WO2017070866A1 - 一种抗血管内皮生长因子的氧化石墨烯与其用途 - Google Patents

一种抗血管内皮生长因子的氧化石墨烯与其用途 Download PDF

Info

Publication number
WO2017070866A1
WO2017070866A1 PCT/CN2015/093101 CN2015093101W WO2017070866A1 WO 2017070866 A1 WO2017070866 A1 WO 2017070866A1 CN 2015093101 W CN2015093101 W CN 2015093101W WO 2017070866 A1 WO2017070866 A1 WO 2017070866A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene oxide
growth factor
vascular endothelial
endothelial growth
carbon
Prior art date
Application number
PCT/CN2015/093101
Other languages
English (en)
French (fr)
Inventor
黄志清
赖柏融
陈崇文
赖佩欣
Original Assignee
黄志清
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黄志清 filed Critical 黄志清
Priority to PCT/CN2015/093101 priority Critical patent/WO2017070866A1/zh
Publication of WO2017070866A1 publication Critical patent/WO2017070866A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/42Proteins; Polypeptides; Degradation products thereof; Derivatives thereof, e.g. albumin, gelatin or zein
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/71Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators

Definitions

  • the present invention relates to a graphene oxide and its use, and more particularly to a graphene oxide associated with vascular endothelial growth factor activity and its use.
  • Angiogenesis plays an important role in the normal growth and development of the human body, such as fetal growth and development, wound healing, female menstrual period, and limb jointing.
  • abnormal neovascularization in some abnormal physiological processes can cause specific diseases such as cancer, rheumatoid arthritis, degenerative arthritis, diabetic retinopathy, and central retinal vein occlusion.
  • angiogenesis in tumor tissue promotes malignant development, invasion, and metastasis of the tumor.
  • Angiogenesis is a complex process involving endothelial cell proliferation, migration, and tube formation, requiring the involvement of multiple growth factors. It has been confirmed that vascular endothelial growth factor (VEGF) is the most important positive regulator of angiogenesis. VEGF has the functions of promoting endothelial cell proliferation and differentiation, promoting intracellular calcium accumulation, increasing microvascular permeability and inducing angiogenesis. VEGF induces angiogenesis through a vascular endothelial growth factor receptor (VEGFR). In addition, there have been previous reports that tumor cells secrete VEGF to regulate angiogenesis, and overexpressed VEGF can be found in tumors (Applicant Rizen Pharmaceutical Co., Ltd., China Patent Publication No. CN1816566 B, Authorized Announcement Date, January 12, 2011) day).
  • VEGF vascular endothelial growth factor receptor
  • angiogenesis-related diseases are meant to include, but are not limited to, vascular endothelial cell proliferation, vascular permeability, edema or inflammation such as cerebral edema, stroke or tumor associated with trauma; and inflammatory diseases such as joints.
  • Inflammatory-related edema including rheumatoid arthritis; asthma; general edema associated with burns; ascites and pleural effusion associated with tumors, inflammation or trauma; chronic airway inflammation; capillary leak synthesis Stagnation; sepsis associated with increased protein leakage; Ocular diseases such as age-related macular degeneration and clinical signs of diabetic retinopathy.
  • a humanized monoclonal antibody (Bevacizumab), developed by Genentech, is an anti-vascular endothelial growth factor.
  • the basic principle of the antibody for treating cancer is to inhibit the biological activity of vascular endothelial growth factor, inhibit new blood vessel formation, thereby preventing tumor tissue from obtaining blood, oxygen and other nutrients, and finally achieving an anticancer effect of inhibiting tumor growth.
  • Avastin is highly effective and is approved by the FDA as a cancer treatment for colorectal cancer, non-small cell lung cancer, metastatic breast cancer, glioblastoma, and metastatic renal cancer.
  • Avastin also has a good effect on the treatment of ocular neovascularization, which can effectively inhibit neovascularization in the cornea, choroid, retina, etc., reduce macular edema, and improve vision.
  • Avastin has many side effects, such as nosebleeds, high blood pressure, vascular embolism, and mild proteinuria, which not only causes pain to the patient, but also is expensive to treat.
  • Graphene oxide is a carbon nanomaterial formed by chemical oxidation of graphite.
  • Graphene oxide is composed of a single layer of carbon atoms and has an ultra-high loading rate in the case where both base surfaces of the monoatomic layer have adsorption forces.
  • Graphene oxide contains a large number of oxygen-containing reactive functional groups, has good biocompatibility and aqueous solution stability, and is beneficial for chemical functional modification, which can be used in different fields (Sun, Xiaoming et al., Nano-Graphene Oxide).
  • hydroxyl group and the epoxy group are combined in an amount of from 20 to 40% by total based on the total structure of the graphene oxide.
  • the carbonyl and carboxyl group combination content is 10% or less of the total content of the graphene oxide chemical structure.
  • the ratio of the carbon-carbon double bond, the carbon-carbon single bond, and the carbon-hydrogen bond combination content to the hydroxyl group and the epoxy group is in the range of 1 to 3.
  • the particle size is between 10 and 400 nm.
  • the particle size ranges from at least one of 10 to 140 nm, 70 to 215 nm, 140 to 220 nm, 215 to 322 nm, and 220 to 400 nm.
  • the dissociation constant (Kd value) of binding to vascular endothelial growth factor is less than 6 x 10 -11 M.
  • the invention comprises an anti-vascular endothelial growth factor region.
  • the anti-vascular endothelial growth factor region comprises an anti-heparin binding region.
  • the anti-vascular endothelial growth factor region comprises an anti-vascular endothelial growth factor receptor binding region.
  • the invention provides a pharmaceutical composition for modulating VEGF activity, comprising graphene oxide resistant to vascular endothelial growth factor, wherein the graphene oxide has a chemical structure comprising carbon-carbon double bonds a carbon-carbon single bond or a carbon-hydrogen bond, the surface containing one or more functional groups selected from a hydroxyl group, a carbonyl group, a carboxyl group or an epoxy group, the interface potential of which is between -20 mV and -50 mV; and pharmaceutically or physiologically Accepted carrier, diluent or excipient.
  • the hydroxyl group and the epoxy group are combined in the content
  • the total content of the chemical structure of graphene oxide is 20 to 40%.
  • the carbonyl and carboxyl group combination content is 10% or less of the total content of the graphene oxide chemical structure.
  • the ratio of the carbon-carbon double bond, the carbon-carbon single bond, and the carbon-hydrogen bond combination content to the hydroxyl group and the epoxy group is in the range of 1 to 3.
  • the graphene oxide has a particle size of from 10 to 400 nm.
  • the graphene oxide has a particle size ranging from at least one of 10 to 140 nm, 70 to 215 nm, 140 to 220 nm, 215 to 322 nm, and 220 to 400 nm.
  • the graphene oxide has a dissociation constant associated with vascular endothelial growth factor of less than 6 x 10 -11 M.
  • the graphene oxide surface is coated with a proteinaceous material.
  • the invention provides a use of graphene oxide for the manufacture of a medicament for the prevention or treatment of a disease caused by angiogenesis or growth.
  • the disease caused by angiogenesis or growth comprises tumor, arthritis, abnormal ocular angiogenesis, thyroid hyperplasia, arteriosclerosis, obesity or gastrointestinal ulcer.
  • the graphene oxide has a chemical structure including a carbon-carbon double bond, a carbon-carbon single bond or a carbon-hydrogen bond, and the surface contains one selected from the group consisting of a hydroxyl group, a carbonyl group, a carboxyl group, or an epoxy group.
  • hydroxyl group and the epoxy group are combined in an amount of from 20 to 40% by total based on the total structure of the graphene oxide.
  • the carbonyl and carboxyl group combination content is 10% or less of the total content of the graphene oxide chemical structure.
  • the ratio of the carbon-carbon double bond, the carbon-carbon single bond, and the carbon-hydrogen bond combination content to the hydroxyl group and the epoxy group is in the range of 1 to 3.
  • the graphene oxide has a particle size of from 10 to 400 nm.
  • the graphene oxide has a particle size ranging from at least one of 10 to 140 nm, 70 to 215 nm, 140 to 220 nm, 215 to 322 nm, and 220 to 400 nm.
  • the graphene oxide has a dissociation constant associated with vascular endothelial growth factor of less than 6 x 10 -11 M.
  • the invention provides the use of graphene oxide as a vascular endothelial growth factor tracer.
  • vascular endothelial growth factor tracer for tracking a tumor site.
  • the graphene oxide has a chemical structure including a carbon-carbon double bond, a carbon-carbon single bond or a carbon-hydrogen bond, and the surface contains one selected from the group consisting of a hydroxyl group, a carbonyl group, a carboxyl group, or an epoxy group.
  • hydroxyl group and the epoxy group are combined in an amount of from 20 to 40% by total based on the total structure of the graphene oxide.
  • the carbonyl and carboxyl group combination content is 10% or less of the total content of the graphene oxide chemical structure.
  • the ratio of the carbon-carbon double bond, the carbon-carbon single bond, and the carbon-hydrogen bond combination content to the hydroxyl group and the epoxy group is in the range of 1 to 3.
  • the graphene oxide has a particle size of from 10 to 400 nm.
  • the graphene oxide has a particle size ranging from at least one of 10 to 140 nm, 70 to 215 nm, 140 to 220 nm, 215 to 322 nm, and 220 to 400 nm.
  • the graphene oxide has a dissociation constant associated with vascular endothelial growth factor of less than 6 x 10 -11 M.
  • the invention provides a method of adsorbing vascular endothelial growth factor in a target comprising the step of administering an effective amount of graphene oxide to the target.
  • the graphene oxide comprises a carbon-carbon double bond, a carbon-carbon single bond or a carbon-hydrogen bond, the surface of which contains one or more selected from the group consisting of a hydroxyl group, a carbonyl group, a carboxyl group, or an epoxy group. a functional group having an interfacial potential of from -20 mV to -50 mV.
  • the hydroxyl group and the epoxy group are combined in the content
  • the total content of the chemical structure of graphene oxide is 20 to 40%.
  • the carbonyl and carboxyl group combination content is 10% or less of the total content of the graphene oxide chemical structure.
  • the ratio of the carbon-carbon double bond, the carbon-carbon single bond, and the carbon-hydrogen bond combination content to the hydroxyl group and the epoxy group is in the range of 1 to 3.
  • the graphene oxide has a particle size of from 10 to 400 nm.
  • the graphene oxide has a particle size ranging from at least one of 10 to 140 nm, 70 to 215 nm, 140 to 220 nm, 215 to 322 nm, and 220 to 400 nm.
  • the step of administering an effective amount of graphene oxide to the target is to administer the graphene oxide to the target by oral or injection.
  • the target is a vertebrate.
  • the vertebrate is a mammal.
  • the mammal is a human.
  • a step of coating the surface of the graphene oxide with a protein material there is further included a step of coating the surface of the graphene oxide with a protein material.
  • the invention provides a method of adsorbing a vascular endothelial growth factor in a target, wherein the method comprises administering an effective amount of graphene oxide to a target, and Graphene oxide binds to a vascular endothelial growth factor to block vascular endothelial growth factor action, inhibit vascular endothelial growth factor receptor activity, inhibit angiogenesis, inhibit tumor cell proliferation, and trace vascular endothelium Use of at least one of growth factors and tracer tumor locations.
  • the graphene oxide comprises a carbon-carbon double bond, a carbon-carbon single bond or a carbon-hydrogen bond, the surface of which contains one or more selected from the group consisting of a hydroxyl group, a carbonyl group, a carboxyl group, or an epoxy group. a functional group having an interfacial potential of from -20 mV to -50 mV.
  • hydroxyl group and the epoxy group are combined in an amount of from 20 to 40% by total based on the total structure of the graphene oxide.
  • the carbonyl and carboxyl group combination content is 10% or less of the total content of the graphene oxide chemical structure.
  • the ratio of the carbon-carbon double bond, the carbon-carbon single bond, and the carbon-hydrogen bond combination content to the hydroxyl group and the epoxy group is in the range of 1 to 3.
  • the graphene oxide has a particle size of from 10 to 400 nm.
  • the graphene oxide has a particle size ranging from at least one of 10 to 140 nm, 70 to 215 nm, 140 to 220 nm, 215 to 322 nm, and 220 to 400 nm.
  • the method further comprises: administering the graphene oxide to the target by oral or injection.
  • the target is a vertebrate.
  • the vertebrate is a mammal.
  • the mammal is a human.
  • the invention provides a pharmaceutical composition for inhibiting angiogenesis comprising a composition of graphene oxide and vascular endothelial growth factor.
  • the dissociation constant of binding between the graphene oxide and the vascular endothelial growth factor is less than 6 ⁇ 10 -11 M.
  • At least one anti-cancer drug is included in the surface of the graphene oxide.
  • the graphene oxide surface is coated with a proteinaceous material.
  • the present invention provides a use of a pharmaceutical composition for inhibiting angiogenesis for the preparation of a medicament for treating cancer, wherein the pharmaceutical composition comprises a graphene oxide and a vascular endothelial growth factor A group of compounds formed.
  • the dissociation constant of binding between the graphene oxide and the vascular endothelial growth factor is less than 6 ⁇ 10 -11 M.
  • At least one anti-cancer drug is included in the surface of the graphene oxide.
  • the invention provides a method for inhibiting proliferation of tumor cells a method comprising administering an effective amount of a pharmaceutical composition to a target animal; and the pharmaceutical composition releasing an anticancer drug at a tumor site to achieve a therapeutic effect, wherein the pharmaceutical composition is a pharmaceutical composition for inhibiting angiogenesis It comprises a composition of graphene oxide and vascular endothelial growth factor, and further comprising a pharmaceutically or physiologically acceptable carrier, diluent or excipient.
  • the dissociation constant of binding between the graphene oxide and the vascular endothelial growth factor is less than 6 ⁇ 10 -11 M.
  • At least one anti-cancer drug is included in the surface of the graphene oxide.
  • Fig. 1 is a graph showing the adsorption ratio of the graphene oxide (sample A-D) of the present invention obtained with different degrees of potassium permanganate oxidation to vascular endothelial growth factor.
  • Fig. 2 is a graph showing the adsorption ratio of oxidized graphene (samples C, E, F) of the present invention to vascular endothelial growth factor with different particle diameters.
  • Fig. 3 is a graph showing the adsorption strength [dissociation constant (Kd) and maximum binding amount (Bmax)] of graphene oxide and vascular endothelial growth factor of the present invention by enzyme-linked immunosorbent Assay (ELISA).
  • Kd dissociation constant
  • Bmax maximum binding amount
  • Fig. 4 is a view showing the positional analysis of the binding of the graphene oxide of the present invention to vascular endothelial growth factor by an electrospray free quadrupole time-of-flight mass spectrometer.
  • Fig. 5 is a graph showing the results of a tube formation assay in a control group and a graphene oxide group of the present invention administered at different doses.
  • Figure 6 is a graph showing the results of a chicken embryo allantoic membrane test (Chick Choriollantoic Membrane, CAM) in a control group and a different dose of the graphene oxide group of the present invention.
  • Fig. 7 is a view showing changes in blood vessels observed in a corneal micropocket assay in a control group and a graphene oxide group of the present invention.
  • the graphene oxide of the invention is prepared by mixing concentrated sulfuric acid (90 mL), concentrated phosphoric acid (10 mL) and graphite powder (0.75 g) in a round double-mouth bottle, and heating and stirring to 50 ° C, slowly adding different weights of permanganese. Potassium acid content [1g (sample A), 2g (sample B), 4.5g (sample C) and 10g (sample D)], heated and stirred under a condensing reflux device for 12 hours, slowly added deionized water in an ice bath (100 mL), hydrogen peroxide (32%) was added slowly until the solution turned from dark purple green to bright yellow.
  • a high-speed centrifuge centrifuge at a relative centrifugal force of 35000 g for 30 minutes, remove the supernatant, add 5 mM phosphate solution (pH 7.4) to the lower layer, purify several times (until the pH of the solution is close to 7), and then shake for 2 hours via ultrasonic wave.
  • a high-speed centrifuge centrifuged at a relative centrifugal force of 15000 g for 30 minutes, the upper layer solution was taken out, and the weight/volume concentration was 1.2 g L -1 to obtain freeze-drying, and graphene oxide having different degrees of oxidation was obtained.
  • sodium hydroxide (2 g), acetic acid (883.4 ⁇ L), and graphene oxide (100 mL) of sample C were mixed (100 mL), and heated and stirred under a condensing reflux apparatus for four hours, using ultrasonic waves ( 1/8" microtip probe, 20KHz, Misonix 4000 Brochure, Qsonica, Newtown, CT) 2 hours (sample E) or 3 hours (sample F) (150W), after oscillating, dialysis for two days to remove unreacted hydrogen in solution Sodium oxide and acetic acid were used, and a filter (0.22 ⁇ m) was used to separate the desired graphene oxide.
  • the confirmation and detection of the graphene oxide of the present invention is made by referring to the model of the instrument used for the test. Use the operating information disclosed in the manual.
  • the average size of graphene oxide was determined by projecting an accelerated and aggregated electron beam through a TEM transmission electron microscope (Transmission Electron Microscopy, Tecnai 20 G2 S-Twin TEM, Philips/FEI, Hillsboro, Oregon, USA).
  • the electrons collide with the atoms in the sample to change the direction, thereby generating solid angle scattering, so that images with different brightness and darkness can be formed, and the image will be displayed on the imaging device after being enlarged and focused. .
  • Graphene oxide and its composition were measured for dynamic light scattering (DLS) and zeta potential of graphene oxide by laser particle size and zeta potential analyzer (ZETASIZER 3000HS, Malvern Instruments, Malvern, UK). The dimensions and interfacial potential measurements of each graphene oxide sample are disclosed in Table 1.
  • the composition of the graphene oxide surface coated protein (BSA) material was measured to have a graphene oxide size of 280 ⁇ 10 nm and an interface potential of -32.4 mV.
  • the graphene oxide of the present invention is a combination of functional groups of graphene oxide having different degrees of oxidation via X-ray photoelectron spectroscopy (XPS, PHI 5000 Versa Probe XPS, Ulvac Technologies, Japan), such as Table 2 discloses.
  • XPS X-ray photoelectron spectroscopy
  • the graphene oxide and the vascular endothelial growth factor (VEGF) of the present invention have a good adsorption effect (greater than 50%) in a sodium phosphate salt solution; in one embodiment, the graphite oxide of the present invention Alkene and vascular endothelial growth factor have good adsorption effects in cell culture fluids, and in human plasma rich in many complex proteins; further, the graphene oxide and its composition of the present embodiment may be tracer blood vessels.
  • the graphene oxide of the present embodiment and the composition thereof may be used as a vascular endothelial growth factor tracer, and as A pharmaceutical ingredient that prevents or treats diseases caused by angiogenesis or growth.
  • the present invention uses graphene oxide (3 ⁇ g mL -1 ) and vascular endothelial growth factor (10-100 pM) in a 5 mM sodium phosphate solution (pH 7.4) for 1 hour for binding, in relative centrifugal force. 55,000 g, centrifuged for 2 hours.
  • the results are shown in Table 3; in a preferred embodiment, as disclosed in Figure 3, the Kd value is 3.07 x 10 -12 M. The results showed a strong adsorption between graphene oxide and vascular endothelial growth factor.
  • the obtained secondary mass spectrum data was converted and analyzed by mass matrix software (http://www.massmatrix.net), and the results are as shown in FIG.
  • a complex of graphene oxide binding to vascular endothelial growth factor is shown, wherein the number of polypeptides in the anti-heparin binding region and the anti-vascular endothelial growth factor receptor binding region is decreased, and is related to the position at which graphene oxide binds to vascular endothelial growth factor.
  • 25,000 human Umbilical Vein Endothelial Cells are planted into a ⁇ -Slide well ( ⁇ -Slide, ibidi GmbH) to which Matrigel gel has been added, and M199 medium is added.
  • 1 nM vascular endothelial growth factor, and various concentrations of graphene oxide (230 nm) (7, 15, 20, 30 ⁇ g/mL) were cultured for 18 hours and photographed with a 40x objective lens using an inverted microscope to observe the number of microtubule-forming rings. As shown 5 revealed that graphene oxide effectively inhibits angiogenesis.
  • the fertilized egg is cultured for 5 days for blood vessels to grow, then a small hole is opened at the position of the air chamber, and a hole is also opened at the position where the blood vessel is to be observed, and the position of the air chamber is changed by pumping.
  • Immerse different concentrations of 230nm graphene oxide (30, 60 and 100 ⁇ g/mL) with filter paper attach it to chicken embryos and record it. After 24 hours of incubation at 37 °C, record it again and calculate the blood vessel fraction. The number of branches confirmed the effect of angiogenesis inhibition. As disclosed in Figure 6, it is shown that graphene oxide effectively inhibits angiogenesis.
  • corneal micropocket assay Malaria Vincenza Carriero et al., UPARANT: a urokinase receptor-derived peptide inhibitor of VEGF-driven angiogenesis with enhanced stability and in vitro and in vivo Potency., Mol Cancer Ther. 2014 13(5), 1092–1104
  • vascular endothelial growth factor in a 1:1 ratio in sodium alginate hydrogel Xiaojin Hao et al., Angiogenic
  • vascular endothelial growth factor-sodium alginate hydrogel (VEGF-alginate hydrogel) was injected into the cornea of the target animal-rabbit (1.25 ⁇ M, 20 ⁇ L) to induce rabbit corneal neovascularization.
  • BSA-GO 250 ⁇ g/mL, 20 ⁇ L was injected into the cornea of rabbit eyes, and the length and area of the neovascularization were observed every two days for 14 days.
  • the distribution of blood vessels was reduced in rabbit eyes treated with graphene oxide and its compositions.
  • the graphene oxide and the composition thereof can regulate the activity of VEGF and VEGFR, and can be used as an antagonist and a capture agent for vascular endothelial growth factor;
  • the specific target is traced as a target for vascular endothelial growth factor, tumor and other targets, and the application of a targeted drug, thereby achieving the therapeutic effect of preventing or treating diseases caused by angiogenesis or growth.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • Zoology (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Molecular Biology (AREA)
  • Toxicology (AREA)
  • Cell Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

提供了一种氧化石墨烯;并提出上述氧化石墨烯的用途、相关的医药组合物及其用途、相关的抑制血管内皮生长因子受体活性的方法、相关的抑制血管生成的方法、相关的示踪血管内皮生长因子的方法、相关的示踪肿瘤位置的方法,以及相关的抑制肿瘤细胞增殖的方法。

Description

一种抗血管内皮生长因子的氧化石墨烯与其用途 技术领域
本发明是关于一种氧化石墨烯与其用途,尤指一种与血管内皮生长因子活性相关的氧化石墨烯与其用途。
背景技术
血管新生在人体正常生长和发育过程中具有重要作用,例如在胎儿生长发育、伤口愈合、女性经期、断肢接合等。然而,在一些非正常生理过程中出现异常的新生血管,则会引发特定的疾病,如癌症、类风湿性关节炎、退行性关节炎、糖尿病性视网膜病变、视网膜中央静脉阻塞等。例如,肿瘤组织中的血管新生会促使肿瘤恶性发展、侵袭、转移。
血管新生是一个涉及内皮细胞增殖、迁移和成管的复杂过程,需要多种生长因子的参与。目前已证实血管内皮生长因子(vascular endothelial growth factor,VEGF)是最重要的血管生成正性调节因子。VEGF具有促进内皮细胞增殖与分化、促进细胞内钙聚集、增加微血管的通透性并诱导血管生成等作用。VEGF是透过目标细胞上的受体(vascular endothelial growth factor receptor,VEGFR)引发血管生成作用的。此外,先前也有文献指出,肿瘤细胞会分泌VEGF以调控血管形成,在肿瘤中可以发现过度表现的VEGF(申请人瑞泽恩制药公司,中国专利公开号CN1816566 B,授权公告日2011年1月12日)。
近年来,针对调节VEGF-VEGFR讯号通路,以抑制血管新生,成为这一类疾病治疗的重要策略;应用领域逐步从最初的肿瘤治疗往异常眼血管生成、心血管疾病、外科创伤治疗、血液疾病等领域。本发明所述的血管新生相关疾病是指包括但不限于特征为过度的血管内皮细胞增殖、血管穿透性、水肿或炎症如与外伤相关的脑水肿、中风或肿瘤;与炎性疾病如关节炎相关的水肿,所述关节炎包括类风湿性关节炎;哮喘;与烧伤相关的一般性的水肿;与肿瘤、炎症或外伤相关的腹水和胸膜积液;慢性呼吸道炎症;毛细血管渗漏综合征;败血症;与增加的蛋白渗漏相关的肾病; 眼部疾病如与年龄相关的黄斑变性和糖尿病性视网膜病的临床症状。
目前在这一研究领域研究的药物有20余种,其中美国生物科技公司-基因泰克公司(Genentech)研制的一种人源化的单克隆抗体-Avastin(Bevacizumab)是一种抗血管内皮生长因子的抗体,其用于治疗癌症的基本原理在于能够抑制血管内皮生长因子的生物活性,抑制新血管生成,从而使肿瘤组织无法获得血液、氧和其它养分,最终达到抑制肿瘤生长的抗癌作用。Avastin疗效显著,被FDA批准为结直肠癌、非小细胞肺癌、转移性乳腺癌、胶质母细胞瘤,以及转移性肾癌等癌症治疗药物。Avastin对眼部新生血管的治疗也具有良好的疗效,能有效抑制角膜、脉络膜、视网膜等部位的新生血管、减轻黄斑水肿、提高视力。然而Avastin具有许多副作用,如流鼻血、高血压、血管栓塞,以及轻微蛋白尿,不仅给患者带来痛苦,而且治疗费用也较昂贵。此外,目前在这些血管新生相关疾病发生时,也缺乏有效追踪检测的制剂。
氧化石墨烯(Graphene oxide,GO)是一种碳奈米材料,由石墨经化学氧化形成。氧化石墨烯由单层碳原子组成,在单原子层两个基面都有吸附力情况下,具有超高载物率。氧化石墨烯含有大量的含氧活性官能团,具有良好的生物兼容性和水溶液稳定性,并有利于化学功能化修饰,可达到在不同领域应用的目的(Sun,Xiaoming et al.,Nano-Graphene Oxide for Cellular Imaging and Drug Delivery.,Nano Research 2008 1(3),203-212;Zhuang Liu et al.,PEGylated Nanographene Oxide for Delivery of Water-Insoluble Cancer Drugs.,Journal of the American Chemical Society 2008130(33),10876-10877)。过去有报告表示,氧化石墨烯被作为载体,用于承载特定药物,可使药物缓慢释放,或利用氧化石墨烯结合荧光等示踪物质(tracers)进行造影示踪。但至今未见有关氧化石墨烯对血管内皮生长因子的作用,或是将氧化石墨烯用于预防或治疗血管新生相关疾病的报导。
综上所述,虽然目前已有部分用于抑制血管新生的方法,却仍有其安全疑虑,因此对具有安全性及有效性的抗血管新生、以及示踪血管新生疾病的医药组合物等新的治疗方法需求仍然存在。
发明内容
本发明提出一种抗血管内皮生长因子(anti-VEGF)的氧化石墨烯(Graphene oxide),其化学结构包括碳碳双键(C=C)、碳碳单键(C-C)或碳氢键(C-H),表面含有选自羟基(C-O-H)、羰基(C=O)、羧基(COOH)或环氧基(C-O-C)中的一种或多种官能团,其界面电位介于-20mV~-50mV。
根据本发明的一些实施方式,其中所述羟基及环氧基组合含量占所述氧化石墨烯化学结构的总含量20~40%。
根据本发明的一些实施方式,其中所述羰基及羧基组合含量占所述氧化石墨烯化学结构的总含量10%以下。
根据本发明的一些实施方式,其中碳碳双键、碳碳单键及碳氢键组合含量与羟基及环氧基组合含量比值介于1~3。
根据本发明的一些实施方式,其粒径介于10~400nm。
根据本发明的一些实施方式,其粒径范围为10~140nm、70~215nm、140~220nm、215~322nm和220~400nm中的至少一种。
根据本发明的一些实施方式,其与血管内皮生长因子结合的解离常数(Kd值)小于6×10-11M。
根据本发明的一些实施方式,其包括一抗血管内皮生长因子区域。
根据本发明的一些实施方式,其中所述抗血管内皮生长因子区域包括抗肝素结合区域。
根据本发明的一些实施方式,其中所述抗血管内皮生长因子区域包括抗血管内皮生长因子受体结合区域。
就本发明的另一方面而言,本发明提出一种可调控VEGF活性的医药组合物,其包括抗血管内皮生长因子的氧化石墨烯,其中所述氧化石墨烯其化学结构包括碳碳双键、碳碳单键或碳氢键,表面含有选自羟基、羰基、羧基或环氧基中的一种或多种官能团,其界面电位介于-20mV~-50mV;以及药学上或生理学上可接受的载体、稀释剂或赋形剂。
根据本发明的一些实施方式,其中所述羟基及环氧基组合含量占所述 氧化石墨烯化学结构的总含量20~40%。
根据本发明的一些实施方式,其中所述羰基及羧基组合含量占所述氧化石墨烯化学结构的总含量10%以下。
根据本发明的一些实施方式,其中碳碳双键、碳碳单键及碳氢键组合含量与羟基及环氧基组合含量比值介于1~3。
根据本发明的一些实施方式,其中所述氧化石墨烯粒径介于10~400nm。
根据本发明的一些实施方式,其中所述氧化石墨烯粒径范围为10~140nm、70~215nm、140~220nm、215~322nm和220~400nm中的至少一种。
根据本发明的一些实施方式,其中所述氧化石墨烯与血管内皮生长因子结合的解离常数小于6×10-11M。
根据本发明的一些实施方式,其中所述氧化石墨烯表面涂覆有蛋白质材料。
就本发明的另一方面而言,本发明提出一种将氧化石墨烯用于制备预防或治疗一由血管新生或生长引起的疾病的药物的用途。
根据本发明的一些实施方式,其中所述由血管新生或生长引起的疾病包括肿瘤、关节炎、异常眼血管生成、甲状腺增生、动脉硬化、肥胖或肠胃溃疡。
根据本发明的一些实施方式,其中所述氧化石墨烯其化学结构包括碳碳双键、碳碳单键或碳氢键,表面含有选自羟基、羰基、羧基或环氧基中的一种或多种官能团,其界面电位介于-20mV~-50mV。
根据本发明的一些实施方式,其中所述羟基及环氧基组合含量占所述氧化石墨烯化学结构的总含量20~40%。
根据本发明的一些实施方式,其中所述羰基及羧基组合含量占所述氧化石墨烯化学结构的总含量10%以下。
根据本发明的一些实施方式,其中碳碳双键、碳碳单键及碳氢键组合含量与羟基及环氧基组合含量比值介于1~3。
根据本发明的一些实施方式,其中所述氧化石墨烯粒径介于10~400nm。
根据本发明的一些实施方式,其中所述氧化石墨烯粒径范围为10~140nm、70~215nm、140~220nm、215~322nm和220~400nm中的至少一种。
根据本发明的一些实施方式,其中所述氧化石墨烯与血管内皮生长因子结合的解离常数小于6×10-11M。
就本发明的另一方面而言,本发明提出一种氧化石墨烯作为血管内皮生长因子示踪剂的用途。
根据本发明的一些实施方式,其中包括进一步将所述血管内皮生长因子示踪剂用于示踪肿瘤位置的用途。
根据本发明的一些实施方式,其中所述氧化石墨烯其化学结构包括碳碳双键、碳碳单键或碳氢键,表面含有选自羟基、羰基、羧基或环氧基中的一种或多种官能团,其界面电位介于-20mV~-50mV。
根据本发明的一些实施方式,其中所述羟基及环氧基组合含量占所述氧化石墨烯化学结构的总含量20~40%。
根据本发明的一些实施方式,其中所述羰基及羧基组合含量占所述氧化石墨烯化学结构的总含量10%以下。
根据本发明的一些实施方式,其中碳碳双键、碳碳单键及碳氢键组合含量与羟基及环氧基组合含量比值介于1~3。
根据本发明的一些实施方式,其中所述氧化石墨烯粒径介于10~400nm。
根据本发明的一些实施方式,其中所述氧化石墨烯粒径范围为10~140nm、70~215nm、140~220nm、215~322nm和220~400nm中的至少一种。
根据本发明的一些实施方式,其中所述氧化石墨烯与血管内皮生长因子结合的解离常数小于6×10-11M。
就本发明的另一方面而言,本发明提出一种吸附目标物内的血管内皮生长因子的方法,其包括对目标物投予有效量的氧化石墨烯的步骤。
根据本发明的一些实施方式,其中所述氧化石墨烯包括碳碳双键、碳碳单键或碳氢键,其表面含有选自羟基、羰基、羧基或环氧基中的一种或多种官能基,所述氧化石墨烯界面电位介于-20mV~-50mV。
根据本发明的一些实施方式,其中所述羟基及环氧基组合含量占所述 氧化石墨烯化学结构的总含量20~40%。
根据本发明的一些实施方式,其中所述羰基及羧基组合含量占所述氧化石墨烯化学结构的总含量10%以下。
根据本发明的一些实施方式,其中碳碳双键、碳碳单键及碳氢键组合含量与羟基及环氧基组合含量比值介于1~3。
根据本发明的一些实施方式,其中所述氧化石墨烯粒径介于10~400nm。
根据本发明的一些实施方式,其中所述氧化石墨烯粒径范围为10~140nm、70~215nm、140~220nm、215~322nm和220~400nm中的至少一种。
根据本发明的一些实施方式,其中对目标物投予有效量的氧化石墨烯的步骤是利用口服或注射方式将所述氧化石墨烯投予所述目标物。
根据本发明的一些实施方式,其中所述目标物为脊椎动物。
根据本发明的一些实施方式,其中所述脊椎动物为哺乳动物。
根据本发明的一些实施方式,其中所述哺乳动物为人。
根据本发明的一些实施方式,其中更包括一步骤,在所述氧化石墨烯表面涂覆蛋白质材料。
就本发明的另一方面而言,本发明提出一种吸附目标物内血管内皮生长因子的方法的用途,其中所述方法包括对一目标物投予有效量的一氧化石墨烯,以及所述氧化石墨烯结合一血管内皮生长因子,以达到吸附作用,所述方法用于阻断血管内皮生长因子作用、抑制血管内皮生长因子受体活性、抑制血管生成、抑制肿瘤细胞增殖、示踪血管内皮生长因子和示踪肿瘤位置中的至少一种的用途。
根据本发明的一些实施方式,其中所述氧化石墨烯包括碳碳双键、碳碳单键或碳氢键,其表面含有选自羟基、羰基、羧基或环氧基中的一种或多种官能基,所述氧化石墨烯界面电位介于-20mV~-50mV。
根据本发明的一些实施方式,其中所述羟基及环氧基组合含量占所述氧化石墨烯化学结构的总含量20~40%。
根据本发明的一些实施方式,其中所述羰基及羧基组合含量占所述氧化石墨烯化学结构的总含量10%以下。
根据本发明的一些实施方式,其中碳碳双键、碳碳单键及碳氢键组合含量与羟基及环氧基组合含量比值介于1~3。
根据本发明的一些实施方式,其中所述氧化石墨烯粒径介于10~400nm。
根据本发明的一些实施方式,其中所述氧化石墨烯粒径范围为10~140nm、70~215nm、140~220nm、215~322nm和220~400nm中的至少一种。
根据本发明的一些实施方式,其中所述方法进一步包括:利用口服或注射方式将所述氧化石墨烯投予所述目标物。
根据本发明的一些实施方式,其中所述目标物为脊椎动物。
根据本发明的一些实施方式,其中所述脊椎动物为哺乳动物。
根据本发明的一些实施方式,其中所述哺乳动物为人。
就本发明的另一方面而言,本发明提出一种抑制血管新生的医药组合物,其包括氧化石墨烯与血管内皮生长因子所形成的组合物。
根据本发明的一些实施方式,其中所述氧化石墨烯与所述血管内皮生长因子间结合的解离常数小于6×10-11M。
根据本发明的一些实施方式,其中包括至少一种抗癌药物接合于所述氧化石墨烯表面。
根据本发明的一些实施方式,其进一步包括药学上或生理学上可接受的载体、稀释剂或赋形剂。
根据本发明的一些实施方式,其中所述氧化石墨烯表面涂覆有蛋白质材料。
就本发明的另一方面而言,本发明提出一种抑制血管新生的医药组合物用于制备治疗癌症的药物的用途,其中所述医药组合物包括一氧化石墨烯与一血管内皮生长因子所形成的一组合物。
根据本发明的一些实施方式,其中所述氧化石墨烯与所述血管内皮生长因子间结合的解离常数小于6×10-11M。
根据本发明的一些实施方式,其中包括至少一种抗癌药物接合于所述氧化石墨烯表面。
就本发明的另一方面而言,本发明提出一种抑制肿瘤细胞增殖的方 法,其包括对目标动物投予有效量的医药组合物;以及所述医药组合物于肿瘤发生处释放抗癌药物,以达到治疗效果,其中所述医药组合物为抑制血管新生的医药组合物,其包括氧化石墨烯与血管内皮生长因子所形成的组合物,且其进一步包括药学上或生理学上可接受的载体、稀释剂或赋形剂。
根据本发明的一些实施方式,其中所述氧化石墨烯与所述血管内皮生长因子间结合的解离常数小于6×10-11M。
根据本发明的一些实施方式,其中包括至少一种抗癌药物接合于所述氧化石墨烯表面。
本发明经由以下附图与实施方式说明而更易于让本领域普通技术人员了解本发明的精神。
附图说明
图1是比较在不同过锰酸钾氧化程度下得到的本发明氧化石墨烯(样品A-D),与血管内皮生长因子的吸附比例图。
图2是比较不同粒径的本发明氧化石墨烯(样品C、E、F),与血管内皮生长因子的吸附比例图。
图3是以酶联免疫吸附分析法(Enzyme-linked Immunosorbent Assay;ELISA)确认本发明氧化石墨烯与血管内皮生长因子的吸附强度[解离常数(Kd)与最大结合量(Bmax)]图。
图4是以电喷洒游离四极柱飞行时间质谱仪确认本发明氧化石墨烯与血管内皮生长因子结合的位置分析图。
图5是对照组及投予不同剂量的本发明氧化石墨烯组别中,微管生成试验(tube formation assay)的结果图。
图6是对照组及投予不同剂量的本发明氧化石墨烯组别中,鸡胚胎尿囊膜试验(Chick Choriollantoic Membrane,CAM)的结果图。
图7是对照组及投予本发明氧化石墨烯组别中,角膜微囊实验方法(corneal micropocket assay)观察到血管的变化情形图。
具体实施方式
本发明“一种氧化石墨烯与其用途”将可通过以下的实施例说明而让本领域普通技术人员了解其创作精神,并可据以完成。但是本发明的实施并非由下列实施例而限制其实施型态。
本发明氧化石墨烯及其组合物的制备
本发明氧化石墨烯的制备是将浓硫酸(90mL)、浓磷酸(10mL)、石墨粉(0.75g)于圆体双口瓶中混合,加热搅拌至50℃后,缓慢加入不同重量的过锰酸钾含量[1g(样品A)、2g(样品B)、4.5g(样品C)及10g(样品D)],在冷凝回流装置下加热搅拌12小时后,于冰浴下缓慢加入去离子水(100mL),再缓慢加入过氧化氢(32%)直到溶液由深紫绿色转变为亮黄色。利用高速离心机,以相对离心力35000g,离心30分钟,移除上清液,下层添加5mM磷酸盐溶液(pH 7.4),纯化数次(直到溶液pH值接近7),再经由超声波震荡2小时后,利用高速离心机,以相对离心力15000g,离心30分钟,取出上层溶液,以冷冻干燥计算其重量/体积浓度为1.2g L-1,得到不同氧化程度的氧化石墨烯。
在一实施例中,将氢氧化钠(2g)、乙酸(883.4μL)以及以及样品C的氧化石墨烯(100mL)混和(100mL)混和,于冷凝回流装置下加热搅拌四小时后,利用超声波(1/8"microtip probe,20KHz,Misonix 4000 Brochure,Qsonica,Newtown,CT)2小时(样品E)或3小时(样品F)(150W),震荡完之后透析两天去除溶液中未反应完的氢氧化钠及乙酸,再利用过滤器(0.22μm)来分离所需的氧化石墨烯。
在一实施例中,参考周如鸿(Ruhong Zhou)等人发表的文献内容(Yu Chong et al.,Reduced Cytotoxicity of Graphene Nanosheets Mediated by Blood-Protein Coating.,ACS Nano 2015 9(6),5713-5724),将牛血清蛋白(100μM,BSA)与氧化石墨烯(230nm,10μg/mL)在磷酸钠溶液(5mM,pH 7.4)反应2小时,即可制备牛血清蛋白修饰的氧化石墨烯(BSA-GO)。
本发明氧化石墨烯及其组合物的确认
本发明氧化石墨烯的确认及其检测是参考所使用检测的仪器型号使 用手册所揭示的操作信息。
氧化石墨烯的平均尺寸大小测定是透过TEM穿透式电子显微镜(Transmission Electron Microscopy,Tecnai 20 G2 S-Twin TEM,Philips/FEI,Hillsboro,Oregon,USA)把经加速和聚集的电子束投射到本发明所检测的氧化石墨烯样品上,利用电子与样品中的原子碰撞而改变方向,从而产生立体角散射,因此可以形成明暗不同的影像,影像将在放大、聚焦后在成像器件上显示出来。而氧化石墨烯及其组合物是透过激光粒度及Zeta电位分析仪(ZETASIZER 3000HS,Malvern Instruments,Malvern,UK),测定氧化石墨烯的动态光散射(Dynamic Light Scattering,DLS)与Zeta电位。各氧化石墨烯样品所测得尺寸大小及界面电位结果如表1所揭示。
表1、本发明所使用的氧化石墨烯大小及界面电位
Figure PCTCN2015093101-appb-000001
另外,在一实施例中,在氧化石墨烯表面涂覆蛋白质(BSA)材料的组合物测定所得结果在氧化石墨烯大小为280±10nm,其界面电位为-32.4mV。
此外,本发明氧化石墨烯是经由X-ray光电子能谱(X-ray photoelectron spectroscopy,XPS,PHI 5000 VersaProbe XPS,Ulvac Technologies,Japan)来确定不同氧化程度的氧化石墨烯其官能团的组合情形,如表2所揭示。
表2、本发明所使用的氧化石墨烯化学结构组合
Figure PCTCN2015093101-appb-000002
本发明氧化石墨烯及其组合物的用途
以下针对本发明的氧化石墨烯及其组合物的实际用途进行说明。
如图1、图2所揭示,本发明氧化石墨烯与血管内皮生长因子(VEGF)在磷酸钠盐溶液中有很好的吸附效果(大于50%);在一实施例中,本发明氧化石墨烯与血管内皮生长因子于细胞培养液,以及在富含许多复杂蛋白的人类血浆中,都具有良好的吸附效果;进一步言之,本实施例的氧化石墨烯及其组合物可以是示踪血管内皮生长因子的用途,以及抑制血管内皮生长因子受体(VEGFR)活性;更进一步言之,本实施例的氧化石墨烯及其组合物可以是作为血管内皮生长因子示踪剂,以及作为用于预防或治疗因血管新生或生长引起的疾病的药物成分。
在一实施例中,本发明使用氧化石墨烯(3μg mL-1)与血管内皮生长因子(10-100pM)在5mM的磷酸钠盐溶液(pH 7.4)下作用1小时进行结合后,以相对离心力55000g,离心2小时。利用酶联免疫吸附分析法(Enzyme-linked Immunosorbent Assay,ELISA)(Synergy 4 Multi-Mode,Biotek Instruments,Winooski,VT,USA)测定吸附量,计算Kd值(NVEGF-A165/[Free-VEGF-A165]=Nmax/Kd-NVEGF-A165/Kd)。其结果如表3;在一较佳实施例中,如图3所揭示,其Kd值为3.07×10-12M。结果显 示氧化石墨烯与血管内皮生长因子之间具有很强的吸附力。
表3、本发明实施例测得氧化石墨烯与血管内皮生长因子的解离常数
Figure PCTCN2015093101-appb-000003
在一实施例中,利用电喷洒游离四极柱飞行时间质谱仪(Synapt G2,Waters,USA)确认血管内皮生长因子修饰于氧化石墨烯(230nm)上之位向固定蛋白质浓度为2μg/mL,接着在5mM磷酸缓冲液(pH=7.4)中和0.4μg/mL的胰蛋白酶进行反应12小时。接着以蛋白质纯化管柱(OASIS column)进行纯化,其后样品经真空干燥后,回溶于含有98%的水及0.1%的甲酸水溶液中,并利用电喷洒游离四极柱飞行时间质谱仪侦测。所得的二次质谱图数据以mass matrix软件(http://www.massmatrix.net)进行转换及分析,结果如图4所揭示。显示氧化石墨烯结合血管内皮生长因子的复合物,其中抗肝素结合区域及抗血管内皮生长因子受体结合区域的多肽数量减少,与氧化石墨烯与血管内皮生长因子结合的位置相关。
在一实施例中,将人脐静脉内皮细胞(Human Umbilical Vein Endothelial Cells,HUVECs)种植25000颗到已加入Matrigel凝胶的μ-Slide well(μ-Slide,ibidi GmbH),并加入M199培养液、1nM血管内皮生长因子,以及不同浓度的氧化石墨烯(230nm)(7、15、20、30μg/mL),培养18小时并利用倒立式显微镜以40x物镜拍照,观察微管生成环的数量。如图 5所揭示,显示氧化石墨烯有效抑制血管新生情形。
在一实施例中,将受精的鸡蛋先培养5天让血管生长,之后在气室的位置开个小洞,同时在要观察血管的位置也开个洞,利用抽气的方式改变气室位置,利用滤纸浸泡不同浓度的230nm氧化石墨烯(30、60和100μg/mL),贴附于鸡胚胎上并拍照记录,经过24小时在37℃中培养后,再拍照记录一次,计算血管的分枝数确认血管新生抑制的效果。如图6所揭示,显示氧化石墨烯有效抑制血管新生情形。
在一较佳实施例中,参考角膜微囊实验方法(corneal micropocket assay)(Maria Vincenza Carriero et al.,UPARANT:a urokinase receptor-derived peptide inhibitor of VEGF-driven angiogenesis with enhanced stability and in vitro and in vivo potency.,Mol Cancer Ther.2014 13(5),1092–1104),将血管内皮生长因子以1:1比例包入海藻酸钠水凝胶(Sodium Alginate Hydrogel)中(Xiaojin Hao et al.,Angiogenic effects of sequential release of VEGF-A(165)and PDGF-BB with alginate hydrogels after myocardial infarction.,Cardiovasc Res.2007 75(1),178-185),再将血管内皮生长因子–海藻酸钠水凝胶(VEGF-alginate hydrogel)注射到目标动物-兔子的眼角膜(1.25μM,20μL),诱导兔眼角膜血管新生(rabbit corneal neovascularization)。诱导24小时后,注射BSA-GO(250μg/mL,20μL)至兔子眼角膜,每两天观察新生血管长度与面积并持续14天。如图7所揭示,在给予氧化石墨烯及其组合物治疗的兔眼,血管分布有减少情形。
在其他文献的实施例中,有将特定专一抗体Rituxan以共价键方式结合至氧化石墨烯上使其能选择性地附着至淋巴癌细胞上,以及运送抗癌药物doxorubicin进入癌细胞的例子(Sun,Xiaoming et al.,Nano-Graphene Oxide for Cellular Imaging and Drug Delivery.,Nano Research 2008 1(3),203-212);或是在另一实施例中,将可示踪的一种荧光磁性复合微球接枝于氧化石墨烯表面,以作为靶向载体药物或造影的应用(申请人吉林师范大学,中国专利公开号CN103374352 B,授权公告日2015年4月8日)。
上述实施例可知,本发明氧化石墨烯及其组合物能调控VEGF及VEGFR活性,可作为血管内皮生长因子的拮抗剂、捕获剂;或是用于示 踪特定目标物,作为血管内皮生长因子、肿瘤等目标的示踪剂,以及靶向药物的应用,进而达到预防或治疗因血管新生或生长引起的疾病治疗效果。
以上所提仅是本发明的较佳实施例方式,并不是用于限定本发明的实施范围;任何本领域技术人员,在不脱离本发明的精神与范围下所作的诸般变化与修饰,都不脱如附权利要求所欲保护者。

Claims (33)

  1. 一种抗血管内皮生长因子的氧化石墨烯,其化学结构包括碳碳双键、碳碳单键或碳氢键,表面含有选自羟基、羰基、羧基和环氧基中的一种或多种官能团,其界面电位介于-20mV~-50mV。
  2. 根据权利要求1所述的氧化石墨烯,其中所述羟基及环氧基的组合含量占所述氧化石墨烯化学结构的总含量20~40%。
  3. 根据权利要求1所述的氧化石墨烯,其中所述羰基及羧基的组合含量占所述氧化石墨烯化学结构的总含量10%以下。
  4. 根据权利要求1所述的氧化石墨烯,其中所述碳碳双键及碳碳单键的组合含量与羟基及环氧基的组合含量比值介于1~3。
  5. 根据权利要求1所述的氧化石墨烯,其粒径介于10~400nm。
  6. 根据权利要求1所述的氧化石墨烯,其粒径范围为10~140nm、70~215nm、140~220nm、215~322nm和220~400nm中的至少一种。
  7. 根据权利要求1所述的氧化石墨烯,其与血管内皮生长因子结合的解离常数小于6×10-11M。
  8. 根据权利要求1-7中任一权利要求所述的氧化石墨烯,其包括一抗血管内皮生长因子区域。
  9. 根据权利要求8所述的氧化石墨烯,其中所述抗血管内皮生长因子区域包括抗肝素结合区域。
  10. 根据权利要求8所述的氧化石墨烯,其中所述抗血管内皮生长因子区域包括抗血管内皮生长因子受体结合区域。
  11. 一种可调控VEGF活性的医药组合物,其包括权利要求1-7中任一权利要求所述的氧化石墨烯,以及药学上或生理学上可接受的载体、稀释剂或赋形剂。
  12. 根据权利要求11所述的医药组合物,其中所述氧化石墨烯表面涂覆有蛋白质材料。
  13. 一种将氧化石墨烯用于制备预防或治疗一由血管新生或生长引起的疾病的药物的用途。
  14. 根据权利要求13所述的用途,其中所述由血管新生或生长引起的疾病包括肿瘤、关节炎、异常眼血管生成、甲状腺增生、动脉硬化、肥胖或肠胃溃疡。
  15. 根据权利要求13所述的用途,其中所述氧化石墨烯是权利要求1-7中任一权利要求所述的氧化石墨烯。
  16. 一种将氧化石墨烯作为一血管内皮生长因子示踪剂的用途。
  17. 根据权利要求16所述的用途,其中包括进一步将所述血管内皮生长因子示踪剂用于示踪肿瘤位置的用途。
  18. 根据权利要求16所述的用途,其中所述氧化石墨烯是权利要求1-7中任一权利要求所述的氧化石墨烯。
  19. 一种吸附一目标物内的血管内皮生长因子的方法,其包括:对目标物投予有效量的一氧化石墨烯的步骤。
  20. 根据权利要求19所述的方法,其中所述氧化石墨烯是权利要求1-7中任一权利要求所述的氧化石墨烯。
  21. 根据权利要求19所述的方法,其中对一目标物投予有效量的氧化石墨烯的步骤是利用口服或注射方式将所述氧化石墨烯投予所述目标物。
  22. 根据权利要求19所述的方法,其中所述目标物为脊椎动物。
  23. 根据权利要求22所述的方法,其中所述脊椎动物为哺乳动物。
  24. 根据权利要求23所述的方法,其中所述哺乳动物为人。
  25. 根据权利要求19-24中任一权利要求所述的方法,进一步包括:在所述氧化石墨烯表面涂覆蛋白质材料。
  26. 一种权利要求19-24中任一权利要求所述的方法的用途,其中所述方法是用于阻断血管内皮生长因子作用、抑制血管内皮生长因子受体活性、抑制血管生成、抑制肿瘤细胞增殖、示踪血管内皮生长因子、和示踪肿瘤位置中的至少一种的用途。
  27. 一种抑制血管新生的医药组合物,其包括氧化石墨烯与血管内皮生长因子所形成的组合物。
  28. 根据权利要求27所述的医药组合物,其中所述氧化石墨烯与所 述血管内皮生长因子间结合的解离常数小于6×10-11M。
  29. 根据权利要求27所述的医药组合物,其中包括至少一种抗癌药物接合于所述氧化石墨烯表面。
  30. 根据权利要求27-29中任一权利要求所述的医药组合物,其进一步包括药学上或生理学上可接受的载体、稀释剂或赋形剂。
  31. 根据权利要求27所述的医药组合物,其中所述氧化石墨烯表面涂覆有蛋白质材料。
  32. 一种权利要求27-29中任一权利要求所述的医药组合物用于制备治疗癌症的药物的用途。
  33. 一种抑制肿瘤细胞增殖的方法,其包括:
    对目标动物投予有效量的权利要求29所述的医药组合物;以及
    所述的医药组合物于肿瘤发生处释放抗癌药物,以达到治疗效果。
PCT/CN2015/093101 2015-10-28 2015-10-28 一种抗血管内皮生长因子的氧化石墨烯与其用途 WO2017070866A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/093101 WO2017070866A1 (zh) 2015-10-28 2015-10-28 一种抗血管内皮生长因子的氧化石墨烯与其用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/093101 WO2017070866A1 (zh) 2015-10-28 2015-10-28 一种抗血管内皮生长因子的氧化石墨烯与其用途

Publications (1)

Publication Number Publication Date
WO2017070866A1 true WO2017070866A1 (zh) 2017-05-04

Family

ID=58629776

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093101 WO2017070866A1 (zh) 2015-10-28 2015-10-28 一种抗血管内皮生长因子的氧化石墨烯与其用途

Country Status (1)

Country Link
WO (1) WO2017070866A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108635587A (zh) * 2018-04-28 2018-10-12 孙燕霞 一种石墨烯槲皮素复合物和制备方法及其在抗肿瘤中的用途
CN110025814A (zh) * 2019-04-23 2019-07-19 国家纳米科学中心 一种氧化石墨烯的用途、包含氧化石墨烯的敷料和抗肿瘤颗粒
CN112093233A (zh) * 2020-09-18 2020-12-18 南京医科大学 一种石墨烯靶向药物载体及其制备方法和应用和运输盒

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1816566A (zh) * 2003-06-30 2006-08-09 瑞泽恩制药公司 Vegf捕获剂及其治疗用途
CN102803135A (zh) * 2009-05-22 2012-11-28 威廉马歇莱思大学 高度氧化的氧化石墨烯及其制备方法
CN103191467A (zh) * 2013-04-07 2013-07-10 西南交通大学 医用金属表面固定多种细胞生长因子抗菌涂层的制备方法
CN103935995A (zh) * 2014-05-04 2014-07-23 武汉理工大学 一种稳定石墨烯胶体分散液的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1816566A (zh) * 2003-06-30 2006-08-09 瑞泽恩制药公司 Vegf捕获剂及其治疗用途
CN102803135A (zh) * 2009-05-22 2012-11-28 威廉马歇莱思大学 高度氧化的氧化石墨烯及其制备方法
CN103191467A (zh) * 2013-04-07 2013-07-10 西南交通大学 医用金属表面固定多种细胞生长因子抗菌涂层的制备方法
CN103935995A (zh) * 2014-05-04 2014-07-23 武汉理工大学 一种稳定石墨烯胶体分散液的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUANG, R.C. ET AL.: "Detection of microRNA in Tumor Cells Using Exonuclease III and Graphene Oxide-Regulated Signal Amplification", ACS APPLIED MATERIALS & INTERFACES, vol. 6, no. 24, 14 April 2014 (2014-04-14), pages 21780 - 21787, XP055378975 *
LIN, C.W. ET AL.: "A reusable magnetic graphene oxide-modified biosensor for vascular endothelial growth factor detection in cancer diagnosis", BIOSENSORS AND BIOELECTRONICS, vol. 67, 15 May 2015 (2015-05-15), pages 431 - 437, XP055378973 *
MUKHERJEE, S. ET AL.: "Graphene Oxides Show Angiogenic Properties", ADVANCED HEALTHCARE MATERIALS, vol. 4, no. 11, 5 August 2015 (2015-08-05) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108635587A (zh) * 2018-04-28 2018-10-12 孙燕霞 一种石墨烯槲皮素复合物和制备方法及其在抗肿瘤中的用途
CN110025814A (zh) * 2019-04-23 2019-07-19 国家纳米科学中心 一种氧化石墨烯的用途、包含氧化石墨烯的敷料和抗肿瘤颗粒
CN110025814B (zh) * 2019-04-23 2021-07-06 国家纳米科学中心 一种氧化石墨烯的用途、包含氧化石墨烯的敷料和抗肿瘤颗粒
CN112093233A (zh) * 2020-09-18 2020-12-18 南京医科大学 一种石墨烯靶向药物载体及其制备方法和应用和运输盒

Similar Documents

Publication Publication Date Title
Sahu et al. Antioxidant and anti-inflammatory activities of Prussian blue nanozyme promotes full-thickness skin wound healing
Zhao et al. Dual‐targeting to cancer cells and M2 macrophages via biomimetic delivery of mannosylated albumin nanoparticles for drug‐resistant cancer therapy
AU2017203901B2 (en) Cancer treatments
Lai et al. Ultrastrong trapping of VEGF by graphene oxide: anti-angiogenesis application
US10195155B2 (en) Drug carrier for tumor-specific targeted drug delivery and use thereof
Yang et al. T cell-depleting nanoparticles ameliorate bone loss by reducing activated T cells and regulating the Treg/Th17 balance
MX2012005423A (es) Anticuerpos anti-integrina unidos a nanoparticulas cargadas con agentes quimioterapeuticos.
WO2017070866A1 (zh) 一种抗血管内皮生长因子的氧化石墨烯与其用途
Fan et al. Candesartan attenuates angiogenesis in hepatocellular carcinoma via downregulating AT1R/VEGF pathway
Wang et al. Anti-osteosarcoma effect of hydroxyapatite nanoparticles both in vitro and in vivo by downregulating the FAK/PI3K/Akt signaling pathway
Gao et al. A novel nanomissile targeting two biomarkers and accurately bombing CTCs with doxorubicin
Wang et al. Nanoscale perfluorocarbon expediates bone fracture healing through selectively activating osteoblastic differentiation and functions
Kim et al. Lipid anchor-mediated NK cell surface engineering for enhanced cancer immunotherapy
CN113773394A (zh) 一种融合肽及在制备抗肿瘤制剂中的应用
Zhao et al. Dual-responsive nanoparticles loading bevacizumab and gefitinib for molecular targeted therapy against non-small cell lung cancer
Lei et al. Alendronate-modified polydopamine-coated paclitaxel nanoparticles for osteosarcoma-targeted therapy
US20180303954A1 (en) Stem cell-nano drug delivery system complex, use thereof and method for preparing the same
EP2347761A1 (en) A composition with inhibition activity on pathological angiogenesis
JP2011515330A (ja) 改良抗腫瘍治療剤
Ayata et al. Preparation and in vitro characterization of monoclonal antibody ranibizumab conjugated magnetic nanoparticles for ocular drug delivery
CN113384551B (zh) 一种减少肿瘤内过量钙离子的仿生纳米载体的制备方法和应用
Liang et al. Anti-GPC3 Antibody-Conjugated BEZ235 loaded polymeric nanoparticles (Ab-BEZ235-NP) enhances radiosensitivity in hepatocellular carcinoma cells by inhibition of DNA double-strand break repair
CN108348544A (zh) 用于抑制血管生成的含有纳米颗粒-玻璃体基蛋白质复合物作为活性成分的组合物及其用途
CN106727427A (zh) 一种牛血清白蛋白包覆紫杉醇脂质纳米粒制剂的制备方法
Yu et al. Poly-γ-glutamic acid derived nanopolyplexes for up-regulation of gamma-glutamyl transpeptidase to augment tumor active targeting and enhance synergistic antitumor therapy by regulating intracellular redox homeostasis

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15906932

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15906932

Country of ref document: EP

Kind code of ref document: A1