KR20230079508A - 제조 라인,프로세스 및 소결된 물품 - Google Patents

제조 라인,프로세스 및 소결된 물품 Download PDF

Info

Publication number
KR20230079508A
KR20230079508A KR1020237018031A KR20237018031A KR20230079508A KR 20230079508 A KR20230079508 A KR 20230079508A KR 1020237018031 A KR1020237018031 A KR 1020237018031A KR 20237018031 A KR20237018031 A KR 20237018031A KR 20230079508 A KR20230079508 A KR 20230079508A
Authority
KR
South Korea
Prior art keywords
tape
sintered article
sintered
article
thickness
Prior art date
Application number
KR1020237018031A
Other languages
English (en)
Inventor
마이클 에드워드 배딩
윌리엄 조셉 부톤
재클린 레슬리 브라운
티모시 조셉 커리
로만 이 허니
랜릭 웨인 케스터
토마스 데일 케첨
존 알버트 올렌닉
캐슬린 리터 올렌닉
제레미 파아나넨
토마스 실버블라트
줄리앙 델 조셉 생
비스와나탄 벤카테스와란
나단 마이클 징크
Original Assignee
코닝 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56413860&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20230079508(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 코닝 인코포레이티드 filed Critical 코닝 인코포레이티드
Publication of KR20230079508A publication Critical patent/KR20230079508A/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/486Fine ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B11/00Apparatus or processes for treating or working the shaped or preshaped articles
    • B28B11/24Apparatus or processes for treating or working the shaped or preshaped articles for curing, setting or hardening
    • B28B11/243Setting, e.g. drying, dehydrating or firing ceramic articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/115Translucent or transparent products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/12Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on chromium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • C04B35/443Magnesium aluminate spinel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/563Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on boron carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/581Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/638Removal thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/10Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B13/00Furnaces with both stationary charge and progression of heating, e.g. of ring type, of type in which segmental kiln moves over stationary charge
    • F27B13/06Details, accessories, or equipment peculiar to furnaces of this type
    • F27B13/08Casings
    • F27B13/10Arrangements of linings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B21/00Open or uncovered sintering apparatus; Other heat-treatment apparatus of like construction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • C04B2235/6025Tape casting, e.g. with a doctor blade
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • C04B2235/9638Tolerance; Dimensional accuracy
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/28Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity for treating continuous lengths of work
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

제조 라인은 노가 유기 결합제 재료를 연소시킨 다음 세터 보드를 사용하지 않고 테이프를 부분적으로 소결하도록 노를 통해 안내되는 그린 재료의 테이프를 포함한다. 제조 라인으로부터 초래되는 소결된 물품은 비교적 큰 표면적을 갖고서 얇을 수 있고, 실질적으로 연마되지 않은 상태에서, 소수의 소결 유도 표면 결함을 갖는다. 부분적으로 소결된 테이프가 제조 라인의 제2 노를 통과할 때 부분적으로 소결된 테이프에 인장이 적용되어 결과적인 소결된 물품을 성형할 수 있다. 노는 바람직하게는 수직으로 배향되고 바람직하게는 연속적으로 동작된다. 바람직하게는, 세라믹 재료가 테이프를 형성하는데 사용된다.

Description

제조 라인,프로세스 및 소결된 물품 {MANUFACTURING LINE, PROCESS, AND SINTERED ARTICLE}
본 출원은 그 내용 전문이 참조로 본 명세서에 통합되어 참조되는 2015년 6월 29일자로 출원된 미국 가출원 제62/185,950호에 대한 35 U.S.C.§119 하의 우선권의 혜택을 주장한다.
본 개시내용의 양태는 일반적으로, 유기 결합제에 결합된 다결정 세라믹 그레인을 포함하는 그린 테이프와 같은 그린 테이프를 소결시키는 공정뿐만 아니라, 이러한 공정으로 제조된 세라믹 시트 또는 테이프와 같은 소결된 물품에 관한 것이다.
세라믹의 얇은 시트, 테이프 또는 리본과 같은 물품은 세라믹이 빛을 투과할 때 도파관 역할을 하거나 코팅되거나 적층되어 배터리 및 다른 구성요소에 통합될 수 있는 기판으로 역할을 하거나 다른 용례 같은 다수의 잠재적인 용도를 갖는다. 이런 물품은 소결된 재료의 대형 잉곳을 형성하고, 재료의 슬리버 또는 플레이트를 절단하고, 대응하는 물품을 원하는 형태 및 표면 품질로 연마함으로써 제조될 수 있다. 연마는 물품 표면의 결점이나 결함을 제거하는 데 도움이되지만 시간- 및 자원-소모적이다.
이런 물품은 또한 테이프 캐스팅, 겔 캐스팅 또는 유기 결합제에 결합된 무기 그레인의 스트립과 같은 그린 테이프의 소결을 포함하는 다른 공정에 의해 제조될 수도 있다. 그린 테이프는 통상적으로 세터 보드(setter board)라 불리는 표면 위에 배치되며, 유기 결합제를 연소시켜 무기질 그레인을 소결하는 노 내부에 배치된다. 세터 보드는 통상적으로 소결 공정을 견딜 수 있는 내화물 재료로 형성된다. 결합제가 제거되면 세터 보드가 테이프를 지지한다.
본 출원인은 소결이 그린 테이프를 수축시켜 수축 중에 세터 보드를 가로질러 그 자체의 부분을 드래깅(dragging)하는 것을 관찰했다. 그 결과, 결과적인 소결된 물품의 지지된 측면은 세터 보드의 내화물 재료로부터 소결 물품으로 전달되는 드래그 홈(drag groove), 소결 파편, 불순물 패치(impurity patch) 등과 같은 표면 결함을 갖는다. 도 1 및 도 2는 소결 동안 세터 보드에 의해 야기된 결함과 같은 소결된 세라믹 물품(110, 210) 상의 표면 결함(112, 212)의 예를 도시한다. 출원인은 이런 결함이 응력 집중 및 균열 개시를 위한 부위를 제공함으로써 각각의 물품의 강도를 감소시키는 것으로 믿고 있다.
추가적으로, 점점 더 얇은 소결된 물품(예로서, 시트, 테이프, 리본)을 제조할 때, 본 출원인은 소정 지점에서 소결된 물품이 너무 얇아져서 연마가 불가능하지는 않더라도 어려워질 수 있다고 가정한다. 따라서, 이런 물품의 경우, 본 기술 분야의 숙련자는 소결 동안 세터 보드에 의해 유도된 표면 결함 또는 절단에 의해 야기된 결함을 제거할 수 없을 수도 있다. 유사하게, 여전히 얇지만 더 두꺼운 소결된 물품에 대해, 출원인은 소정 지점에서 물품이 연마를 위한 너무 많은 표면적을 갖는다고 가정한다. 깨지기 쉬운 및/또는 큰 표면적을 갖는 얇은 시트를 갖는 통상적인 연마 장비의 제어는 다루기 힘들거나 및/또는 비실용적이 될 수 있다. 따라서, 평탄도, 매끄러움 및/또는 결함없는 표면과 같은 연마와 일반적으로 관련된 품질을 갖는 얇은 물품, 특히 비교적 큰 표면적을 갖는 물품은 종래의 제조 방법을 사용하여 획득될 수 있으며 및/또는 본 기술 분야의 숙련자는 제조 과제 및 관련 물품당 비용을 극복하는 것에 관한 강한 불이익으로 인해 이런 물품을 제조하기를 시도하지 않을 수 있다.
다결정 세라믹의 시트, 금속 또는 소결될 수 있는 다른 재료의 테이프 또는 시트와 같은 물품을 제조하기 위한 장비 및 제조 공정에 대한 필요성이 있으며, 물품은 과도한 연마를 동반하지 않는 것 같이 효율적으로 제조될 수 있는 반면, 또한 소수의 표면 결함을 갖는 것으로 인한 것 같은 우수한 기계적 특성을 갖는다. 이런 물품은 배터리 내의, 인쇄 회로 보드 상의 기판으로서, 핸드헬드 디바이스를 위한 것 같은 디스플레이용 덮개 시트로서 유용할 수 있거나, 물품은 다른 방식으로 유용할 수 있다.
본 출원인은 그린 테이프를 소결하는 공정에서 세터 보드를 제거하는 기술을 발견하였으며, 결과적인 소결된 물품은 연마되지 않을 수 있지만 여전히 우수한 기계적 특성을 가질 수 있다. 일부 실시예에서, 본 명세서에 개시된 기술은 연속적인 제조 라인에 관한 것으로, 연속 테이프는 유기 결합제에 의해 유지되는 무기 입자를 포함하는 그린 섹션을 포함한다. 제조 라인에서 그린 섹션은 제1 가열된 위치로 안내되어 결합제를 연소시키거나 태워 동일한 테이프의 비결합 섹션을 형성한다. 다음에, 제조 라인을 따라, 무기 입자의 적어도 부분적인 소결을 위해 비결합 섹션은 제2 가열된 위치를 통해 연장한다. 제1 및 제2 가열된 위치는 제조 라인 상의 동일하거나 상이한 노에 의해 가열될 수 있다. 테이프가 제2 가열된 위치에서 단지 부분적으로 소결되는 경우, 테이프의 소결을 완료하기 위한 제3 가열된 위치와 같은 추가적 가열된 위치가 테이프를 추가로 가공하기 위해 제조 라인 상에 있을 수 있다. 제2 가열된 위치에서의 부분적인 소결은 테이프가 평탄하게 유지되는 제3 가열 위치에서 추가의 소결을 위해 테이프가 인장될 수 있게 하며, 그에 의해, 특히 평탄한 소결된 시트 및/또는 소결-유도 표면 결함을 갖는 것을 용이하게 한다.
전술한 바는, 테이프를 수직으로 배향하는 것과 같이 그린 테이프에 대한 세터 보드 지지를 필요로 하지 않는 방식으로 제2 가열된 위치를 지나 그린 테이프를 배향함으로써 부분적으로 달성된다. 놀랍게도, 본 출원인은 테이프의 결합제가 연소 또는 태워졌음에도 불구하고 비결합 섹션 아래의 테이프의 중량은 적어도 부분적인 소결이 일어나기 전에 비결합 섹션에서 테이프를 반드시 절단하거나 분리하는 것을 필요로 하지 않는다는 것을 발견했다. 출원인은 테이프가 세터 보드없이 적어도 부분적인 소결을 위해 자체적으로 충분히 오랫동안 유지될 수 있다는 것을 발견했다. 결과적으로, 소결된 물품은 통상적으로 세터 보드에 의해 야기되는 소결 동안 생성된 접촉-유도 표면 결함이 없다. 소결된 물품의 양 측면상의 표면은 결함의 수의 관점에서 서로 일치하고, 그 수는 결과적인 소결된 물품이 더 많은 표면 결함을 갖는 물품에 비해 증가된 인장 강도와 같은 향상된 기계적 특성을 가질 수 있을 정도로 충분히 낮다.
추가의 특징 및 장점은 이하의 상세한 설명에서 설명될 것이고, 일부는 그 설명으로부터 본 기술 분야의 숙련자가 쉽게 명백히 알 수 있거나 기재된 상세한 설명, 그 청구범위 및 첨부 도면에 설명된 실시예를 실시하는 것에 의해 인식할 수 있을 것이다. 전술한 일반적 설명 및 다음의 상세한 설명 모두는 단지 예시적인 것이며, 청구범위의 특성 및 특징에 대한 이해의 개요 또는 골격을 제공하기를 의도하는 것임을 이해하여야 한다.
첨부 도면은 추가적 이해를 돕기 위해 포함되며, 본 명세서에 통합되어 본 명세서의 일부를 구성한다. 도면은 하나 이상의 실시예를 도시하고, 상세한 설명과 함께 다양한 실시예의 원리 및 동작을 설명하는 역할을 한다. 이와 같이, 본 개시내용은 첨부된 도면과 관련하여 이루어지는 다음의 상세한 설명으로부터 더욱 완전하게 이해될 것이다.
도 1 및 도 2는 표면 결함을 갖는 세라믹 재료의 디지털 이미지이다.
도 3a는 예시적인 실시예에 따른 제조 라인의 개략도이다.
도 3b는 도 3a의 제조 라인을 따라 온도 대 위치를 개념적으로 도시한 플롯이다.
도 4는 예시적인 실시예에 따른 노의 단면도이다.
도 5는 테이프가 처리되는 예시적인 실시예에 따른 제조 라인의 디지털 이미지이다.
도 6a는 소결된 세라믹의 연마되지 않은 표면의 디지털 이미지이다.
도 6b는 연마되지 않은 소결된 세라믹의 개념적 측면 프로파일이다.
도 7a는 소결된 세라믹의 연마된 표면의 디지털 이미지이다.
도 7b는 연마된 소결된 세라믹의 개념적 측면 프로파일이다.
도 8은 예시적인 실시예에 따른 재료의 얇은 소결 테이프 형태의 소결된 물품의 사시도이다.
도 9는 다른 예시적인 실시예에 따른 제조 라인의 측면도로부터의 개략도이다.
도 10 내지 도 11은 다른 예시적인 실시예에 따른 제조 라인의 사시도이다.
도 12는 예시적인 실시예에 따른 제조 라인 또는 그 일부의 개략도이다.
도 13은 다른 예시적인 실시예에 따른 제조 라인 또는 그 일부의 개략도이다.
도 14는 또 다른 예시적인 실시예에 따른 제조 라인 또는 그 일부의 개략도이다.
도 15는 100 배 배율로 세터 보드 상에 소결된 얇은 세라믹 시트의 현미경사진이다.
도 16은 대체로 도 15에 도시된 점선 박스 내부로부터의 500 배 배율의 도 15와 동일한 시트이다.
도 17은 본 명세서에 개시된 본 발명의 공정을 사용하여 제조된 부분적 및 완전히 소결된 테이프들을 흰 종이에 검은 글자를 중첩시켜서 비교한다.
도 18은 본 명세서에 개시된 본 발명의 공정을 사용하여 제조된 부분적 및 완전히 소결된 테이프들을 검은 종이에 흰 글자를 중첩시켜서 비교한다.
도 19는 100 배 배율의, 본 명세서에 개시된 본 발명의 공정을 사용하여 소결된 얇은 세라믹 시트의 현미경사진이다.
도 20의 시트는 500 배 배율에서의 도 19와 동일한 시트이다.
도 21 내지 도 22는 폭방향(도 21) 및 길이방향(도 22) 높이 프로파일을 갖는 예시적인 실시예에 따른 테이프의 표면 스캔이다.
예시적인 실시예를 상세하게 예시하는 다음의 상세한 설명 및 도면을 참조하기 전에, 본 발명의 기술은 상세한 설명에서 설명되거나 도면에 예시된 세부 사항 또는 방법에 한정되지 않는다는 것을 이해해야 한다. 예로서, 본 기술 분야의 숙련자가 이해할 수 있는 바와 같이, 도면들 중 하나에 도시되거나 실시예들 중 하나에 관한 텍스트에 설명된 실시예들과 관련된 특징들 및 속성들은 다른 도면에 도시되거나 텍스트의 다른 위치에 설명된 다른 실시예들에 적용될 수 있다.
도 3a 및 도 3b를 참조하면, 제조 라인(310)은 노 시스템(312) 및 노 시스템(312) 내로 연장되는 측면도로부터 도시된 테이프(314)와 같은 작업편(예로서 리본, 테이프, 웨브, 라인, 재료)을 포함한다. 테이프(314)는 굴곡부 또는 롤러(316) 둘레로 라우팅될 수 있고 노 시스템(312)을 향해 안내된다. 예시적인 실시예에 따르면, 노 시스템(312)은 결합제 연소 위치(B) 및/또는 테이프가 결합제 연소 위치(B)를 통과한 후에 테이프(314)를 적어도 부분적으로 소결시키기 위한 소결 위치(C)를 포함하는 통로(318)를 포함한다. 일부 실시예에서, 결합제 연소 위치(B)는 제조 라인(310)을 따라 소결 위치(C)의 바로 위 또는 아래와 같이 소결 위치(C)에 인접, 예컨대 1 미터 이내, 50 센티미터 이내, 10 센티미터 이내에 있다. 추가로 설명될 바와 같이, 결합제 연소 위치 B와 소결 위치 C의 밀접한 배치는 소결 전에 결합제에 의해 테이프(314)가 결합되지 않는 시간/길이를 감소시킨다.
예시적인 실시예에 따르면, 노 시스템(312)의 통로(318)는, 예컨대, 적어도, 결합제를 연소(예로서, 결합제 연소 위치(B)) 및/또는 테이프(314)의 적어도 부분적 소결(예로서, 소결 위치(C))을 위한 목적의 노 시스템(312)의 섹션의 표면(320)과의 접촉없이 테이프(314)가 통로(318)를 통해 대체로 수직으로 연장할 수 있도록 배향된다. 예로서, 통로(318)는 테이프(314)가 대체로 수직으로 연장되고, 60도 내지 120도와 같이 수평에 대해 45도에서 135도 사이, 예컨대, 90도 +/- 10도로 배향되는 경로를 따라 상향 및/또는 하향 이동하도록 배향될 수 있다. 테이프(314)를 소결 위치(C)의 표면(320) 및/또는 결합제 연소 위치(B)의 표면(322)과 접촉시키지 않고, 결합제 연소 위치(B) 및/또는 소결 위치(C)를 통해 테이프(314)를 통과시키는 것은 접촉을 통한 재료 전달 및/또는 테이프(314)의 스코어링 또는 다른 성형을 감소시킴으로써, 노 시스템(312)에 의해 처리될 때 테이프(314)의 표면 품질을 향상시키는 것으로 믿어진다.
예시적인 실시예에 따르면, 테이프(314)의 제1 섹션은 그린 테이프 섹션(314A)이며, 제조 라인(310)을 따라 위치(A)에 위치될 수 있다. 예시적인 실시예에 따르면, 그린 테이프 섹션(314A)은 유기 결합제(예로서, 폴리비닐 부티랄, 디부틸 프탈레이트, 폴리알킬 카보네이트, 아크릴 폴리머, 폴리에스테르, 실리콘 등)에 의해 결합된 다결정 세라믹 및/또는 미네랄(예로서, 알루미나, 지르코니아, 리튬 가넷(garnet), 스피넬)을 포함한다. 고려되는 실시예에서, 그린 테이프 섹션(314A)은 유기 결합제에 결합된 금속 입자를 포함할 수 있다. 다른 고려된 실시예에서, 그린 테이프 섹션(314A)은 유리 그레인(예로서, 고순도 실리카 그레인, 보로실리케이트, 알루미노실리케이트, 소다 석회) 또는 유기 결합제에 의해 결합된 다른 무기 그레인을 포함할 수 있다. 고려되는 실시예에서, 그린 테이프 섹션(314A)은 유기 결합제에 결합된 유리-세라믹 입자(예로서, 코디어라이트, LAS 리튬 알루미노실리케이트, Nasicon 구조 리튬 금속 포스페이트, 셀시안(celsian))를 포함할 수 있다. 예시적인 실시예에 따르면, 그린 테이프 섹션(314A)은 약 0.01 내지 약 25 체적 %의 공극을 가지며, 및/또는 무기 입자는 50 내지 1,000 나노미터의 중간 입자 크기 직경 그리고 2 내지 30 m2/g의 브루나우어, 에머트 및 텔러(BET; Brunauer, Emmett and Teller) 표면적을 갖는다. 다른 고려되는 실시예에서, 전술한 재료는 무기 결합제 또는 다른 결합제에 의해 결합될 수 있고/있거나 전술한 재료는 다른 크기로 이루어지거나 다른 공극을 가질 수 있다.
그린 테이프 섹션(314A)이 결합제 연소 위치(B)를 통과함에 따라, 노 시스템(312)은 그린 테이프 섹션(314A)으로부터 결합제 재료, 예컨대, 대부분의 결합제, 예컨대, 결합제의 적어도 90 %를 산화, 휘발 및/또는 가교 결합에 기인하여 연소 및/또는 태우도록 구성된다. 예시적인 실시예에 따르면, 그린 테이프 섹션(314A)은 연소 위치(B)를 통해 자체 지지되고 연소 위치(B)의 표면(322)과의 접촉을 필요로 하지 않으며 및/또는 그와 접촉하지 않는다.
결합제 연소 위치(B)를 넘어서는, 테이프(314)는 더 이상 "그린" 상태가 아니며 테이프(314)의 제2 섹션은 비결합 테이프 섹션(314B)(예로서, 연소된 테이프 섹션, 태워진 결합제 테이프 섹션)이며, 이는 소결되지 않지만 결합제가 없거나 태워진 결합제를 가질 수 있다. 비결합 테이프 섹션(314B)은 동작상태 및/또는 태워지지 않은 결합제가 없기 때문에, 본 기술분야의 숙련자라면 비결합 테이프 섹션(314B)이 그 자체의 중량 또는 비결합 테이프 섹션(314B) 아래의 테이프(314)의 부분들의 중량하에, 예컨대, 결합제의 결여로 인해 간단히 붕괴 또는 무너질 수 있다는 것을 예상할 수 있다. 그러나, 본 출원인은 테이프(314)가 적절히 취급되는 경우, 예컨대, 테이프(314)의 인장이 제어되는 경우 및/또는 테이프(314)가 테이프(314)의 무기 재료(예를 들면, 세라믹 그레인)의 적어도 부분적인 소결 전에 굴곡 및/또는 재배향되지 않는 경우 결합제가 연소 및/또는 태워짐에도 불구하고 비결합 테이프 섹션(314B)이 완전하게 유지될 수 있다는 것을 발견하였다.
여전히 도 3a를 참조하면, 테이프(314)의 비결합 테이프 섹션(314B) 부분은 그후 소결 위치(C)로 및/또는 소결 위치까지 통과하고, 노 시스템(312)은 비결합 테이프 섹션(314B)의 다결정 세라믹 또는 다른 무기 재료를 적어도 부분적으로 소결하도록 구성된다. 예로서, 다결정 세라믹 그레인은 그레인이 서로 결합 또는 융합되도록 소결될 수 있지만, 여전히 테이프(314)는 다량의 공극(예로서, 적어도 10 체적 %, 적어도 30 체적 %)을 포함하며, "공극"은 다결정 세라믹과 같은 무기 재료에 의해 점유되지 않은 테이프 체적의 부분을 지칭한다.
적어도 부분적으로 소결되고 나면, 테이프(314)의 대응하는 섹션은 적어도 부분적으로 소결된 테이프 섹션(314C)이다. 적어도 부분적으로 소결된 테이프 섹션(314C)을 부분적으로, 그리고, 완전하지 않게 소결하는 것은, 테이프(314)의 후속 성형을 용이하게 하기 위해 테이프(314)에 인장이 가해지는 정도까지 테이프(314)의 강도를 증가시킨다. 예시적인 실시예에 따르면, 인장하에서, 테이프(314)의 추가적인 소결이 일어나서 특히 평탄한 또는 다른 형상의 소결된 물품을 생성한다(대체로 도 5 참조).
예시적인 실시예에 따르면, 제조 라인(310)은 예컨대 적어도 부분적으로 소결된 테이프 섹션(314C)과 직접적으로 상호 작용함으로써 테이프(314)의 인장에 영향을 주는 인장 조정기(324)를 더 포함한다. 인장 조정기(324)는 인장 조정기(324)의 각 측면의 테이프(314)의 부분에서 인장이 상이할 수 있도록 인장 조정기(324)의 아래에 대한 위의 테이프(314)의 인장을 제어하고 분리할 수 있다. 일부 실시예에서, 인장 조정기(324)는 예컨대 테이프(314)의 인장을 조정하기 위해 테이프(314)가 제조 라인(310)을 통해 이동하는 방향과 함께 또는 그에 대향하여 공기가 지향되는 에어 베어링을 포함한다. 다른 실시예에서, 인장 조정기(324)는 테이프(314)의 인장에 영향을 미치기 위해 테이프(314)를 당기거나 미는 닙 롤러를 포함한다. 또 다른 실시예에서, 인장 조정기(324)는 휠(예로서, 도 12 참조)일 수 있으며, 휠의 표면상의 마찰뿐만 아니라 휠의 회전은 테이프(314)의 인장에 영향을 미친다. 전술한 바와 같이, 예컨대 소결 위치(C) 또는 제조 라인(310)을 따른 다른 위치에서 테이프(314)가 소결됨에 따라 테이프(314)의 인장이 테이프(314)를 성형하는데 사용될 수 있다. 추가적으로, 인장 조정기(324)에 의해 테이프(314)에 인가된 인장(그 양 또는 음의 양)은 해당 섹션에서의 인장에 영향을 미침으로써 비결합 테이프 섹션(314B)을 함께 유지하는 것을 도울 수 있다.
이제, 도 3b를 참조하면, 테이프(314)의 온도는 제조 라인(310)을 따라 테이프(314)의 특정 부분의 위치의 함수로서 테이프(314)의 길이를 따라 변할 수 있다. 결합제 연소 위치(B)에 진입하기 전에 그린 테이프 섹션(314A)은 실온(예로서, 약 25 ℃)과 같은 제1 온도를 경험할 수 있다. 결합제 연소 위치(B) 근처에서, 테이프(314)의 비결합 테이프 섹션(314B)에 의해 경험되는 온도는 적어도 200 ℃, 적어도 400 ℃와 같이 그린 테이프 섹션(314A)에 의해 경험되는 온도 보다 클 수 있다. 소결 위치(C)에서 그리고 근처에서, 테이프(314)에 의해 경험되는 온도는 결합제 연소 위치(B) 근처에서 테이프(314)에 의해 경험되는 온도, 예컨대, 소결 위치(C)에서 적어도 800 ℃, 적어도 1000 ℃ 보다 더 클 수 있다. 소결 위치(C)를 지나쳐 제조 라인(310)을 따른 위치에 위치된 테이프(314)의 부분은 그후 소결 위치(C)의 테이프(314)의 부분보다 및/또는 예컨대 실온을 경험하는 결합제 연소 위치(B)에서의 테이프(314)의 부분보다 더 낮은 온도를 경험할 수 있다.
도 4를 참조하면, 노 시스템(410)은 노 시스템(410)의 깊이 L1을 완전히 통과하는 것 같이, 노 시스템(410)을 적어도 부분적으로 통해 연장하는 통로(414)를 한정하는 안내부(412)를 포함한다. 일부 실시예에서, 안내부(412)는 내화물 재료로 형성될 수 있는 튜브 또는 샤프트일 수 있다. 예시적인 실시예에 따르면, 통로(414)는 중력이 직선으로 또는 세장형 작업편(예로서, 가요성 그린 테이프, 리본, 라인; 대체로 도 3a의 테이프(314) 참조)의 길이를 따라 다른 방식으로 작용하도록 대체로 수직으로 배향되어 통로(414)를 통해 연장할 수 있다. 노 시스템(410)의 일부 용례에서, 작업편은 통로(414) 보다 좁을 수 있고 통로(414) 내에 위치되어 안내부(412)의 표면과 접촉하지 않을 수 있다. 노 시스템(410)은 제조 라인(310)과 같은 제조 라인에서 사용될 수 있다.
예시적인 실시예에 따르면, 노 시스템(410)의 통로(414)는 노 시스템(410)을 통해 연장되는 깊이 치수(L1), 깊이 치수(L1)에 직교하는 폭 치수(도 4 내외로 연장됨) 및 깊이 치수(L1) 및 폭 치수 모두에 직교하는 간극 치수(L2)를 갖는다. 예시적인 실시예에 따르면, 통로(414)의 깊이 치수(L1)는 폭 치수 보다 크며, 폭 치수는 간극 치수(L2) 보다 크다. 예시적인 실시예에 따르면, 간극 치수(L2)는 적어도 1 밀리미터, 예컨대, 적어도 2 밀리미터, 적어도 5 밀리미터 및/또는 500 센티미터 이하이다. 일부 실시예에서, 폭 및 간극 치수는 통로(414)가 원통형이 되도록 서로 동일하다.
도 4를 참조하면, 노 시스템(410)은 결합제 연소 위치(B') 및 소결 위치(C')를 포함한다. 연소 위치(B')는 작업편으로부터 결합제 재료를 연소시키도록 구성되고 소결 위치(C')는 작업편을 적어도 부분적으로 소결하도록 구성된다. 예시적인 실시예에 따르면, 노 시스템(410)은 전기 저항 가열 요소, 가스 또는 오일 버너 또는 다른 열원과 같은 열원(416)을 포함한다. 일부 실시예에서, 열원(416)은 소결 위치(C')의 적어도 일부를 둘러싸고 및/또는 예컨대 내화물 재료로 형성될 수 있는 장벽 또는 벽(418)에 의해 연소 위치(B')로부터 분리된다. 예시적인 실시예에 따르면, 노 시스템(410)의 열원(416)은 연소 위치(B')의 위 또는 아래에 위치된다. 따라서, 열은 상승작용적으로 소결 위치(C')로부터 결합제 연소 위치(B')로 통과할 수 있다. 다른 실시예에서, 연소 위치(B)는 소결 위치(C')로부터 분리된 열원을 가질 수 있다.
결합제 연소 위치(B')에 들어가기 전에, 작업편은 실온(예로서, 25 ℃)과 같은 제1 온도를 경험할 수 있다. 결합제 연소 위치(B') 근처에서, 작업편에 의해 경험되는 온도는 적어도 200 ℃, 적어도 400 ℃와 같이 실온보다 높을 수 있다. 작업편이 소결 위치(C')에 근접하고 그를 통과할 때, 작업편이 경험하는 온도는 결합제 연소 위치(B') 근처의 작업편이 경험하는 온도 보다 여전히 더 크며, 예컨대 적어도 800 ℃, 적어도 1000 ℃이다. 결합제 연소 위치(B') 반대쪽의 소결 위치(C') 측면에서 소결 위치(C')를 초과한 작업편의 부분은 그후 더 낮은 온도를 경험할 수 있고, 예컨대 실온을 경험할 수 있다.
이제 도 5를 참조하면, 미국 특허 제8,894,920호에 설명된 바와 같이, 3 몰 %의 이트리아-안정화 지르코니아(3YSZ) 그린 세라믹의 캐스트가 제조될 수 있다. 일 실시예에서, 캐스트로부터, 폭 2.5 cm x 길이 5 m인 재료의 그린 테이프(512)가 절단되었다. 그린 테이프(512)는 원통형 롤러(514) 상에 권취되고, 그후, 도 5(또한 도 4에 도시된 바와 같은 노 시스템(410) 참조)에 도시된 바와 같은 노 시스템(516) 내로 분당 2 인치의 제어된 속도로 급송된다. 노 시스템(516)의 소결 위치(C")는 1200 ℃에서 유지되었다. 결합제 연소 위치(B")는 결합제 연소를 위한 영역을 제공하기 위해 알루미나 섬유판으로 절연 및 축조된다. 결합제 연소 위치(B")는 노 시스템(516)의 소결 위치(C')를 나가는 고온 가스에 의해 가열되었다.
도시된 구성(510)에서, 본 출원인은 10 인치 길이의 결합제 연소 위치(B")(수직 방향의 길이로 도시됨)가 테이프(512)가 분당 약 3 인치까지 성공적으로 급송될 수 있게 한다는 것을 발견했다. 도시된 노 시스템(516)의 소결 위치(C")는 12 인치이고, 결과적으로, 소결 위치(C")에서의 총 시간은 약 4 내지 6 분이 된다. 노 시스템(516)의 출구에서, 3YSZ 테이프(512')는 부분적으로 소결되며, 약 0.65의 상대 밀도를 갖는다. 3YSZ 테이프(512')는 취급하기에 충분한 강도를 가지며, 가요성이고 약 40 마이크로미터 두께이다. 도 5에 도시된 바와 같이, 수 미터의 소결 테이프(512')는 지지 플라스틱 캐리어 필름(518) 상에 재배향된다.
본 출원인은 결합제 연소 위치(B")가 폴리비닐 부티랄(PVB) 결합제에 대해 약 200 내지 600 ℃ 범위의 온도에 있어야 함을 발견하였다. 본 출원인은 결합제 연소 위치(B")가 너무 짧으면, 과도한 속도로 결합제가 제거될 수 있어서 테이프(512)의 제어되지 않은 결합제 제거 및 파괴를 유발할 수 있기 때문에, 이 결합제 연소 위치(B")의 충분한 길이는 노 시스템(516)을 통한 높은 테이프 속도를 또한 허용할 수 있다는 것을 발견하였다. 추가로, 본 출원인은 결합제 연소 위치(B")의 길이가 테이프(512)가 성공적으로 소결될 수 있는 속도에 관련한다는 것을 발견하였다. 예시적인 실시예에 따르면, 결합제 연소 위치(B")의 길이는 적어도 2 인치 및/또는 50 인치 이하, 예컨대 적어도 4 인치 및/또는 20 인치 이하이다. 다른 고려되는 실시예에서, 결합제 연소 위치(B")는 전술한 범위를 벗어나는 길이를 가질 수 있다.
도 5를 계속 참조하면, 다른 예에서, 이번에는 알루미나 그린 세라믹인 테이프(512)가 제조되고 구성(510)을 사용하여 소성가공(fired)되었다. 테이프를 캐스팅하는 공정(512)은 배치처리, 밀링, 탈기(또는 공기제거), 여과 및 테이프 제조의 단계를 포함한다. 배치처리를 위해, 알루미나 분말에 결합제, 분산제, 가소제, 소포제를 포함하는 수성 테이프 캐스팅 성분이 혼합된다. 사용된 성분은 수용성인 아크릴계 결합제를 포함하여 Polymer Innovations에서 생산되었다.
밀링을 위해, 배치처리된 재료가 예로서 볼 밀링, 고 전단 혼합, 마모 밀링, 진동 밀링, 롤러 밀링 및 이와 유사한 방법에 의해 밀 내에서 밀링 및 혼합되었다. 밀링 단계는 입자를 응집해제하여 균일하고 잘 분산된 슬러리를 생성한다. 일부 실시예에서, 본 출원인은 Union Process로부터의 마모 밀(교반 볼 밀이라고도 지칭됨)은 알루미나 분말의 응집체 또는 나노 응집체를 분해함으로써 응집해제를 용이하게 할 수 있음을 발견했다. 본 출원인은 마모 밀은 밀링 공정 중에 재료에 대한 높은 에너지 투입으로 인해 다른 밀링 공정 및 장비에 비해 유익하다고 믿고 있으며, 이는 예로서 다른 기술에 비해 짧은 시간 기간, 예로서, 볼 밀링의 50 내지 100 시간에 대해 1 내지 3 시간 내에 더 작은 입자 크기로 배치가 밀링될 수 있게 한다.
사용되는 하나의 Union Process 마모 밀은 750 밀리리터(mL)의 총 체적과 250 mL의 작업 체적/용량을 가진다. 탱크에 130 mL의 슬러리 및 740 그램의 2 mm 99.9 % 순수 알루미나 매체(즉, 연삭 매체)를 로딩하였다. 탱크는 과열을 피하고 용매(들)의 증발을 감소시키기 위해 밀링 공정 동안 15 ℃까지 수냉되었다. 슬러리가 초기에 500 rpm(분당 회전 수)으로 5 분 동안 밀링되어 큰 응집체를 분쇄한 다음, 속도가 1300 rpm으로 증가되고 1 시간 동안 밀링되었다. 밀링의 종료시, 탱크가 170 rpm으로 감속되었고, 소포제를 추가하여 포획된 공기를 제거하였다. 그후 슬러리가 80 내지 120 메시 스크린을 통해 부어져서 탈기 이전에 슬러리로부터 밀링 매체를 제거하였다.
예컨대 밀링 후에 탈기를 위해, 본 출원인은 밀링된 매체가 슬러리로부터 변형될 수 있고, 슬러리는 다른 경우에는 혼합물 내에 기포를 포함할 수 있는 밀링된 제품으로부터 포획된 공기를 제거하기 위해 진공을 사용하여 공기제거/탈기될 수 있다. 탈기는 건조제 챔버, 그리고, 그후, Mazerustar 진공 플래너터리 혼합기로 달성될 수 있다. 슬러리를 건조제 챔버에 로딩하고 최대 10 분 동안 탈기할 수 있다. 초기 탈기 후, 슬러리가 플레네터리 혼합기에 로딩되고 5 분 동안 진공하에 동작시킬 수 있다. 본 출원인은 Mazerustar 믹서를 제거한 대안적인 탈기 절차는 건조제 챔버에서 보다 높은 진공을 사용하는 것임을 발견했다.
여과를 위해, 슬러리를 여과하여 혼합물로부터 임의의 대규모 오염물을 제거하였다. 이런 오염물은 다른 경우에 예로서, 소결된 재료에서 불리한 광학 특성을 나타낼 수 있다. 여과는 50 마이크로미터, 25 마이크로미터, 10 마이크로미터 또는 1 마이크로미터 필터로 달성될 수 있다. 이런 필터는 예로서, 나일론, 섬유 또는 다른 적절한 재료로 제조될 수 있다.
테이프 제조 단계를 위해, 샘플은 약 50 내지 150 마이크로미터 두께의 실리콘 코팅된 마일라(Mylar®) 필름 상에 캐스팅되었다. 출원인은 실리콘 코팅이 건조 후 테이프 재료의 용이한 박리를 제공한다는 것을 발견하였다. 테이프(512)를 위한 다른 적합한 필름은 예로서 Teflon®, 유리, 금속 벨트 및 유사한 대안적 재료일 수 있다. 테이프 제조를 용이하게 하기 위해, 슬러리를 약 4 내지 20 밀(약 100 내지 500 마이크로미터)의 간극을 갖는 닥터 블레이드 아래로 통과시켜 세라믹 테이프의 얇은 시트를 형성하였다. 통상적으로 8 밀(약 200 마이크로미터) 블레이드 높이가 사용되었다. 캐스팅 블레이드는 10 mm/sec의 속도로 Mylar®를 가로질러 이동되었다. 속도는 가공 속도를 증가시키 위해 그리고 테이프(512)의 두께를 변경하기 위해 필요에 따라 변경될 수 있다. 건조 후, 테이프의 두께는 100 내지 150 마이크로미터였다. 이 상태의 테이프(512)는 "그린 테이프"라고 지칭된다.
도 5를 계속 참조하면, 1.2 미터 길이 x 120 마이크로미터 두께 및 1.2 센티미터 폭의 테이프(512)를 앞서 설명된 그린 캐스팅으로부터 절단하여 박리하였다. 테이프(512)는 원통형 롤러(514) 상에 권취되었다. 테이프(512)는 그후 도 5에 도시된 바와 같이 노 시스템(516) 내로 분당 1 인치의 제어된 속도로 급송되었다. 테이프(512)는 결합제 연소 동안 그 자체 중량 하에 함께 유지하기에 충분한 강도를 갖는다. 노 시스템(516)의 소결 위치(C")는 1100 ℃의 온도로 유지되었다. 노 시스템(516)의 출구에서, 약 0.7의 상대 밀도를 갖는 알루미나 테이프(512')가 부분적으로 소결되었다. 테이프(512')의 소성가공된 두께는 약 100 마이크로미터였다.
도 6a 및 도 6b를 참조하면, 본 명세서에 개시된 본 발명의 공정 및 본 명세서에 개시된 본 발명의 장비에 따라 제조된 재료는 통상적인 공정에 따라 제조된 재료와 구별될 수 있다. 예시적인 실시예에 따르면, 소결된 물품(610)(예로서, 시트, 포일)은 제1 표면(612)(예로서, 상단, 측면)과 제1 표면(612)에 대향할 수 있는 제2 표면(614)(예로서, 저부)을 포함한다. 소결된 물품은 제1 및 제2 표면(612, 614) 사이에서 연장되는 재료의 본체(616)를 더 포함한다.
물품(610)의 두께(T)는 제1 및 제2 표면(612, 614) 사이의 거리로서 정의될 수 있다. 물품(610)의 폭(일반적으로 도 8의 소결된 시트(810)의 폭(W) 참조)은 두께(T)에 직교하는 제1 또는 제2 표면(612, 614) 중 하나의 제1 치수로서 정의될 수 있다. 물품(610)(일반적으로 도 8의 소결된 시트(810)의 폭(L) 참조)의 길이는 두께(T) 및 폭 모두에 직교하는 제1 또는 제2 표면(612, 614) 중 하나의 제2 치수로서 정의될 수 있다. 예시적인 실시예에 따르면, 소결된 물품(610)은 소결된 재료의 세장형의 얇은 테이프이다. 기하형상에 적어도 부분적으로 기인하여, 일부 이런 실시예는 유연성이 있어 물품(610)이 맨드릴 또는 스풀(예로서, 1 미터 또는 그 이하의 직경, 0.7 미터 또는 그 이하의 직경) 둘레에 굴곡될 수 있게 하고, 이는 제조, 저장 등에 유익할 수 있다. 다른 실시예에서, 소결된 물품(610)은 원형, 고리형, 슬리브형 또는 튜브형, 일정한 두께를 가지지 않는 형상 등의 형상일 수 있다.
예시적인 실시예에 따르면, 물품(610)의 길이는 물품(610)의 폭의 2 배보다 크고, 예컨대 적어도 5 배, 적어도 10 배, 적어도 100 배 더 클 수 있다. 일부 실시예에서, 물품(610)의 폭은 본체의 두께(T)의 2 배 보다 크고, 예컨대 적어도 5 배, 적어도 10 배, 적어도 100 배 더 클 수 있다. 일부 실시예에서, 물품(610)의 폭은 적어도 5 밀리미터, 예컨대 적어도 10 mm, 예컨대 적어도 50 mm이다. 일부 실시예에서, 물품(610)의 두께(T)는 2 센티미터 이하, 예컨대 5 밀리미터 이하, 예컨대 2 밀리미터 이하, 예컨대 1 밀리미터 이하, 예컨대 500 마이크로미터 이하, 예컨대 200 마이크로미터 이하이다. 예시적인 실시예에 따르면, 그린 테이프가 노(furnace) 내로 통과되고 소결이 허용될 때, 소결은 거의 균일하게 발생하며; 시트의 길이, 폭 및 두께는 약 30 %까지 감소할 수 있다. 이와 같이, 본원에 개시된 그린 테이프의 치수는 전술한 소결된 물품에 대해 설명된 것 보다 30 % 더 클 수 있다. 얇은 테이프는 노로부터의 열이 그러한 테이프에 신속하게 침투하여 이를 소결할 수 있기 때문에 제조 라인이 신속하게 동작할 수 있게 한다. 추가로, 얇은 테이프는 가요성일 수 있으며, 제조 라인을 따라 굴곡 및 방향 변경을 용이하게 할 수 있다(예로서 일반적으로 도 11 참조).
예시적인 실시예에 따르면, 소결된 물품(610)은 도 6a의 디지털 이미지에 도시되고 도 6b의 측면도에 개념적으로 도시된 바와 같이, 제1 및 제2 표면(612, 614) 중 어느 하나 또는 모두는 현미경으로 볼 때와 같은 과립형 프로파일을 갖도록 실질적으로 연마되지 않는다. 과립형 프로파일은 그레인(618) 사이의 경계(620)에서 표면의 오목형 부분에 대해 적어도 25 나노미터 및/또는 100 마이크로미터 이하의 높이(H)(예로서, 평균 높이), 예컨대 적어도 50 나노미터 및/또는 80 마이크로미터 이하의 높이(H)로 본체(616)로부터 대체로 외향 돌출하는 그레인(618)을 포함한다. 다른 실시예에서, 높이(H)는 다른 크기로 될 수 있다.
과립형 프로파일은, 부울(boule)로부터 절단되는 것과는 반대로, 물품(610)이 얇은 테이프로서 소결되고, 각각의 표면(612, 614)이 실질적으로 연마되지 않는다는 점에서 소결된 물품(610)을 제조하는 공정의 지표이다. 또한, 연마된 표면과 비교하여, 과립형 프로파일은 디스플레이의 백라이트 유닛에 대한 광의 산란, 코팅의 보다 큰 접착 또는 배양 성장을 위한 표면적의 증가와 같은 일부 용례에서 소결된 물품(610)에 장점을 제공할 수 있다. 고려된 실시예에서, 연마되지 않은 표면(612, 614)은 약 15 내지 약 800 나노미터와 같이 물품의 길이를 따라 하나의 차원에서 10 밀리미터의 거리에 걸쳐 약 10 내지 약 1000 나노미터의 거칠기를 갖는다. 고려된 실시예에서, 표면(612, 614) 중 하나 또는 둘 모두는 단일 축을 따라 1 cm의 거리에 걸쳐서 약 1 nm 내지 약 10 ㎛의 거칠기를 갖는다.
대조적으로, 소결된 물품(610)과 동일한 재료의 소결된 물품(710)은 연마된 표면(712, 714)을 포함하며, 여기서 그레인 경계는 일반적으로 연마로 인해 제거된다. 고려된 실시예에서, 본 명세서에 개시된 공정에 따라 제조된 소결된 물품(610)은 도 7a 내지 도 7b에 도시된 바와 같이 예로서, 물품의 특정 의도된 용도에 따라 연마될 수 있다. 예로서, 기판으로서의 물품(610)의 사용은 극도로 매끄러운 표면을 필요로 하지 않을 수 있으며, 도 6a 내지 도 6b의 연마되지 않은 표면으로 충분할 수 있는 반면; 거울 또는 렌즈로서의 물품의 사용은 도 7a 내지 도 7b에 도시된 바와 같이 연마를 필요로 할 수 있다. 그러나, 본 명세서에 개시된 바와 같이, 연마는 특히 얇은 물품 또는 큰 표면적을 갖는 얇은 물품에 대해 어려울 수 있다.
본 출원인은 도 6a 내지 도 6b의 물품과는 대조적으로, 부울로부터 절단된 소결된 세라믹 또는 다른 재료의 시트가 표면 상에 존재하는 쉽게 식별 가능한 그레인 경계를 가지지 않을 수 있다고 믿는다. 추가로, 본 출원인은 부울 절단된 물품이 통상적으로 절단으로부터 거친 표면을 교정하기 위해 연마될 수 있다고 믿고 있다. 그러나, 본원 출원인은 소결된 세라믹 또는 다른 재료의 매우 얇은 물품에 대해서는 표면 연마가 특히 어려울 수 있거나 성가시며, 그러한 물품이 더 얇아지고 그러한 물품의 표면적이 더 커질수록 어려움의 정도가 증가하는 것으로 믿고 있다. 그러나, 본 기술에 따라 제조된 물품은 긴 길이의 테이프로 연속적으로 제조될 수 있기 때문에, 현재 개시된 기술에 따라 제조된 소결된 물품은 이런 한계에 의한 제약이 적다. 또한, 본 명세서에 개시된 바와 같은 노 시스템의 치수는 적어도 2 센티미터, 적어도 5 센티미터, 적어도 10 센티미터, 적어도 50 센티미터의 폭을 갖는 것과 같이 보다 넓은 물품을 수용하고 소결하도록 스케일링될 수 있다.
예시적인 실시예에 따르면, 소결된 물품(610)은 과립형 프로파일을 가지며 그 표면(612, 614) 상에 일관된 표면 품질을 가지며, 이는 하나의 측면은 새터 보드로부터의 접촉(예로서, 접착 및/또는 마모)에 의해 통상적으로 마킹되는 반면 다른 측면은 세터 보드에 노출되지 않을 수 있는 배경기술에서 설명된 바와 같이 세터 보드를 사용하여 제조된 물품과 매우 다를 수 있다. 소결된 물품(610)이 시트 또는 테이프의 형태인 경우(도 8에 도시된 바와 같이 일반적으로 시트(810) 참조)와 같은 일부 실시예에서, 표면 일관성은 제1 표면의 제곱 센티미터 당 표면 결함의 평균 면적이 제2 표면의 제곱 센티미터 당 표면 결함의 평균 면적의 ± 50 % 이내, 예컨대, 제2 표면의 제곱 센티미터 당 표면 결함의 평균 면적의 ± 30 % 이내, 예컨대, 제2 표면의 제곱 센티미터 당 표면 결함의 평균 면적의 ± 20 % 이내이도록 이루어지고, 여기서 "표면 결함"은 도 1 및 도 2에 도시된 바와 같이 적어도 15, 10 및/또는 5 마이크로미터의 각각의 표면을 따른 치수를 갖는 마모 및/또는 접착부이다.
예시적인 실시예에 따르면, 소결된 물품(610)은 높은 표면 품질을 가지며, 이는 세터 보드로부터의 접착 및/또는 마모가 표면 품질을 저하시킬 수 있는, 배경기술에서 설명된 바와 같은 세터 보드를 사용하여 제조된 물품과는 역시 매우 상이할 수 있다. 소결된 물품(610)이 시트 또는 테이프(일반적으로 도 8에 도시된 바와 같은 시트(810) 참조)의 형태인 경우와 같은 일부 실시예에서, 표면 품질은 제곱 센티미터 당 평균으로 제1 및 제2 표면 모두가 15, 10, 및/또는 5 마이크로미터 보다 큰 치수를 갖는 15, 10 및/또는 5 보다 적은 표면 결함, 예컨대 제곱 센티미터 당 평균으로 3 미만의 이런 결함, 예컨대, 제곱 센티미터 당 평균으로 1 미만의 이런 결함을 갖도록 이루어진다. 따라서, 본 명세서에 개시된 본 발명의 기술에 따라 제조된 소결된 물품은 비교적 높고 일관된 표면 품질을 가질 수 있다. 본 출원인은 소결된 물품(610)의 높고 일관된 표면 품질이 응력 집중 및/또는 균열 개시에 대한 부위를 감소시킴으로써 물품(610)의 강도 증가를 용이하게 한다고 믿는다.
예시적인 실시예에 따르면, 물품(610) 및 그린 테이프의 그레인의 대응하는 재료는 다결정 세라믹을 포함한다. 예시적 실시예에 따르면, 물품(610)은 지르코니아, 알루미나, 스피넬(예로서, MgAl2O4, ZnAl2O4, FeAl2O4, MnAl2O4, CuFe2O4, MgFe2O4, FeCr2O4), 가넷, 코디어라이트, 뮬라이트, 페로브스카이트, 파이로클로어, 탄화 규소, 질화 규소, 탄화 붕소, 이붕화 티타늄, 실리콘 알루미나 니트라이드 및/또는 알루미늄 옥시니트라이드를 포함할 수 있다(예를 들어, 이들이거나, 이들을 필수 구성요소로 하여 구성되거나, 이들을 적어도 50 중량 % 포함함). 일부 실시예에서, 물품(610)은 금속이다. 다른 실시예에서, 물품(610)은 분말 그레인으로부터 소결된 유리이다. 일부 실시예에서, 물품(610)은 IX 유리 및/또는 유리-세라믹이다. 본 명세서에 개시된 재료는 합성물일 수 있다.
이제 도 8을 참조하면, 일부 실시예에서, 소결된 물품은 본 명세서에 개시된 재료의 시트(810)(예로서, 소결된 테이프)의 형태이다. 시트(810)는 그 반대쪽에 다른 표면을 갖는 표면(814)(예로서, 상단 또는 저부) 및 두 개의 표면(814)(일반적으로 도 6a 및 도 6b의 물품(610)의 측면(612, 614) 및 본체(616) 참조) 사이에서 연장되는 본체를 포함한다. 예시적인 실시예에 따르면, 시트(810)의 폭(W)은 두께(T')에 직교하는 표면(814) 중 하나의 제1 치수로서 정의된다. 예시적인 실시예에 따르면, 시트(810)는 적어도 2개의 대체로 수직인 길이방향 측면 에지(812)를 갖는다. 시트(810)의 길이(L)는 두께(T')와 폭(W) 모두에 직교하는 상단 또는 저부 표면(814) 중 하나의 제2 치수로서 정의된다. 길이(L)는 폭(W) 보다 크거나 동일할 수 있다. 폭(W)은 두께(T')보다 크거나 동일할 수 있다.
예시적인 실시예에 따르면, 두께(T')는 500 마이크로미터 이하, 예컨대 250 마이크로미터 이하, 예컨대 100 마이크로미터 이하 및/또는 적어도 20 나노미터이다. 예시적인 실시예에 따르면, 시트(810)는 적어도 10 제곱 센티미터, 예로서 적어도 30 제곱 센티미터, 예컨대 적어도 100 제곱 센티미터, 심지어 1000, 5000을 초과하거나 또는 일부 실시예에서는 심지어 10,000 제곱 센티미터인 표면적을 가지거나; 예컨대, 물품(610)의 실시예와 관련하여 본 명세서에 개시된 기하형상에 따라 다른 방식으로 크기가 정해진다. 일부 실시예에서, 시트(810)는 그 길이(L)의 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10 및/또는 1/20 보다 작은 폭(W)을 갖는다. 이런 기하형상은 직선형 배터리의 기판으로서 시트(810)의 사용 및/또는 오븐에서 탄소 나노튜브를 성장시키기 위한 표면으로서 시트(810)의 사용과 같은 특정 용도에 특히 유용할 수 있으며, 시트(810)는 오븐의 표면을 채우지만 오븐의 상당한 체적을 채우지는 못한다.
예시적인 실시예에 따르면, 시트(810)는 다결정 세라믹 및 합성 미네랄로 이루어진 그룹으로부터 선택된 재료를 포함한다(예로서, 그로부터 형성되거나, 구성되거나, 필수 구성요소로 하여 구성되거나, 50 체적%를 초과하여 포함한다). 다른 실시예에서, 시트(810)는 본 명세서에 개시된 바와 같이 유리, 금속 또는 다른 재료를 포함한다. 또한, 예시적인 실시예에 따르면, 시트(810)의 재료는 재료의 그레인이 서로 융합되도록 소결된 형태이다(일반적으로 도 6a 참조). 시트(810)는 과립형 프로파일(일반적으로 도 6a 내지 도 6b 참조)을 가질 수 있거나 연마될 수 있다(일반적으로 도 7a 내지 도 7b 참조).
예로서, 일부 실시예에서, 시트(810)는 50 내지 1000 나노미터의 중간 입자 크기 직경 및 2 내지 30 m2/g의 BET 표면적을 갖는 알루미나 분말로 제조된다. 시트(810)는 99.5 내지 99.995 중량 %의 알루미나 및 약 100 내지 약 1000 ppm(parts per million)의 소결 첨가제, 예컨대 산화 마그네슘의 테이프-캐스팅된 알루미나 분말로 제조된다. 일부 실시예에서, 시트(810)는 반투명하다. 시트(810)가 500 ㎛ 이하의 두께를 가질 때 시트(810)는 약 300 nm 내지 약 800 nm의 파장에서 적어도 30 %의 전체 투과율을 가질 수 있다. 일부 실시예에서, 시트(810)를 통한 총 투과는 시트(810)가 500 ㎛ 이하의 두께를 가질 때 약 300 nm 내지 약 800 nm의 파장에서 약 50 % 내지 약 85 %이다. 일부 실시예에서, 시트를 통한 확산 투과는 시트(810)가 500 ㎛ 이하의 두께를 가질 때 약 300 nm 내지 약 800 nm의 파장에서 약 10 % 내지 약 60 %이다. 고려된 실시예에서, 시트(810)는 전술한 범위의 파장에서, 그러나, 본 명세서에 개시된 다른 두께와 같은 다른 두께에서 전술한 투과 백분율을 가질 수 있다. 알루미나 이외의 본 명세서에 개시된 재료가 또한 이런 반투명 소결된 물품을 초래할 수 있다.
도 9를 참조하면, 제조 라인(910)은 그린 테이프(922)의 소스(912), 노 시스템(914), 인장 조정기(916, 918) 및 소결된 테이프(924)의 수용기(920)를 포함한다. 예시적인 실시예에 따르면, 그린 테이프(922)의 소스(912)는 별도로 제조될 수 있는 그린 테이프(922)의 롤 형태일 수 있다. 소스(912)로부터, 그린 테이프(922)는 예컨대 안내 통로(928)를 통해 노 시스템(914)의 제1 부분(926)으로 안내된다. 도 9에 도시된 바와 같이, 일부 실시예에서, 그린 테이프(922)가 노 시스템(914)의 표면 및/또는 세터 보드와 접촉하지 않도록 노 시스템(914)을 통해 수직 축을 따라 그린 테이프(922)가 안내된다.
노 시스템(914)의 제1 부분(926)은 결합제 연소 위치(도 3의 제조 라인의 위치 B를 일반적으로 참조) 및 테이프(912)의 부분적인 소결을 위한 위치(도 3의 제조 라인의 위치(C)를 일반적으로 참조)를 포함할 수 있다. 따라서, 제1 시스템(914)의 제1 부분(926)을 빠져나오는 테이프(932)는 부분적으로 소결될 수 있다. 노 시스템(914)의 제1 부분(926)을 통한 테이프(922)의 인장은 제조 라인(910)을 따라 인장 조정기(916)의 각 측면상의 테이프(922, 932, 924)의 인장을 차별화할 수 있는 인장 조정기(916)에 의해 영향을 받을 수 있다. 도 9에 도시된 바와 같이, 인장 조정기(916) 아래에서 노 시스템(914)은 제2 부분(930)을 포함한다.
예시적인 실시예에 따르면, 인장 조정기(916, 918) 사이의 테이프(932, 924)의 인장은 인장 조정기(916, 918) 사이가 아닌 테이프(922, 932, 924)의 인장 보다 클 수 있다. 일부 실시예에서, 인장 조정기(916, 918) 사이의 증가된 인장은 테이프(932)가 노 시스템(914)의 제2 부분(930)에서 소결됨에 따라 테이프(932)를 평탄하게 유지하기 위해 사용될 수 있다. 예로서, 부분적으로 소결된 테이프(932)는 인장 조정기(932, 918) 사이의 테이프(932)의 인장에 의해 굴곡 및/또는 평탄화되기에 충분하게 가요성일 수 있지만, 부분적 소결의 결합으로 인해 부분적으로 소결된 테이프(932) 파괴없이 인장을 지탱하기에 충분히 강인할 수 있다. 달리 말하면, 노 시스템(914)의 제2 부분(930)에서, 부분적으로 소결된 테이프(932)는 최종 밀도로 소결되고 시트, 테이프 또는 리본을 평탄화하기에 충분한 인장하에 유지되어, 구속없는 소결에서 나타날 수 있는 말림, 휨, 캠버(camber) 등을 제거한다. 예로서, 출원인은 지르코니아 또는 알루미나의 1 cm 폭의 부분적으로 소결된 리본이 파괴없이 1 kg, 약 20 메가파스칼 보다 큰 인장을 지탱할 수 있음을 발견했다.
따라서, 도 8을 다시 참조하면, 고려된 실시예에서, 시트(810)의 변형되지 않은 표면은 예컨대 시트(810)의 길이를 따라 단일 축을 따라 1 cm의 거리에 걸쳐서 약 0.1 ㎛ 내지 약 50 ㎛의 평탄도를 갖는다. 본 명세서에 개시된 재료의 표면 품질, 표면 균일성, 넓은 면적, 얇은 두께 및/또는 재료 특성과 결합된 이런 평탄도는 시트, 기판, 소결된 테이프, 물품 등이 다양한 용도, 예컨대, 디스플레이의 터치 커버 시트, 고온 기판, 가요성 세퍼레이터 및 다른 용례에 특히 유용할 수 있게 할 수 있다.
압력 하중 하에서 크립 또는 이완에 대한 가넷의 제한된 능력으로 인해, 가넷은 가넷이 제조된 후 재성형되기 어려울 수 있다. 따라서, 가넷은 종래의 공정에 따라 얇고 평탄하게 제조하기 어려울 수 있다. 이를 위해, 본 기술 분야의 숙련자는 통상적으로 평탄한 내화물 표면 사이에 그린 바디를 끼워넣어왔으며, 이는 통상적으로 소결된 물품의 양 측면 상에 많은 표면 결함을 초래한다. 따라서, 현재 개시된 기술은 본 명세서에 개시된 바와 같은 합성 가넷의 얇은 시트를 제조할 때 특히 유용하다고 믿어진다.
도 10을 참조하면, 도 9의 제조 라인(910)과 유사한 제조 라인(1010)은 그린 테이프(1022)의 소스(1012), 두 개의 분리된 부분(1026, 1030)을 갖는 노 시스템(1014), 인장 조정기(1016, 1018) 및 소결된 테이프(1024)의 수용기(1020)를 포함한다. 그러나, 제조 라인(1010)에서, 그린 테이프는 라인(1010) 상에 연속적으로 제조된다. 추가로, 소결된 테이프(1024)는 소결된 테이프(1024)가 노 시스템(1014)의 제2 부분(1030)으로부터 빠져나올 때 스트립(1032)(예로서, 적어도 5 센티미터 길이, 적어도 10 센티미터 길이, 및/또는 5미터 이하 길이, 3 미터 이하 길이)으로 절단된다. 이어서, 스트립(1032)은 적층, 포장 및 운송될 수 있다.
도 11을 참고하면, 제조 라인(1110)은 테이프의 소스(1112)(예로서, 그린 테이프)를 포함한다. 소스는 테이프(1112)의 스풀(1114)의 형태이고, 테이프(1112)는 처음에 마일라와 같은 폴리머 백킹(1116) 상에 존재한다. 테이프(1112)가 스풀(1114)로부터 대체로 수평으로(예로서, 수평의 30도 이내, 수평의 10도 이내) 풀려질 때, 중합체 백킹(1116)은 분리 위치(1118)에서 테이프(1112)로부터 당겨지고 분리된 스풀(1120) 상에 권취된다. 그 다음, 테이프(1112)는 에어 베어링(1122) 위를 통과하고 제어된 양의 처짐(sag)으로 점차적으로 전향되어 제1 안내부(1124)로 향하게되며, 제1 안내부는 테이프(1112)를 대체로 수직 방향(예로서 수직 방향의 30도 이내, 수직 방향의 10도 이내)으로 배향한다.
제1 안내부(1124)에 이어서, 그린 형태의 테이프(1112)는 제1 노(1126)(일반적으로 도 4에 도시된 바와 같은 노(410) 참조)로 상향 이동한다. 일부 실시예에서, 제1 노(1126)는 테이프(1112)의 비결합 섹션을 형성하도록 테이프(1112)로부터 유기 결합제를 태우거나 연소시키는 저온 노이다. 또한, 제1 노(1126)는 테이프(1112)의 결과적으로 비결합 섹션을 부분적으로 소결하여, 테이프(1112)의 부분적으로 소결된 섹션(1128)을 형성할 수 있다. 제1 노를 통과한 후에, 테이프(1112)는 제2 안내부(1130)를 통해 안내될 수 있다. 제1 및 제2 안내부(1124, 1130)는 테이프(1112)가 제1 노(1126)의 표면과 접촉하지 않도록 테이프(1112)를 제1 노(1126)를 통과하는 통로와 정렬하여 접착 및 마모와 관련된 표면 결함의 수를 감소시킨다. 이런 테이프(1112)는 예컨대 떠도는 입자들 등과의 접촉으로 인해 몇몇 결함을 여전히 가질 수 있다.
예시적인 실시예에 따르면, 제2 안내부(1130) 다음에, 테이프의 부분적으로 소결된 섹션(1128)은 휠(1132) 위로 라우팅된다. 일부 실시예에서, 휠(1132)은 부분적으로 소결된 섹션(1128)이 그 위로 미끄러지는 저-마찰 표면(1134)을 갖는다. 휠(1132)과 부분적으로 소결된 섹션(1128) 사이의 온도 차이는 휠(1132)과 부분적으로 소결된 섹션(1128) 사이의 점착 또는 접착을 억제하는 것을 도울 수 있다. 예시적인 실시예에 따르면, 휠(1132)은 예컨대 휠(1132)의 어느 한 측면상의 테이프(1112)에 상이한 인장을 제공함으로써 테이프(1112)의 인장을 제어하도록 회전한다.
예로서, 몇몇 경우들에서, 휠(1132)은 테이프(1112)가 휠(1132) 위로 미끄러지는 방향(예로서 반시계 방향)에 거슬러 회전하고(예로서 시계 방향), 테이프(1112)가 그로부터 유입되는 휠(1132) 측의 테이프(1112)의 인장은 감소하고, 테이프(1112)가 진행하는 휠(1132)의 측부 상의 테이프(1112)의 인장은 증가하며, 증가된 인장은 테이프(1112) 수용 스풀(일반적으로 도 3 및 도 9 참조), 테이프(1112)를 견인하는 로봇 아암(일반적으로 도 10 참조), 롤러 등 같은 인장 조정기에 의해 테이프(1112)의 말단부에서 유지된다. 테이프(1112)가 제2, 가능하게는 더 높은 온도의 노(1136)를 통과할 때 테이프(1112)의 인장은 테이프(1112)가 완전히 소결됨에 따라 테이프(1112)를 평탄하게 유지한다.
다양한 예시적인 실시예들에 도시된 바와 같이 제조 라인, 장비 및 결과적인 소결된 물품들의 구성 및 배열은 단지 예시적인 것이다. 단지 몇몇 실시예가 본 개시내용에서 상세하게 설명되었지만, 본 명세서에 설명된 주제의 장점과 신규한 교시로부터 본질적으로 벗어나지 않고 다수의 변형예(예로서, 다양한 요소들의 크기, 치수, 구조, 형상 및 비율, 파라미터의 값, 장착 배열, 재료의 사용, 색상, 배향의 변화)가 가능하다. 일체로 형성된 것으로 도시된 일부 요소는 다수의 부분 또는 요소로 구성될 수 있고, 요소의 위치는 반대로 또는 다르게 변화될 수 있으며, 이산적인 요소 또는 위치의 성질 또는 수는 변경되거나 변화될 수 있다. 임의의 공정, 논리적 알고리즘 또는 방법 단계의 순서 또는 시퀀스는 대안적인 실시예에 따라 변경되거나 재배열될 수 있다. 본 발명 기술의 범위를 벗어나지 않으면서 다양한 예시적인 실시예의 설계, 동작 조건 및 배열에서 다른 대체, 수정, 변경 및 생략이 또한 이루어질 수 있다.
잠시 다시 도 6을 참조하면, 과립형 프로파일은 그레인(618) 사이의 경계부(620)에서 표면의 오목형 부분에 비해 적어도 5 나노미터, 예컨대 적어도 10 나노미터, 예컨대 적어도 20 나노미터, 예컨대 적어도 25 나노미터 및/또는 200 마이크로미터 이하, 예컨대 100 마이크로미터 이하, 80 마이크로미터 이하, 50 마이크로미터 이하의 높이(H)(예로서, 평균 높이)로 본체(616)로부터 대체로 외향 돌출하는 그레인(618)을 포함한다.
도 12를 참고하면, 부분 소결을 위한 제조 라인(1210)은 테이프의 소스(1212)(예로서, 그린 테이프)를 포함한다. 소스는 테이프(1212)의 스풀(1214)의 형태이고, 테이프(1212)는 처음에 마일라와 같은 폴리머 백킹(1216) 상에 존재한다. 이런 일부 실시예에서, 테이프(1212)는 스풀(1214)로부터 롤러(1244) 및 진공 허그 드럼(1242)을 통해 빠져 나오고, 그후 중합체 백킹(1216)은 분리 위치(1218)에서 테이프(1212)로부터 당겨지고 인장 디바이스(1240)에 의해 인장되어 롤러(1246) 위를 통과하여 별도의 스풀(1220) 상에 권취된다. 테이프(1212)(백킹(1216) 없음)는 노(1226)의 결합제 연소 섹션(B'") 내로 통과한다. 일부 이런 실시예에서, 테이프(1212)는 노(1226)와 접촉하지 않고 및/또는 대체로 수직으로 배향된 상태로 진입한다.
분리 위치(1218) 다음에, 그린 형태의 테이프(1212)는 노(1226) 내로 아래쪽으로 이동한다(또한 일반적으로 도 4에 도시된 바와 같은 노(410) 참조). 일부 실시예에서, 노(1226)의 결합제 연소 섹션(B'")은 테이프(1212)의 비결합 섹션을 형성하기 위해 테이프(1212)로부터 유기 결합제를 태우거나 연소시키는 저온 노이다. 노(1226)의 더 높은 온도의 부분(C'")은 또한 노(1226)의 외부로 통과하는 도 12에 도시된 테이프(1212)의 부분적으로 소결된 섹션(1228)을 형성하도록 테이프(1212)의 결과적인 비결합 섹션을 부분적으로 소결시킬 수 있다.
노(1226)를 통과한 후에, 테이프(1212)는 제2 안내부로서 작용하는 롤러(1252)를 가로질러 견인되도록 안내될 수 있다. 분리 위치(1218) 및 출구 롤러(1252)는 테이프(1212)가 노(1226)의 표면과 접촉하지 않도록 노(1226)를 통한 통로와 테이프(1212)를 정렬할 수 있으며, 그에 따라 접착 및 마모와 관련된 표면 결함의 수를 감소시킨다. 예시적인 실시예에 따르면, 노(1226)의 출구 또는 그 부근의 분리 위치(1218) 및 롤러(1252) 또는 다른 안내부는 대체로 서로 수직방향으로, 예컨대, 수직방향의 15도 이내, 예컨대, 10도 이내인 라인을 따라 대체로 수직방향으로 정렬된다.
본 출원인은 그러한 테이프(1212)가 여전히 떠도는 입자들, 공기 중의 입자들 등과의 접촉에 기인한 것 같은 약간의 결함들을 가질 수 있음을 인지하고 있다. 출구 롤러(1252)는 저 마찰 중합체 재료로 제조될 수 있다. 출구 롤러(1252)를 통과한 후에, 부분적으로 소결된 테이프는 수용 스풀(1250) 상에 권취될 수 있다.
예 1
부분적으로 소결된 지르코니아 테이프의 90 피트 길이의 테이프를 일반적으로 도 12에 도시된 바와 같은 장치로 제조하였다. 그린 테이프는 Tosho(일본) 지르코니아 분말 3YE를 사용하여 미국 특허 제8,894,920 B2호에 설명된 것과 유사한 방식으로 제조되었다. 그린 테이프는 약 20 cm 보다 큰 폭으로 캐스팅되었고 그린 테이프의 두께는 약 25 마이크로미터였다. 그후 테이프를 원형 레이저 블레이드(razor blade)를 사용하여 수동으로 약 15 mm 폭으로 절단하였다. 그린 테이프는 인출 스풀(일반적으로 도 12의 스풀(1214) 참조)로부터 분리 위치(도 12의 분리 위치(1218) 참조) 위로, 그리고, 결합제 연소 연도(chimney)(도 12의 노(1226)의 연소 섹션(B'") 참조)를 통해, 전이 구역(도 12의 구역(X'") 참조)를 통해, 고온 노(예로서, 도 12의 노(1226)의 섹션 C'")로 통과하였다.
도 12의 맥락에서 예 1을 참조하면, 분리 위치(1218)에서, 세라믹 테이프(1212)는 캐리어 필름(1216)으로부터 분리되어 있다. 캐리어 필름(1216)은 인장 디바이스(1240)를 통해 그리고 권취 스풀(1220) 상으로 이동하였다. 결합제 연소 구역(B'")은 노 섹션(C'")으로부터 고온 공기에 의해 수동적으로 가열되었다. 예 1에서 사용된 노 내의 채널 및 결합제 연소 연도는 판 사이에서 0.125 내지 0.5 인치의 간극(일반적으로 도 4의 L2 및 간극(414) 참조)을 갖는 평행 판들에서 세라믹 섬유 보드로부터 제조되었다. 간극에 직교하는 채널의 폭은 약 3.5 인치였다. 결합제 연소 구역의 길이는 약 17 인치였고 결합제 연소 구역 아래의 노의 길이는 24 인치였다.
출원인은 그린 테이프가 저온이든 고온이든 노 내로 스레딩될(threaded) 수 있다는 점을 인지한다. 고온 스레딩의 경우, 출원인은 3YSZ, 3mol % 이트리아 안정화 지르코니아, 정방정계 상 지르코니아 다결정 "TZP" 및/또는 유사한 소결 온도를 갖는 알루미나 또는 다른 세라믹을 소결 또는 부분 소결할 때, 노에 대해 1000 ℃부근의 온도 및 1 인치/분의 테이프 속도를 설정하였다. 고온 스레딩 후에 테이프가 노의 저부에서 나온 이후 온도가 증가되고 테이프의 속도가 빨라진다. 저온 스레딩의 경우, 본 출원인은 노를 통해 가열하는 동안 0.25 내지 1 인치/분의 저속으로 테이프를 이동(즉, 이송, 반송)할 것을 권장한다.
이 예 1에서는, 테이프가 고온 스레딩되고, 스레딩 후, 노를 1200 ℃로 가열 및 설정한 다음, 테이프를 8 인치/분의 속도로 노를 통해 이동시켰다. 결합제 연소 연도는 약 100 내지 400 ℃의 온도였다. 그린 테이프는 노를 통해 2.25 시간을 초과해 이송되었고, 부분적으로 소결된 테이프의 연속 길이 약 90 피트를 얻었다.
폭의 소결 수축은 약 9.5-10.5 %였다. 부분적으로 소결된 테이프는 3.25 인치 직경의 스풀상에 균열없이 롤링되었다.
예 2
부분적으로 소결된 지르코니아 테이프의 65 피트 길이가 도 12에 도시된 것과 유사한 장치로 제조되었으며, 그린 테이프는 역시 Tosho(일본) 지르코니아 분말 3YE를 사용하여 미국 특허 제8,894,920호에 기재된 것과 유사한 방식으로 제조되었다. 그린 테이프는 약 20 cm 보다 큰 폭으로 캐스팅되었다. 그린 테이프의 두께는 약 25 마이크로미터였다. 그후 그린 테이프를 원형 레이저 블레이드를 사용하여 수동으로 약 52 mm 폭으로 절단하였다.
다음으로, 그린 테이프는 인출 스풀로부터 분리 위치 위로 그리고 결합제 연소 연도를 통해, 전이 구역을 통해, 고온 능동 가열 노(예로서, 노(1226)) 내로 통과되었다. 결합제 연소 구역은 노로부터의 가열된 공기에 의해 수동적으로 가열되었다. 노 내의 채널 및 결합제 연소 연도는 판 사이에 1/8에서 1/2 인치 사이의 간극을 갖는 평행 판의 세라믹 섬유 보드로 (다시) 만들어졌다. 채널 폭은 약 3과 1/2 인치였다. 결합제 연소 구역의 길이는 약 17 인치이고 노의 길이는 24 인치였다.
이 예 2에서, 스레딩 후, 테이프를 2 인치/분의 속도로 그를 통해 이동시키면서 노가 1000 ℃, 1025 ℃, 1050 ℃, 1075 ℃ 및 1100 ℃로 가열되었다. 결합제 연소 연도는 약 100 내지 400 ℃의 온도였다. 테이프는 개별 노 온도에서 각 온도에 대해 약 1 시간 정도 동안 운전되었다. 노는 6.5 시간을 초과하여 동작되었고, 연속적으로 65 피트(그린)를 초과하는 부분적으로 소결된 테이프가 노를 통해 이동되었다.
테이프 폭을 가로지르는 소결 수축은 노 온도에 의존적이었으며, 다음 표 1에 열거된 바와 같다. 일부 평면외 변형이 발생했고 표에서 소결 수축의 변화는 부분적으로 테이프의 평면외 변형으로 인한 것이다.
52 mm 그린 테이프
온도 수축 %
1000℃ 2.08%
1000℃ 1.56%
1025℃ 2.34%
1050℃ 3.47%
1075℃ 4.28%
1100℃ 5.61%
예컨대, 본 명세서에 개시된 재료 및 시스템과 같은 본 명세서에 개시된 다양한 실시예에서, 고온 노의 온도는 적어도 800 ℃, 예컨대 적어도 1000 ℃이다. 그린 탭은 적어도 1 인치/분, 예컨대 적어도 2 인치/분으로 통과되었다. 노의 길이를 증가시킴으로써 비율을 높일 수 있다. 그것을 통과하는 그린 테이프의 수축은 적어도 1.5 %, 일부 실시예에서는 적어도 2 %, 및/또는 20 % 이하, 예로서 15 % 이하였다.
예 3
부분적으로 소결된 지르코니아 테이프의 약 60 피트 길이가 도 12에 도시된 것과 유사한 장치로 제조되었으며, 그린 테이프는 역시 Tosho(일본) 지르코니아 분말(3YE)을 사용하여 미국 특허 제8,894,920호에 기재된 것과 유사한 방식으로 제조되었다. 그린 테이프는 약 20 cm 보다 큰 폭으로 캐스팅되었다. 그린 테이프의 두께는 약 25 마이크로미터였다. 그후 테이프를 원형 레이저 블레이드(razor blade)를 사용하여 수동으로 약 35 mm 폭으로 절단하였다.
그린 테이프는 인출 스풀로부터 분리 위치 위로 그리고 결합제 연소 연도를 통해, 전이 구역을 통과하여 노 내로 통과되었다. 결합제 연소 구역은 노로부터의 가열된 공기에 의해 수동적으로 가열되었다. 노 내의 채널 및 결합제 연소 연도는 판 사이에서 1/8에서 1/2 인치 사이의 간극을 갖는 평행 판의 세라믹 섬유 보드로 만들어졌다. 채널 폭은 약 3과 1/2 인치였다. 결합제 연소 구역의 길이는 약 17 인치이고 노의 길이는 24 인치였다.
이 예 3에서, 스레딩 후, 테이프를 4 내지 6 인치/분의 속도로 이동시키면서 노가 1100 ℃, 1150 ℃ 및 1200 ℃로 가열되었다. 결합제 연소 연도는 약 100 ℃ 내지 400 ℃의 온도에 있었다. 각각의 온도 및 각각의 테이프 속도 조건에서 약 10 피트의 테이프가 파괴 없이 부분 소결 후 직경 3.25의 스풀에 스풀링되었다.
소결 수축을 측정하고 하기 표 2에 열거하였으며, 여기서, 일부 평면외 변형이 발생하고 표에서 소결 수축의 변화는 부분적으로 테이프의 평면외 변형에 기인한다.
온도(℃) 속도(in/min) 수축 백분율
35 mm 그린 폭
1100 4 5.05
1100 6 5.16
1150 4 8.09
1150 6 6.73
1200 4 12.01
1200 6 11.20
예 4
부분적으로 소결된 지르코니아 테이프의 175 피트 길이가 도 12에 도시된 장치로 제조되었다. 지르코니아 그린 테이프는 전술한 바와 같이 제조되었지만 테이프는 원형 레이저 블레이드를 사용하여 수동으로 약 15 mm 폭으로 절단되었다. 테이프는 인출 스풀로부터 분리 위치 위로 그리고 결합제 연소 연도를 통해, 전이 구역을 통과하여 노 내로 통과되었다. 1100 ℃ ~ 1200 ℃의 온도와 4, 6 또는 8 인치/분의 속도가 실행되었다. 결합제 연소 연도는 약 100 ℃~ 400 ℃의 온도였고 총 175 피트(그린)의 부분적으로 소결된 테이프가 제조되었다.
소결 수축을 측정하고 하기 표 3에 열거하였으며, 여기서, 일부 평면외 변형이 발생하고 표에서 소결 수축의 변화는 부분적으로 테이프의 평면외 변형에 기인한다. 테이프의 길이를 따라 1200 mm에 걸쳐 측정했을 때, 1200 ℃ 및 분당 8 인치에서 형성된 테이프는 테이프의 길이와 폭에 대한 평균 평면외 평탄도가 전체적으로 약 0.6 mm였다.
온도(℃) 속도 (IPM) 수축 백분율
15 mm 그린 폭
1100 4 5.38
1100 6 6.70
1100 8 5.07
1150 4 8.58
1150 6 8.16
1150 8 7.25
1200 4 11.89
1200 6 11.33
1200 8 10.07
예 5
부분적으로 소결된 지르코니아 테이프의 147 피트 길이가 도 12에 도시된 것과 유사한 장치로 제조되었다. 지르코니아 그린 테이프는 전술한 바와 같이 제조되었고 원형 레이저 블레이드를 사용하여 수동으로 약 15 mm로 절단되었다. 테이프는 스레딩 후에 노를 가열하여 1200 ℃로 설정하고 테이프를 8 인치/분의 속도로 이동시킨 것을 제외하고는 전술한 바와 같이 처리되었다. 결합제 연소 연도는 약 100 ℃ 내지 400 ℃의 온도였다. 그린 테이프는 3 시간에 걸쳐 노를 통해 이동되었고, 부분적으로 소결된 테이프의 147 피트를 초과한 연속 길이(그린)가 얻어졌다.
이제 도 13을 참조하면, 부분 소결을 위한 제조 라인(1310)은 부분적으로 소결된 테이프(1312)의 소스를 포함한다. 소스는 부분적으로 소결된 테이프(1312)의 스풀(1314) 형태이며, 테이프(1312)는 간삽 재료를 가질 수 있다. 테이프(1312)는 스풀(1314)에서 벗어나 롤러(1342) 위로 이동한다. 고온 재료의 플레이트(1346)는 노(1326)에서 좁은 채널을 형성한다.
그 다음, 테이프(1212)는 노(1326) 내로 통과하고, 테이프(1312)는 대체로 수직이며 및/또는 노와 접촉하지 않고 및/또는 그 중앙 부분을 따라 노와 접촉하지 않는다. 고려되는 실시예에서, 테이프의 에지는 노 내의 안내부 또는 표면과 접촉할 수 있지만, 본 명세서에 개시된 바와 같이 나중에 제거되어 테이프의 저-결함 중앙 부분을 제공할 수 있다. 이런 일부 실시예에서, 테이프의 길이방향 에지는 기계적 마크나 레이저와 같은 절단 표식을 포함한다.
노(1326)를 통과한 후, 최종 소결 테이프(1329)는 인장 디바이스(1340)를 가로질러 견인될 수 있다. 입력 롤러(1342) 및 인장 디바이스(1340)는 일부 실시예에서 테이프(1312)가 노(1326)의 표면과 접촉하지 않도록 노(1326)를 통해 채널과 대체로 선형으로 정렬되어, 본 명세서에 설명된 바와 같이 접착 및 마모관련 표면 결함의 횟수를 감소시킨다. 인장 디바이스(1340)를 통과한 후, 최종 소결 테이프는 2개의 롤러(1344) 위로 그리고 이송 디바이스(1360)(롤러, 베어링, 트레드)를 통과한다. 이송 디바이스(1360) 이후에, 최종 소결 테이프는 간삽 재료를 갖거나 갖지 않는 상태로 스풀링될 수 있다.
도 14에서, 부분 소결을 위한 제조 라인(1410)은 부분적으로 소결된 테이프(1412)의 소스를 포함한다. 소스는 부분적으로 소결된 테이프(1412)의 스풀(1414) 형태이며, 테이프(1412)는 간삽 재료를 가질 수 있다. 테이프(1412)가 스풀(1414)을 벗어남에 따라, 테이프(1212)는 그후 노(1426) 내로 통과하고, 테이프(1412)는 대체로 수직으로 배향된다. 텐셔너(예로서, 중량체(1460), 롤러)는 부분적으로 소결된 테이프에 부착되어 소결 동안 테이프를 견인하고 및/또는 테이프를 평탄하게 유지한다. 고려되는 실시예에서, 중량체(1460)는 테이프 자체의 길이일 수 있다.
놀랍게도, 전술한 바와 같이, 본 출원인은 결합제가 연소된 짧은 길이의 그린 테이프가, 테이프가 떨어지지 않는 상태로 약간의 인장을 지지할 수 있다는 것을 발견했다. 연소된 결합제가 있는, 그러나, 고온 노에 진입하기 이전의, 섹션의 인장 강도는 동일한 재료의 그리고 동일한 치수와 조성의 그린 테이프로 형성된 이상적인 완전 소결된 테이프의 인장 강도의 단지 일부이며, 예컨대 20 % 미만, 예컨대 10 % 미만, 예컨대 5 % 미만이지만, 여전히 양의 값, 예컨대 적어도 0.05 %이다.
예 6
예 1에 설명된 바와 같이 15 mm(그린) 폭의 부분적으로 소결된 테이프를 제조하였다. 그후 도 13에 도시된 시스템(1310)(예로서, 제2 노, 제2 소결 위치)과 유사한 장치 상에 약 25 ㎛ 두께(그린)의 15 mm 폭(그린)의 이 부분적으로 소결된 테이프의 롤이 배치되었다. 세라믹 판(1346)은 탄화 규소로 만들어졌다. 판 사이의 간극은 2 내지 8 mm이고 판의 폭은 4 인치였다. 노의 외부 치수는 21 인치 길이였다. 노는 1400 ℃(예로서, 예 1의 노 보다 적어도 100 ℃ 더 높은 온도, 예컨대 적어도 200 ℃ 더 높은 온도, 400 ℃ 더 높은 온도)로 가열되었다.
예 6에서, 부분적으로 소결된 테이프(예 1)는 1 피트/분 초과의 속도로 1400 ℃의 노에 수동으로 신속하게 스레딩되었다. 스풀(1314)로부터 충분한 테이프가 제공되고, 테이프(1312)는 인장 디바이스(1340) 둘레에, 2개의 롤러(1344)를 통해 그리고 이송 디바이스(1360)를 통해 권취되었다.
스레딩 후에, 테이프는 분당 2 인치의 속도로 이동하였다. 인장 디바이스(1340)에 의해 50g 미만의 인장이 소결 테이프에 가해졌다. 약 9 인치의 조밀한 최종적인 소결 테이프가 제조되었다(예로서, 도 17 내지 도 22의 완전 소결된 테이프(2010) 참조). 테이프가 반투명한 경우, 텍스트가 테이프와 접촉하여 배치되면 텍스트가 테이프를 통해 판독될 수 있다(도 17 내지 도 18의 완전히 소결된 테이프(2010) 참조, 도 17 내지 도 18의 부분적으로 소결된 테이프(2012)와 비교). 테이프는 광산란으로부터, 가능하게는, 약간의 공극(예로서, 0.5 % 미만 및/또는 적어도 0.1 %와 같은 1 % 미만의 공극)으로부터 약간의 백색 헤이즈를 나타냈다.
테이프 횡단 수축은 약 24 %였다. 동일한 유형의 테이프 캐스팅의 배치 소성가공 재료는 약 23 % +/- 약 0.5 %의 소결 수축을 가진다. 이 실험에 사용된 부분적으로 소결된 테이프는 평면외 변형이 있었지만, 최종 소결 후에 테이프는 테이프 운동 방향으로 평탄했다. 웨브(테이프) 횡단 방향으로 약간의 "C 형상" 말림이 존재하였다. 완전히 소결된 테이프의 1 cm x 1 cm의 영역을 100 배 배율의 광학 현미경으로 조사하였다. 최종 소결된 테이프의 양면이 검사되었다. 세터 보드의 전형적인 접착이나 마모 결함이 발견되지 않았다.
도 15에서 알 수 있는 바와 같이, 최종 소결된 테이프는 약 2.5 cm 미만의 반경으로 굴곡될 수 있다.
예 7
도 14에 도시된 것과 유사한 제2-스테이지 소결 장치가 사용되었다. 노는 단지 약 4 인치 높이였으며 2 인치 핫 존을 갖는다. 예 3에 대해 설명된 것과 유사한 방식으로 제조된 30 mm 폭(그린)의 부분적으로 소결된 테이프가 사용되었다. 부분적 소결 전에, 테이프는 약 25 마이크로미터 두께였다. 테이프가 통과할 수 있도록 부분적으로 소결된 테이프의 스풀이 노 위에 배치되었고 노는 상단 및 저부 노 단열부에서 3/16 인치 및 3.5 인치 폭의 좁은 간극을 갖는다. 테이프를 간극을 통해 저온 스레딩하고 7.5 그램의 중량체가 부착되었다(일반적으로 도 14 참조). 노는 1450 ℃로 가열되었고, 노가 1450 ℃를 달성할 때 테이프 운동이 시작되었다. 테이프는 분당 0.5 인치의 속도로 상단으로부터 저부로 이동되었다. 약 18 인치의 완전히 소결된 소결 지르코니아 테이프가 제조되었다. 지르코니아 테이프는 반투명했다. 예 7에서, 4 인치 노에서, 테이프 및 그 완전히 소결된 부분은 노 보다 길었다.
도 15 내지 도 16에서, 맥락상, 그리고, 비교 목적상, 그린 테이프(3 몰 %의 이트리아 안정화 지르코니아)를 전술한 예에서 설명된 바와 같이 제조하고, 소결 동안 그린 테이프를 지지하기 위해 알루미나 세터 보드를 사용하는 것을 포함하는 종래의 소결 공정을 사용하여 소결시켜 세라믹 테이프(3010)를 형성하였다. 도 15에 도시된 바와 같이, 세터 보드로부터의 접착 및 마모로 인한 표면 결함은 100 배 배율로 볼 수 있다. 시트가 25 마이크로미터 정도로 매우 얇기 때문에 접착 또는 마모로 인한 다수의 결함이 소결 시트에 핀 홀을 형성한다. 도 15에 도시된 바와 같이, 세터 보드로부터의 접착 및 마모로 인한 결함은 일반적으로 서로 공통 방향으로 길다.
전술한 바와 같이, 세터-유도 결함은 통상적으로 세터 보드와 접촉하는 그린 테이프의 소결 수축에 의해 야기되는 표면 특징이며, 세라믹은 소결 수축 동안 세터 보드를 가로질러 자체의 일부분을 드래깅한다. 그 결과 결과적인 소결된 물품의 지지된 측면은 세터가 소결된 물품으로부터 재료를 인출하는 표면의 피트(pit) 또는 세터 보드의 내화물 재료로부터 소결된 물품에 전해지는 드래그 홈, 소결 파편, 불순물 패치 등의 표면 결함을 갖게 된다. 이런 세터 결함을 최소화하는 것은 세라믹 물품이 그 위에 퇴적된 얇은 필름을 가질 때 중요하다. 얇은 필름의 층 두께가 세터 결함 치수와 유사한 경우, 얇은 필름은 핀 홀 또는 얇은 필름 층(들)을 횡단하는 세터 결함을 가질 수 있다.
도 15 및 도 16을 위해 사용된 테이프와 동일한 방식으로 제조된 그린 테이프로부터 형성된, 본 개시내용의 기술을 사용하여 제조된 도 17 내지 도 22의, 특히, 도 15 및 도 16과 동일한 배율 100x 및 500x을 갖는 도 19 및 도 20에 도시된 바와 같은 세라믹 테이프(3010)에 대해 도 15 내지 도 16의 세라믹 테이프(2010)를 비교한다. 보다 구체적으로, 본 명세서에 개시된 바와 같이, 세라믹 테이프(2010)는 연속적으로 소결되었고, 탄화 규소 중앙 채널을 갖는 예들에 설명된 바와 같은 2차 노를 통해 분당 2 인치의 속도로 1400 ℃에서 이동되었다. 세라믹 테이프(3010)와 세라믹 테이프(2010)를 비교하면, 양 테이프 모두 세장형 롤링 찰흔 및 경사(언덕부/골부)와 같은 다양한 캐스팅 표식을 표면에서 나타낸다. 세라믹 테이프(3010)는 본 명세서에 설명된 바와 같이 수축하는 테이프가 세터 표면을 가로질러 드래깅될 때 표면의 가우징(gouging)으로 인해 영역들에서 세터 드래그가 특징적인 손상 패턴을 생성하는 것 같이 결합 입자, 인출 및 세터-드래그 결함과 같은 다수의 세터 관련 결함을 나타낸다.
도 15 및 도 16과 도 19 및 도 20을 참조하면, 단면 치수가 5 ㎛을 초과하는 결합 입자는 표면의 광학 검사시 100x에서 쉽게 관찰되었다(도 15 및 도 19 참조). 보다 구체적으로, 약 8 cm2의 구역에 걸쳐, 본 명세서에 개시된 기술을 사용하여 소결된 세라믹 테이프(2010)의 표면 상에 하나의 이런 입자가 관찰되었고, 약 8 cm2의 동일한 면적에 걸쳐, 8개의 이런 입자가 세라믹 테이프(3010)의 표면 상에서 관찰되었다. 출원인은 세라믹 테이프(2010)가 노 분위기에서 입자의 접착으로 인해 존재할 수 있는 결합된 표면 입자의 수가 더 적은 반면에, 세라믹 테이프(3010)가 세터와의 접촉으로 인해 더 많은 결합된 입자를 갖는다고 믿는다. 이러한 적은 수의, 세라믹 테이프(2010) 상의 결합된 표면 입자는 노 분위기에서 입자를 제거 또는 감소시키는 필터 또는 다른 공정을 사용하는 장래의 공정 실시예에서 더 감소될 수 있다.
예시적인 실시예에 따르면, 본 개시내용에 따라 제조된 테이프는 평균적으로 그 표면에 걸쳐 8 cm2 당, 그 단면 치수가 5 ㎛ 미만인 5개 미만의 결합된 입자를 가지며, 이러한 입자는 예컨대 3개 미만, 예컨대 2개 미만이다.
예시적인 실시예에 따르면, 본 명세서에 개시된 바와 같이, 소결된 세라믹 시트는 50 마이크로미터 미만의 두께 및 전체 표면에 걸쳐 평균적으로 표면의 제곱 밀리미터 당 적어도 제곱 마이크로미터의 단면적을 갖는 10개 미만의 핀 홀(또는 표면적이 제곱 마이크로미터 미만인 경우 전체 표면에 걸쳐 10개 미만의 핀 개구), 전체 표면에 걸쳐 평균적으로 표면의 제곱 밀리미터 당 예컨대, 5개 미만의 핀 홀, 2개 미만의 핀 홀, 심지어, 1개 미만의 핀 홀을 갖는다.
도 19 내지 도 20에 도시된 바와 같이, 세라믹 테이프(19)는 융기부(2014)를 갖는 과립형 표면을 갖는다. 융기부는 100 마이크로미터 이상 정도의 가장 긴 치수를 가지고 있다. 융기부는 일반적으로 긴 형상을 가지며, 예컨대 10도 이내와 같이 방향 D의 15도 이내에서 90 %와 같이 일반적으로 서로 동일한 방향으로 배향된 장축을 갖는다. 세터에 의해 유발되는 마모나 부착된 입자의 특성에서와 같이 표면 상의 두절부 또는 불연속 경계를 포함하거나 그에 의해 형성되는 것과는 반대로, 융기부는 대체로 매끄럽게 롤링되고 인접 표면으로부터 연속적으로 굴곡되기 때문에, 융기부는 마모나 접착 같은 세터 유도 표면 결함과는 구별될 수 있다. 융기부는 예컨대, 덜 제약된 소결 공정에 기인한, 본 명세서에 개시된 적어도 일부 공정의 표식일 수 있다. 다른 실시예는 예컨대 테이프가 소결 중 축 방향 및 폭 방향으로 인장되는 경우 이런 융기부를 포함하지 않을 수 있으며, 이러한 인장은 텐셔너(예로서, 롤러, 트레드, 휠, 기계적 텐셔너 또는 다른 그러한 요소)를 통해 이루어질 수 있다.
이제 도 21 내지 도 22를 참조하면, 세라믹 테이프(4010)는 세터 보드없이 본 명세서에 개시된 공정에 따라 제조되었다. 테이프(4010)의 재료는 3 몰 %의 이트리아 안정화 지르코니아, 정방정계 상 지르코니아 다결정 "TZP"이다. 테이프의 폭은 12.8 내지 12.9 mm이다. 도시된 부분은 22 인치 길이의 테이프 단편에서 얻어진 것이다. 테이프의 두께는 약 22 마이크로미터이다. 또한 흰 점은 스캐너에서 인식하지 못한 테이프 상의 마커 마킹이다.
비교를 위해, 테이프는 선 아래에서 완전히 소결되고, 점선 L 위에서 부분적으로만 소결되었다. SEC1, SEC2, SEC3, SEC4는 세라믹 테이프(4010)의 상단 표면의 프로파일이다. 프로파일은 테이프가 길이방향 축(도 21에서는 X 축으로 도시됨) 주변에 약간의 "C 형상" 곡률을 갖는다는 것을 보여준다. 테이프 내의 캠버는 본 명세서에 개시된 바와 같이, 인장 하에서의 완전한 소결에 의해 감소된다. 볼수 있는 바와 같이, 테이프의 최대 높이는 약 1.68 mm로부터 0.89과 0.63 mm 사이로 약 100 % 감소했다. 본 출원인은 증가된 인장 또는 공정 속도의 변화와 같은 현재의 공정 및/또는 추가의 공정 개선을 통해 평탄한 표면 상에 평탄하게 놓여있는 완전 소결된 테이프의 최대 높이는 예컨대 약 10 내지 15 mm의 폭을 갖는 테이프의 경우, 1.5 mm 미만, 예컨대 1 mm 미만, 예컨대 0.7 mm 미만, 예컨대 이상적으로는 약 100 마이크로미터 미만일 수 있다고 믿는다.
고려되는 실시예에서, 본 명세서에서 설명된 테이프는 도면에 도시된 바와 같이 스풀 상에 권취되어 테이프 롤을 형성할 수 있다. 스풀은 적어도 약 0.5 ㎝, 예컨대 적어도 약 2.5 ㎝ 및/또는 1 m 이하의 직경을 가질 수 있고, 테이프의 길이는 적어도 1 m, 예컨대 적어도 10 m이며 본 명세서에 설명된 바와 같은 폭 및 두께 및/또는 적어도 10 ㎜ 및/또는 20 ㎝ 이하의 폭 및 적어도 10 ㎛ 및/또는 500 ㎛ 이하, 예컨대 250 마이크로미터 이하, 예컨대 100 마이크로미터 이하, 예컨대 50 마이크로미터 이하의 두께를 가질 수 있다.

Claims (17)

  1. 소결된 물품이며,
    제1 표면, 제2 표면 및 이들 사이에 연장되는 재료의 본체를 포함하고, 제2 표면은 소결된 물품의 두께가 제1 및 제2 표면 사이의 거리로 정의되도록 소결된 물품의 제1 표면과 반대측에 있고, 소결된 물품의 폭은 두께와 직교하는 제1 또는 제2 표면 중 한쪽의 제1 치수로 정의되고, 소결된 물품의 길이는 소결된 물품의 두께 및 폭 모두에 직교하는 제1 또는 제2 표면 중 한쪽의 제2 치수로 정의되며,
    재료의 본체는 무기 재료를 포함하고,
    소결된 물품의 길이는 소결된 물품의 폭 이상이고, 소결된 물품은 소결된 물품의 폭이 소결된 물품의 두께의 5 배보다 크도록 얇고, 소결된 물품의 두께는 1 밀리미터 이하이며,
    소결된 물품은 제1 및 제2 표면 각각이 과립형 프로파일을 갖도록 실질적으로 연마되지 않고,
    소결된 물품은 제1 및 제2 표면 모두가 5 마이크로미터 보다 큰 치수를 갖는 접착 또는 마모로부터의 10개 미만의 표면 결함을 갖는 적어도 제곱 센티미터의 면적을 갖는 높은 표면 품질을 가지며, 상기 높은 표면 품질은 소결된 물품의 강도를 도우며,
    소결된 물품은 5 마이크로미터 보다 큰 치수를 갖는 접착 또는 마모로부터 표면 결함의 제1 표면의 제곱 센티미터 당 평균 면적이 5 마이크로미터 보다 큰 치수를 갖는 접착 또는 마모로부터 표면 결함의 제2 표면의 제곱 센티미터 당 평균 면적의 +/- 50% 이내이도록 제1 표면 및 제2 표면 모두에서 일정한 표면 품질을 가지는 소결된 물품.
  2. 제1항에 있어서, 과립형 프로파일은 각각의 그레인 사이의 경계에서 제1 및 제2 표면의 오목형 부분에 대해 25 나노미터 내지 150 마이크로미터 범위의 높이를 갖는 그레인을 포함하는, 소결된 물품.
  3. 제1항에 있어서, 물품은 제1 표면 또는 제2 표면 중 어느 하나를 따라 길이방향으로 1 센티미터의 거리에 걸쳐 100 나노미터 내지 50 마이크로미터 범위의 평탄도를 갖는, 소결된 물품.
  4. 제1항에 있어서, 실질적으로 연마되지 않은 상태에서, 제1 및 제2 표면 중 적어도 하나는 제1 또는 제2 표면 중 어느 하나를 따라 길이방향으로 프로파일을 따라 측정된 1 센티미터의 거리에 걸쳐 1 나노미터 내지 10 마이크로미터 범위의 거칠기를 가지는, 소결된 물품.
  5. 제1항에 있어서, 물품의 길이가 물품의 폭의 5 배보다 크고 물품의 폭이 물품의 두께의 10 배보다 크도록, 물품이 특히 얇고 또한 세장형인, 소결된 물품.
  6. 제5항에 있어서, 본체의 두께는 0.5 밀리미터 보다 작으며, 제1 및 제2 표면 중 하나의 면적은 30 제곱 센티미터 보다 큰, 소결된 물품.
  7. 제6항에 있어서, 제1 및 제2 표면 중 하나의 면적은 100 제곱 센티미터 보다 큰, 소결된 물품.
  8. 제1항에 있어서, 무기 재료는 다결정 세라믹 및 합성 미네랄로 구성되는 그룹으로부터 선택된 무기 재료인, 소결된 물품.
  9. 소결된 물품이며,
    소결된 물품은 제1 표면, 제2 표면 및 이들 사이에 연장되는 재료의 본체를 포함하는 시트이고, 제2 표면은 시트의 두께가 제1 및 제2 표면 사이의 거리로 정의되도록 시트의 제1 표면과 반대측에 있고, 시트의 폭은 두께와 직교하는 제1 또는 제2 표면 중 한쪽의 제1 치수로 정의되고, 시트의 길이는 시트의 폭 및 두께 모두에 직교하는 제1 또는 제2 표면 중 한쪽의 제2 치수로 정의되며,
    재료의 본체는 다결정 세라믹 및 합성 미네랄로 구성된 그룹으로부터 선택된 재료로 이루어지고, 재료는 재료의 그레인들이 서로 융합되도록 소결된 형태로 존재하며,
    시트의 제1 및 제2 표면은 그레인 사이의 경계에서 각각의 표면의 오목형 부분에 대해 25 나노미터 내지 150 마이크로미터 범위의 높이를 갖는 그레인을 포함하는 과립형 프로파일을 각각 갖도록 실질적으로 연마되지 않으며,
    시트는 시트의 길이가 시트의 폭의 5 배 보다 크고, 시트의 폭이 시트의 두께의 5 배 보다 크도록 얇고 세장형이며, 시트의 두께는 1 밀리미터 이하이고, 제1 및 제2 표면의 각각의 면적은 10 제곱 센티미터 보다 크고,
    제1 표면 및 제2 표면 모두가 5 마이크로미터 보다 큰 치수를 갖는 접착 또는 마모로부터의 100개 미만의 표면 결함을 갖는 적어도 10 제곱 센티미터의 면적을 갖도록, 시트는 높은 표면 품질을 가지며,
    시트는 제1 표면 또는 제2 표면 중 어느 하나를 따라 길이방향으로 1 센티미터의 거리에 걸쳐 100 나노미터 내지 50 마이크로미터 범위의 평탄도를 갖는, 소결된 물품.
  10. 제9항에 있어서, 다결정 세라믹 및 합성 미네랄로 구성된 그룹으로부터 선택되는 재료에 추가로, 재료의 본체의 재료는 또한 알루미나, 지르코니아, 스피넬 및 가넷으로 구성되는 그룹으로부터 선택되는 재료인, 소결된 물품.
  11. 제10항에 있어서, 시트의 두께는 500 마이크로미터 이하인, 소결된 물품.
  12. 제11항에 있어서, 시트는 적어도 부분적으로 투명하며, 약 300 나노미터 내지 약 800 나노미터의 파장에서 적어도 30 %의 총 투과율을 갖는, 소결된 물품.
  13. 제10항에 있어서, 제1 및 제2 표면 중 하나의 면적은 100 제곱 센티미터 보다 큰, 소결된 물품.
  14. 제9항에 있어서, 실질적으로 연마되지 않은 상태에서, 제1 및 제2 표면 중 적어도 하나는 제1 또는 제2 표면 중 어느 하나를 따라 길이방향으로 1 센티미터의 거리에 걸쳐 1 나노미터 내지 10 마이크로미터 범위의 거칠기를 가지는, 소결된 물품.
  15. 소결된 물품이며,
    소결된 물품은 세라믹 테이프이고,
    세라믹 테이프는 제1 표면, 제2 표면 및 이들 사이에 연장되는 재료의 본체를 포함하고, 제2 표면은 세라믹 테이프의 두께가 제1 및 제2 표면 사이의 거리로 정의되도록 세라믹 테이프의 제1 표면과 반대측에 있고, 세라믹 테이프의 폭은 두께와 직교하는 제1 또는 제2 표면 중 한쪽의 제1 치수로 정의되고, 세라믹 테이프의 길이는 세라믹 테이프의 두께 및 폭 모두에 직교하는 제1 또는 제2 표면 중 한쪽의 제2 치수로 정의되며,
    재료의 본체는 알루미나 및 지르코니아로 구성된 그룹으로부터 선택된 세라믹이고, 재료는 재료의 그레인들은 서로 융합되도록 소결된 형태로 존재하며,
    세라믹 테이프의 제1 및 제2 표면은 그레인 사이의 경계에서 각각의 표면의 오목형 부분에 대해 10 나노미터 내지 150 마이크로미터 범위의 높이를 갖는 그레인을 포함하는 과립형 프로파일을 각각 갖도록 실질적으로 연마되지 않으며,
    세라믹 테이프는 세라믹 테이프의 길이가 세라믹 테이프의 폭의 5 배 보다 크고, 세라믹 테이프의 폭이 세라믹 테이프의 두께의 5 배 보다 크도록 얇고 세장형이며, 세라믹 테이프의 두께는 150 마이크로미터 이하이며, 제1 및 제2 표면의 각각의 면적은 2 제곱 센티미터 보다 크고,
    세라믹 테이프는 융기부를 가지며, 융기부 중 적어도 일부는 100 마이크로미터와 약 1 mm 사이의 최대 표면 치수를 가지며, 융기부는, 융기부의 경계가 접착 및 마모에 의해 일반적으로 특징지어지지 않도록, 주변의 인접한 표면에 대해 매끄러운 연속적 곡률을 갖고,
    평탄한 표면 상에 구속되지 않은 상태로 놓일 때, 세라믹 테이프는 세라믹 테이프의 길이를 따른 축을 중심으로 캠버를 갖는, 소결된 물품.
  16. 제15항에 있어서, 캠버는 적어도 10 마이크로미터만큼, 그리고, 1 밀리미터 이하만큼 테이프의 두께보다 큰 평탄한 표면 위의 세라믹 테이프의 고점을 초래하는, 소결된 물품.
  17. 세라믹 테이프의 롤이며,
    스풀, 및
    스풀에 권취된 테이프를 포함하며,
    세라믹 테이프는 제1항 내지 제16항 중 어느 한 항에 기재된 소결된 물품이고, 세라믹 테이프의 길이는 적어도 1 미터인 세라믹 테이프의 롤.
KR1020237018031A 2015-06-29 2016-06-28 제조 라인,프로세스 및 소결된 물품 KR20230079508A (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201562185950P 2015-06-29 2015-06-29
US62/185,950 2015-06-29
PCT/US2016/039708 WO2017003980A1 (en) 2015-06-29 2016-06-28 Manufacturing line, process, and sintered article
KR1020187002241A KR102609809B1 (ko) 2015-06-29 2016-06-28 제조 라인,프로세스 및 소결된 물품

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020187002241A Division KR102609809B1 (ko) 2015-06-29 2016-06-28 제조 라인,프로세스 및 소결된 물품

Publications (1)

Publication Number Publication Date
KR20230079508A true KR20230079508A (ko) 2023-06-07

Family

ID=56413860

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020237018031A KR20230079508A (ko) 2015-06-29 2016-06-28 제조 라인,프로세스 및 소결된 물품
KR1020187002241A KR102609809B1 (ko) 2015-06-29 2016-06-28 제조 라인,프로세스 및 소결된 물품

Family Applications After (1)

Application Number Title Priority Date Filing Date
KR1020187002241A KR102609809B1 (ko) 2015-06-29 2016-06-28 제조 라인,프로세스 및 소결된 물품

Country Status (14)

Country Link
US (3) US11629915B2 (ko)
EP (2) EP4015485A3 (ko)
JP (4) JP6845814B2 (ko)
KR (2) KR20230079508A (ko)
CN (9) CN113306005B (ko)
AU (2) AU2016285962B2 (ko)
BR (1) BR112017028526B1 (ko)
DE (1) DE202016009069U1 (ko)
MX (1) MX2018000125A (ko)
MY (1) MY187781A (ko)
RU (1) RU2718875C2 (ko)
SG (1) SG10202102922UA (ko)
TW (3) TWI701125B (ko)
WO (1) WO2017003980A1 (ko)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9362546B1 (en) 2013-01-07 2016-06-07 Quantumscape Corporation Thin film lithium conducting powder material deposition from flux
WO2015054320A2 (en) 2013-10-07 2015-04-16 Quantumscape Corporation Garnet materials for li secondary batteries and methods of making and using garnet materials
CN114163219A (zh) 2015-04-16 2022-03-11 昆腾斯科普电池公司 用于固体电解质制作的承烧板和用其制备致密固体电解质的方法
US10486332B2 (en) 2015-06-29 2019-11-26 Corning Incorporated Manufacturing system, process, article, and furnace
DE202016009069U1 (de) 2015-06-29 2022-01-24 Corning Incorporated Fertigungslinie und gesinterter Artikel
US9966630B2 (en) 2016-01-27 2018-05-08 Quantumscape Corporation Annealed garnet electrolyte separators
WO2018075809A1 (en) 2016-10-21 2018-04-26 Quantumscape Corporation Lithium-stuffed garnet electrolytes with a reduced surface defect density and methods of making and using the same
EP4369453A2 (en) 2017-06-23 2024-05-15 QuantumScape Battery, Inc. Lithium-stuffed garnet electrolytes with secondary phase inclusions
TWI789420B (zh) * 2017-08-31 2023-01-11 美商康寧公司 可攜式電子裝置的外殼及製造其之方法
WO2019090360A1 (en) 2017-11-06 2019-05-09 Quantumscape Corporation Lithium-stuffed garnet thin films and pellets having an oxyfluorinated and/or fluorinated surface and methods of making and using the thin films and pellets
WO2022039937A1 (en) * 2020-08-18 2022-02-24 Corning Incorporated Sintered electrodes for batteries and method of preparing same
KR20230156103A (ko) 2021-03-09 2023-11-13 퀀텀스케이프 배터리, 인코포레이티드 급속 세라믹 가공 기술 및 장비
WO2023154571A1 (en) 2022-02-14 2023-08-17 Quantumscape Battery, Inc. Rapid thermal processing methods and apparatus
TWI830423B (zh) * 2022-10-06 2024-01-21 中國鋼鐵股份有限公司 燒結機的佈料槽的佈料面的控制方法

Family Cites Families (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1597293A (en) 1922-01-24 1926-08-24 Ruff Otto Mode of making sintered hollow bodies
US2966719A (en) 1954-06-15 1961-01-03 American Lava Corp Manufacture of ceramics
US2900254A (en) 1954-10-13 1959-08-18 Sylvania Electric Prod Process of producing sintered metal sheets
US3330654A (en) 1964-04-28 1967-07-11 Kennecott Copper Corp Continuous process for producing sheet metal and clad metal
US3307872A (en) 1966-04-25 1967-03-07 Charles E Murcott Support belt
US3704872A (en) * 1968-08-21 1972-12-05 Mallory & Co Inc P R Sintering furnace
US3988405A (en) 1971-04-07 1976-10-26 Smith Robert D Process for forming thin walled articles or thin sheets
US3837891A (en) 1972-06-30 1974-09-24 Du Pont Process of strengthening polycrystalline refractory oxide fibers
JPS5110813A (en) * 1974-07-16 1976-01-28 Fujitsu Ltd Seramitsukukibanno seizohoho
US4488870A (en) 1981-05-08 1984-12-18 Scrantom Dehart G Method for firing article or the like
US4511328A (en) 1983-09-20 1985-04-16 Manville Service Corporation Apparatus for the reclamation of glass fiber from scrap fiber glass mat
JPS61107609A (ja) 1984-10-30 1986-05-26 住友金属鉱山株式会社 高周波用誘電体磁器の製造方法
JPS61158875A (ja) * 1984-12-28 1986-07-18 居上 英雄 板状ニユ−セラミツクス複合材料並にその製造方法
EP0248432B1 (en) 1986-06-06 1992-08-26 Mitsubishi Kasei Corporation Process for preparing a slender or thin ceramic green body
DE3632085A1 (de) * 1986-09-20 1988-03-24 Schott Glaswerke Verfahren und vorrichtung zum keramisieren von glaskeramikscheiben
EP0292385B1 (en) 1987-05-18 1994-08-24 Sumitomo Electric Industries Limited Method of making oxide ceramic superconducting wires
JP2615754B2 (ja) * 1988-02-10 1997-06-04 有限会社梶原製作所 セラミックグリーンシートの製造装置
US5064588A (en) 1989-05-15 1991-11-12 Ngk Insulators, Ltd. Method of manufacturing elongate ceramic articles
US5814262A (en) * 1989-08-11 1998-09-29 Corning Incorporated Method for producing thin flexible sintered structures
US5089455A (en) * 1989-08-11 1992-02-18 Corning Incorporated Thin flexible sintered structures
JP2849836B2 (ja) 1989-10-31 1999-01-27 富士写真フイルム株式会社 塗布方法
JPH03197367A (ja) * 1989-12-26 1991-08-28 Showa Denko Kk 窒化アルミニウム焼結体の製造方法
JPH03208176A (ja) 1990-01-09 1991-09-11 Mitsubishi Electric Corp 抵抗自動発生可能レイアウトエディタ装置
IE910117A1 (en) * 1990-01-18 1991-07-31 Du Pont Method for reducing shrinkage during firing of green ceramic¹bodies
JP2504277B2 (ja) 1990-04-19 1996-06-05 株式会社村田製作所 積層型セラミック電子部品用セラミックグリ―ンシ―トの製造方法および装置
JP3041934B2 (ja) * 1990-10-11 2000-05-15 松下電器産業株式会社 グラファイトフィルムの製造方法
US5579532A (en) 1992-06-16 1996-11-26 Aluminum Company Of America Rotating ring structure for gas turbine engines and method for its production
JP3191418B2 (ja) * 1992-07-09 2001-07-23 住友電気工業株式会社 光ファイバの製造方法
US5614043A (en) 1992-09-17 1997-03-25 Coors Ceramics Company Method for fabricating electronic components incorporating ceramic-metal composites
US5290504A (en) 1992-10-30 1994-03-01 International Business Machines Corporation Continuous air bearing vapor stabilization system and method
JP3088049B2 (ja) * 1992-12-22 2000-09-18 松下電工株式会社 グリーンシートの製造方法およびアルミナ基板
JP2877681B2 (ja) 1994-02-21 1999-03-31 日本碍子株式会社 セラミック長尺体の製造方法
JP3028176B2 (ja) 1994-04-30 2000-04-04 東京計装株式会社 液面測定装置および同装置用フロート
US6001761A (en) * 1994-09-27 1999-12-14 Nippon Shokubai Co., Ltd. Ceramics sheet and production method for same
JP2830795B2 (ja) * 1994-09-27 1998-12-02 株式会社日本触媒 燃料電池の固体電解質膜用セラミックスシート
US5728244A (en) * 1995-05-26 1998-03-17 Ngk Insulators, Ltd. Process for production of ceramic member having fine throughholes
US5587346A (en) * 1995-06-16 1996-12-24 Osram Sylvania, Inc. Translucent polycrystalline alumina
CN2237508Y (zh) 1995-09-13 1996-10-16 西安交通大学 连续立式烧结炉
US5686694A (en) 1995-10-11 1997-11-11 The United States Of America As Represented By The Secretary Of The Navy Unmanned undersea vehicle with erectable sensor mast for obtaining position and environmental vehicle status
JPH10231178A (ja) 1997-02-18 1998-09-02 Ngk Insulators Ltd セラミック長尺体の製造方法
DE69918821T2 (de) * 1998-03-26 2005-10-13 Jfe Engineering Corp. Verfahren zum kontrollieren der atmosphäre und der zugspannung in einem ofen zur kontinuierlichen wärmebehandlung von metallband
JP4554729B2 (ja) * 1998-04-10 2010-09-29 株式会社日本触媒 セラミックスシートおよびその製造方法
US6447712B1 (en) * 1998-12-28 2002-09-10 University Of Washington Method for sintering ceramic tapes
JP2000210922A (ja) * 1999-01-26 2000-08-02 Noritake Co Ltd セラミックシ―トの製造方法および装置
JP4206569B2 (ja) * 1999-07-02 2009-01-14 株式会社Ihi 金属箔の製造方法及び装置
JP2001031476A (ja) * 1999-07-21 2001-02-06 Noritake Co Ltd セラミック・シートの焼成方法および焼成装置
WO2001016049A1 (en) * 1999-09-01 2001-03-08 Corning Incorporated Fabrication of ultra-thinwall cordierite structures
JP2000094429A (ja) * 1999-09-24 2000-04-04 Hitachi Ltd グリ―ンシ―トの製造方法およびその装置
DE10051388B4 (de) * 1999-10-18 2009-02-12 Murata Mfg. Co., Ltd., Nagaokakyo-shi Verfahren zur Herstellung einer keramischen Grünfolie und Verfahren zur Herstellung eines keramischen Vielschichtbauelements
US7056468B2 (en) 2000-06-15 2006-06-06 Paratek Microwave, Inc. Method for producing low-loss tunable ceramic composites with improved breakdown strengths
JP2002036227A (ja) * 2000-07-27 2002-02-05 Uht Corp セラミックスグリーンシート用の切断システム
TW500910B (en) 2000-10-10 2002-09-01 Ishikawajima Harima Heavy Ind Continuous sintering furnace and its using method
US6800360B2 (en) * 2001-02-08 2004-10-05 Sumitomo Electric Industries, Ltd. Porous ceramics and method of preparing the same as well as microstrip substrate
TWI294412B (en) * 2002-03-08 2008-03-11 Heraeus Inoorporated Self-constrained low temperature glass-ceramic unfired tape for microelectronics and method for making and using the same
JP2003313613A (ja) * 2002-04-23 2003-11-06 Chugai Ro Co Ltd 竪型マッフル式熱処理炉
JP2003328006A (ja) * 2002-05-13 2003-11-19 Ishikawajima Harima Heavy Ind Co Ltd 耐熱合金多孔体シートの連続焼成装置及び製造方法
JP2004043197A (ja) * 2002-07-08 2004-02-12 Ngk Spark Plug Co Ltd セラミックスラリーの製造方法並びにセラミックグリーンシート及びセラミック焼結体
US7531261B2 (en) * 2003-06-30 2009-05-12 Corning Incorporated Textured electrolyte sheet for solid oxide fuel cell
JP3922458B2 (ja) * 2003-12-25 2007-05-30 Tdk株式会社 積層電子部品用セラミックグリーンシートの製造方法
JP2005265360A (ja) * 2004-03-22 2005-09-29 Toray Ind Inc シート状物の熱処理装置および熱処理方法
CN1304334C (zh) * 2004-05-24 2007-03-14 Tdk株式会社 氧化锆装载板、陶瓷基片的制造方法
US7135426B2 (en) * 2004-05-25 2006-11-14 Applied Materials, Inc. Erosion resistant process chamber components
US7445745B2 (en) * 2004-08-03 2008-11-04 Corning Incorporated Method for fabricating ceramic articles
JP4541985B2 (ja) 2004-10-29 2010-09-08 株式会社デンソー 多結晶体の製造方法
US20060228855A1 (en) * 2005-03-29 2006-10-12 Intel Corporation Capacitor with co-planar electrodes
WO2006130759A2 (en) * 2005-05-31 2006-12-07 Corning Incorporated Aluminum titanate ceramic forming batch mixtures and green bodies including pore former combinations and methods of manufacturing and firing same
US7550319B2 (en) 2005-09-01 2009-06-23 E. I. Du Pont De Nemours And Company Low temperature co-fired ceramic (LTCC) tape compositions, light emitting diode (LED) modules, lighting devices and method of forming thereof
US8849087B2 (en) 2006-03-07 2014-09-30 Qd Vision, Inc. Compositions, optical component, system including an optical component, devices, and other products
JP5195419B2 (ja) * 2006-03-23 2013-05-08 株式会社村田製作所 熱処理炉
KR101436651B1 (ko) 2006-06-30 2014-09-01 코닝 인코포레이티드 유리리본으로부터 생산되는 유리시트의 응력변화를 감소시키는 방법 및 장치
CN100579746C (zh) * 2007-03-21 2010-01-13 河北勇龙邦大新材料有限公司 陶瓷悬浮体高效连续固化成型装置与方法
CN101311141A (zh) * 2007-05-22 2008-11-26 曹树梁 大尺寸中空陶瓷板的制造方法及其应用产品
CN101269977B (zh) * 2008-05-04 2010-11-10 景德镇陶瓷学院 一种复合粘接剂体系水基流延制备陶瓷薄片材料的方法
JP2010064255A (ja) * 2008-09-08 2010-03-25 Tdk Corp セラミックグリーンシートの剥離装置及びセラミックグリーンシートの剥離方法
WO2010051345A2 (en) * 2008-10-31 2010-05-06 Corning Incorporated Methods and apparatus for casting ceramic sheets
US8359884B2 (en) 2009-07-17 2013-01-29 Corning Incorporated Roll-to-roll glass: touch-free process and multilayer approach
BR112012014451B1 (pt) 2009-12-15 2018-04-24 Primetals Technologies France SAS Instalação e processo de pré-aquecimento de uma tira de aço em movimento contínuo
CN102101777A (zh) 2009-12-21 2011-06-22 淮杰电热科技(上海)有限公司 立式洁净烧结制备陶瓷管的工艺方法
US8438876B2 (en) 2010-03-29 2013-05-14 Corning Incorporated Method and apparatus for removing glass soot sheet from substrate
CN102254831A (zh) * 2010-05-20 2011-11-23 禾伸堂企业股份有限公司 高精密度陶瓷基板工艺
RU2572892C2 (ru) 2010-06-11 2016-01-20 ТИКОНА ЭлЭлСи Конструктивный элемент, изготовленный из сплошного линейного профиля
CN102093038B (zh) * 2010-12-06 2013-08-21 清华大学 一种透明氧化铝陶瓷的制造方法及其应用
CN102161261A (zh) * 2010-12-18 2011-08-24 江苏锐毕利实业有限公司 挠性印刷电路板多工位喷印系统
DE102011004533A1 (de) 2011-02-22 2013-05-16 Evonik Degussa Gmbh Verfahren zur Reinigung starker Säuren bzw. stark saurer Medien von zwei- und höherwertigen Metallionen
US8840832B2 (en) * 2011-03-02 2014-09-23 Accellent Inc. Material processing systems
JP2013053353A (ja) * 2011-09-05 2013-03-21 Toyota Motor Corp 焼結品の製造方法
US20140299902A1 (en) 2012-01-18 2014-10-09 Goldeneye, Inc. Articles and methods for rapid manufacturing of solid state light sources
CN102554249B (zh) * 2012-03-02 2013-04-24 株洲弗拉德科技有限公司 一种碳化钨基热喷涂合金粉末制备方法
SG11201406065QA (en) * 2012-03-28 2014-11-27 Lintec Corp Peeling film for step for producing ceramic green sheet
WO2013169121A1 (en) 2012-05-11 2013-11-14 Keranor As "green" ceramic tapes and method for their fabrication
US9199870B2 (en) * 2012-05-22 2015-12-01 Corning Incorporated Electrostatic method and apparatus to form low-particulate defect thin glass sheets
JP2015526877A (ja) 2012-08-28 2015-09-10 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 固体電池の製造
TWI478868B (zh) * 2012-09-19 2015-04-01 鐘化股份有限公司 碳質膜之製造方法及石墨膜之製造方法
CN104736483A (zh) * 2012-10-29 2015-06-24 阿尔法金属公司 烧结粉末
US9284485B2 (en) * 2012-11-07 2016-03-15 Rolex Sa Persistent phosphorescent composite material
CN103896595A (zh) * 2012-12-26 2014-07-02 株式会社村田制作所 陶瓷生片及其制造方法
KR101936985B1 (ko) 2013-05-03 2019-01-09 코닝 인코포레이티드 유리 리본을 운반하기 위한 방법 및 장치
US9482839B2 (en) 2013-08-09 2016-11-01 Corning Cable Systems Llc Optical fiber cable with anti-split feature
WO2015054320A2 (en) 2013-10-07 2015-04-16 Quantumscape Corporation Garnet materials for li secondary batteries and methods of making and using garnet materials
CN203728729U (zh) * 2013-12-31 2014-07-23 秦皇岛玻璃工业研究设计院 一种平板玻璃生产线冷端的选片或落板装置
CN203863801U (zh) * 2013-12-31 2014-10-08 莱鼎电子材料科技有限公司 一种氮化铝陶瓷基片流延机
CN104478436B (zh) * 2014-11-20 2017-02-22 济南大学 一种层状碳化硅/碳化锆超高温陶瓷的制备方法
CN114163219A (zh) 2015-04-16 2022-03-11 昆腾斯科普电池公司 用于固体电解质制作的承烧板和用其制备致密固体电解质的方法
US10766165B2 (en) 2015-06-29 2020-09-08 Corning Incorporated Manufacturing line, process, and sintered article
DE202016009069U1 (de) * 2015-06-29 2022-01-24 Corning Incorporated Fertigungslinie und gesinterter Artikel
US10155667B2 (en) 2016-01-26 2018-12-18 Corning Incorporated System, process and related sintered article
CN106077658B (zh) * 2016-07-21 2019-01-18 广东风华高新科技股份有限公司 连续式脱脂炉及采用该连续式脱脂炉进行脱脂的方法
WO2018027200A1 (en) 2016-08-05 2018-02-08 Quantumscape Corporation Translucent and transparent separators
BR112019012978A2 (pt) * 2016-12-21 2019-12-31 Corning Inc sistema de sinterização e artigos sinterizados

Also Published As

Publication number Publication date
CN113370365B (zh) 2022-07-12
CN113306005B (zh) 2022-07-12
EP3313803B1 (en) 2022-07-20
CN113199611B (zh) 2023-06-09
KR20180021826A (ko) 2018-03-05
JP6845814B2 (ja) 2021-03-24
US11768032B2 (en) 2023-09-26
BR112017028526A2 (pt) 2018-08-28
CN113199611A (zh) 2021-08-03
CN113510830B (zh) 2023-12-19
US20230204285A1 (en) 2023-06-29
CN113263605A (zh) 2021-08-17
CN113370365A (zh) 2021-09-10
JP7343633B2 (ja) 2023-09-12
US20210402646A1 (en) 2021-12-30
TWI740566B (zh) 2021-09-21
MX2018000125A (es) 2018-08-15
JP2021104925A (ja) 2021-07-26
JP2023162372A (ja) 2023-11-08
CN113370366A (zh) 2021-09-10
CN113305997B (zh) 2022-01-28
JP2018526308A (ja) 2018-09-13
CN113306005A (zh) 2021-08-27
JP2022065125A (ja) 2022-04-26
CN107848892A (zh) 2018-03-27
TWI701125B (zh) 2020-08-11
TW201711818A (zh) 2017-04-01
EP4015485A2 (en) 2022-06-22
TW202146198A (zh) 2021-12-16
MY187781A (en) 2021-10-21
AU2016285962A1 (en) 2018-02-01
WO2017003980A1 (en) 2017-01-05
AU2020256447B2 (en) 2021-11-11
CN113305997A (zh) 2021-08-27
DE202016009069U1 (de) 2022-01-24
CN113370366B (zh) 2023-12-29
EP3313803A1 (en) 2018-05-02
US11629915B2 (en) 2023-04-18
RU2718875C2 (ru) 2020-04-15
EP4015485A3 (en) 2022-08-31
US20240019209A1 (en) 2024-01-18
AU2020256447A1 (en) 2020-11-12
KR102609809B1 (ko) 2023-12-06
CN107848892B (zh) 2021-06-01
US11953264B2 (en) 2024-04-09
CN113263605B (zh) 2023-02-03
TW202108330A (zh) 2021-03-01
CN113582704A (zh) 2021-11-02
CN113510830A (zh) 2021-10-19
AU2016285962B2 (en) 2020-09-03
SG10202102922UA (en) 2021-05-28
BR112017028526B1 (pt) 2023-12-12
RU2018103075A3 (ko) 2019-12-09
JP7029559B2 (ja) 2022-03-03
RU2018103075A (ru) 2019-07-29
CN113582704B (zh) 2023-04-07
TWI771162B (zh) 2022-07-11

Similar Documents

Publication Publication Date Title
US10967539B2 (en) Manufacturing line, process, and sintered article
KR102609809B1 (ko) 제조 라인,프로세스 및 소결된 물품
US20220297344A1 (en) Manufacturing system, process, article, and furnace

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal