociado recombinante
TWI755395B (zh) 2016-05-13 2022-02-21 美商再生元醫藥公司 抗-pd-1抗體與輻射治療癌症之組合
WO2017214321A1 (en) 2016-06-07 2017-12-14 Gliknik Inc. Cysteine-optimized stradomers
CA3027121A1 (en) 2016-06-10 2017-12-14 Regeneron Pharmaceuticals, Inc. Anti-gitr antibodies and uses thereof
KR20250156853A (ko) 2016-07-29 2025-11-03 리제너론 파아마슈티컬스, 인크. 통합된 전자 시각적 검사를 가진 조립 라인
KR102369014B1 (ko) 2016-08-16 2022-03-02 리제너론 파아마슈티컬스, 인크. 혼합물로부터 개별 항체들을 정량하는 방법
EA201990316A1 (ru) 2016-08-18 2019-07-31 Ридженерон Фармасьютикалз, Инк. Анализ для определения потенциала самоассоциации белка с использованием концентрационно-зависимой спектроскопии самовзаимодействия на основе наночастиц
WO2018039499A1 (en) 2016-08-24 2018-03-01 Regeneron Pharmaceuticals, Inc. Host cell protein modification
MA46417A (fr) 2016-09-23 2019-07-31 Regeneron Pharma Anticorps anti-steap2, conjugués anticorps-médicament, et molécules bispécifiques de liaison à l'antigène qui se lient à steap2 et cd3, et leurs utilisations
HUE063020T2 (hu) 2016-09-23 2023-12-28 Regeneron Pharma Bispecifikus anti-MUC16-CD3 antitestek és anti-MUC16 gyógyszerkonjugátumok
BR112019006907A2 (pt) 2016-10-07 2019-07-02 Regeneron Pharma proteína liofilizada estável em temperatura ambiente
WO2018075798A1 (en) 2016-10-19 2018-04-26 Adverum Biotechnologies, Inc. Modified aav capsids and uses thereof
FI4071469T3 (fi) 2016-10-25 2025-07-17 Regeneron Pharma Menetelmiä kromatografiatietojen analysointia varten
TWI782930B (zh) 2016-11-16 2022-11-11 美商再生元醫藥公司 抗met抗體,結合met之雙特異性抗原結合分子及其使用方法
JP7116059B2 (ja) 2016-11-21 2022-08-09 ジャスト-エヴォテック バイオロジックス、インコーポレイテッド アフリベルセプト製剤及びその使用
KR20190091290A (ko) 2016-11-29 2019-08-05 리제너론 파아마슈티컬스, 인크. Prlr 양성 유방암 치료 방법
WO2018107082A1 (en) 2016-12-09 2018-06-14 Gliknik Inc. Methods of treating inflammatory disorders with multivalent fc compounds
EP3551647A4 (en) 2016-12-09 2021-01-13 Gliknik Inc. MANUFACTURING OPTIMIZATION OF GL-2045, MULTIMERIZING STRADOMER
US10350266B2 (en) 2017-01-10 2019-07-16 Nodus Therapeutics, Inc. Method of treating cancer with a multiple integrin binding Fc fusion protein
CA3049656A1 (en) 2017-01-10 2018-07-19 Nodus Therapeutics Combination tumor treatment with an integrin-binding-fc fusion protein and immune modulator
EA201991673A1 (ru) 2017-02-10 2020-01-17 Регенерон Фармасьютикалз, Инк. Меченные радиоактивным изотопом антитела к lag3 для иммуно-пэт-визуализации
IL268479B2 (en) 2017-02-21 2024-06-01 Regeneron Pharma Anti-PD-1 antibodies for the treatment of lung cancer
CA3054942A1 (en) 2017-03-17 2018-09-20 Adverum Biotechnologies, Inc. Compositions and methods for enhanced gene expression
US11603407B2 (en) 2017-04-06 2023-03-14 Regeneron Pharmaceuticals, Inc. Stable antibody formulation
CN110709104A (zh) 2017-05-06 2020-01-17 瑞泽恩制药公司 用aplnr拮抗剂和vegf抑制剂治疗眼部病症的方法
KR102702859B1 (ko) 2017-06-28 2024-09-05 리제너론 파아마슈티컬스, 인크. 항-인간 유두종 바이러스 (hpv) 항원-결합 단백질 및 그의 사용 방법
KR20210084695A (ko) 2017-07-06 2021-07-07 리제너론 파마슈티칼스 인코포레이티드 당단백질을 만들기 위한 세포 배양 과정
WO2019023148A1 (en) 2017-07-24 2019-01-31 Regeneron Pharmaceuticals, Inc. ANTI-CD8 ANTIBODIES AND USES THEREOF
TWI799432B (zh) 2017-07-27 2023-04-21 美商再生元醫藥公司 抗ctla-4抗體及其用途
TWI774827B (zh) * 2017-08-18 2022-08-21 美商雷傑納榮製藥公司 使用影像毛細管等電聚焦以分析樣品基質中蛋白質變異體之方法
IL310113B2 (en) 2017-09-19 2025-10-01 Regeneron Pharma Methods for reducing particle generation and preparations generated by them
AU2018347521A1 (en) 2017-10-12 2020-05-07 Immunowake Inc. VEGFR-antibody light chain fusion protein
AU2018350990A1 (en) * 2017-10-18 2020-05-21 Regenxbio Inc. Treatment of ocular diseases and metastatic colon cancer with human post-translationally modified VEGF-Trap
CN111356471A (zh) 2017-11-20 2020-06-30 济世发展生物药业有限公司 包含赖氨酸盐作为张力调节剂的阿柏西普制剂及其用途
PT3716992T (pt) 2017-11-30 2022-08-31 Regeneron Pharma Utilização de um antagonista do vegf para tratar distúrbios oculares angiogénicos
IL319165A (en) 2017-12-13 2025-04-01 Regeneron Pharma Apparatus and methods for managing support of a chromatography column substrate and related methods
BR112020010615A2 (pt) 2017-12-22 2020-10-27 Regeneron Pharmaceuticals, Inc. produto farmacêutico proteico, método e sistema para caracterizar impurezas de produto farmacêutico proteico e de fármaco de baixo peso molecular, método para produzir um anticorpo, anticorpo, e, usos do método e do sistema
KR102861739B1 (ko) 2018-01-26 2025-09-22 더 리젠츠 오브 더 유니버시티 오브 캘리포니아 항-vegf 제제를 사용한 혈관신생 장애의 치료 방법 및 조성물
EA202091689A1 (ru) 2018-01-31 2020-10-22 Ридженерон Фармасьютикалз, Инк. Система и способ определения характеристик примесей, представляющих собой варианты, отличающиеся по размеру и заряду, в продукте, представляющем собой лекарственное средство
TWI825066B (zh) 2018-02-01 2023-12-11 美商再生元醫藥公司 治療性單株抗體之品質屬性的定量及模型化
TW202311746A (zh) 2018-02-02 2023-03-16 美商再生元醫藥公司 用於表徵蛋白質二聚合之系統及方法
MX2020008988A (es) 2018-02-28 2020-09-28 Regeneron Pharma Sistemas y metodos para la identificacion de contaminantes virales.
US12259355B2 (en) 2018-03-19 2025-03-25 Regeneron Pharmaceuticals, Inc. Microchip capillary electrophoresis assays and reagents
CA3246952A1 (en) 2018-03-19 2025-10-31 Regeneron Pharmaceuticals, Inc. Microchip capillary electrophoresis assays and reagents
US12253490B2 (en) 2018-03-19 2025-03-18 Regeneron Pharmaceuticals, Inc. Microchip capillary electrophoresis assays and reagents
US20210113615A1 (en) 2018-04-13 2021-04-22 Ludwig Institute For Cancer Research Ltd. Heterodimeric inactivatable chimeric antigen receptors
IL278244B1 (en) 2018-04-30 2025-09-01 Regeneron Pharma Antibodies and bispecific antigen-binding molecules that bind HER2 and/or APLP2, conjugates and uses thereof
TWI814812B (zh) 2018-05-02 2023-09-11 美商里珍納龍藥品有限公司 用於評估生化過濾器的適合性的方法
KR20210021299A (ko) 2018-05-10 2021-02-25 리제너론 파아마슈티컬스, 인크. 고농도 vegf 수용체 융합 단백질 함유 제제
TW202016125A (zh) 2018-05-10 2020-05-01 美商再生元醫藥公司 用於定量及調節蛋白質黏度之系統與方法
US11519020B2 (en) 2018-05-25 2022-12-06 Regeneron Pharmaceuticals, Inc. Methods of associating genetic variants with a clinical outcome in patients suffering from age-related macular degeneration treated with anti-VEGF
TWI890661B (zh) 2018-06-21 2025-07-21 美商再生元醫藥公司 用雙特異性抗CD3xMUC16抗體及抗PD-1抗體治療癌症的方法
TW202448568A (zh) 2018-07-02 2024-12-16 美商里珍納龍藥品有限公司 自混合物製備多肽之系統及方法
MX2021001777A (es) 2018-08-13 2021-04-19 Regeneron Pharma Seleccion de proteina terapeutica en condiciones in vivo simuladas.
US11754569B2 (en) 2018-08-30 2023-09-12 Regeneron Pharmaceuticals, Inc. Methods for characterizing protein complexes
JP7569313B2 (ja) 2018-10-23 2024-10-17 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Ny-eso-1 t細胞受容体およびそれらの使用の方法
WO2020097155A1 (en) 2018-11-06 2020-05-14 Alsatech, Inc. Cell-based gene therapy for neurodegenerative diseases
WO2020150491A1 (en) 2019-01-16 2020-07-23 Regeneron Pharmaceuticals, Inc. Methods for characterizing disulfide bonds
JP2022518254A (ja) 2019-01-25 2022-03-14 リジェネロン・ファーマシューティカルズ・インコーポレイテッド 合剤中の二量体の定量化及び同定
EA202192077A1 (ru) 2019-01-25 2021-10-05 Ридженерон Фармасьютикалз, Инк. Хроматография на основе белка а - масс-спектрометр с ионизацией электрораспылением
AU2020223205A1 (en) 2019-02-12 2021-08-05 Regeneron Pharmaceuticals, Inc. Compositions and methods for using bispecific antibodies to bind complement and a target antigen
EP3927435A1 (en) 2019-02-21 2021-12-29 Regeneron Pharmaceuticals, Inc. Methods of treating ocular cancer using anti-met antibodies and bispecific antigen binding molecules that bind met
SG11202109003QA (en) 2019-03-06 2021-09-29 Regeneron Pharma Il-4/il-13 pathway inhibitors for enhanced efficacy in treating cancer
CA3136813A1 (en) 2019-04-17 2020-10-22 Regeneron Pharmaceuticals, Inc. Identification of host cell proteins
US10961500B1 (en) * 2019-04-23 2021-03-30 Regeneron Pharmaceuticals, Inc. Cell culture medium for eukaryotic cells
TWI862583B (zh) 2019-04-26 2024-11-21 美商愛德維仁生物科技公司 用於玻璃體內遞送之變異體aav蛋白殼
CN120939219A (zh) 2019-05-13 2025-11-14 瑞泽恩制药公司 用于在治疗癌症中增强效力的pd-1抑制剂和lag-3抑制剂的组合
JP7541534B2 (ja) 2019-05-13 2024-08-28 リジェネロン・ファーマシューティカルズ・インコーポレイテッド 改善された競合的リガンド結合アッセイ
US12091460B2 (en) 2019-06-21 2024-09-17 Regeneron Pharmaceuticals, Inc. Use of bispecific antigen-binding molecules that bind MUC16 and CD3 in combination with 4-1BB co-stimulation
JP7743313B2 (ja) 2019-06-21 2025-09-24 リジェネロン・ファーマシューティカルズ・インコーポレイテッド Psmaおよびcd3に結合する二重特異性抗原結合分子の4-1bb共刺激と組み合わせての使用
CN110343666B (zh) * 2019-07-10 2023-05-30 通化东宝药业股份有限公司 一种cho细胞培养的补料培养基及其制备方法和应用
CN114340684B (zh) 2019-09-16 2025-09-12 瑞泽恩制药公司 用于免疫pet成像的放射性标记的met结合蛋白
US11814428B2 (en) 2019-09-19 2023-11-14 Regeneron Pharmaceuticals, Inc. Anti-PTCRA antibody-drug conjugates and uses thereof
BR112022004885A2 (pt) 2019-09-24 2022-06-07 Regeneron Pharma Sistemas e métodos para uso e regeneração de cromatografia
US12297451B1 (en) 2019-10-25 2025-05-13 Regeneron Pharmaceuticals, Inc. Cell culture medium
BR112022009974A2 (pt) 2019-11-25 2022-08-16 Regeneron Pharma Métodos de produção de um polímero ou micropartículas revestidas com polímero, para produzir microesferas poliméricas ou revestidas com polímero e para produzir micropartículas, composição de liberação sustentada, micropartículas, e, composição farmacêutica
BR112022010113A2 (pt) 2019-11-25 2022-09-06 Univ California Inibidores de vegf de longa ação para neovascularização intraocular
CA3163876A1 (en) * 2019-12-06 2021-06-10 Regeneron Pharmaceuticals, Inc. Vegf mini-traps and methods of use thereof
SG11202110972UA (en) 2019-12-06 2021-10-28 Regeneron Pharma Anti-vegf protein compositions and methods for producing the same
US20230141511A1 (en) 2019-12-20 2023-05-11 Ludwig Institute For Cancer Research Ltd Car-t cell therapy targeting ngcgm3
AU2021209866B2 (en) 2020-01-21 2023-07-06 Regeneron Pharmaceuticals, Inc. Deglycosylation methods for electrophoresis of glycosylated proteins
AU2021211485A1 (en) 2020-01-24 2022-09-15 Regeneron Pharmaceuticals, Inc. Preferentially expressed antigen in melanoma (PRAME) T cell receptors and methods of use thereof
JP2023516949A (ja) 2020-02-27 2023-04-21 リジェネロン・ファーマシューティカルズ・インコーポレイテッド 活性に基づく宿主細胞タンパク質プロファイリング法
CN115175737A (zh) 2020-02-28 2022-10-11 瑞泽恩制药公司 结合her2的双特异性抗原结合分子及其使用方法
EP4114859A1 (en) 2020-03-06 2023-01-11 Regeneron Pharmaceuticals, Inc. Anti-gitr antibodies and uses thereof
BR112022018938A2 (pt) 2020-03-30 2022-12-06 Regeneron Pharma Métodos para caracterizar proteínas de células hospedeiras de baixa abundância
WO2021226444A2 (en) * 2020-05-08 2021-11-11 Regeneron Pharmaceuticals, Inc. Vegf traps and mini-traps and methods for treating ocular disorders and cancer
US20240239881A1 (en) 2020-06-22 2024-07-18 Innovent Biologics (Suzhou) Co., Ltd. Anti-ang-2 antibody and its usage
KR20230027267A (ko) 2020-06-23 2023-02-27 카드몬 코포레이션, 엘엘씨 항-pd-1 항체 및 융합 단백질
IL309173A (en) 2020-07-13 2024-02-01 Regeneron Pharma Camptothecin analogs conjugated to a glutamine residue in protein, and their uses
BR112022024553A2 (pt) 2020-07-16 2023-01-24 Raqualia Pharma Inc Composto com atividade inibidora de trpv4 ou um sal farmaceuticamente aceitável do mesmo e seu uso, composição farmacêutica, método para se tratar uma doença da retina acompanhada de distúrbio do fluxo sanguíneo ou distúrbio celular, kit para uso na prevenção ou tratamento das doenças, marcador de doença para uma doença da retina, método para se detectar uma doença da retina, métodos de triagem para uma substância que suprime a expressão do gene de trpv4, uma que reduz o nível de expressão de uma proteína de trpv4 e uma que inibe a atividade de trpv4 e agente para prevenir ou tratar uma doença da retina
US11524998B2 (en) 2020-07-16 2022-12-13 Novartis Ag Anti-betacellulin antibodies, fragments thereof, and multi-specific binding molecules
TW202432837A (zh) 2020-08-31 2024-08-16 美商再生元醫藥公司 用以改良細胞培養效能及減少天冬醯胺序列變異之天冬醯胺饋料策略
JP2023544164A (ja) 2020-10-02 2023-10-20 リジェネロン・ファーマシューティカルズ・インコーポレイテッド サイトカイン放出症候群の低減を伴うがんを治療するための抗体の組合せ
WO2022087243A1 (en) 2020-10-22 2022-04-28 Regeneron Pharmaceuticals, Inc. Anti-fgfr2 antibodies and methods of use thereof
KR20230123467A (ko) * 2020-10-30 2023-08-23 엘루미넥스 바이오사이언시스 (쑤저우) 리미티드 혈관신생 인자의 억제제
WO2022103724A1 (en) 2020-11-10 2022-05-19 Regeneron Pharmaceuticals, Inc. Selenium antibody conjugates
WO2022115588A1 (en) 2020-11-25 2022-06-02 Regeneron Pharmaceuticals, Inc. Sustained release formulations using non-aqueous membrane emulsification
MX2023007225A (es) 2020-12-17 2023-06-27 Regeneron Pharma Fabricacion de microgeles encapsuladores de proteina.
EP4281542A1 (en) 2021-01-20 2023-11-29 Regeneron Pharmaceuticals, Inc. Methods of improving protein titer in cell culture
EP4281475A1 (en) 2021-01-25 2023-11-29 Regeneron Pharmaceuticals, Inc. Anti-pdgf-b antibodies and mehods of use for treating pulmonary arterial hypertension (pah)
US20240034796A1 (en) 2021-02-04 2024-02-01 Genuv Inc. Anti-pd-1 antibody and use thereof
CA3170208A1 (en) 2021-02-11 2022-08-18 Elizabeth Miller Methods of treating cancer by administering a neoadjuvant pd-1 inhibitor
IL304998A (en) 2021-02-23 2023-10-01 Regeneron Pharma Methods for the treatment of lung cancer through the administration of a PD-1 inhibitor
KR20230150300A (ko) 2021-03-03 2023-10-30 리제너론 파마슈티칼스 인코포레이티드 단백질 점도를 정량화하고 변경시키기 위한 시스템 및 방법
MX2023011007A (es) 2021-03-23 2023-12-07 Regeneron Pharma Metodos para tratar el cancer en pacientes inmunosuprimidos o inmunocomprometidos mediante la administracion de un inhibidor de pd-1.
WO2022204728A1 (en) 2021-03-26 2022-09-29 Regeneron Pharmaceuticals, Inc. Methods and systems for developing mixing protocols
MX2023014041A (es) 2021-05-28 2023-12-15 Shanghai Regenelead Therapies Co Ltd Virus adenoasociado recombinante que tiene una capsida variante y su aplicacion.
CA3220848A1 (en) 2021-06-01 2022-12-08 Timothy Riehlman Microchip capillary electrophoresis assays and reagents
KR20240024061A (ko) 2021-06-22 2024-02-23 리제너론 파마슈티칼스 인코포레이티드 항-EGFRvIII 항체 약물 접합체 및 이의 용도
CA3226323A1 (en) 2021-07-13 2023-01-19 Regeneron Pharmaceuticals, Inc. Mass spectrometry-based strategy for determining product-related variants of a biologic
CA3226049A1 (en) 2021-07-13 2023-01-19 Regeneron Pharmaceuticals, Inc. Characterization of proteins by anion-exchange chromatography mass spectrometry (aex-ms)
CA3228666A1 (en) * 2021-08-23 2023-03-02 Shengjiang Liu Compositions and methods for transgene expression
AR127006A1 (es) 2021-09-08 2023-12-06 Regeneron Pharma UN MÉTODO BASADO EN ESPECTROMETRÍA DE MASAS Y DE ALTO RENDIMIENTO PARA CUANTIFICAR ANTICUERPOS Y OTRAS PROTEÍNAS QUE CONTIENEN Fc
CN117999485A (zh) 2021-09-14 2024-05-07 瑞泽恩制药公司 用于表征生物的高分子量物质的基于质谱的策略
IL310957A (en) 2021-09-28 2024-04-01 Regeneron Pharma Tests for quantifying drugs and target concentrations
AU2022359898A1 (en) 2021-10-07 2024-03-21 Regeneron Pharmaceuticals, Inc. Ph meter calibration and correction
MX2024004107A (es) 2021-10-07 2024-04-19 Regeneron Pharma Sistemas y metodos para modelar y controlar el ph.
IL312372A (en) 2021-10-26 2024-06-01 Regeneron Pharma Systems and methods for producing laboratory water and dispersing laboratory water at different temperatures
KR20240095300A (ko) 2021-11-01 2024-06-25 리제너론 파아마슈티컬스, 인크. Ms-기반 프로테오믹스를 위하여 디술피드 스크램블링을 방지하는 방법
US20230192886A1 (en) 2021-11-08 2023-06-22 Immatics Biotechnologies Gmbh Adoptive cell therapy combination treatment and compositions thereof
CA3238750A1 (en) 2021-11-24 2023-06-01 Ella Ioffe Methods for treating cancer with bispecific anti-cd3 x muc16 antibodies and anti-ctla-4 antibodies
AU2022402985A1 (en) 2021-12-01 2024-07-11 Kadmon Corporation, Llc B7-h4 antibodies and anti-b7-h4 antibody/il-15 fusion proteins
AU2023207960A1 (en) 2022-01-12 2024-07-11 Regeneron Pharmaceuticals, Inc. Camptothecin analogs conjugated to a glutamine residue in a protein, and their use
AR128824A1 (es) 2022-03-18 2024-06-19 Regeneron Pharma Métodos de análisis y cuantificación de variantes polipeptídicas de carga
WO2023196903A1 (en) 2022-04-06 2023-10-12 Regeneron Pharmaceuticals, Inc. Bispecific antigen-binding molecules that bind and cd3 and tumor associated antigens (taas) and uses thereof
CA3258639A1 (en) 2022-06-07 2023-12-14 Regeneron Pharmaceuticals, Inc. Multispecific molecules to modulate T lymphocyte activity, and their uses
KR20250089551A (ko) 2022-10-31 2025-06-18 리제너론 파마슈티칼스 인코포레이티드 입양 세포 요법과 표적 면역사이토카인을 조합하여 이용한 암 치료 방법
AU2023403422A1 (en) 2022-11-30 2025-07-17 Regeneron Pharmaceuticals, Inc. Tlr7 agonists and antibody-drug-conjugates thereof
KR20250124178A (ko) 2022-12-16 2025-08-19 리제너론 파아마슈티컬스, 인크. 크로마토그래피 칼럼의 무결성을 평가하기 위한 방법 및 시스템
WO2024137731A2 (en) 2022-12-21 2024-06-27 Genzyme Corporation Anti‑pd‑1×4‑1bb binding proteins
CN120752059A (zh) 2022-12-21 2025-10-03 瑞泽恩制药公司 用于adc缀合的拓扑异构酶i抑制剂的前药及其使用方法
TW202445126A (zh) 2023-01-25 2024-11-16 美商再生元醫藥公司 基於質譜法之體內共表現抗體之表徵
TW202445135A (zh) 2023-01-25 2024-11-16 美商再生元醫藥公司 液態蛋白質組成物穩定性之建模方法
WO2024163708A1 (en) 2023-02-01 2024-08-08 Regeneron Pharmaceuticals, Inc. Asymmetrical flow field-flow fractionation with mass spectrometry for biomacromolecule analysis
AR131856A1 (es) 2023-02-16 2025-05-07 Sanofi Sa Proteínas de unión a cd40
US20240299601A1 (en) 2023-02-17 2024-09-12 Regeneron Pharmaceuticals, Inc. Radiolabeled anti-lag3 antibodies for immuno-pet imaging
TW202446462A (zh) 2023-02-22 2024-12-01 美商再生元醫藥公司 系統適用性參數及管柱老化
WO2024192033A1 (en) 2023-03-13 2024-09-19 Regeneron Pharmaceuticals, Inc. Combination of pd-1 inhibitors and lag-3 inhibitors for enhanced efficacy in treating melanoma
KR20250169609A (ko) 2023-04-07 2025-12-03 리제너론 파마슈티칼스 인코포레이티드 림포톡신 β 수용체 작용제를 이용한 암 치료 방법
AU2024265540A1 (en) 2023-05-01 2025-10-30 Regeneron Pharmaceuticals, Inc. Multidose antibody drug products using phenol or benzyl alcohol
WO2024243511A1 (en) 2023-05-25 2024-11-28 Regeneron Pharmaceuticals, Inc. T cell receptors that bind presented hpv16-, mart1-, cmv-, ebv-, or influenza- peptides
WO2025049553A1 (en) 2023-08-29 2025-03-06 Regeneron Pharmaceuticals, Inc. Methods for characterizing a protein of interest
US20250122482A1 (en) 2023-09-07 2025-04-17 Regeneron Pharmaceuticals, Inc. Production and purification of covalently surface modified adeno-associated virus
WO2025054406A1 (en) 2023-09-08 2025-03-13 Regeneron Pharmaceuticals, Inc. Methods and systems for assessing chromatographic column integrity
TW202532098A (zh) 2023-09-29 2025-08-16 美商再生元醫藥公司 使用控制成核之冷凍乾燥
WO2025085594A1 (en) 2023-10-18 2025-04-24 Regeneron Pharmaceuticals, Inc. Rapid purification of monoclonal antibody from in-process upstream cell culture material
WO2025106736A2 (en) 2023-11-15 2025-05-22 Regeneron Pharmaceuticals, Inc. Combination of pd-1 inhibitors and lag-3 inhibitors for enhanced efficacy in treating lung cancer
TW202540433A (zh) 2023-11-21 2025-10-16 美商再生元醫藥公司 藉由活體外接合產生共價表面修飾之腺相關病毒及共價表面修飾的腺相關病毒之純化
WO2025117727A1 (en) 2023-11-29 2025-06-05 Regeneron Pharmaceuticals, Inc. Analogs of quinoxaline/quinoline cytotoxins, linker- payloads, protein-drug conjugates, and uses thereof
WO2025117889A2 (en) 2023-11-30 2025-06-05 Regeneron Pharmaceuticals, Inc. Methods of treating cancer by administering a combination therapy including a neoadjuvant pd-1 inhibitor
WO2025166281A1 (en) 2024-02-01 2025-08-07 Regeneron Pharmaceuticals, Inc. Platform for charge-detection mass spectrometry analysis of aavs
WO2025175164A1 (en) 2024-02-16 2025-08-21 Regeneron Pharmaceuticals, Inc. Methods of producing concentrated formulated drug substances comprising proteins, and concentrated formulated drug substance made by the methods
WO2025194043A1 (en) 2024-03-15 2025-09-18 Regeneron Pharmaceuticals, Inc. Polysorbate and polyoxyethylene sorbitan as excipients for stable protein formulations
WO2025217334A1 (en) 2024-04-09 2025-10-16 Regeneron Pharmaceuticals, Inc. Low concentration vegf receptor fusion protein containing formulations
CN121175334A (zh) 2024-04-13 2025-12-19 益免安协公司 在治疗癌症中的使用pd-l1抑制剂的新辅助免疫疗法
US12240888B1 (en) 2024-04-29 2025-03-04 QILU Pharmaceutical, Co., Ltd. Composition comprising aflibercept and a variant thereof, and related methods and uses
WO2025259840A1 (en) 2024-06-13 2025-12-18 Regeneron Pharmaceuticals, Inc. Methods and systems for scaled chromatography
US20250388676A1 (en) 2024-06-20 2025-12-25 Sanofi Binding proteins comprising an anti-immune checkpoint antibody or a fragment thereof and single-chain tnfrsf ligand multimers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2177950C2 (ru) * 1996-10-25 2002-01-10 Нексстар Фармасьютикалз, Инк. Комплексы нуклеиновых кислот - лигандов сосудистого эндотелиального фактора роста (vegf)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4980286A (en) 1985-07-05 1990-12-25 Whitehead Institute For Biomedical Research In vivo introduction and expression of foreign genetic material in epithelial cells
FR2686899B1 (fr) 1992-01-31 1995-09-01 Rhone Poulenc Rorer Sa Nouveaux polypeptides biologiquement actifs, leur preparation et compositions pharmaceutiques les contenant.
US6177401B1 (en) * 1992-11-13 2001-01-23 Max-Planck-Gesellschaft Zur Forderung Der Wissenschaften Use of organic compounds for the inhibition of Flk-1 mediated vasculogenesis and angiogenesis
US5663304A (en) 1993-08-20 1997-09-02 Genentech, Inc. Refolding of misfolded insulin-like growth factor-I
GB9410534D0 (en) * 1994-05-26 1994-07-13 Lynxvale Ltd Improvements in or relating to growth factor inhibitors
WO1996037621A2 (en) * 1995-05-23 1996-11-28 Morphosys Gesellschaft Für Proteinoptimierung Mbh Multimeric proteins
JPH09154588A (ja) * 1995-10-07 1997-06-17 Toagosei Co Ltd Vegf結合性ポリペプチド
ATE299936T1 (de) * 1996-05-02 2005-08-15 Mochida Pharm Co Ltd Fas antigen-derivate
US6100071A (en) 1996-05-07 2000-08-08 Genentech, Inc. Receptors as novel inhibitors of vascular endothelial growth factor activity and processes for their production
US6423512B1 (en) 1996-07-26 2002-07-23 Novartis Ag Fusion polypeptides
JP2001501471A (ja) 1996-09-24 2001-02-06 メルク エンド カンパニー インコーポレーテッド 血管新生の阻害のための遺伝子治療
WO1999066054A2 (en) 1998-06-15 1999-12-23 Genzyme Transgenics Corp. Erythropoietin analog-human serum albumin fusion protein
US6329336B1 (en) 1999-05-17 2001-12-11 Conjuchem, Inc. Long lasting insulinotropic peptides
US7087411B2 (en) * 1999-06-08 2006-08-08 Regeneron Pharmaceuticals, Inc. Fusion protein capable of binding VEGF
CN101433715B (zh) * 1999-06-08 2013-04-17 里珍纳龙药品有限公司 具有改善的药物动力学特性的修饰嵌合多肽

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2177950C2 (ru) * 1996-10-25 2002-01-10 Нексстар Фармасьютикалз, Инк. Комплексы нуклеиновых кислот - лигандов сосудистого эндотелиального фактора роста (vegf)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WULFF С. et al. Prevention of thecal angiogenesis, antral follicular growth, and ovulation in the primate by treatment with vascular endothelial growth factor Trap R1R2, Endocrinology, 2002, v.143, n.7, p.2797-2807. *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2472522C2 (ru) * 2007-08-24 2013-01-20 Онкотерапи Сайенс, Инк. Комбинированная терапия рака поджелудочной железы с использованием антигенного пептида и химиотерапевтического средства
US8703713B2 (en) 2007-08-24 2014-04-22 Onco Therapy Science, Inc. Combination therapy for pancreatic cancer using an antigenic peptide and chemotherapeutic agent
RU2542385C2 (ru) * 2012-08-31 2015-02-20 Общество с ограниченной ответственностью "НекстГен" Способ получения фармацевтической композиции для индукции развития кровеносных сосудов в тканях, фармацевтическая композиция, полученная этим способом, и способ лечения ишемии тканей и/или органов человека
US9616103B2 (en) 2012-08-31 2017-04-11 “Nextgen” Company Limited Pharmaceutical composition for stimulation of angiogenesis
RU2699007C2 (ru) * 2013-02-18 2019-09-02 Ведженикс Пти Лимитед Молекулы, связывающие лиганды, и их применение
US11866739B2 (en) 2013-02-18 2024-01-09 Vegenics Pty Limited Ligand binding molecules and uses thereof
US10040837B2 (en) 2015-05-26 2018-08-07 “Nextgen” Company Limited Nucleotide sequence and pharmaceutical composition based thereon with prolonged VEGF transgene expression
US9896493B2 (en) 2015-05-26 2018-02-20 “Nextgen” Company Limited Nucleotide sequence and pharmaceutical composition based thereon with prolonged VEGF transgene expression
RU2810777C2 (ru) * 2018-03-02 2023-12-28 Кодиак Сайенсес Инк. Антитела к il-6 и их слитые конструкции и конъюгаты
US12071476B2 (en) 2018-03-02 2024-08-27 Kodiak Sciences Inc. IL-6 antibodies and fusion constructs and conjugates thereof
US11912784B2 (en) 2019-10-10 2024-02-27 Kodiak Sciences Inc. Methods of treating an eye disorder
RU2785994C1 (ru) * 2019-12-06 2022-12-15 Ридженерон Фармасьютикалз, Инк. Белковые композиции против vegf и способы их получения
RU2788949C1 (ru) * 2019-12-06 2023-01-26 Ридженерон Фармасьютикалз, Инк. Белковые композиции против vegf и способы их получения
RU2848228C1 (ru) * 2020-10-30 2025-10-16 Пентавижн Биосайенсиз Лимитед Ингибиторы ангиогенных факторов

Also Published As

Publication number Publication date
KR101131429B1 (ko) 2012-07-27
WO2005000895A3 (en) 2005-09-15
ES2323468T3 (es) 2009-07-16
EP1947118B1 (en) 2010-10-27
PT1947118E (pt) 2010-12-02
AU2004252175A1 (en) 2005-01-06
CY1109204T1 (el) 2014-07-02
US20100087632A1 (en) 2010-04-08
SI1947118T1 (sl) 2011-02-28
NZ572107A (en) 2009-01-31
EP1639007B1 (en) 2009-04-08
PT1639007E (pt) 2009-06-04
EP1639007A2 (en) 2006-03-29
TW200513532A (en) 2005-04-16
PL1947118T3 (pl) 2011-05-31
US20050043236A1 (en) 2005-02-24
DE602004029833D1 (de) 2010-12-09
NO20060483L (no) 2006-03-28
CN1816566A (zh) 2006-08-09
ES2354847T3 (es) 2011-03-18
IL172404A (en) 2011-12-29
DK1947118T3 (da) 2011-02-07
ZA200600157B (en) 2007-04-25
DK1639007T3 (da) 2009-06-08
UY28396A1 (es) 2004-11-08
AR044938A1 (es) 2005-10-12
CA2529660A1 (en) 2005-01-06
US7279159B2 (en) 2007-10-09
KR20060096184A (ko) 2006-09-08
JP2007528708A (ja) 2007-10-18
US20090062200A1 (en) 2009-03-05
UA90657C2 (ru) 2010-05-25
JP2010246557A (ja) 2010-11-04
AU2004252175B2 (en) 2010-07-22
HK1082511A1 (en) 2006-06-09
MY154826A (en) 2015-07-31
IL204984A (en) 2011-12-29
BRPI0412125A (pt) 2006-08-15
NZ544569A (en) 2008-12-24
CN1816566B (zh) 2011-01-12
US7087411B2 (en) 2006-08-08
US7972598B2 (en) 2011-07-05
NO339766B1 (no) 2017-01-30
US7635474B2 (en) 2009-12-22
DE602004020474D1 (de) 2009-05-20
ATE486091T1 (de) 2010-11-15
CA2529660C (en) 2013-08-06
RU2006102497A (ru) 2006-06-10
PL1639007T3 (pl) 2009-11-30
UA105625C2 (ru) 2014-06-10
WO2005000895A2 (en) 2005-01-06
CY1111605T1 (el) 2015-10-07
US20040014667A1 (en) 2004-01-22
TWI330197B (en) 2010-09-11
IL172404A0 (en) 2006-04-10
MXPA05013641A (es) 2006-02-24
SI1639007T1 (sl) 2009-08-31
EP1947118A1 (en) 2008-07-23
ATE427962T1 (de) 2009-04-15
KR101131429B9 (ko) 2025-01-22

Similar Documents

Publication Publication Date Title
RU2376373C2 (ru) Изолированная молекула нуклеиновой кислоты, кодирующая слитый полипептид, способный связывать фактор роста эндотелиальных клеток сосудов (vegf), слитый полипептид, реплицируемый экспрессионный вектор, способ получения слитого полипептида, ловушка vegf, фармацевтическая композиция, способ лечения и набор для лечения vegf-опосредованного заболевания или состояния
US7396664B2 (en) VEGF-binding fusion proteins and nucleic acids encoding the same
JP5564268B2 (ja) 成長因子と結合する融合タンパク質
US7399612B2 (en) VEGF-binding fusion proteins and nucleic acids encoding the same
JP2020150955A (ja) Alk1受容体およびリガンドアンタゴニストならびにその使用
EP3705498A1 (en) Tgf-beta receptor type ii variants and uses thereof
JP2004523533A (ja) 乾癬を処置し創傷治癒を促進するためのvegfレセプターの改変体の使用方法
JP2006504405A (ja) キメラコイルドコイル分子
EP3060235B1 (en) Endoglin peptides to treat fibrotic diseases
JP2004513876A (ja) 抗−腫瘍剤としてのtaci
AU2001253920A1 (en) Use of taci as an anti-tumor agent
AU2006237613A1 (en) Q3 SPARC deletion mutant and uses thereof
JP2009525762A (ja) 二価性ErbBリガンド結合分子ならびにその調製および使用のための方法
US11548931B2 (en) PASylated VEGFR/PDGFR fusion proteins and their use in therapy
HK1082511B (en) Vegf traps and therapeutic uses thereof
HK40037295A (en) Tgf-beta receptor type ii variants and uses thereof
EP1746106A2 (en) Use of TACI as an anti-tumor agent
HK1228288B (en) Endoglin peptides to treat fibrotic diseases
HK1228288A1 (en) Endoglin peptides to treat fibrotic diseases