KR20200096670A - 환자별 혈류 모델링 방법 및 시스템 - Google Patents

환자별 혈류 모델링 방법 및 시스템 Download PDF

Info

Publication number
KR20200096670A
KR20200096670A KR1020207022263A KR20207022263A KR20200096670A KR 20200096670 A KR20200096670 A KR 20200096670A KR 1020207022263 A KR1020207022263 A KR 1020207022263A KR 20207022263 A KR20207022263 A KR 20207022263A KR 20200096670 A KR20200096670 A KR 20200096670A
Authority
KR
South Korea
Prior art keywords
patient
model
blood flow
blood
computer system
Prior art date
Application number
KR1020207022263A
Other languages
English (en)
Other versions
KR102351887B1 (ko
Inventor
찰스 에이. 테일러
티모시 에이. 폰테
Original Assignee
하트플로우, 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=45565333&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=KR20200096670(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 하트플로우, 인크. filed Critical 하트플로우, 인크.
Priority to KR1020227000928A priority Critical patent/KR102414383B1/ko
Publication of KR20200096670A publication Critical patent/KR20200096670A/ko
Application granted granted Critical
Publication of KR102351887B1 publication Critical patent/KR102351887B1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/029Measuring or recording blood output from the heart, e.g. minute volume
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/25User interfaces for surgical systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/0035Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for acquisition of images from more than one imaging mode, e.g. combining MRI and optical tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/004Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/004Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
    • A61B5/0044Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part for the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02028Determining haemodynamic parameters not otherwise provided for, e.g. cardiac contractility or left ventricular ejection fraction
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0263Measuring blood flow using NMR
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1075Measuring physical dimensions, e.g. size of the entire body or parts thereof for measuring dimensions by non-invasive methods, e.g. for determining thickness of tissue layer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/22Ergometry; Measuring muscular strength or the force of a muscular blow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4848Monitoring or testing the effects of treatment, e.g. of medication
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7246Details of waveform analysis using correlation, e.g. template matching or determination of similarity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7278Artificial waveform generation or derivation, e.g. synthesising signals from measured signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/745Details of notification to user or communication with user or patient ; user input means using visual displays using a holographic display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/02Devices for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computerised tomographs
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/481Diagnostic techniques involving the use of contrast agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/503Clinical applications involving diagnosis of heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/504Clinical applications involving diagnosis of blood vessels, e.g. by angiography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/50Clinical applications
    • A61B6/507Clinical applications involving determination of haemodynamic parameters, e.g. perfusion CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5217Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus for radiation diagnosis, e.g. combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/02Measuring pulse or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/04Measuring blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/06Measuring blood flow
    • A61B8/065Measuring blood flow to determine blood output from the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/481Diagnostic techniques involving the use of contrast agent, e.g. microbubbles introduced into the bloodstream
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • A61B8/5261Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from different diagnostic modalities, e.g. ultrasound and X-ray
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/007Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests for contrast media
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5601Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution involving use of a contrast agent for contrast manipulation, e.g. a paramagnetic, super-paramagnetic, ferromagnetic or hyperpolarised contrast agent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • G01R33/5635Angiography, e.g. contrast-enhanced angiography [CE-MRA] or time-of-flight angiography [TOF-MRA]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/563Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution of moving material, e.g. flow contrast angiography
    • G01R33/56366Perfusion imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/22Matching criteria, e.g. proximity measures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/28Design optimisation, verification or simulation using fluid dynamics, e.g. using Navier-Stokes equations or computational fluid dynamics [CFD]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06GANALOGUE COMPUTERS
    • G06G7/00Devices in which the computing operation is performed by varying electric or magnetic quantities
    • G06G7/48Analogue computers for specific processes, systems or devices, e.g. simulators
    • G06G7/60Analogue computers for specific processes, systems or devices, e.g. simulators for living beings, e.g. their nervous systems ; for problems in the medical field
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/001Texturing; Colouring; Generation of texture or colour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/008Specific post-processing after tomographic reconstruction, e.g. voxelisation, metal artifact correction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/20Drawing from basic elements, e.g. lines or circles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/60Editing figures and text; Combining figures or text
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/10Geometric effects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/005Tree description, e.g. octree, quadtree
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/149Segmentation; Edge detection involving deformable models, e.g. active contour models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/70Determining position or orientation of objects or cameras
    • G06T7/73Determining position or orientation of objects or cameras using feature-based methods
    • G06T7/74Determining position or orientation of objects or cameras using feature-based methods involving reference images or patches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/42Global feature extraction by analysis of the whole pattern, e.g. using frequency domain transformations or autocorrelation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/44Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/698Matching; Classification
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/14Vascular patterns
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B45/00ICT specially adapted for bioinformatics-related data visualisation, e.g. displaying of maps or networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B5/00ICT specially adapted for modelling or simulations in systems biology, e.g. gene-regulatory networks, protein interaction networks or metabolic networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/40ICT specially adapted for the handling or processing of patient-related medical or healthcare data for data related to laboratory analysis, e.g. patient specimen analysis
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data
    • G16H10/60ICT specially adapted for the handling or processing of patient-related medical or healthcare data for patient-specific data, e.g. for electronic patient records
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/20ICT specially adapted for the handling or processing of medical images for handling medical images, e.g. DICOM, HL7 or PACS
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/70ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for mining of medical data, e.g. analysing previous cases of other patients
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H70/00ICT specially adapted for the handling or processing of medical references
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/102Modelling of surgical devices, implants or prosthesis
    • A61B2034/104Modelling the effect of the tool, e.g. the effect of an implanted prosthesis or for predicting the effect of ablation or burring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/107Visualisation of planned trajectories or target regions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/108Computer aided selection or customisation of medical implants or cutting guides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/374NMR or MRI
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • A61B2090/3762Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy using computed tomography systems [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/37Surgical systems with images on a monitor during operation
    • A61B2090/376Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy
    • A61B2090/3762Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy using computed tomography systems [CT]
    • A61B2090/3764Surgical systems with images on a monitor during operation using X-rays, e.g. fluoroscopy using computed tomography systems [CT] with a rotating C-arm having a cone beam emitting source
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • A61B2576/02Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
    • A61B2576/023Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part for the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6867Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
    • A61B5/6868Brain
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2200/00Indexing scheme for image data processing or generation, in general
    • G06T2200/04Indexing scheme for image data processing or generation, in general involving 3D image data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10004Still image; Photographic image
    • G06T2207/10012Stereo images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10088Magnetic resonance imaging [MRI]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10104Positron emission tomography [PET]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10108Single photon emission computed tomography [SPECT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20036Morphological image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • G06T2207/20124Active shape model [ASM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30016Brain
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30048Heart; Cardiac
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30101Blood vessel; Artery; Vein; Vascular
    • G06T2207/30104Vascular flow; Blood flow; Perfusion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/404Angiography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V10/00Arrangements for image or video recognition or understanding
    • G06V10/40Extraction of image or video features
    • G06V10/46Descriptors for shape, contour or point-related descriptors, e.g. scale invariant feature transform [SIFT] or bags of words [BoW]; Salient regional features
    • G06V10/467Encoded features or binary features, e.g. local binary patterns [LBP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Abstract

본 발명의 환자의 심혈관 정보를 결정하기 위한 시스템에 관한 것으로, 상기 시스템은 적어도 하나의 컴퓨터 시스템을 포함하며, 상기 적어도 하나의 컴퓨터 시스템은, 환자 심장의 기하 형태에 관한 환자별 데이터를 수신하도록 구성되고, 환자별 데이터에 기초하여 환자 심장의 적어도 일부분을 나타내는 3차원 모델을 생성하도록 구성되며, 환자 심장의 혈류 특성에 관한 물리학-기반 모델을 생성하도록 구성되고, 상기 3차원 모델 및 물리학-기반 모델에 기초하여 상기 환자 심장 내의 분획 혈류 예비력(FFR: Fractional Flow Reserve)을 결정하도록 구성된다.

Description

환자별 혈류 모델링 방법 및 시스템 {METHOD AND SYSTEM FOR PATIENT-SPECIFIC MODELING OF BLOOD FLOW}
우선권
본 출원은 2010년 8월 12일자 미국특허가출원 제61/401,462호, 2010년 8월 20일자 미국특허가출원 제61/401,915호, 2010년 8월 26일자 미국특허가출원 제61/402,308호, 2010년 8월 27일자 미국특허가출원 제61/402,345호, 및 2010년 10월 1일자 미국특허가출원 제61/404,429호로부터 우선권을 주장하고, 그 전체 내용은 본 발명에 참고자료로 포함된다.
기술분야
실시예는 유체 유동 모델링 방법 및 시스템을 포함하고, 특히, 혈류의 환자별 모델링 방법 및 시스템을 포함한다.
관상 동맥 질환은 협착증(혈관이 비정상적으로 좁아지는 질환)과 같은, 심장에 혈액을 제공하는 혈관 내에 관상 동맥 병변을 생성할 수 있다. 그 결과, 심장으로의 혈류가 제한될 수 있다. 관상 동맥 질환으로 고통받는 환자는 환자가 휴식 상태일 때 불안정형 협심증, 또는, 심한 운동 중 만성 안정형 협심증으로 불리는 가슴통증을 느낄 수 있다. 더 심한 증상의 징후는 심근경색증, 또는 심장 마비를 야기할 수 있다.
관상 동맥 병변에 관한 더욱 정확한 데이터, 예를 들어, 크기, 형상, 위치, 기능적 중요도(가령, 병변이 혈류에 영향을 미치는지 여부), 등을 제공할 필요가 있다. 가슴 통증으로 고통받거나 및/또는 관상 동맥 질환의 증상을 나타내는 환자는 환자는, 관상 동맥 병변에 관한 일부 간접적 증거를 제공할 수 있는 하나 이상의 검사를 받을 수 있다. 예를 들어, 비침습성 검사는 심전도, 혈액 검사로부터의 생체진단지표 평가, 운동부하 심전도 검사(treadmill test), SPECT(Single Positron Emission Computed Tomography), PET(Positron Emission Tomography)를 포함할 수 있다. 그러나, 이러한 비침습성 검사는 관상 동맥 병변의 직접적 평가를 제공하지 못하거나, 혈류 속도를 평가하지 못한다. 이러한 비침습성 검사는 (가령, 심전도그래프(ECG)를 이용한) 심장의 전기 활동 변화, (가령, 부하 심초음파를 이용한) 심근 운동, (가령, PET 또는 SPECT를 이용한) 심근 관류, 또는, (가령, 생체 진단 지표를 이용한) 대사 변화를 살펴봄으로써 관상 동맥 병변의 간접적 증거를 제공할 수 있다.
예를 들어, CCTA(Coronary Computed Tomographic Angiography)를 이용하여 비침습성으로 신체 데이터를 얻을 수 있다. CCTA는 가슴 통증을 가진 환자의 이미징을 위해 사용될 수 있고, 조영제(contrast agent)의 정맥내 주입에 이어 심장 및 관상 동맥을 이미징하기 위해 CT(Computed Tomography) 기술의 이용을 포함한다. 그러나, CCTA는 관상 동맥 병변의 기능적 중요도에 대한 직접적 정보(예를 들어, 병변이 혈류에 영향을 미치는지 여부)를 역시 제공할 수 없다. 추가적으로, CCTA가 순수한 진단적 검사이기 때문에, 다른 생리학적 상태(가령, 운동 중) 하에서 심근 관류, 압력, 또는 관상 동맥 혈류의 변화를 예측할 수 없고, 인터벤션의 결과를 예측하는 데도 사용될 수 없다.
따라서, 환자는 관상 동맥 병변을 시각화하기 위해, 진단형 심장 카테터법(cardiac catheterization)과 같은 비침습성 검사를 또한 요구할 수 있다. 진단 심장 카테터법은 동맥의 크기 및 형상의 이미지를 의사에게 제공함으로써 관상 동맥 병변에 대한 (해부학적) 신체 데이터를 수집하기 위해 CCA(Conventional Coronary Angiography)를 실행하는 과정을 포함할 수 있다. 그러나, CCA는 관상 동맥 병변의 기능적 중요도를 평하기 위한 데이터를 제공하지 않는다. 예를 들어, 의사는 이러한 병변이 기능적으로 중요한지 여부를 결정하지 않으면서 관상 동맥 병변이 인체에 해로운지 여부를 진단하지 못할 수 있다. 따라서, CCA는 이러한 병변이 기능적으로 중요한 지 여부에 관계없이, CCA를 이용하여 발견한 모든 병변에 대해 스텐트 삽입을 위해 일부 인터벤션 심장병 전문의의 "오쿨로스테노틱 리플렉스"(oculostenotic reflex)로 불리는 현상을 유도한다. 그 결과, CCA는 환자에 대한 불필요한 수술을 야기할 수 있고, 이는 환자의 위험도를 높이고, 불필요한 치료 비용을 환자에게 안길 수 있다.
진단적 심장 카테터법 시술 중, 관상 동맥 병변의 기능적 중요도는 관측되는 병변의 심근 분획 혈류 예비력(FFR)을 측정함으로써 비침습성으로 평가될 수 있다. FFR은 예를 들어, 아데노신의 정맥 주사에 의해 유도되는, 관상 혈류 증가 조건 하에 대동맥 혈압과 같은, 병변 하류의 평균 혈압을 병변으로부터 상류의 평균 혈압으로 나눈 값의 비로 규정된다. 혈압은 환자 내로 압력 철선(pressure wire)을 삽입함으로써 측정될 수 있다. 따라서, 결정된 FFR에 기초하여 병변 치료 결정은, 진단적 심장 카테터법의 초기 비용 및 위험이 이미 발생된 후에야 이루어질 수 있다.
따라서, 관상 해부학, 심근 관류, 및 관상 동맥 혈류를 비침습성으로 평가하기 위한 방법이 필요하다. 이러한 방법 및 시스템은 관상 동맥 질환이 의심되는 환자를 진단하고 치료를 계획하는 심장병 전문의에게 유익할 수 있다. 추가적으로, 직접 측정될 수 없는 조건 하에(가령, 운동 중일 때) 관상 동맥 혈류 및 심근 관류를 예측하고, 그리고, 관상 동맥 혈류 및 심근 관류에 대한 내과적, 인터벤션-방식, 및 외과적 치료의 결과를 예측하기 위한 방법이 필요하다.
전술한 일반적 설명 및 다음의 상세한 설명 모두는 예시적이고 설명을 위한 것임에 지나지 않고 발명을 제한하고자 하는 것이 아니다.
일 실시예에 따르면, 환자의 심혈관 정보를 결정하기 위한 시스템은 적어도 하나의 컴퓨터 시스템을 포함하며, 상기 적어도 하나의 컴퓨터 시스템은, 환자 심장의 기하 형태에 관한 환자별 데이터를 수신하도록 구성되고, 환자별 데이터에 기초하여 환자 심장의 적어도 일부분을 나타내는 3차원 모델을 생성하도록 구성된다. 상기 적어도 하나의 컴퓨터 시스템은, 환자 심장의 혈류 특성에 관한 물리학-기반 모델을 생성하도록 또한 구성되고, 상기 3차원 모델 및 물리학-기반 모델에 기초하여 상기 환자 심장 내의 분획 혈류 예비력(fractional flow reserve)을 결정하도록 또한 구성된다.
다른 실시예에 따르면, 적어도 하나의 컴퓨터 시스템을 이용하여 환자별 심혈관 정보를 결정하기 위한 방법은, 환자 심장의 기하 형태에 관한 환자별 데이터를 상기 적어도 하나의 컴퓨터 시스템 내로 입력하는 단계와, 상기 적어도 하나의 컴퓨터 시스템을 이용하여, 환자별 데이터에 기초하여 환자 심장의 적어도 일부분을 나타내는 3차원 모델을 생성하는 단계를 포함한다. 상기 방법은, 상기 적어도 하나의 컴퓨터 시스템을 이용하여, 환자 심장의 혈류 특성에 관한 물리학-기반 모델을 생성하는 단계와, 상기 적어도 하나의 컴퓨터 시스템을 이용하여, 상기 3차원 모델 및 물리학-기반 모델에 기초하여 상기 환자 심장 내의 분획 혈류 예비력을 결정하는 단계를 더 포함한다.
다른 실시예에 따르면, 환자별 심혈관 정보의 결정 방법을 수행하기 위한 컴퓨터-실행가능 프로그래밍 명령을 지닌 적어도 하나의 컴퓨터 시스템 상에서 이용하기 위한 비-일시적 컴퓨터 판독가능 매체가 제공된다. 상기 방법은, 환자 심장의 기하 형태에 관한 환자별 데이터를 수신하는 단계와, 환자별 데이터에 기초하여 환자 심장의 적어도 일부분을 나타내는 3차원 모델을 생성하는 단계를 포함한다. 상기 방법은, 환자 심장의 혈류 특성에 관한 물리학-기반 모델을 생성하는 단계와, 상기 3차원 모델 및 물리학-기반 모델에 기초하여 상기 환자 심장 내의 분획 혈류 예비력을 결정하는 단계를 더 포함한다.
다른 실시예에 따르면, 환자의 치료를 계획하기 위한 시스템은 적어도 하나의 컴퓨터 시스템을 포함하고, 상기 적어도 하나의 컴퓨터 시스템은, 환자의 신체 구조의 기하 형태에 관한 환자별 데이터를 수신하도록 구성되고, 상기 환자별 데이터에 기초하여 환자의 신체 구조의 적어도 일부분을 나타내는 3차원 모델을 생성하도록 구성된다. 상기 적어도 하나의 컴퓨터 시스템은, 환자의 신체 구조에 관한 물리학-기반 모델과 상기 3차원 모델에 기초하여 환자의 신체 구조 내의 혈류 특성에 관한 제 1 정보를 결정하도록 또한 구성되고, 상기 3차원 모델을 수정하도록 또한 구성되며, 수정된 3차원 모델에 기초하여 환자의 신체 구조 내의 혈류 특성에 관한 제 2 정보를 결정하도록 또한 구성된다.
다른 실시예에 따르면, 환자의 치료 계획 방법을 수행하기 위한 컴퓨터-실행가능 프로그래밍 명령을 지닌 적어도 하나의 컴퓨터 시스템 상에서 이용하기 위한 비-일시적 컴퓨터 판독가능 매체가 제공된다. 상기 방법은, 환자의 신체 구조의 기하 형태에 관한 환자별 데이터를 수신하는 단계와, 상기 환자별 데이터에 기초하여 환자의 신체 구조의 적어도 일부분을 나타내는 3차원 모델을 생성하는 단계를 포함한다. 상기 방법은, 환자의 신체 구조에 관한 물리학-기반 모델과 상기 3차원 모델에 기초하여 환자의 신체 구조 내의 혈류 특성에 관한 제 1 정보를 결정하는 단계와, 환자의 신체 구조의 기하 형태의 요망 변화에 기초하여 환자의 신체 구조 내의 혈류 특성에 관한 제 2 정보를 결정하는 단계를 더 포함한다.
다른 실시예에 따르면, 컴퓨터 시스템을 이용한 환자의 치료 계획 방법은, 환자의 신체 구조의 기하 형태에 관한 환자별 데이터를 적어도 하나의 컴퓨터 시스템 내로 입력하는 단계와, 상기 적어도 하나의 컴퓨터 시스템을 이용하여, 환자별 데이터에 기초하여 환자의 신체 구조의 적어도 일부분을 나타내는 3차원 모델을 생성하는 단계를 포함한다. 상기 방법은, 상기 적어도 하나의 컴퓨터 시스템을 이용하여, 환자의 신체 구조에 관한 물리학-기반 모델과 상기 3차원 모델에 기초하여 환자의 신체 구조 내의 혈류 특성에 관한 제 1 정보를 결정하는 단계를 더 포함한다. 상기 방법은, 상기 적어도 하나의 컴퓨터 시스템을 이용하여, 상기 3차원 모델을 수정하는 단계와, 상기 적어도 하나의 컴퓨터 시스템을 이용하여, 수정된 3차원 모델에 기초하여 환자의 신체 구조 내의 혈류 특성에 관한 제 2 정보를 결정하는 단계를 또한 포함한다.
다른 실시예에 따르면, 환자 치료 계획 시스템은 적어도 하나의 컴퓨터 시스템을 포함하고, 상기 적어도 하나의 컴퓨터 시스템은, 환자의 신체 구조의 기하 형태에 관한 환자별 데이터를 수신하도록 구성되고, 상기 환자별 데이터에 기초하여 환자의 신체 구조의 적어도 일부분을 나타내는 3차원 모델을 생성하도록 구성되다. 상기 적어도 하나의 컴퓨터 시스템은, 환자의 생리학적 조건에 관한 정보와 상기 3차원 모델에 기초하여 환자의 신체 구조 내의 혈류 특성에 관한 제 1 정보를 결정하도록 구성되고, 환자의 생리학적 조건을 수정하도록 구성되며, 환자의 수정된 생리학적 조건에 기초하여 환자의 신체 구조 내의 혈류 특성에 관한 제 2 정보를 결정하도록 또한 구성된다.
다른 실시예에 따르면, 환자 치료 계획 방법을 수행하기 위한 컴퓨터-실행가능 프로그래밍 명령을 지닌 컴퓨터 시스템 상에서 이용하기 위한 비-일시적 컴퓨터 판독가능 매체가 제공된다. 상기 방법은, 환자의 신체 구조의 기하 형태에 관한 환자별 데이터를 수신하는 단계와, 상기 환자별 데이터에 기초하여 환자의 신체 구조의 적어도 일부분을 나타내는 3차원 모델을 생성하는 단계를 포함한다. 상기 방법은, 환자의 생리학적 조건에 관한 정보와 상기 3차원 모델에 기초하여 환자의 신체 구조 내의 혈류 특성에 관한 제 1 정보를 결정하는 단계와, 환자의 생리학적 조건의 요망되는 변화에 기초하여 환자의 신체 구조 내의 혈류 특성에 관한 제 2 정보를 결정하는 단계를 더 포함한다.
다른 실시예에 따르면, 적어도 하나의 컴퓨터 시스템을 이용하여 환자의 치료를 계획하기 위한 방법은, 환자의 신체 구조의 기하 형태에 관한 환자별 데이터를 적어도 하나의 컴퓨터 시스템에 입력하는 단계와, 상기 적어도 하나의 컴퓨터 시스템을 이용하여, 상기 환자별 데이터에 기초하여 환자의 신체 구조의 적어도 일부분을 나타내는 3차원 모델을 생성하는 단계를 포함한다. 상기 방법은, 상기 적어도 하나의 컴퓨터 시스템을 이용하여, 환자의 생리학적 조건에 관한 정보와 상기 3차원 모델에 기초하여 환자의 신체 구조 내의 혈류 특성에 관한 제 1 정보를 결정하는 단계를 또한 포함한다. 상기 방법은, 상기 적어도 하나의 컴퓨터 시스템을 이용하여, 환자의 생리학적 조건을 수정하는 단계와, 상기 적어도 하나의 컴퓨터 시스템을 이용하여, 환자의 수정된 생리학적 조건에 기초하여 환자의 신체 구조 내의 혈류 특성에 관한 제 2 정보를 결정하는 단계를 더 포함한다.
다른 실시예에 따르면, 환자별 심혈관 정보를 결정하기 위한 시스템은 적어도 하나의 컴퓨터 시스템을 포함하며, 상기 적어도 하나의 컴퓨터 시스템은, 환자의 신체 구조의 기하 형태에 관한 환자별 데이터를 수신하도록 구성되고, 환자별 데이터에 기초하여 환자의 신체 구조의 적어도 일부분을 나타내는 3차원 모델을 생성하도록 구성된다. 상기 적어도 하나의 컴퓨터 시스템은, 환자의 신체 구조의 일부분을 통한 총 혈류에 연계된 총 저항을 결정하도록 또한 구성되고, 상기 3차원 모델, 환자의 신체 구조에 관한 물리학-기반 모델, 및 결정된 총 저항에 기초하여, 환자의 신체 구조 내의 혈류 특성에 관한 정보를 결정하도록 구성된다.
다른 실시예에 따르면, 적어도 하나의 컴퓨터 시스템을 이용하여 환자별 심혈관 정보를 결정하기 위한 방법은, 환자의 신체 구조의 기하 형태에 관한 환자별 데이터를 적어도 하나의 컴퓨터 시스템에 입력하는 단계와, 적어도 하나의 컴퓨터를 이용하여, 환자별 데이터에 기초하여 환자의 신체 구조의 적어도 일부분을 나타내는 3차원 모델을 생성하는 단계를 포함한다. 상기 방법은, 적어도 하나의 컴퓨터를 이용하여, 환자의 신체 구조의 일부분을 통한 총 혈류에 연계된 총 저항을 결정하는 단계와, 적어도 하나의 컴퓨터를 이용하여, 상기 3차원 모델, 환자의 신체 구조에 관한 물리학-기반 모델, 및 결정된 총 저항에 기초하여, 환자의 신체 구조 내의 혈류 특성에 관한 정보를 결정하는 단계를 또한 포함한다.
다른 실시예에 따르면, 환자별 심혈관 정보를 결정하기 위한 방법을 수행하기 위한 컴퓨터-실행가능 프로그래밍 명령을 지닌 컴퓨터 시스템 상에서 이용하기 위한 비-일시적 컴퓨터 판독가능 매체가 제공된다. 상기 방법은, 환자의 신체 구조의 기하 형태에 관한 환자별 데이터를 수신하는 단계와, 환자별 데이터에 기초하여 환자의 신체 구조의 적어도 일부분을 나타내는 3차원 모델을 생성하는 단계를 포함한다. 상기 방법은, 환자의 신체 구조의 일부분을 통한 총 혈류에 연계된 총 저항을 결정하는 단계와, 상기 3차원 모델, 환자의 신체 구조에 관한 물리학-기반 모델, 및 결정된 총 저항에 기초하여, 환자의 신체 구조 내의 혈류 특성에 관한 정보를 결정하는 단계를 또한 포함한다.
다른 실시예에 따르면, 웹사이트를 이용하여 환자별 심혈관 정보를 제공하기 위한 시스템은 적어도 하나의 컴퓨터 시스템을 포함하며, 상기 적어도 하나의 컴퓨터 시스템은, 원격 사용자가 웹사이트에 액세스할 수 있도록 구성되고, 환자의 신체 구조의 기하 형태의 적어도 일부분에 관한 환자별 데이터를 수신하도록 구성되며, 상기 환자별 데이터에 기초하여 환자의 신체 구조의 적어도 일부분을 나타내는 3차원 모델을 생성하도록 구성되고, 환자의 생리학적 조건과 상기 3차원 모델에 기초하여 환자의 신체 구조 내의 혈류 특성에 관한 정보를 결정하도록 구성된다. 상기 적어도 하나의 컴퓨터 시스템은, 환자의 신체 구조의 적어도 일부분의 제 1 3차원 시뮬레이션에 관한 디스플레이 정보를 상기 웹사이트를 이용하여 원격 사용자에게 전송하도록 또한 구성된다. 상기 3차원 시뮬레이션은 혈류 특성에 관한 결정된 정보를 포함한다.
다른 실시예에 따르면, 웹사이트를 이용하여 환자별 심혈관 정보를 제공하기 위한 방법은, 적어도 하나의 컴퓨터 시스템을 이용하여, 원격 사용자가 웹사이트에 액세스할 수 있게 하는 단계와, 상기 적어도 하나의 컴퓨터 시스템을 이용하여, 환자의 신체 구조의 기하 형태에 관한 환자별 데이터를 수신하는 단계를 포함한다. 상기 방법은, 상기 적어도 하나의 컴퓨터 시스템을 이용하여, 상기 환자별 데이터에 기초하여 환자의 신체 구조의 적어도 일부분을 나타내는 3차원 모델을 생성하는 단계와, 상기 적어도 하나의 컴퓨터 시스템을 이용하여, 환자의 생리학적 조건과 상기 3차원 모델에 기초하여 환자의 신체 구조 내의 혈류 특성에 관한 정보를 결정하는 단계를 또한 포함한다. 상기 방법은, 상기 적어도 하나의 컴퓨터 시스템을 이용하여, 환자의 신체 구조의 적어도 일부분의 제 1 3차원 시뮬레이션에 관한 디스플레이 정보를 상기 웹사이트를 이용하여 원격 사용자에게 전송하는 단계를 더 포함한다. 상기 3차원 시뮬레이션은 혈류 특성에 관한, 결정된 정보를 포함한다.
다른 실시예에 따르면, 웹사이트를 이용하여 환자별 심혈관 정보를 제공하기 위한 방법을 수행하기 위한 컴퓨터-실행가능 프로그래밍 명령을 지닌 컴퓨터 시스템 상에서 이용하기 위한 비-일시적 컴퓨터 판독가능 매체가 제공된다. 상기 방법은, 원격 사용자가 웹사이트에 액세스할 수 있게 하는 단계와, 환자의 신체 구조의 기하 형태에 관한 환자별 데이터를 수신하는 단계와, 상기 환자별 데이터에 기초하여 환자의 신체 구조의 적어도 일부분을 나타내는 3차원 모델을 생성하는 단계를 포함한다. 상기 방법은, 환자의 신체 구조에 관한 물리학-기반 모델과 상기 3차원 모델에 기초하여 환자의 신체 구조 내의 혈류 특성에 관한 정보를 결정하는 단계와, 환자의 신체 구조의 적어도 일부분의 제 1 3차원 시뮬레이션에 관한 디스플레이 정보를 상기 웹사이트를 이용하여 원격 사용자에게 전송하는 단계를 또한 포함한다. 상기 3차원 시뮬레이션은 혈류 특성에 관한, 결정된 정보를 포함한다.
다른 실시예에 따르면, 환자별 시간 가변성 심혈관 정보를 결정하기 위한 시스템은 적어도 하나의 컴퓨터 시스템을 포함하며, 상기 적어도 하나의 컴퓨터 시스템은, 환자의 신체 구조의 적어도 일부분의 기하 형태에 관한 시간 가변성 환자별 데이터를 서로 다른 시간에 수신하도록 구성되고, 환자별 데이터에 기초하여 환자의 신체 구조의 적어도 일부분을 나타내는 3차원 모델을 생성하도록 구성된다. 상기 적어도 하나의 컴퓨터 시스템은 환자의 신체 구조에 관한 물리학-기반 모델과 상기 3차원 모델에 기초하여 환자의 신체 구조 내의, 시간에 따른 혈류 특성 변화에 관한 정보를 결정하도록 또한 구성된다.
다른 실시예에 따르면, 적어도 하나의 컴퓨터 시스템을 이용하여 환자별 시간 가변성 심혈관 정보를 결정하기 위한 방법은, 적어도 하나의 컴퓨터 시스템을 이용하여, 환자의 신체 구조의 기하 형태에 관한 시간 가변성 환자별 데이터를 서로 다른 시간에 수신하는 단계를 포함한다. 상기 방법은, 상기 적어도 하나의 컴퓨터 시스템을 이용하여, 환자별 데이터에 기초하여 환자의 신체 구조의 적어도 일부분을 나타내는 3차원 모델을 생성하는 단계를 또한 포함한다. 상기 방법은, 상기 적어도 하나의 컴퓨터 시스템을 이용하여, 환자의 신체 구조에 관한 물리학-기반 모델에 관한 정보와 상기 3차원 모델에 기초하여 환자의 신체 구조 내의, 시간에 따른 혈류 특성 변화에 관한 정보를 결정하는 단계를 더 포함한다.
다른 실시예에 따르면, 환자별 시간 가변성 심혈관 정보를 결정하기 위한 방법을 수행하기 위한 컴퓨터-실행가능 프로그래밍 명령을 지닌 컴퓨터 시스템 상에서 이용하기 위한 비-일시적 컴퓨터 판독가능 매체가 제공된다. 상기 방법은, 환자의 신체 구조의 기하 형태에 관한 시간 가변성 환자별 데이터를 서로 다른 시간에 수신하는 단계와, 환자별 데이터에 기초하여 환자의 신체 구조의 적어도 일부분을 나타내는 3차원 모델을 생성하는 단계와, 환자의 신체 구조에 관한 물리학-기반 모델에 관한 정보와 상기 3차원 모델에 기초하여 환자의 신체 구조 내의, 시간에 따른 혈류 특성 변화에 관한 정보를 결정하는 단계를 포함한다.
다른 실시예에 따르면, 환자의 심혈관 정보를 결정하기 위한 시스템은 적어도 하나의 컴퓨터 시스템을 포함하며, 상기 적어도 하나의 컴퓨터 시스템은, 환자의 신체 구조의 적어도 일부분의 기하 형태 및 적어도 하나의 물성에 관한 환자별 데이터를 수신하도록 구성된다. 상기 신체 구조는 혈관의 적어도 일부분을 포함한다. 상기 적어도 하나의 컴퓨터 시스템은, 환자별 데이터에 기초하여 환자의 신체 구조를 나타내는 3차원 모델을 생성하도록 구성되며, 환자의 생리학적 조건과 상기 3차원 모델에 기초하여 환자의 신체 구조 내의 혈류 특성에 관한 정보를 결정하도록 또한 구성된다. 상기 적어도 하나의 컴퓨터 시스템은 혈관 내의 플라크의 위치를 식별하도록 또한 구성된다.
다른 실시예에 따르면, 적어도 하나의 컴퓨터 시스템을 이용하여 환자의 심혈관 정보를 결정하기 위한 방법은, 적어도 하나의 컴퓨터 시스템을 이용하여, 환자의 신체 구조의 적어도 일부분의 기하 형태 및 적어도 하나의 물성에 관한 환자별 데이터를 수신하는 단계를 포함한다. 상기 신체 구조는 혈관의 적어도 일부분을 포함한다. 상기 방법은, 상기 적어도 하나의 컴퓨터 시스템을 이용하여, 환자별 데이터에 기초하여 환자의 신체 구조를 나타내는 3차원 모델을 생성하는 단계와, 상기 적어도 하나의 컴퓨터 시스템을 이용하여, 환자의 생리학적 조건과 상기 3차원 모델에 기초하여 환자의 신체 구조 내의 혈류 특성에 관한 정보를 결정하는 단계를 또한 포함한다. 상기 방법은, 상기 적어도 하나의 컴퓨터 시스템을 이용하여, 혈관 내의 플라크를 식별하는 단계를 더 포함한다.
다른 실시예에 따르면, 환자의 심혈관 정보를 결정하기 위한 방법을 수행하기 위한 컴퓨터-실행가능 프로그래밍 명령을 지닌 컴퓨터 시스템 상에서 이용하기 위한 비-일시적 컴퓨터 판독가능 매체가 제공된다. 상기 방법은, 환자의 신체 구조의 적어도 일부분의 기하 형태 및 적어도 하나의 물성에 관한 환자별 데이터를 수신하는 단계를 포함한다. 상기 신체 구조는 혈관의 적어도 일부분을 포함한다. 상기 방법은 환자별 데이터에 기초하여 환자의 신체 구조를 나타내는 3차원 모델을 생성하는 단계와, 환자의 생리학적 조건과 상기 3차원 모델에 기초하여 환자의 신체 구조 내의 혈류 특성에 관한 정보를 결정하는 단계와, 혈관 내의 플라크의 위치를 식별하는 단계를 또한 포함한다.
다른 실시예에 따르면, 환자의 심혈관 정보를 결정하기 위한 시스템은 적어도 하나의 컴퓨터 시스템을 포함하고, 상기 적어도 하나의 컴퓨터 시스템은, 환자의 신체 구조의 적어도 일부분의 기하 형태에 관한 환자별 데이터를 수신하도록 구성된다. 상기 신체 구조는 복수의 동맥의 적어도 일부분과, 상기 복수의 동맥의 적어도 일부분에 연결된 조직을 포함한다. 상기 적어도 하나의 컴퓨터 시스템은, 환자별 데이터에 기초하여 환자의 신체 구조를 나타내는 3차원 모델을 생성하도록 구성되고, 상기 조직을 나타내는 3차원 모델의 적어도 일부분을 세그먼트로 나누도록 구성되며, 환자의 생리학적 조건과 상기 3차원 모델에 기초하여 상기 세그먼트 중 적어도 하나와 연계된 혈류 특성에 관한 정보를 결정하도록 또한 구성된다.
다른 실시예에 따르면, 적어도 하나의 컴퓨터 시스템을 이용하여 환자의 심혈관 정보를 결정하기 위한 방법은, 적어도 하나의 컴퓨터 시스템을 이용하여, 환자의 신체 구조의 적어도 일부분의 기하 형태에 관한 환자별 데이터를 수신하는 단계를 포함한다. 상기 신체 구조는 복수의 동맥의 적어도 일부분과, 상기 복수의 동맥의 적어도 일부분에 연결된 조직을 포함한다. 상기 방법은, 상기 적어도 하나의 컴퓨터 시스템을 이용하여, 환자별 데이터에 기초하여 환자의 신체 구조를 나타내는 3차원 모델을 생성하는 단계와, 상기 적어도 하나의 컴퓨터 시스템을 이용하여, 증강 모델을 형성하도록 상기 3차원 모델을 연장하는 단계를 또한 포함한다. 상기 방법은, 상기 적어도 하나의 컴퓨터 시스템을 이용하여, 상기 조직을 나타내는 증강 모델의 적어도 일부분을 세그먼트로 나누는 단계와, 상기 적어도 하나의 컴퓨터 시스템을 이용하여, 환자의 생리학적 조건과 상기 증강 모델에 기초하여 상기 세그먼트 중 적어도 하나와 연계된 혈류 특성에 관한 정보를 결정하는 단계를 더 포함한다.
다른 실시예에 따르면, 환자의 심혈관 정보를 결정하기 위한 방법을 수행하기 위한 컴퓨터-실행가능 프로그래밍 명령을 지닌 컴퓨터 시스템 상에서 이용하기 위한 비-일시적 컴퓨터 판독가능 매체가 제공된다. 상기 방법은, 환자의 신체 구조의 적어도 일부분의 기하 형태에 관한 환자별 데이터를 수신하는 단계를 포함한다. 상기 신체 구조는 복수의 동맥의 적어도 일부분과, 상기 복수의 동맥의 적어도 일부분에 연결된 조직을 포함한다. 상기 방법은, 환자별 데이터에 기초하여 환자의 신체 구조를 나타내는 3차원 모델을 생성하는 단계와, 상기 조직을 나타내는 3차원 모델의 적어도 일부분을 세그먼트로 나누는 단계와, 상기 신체 구조에 관한 물리학-기반 모델과 상기 3차원 모델에 기초하여 세그먼트 중 적어도 하나와 연계된 혈류 특성에 관한 정보를 결정하는 단계를 또한 포함한다.
다른 실시예에 따르면, 환자의 심혈관 정보를 결정하기 위한 시스템은 적어도 하나의 컴퓨터 시스템을 포함하며, 상기 적어도 하나의 컴퓨터 시스템은, 환자의 뇌의 기하 형태에 관한 환자별 데이터를 수신하도록 구성된다. 상기 적어도 하나의 컴퓨터 시스템은, 환자별 데이터에 기초하여 환자의 뇌의 적어도 일부분을 나타내는 3차원 모델을 생성하도록 구성되고, 환자의 뇌에 관한 물리학-기반 모델과 상기 3차원 모델에 기초하여 환자의 뇌 내의 혈류 특성에 관한 정보를 결정하도록 또한 구성된다.
다른 실시예에 따르면, 적어도 하나의 컴퓨터 시스템을 이용하여 환자별 심혈관 정보를 결정하기 위한 방법은, 환자의 복수의 뇌동맥의 적어도 일부분의 기하 형태에 관한 환자별 데이터를 적어도 하나의 컴퓨터 시스템에 입력하는 단계를 포함한다. 상기 방법은, 상기 적어도 하나의 컴퓨터 시스템을 이용하여, 환자별 데이터에 기초하여 환자의 뇌동맥의 적어도 일부분을 나타내는 3차원 모델을 생성하는 단계와, 상기 적어도 하나의 컴퓨터 시스템을 이용하여, 환자의 뇌동맥에 관한 물리학-기반 모델과 상기 3차원 모델에 기초하여 환자의 뇌동맥 내의 혈류 특성에 관한 정보를 결정하는 단계를 또한 포함한다.
다른 실시예에 따르면, 환자별 심혈관 정보를 결정하기 위한 방법을 수행하기 위한 컴퓨터-실행가능 프로그래밍 명령을 지닌 적어도 하나의 컴퓨터 시스템 상에서 이용하기 위한 비-일시적 컴퓨터 판독가능 매체가 제공된다. 상기 방법은, 환자의 뇌의 기하 형태에 관한 환자별 데이터를 수신하는 단계와, 환자별 데이터에 기초하여 환자의 뇌의 적어도 일부분을 나타내는 3차원 모델을 생성하는 단계와, 환자의 뇌에 관한 물리학-기반 모델과 상기 3차원 모델에 기초하여 환자의 뇌 내의 혈류 특성에 관한 정보를 결정하는 단계를 포함한다.
추가적인 실시예 및 장점은 이어지는 상세한 설명에서 제시될 것이고, 부분적으로는 상세한 설명으로부터 명백할 것이며, 또는, 본 개시내용의 실시에 의해 학습될 수 있다. 이러한 실시예 및 장점은 아래 특히 지적되는 요소 및 조합을 이용하여 실현 및 획득될 수 있다.
본 명세서의 일부분을 구성하고 본 명세서에 포함되는 첨부 도면은, 여러 실시예들을 도해로 나타내고, 관련 설명과 함께, 발명의 원리를 설명한다.
도 1은 예시적인 실시예에 따라 환자별로 관상 동맥 혈류에 관한 다양한 정보를 제공하기 위한 시스템의 개략도이고,
도 2는 예시적인 실시예에 따라, 환자별로 혈류에 관한 다양한 정보를 제공하기 위한 방법의 순서도이며,
도 3은 도 2의 방법의 세부 단계들을 보여주는 순서도이고,
도 4는 예시적인 실시예에 따라, 환자로부터 비침습성으로 획득되는 이미징 데이터를 보여주며,
도 5는 도 4의 이미징 데이터를 이용하여 발생되는 예시적인 3차원 모델을 도시하고,
도 6은 제 1 초기 모델을 형성하기 위한 시드를 포함하는 도 4의 이미징 데이터의 슬라이스의 부분을 도시하며,
도 7은 도 6의 시드를 확장시킴으로써 형성되는 첫 번째 초기 모델의 일부분을 도시하고,
도 8은 예시적인 실시예에 따라, 트리밍된 고형 모델을 도시하며,
도 9는 환자가 휴식 상태일 때 예시적인 연산 FFR(cFFR)을 도시하고,
도 10은 환자가 최대 충혈 하에 있을 때 예시적인 cFFR을 도시하며,
도 11은 환자가 최대 운동 상태에 있을 때 예시적인 cFFR을 도시하고,
도 12는 예시적인 실시예에 따라, 집중 파라미터 모델을 형성하기 위해 제공되는 트리밍된 고형 모델의 일부분을 도시하며,
도 13은 집중 파라미터 모델을 형성하기 위해 제공되는, 도 12의 트리밍된 고형 모델에 대한 중심선의 일부분을 도시하고,
도 14는 집중 파라미터 모델을 형성하기 위해 제공되는, 도 12의 트리밍된 고형 모델에 기초하여 형성되는 세그먼트를 도시하며,
도 15는 집중 파라미터 모델을 형성하기 위해 제공되는 저항기에 의해 대체되는 도 14의 세그먼트를 도시하고,
도 16은 예시적인 실시예에 따라, 고형 모델의 유입 및 유출 경계에서 상류 및 하류 구조를 나타내는 예시적인 집중 파라미터 모델을 도시하며,
도 17은 도 8의 고형 모델에 기초하여 준비되는 3차원 메시를 도시하고,
도 18 및 도 19는 도 17의 3차원 메시의 부분도이며,
도 20은 개별 기준 라벨에 의해 식별되는 모델 상에 소정의 점을 갖는, 혈류 정보를 포함하는 환자 신체의 모델을 보여주며,
도 21은 도 20에서 식별되는 점들 중 일부에서 그리고 대동맥 내 시간에 따라 시뮬레이션된 혈압의 그래프이고,
도 22는 도 20에서 식별된 각각의 점에서 시간에 따른 시뮬레이션된 혈압의 그래프이며,
도 23은 예시적인 실시예에 따라 최종화된 리포트이고,
도 24는 예시적인 실시예에 따라, 특정 환자의 관상 동맥 혈류에 관한 다양한 정보를 제공하기 위한 방법의 순서도이며,
도 25는 예시적인 실시예에 따라, 좌전 하행(LAD) 동맥의 일부분과 LCX 동맥의 일부분을 광폭처리함으로써 생성되는 고형 모델에 기초하여 결정되는 수정 cFFR 모델을 도시하고,
도 26은 예시적인 실시예에 따라, LAD 동맥의 일부분과 좌회선(LCX) 동맥의 일부분을 광폭처리 후 수정된 시뮬레이션 혈류 모델의 예를 보여주며,
도 27은 예시적인 실시예에 따라, 차수 축소 모델을 이용하여 다양한 치료 옵션을 시뮬레이션하는 방법의 순서도이고,
도 28은 다른 예시적인 실시예에 따라 차수 축소 모델을 이용하여 다양한 처리 옵션을 시뮬레이션하기 위한 방법의 순서도이며,
도 29는 예시적인 실시예에 따라, 특정 환자의 심근 관류에 관한 다양한 정보를 제공하기 위한 방법의 순서도이고,
도 30은 다른 예시적인 실시예에 다라, 특정 환자의 심근 관류에 관한 다양한 정보를 제공하기 위한 방법의 순서도이며,
도 31은 예시적인 실시예에 따라, 심근 관류에 관한 다양한 정보를 제공하는 환자별 모델을 보여주고,
도 32는 추가의 예시적 실시예에 따라, 특정 환자의 심근 관류에 관한 다양한 정보를 제공하기 위한 방법의 순서도이며,
도 33은 혈관벽을 따라 축적되는 플라크의 단면도이고,
도 34는 예시적인 실시예에 따라, 플라크 취약성에 관한 다양한 정보를 제공하는 환자별 모델을 도시하며,
도 35는 예시적인 실시예에 따라, 특정 환자의 플라크 취약성, 심근 볼륨 위험, 및 심근 관류 위험의 평가에 관한 다양한 정보를 제공하기 위한 방법의 순서도이고,
도 36은 예시적인 실시예에 따라 도 35의 방법으로부터 얻는 정보를 보여주는 개략도이며,
도 37은 뇌동맥의 도면이고,
도 38은 예시적인 실시예에 따라, 특정 환자의 두개내 및 두개외 혈류에 관한 다양한 정보를 제공하기 위한 방법의 순서도이며,
도 39는 예시적인 실시예에 따라, 특정 환자의 뇌관류에 관한 다양한 정보를 제공하기 위한 방법의 순서도이고,
도 40은 다른 예시적인 실시예에 따라, 특정 환자의 뇌관류에 관한 다양한 정보를 제공하기 위한 방법의 순서도이며,
도 41은 추가의 예시적 실시예에 따라, 특정 환자의 뇌관류에 관한 다양한 정보를 제공하기 위한 방법의 순서도이고,
도 42는 예시적인 실시예에 따라, 특정 환자의 플라크 취약성, 뇌 볼륨 위험, 및 뇌관류 위험의 평가에 관한 다양한 정보를 제공하기 위한 방법의 순서도다.
이제 예시적인 실시예를 세부적으로 참조할 것이고, 그 예들이 첨부 도면에 제시된다. 가능하기만 하다면, 동일한 도면 부호는 도면 전체를 통해 동일 또는 유사 부분을 가리키는 데 사용될 것이다. 본 설명은 다음의 목차에 따라 조직된다.
I. 개요
II. 환자별 신체 데이터의 획득 및 사전처리
III. 획득한 신체 데이터에 기초한 3차원 모델 생성
IV. 분석 모델 준비 및 경계 조건 결정
A. 분석 모델 준비
B. 경계 조건 결정
i. 차수 축소 모델 결정
ii. 예시적인 집중 파라미터 모델
C. 3차원 메시 생성
V. 연산 분석 수행 및 결과 출력
A. 연산 분석 수행
B. 혈압, 혈류, 및 cFFR의 결과 디스플레이
C. 결과 확인
D. 관상 동맥 혈류 정보 제공 시스템 및 방법의 다른 실시예
VI. 환자별 치료 계획 제공
A. 서로 다른 처리 옵션의 비교를 위해 차수 축소 모델 이용
VII. 다른 결과
A. 심근 관류 평가
B. 플라크 취약성 평가
VIII. 다른 응용예
A. 두개내 및 두개외 혈류 모델링
i. 뇌 관류 평가
ii. 플라크 취약성 평가
I. 개요
예시적인 실시예에서, 방법 및 시스템은 비침습성으로 환자로부터 불러들인 정보를 이용하여 특정 환자의 혈류에 관한 다양한 정보를 결정한다. 결정된 정보는 환자의 관상 동맥 구조(coronary vasculature) 내의 혈류에 관련될 수 있다. 대안으로서, 아래에서 추가적으로 상세히 설명되는 바와 같이, 결정된 정보는 경동맥, 말초부, 복부, 신장, 및 뇌혈관계와 같은 환자의 맥관 구조의 다른 영역의 혈류에 관계할 수 있다. 관상 동맥 구조는 대동맥으로부터 소동맥, 소정맥, 정맥, 등까지 범위의 복합 혈관계를 포함한다. 관상 동맥 구조는 심장을 향해, 그리고 심장 내에서 혈액을 순환시키고, 복수의 주요 관상 동맥(4)(도 5)(가령, 좌전하행지(left anterior descending(LAD) artery), 좌회선지 관상 동맥(left circumflex(LCX) artery), 우 관상 동맥(right coronary(RCA) artery), 등)에 혈액을 공급하는 대동맥(2)(도 5)을 포함하며, 이는 대동맥(2) 및 주요 관상 동맥(4)으로부터 하류에 있는 다른 타입의 혈관 또는 동맥의 지류로 더 나누어질 수 있다. 따라서, 예시적인 방법 및 시스템은 대동맥, 주요 관상 동맥, 및/또는 주요 관상 동맥으로부터 하류에 위치한 관상 동맥 또는 혈관 내의 혈류에 관한 다양한 정보를 결정할 수 있다. 대동맥 및 관상 동맥(및 이로부터 연장된 지류)가 아래에서 논의되지만, 개시되는 방법 및 시스템은 다른 타입의 용기에도 또한 적용될 수 있다.
예시적인 실시예에서, 개시되는 방법 및 시스템에 의해 결정되는 정보는 대동맥, 주요 관상 동맥, 및/또는 주요 관상 동맥 하류의 다른 관상 동맥 또는 혈관 내 다양한 위치에서의 혈류 속도, 혈압(또는 그 비율), 유량, 및 FFR과 같은, 다양한 혈류 특성 또는 파라미터를 포함할 수 있지만, 이에 제한되지 않는다. 이 정보는 병변이 기능적으로 중요한 지 및/또는 병변의 치료 여부를 결정하는 데 사용될 수 있다. 이 정보는 환자로부터 비침습성으로 얻은 정보를 이용하여 결정될 수 있다. 그 결과, 병변의 치료 여부에 관한 결정은 침습성 과정과 관련된 위험 및 비용없이 이루어질 수 있다.
도 1은 예시적인 실시예에 따라, 특정 환자의 관상 동맥 혈류에 관한 다양한 정보를 제공하기 위한 시스템의 형태를 도시한다. 아래에서 더욱 상세하게 설명되는 바와 같이 환자로부터 비침습성으로 얻은 데이터를 이용하여 환자 신체의 3차원 모델(10)이 생성될 수 있다. 다른 환자별 정보도 비침습성으로 얻을 수 있다. 예시적인 실시예에서, 3차원 모델(10)에 의해 표현되는 환자 신체 부분은 대동맥의 적어도 일부분과, 대동맥에 연결된 주요 관상 동맥(및 여기서부터 연장되거나 발원되는 지류)의 원위부를 포함할 수 있다.
관상 동맥 혈류에 관한 다양한 생리학적 법칙 또는 관계(20)가, 예를 들어, 아래에서 더욱 상세하게 설명되는 바와 같이 실험 데이터로부터, 유추될 수 있다. 3차원 신체 모델(10) 및 유추되는 생리학적 법칙(20)을 이용하여, 아래에서 더욱 상세하게 설명되는 바와 같이, 관상 동맥 혈류에 관한 복수의 방정식(30)이 결정될 수 있다. 예를 들어, 방정식(30)은 임의의 수치 해법, 예를 들어, 유한 차법, 유한 체적법, 스펙트럼법, 격자 볼츠만법, 입자-기반법, 레벨 세트법, 유한 요소법, 등을 이용하여 결정 및 해결될 수 있다. 방정식(30)은 모델(10)에 의해 표현되는 신체 구조 내 다양한 지점에서 환자 신체의 관상 동맥 혈류에 관한 정보(가령, 압력, 속도, FFR, 등)를 결정하기 위해 해를 얻을 수 있다.
방정식(30)은 컴퓨터(40)를 이용하여 해를 구할 수 있다. 해를 구한 방정식에 기초하여, 컴퓨터(40)는 모델(10)에 의해 표현되는 환자 신체의 혈류에 관한 정보를 표시하는 하나 이상의 이미지 또는 시뮬레이션을 출력할 수 있다. 예를 들어, 이미지는 아래에서 더 상세히 설명되는 바와 같이 시뮬레이션된 혈압 모델(50), 시뮬레이션된 혈류 또는 속도 모델(52), 연산 FFR(cFFR) 모델(54), 등을 포함할 수 있다. 시뮬레이션된 혈압 모델(50), 시뮬레이션된 혈류 모델(52), 및 cFFR 모델(54)은 모델(10)에 의해 표현되는 환자 신체의 3개의 차원(dimension)을 따라 다양한 위치에서 각자의 압력, 속도, 및 cFFR에 관한 정보를 제공한다. cFFR은 예를 들어, 아데노신 정맥 주사에 의해 통상적으로 유도되는, 관상 동맥 혈류 증가 조건 하에, 가령, 모델(10)의 유입 경계에서, 대동맥 내 혈압으로 모델(10) 내 특정 위치에서의 혈압을 나눈 비로 연산될 수 있다.
예시적인 실시예에서, 컴퓨터(40)는 프로세서, 컴퓨터 시스템, 등에 의해 실행될 때, 환자의 혈류에 관한 다양한 정보를 제공하기 위해 여기서 설명되는 임의의 작용들을 수행할 수 있는 명령들을 기록한 하나 이상의 비-일시적 컴퓨터-판독형 기록 매체를 포함할 수 있다. 컴퓨터(40)는 데스크탑 또는 휴대형 컴퓨터, 워크스테이션, 서버, PDA, 또는 그외 다른 컴퓨터 시스템을 포함할 수 있다. 컴퓨터(40)는 프로세서, ROM, RAM, 주변 장치(가령, 입력 장치, 출력 장치, 저장 장치, 등)들을 연결하기 위한 입/출력(I/O) 어댑터, 키보드, 마우스, 터치 스크린, 음성 입력, 및/또는 다른 장치와 같은 입력 장치를 연결하기 위한 사용자 인터페이스 어댑터, 컴퓨터(40)를 네트워크에 연결하기 위한 통신 어댑터, 컴퓨터(40)를 디스플레이, 등에 연결하기 위한 디스플레이 어댑터를 포함할 수 있다. 예를 들어, 디스플레이는 시뮬레이션된 혈압 모델(50), 시뮬레이션된 혈류 모델(52), 및/또는 cFFR 모델(54)과 같은, 방정식(30)들의 해를 구함으로써 발생되는 임의의 이미지 및/또는 3차원 모델(10)을 디스플레이하는 데 사용될 수 있다.
도 2는 다른 예시적인 실시예에 따른 특정 환자의 혈류에 관한 다양한 정보를 제공하기 위한 방법의 형태를 도시한다. 이 방법은 환자 신체(가령, 대동맥의 적어도 일부분과, 대동맥에 연결되는 주요 관상 동맥의 근위부(및 여기서부터 연장되는 지류))에 관한 정보와 같은 환자별 신체 데이터를 획득하는 단계와, 데이터를 사전처리하는 단계(단계100)를 포함할 수 있다. 환자별 신체 데이터는 아래 설명되는 바와 같이, 예를 들어, CCTA에 의해, 비침습성으로 얻을 수 있다.
환자 신체의 3차원 모델은 확보한 신체 데이터에 기초하여 생성될 수 있다(단계(200)). 예를 들어, 3차원 모델은 도 1과 연계하여 앞서 설명한 환자 신체의 3차원 모델(10)일 수 있다.
3차원 모델의 분석이 준비되고, 경계 조건이 결정될 수 있다(단계(300)). 예를 들어, 도 1과 연계하여 앞서 설명한 환자 신체의 3차원 모델(100)이 유한 메시로, 예를 들어, 유한 요소 또는 유한 체적 메시로, 트리밍 및 개별화될 수 있다. 체적 메시는 도 1과 연계하여 앞서 설명한 방정식(30)을 발생시키는 데 사용될 수 있다.
경계 조건은 도 1과 연계하여 앞서 설명한 방정식(30)에 또한 할당될 수 있고 통합될 수 있다. 경계 조건은 예를 들어, 유입 경계(322)(도 8), 유출 경계(324)(도 8), 혈관벽 경계(326)(도 8), 등과 같은 경계에서 3차원 모델(10)에 관한 정보를 제공한다. 유입 경계(322)는 대동맥 근부 근처의 대동맥의 일 단부(가령, 도 16에 도시되는 단부(A))에서와 같이 3차원 모델의 신체 내로 혈류를 지향시키는 경계를 포함할 수 있다. 각각의 유입 경계(322)에는, 심장 모델 및/또는 집중 파라미터 모델을 경계, 등에 결합시킴으로써, 예를 들어, 속도, 유량, 압력, 또는 다른 특성에 대한 지정 값 또는 필드가 할당될 수 있다. 유출 경계(324)는 대동맥궁 근처의 대동맥의 일 단부(예를 들어, 도 16에 도시되는 단부(B))와, 주요 관상 동맥 및 이로부터 분리되는 지류의 하류 단부(가령, 도 16에 도시되는 단부(a-m))와 같이, 3차원 모델의 신체로부터 외향으로 유동을 지향시키는 경계를 포함할 수 있다. 각각의 유출 경계는 아래 상세히 설명되는 바와 같이, 예를 들어, 집중 파라미터 또는 분배(가령, 1차원 파동 전파) 모델을 결합시킴으로써, 할당될 수 있다. 유입 및/또는 유출 경계 조건에 대한 기지정 값들은 심박출량(심장으로부터 혈류의 체적), 혈압, 심근 질량(myocardial mass), 등과 같은 그러나 이에 제한되지 않는, 환자의 생리적 특성을 비침습성으로 측정함으로써 결정될 수 있다. 혈관벽 경계는 대동맥, 주요 관상 동맥, 및/또는 3차원 모델(10)의 다른 관상 동맥 또는 혈관의 물리적 경계를 포함할 수 있다.
연산 분석은 환자에 대한 혈류 정보를 결정하기 위해 준비된 3차원 모델 및 결정된 경계 조건을 이용하여 수행될 수 있다(단계(400)). 예를 들어, 연산 분석은 시뮬레이션된 혈압 모델(50), 시뮬레이션된 혈류 모델(52), 및/또는 cFFR 모델(54)과 같이, 도 1과 연계하여 앞서 설명된 이미지를 생성하기 위해 도 1과 연계하여 앞서 설명한 컴퓨터(40)를 이용하여 방정식(30)과 함께 수행될 수 있다.
이 방법은 결과를 이용하여 환자별 치료 옵션을 제공하는 단계(500)를 또한 포함할 수 있다. 예를 들어, 단계(200)에서 생성된 3차원 모델(10) 및/또는 단계(300)에서 할당된 경계 조건은 3차원 모델(10)로 표현되는 관상 동맥 중 하나에서의 심혈관용 스텐트를 배치하거나 다른 치료 옵션을 적용하는 것과 같이, 하나 이상의 치료를 모델링하도록 조정될 수 있다. 그 후, 혈압 모델(50), 혈류 모델(52), 및/또는 cFFR 모델(54)의 업데이트된 버전과 같은, 새 이미지를 생성하기 위해 단계(400)에서 앞서 설명한 바와 같이 연산 분석이 수행될 수 있다. 이러한 새 이미지는 치료 옵션이 채택될 경우 혈류 속도 및 혈압의 변화를 결정하는 데 사용될 수 있다.
여기서 개시되는 시스템 및 방법은, 관상 동맥 내 혈류를 정량화하고 관상 동맥 질환의 기능적 중요도를 평가하기 위한 비침습성 수단을 제공하도록 의사가 사용하는 소프트웨어 툴 내로 통합될 수 있다. 추가적으로, 의사는 소프트웨어 툴을 이용하여 관상 동맥 혈류에 대한 내과적, 인터벤션적, 및/또는 외과적 치료의 효과를 예측할 수 있다. 소프트웨어 툴은 목의 동맥(가령, 경동맥), 머리의 동맥(가령, 뇌동맥), 흉부 동맥, 복부의 동맥(가령, 복부 대동맥 및 그 지류), 팔의 동맥, 또는 다리의 동맥(가령, 넙다리 동맥 및 슬와동맥)을 포함한 심장혈관계의 다른 부분의 질환을 예방, 진단, 관리, 및/또는 치료할 수 있다. 소프트웨어 툴은 환자에 대한 개인별 최적화된 요법을 의사가 발전시킬 수 있도록 대화형일 수 있다.
예를 들어, 소프트웨어 툴은 의사 또는 다른 사용자에 의해 사용되는 도 1에 도시되는 컴퓨터(40)와 같은 컴퓨터 시스템 내에 적어도 부분적으로 통합될 수 있다. 컴퓨터 시스템은 환자로부터 비침습성으로 얻은 데이터(예를 들어, 3차원 모델(10)을 생성하는 데 사용되는 데이터, 경계 조건을 적용하는 데, 또는, 연산 분석을 수행하는 데 사용되는 데이터, 등)를 수신할 수 있다. 예를 들어, 데이터는 의사에 의해 입력될 수 있고, 또는, 방사선과 또는 다른 메디컬 랩(medical lab)과 같이, 이러한 데이터에 접근 및 이러한 데이터를 제공할 수 있는 다른 소스로부터 수신될 수 있다. 데이터는 네트워크, 또는, 데이터 통신을 위한 다른 시스템을 통해, 또는, 직접 컴퓨터 시스템 내로 전송될 수 있다. 소프트웨어 툴은 시뮬레이션된 혈압 모델(50), 시뮬레이션된 혈류 모델(52), 및/또는 cFFR 모델(54)과 같이, 도 1과 연계하여 앞서 설명한 방정식(30)의 해를 구함으로써 결정되는, 3차원 모델(10) 또는 다른 모델/메시 및/또는 임의의 시뮬레이션 또는 다른 결과를 생성 및 디스플레이하기 위해 데이터를 이용할 수 있다. 따라서, 소프트웨어 툴은 단계(100-500)를 수행할 수 있다. 단계(500)에서, 의사는 가능한 치료 옵션을 선택하기 위해 컴퓨터 시스템에 추가적인 입력을 제공할 수 있고, 컴퓨터 시스템은 선택된 치료 옵션에 기초하여 새로운 시뮬레이션을 의사에게 디스플레이할 수 있다. 더욱이, 도 2에 도시되는 각각의 단계(100-500)는 별개의 소프트웨어 패키지 또는 모듈을 이용하여 수행될 수 있다.
대안으로서, 소프트웨어 툴은 웹 기반 서비스 또는 다른 서비스(가령, 의사와는 다른 별도의 실체에 의해 제공되는 서비스)의 일부분으로 제공될 수 있다. 서비스 제공자는, 예를 들어, 웹-기반 서비스를 운영할 수 있고, 네트워크를 통해, 또는 컴퓨터 시스템 사이에서 데이터를 통신할 수 있는 다른 방법을 통해, 의사 또는 다른 사용자에게 접근가능한 웹 포털 또는 다른 웹-기반 애플리케이션을 제공할 수 있다(가령, 서비스 제공자에 의해 운영되는 서버 또는 다른 컴퓨터 시스템 상에서 구동될 수 있다). 예를 들어, 환자로부터 비침습성으로 얻은 데이터가 서비스 제공자에게 제공될 수 있고, 서비스 제공자는 이 데이터를 이용하여, 시뮬레이션된 혈압 모델(50), 시뮬레이션된 혈류 모델(52), 및/또는 cFFR 모델(54)과 같이, 도 1과 연계하여 앞서 설명한 방정식(30)의 해를 구함으로써 결정되는, 3차원 모델(10) 또는 다른 모델/메시, 및/또는 임의의 시뮬레이션 또는 다른 결과를 생성할 수 있다. 그 후, 웹-기반 서비스는 3차원 모델(10) 또는 다른 모델/메시, 및/또는 시뮬레이션에 관한 정보를 송신하여, 3차원 모델(10) 및/또는 시뮬레이션이 의사의 컴퓨터 시스템 상에서 의사에게 디스플레이될 수 있게 된다. 따라서, 웹-기반 서비스는 환자별 정보를 제공하기 위해 아래 설명되는 다른 임의의 단계들과 단계(100-500)를 수행할 수 있다. 단계(500)에서, 의사는 예를 들어, 가능한 치료 옵션을 선택하거나 연산 분석에 대해 다른 조정을 행하는 등의, 추가적인 입력을 제공할 수 있고, 이러한 입력은 (가령, 웹 포털을 통해) 서비스 제공자에 의해 운영되는 컴퓨터 시스템에 전송될 수 있다. 웹-기반 서비스는 선택된 가능한 치료 옵션에 기초하여 새로운 시뮬레이션 또는 다른 결과를 생성할 수 있고, 새 시뮬레이션이 의사에게 디스플레이될 수 있도록 새로운 시뮬레이션에 관한 정보를 의사에게 다시 전송할 수 있다.
여기서 설명되는 단계들 중 하나 이상은 한 명 이상의 운영자인 사람(가령, 심장병 전문의 또는 다른 의사, 환자, 웹-기반 서비스 또는 제 3자에 의해 제공되는 다른 서비스를 제공하는 서비스 제공자의 고용인, 타 사용자, 등), 또는, 데스크탑 또는 휴대형 컴퓨터, 워크스테이션, 서버, PDA, 등과 같이, 이러한 사람에 의해 사용되는 하나 이상의 컴퓨터 시스템에 의해 수행될 수 있다. 컴퓨터 시스템은 네트워크를 통해, 또는, 데이터를 통신하는 다른 방법을 통해 연결될 수 있다.
도 3은 특정 환자의 혈류에 관한 다양한 정보를 제공하기 위한 예시적인 방법의 추가적인 형태를 보여준다. 도 3에 도시되는 형태는 웹-기반 서비스의 일부분으로, 및/또는 컴퓨터 시스템 내로 적어도 부분적으로 통합될 수 있는 소프트웨어 툴 내로 통합될 수 있다.
II. 환자별 신체 데이터의 획득 및 사전처리
도 2에 도시되는 단계(100)와 연계하여 앞서 설명한 바와 같이, 예시적인 방법은 환자의 심장에 관한 정보와 같이, 환자별 신체 데이터를 획득하고 데이터를 사전처리하는 단계를 포함할 수 있다. 예시적인 실시예에서, 단계(100)는 다음의 단계들을 포함할 수 있다.
최초에, 환자가 선택될 수 있다. 예를 들어, 흉부통, 심장 마비, 등과 같은 관상 동맥 질환과 관련된 징후를 환자가 나타낼 경우, 환자의 관상 동맥 혈류에 관한 정보가 요망됨을 의사가 결정할 때 의사에 의해 환자가 선택될 수 있다.
환자 대동맥의 적어도 일부분, 대동맥에 연결된 주요 관상 동맥(및 이로부터 연장되는 지류)의 근위부, 및 심근과 같이, 환자 심장의 기하 형태에 관한 데이터와 같은, 환자별 신체 데이터를 얻을 수 있다. 환자별 신체 데이터는 예를 들어, 비침습성 이미징법을 이용하여, 비침습성으로 얻을 수 있다. 예를 들어, CCTA는 심근, 대동맥, 주요 관상 동맥, 및 이에 연결된 다른 혈관과 같은 구조의 이미지를 보고 생성하기 위해 사용자가 CT 스캐너를 작동시키는 이미징법이다. CCTA 데이터는, 예를 들어, 심장 주기에 따른 혈관 형상 변화를 보여주기 위해, 시간에 따라 변할 수 있다. CCTA는 환자 심장의 이미지를 생성하는 데 사용될 수 있다. 64-슬라이스 CCTA 데이터(예를 들어, 환자 심장의 64 슬라이스에 관한 데이터)를 얻을 수 있고, 3차원 이미지로 조합될 수 있다. 도 4는 64-슬라이드 CCTA 데이터에 의해 생성되는 3차원 이미지(120)의 일례를 보여준다.
대안으로서, 자기 공명 이미징(MRI) 또는 초음파(US)와 같은 다른 비침습성 이미징법, 또는, 디지털 감산 혈관 조영술(DSA)와 같은 침습성 이미징법을 이용하여 환자 신체 구조의 이미지를 생성할 수 있다. 이미징법은 신체 구조를 식별할 수 있도록 조영제 정맥 주사를 환자에게 투여하는 과정을 포함할 수 있다. (예를 들어, CCTA, MRI, 등에 의해 제공되는) 결과적인 이미징 데이터는 방사선과 또는 심장 전문의와 같은 제 3의 판매자에 의해, 환자의 의사, 등에 의해 제공될 수 있다.
다른 환자별 신체 데이터는 환자로부터 비침습성으로 또한 결정될 수 있다. 예를 들어, 환자의 혈압, 기준 심박동수, 키, 체중, 헤마토크릿(hematocrit), 박출량, 등과 같은 생리학적 데이터가 측정될 수 있다. 혈압은 최대 혈압(수축기압) 및 최소 혈압(확장기압)과 같이, 환자의 상완동맥(가령, 혈압 커프 이용)의 혈압일 수 있다.
앞서 설명한 바와 같이 얻는 환자별 신체 데이터는 보안 통신 라인을 통해(예를 들어, 네트워크를 통해) 전달될 수 있다. 예를 들어, 데이터는 단계(400)에서 앞서 설명한 연산 분석과 같은, 연산 분석을 수행하기 위해 서버 또는 다른 컴퓨터 시스템에 전달될 수 있다. 예시적인 실시예에서, 데이터는 웹 기반 서비스를 제공하는 서비스 제공자에 의해 작동되는 서버 또는 다른 컴퓨터 시스템에 전달될 수 있다. 대안으로서, 데이터는 환자의 의사 또는 다른 사용자에 의해 작동되는 컴퓨터 시스템에 전달될 수 있다.
도 3을 다시 참조하면, 전달된 데이터는 데이터가 수용가능한지 여부를 결정하기 위해 리뷰될 수 있다(단계(102)). 이러한 결정은 사용자에 의해 및/또는 컴퓨터 시스템에 의해 수행될 수 있다. 예를 들어, 전달된 데이터(가령, CCTA 데이터 및 다른 데이터)는 사용자에 의해 및/또는 컴퓨터 시스템에 의해 확인되어, CCTA 데이터가 완전한지(예를 들어, 대동맥 및 주요 관상 동맥의 충분한 부분을 포함하는 )와 정확한 환자에 대응하는지 여부를 결정할 수 있다.
전달된 데이터(가령, CCTA 데이터 및 다른 데이터)는 또한 사전처리 및 평가될 수 있다. 사전처리 및/또는 평가는 사용자에 의해 및/또는 컴퓨터 시스템에 의해 수행될 수 있고, 예를 들어, CCTA 데이터의 오등록, 불일치, 또는 블러링(blurring), CCTA 데이터에 도시되는 스텐트 확인, 혈관의 내강의 가시도를 방해할 수 있는 타 아티팩트의 확인, 환자의 신체 구조(예를 들어, 대동맥, 주요 관상 동맥, 및 타 혈관)와 다른 부분 사이의 충분한 콘트라스트의 확인, 등을 포함할 수 있다.
전달된 데이터는 앞서 설명한 확인, 사전처리, 및/또는 평가에 기초하여 데이터가 수용가능한지 여부를 결정하도록 평가될 수 있다. 앞서 설명한 확인, 사전처리, 및/또는 평가 중, 사용자 및/또는 컴퓨터 시스템은 데이터의 소정의 에러 또는 문제를 교정할 수 있다. 그러나, 에러나 문제가 너무 많을 경우, 데이터는 수용불가능하다고 결정될 수 있고, 사용자 및/또는 컴퓨터 시스템은 전달된 데이터의 거절을 필요로하는 에러 또는 문제를 설명하는 거절 리포트를 발생시킬 수 있다. 선택적인 사항으로서, 새로운 CCTA 스캔이 수행될 수 있고, 및/또는, 앞서 설명한 생리학적 데이터가 환자로부터 다시 측정될 수 있다. 전달된 데이터가 수용가능하다고 결정될 경우, 방법은 아래 설명된 단계(202)로 진행될 수 있다.
따라서, 앞서 설명한 도 3에 도시되는 단계(102)는 도 2의 단계(100)의 세부단계로 간주될 수 있다.
III. 획득한 신체 데이터에 기초한 3차원 모델 생성
도 2에 도시되는 단계(200)와 연계하여 앞서 설명한 바와 같이, 예시적인 방법은 획득한 신체 데이터에 기초하여 3차원 모델을 생성하는 단계를 포함할 수 있다. 예시적인 실시예에서, 단계(200)는 다음의 단계들을 포함할 수 있다.
CCTA 데이터를 이용하여, 관상 동맥 혈관의 3차원 모델이 발생될 수 있다. 도 5는 CCTA 데이터를 이용하여 발생된 3차원 모델(220)의 표면의 예를 보여준다. 예를 들어, 모델(220)은 가령, 대동맥의 적어도 일부분과, 대동맥의 해당 부분에 연결되는 하나 이상의 주요 관상 동맥의 적어도 하나의 말단부와, 상기 주요 관상 동맥에 연결된 하나 이상의 지류의 적어도 하나의 근위부, 등을 포함할 수 있다. 대동맥, 주요 관상 동맥, 및/또는 지류의 모델링된 부분들은 어떤 부분도 모델(220)의 나머지로부터 단절되지 않도록 트리-형태로 상호연결될 수 있다. 모델(220)을 형성하는 프로세스는 분절(segmentation)로 불린다.
도 3을 다시 참조하면, 컴퓨터 시스템은 대동맥(단계(202)) 및 심근(또는 다른 심장 조직, 또는, 모델링될 동맥에 연결되는 다른 조직)(단계(204))의 적어도 일부분을 자동적으로 분절할 수 있다. 컴퓨터 시스템은 대동맥에 연결된 주요 관상 동맥의 적어도 일부분을 또한 분절할 수 있다. 예시적인 실시예에서, 컴퓨터 시스템은 사용자로 하여금 주요 관상 동맥을 분절하기 위해, 하나 이상의 관상 동맥 근부 또는 시작점을 선택하게 할 수 있다(단계(206)).
분절을 다양한 방법을 이용하여 수행될 수 있다. 분절은 사용자 입력에 기초하여, 또는 사용자 입력없이 컴퓨터 시스템에 의해 자동적으로 수행될 수 있다. 예를 들어, 예시적인 실시예에서, 사용자는 제 1 최초 모델을 발생시키기 위해 컴퓨터 시스템에 입력을 제공할 수 있다. 예를 들어, 컴퓨터 시스템은 CCTA 데이터로부터 생성된 3차원 이미지(120)(도 4) 또는 그 슬라이스를 사용자에게 디스플레이할 수 있다. 3차원 이미지(120)는 가변적인 광 세기 부분을 포함할 수 있다. 예를 들어, 밝은 영역은 대동맥, 주요 관상 동맥, 및/또는 지류의 내강을 표시할 수 있다. 어두운 영역은 심근 및 환자 심장의 타 조직을 표시할 수 있다.
도 6은 사용자에게 디스플레이될 수 있는 3차원 이미지(120)의 슬라이스(222)의 일부분을 도시하고, 슬라이스(222)는 상대적 밝기의 영역(224)을 포함할 수 있다. 컴퓨터 시스템은 하나 이상의 시드(226)를 더함으로써 상대적 밝기의 영역(224)을 사용자로 하여금 선택하게 할 수 있고, 시드(226)는 주요 관상 동맥을 분절하기 위한 관상 동맥 근부 또는 시작점으로 작용할 수 있다. 사용자의 명령시, 컴퓨터 시스템은 시드(226)를 시작점으로 이용하여 제 1 최초 모델을 형성할 수 있다. 사용자는 대동맥 및/또는 개별 주요 관상 동맥 중 하나 이상에 시드(226)를 더할 수 있다. 선택적 사항으로서, 사용자는 주요 관상 동맥에 연결된 지류 중 하나 이상에 시드(226)를 또한 더할 수 있다. 대안으로서, 컴퓨터 시스템은 예를 들어, 추출된 중심선 정보를 이용하여, 자동적으로 시드를 배치할 수 있다. 컴퓨터 시스템은 시드(226)가 배치된 곳에서 이미지(120)의 세기 값을 결정할 수 있고, 동일 세기 값을 갖는(또는, 선택된 초기 값을 중심으로 하는 세기값들의 범위 또는 임계값 내의) 이미지(120)의 부분들을 따라 시드(226)를 확장함으로써 제 1 최초 모델을 형성할 수 있다. 따라서, 이 분절 방법은 "임계값-기반 분절"로 불릴 수 있다.
도 7은 도 6의 시드(226)를 확장함으로써 형성되는 제 1 최초 모델의 일부분(230)을 도시한다. 따라서, 사용자는 컴퓨터 시스템이 제 1 최초 모델의 형성을 시작하기 위한 시작점(226)으로 시드(226)를 입력한다. 이 과정은 관심 대상인 전체 부분, 예를 들어, 대동맥 및/또는 주요 관상 동맥의 부분들이 분절될 때까지 반복될 수 있다. 대안으로서, 제 1 최초 모델은 사용자 입력없이 컴퓨터 시스템에 의해 발생될 수 있다.
대안으로서, 분절이, "에지-기반 분절"이라 불리는 방법을 이용하여 수행될 수 있다. 예시적인 실시예에서, 임계값-기반 분절법 및 에지-기반 분절법이 아래 설명되는 바와 같이 수행되어 모델(220)을 형성할 수 있다.
에지-기반 분절법을 이용하여 제 2 최초 모델이 형성될 수 있다. 이 방법을 이용하면, 대동맥 및/또는 주요 관상 동맥의 내강 에지의 위치가 파악될 수 있다. 예를 들어, 예시적인 실시예에서, 사용자는 제 2 최초 모델을 발생시키기 위해, 앞서 설명한 바와 같은 시드(226)를 컴퓨터 시스템에 입력으로 제공할 수 있다. 컴퓨터 시스템은 에지에 도달할 때까지 이미지(120)의 부분을 따라 시드(226)를 팽창시킬 수 있다. 내강 에지의 위치가, 예를 들어, 사용자에 의해 시각적으로, 및/또는 컴퓨터 시스템에 의해(가령, 설정 임계치보다 높은 세기값의 변화가 있는 위치에서), 파악될 수 있다. 에지-기반 분절법은 컴퓨터 시스템 및/또는 사용자에 의해 수행될 수 있다.
심근 또는 타 조직은 단계(204)에서 CCTA 데이터에 기초하여 또한 분절될 수 있다. 예를 들어, CCTA 데이터는 가령, 좌심실 및/또는 우심실과 같은 심근의 내측 및 외측 표면의 위치를 결정하기 위해 분석될 수 있다. 표면의 위치는 CCTA 데이터 내 심장의 타 구조에 비교할 때 심근의 콘트라스트(가령, 상대적 어둡기 및 밝기)에 기초하여 결정될 수 있다. 따라서, 심근의 기하형태가 결정될 수 있다.
대동맥, 심근, 및/또는 주요 관상 동맥의 분절은, 필요할 경우, 리뷰 및/또는 교정될 수 있다(단계(208)). 리뷰 및/또는 교정은 컴퓨터 시스템에 의해 및/또는 사용자에 의해 수행될 수 있다. 예를 들어, 예시적인 실시예에서, 컴퓨터 시스템은 분절을 자동적으로 리뷰할 수 있고, 사용자는 에러가 있을 경우, 예를 들어, 모델(220) 내 대동맥, 심근, 및/또는 주요 관상 동맥 중 임의의 부분이 없거나 부정확할 경우, 분절을 수동으로 교정할 수 있다.
예를 들어, 앞서 설명된 제 1 및 제 2 최초 모델은 대동맥 및/또는 주요 관상 동맥의 분절이 정확함을 보장하기 위해 비교될 수 있다. 제 1 및 제 2 최초 모델 간에 차이가 있는 임의의 영역들이 비교되어 분절을 비교할 수 있고, 모델(220)을 형성할 수 있다. 예를 들어, 모델(220)은 제 1 및 제 2 최초 모델 사이의 평균일 수 있다. 대안으로서, 앞서 설명한 분절법 중 단 하나만이 수행될 수 있고, 이 방법에 의해 형성된 최초 모델이 모델(220)로 사용될 수 있다.
심근 질량이 연산될 수 있다(단계(240)). 이 연산은 컴퓨터 시스템에 의해 수행될 수 있다. 예를 들어, 심근 체적은 앞서 설명한 바와 같이 결정되는 심근의 표면 위치에 기초하여 연산될 수 있고, 연산된 심근 체적을 심근 밀도와 곱하여, 심근 질량을 연산할 수 있다. 심근 밀도는 미리 설정될 수 있다.
모델(220)(도 5)의 다양한 혈관(가령, 대동맥, 주요 관상 동맥, 등)의 중심선이 결정될 수 있다(단계(242)). 예시적인 실시예에서, 이러한 결정은 컴퓨터 시스템에 의해 자동적으로 수행될 수 있다.
단계(242)에서 결정된 중심선은, 필요할 경우, 리뷰 및/또는 교정될 수 있다(단계(244)). 리뷰 및/또는 교정은 컴퓨터 시스템에 의해 및/또는 사용자에 의해 수행될 수 있다. 예를 들어, 예시적인 실시예에서, 컴퓨터 시스템은 중심선을 자동적으로 리뷰할 수 있고, 사용자는 에러가 존재할 경우, 예를 들어, 중심선이 없거나 부정확할 경우, 중심선을 수동으로 교정할 수 있다.
(혈관의 협폭화를 야기하는) 칼슘 또는 플라크가 검출될 수 있다(단계(246)). 예시적인 실시예에서, 컴퓨터 시스템은 플라크를 자동적으로 검출할 수 있다. 예를 들어, 플라크는 3차원 이미지(120)에서 검출될 수 있고, 모델(220)로부터 제거될 수 있다. 플라크는 대동맥, 주요 관상 동맥 및/또는 지류의 내강보다 더 밝은 영역으로 나타나기 때문에, 플라크가 3차원 이미지(120)에서 식별될 수 있다. 따라서, 플라크는 설정값 미만의 세기 값을 갖는 것으로 컴퓨터 시스템에 의해 검출될 수 있고, 또는, 사용자에 의해 시각적으로 검출될 수 있다. 플라크 검출 후, 컴퓨터 시스템은 모델(220)로부터 플라크를 제거하여, 혈관 내 열린 공간 또는 내강의 일부분으로 플라크가 더이상 고려되지 않게 된다. 대안으로서, 컴퓨터 시스템은 대동맥, 주요 관상 동맥, 및/또는 지류와는 다른 색상, 음영, 또는 다른 시각적 표시자를 이용하여 모델(220) 상에 플라크를 표시할 수 있다.
컴퓨터 시스템은 검출된 플라크를 또한 자동적으로 분절할 수 있다(단계(248)). 예를 들어, 플라크는 CCTA 데이터에 기초하여 분절될 수 있다. CCTA 데이터는 CCTA 데이터 내 심장의 다른 구조에 비해 플라크의 콘트라스트(상대적 어둡기 및 밝기)에 기초하여 플라크(또는 그 표면)의 위치를 파악하도록 분석될 수 있다. 따라서, 플라크의 기하 형태가 또한 결정될 수 있다.
플라크의 분절은, 필요시, 리뷰 및/또는 교정될 수 있다(단계(250)). 리뷰 및/또는 교정은 컴퓨터 시스템 및/또는 사용자에 의해 수행될 수 있다. 예를 들어, 예시적인 실시예에서, 컴퓨터 시스템은 분절을 자동적으로 리뷰할 수 있고, 사용자는 에러가 있을 경우, 예를 들어, 플라크가 없거나 부정확하게 보여질 경우, 분절을 수동으로 교정할 수 있다.
컴퓨터 시스템은 주요 관상 동맥에 연결되는 지류를 자동적으로 분절할 수 있다(단계(252)). 예를 들어, 지류는 도 6 및 도 7에 도시되는 바와 같은, 그리고 단계(206)와 연계하여 앞서 설명한 바와 같은, 주요 관상 동맥을 분절하기 위한 유사 방법을 이용하여 분절될 수 있다. 컴퓨터 시스템은 단계(248, 250)와 연계하여 앞서 설명한 바와 유사 방법을 이용하여 분절된 지류에서 플라크를 또한 자동적으로 분절할 수 있다. 대안으로서, 지류(및 이에 포함된 임의의 플라크)는 (가령, 단계(206)에서) 주요 관상 동맥과 동일한 순간에 분절될 수 있다.
지류의 분절은, 필요시, 리뷰 및/또는 교정될 수 있다(단계(254)). 리뷰 및/또는 교정은 컴퓨터 시스템 및/또는 사용자에 의해 수행될 수 있다. 예를 들어, 예시적인 실시예에서, 컴퓨터 시스템은 분절을 자동적으로 리뷰할 수 있고, 사용자는 에러가 존재할 경우, 예를 들어, 모델(220) 내 브랜치의 어느 부분이 없거나 부정확할 경우, 분절을 수동으로 교정할 수 있다.
모델(220)은 (예를 들어, 단계(102)에서 CCTA 데이터의 리뷰 중) 오등록, 스텐트, 또는 타 아티팩트의 위치가 파악될 경우 교정될 수 있다(단계(256)). 교정은 사용자에 의해 및/또는 컴퓨터 시스템에 의해 수행될 수 있다. 예를 들어, 오등록 또는 다른 아티팩트(가령, 불일치, 블러링, 내강 가시도에 영향을 미치는 아티팩트, 등)의 위치가 파악될 경우, 모델(220)은 혈관의 단면적의 인위적 변화 또는 오변화를 방지하기 위해 리뷰 및/또는 교정될 수 있다. 스텐트의 위치가 파악될 경우, 모델(220)은 리뷰 및/또는 교정되어, 스텐트의 위치를 표시할 수 있고, 및/또는, 예를 들어, 스텐트의 크기에 기초하여, 스텐트의 위치가 파악된 혈관의 단면적을 교정할 수 있다.
모델(220)의 분절은 또한 독립적으로 리뷰될 수 있다(단계(258)). 리뷰는 사용자에 의해 및/또는 컴퓨터 시스템에 의해 수행될 수 있다. 예를 들어, 사용자 및/또는 컴퓨터 시스템은 교정가능한 에러 및/또는, 모델(220)을 적어도 부분적으로 재시도 또는 재분절할 것을 요구할 수 있는 에러와 같이, 모델(220)의 소정의 에러를 식별할 수 있다. 이러한 에러가 식별될 경우, 분절은 수용불가능한 것으로 결정될 수 있고, 에러에 따라, 소정의 단계, 예를 들어, 단계(202-208, 240-256) 중 하나 이상이 반복될 수 있다.
모델(220)의 분절이 수용가능한 것으로 독립적으로 확인될 경우, 선택적 사항으로서, 모델(220)이 출력되고 평활화될 수 있다(단계(260)). 평활화는 사용자에 의해 및/또는 컴퓨터 시스템에 의해 수행될 수 있다. 예를 들어, 리지(ridges), 점(points), 또는 다른 불연속 부분들이 평활화될 수 있다. 모델(220)은 연산 분석, 등을 위해 준비될 별도의 소프트웨어 모듈에 출력될 수 있다.
따라서, 앞서 설명된 도 3에 도시되는 단계(202-208, 240-260)들은 도 2의 단계(200)의 세부 단계로 간주될 수 있다.
IV. 분석 모델 준비 및 경계 조건 결정
도 2에 도시되는 단계(300)와 연계하여 앞서 설명한 바와 같이, 예시적인 방법은 분석을 위해 모델을 준비하고 경계 조건을 결정하는 단계를 포함할 수 있다. 예시적인 실시예에서, 단계(300)는 다음의 단계들을 포함할 수 있다.
A. 분석 모델 준비
도 3을 다시 참조하면, 모델(220)(도 5)의 다양한 혈관(가령, 대동맥, 주요 관상 동맥, 및/또는 지류)의 단면적이 또한 결정될 수 있다(단계(304)). 예시적인 실시예에서, 이러한 결정은 컴퓨터 시스템에 의해 수행될 수 있다.
모델(220)(도 5)이 트리밍될 수 있고(단계(306)), 고형 모델이 발생될 수 있다. 도 8은 도 5에 도시되는 모델(220)과 유사한 모델에 기초하여 준비된 트리밍된 고형 모델(320)의 예를 보여준다. 고형 모델(320)은 3차원 환자별 기하학적 모델이다. 예시적인 실시예에서, 트리밍은 사용자의 입력과 함께, 또는, 사용자의 입력없이, 컴퓨터 시스템에 의해 수행될 수 있다. 유입 경계(322) 및 유출 경계(324) 각각은, 각자의 경계를 형성하는 표면이 단계(242)에서 결정된 중심선에 수직이도록 트리밍될 수 있다. 유입 경계(322)는 도 8에 도시되는 바와 같이 대동맥의 상류 단부에서와 같이, 모델(320)의 신체 내로 혈류를 지향시키는 경계를 포함할 수 있다. 유출 경계(324)는 대동맥의 하류 단부 및 주요 관상 동맥 및/또는 지류의 하류 단부에서와 같이, 모델(320)의 신체로부터 외향으로 혈류를 지향시키는 경계를 포함할 수 있다.
B. 경계 조건 결정
경계 조건은 예를 들어, 도 8의 3차원 고형 모델(320)과 같은 모델의 경계에서 발생하는 것을 설명하기 위해 제공될 수 있다. 예를 들어, 경계 조건은 가령, 모델링된 신체의 경계에서, 환자의 모델링되는 신체와 관련된 적어도 하나의 혈류 특성에 관계할 수 있고, 혈류 특성은 혈류 속도, 압력, 유량, FFR, 등을 포함할 수 있다. 경계 조건을 적절히 결정함으로써, 모델 내 다양한 위치에서 정보를 결정하도록 연산 분석이 수행될 수 있다. 경계 조건의 예 및 이러한 경계 조건을 결정하기 위한 방법이 이제 설명될 것이다.
예시적인 실시예에서, 결정되는 경계 조건은 고형 모델(320)에 의해 표현되는 혈관의 부분으로부터 상류 및 하류의 구조를 1차원 또는 2차원 차수 축소 모델로 단순화시킬 수 있다. 경계 조건을 결정하기 위한 한 세트의 예시적인 방정식 및 기타 세부사항은 예를 들어, 미국특허출원공보 제2010/0241404호 및 미국특허가출원 제61/210,401호(발명의 명칭: "Patient-Specific Hemodynamics of the Cardiovascular System")에 개시되어 있고, 그 내용 전체는 본 발명에 참고자료로 포함된다.
경계 조건은, 심장을 통한 혈류가 환자의 생리학적 조건에 따라 다를 수 있기 때문에, 환자의 생리학적 조건에 따라 변할 수 있다. 예를 들어, FFR은 생리학적 충혈 조건 하에 일반적으로 측정되고, 이러한 충혈 조건은 가령, 스트레스, 등으로 인해, 환자가 심장의 혈류 증가를 나타낼 때 일반적으로 발생한다. FFR은 최대 스트레스 조건 하에 대동맥 혈압에 대한 관상 동맥 혈압의 비다. 충혈은 약물학적으로, 예를 들어, 아데노신으로, 또한 유도될 수 있다. 도 9 내지 도 11은 환자의 생리학적 조건에 따라, 모델(320)의 대동맥 혈압에 대한 관상 동맥 혈압의 비의 변화를 표시하는 연산 FFR(cFFR) 모델의 예를 보여준다(휴식시, 최대 충혈시, 또는 최대 운동시). 도 9는 환자가 휴식 중일 때 모델(320) 전체를 통해 대동맥 혈압에 대한 관상 동맥 혈압의 비의 최소 변화를 나타낸다. 도 10은 환자가 최대 충혈을 나타낼 때 모델(320) 전체를 통해 대동맥 압력에 대한 관상 동맥 혈압의 비가 크게 변화함을 보여준다. 도 11은 환자가 최대 운동 상태에 있을 때 모델(320) 전체를 통해 대동맥 압력에 대한 관상 동맥 압력의 비가 더욱 크게 변화함을 보여준다.
도 3을 다시 참조하면, 충혈 조건에 대한 경계 조건이 결정될 수 있다(단계(310)). 예시적인 실시예에서, 1~5배의 관상 동맥 저항의 감소, 대략 0-20%의 대동맥 혈압 감소, 및 대략 0-20%의 심박동수 증가를 이용하여 아데노신 효과가 모델링될 수 있다. 예를 들어, 아데노신 효과는 4배의 관상 동맥 저항 감소, 대략 10%의 대동맥 혈압 감소, 및 대략 10%의 심박동수 증가를 이용하여 모델링될 수 있다. 충혈 조건에 대한 경계 조건이 이러한 예시적인 실시예에서 결정되지만, 휴식 시, 가변 레벨의 충혈 조건, 가변 레벨의 운동 조건, 활동(exertion) 조건, 스트레스 조건, 또는 다른 조건과 같은 다른 생리학적 상태에 대한 경계 조건이 결정될 수 있음을 이해할 수 있을 것이다.
경계 조건은 경계에서, 예를 들어, 도 8에 도시되는 바와 같이, 유입 경계(322), 유출 경계(324), 혈관벽 경계(326), 등에서, 3차원 고형 모델(320)에 관한 정보를 제공한다. 혈관벽 경계(326)는 모델(320)의 대동맥, 주요 관상 동맥, 및/또는 다른 광산 동맥 또는 혈관의 물리적 경계를 포함할 수 있다.
각각의 유입 또는 유출 경계(322, 324)는 기지정된 값 또는 값들의 필드를 갖는 속도, 유량, 압력, 또는 다른 혈류 특성을 할당받을 수 있다. 대안으로서, 각각의 유입 또는 유출 경계(322, 324)는 경계에 심장 모델, 집중 파라미터 또는 분배형(가령, 1차원 파동 전파) 모델, 다른 타입의 1차원 또는 2차원 모델, 또는 다른 타입의 모델을 결합시킴으로써 할당될 수 있다. 예를 들어, 획득한 환자별 정보로부터 결정되는 유입 또는 유출 경계(322, 324)의 기하형태, 또는 심박출량, 혈압, 단계(240)에서 연산된 심근 질량, 등과 같은 다른 측정 파라미터에 기초하여, 구체적 경계 조건이 결정될 수 있다.
i. 차수 축소 모델 결정
고형 모델(320)에 연결된 상류 및 하류 구조는 상류 및 하류 구조를 나타내는 차수 축소 모델로 표현될 수 있다. 예를 들어, 도 12-15는 예시적인 실시예에 따라, 유출 경계(324) 중 하나에서 3차원 환자별 신체 데이터로부터 집중 파라미터 모델을 준비하기 위한 방법의 형태를 보여준다. 이 방법은 도 2 및 도 3에 도시되는 방법과는 별도로 그 이전에 수행될 수 있다.
도 12는 주요 관상 동맥 또는 그로부터 연장되는 지류 중 하나의 고형 모델(320)의 일부분(330)을 보여주고, 도 13은 도 12에 도시되는 부분(330)의 단계(242)에서 결정되는 중심선의 부분을 보여준다.
부분(330)은 세그먼트(332)로 나누어질 수 있다. 도 14는 부분(330)으로부터 형성될 수 있는 세그먼트(332)의 예를 보여준다. 세그먼트(332)의 길이의 선택은 사용자 및/또는 컴퓨터 시스템에 의해 수행될 수 있다. 세그먼트(332)는 예를 들어, 세그먼트(332)의 기하 형태에 따라, 길이를 달리할 수 있다. 부분(330)을 분절하기 위해 다양한 기술이 사용될 수 있다. 예를 들어, 질환부, 예를 들어, 비교적 좁은 단면을 갖는 부분, 병변, 및/또는 협착증(혈관의 비정상적 협폭화)이 하나 이상의 별도의 세그먼트(332)에서 제공될 수 있다. 질환부 및 협착증은, 예를 들어, 중심선의 길이를 따라 단면적을 측정함으로써, 그리고, 국부적으로 최소 단면적을 연산함으로써, 식별될 수 있다.
세그먼트(332)는 하나 이상의 (선형 또는 비-선형) 저항기(334) 및/또는 다른 회로 요소(가령, 커패시터, 인덕터, 등)를 포함하는 회로도에 의해 근사될 수 있다. 도 15는 일련의 선형 및 비선형 저항기(334)에 의해 대체되는 세그먼트(332)의 예를 보여준다. 저항기(334)의 개별 저항은, 예를 들어, 대응하는 세그먼트(332) 간의 추정 혈류 및/또는 혈압에 기초하여, 결정될 수 있다.
저항은 대응하는 세그먼트(332)를 통해 추정 유량에 따라, 일정하거나, 선형이거나, 또는 비-선형일 수 있다. 협착증과 같이 더욱 복잡한 기하형태의 경우, 저항은 유량과 함께 변할 수 있다. 다양한 기하형태에 대한 저항은 연산 분석(가령, 유한 차법, 유한 체적법, 스펙트럼법, 격자 볼츠만법, 입자-기반법, 레벨 세트법, 등기하법, 또는 유한 요소법, 또는 다른 연산 유체 동역학(CFD) 분석 기술)에 기초하여 결정될 수 있고, 서로 다른 혈류 및 혈압 조건 하에 수행되는 연산 분석으로부터의 복수의 해를 이용하여, 환자별, 혈관별, 및/또는 병변별 저항을 도출할 수 있다. 그 결과를 이용하여, 모델링될 수 있는 임의의 세그먼트의 기하 형태 및 특징들의 다양한 타입에 대한 저항을 결정할 수 있다. 그 결과, 위에서 설명한 바와 같은 환자별, 혈관별, 및/또는 병변-별 저항의 도출에 따라, 컴퓨터 시스템은 비대칭 협착증, 복수 병변, 분기부 및 지류에서의 병변, 복잡한 혈관, 등과 같은 더욱 복잡한 기하 형태를 인지 및 평가할 수 있다.
커패시터가 또한 포함될 수 있고, 예를 들어, 대응하는 세그먼트의 혈관벽의 탄성에 기초하여, 커패시턴스가 결정될 수 있다. 인덕터가 포함될 수 있고, 예를 들어, 대응하는 세그먼트를 통해 유동하는 혈액량의 가속 또는 감속에 관련된 관성 효과에 기초하여 인덕턴스가 결정될 수 있다.
저항, 커패시턴스, 인덕턴스, 및 집중 파라미터 모델에 사용되는 타 전기적 구성요소들과 관련된 다른 변수에 대한 개별 값들은, 많은 환자로부터 데이터에 기초하여 도출될 수 있고, 유사 혈관 기하 형태는 유사한 값을 가질 수 있다. 따라서, 대단위 환자별 데이터로부터 실험 모델이 발전되어, 미래 분석에 유사 환자들에게 적용될 수 있는 특정 기하학적 특징들에 대응하는 값들의 라이브러리를 생성할 수 있다. 2개의 서로 다른 혈관 세그먼트 사이에서 기하 형태가 일치하여, 이전 시뮬레이션으로부터 한 환자의 세그먼트(332)에 대한 값들을 자동적으로 선택할 수 있다.
ii. 예시적인 집중 파라미터 모델
대안으로서, 도 12 내지 도 15와 연계하여 앞서 설명한 단계들을 수행하는 대신에, 집중 파라미터 모델이 기설정될 수 있다. 예를 들어, 도 16은 고형 모델(320)의 유입 및 유출 경계(322, 324)에서 상류 및 하류 구조를 나타내는 집중 파라미터 모델(340, 350, 360)의 예를 보여준다. 단부(A)는 유입 경계(322)에 위치하고, 단부(B)는 유출 경계에 위치한다.
집중 파라미터 심장 모델(340)을 이용하여, 고형 모델(320)의 유입 경계(322)의 단부(A)에서 경계 조건을 결정할 수 있다. 집중 파라미터 심장 모델(340)을 이용하여 충혈 조건 하에 심장으로부터 혈류를 나타낼 수 있다. 집중 파라미터 심장 모델(340)은 환자에 관해 알려진 정보, 예를 들어, 대동맥 혈압, (가령, 단계(100)에서 결정되는) 환자의 수축기 및 확장기 혈압, 환자의 심박출량(가령, 단계(100)에서 결정되는 환자의 일회 박출량 및 심박동수에 기초하여 연산되는, 심장으로부터 혈류의 체적), 및/또는 실험적으로 결정되는 상수들에 기초하여 결정될 수 있는 다양한 파라미터(가령, PLA, RAV, LAV, RV-Art, LV -Art, 및 E(t))를 포함한다.
집중 파라미터 관상 동맥 모델(350)을 이용하여, 주요 관상 동맥 및/또는 이로부터 연장되는 지류의 하류 단부에 위치한 고형 모델(320)의 유출 경계(324)의 단부(a-m)에서 경계 조건을 결정할 수 있다. 집중 파라미터 관상 동맥 모델(350)을 이용하여, 충혈 조건 하에 모델링된 혈관으로부터 단부(a-m)를 통해 빠져나가는 혈류를 나타낼 수 있다. 집중 파라미터 관상 동맥 모델(350)은 예를 들어, 연산된 심근 질량(가령, 단계(240)에서 결정됨)과 단부(a-m)에서 단자 임피던스(가령, 단계(304)에서 결정되는 단부(a-m)에서 혈관의 단면적에 기초하여 결정됨)와 같이, 환자에 관해 알려진 정보에 기초하여 결정될 수 있는 다양한 파라미터(가령, Ra, Ca, Ra-micro, Cim 및 Rv)를 포함한다.
예를 들어, 연산되는 심근 질량은 복수의 유출 경계(324)를 통해 기준선 (휴식) 평균 관상 동맥 혈류를 추정하는 데 사용될 수 있다. 이 관계는 평균 관상 동맥 혈류(Q)를 심근 질량(M)(가령, 단계(240)에서 결정됨)과
Figure pat00001
로 상관시키는 실험적으로-도출되는 생리학적 법칙(가령, 도 1의 생리학적 법칙(20))에 기초할 수 있고, 이때, α는 기설정된 스케일링 지수이고, Q0는 기설정 상수다. 기준 (휴지) 조건에서 유출 경계(324)의 총 관상 동맥 혈류(Q)와 환자의 혈압(가령, 단계(100)에서 결정됨)을 이용하여, 기설정된, 실험적으로-도출되는 방정식에 기초하여 유출 경계(324)의 총 저항(R)을 결정할 수 있다.
총 저항(R)은 (가령, 단계(304)에서 결정되는) 단부(a-m)의 각자의 단면적에 기초하여 단부(a-m) 사이에서 분배될 수 있다. 이 관계는 단부(a-m)에서의 각자의 저항을
Figure pat00002
상관시키는 실험적으로-도출되는 생리학적 법칙(가령, 도 1의 생리학적 법칙(20))에 기초할 수 있고, Ri는 i번째 유출구에서 혈류에 대한 저항이고, Ri,o는 기설정된 상수이며, di는 해당 유출구의 직경이고, β는 기설정된 거듭제곱 법칙 지수로서, 예를 들어, -3과 -2 사이의 값이고, 관상 동맥 혈류의 경우 -2.7, 뇌혈류의 경우 -2.9, 등이다. 개별 단부(a-m)를 통한 관상 동맥 혈류 및 개별 단부(a-m)에서의 평균 혈압(가령, 단계(304)에서 결정되는 바와 같이 혈관의 단부(a-m)의 개별 단면적에 기초하여 결정됨)을 이용하여, 대응하는 단부(a-m)에서 집중 파라미터 관상 동맥 모델(350)의 저항들의 합을 결정할 수 있다(가령,
Figure pat00003
). 다른 파라미터(가령, Ra/Ra-micro, Ca, Cim)는 실험적으로 결정되는 상수일 수 있다.
윈드케셀 모델(Windkessel model)(360)을 이용하여, 대동맥궁을 향한 대동맥의 하류 단부에 위치하는 고형 모델(320)의 유출 경계(324)의 단부(B)에서 경계 조건을 결정할 수 있다. 윈드케셀 모델(360)을 이용하여, 충혈 조건 하에 모델링된 대동맥으로부터 단부(B)를 통해 빠져나가는 혈류를 나타낼 수 있다. 윈드케셀 모델(360)은 집중 파라미터 심장 모델(340)과 연계하여 앞서 설명한 환자의 심박출량, 집중 파라미터 관상 동맥 모델(350)과 연계하여 앞서 설명한 기준선 평균 관상 동맥 혈류, 대동맥 혈압(가령, 단계(304)에서 결정되는 단부(B)에서의 대동맥의 단면적에 기초하여 결정됨) 및/또는 실험적으로 결정되는 상수와 같이, 환자에 관해 알려진 정보에 기초하여 결정될 수 있는 다양한 파라미터(가령, Rp, Rd, C)를 포함한다.
경계 조건, 예를 들어, 집중 파라미터 모델(340, 350, 360)(또는 여기에 포함된 임의의 상수) 또는 다른 차수 축소 모델은 다른 요인에 기초하여 조정될 수 있다. 예를 들어, 생리학적 스트레스 하에 혈관을 확장시키기 위해 비교적 감소된 용량으로 인해 낮은 혈류 대 혈관 크기를 환자가 가질 경우, 저항 값이 조정(가령, 증가)될 수 있다. 환자가 당뇨병을 갖고 있고 치료받고 있으며 과거 심장 사고(cardiac event)를 거친 경우, 저항 값이 또한 조정될 수 있다.
대안의 집중 파라미터 또는 분배형, 1차원 네트워크 모델을 이용하여, 고형 모델(320) 하류의 관상 동맥 혈관을 나타낼 수 있다. MRI, CT, PET, 또는 SPECT를 이용한 심근 관류 이미징을 이용하여 이러한 모델에 대해 파라미터를 할당할 수 있다. 또한, 대안의 이미징 소스, 예를 들어, 자기 공진 혈관 조영 검사(MRA), 후향적 동조화 또는 전향적 동조화 컴퓨터 단층 촬영 혈관 조영 검사(CTA), 등을 이용하여, 이러한 모델들에 대한 파라미터를 할당할 수 있다. 후향적 동조화는 이미지 처리 방법과 조합되어 심장 주기에 걸쳐 심실 체적 변화를 얻고, 따라서, 집중 파라미터 심장 모델에 파라미터를 할당할 수 있다.
집중 파라미터 모델(340, 350, 360) 또는 다른 차수 축소 1차원 또는 2차원 모델을 이용하여 환자 신체의 일부분을 단순화시킴으로써, 특히, 치료받지 않은 상태(가령, 도 2 및 도 3의 단계(400))에 추가하여 가능한 치료 옵션(가령, 도 2의 단계(500))을 평가할 때와 같이 연산 분석이 복수 회 수행될 경우, 연산 분석(가령, 아래 설명되는 도 3의 단계(402))을 더욱 신속하게 수행할 수 있고, 그러면서도 최종 결과에 높은 정확도를 유지할 수 있다.
예시적인 실시예에서, 경계 조건의 결정은 단계(100)에서 얻은 환자별 생리학적 데이터와 같은 사용자의 입력에 기초하여 컴퓨터 시스템에 의해 수행될 수 있다.
C. 3차원 메시 생성
도 3을 다시 참조하면, 단계(306)에서 발생된 고형 모델(320)에 기초하여 3차원 메시가 발생될 수 있다(단계(312)). 도 17 내지 도 19는 단계(306)에서 발생된 고형 모델에 기초하여 준비되는 3차원 메시(380)의 일례를 보여준다. 메시(380)는 고형 모델(320)의 내부 전체를 통해 고형 모델(320)의 표면을 따라 복수의 노드(382)(메시포인트 또는 그리드포인트)를 포함한다. 메시(380)는 도 18 및 도 19에 도시되는 바와 같이, (노드(382)를 형성하는 점들을 갖는) 사면체 요소로 생성될 수 있다. 대안으로서, 다른 형상을 갖는 요소들이 사용될 수 있다(예를 들어, 육면체, 또는 다른 다면체, 곡선 요소, 등). 예시적인 실시예에서, 노드(382)의 수는 수백만개 범위 내에 있을 수 있다(예를 들어, 5백만 내지 5천만개). 노드(382)의 수는 메시(380)가 미세해짐에 따라 증가한다. 많은 수의 노드(382)를 이용할 때, 모델(320) 내 더 많은 점에서 정보가 제공될 수 있지만, 많은 수의 노드(382)는 풀어야할 방정식의 수(가령, 도 1에 도시되는 방정식(30))를 증가시키기 때문에, 연산 분석이 오래 걸릴 수 있다. 예시적인 실시예에서, 메시(380)의 발생은, (가령, 노드(382)의 수, 요소의 형태, 등을 명시하는) 사용자의 입력과 함께, 또는 사용자 입력없이, 컴퓨터 시스템에 의해 수행될 수 있다.
도 3을 다시 참조하면, 메시(380) 및 결정된 경계 조건이 확인될 수 있다(단계(314)). 확인은 사용자에 의해 및/또는 컴퓨터 시스템에 의해 수행될 수 있다. 예를 들어, 사용자 및/또는 컴퓨터 시스템은, 가령, 메시(380)가 왜곡되거나 충분한 공간적 해상도를 갖지 않을 경우, 경계 조건이 연산 분석 수행에 충분치 않을 경우, 단계(310)에서 결정된 저항이 틀렸다고 드러나는 경우, 등에, 메시(380) 및/또는 경계 조건의 재실행 또는 변경을 요구하는, 메시(380) 및/또는 경계 조건으로 소정의 에러를 식별할 수 있다. 그러할 경우, 메시(380) 및/또는 경계 조건은 수용불가능한 것으로 결정될 수 있고, 단계(304-314) 중 하나 이상이 반복될 수 있다. 메시(380) 및/또는 경계 조건이 수용가능하다고 결정될 경우, 방법은 아래 설명되는 단계(402)로 진행할 수 있다.
추가적으로, 사용자는 획득한 환자별 정보 또는 다른 측정된 파라미터(가령, 단계(240)에서 연산된 심박출량, 혈압, 키, 체중, 심박 질량)가 정확하게 입력되고 및/또는 정확하게 연산되었음을 점검할 수 있다.
따라서, 앞서 설명한 도 3에 도시되는 단계(304-314)는 도 2의 단계(300)의 세부 단계로 고려될 수 있다.
V. 연산 분석 수행 및 결과 출력
도 2에 도시되는 단계(400)와 연계하여 앞서 설명한 바와 같이, 예시적인 방법은 연산 분석의 수행 및 결과 출력을 포함할 수 있다. 예시적인 실시예에서, 단계(400)는 다음의 단계들을 포함할 수 있다.
A. 연산 분석 수행
도 3을 참조하면, 연산 분석이 컴퓨터 시스템에 의해 수행될 수 있다(단계(402)). 예시적인 실시예에서, 단계(402)는 가령, 메시(380) 내 노드(382)의 수(도 17, 19), 등에 따라, 수분 내지 수시간 지속될 수 있다.
분석은 메시지(380)를 발생시킨 모델(320) 내 혈류를 설명하는 일련의 방정식들의 발생을 포함한다. 앞서 설명한 바와 같이, 예시적인 실시예에서, 요망 정보는 충혈 조건 하에 모델(320)을 통한 혈류의 시뮬레이션에 관련된다.
이러한 분석은 컴퓨터 시스템을 이용하려 혈류의 3차원 방정식을 풀기 위해 수치 해법의 이용을 또한 포함한다. 예를 들어, 수치 해법은, 유한 차법, 유한 체적법, 스펙트럼법, 격자 볼츠만법, 입자-기반법, 레벨 세트법, 등기하법, 또는, 유한 요소법, 또는, 다른 연산 유체동역학(CFD) 수치 기술과 같은, 알려진 방법일 수 있다.
이러한 수치 해법들을 이용하여, 혈액은 뉴튼식, 비-뉴튼식, 또는 다상 유체로 모델링될 수 있다. 단계(100)에서 측정되는 환자의 헤마토크릿 또는 다른 인자들을 이용하여, 분석에 포함하기 위한 혈액 점도를 결정할 수 있다. 혈관벽은 강성이거나(rigid) 또는 유연하다(compliant)고 가정될 수 있다. 후자의 경우에, 혈관벽 동역학용 방정식, 예를 들어, 동탄성(elstodynamics) 방정식이 혈류용 방정식과 함께 풀릴 수 있다. 단계(100)에서 획득한 시간에 따라 변하는 3차원 이미징 데이터를 입력으로 이용하여, 심장 주기에 걸쳐 혈관 형상의 변화를 모델링할 수 있다. 연산 분석을 수행하기 위한 단계들 및 예시적인 한 세트의 방정식이, 예를 들어, 미국특허 제6,236,878호(발명의 명칭: "Method for Predictive Modeling for Planning Medical Interventions and Simulating Physiological Conditions" 및 미국특허출원공보 제2010/0241404호 및 미국특허가출원 제61/210,401호(발명의 명칭: "Patient-Specific Hemodynamics of the Cardiovasuclar System")에 더 세부적으로 개시되어 있고, 그 내용 전체는 본 발명에 참고자료로 포함된다.
준비된 모델 및 경계 조건을 이용한 연산 분석은, 3차원 고형 모델(320)을 나타내는 메시(380)의 노드(382) 각각에서 혈류 및 혈압을 결정할 수 있다. 예를 들어, 연산 분석의 결과는 혈류 속도, 압력, 유량과 같은 다양한 혈류 특성 또는 파라미터, 또는, 아래 설명되는 cFFR과 같은 연산 파라미터와 같은, 그러나 이에 제한되지 않는, 각각의 노드(382)에서 다양한 파라미터에 대한 값들을 포함할 수 있다. 파라미터는 3차원 고형 모델(320) 사이에서 보간될 수도 있다. 그 결과, 연산 분석의 결과는, 통상적으로 침습성으로 결정될 수 있는 정보를 사용자에게 제공할 수 있다.
도 3을 다시 참조하면, 연산 분석의 결과가 확인될 수 있다(단계(404)). 확인은 사용자에 의해 및/또는 컴퓨터 시스템에 의해 수행될 수 있다. 예를 들어, 사용자 및/또는 컴퓨터 시스템은, 가령, 불충분한 개수의 노드(382)로 인해 정보가 불충분할 경우, 과량의 개수의 노드(382)로 인해 분석이 너무 오래 걸릴 경우, 등에, 메시(380) 및/또는 경계 조건의 재실행 또는 변경을 요구하는 결과로 소정의 에러를 식별할 수 있다.
연산 분석의 결과가 단계(404)에서 수용불가능하다고 결정될 경우, 사용자 및/또는 컴퓨터 시스템은, 예를 들어, 단계(306)에서 발생된 고형 모델(320) 및/또는 단계(312)에서 발생된 메시(380)를 변경 또는 개선할 것인지, 그리고, 어떻게 변경 또는 개선할 것인지, 단계(310)에서 결정된 경계 조건을 변경할 것인지, 그리고 어떻게 변경할 것인지, 또는, 연산 분석을 위한 입력에 대핸 다른 변경을 행할 것인지 여부를 결정할 수 있다. 그 후, 앞서 설명한 하나 이상의 단계, 예를 들어, 단(306-314, 402, 404)가 결정된 변경 또는 개선에 기초하여 반복될 수 있다.
B. 혈압, 혈류, 및 cFFR의 결과 디스플레이
도 3을 다시 참조하면, 연산 분석의 결과가 단계(404)에서 수용가능하다고 결정될 경우, 컴퓨터 시스템은 연산 분석의 소정의 결과를 출력할 수 있다. 예를 들어, 컴퓨터 시스템은, 가령, 시뮬레이션된 혈압 모델(50), 시뮬레이션된 혈류 모델(52), 및/또는 cFFR 모델(54)와 같이, 도 1과 연계하여 앞서 설명한 이미지와 같은, 연산 분석의 결과에 기초하여 발생되는 이미지를 디스플레이할 수 있다. 앞서 언급한 바와 같이, 이러한 이미지들은, 예를 들어, 단계(310)에서 결정된 경계 조건이 충혈 조건에 대해 결정되었기 때문에, 시뮬레이션된 충혈 조건 하에 시뮬레이션된 혈압, 혈류, 및 cFFR을 표시한다.
시뮬레이션된 혈압 모델(50)(도 1)은, 시뮬레이션된 충혈 조건 하에 도 17 내지 도 19의 메시(380)에 의해 표현되는 환자 신체 전체를 통한 국부 혈압(가령, 밀리미터 수은주 또는 mmHG 단위)을 보여준다. 연산 분석은 메시(380)의 각각의 노드(382)에서 국부 혈압을 결정할 수 있고, 시뮬레이션된 혈압 모델(50)은 각자의 압력에 대응하는 색상, 음영, 또는 다른 시각적 표시자를 할당하여, 시뮬레이션된 혈압 모델(50)이, 각각의 노드(382)에 대한 개별 값들을 명시할 필요없이, 모델(50) 전체를 통해 압력 변화를 시각적으로 표시할 수 있다. 예를 들어, 도 1에 도시되는 시뮬레이션된 혈압 모델(50)은, 본 특정 환자의 경우, 시뮬레이션된 충혈 조건 하에, 압력이 대동맥에서 일반적으로 균일하고 높을 수 있고(더 어두운 음영으로 표시됨), 혈류가 주요 관상 동맥 및 지류 내로 하류로 유동함에 따라 압력이 점진적으로 그리고 연속적으로 감소함을 보여준다(지류의 하류 단부를 향해 음영이 점진적으로 그리고 연속적으로 밝아지는 것으로 나타남). 시뮬레이션된 혈압 모델(50)은 도 1에 도시되는 바와 같이 혈압에 대한 구체적 수치 값들을 표시하는 스케일을 동반할 수 있다.
예시적인 실시예에서, 시뮬레이션된 혈압 모델(50)에 색상이 제공될 수 있고, 칼라 스펙트럼을 이용하여 모델(50) 전체를 통해 압력 변화를 표시할 수 있다. 칼라 스펙트럼은 최고압으로부터 최저압까지 순서대로, 적색, 오랜지색, 황색, 녹색, 청색, 남색, 및 보라색을 포함할 수 있다. 예를 들어, 상한(적색)은 대략 100mmHg 이상(또는 80mmHg, 90mmHg, 100mmHg, 등)을 표시할 수 있고, 하한(보라색)은 대략 50mmHg 이하(또는 20mmHg, 30mmHg, 40mmHg, 등)를 표시할 수 있으며, 녹색은 대략 80mmHg(또는 상한과 하한 사이 대략 중간의 다른 값)를 표시한다. 따라서, 일부 환자의 경우 시뮬레이션된 혈압 모델(50)은 대부분의 또는 모든 대동맥을 적색 또는 스펙트럼의 높은 단부를 향하는 다른 색상으로 나타낼 수 있고, 색상은 관상 동맥 및 이로부터 연장되는 지류의 말단부를 향해(가령, 스펙트럼의 하측 단부를 향해(보라색을 향해)) 스펙트럼을 따라 점진적으로 변할 수 있다. 특정 환자에 대한 관상 동맥의 말단부는 각자의 말단부에 대해 결정된 국부 혈압에 따라, 적색으로부터 보라색까지 임의의 위치에서, 서로 다른 색상을 가질 수 있다.
시뮬레이션된 혈류 모델(52)(도 1)은, 시뮬레이션된 충혈 조건 하에 도 17 내지 도 19의 메시(380)에 의해 표현되는 환자 신체 전체를 통해 국부 혈류 속도(가령, 센티미터/초 또는 cm/초)를 보여준다. 연산 분석은 메시(380)의 각각의 노드(382)에서 국부 혈류 속도를 결정할 수 있고, 시뮬레이션된 혈류 모델(52)은 각자의 속도에 대응하는 색상, 음영, 또는 다른 시각적 표시자를 할당하여, 시뮬레이션된 혈류 모델(52)이 각각의 노드(382)에 대해 개별적 값들을 명시할 필요없이, 모델(52) 전체를 통해 속도의 변화를 시각적으로 표시할 수 있다. 예를 들어, 도 1에 도시되는 시뮬레이션된 혈류 모델(52)은 본 특정 환자의 경우, 시뮬레이션된 충혈 조건 하에, 속도가 주요 관상 동맥 및 지류의 소정의 영역에서 일반적으로 높음을 보여준다(도 1의 영역(53)에서의 어두운 음영으로 표시됨). 시뮬레이션된 혈류 모델(52)은 도 1에 도시되는 바와 같이, 혈류 속도에 대한 특정 수치 값을 표시하는 스케일을 동반할 수 있다.
예시적인 실시예에서, 시뮬레이션된 혈류 모델(52)에 색상이 제공될 수 있고, 칼라 스펙트럼을 이용하여 모델(52) 전체를 통해 속도 변화를 표시할 수 있다. 칼라 스펙트럼은 최고속으로부터 최저속까지 순서대로, 적색, 오랜지색, 황색, 녹색, 청색, 남색, 및 보라색을 포함할 수 있다. 예를 들어, 상한(적색)은 대략 100(또는 150) cm/초 이상을 표시할 수 있고, 하한(보라색)은 대략 0 cm/초를 표시할 수 있으며, 녹색은 대략 50cm/초(또는 상한과 하한 사이 대략 중간의 다른 값)를 표시한다. 따라서, 일부 환자의 경우 시뮬레이션된 혈류 모델(52)은 대부분의 또는 모든 대동맥을 적색 또는 스펙트럼의 낮은 단부를 향하는 색상의 혼합물(가령, 녹색 내지 보라색)로 보여줄 수 있고, 색상은 결정된 혈류 속도가 증가하는 소정의 위치에서 스펙트럼을 통해(예를 들어, 스펙트럼의 높은 단부를 향해(적색에 이르기까지)) 점진적으로 변화할 수 있다.
cFFR 모델(54)(도 1)은 시뮬레이션된 충혈 조건 하에 도 17 내지 도 19의 메시(380)에 의해 표현되는 환자 신체 전체를 통한 국부 cFFR을 보여준다. 앞서 언급한 바와 같이, cFFR은 특정 노드(382)에서 (가령, 시뮬레이션된 혈압 모델(50)에서 도시되는) 연산 분석에 의해 결정되는 국부 혈압을, (가령, 유입 경계(322)(도 8)에서) 대동맥 내 혈압으로 나눈 비로 연산될 수 있다. 연산 분석은 메시(380)의 각각의 노드(382)에서 cFFR을 결정할 수 있고, cFFR 모델(54)은 각자의 cFFR 값에 대응하는 색상, 음영, 또는 다른 시각적 표시자를 할당하여, cFFR 모델(54)이 각각의 노드(382)에 대해 개별적 값들을 명시할 필요없이, 모델(54) 전체를 통해 cFFR의 변화를 시각적으로 표시할 수 있다. 예를 들어, 도 1에 도시되는 cFFR 모델(54)은 본 특정 환자의 경우, 시뮬레이션된 충혈 조건 하에, cFFR이 일반적으로 균일할 수 있고 대동맥에서 대략 1.0일 수 있고, cFFR은 혈액이 주요 관상 동맥 및 지류 내로 하류로 유동함에 따라 점진적으로 그리고 연속적으로 감소함을 보여준다. cFFR 모델(54)은 도 1에 도시되는 바와 같이, cFFR에 대한 특정 수치 값을 표시하는 스케일을 동반할 수 있다.
예시적인 실시예에서, cFFR 모델(54)에 색상이 제공될 수 있고, 칼라 스펙트럼을 이용하여 모델(54) 전체를 통해 압력 변화를 표시할 수 있다. 칼라 스펙트럼은 최저 cFFR(기능적으로 중요한 병변을 표시)로부터 최고 cFFR까지 순서대로, 적색, 오랜지색, 황색, 녹색, 청색, 남색, 및 보라색을 포함할 수 있다. 예를 들어, 상한(보라색)은 1.0의 cFFR을 표시할 수 있고, 하한(적색)은 대략 0.7 (또는 0.75 또는 0.8) 이하를 표시할 수 있으며, 녹색은 대략 0.85(또는 상한과 하한 사이 대략 중간의 다른 값)를 표시한다. 예를 들어, 하한은 cFFR 측정치가 기능적으로 중요한 병변을 표시하는지 또는 인터벤션을 요하는 다른 특징을 표시하는지 여부를 결정하는 데 사용되는 하한(가령, 0.7, 0.75, 또는 0.8)에 기초하여 결정될 수 있다. 따라서, 일부 환자의 경우 cFFR 모델(54)은 대부분의 또는 모든 대동맥을 보라색 또는 스펙트럼의 높은 단부를 향하는 다른 색상으로 보여줄 수 있고, 관상 동맥 및 관상 동맥으로부터 연장되는 지류의 말단부를 향해 (가령, 스펙트럼의 높은 단부를 향해) (적색으로부터 보라색까지 어디까지든) 스펙트럼을 통해 점진적으로 변화할 수 있다. 특정 환자에 대한 관상 동맥의 말단부는 예를 들어, 각자의 말단부에 대해 결정된 cFFR의 국부값에 따라 적색으로부터 보라색까지 임의의 위치에서, 서로 다른 색상을 가질 수 있다.
cFFR이 기능적으로 중요한 병변의 존재 또는 인터벤션을 요하는 다른 특징의 존재를 결정하는 데 사용되는 하한 아래로 떨어졌다고 결정된 후, 동맥 또는 지류는 기능적으로 중요한 병변의 위치를 파악하도록 평가될 수 있다. 컴퓨터 시스템 또는 사용자는 (가령, cFFR 모델(54)을 이용하여) 동맥 또는 지류의 기하형태에 기초하여 기능적으로 중요한 병변의 위치를 파악할 수 있다. 예를 들어, 기능적으로 중요한 병변은 국부 최소 cFFR 값을 갖는 cFFR 모델(54)의 위치로부터 근처에(예를 들어, 상류에) 위치하는 협폭화 또는 협착증을 발견함으로써 위치파악될 수 있다. 컴퓨터 시스템은 기능적으로 중요한 병변을 포함하는 cFFR 모델(54)(또는 다른 모델)의 일부분을 사용자에게 표시 또는 디스플레이할 수 있다.
다른 이미지도 연산 분석의 결과에 기초하여 발생될 수 있다. 예를 들어, 컴퓨터 시스템은, 예를 들어, 도 20 내지 도 22에 도시되는 바와 같이, 특정 주요 관상 동맥에 관한 추가적인 정보를 제공할 수 있다. 관상 동맥은 예를 들어, 특정 관상 동맥이 최저 cFFR을 포함할 경우, 컴퓨터 시스템에 의해 선택될 수 있다. 대안으로서, 사용자는 특정 관상 동맥을 선택할 수 있다.
도 20은 개별 기준 라벨(가령, LM, LAD1, LAD2, LAD3, 등)에 의해 식별되는 모델 상의 소정의 지점들을 이용하여 연산 분석의 결과를 포함한 환자 신체의 모델을 보여준다. 도 21에 도시되는 예시적인 실시예에서, 이러한 지점들이 LAD 동맥에 제공되고, 이러한 LAD 동맥은, 시뮬레이션된 충혈 조건 하에, 본 특정 환자에 대한 최저 cFFR을 갖는 주요 관상 동맥이다.
도 21 및 도 22는 이러한 지점들(가령, LM, LAD1, LAD2, LAD3, 등) 중 일부 또는 전부에서 및/또는 모델 상의 소정의 다른 위치(가령, 대동맥 내, 등)에서 시간에 따른 소정 변수의 그래프를 보여준다. 도 21은 도 20에서 표시되는 지점(LAD1, LAD2, LAD3)과 대동맥에서 시간에 따른 압력(밀리미터 수은 또는 mmHg)의 그래프다. 그래프의 맨 위 첫 번째 플롯은 대동맥 내 압력을 표시하고, 두 번째 플롯은 지점(LAD1)에서 압력을 표시하며, 세 번째 플롯은 지점(LAD2)에서 압력을 표시하고, 가장 아래의 플롯은 지점(LAD3)에서의 압력을 표시한다. 도 22는 도 20에 표시되는 지점(LM, LAD1, LAD2, LAD3)에서 시간에 따른 유량(세제곱센티미터/초 또는 cc/초)의 그래프다. 추가적으로, 이러한 지점들 일부 또는 전부에서, 및/또는 다른 지점에서, 시간에 따른 전단 응력의 그래프와 같은, 다른 그래프도 제공될 수 있다. 그래프 상의 첫 번째 플롯은 지점(LM)에서의 유량을, 표시하고, 두 번째 플롯은 지점(LAD1)에서의 유량을 표시하며, 세 번째 플롯은 지점(LAD2)에서의 유량을 표시하고, 마지막 플롯은 지점(LAD3)에서의 유량을 표시한다. 특정 주요 관상 동맥 및/또는 여기서부터 연장되는 지류의 길이를 따라, 혈압, 유량, 속도, 또는 cFFR과 같은 이러한 변수들의 변화를 보여주는 그래프가 또한 제공될 수 있다.
선택적 사항으로서, 앞서 설명한 다양한 그래프 및 다른 결과가 리포트로 최종화될 수 있다(단계(406)). 예를 들어, 앞서 설명한 이미지 및 다른 정보가 세트 템플릿을 갖는 문서 내로 삽입될 수 있다. 템플릿은 기설정되어 복수의 환자에 대해 범용일 수 있고, 의사 및/또는 환자에게 연산 분석의 결과를 보고하기 위해 사용될 수 있다. 문서 또는 리포트는 연산 분석 완료 후 컴퓨터 시스템에 의해 자동적으로 완료될 수 있다.
예를 들어, 최종화된 리포트는 도 23에 도시되는 정보를 포함할 수 있다. 도 23은 도 1의 cFFR 모델(54)을 포함하고, 주요 관상 동맥 및 이로부터 연장되는 지류 각각에서의 최저 cFFR 값과 같이, 요약 정보를 또한 포함한다. 예를 들어, 도 23은 LAD 동맥 내 최저 cFFR 값이 0.66이고, LCS 동맥 내 최저 cFFR 값이 0.72이며, RCA 동맥 내 최저 cFFR 값이 0.80임을 표시한다. 다른 요약 정보는 환자 성명, 환자 연령, 환자 혈압(BP)(가령, 단계(100)에서 획득), 환자의 심박동수(HR)(가령, 단계(100)에서 획득), 등을 포함할 수 있다. 최종화된 리포트는 추가 정보 결정을 위해 의사 또는 타 사용자가 액세스할 수 있는 앞서 설명한 대로 발생되는 이미지 및 다른 정보의 버전을 또한 포함할 수 있다. 컴퓨터 시스템에 의해 발생된 이미지는 의사 또는 타 사용자가 임의의 지점 위에 커서를 배치하도록 포맷형성되어, 이 지점에서, 혈압, 속도, 유량, cFFR, 등과 같은, 앞서 설명한 변수들 중 임의의 변수의 값을 결정할 수 있다.
최종화된 리포트는 의사 및/또는 환자에게 전송될 수 있다. 최종화된 리포트는 무선 또는 유선망, 메일, 등의 알려져 있는 통신 방법을 이용하여 전송될 수 있다. 대안으로서, 최종 리포트가 다운로드 또는 픽-업 가능함을 의사 및/또는 환자가 통지받을 수 있다. 그 후, 의사 및/또는 환자는 웹-기반 서비스에 로그인하여, 보안 통신 라인을 통해 최종 보고서를 다운로드할 수 있다.
C. 결과 확인
도 3을 다시 참조하면, 연산 분석의 결과가 독립적으로 확인될 수 있다(단계(408)). 예를 들어, 사용자 및/또는 컴퓨터 시스템은, 앞서 설명한 단계들 중 일부의 재시도를 요하는, 단계(406)에서 발생된 이미지 및 다른 정보와 같은, 연산 분석의 결과로 소정의 에러를 식별할 수 있다. 이러한 에러가 식별될 경우, 연산 분석의 결과가 수용불가능하다고 결정될 수 있고, 소정의 단계, 가령, 단계(100, 200, 300, 400), 세부 단계(102, 202-208, 240-260, 304-314, 402-408, 등)가 반복될 수 있다.
따라서, 앞서 설명한 도 3에 도시되는 단계(402-408)는 도 2의 단계(400)의 세부 단계로 간주될 수 있다.
연산 분석의 결과를 확인하기 위한 다른 방법은, 다른 방법을 이용하여 환자로부터, 혈압, 속도, 유량, cFFR, 등과 같은 결과에 포함된 변수들 중 임의의 변수의 측정을 포함할 수 있다. 예시적인 실시예에서, 변수는 (가령, 침습성으로) 측정될 수 있고, 그 후 , 연산 결과에 의해 결정된 결과에 비교될 수 있다. 예를 들어, FFR은 고형 모델(320) 및 메시(380)에 의해 표현되는 환자 신체 내의 하나 이상의 지점에서, 예를 들어, 앞서 설명한 바와 같이 환자 내로 삽입되는 압력 철선을 이용하여, 결정될 수 있다. 일 위치에서 측정된 FFR은 동일 위치의 cFFR과 비교될 수 있고, 이 비교는 복수의 위치에서 수행될 수 있다. 선택적인 사항으로서, 연산 분석 및/또는 경계 조건은 이러한 비교에 기초하여 조정될 수 있다.
D. 관상 동맥 혈류 정보 제공 시스템 및 방법의 다른 실시예
특정 환자 내의 관상 동맥 혈류에 관한 다양한 정보를 제공하기 위한 방법(600)의 다른 실시예가 도 24에 도시된다. 방법(600)은 도 3에 도시되는 앞서 설명한 단계들 중 하나 이상을 구현하는 데 사용되는 컴퓨터 시스템과 같이, 앞서 설명한 컴퓨터 시스템에서 구현될 수 있다. 방법(600)은 하나 이상의 입력(610)을 이용하여 수행될 수 있고, 입력(610)에 기초하여 하나 이상의 모델(620)을 발생시키는 단계와, 입력(610) 및/또는 모델(620)에 기초하여 하나 이상의 조건(630)을 할당하는 단계와, 모델(620) 및 조건(630)에 기초하여 하나 이상의 솔루션(640)을 도출하는 단계를 포함할 수 있다.
입력(610)은 CCTA 데이터(가령, 도 2의 단계(100)에서 획득)와 같이, 환자의 대동맥, 관상 동맥(및 이로부터 연장되는 지류) 및 심장의 의료 이미징 데이터(611)를 포함할 수 있다. 입력(610)은 환자의 상완 혈압의 측정치(612) 및/또는 다른 측정치(가령, 도 2의 단계(100)에서 획득)를 또한 포함할 수 있다. 측정치(612)는 비침습성으로 획득될 수 있다. 입력(610)은 아래 설명되는 모델(620)의 발생 및 조건(630)의 결정에 사용될 수 있다.
앞서 언급한 바와 같이, 하나 이상의 모델(620)이 입력(610)에 기초하여 발생될 수 있다. 예를 들어, 방법(600)은 이미징 데이터(611)에 기초하여 환자 신체(가령, 대동맥, 관상 동맥, 및 이로부터 연장되는 지류)의 하나 이상의 환자별 3차원 기하학적 모델을 발생시키는 단계(621)를 포함할 수 있다. 예를 들어, 기하학적 모델은 도 3의 단계(306)에서 발생된 도 8의 고형 모델(320)일 수 있고, 및/또는 도 3의 단계(312)에서 발생된 도 17 내지 도 19의 메시(380)일 수 있다.
도 24를 다시 참조하면, 방법(600)은 하나 이상의 물리학-기반 혈류 모델을 발생시키는 단계(622)를 또한 포함할 수 있다. 혈류 모델은 단계(621)에서 발생된 환자별 기하학적 모델을 통한 혈류, 심장 및 대동맥 순환, 말단 관상 동맥 순환, 등에 관련되는 모델을 포함할 수 있다. 혈류 모델은 가령, 혈류 속도, 압력, 유량, FFR, 등과 같이, 환자의 모델링된 신체와 관련된 적어도 하나의 혈류 특성에 관련될 수 있다. 혈류 모델은 3차원 기하학적 모델의 유입 및 유출 경계(322, 324)에서 경계 조건으로 할당될 수 있다. 혈류 모델은 예를 들어, 집중 파라미터 심장 모델(340), 집중 파라미터 관상 동맥 모델(350), 윈드케셀 모델(360), 등과 같이, 도 3의 단계(310)와 연계하여 앞서 설명한 차수 축소 모델 또는 다른 경계 조건을 포함할 수 있다.
앞서 언급한 바와 같이, 하나 이상의 조건(630)이 입력(610) 및/또는 모델(620)에 기초하여 결정될 수 있다. 조건(630)은 단계(622)(및 도 3의 단계(310))에서 결정된 경계 조건에 대해 연산되는 파라미터를 포함한다. 예를 들어, 방법(600)은 (도 3의 단계(240)에서 결정되는) 이미징 데이터(611)에 기초하여 환자별 심실 또는 심근 질량을 연산함으로써 조건을 결정하는 단계(631)를 포함할 수 있다.
방법(600)은 단계(631)에서 연산된 심실 또는 심근 질량을 이용하여, 관계
Figure pat00004
에 기초하여 휴지 관상 동맥 유동을 연산함으로써 조건을 결정하는 단계(632)를 포함할 수 있고, 이때, α는 기설정된 스케일링 지수이고, M은 심실 또는 심근 질량이며, Q0는 기설정된 상수다(가령, 도 3의 단계(310)에서 집중 파라미터 모델의 결정과 연계하여 앞서 설명함). 대안으로서, 이 관계는 도 3의 단계(310)에서 집중 파라미터 모델을 결정함과 연계하여 앞서 설명한 바와 같이,
Figure pat00005
의 형태를 가질 수 있다.
방법(600)은 단계(632)에서 연산된 결과적 관상 동맥 유동과 환자의 측정된 혈압(612)을 이용하여, (도 3의 단계(310)에서 집중 파라미터 모델 결정과 연계하여 앞서 설명한 바와 같이) 총 휴지 관상 동맥 저항을 연산함으로써 조건을 결정하는 단계(633)를 또한 포함할 수 있다.
방법(600)은 단계(633)에서 연산된 총 휴지 관상 동맥 저항과 모델(620)을 이용하여, 개별 관상 동맥(및 이로부터 연장되는 지류)에 대한 개별 저항을 연산함으로써 조건을 결정하는 단계(634)를 또한 포함할 수 있다. 예를 들어, 도 3의 단계(310)와 연계하여 앞서 설명한 바와 같이, 단계(633)에서 연산되는 총 휴지 관상 동맥 저항은 개별 관상 동맥 및 지류의 말단부의 크기(가령, 단계(621)에서 발생된 기하학적 모델로부터 결정됨)에 기초하여, 그리고, 관계
Figure pat00006
에 기초하여, 개별 관상 동맥 및 지류에 분배될 수 있으며, 이때, R은 특정 말단부에서의 유동에 대한 저항이고, R0는 기설정 상수이며, d는 크기(가령, 말단부의 직경), 그리고, β는 기설정된 거듭제곱 법칙 지수이며, 이는 도 3의 단계(310)에서 집중 파라미터 모델 결정과 연계하여 앞서 설명한 바와 같다.
도 24를 다시 참조하면, 방법(600)은 환자의 하나 이상의 물리적 조건에 기초하여 경계 조건을 조정하는 단계(635)를 포함할 수 있다. 예를 들어, 단계(631-634)에서 결정된 파라미터는, 솔루션(640)이 휴지 상태, 가변 레벨의 충혈, 가변 레벨의 운동 또는 활동(exertion), 서로 다른 처방, 등을 시뮬레이션하도록 의도되였는지 여부에 기초하여 수정될 수 있다. 입력(610), 모델(620), 및 조건(630)에 기초하여, 도 3의 단계(402)와 연계하여 앞서 설명한 바와 같은 연산 분석이 수행되어, 단계(635)에서 선택된 물리적 조건 하에 환자의 관상 동맥 혈류에 관한 정보를 포함하는 솔루션(640)을 결정할 수 있다(단계(641)). 솔루션(640)으로부터 제공될 수 있는 정보의 예가 이제 설명될 것이다.
조합된 환자별 신체(기하학적) 및 생리학적 (물리학-기반)모델을 이용하여, 관상 동맥 혈류에 대한 심박동수, 일회 박출량, 혈압, 또는 관상 동맥 미소순화 기능을 변경시키는 서로 다른 처방 또는 라이프스타일 변화(가령, 금연, 다이어트 변화, 또는, 물리적 활동 증가)의 효과를 결정할 수 있다. 이러한 정보를 이용하여 내과적 처방을 최적화시키거나, 잠재적으로 위험한 약물 처방의 결과를 방지할 수 있다. 조합된 모델을 또한 이용하여, 가령, 축구할 때, 우주 비행중, 스쿠버 다이빙 중, 비행 중, 등과 같은 때, 잠재적인 외인력에 노출될 위험 또는 가변 레벨의 물리적 활동 및/또는 대안의 형태의 관상 동맥 혈류에 대한 영향을 결정할 수 있다. 이러한 정보는 특정 환자에 대해 안정하고 효과적일 수 있는 물리적 활동의 종류 및 정도를 식별하는 데 사용될 수 있다. 조합된 모델은, 최적 인터벤션 전략을 선택하기 위해 관상 동맥 혈류에 대한 경피 관상 동맥 인터벤션의 잠재적 이점을 예측하는 데 또한 사용될 수 있고, 및/또는, 최적의 외과적 전략을 선택하기 위해 관상 동맥 혈류에서의 관상 동맥 우회술의 잠재적 이점을 예측하는 데 또한 사용될 수 있다.
조합된 모델은 관상 동맥 혈류에 대한 동맥 질환의 부담 증가의 잠재적인 유해 효과를 나타내기 위해 또한 사용될 수 있고, 질환 진행이 심장 근육에 대한 혈류의 절충으로 나타날 수 있을 때를, 기계론적 또는 현상학적 질환 진행 모델 또는 실험 데이터를 이용하여 예측하는 데 또한 사용될 수 있다. 이러한 정보는 비침습성 이미징을 이용한 혈역학적으로 중요한 질환으로부터 최초에 자유롭다고 관찰된 환자가 내과적, 인터벤션적, 또는 외과적 처방을 요구할 것을 기대하지 못할 수 있는 "보증 주기"의 결정을 가능하게 할 수 있고, 또는, 대안으로서, 조악 재료가 계속될 경우 진행이 이루어질 수 있는 속도의 결정을 가능하게 할 수 있다.
조합된 모델은 관상 동맥 질환의 부담 감소로부터 나타나는 관상 동맥 혈류에 대한 잠재적 유익한 효과를 나타내는 데 또한 사용될 수 있고, 기계론적 또는 현상학적 질환 진행 모델 또는 실험 데이터를 이용하여, 질환의 후퇴가 관상 동맥을 통해 심장 근육까지 혈류 증가로 나타날 수 있을 때를 예측하는 데 또한 사용될 수 있다. 이러한 정보는 다이어트 변화, 물리적 활동 증가, 스타틴 또는 다른 약물, 등의 처방전을 포함한, 그러나 이에 제한되지 않는, 내과적 관리 프로그램을 안내하는 데 사용될 수 있다.
VI. 환자별 치료 계획 제공
도 2에 도시되는 단계(500)와 연계하여 앞서 설명한 바와 같이, 예시적인 방법은 환자별 치료 계획을 제공하는 단계를 포함할 수 있다. 예시적인 실시예에서, 단계(500)는 다음의 단계들을 포함할 수 있다. 도 3이 다음의 단계들을 보여주지 않지만, 이러한 단계들은 예를 들어, 단계(406) 또는 단계(408) 이후, 도 3에 도시되는 단계들과 연계하여 수행될 수 있다.
앞서 설명한 바와 같이, 도 1 및 도 23에 도시되는 cFFR 모델(54)은 치료받지 않은 상태에서 시뮬레이션된 충혈 조건 하에서, 도 17 내지 도 19의 메시(380)에 의해 표현되는 환자 신체 전체를 통한 cFFR 값을 표시한다. 이 정보를 이용하여, 의사는 예를 들어, 운동 증가, 다이어트 변화, 약물 처방, 모델링된 신체의 임의의 부분, 또는 심장의 다른 부분의 수술, 등(가령, 관상 동맥 우회술, 하나 이상의 관상 동맥 스텐트 삽입, 등)과 같이, 환자에 대한 치료를 처방할 수 있다.
처방할 치료법을 결정하기 위해, 컴퓨터 시스템은 연산 분석으로부터 결정되는 정보가 이러한 치료법에 기초하여 어떻게 변할 것인지를 예측하는 데 사용될 수 있다. 예를 들어, 스텐트 삽입 또는 다른 수술과 같은 소정의 치료법은 모델링된 신체의 기하형태의 변화를 도출할 수 있다. 따라서, 예시적인 실시예에서, 단계(306)에서 발생된 고형 모델(320)은 스텐트가 삽입되는 하나 이상의 내강의 광폭화를 표시하기 위해 변경될 수 있다.
예를 들어, 도 1 및 도 23에 도시되는 cFFR 모델(54)은 LAD 동맥의 최저 cFFR 값이 0.66, LCX 동맥 내 최저 cFFR 값이 0.72, RCA 동맥 내 최저 cFFR 값이 0.80임을 표시한다. cFFR 값이 예를 들어, 0.75 미만일 경우 치료가 제안될 수 있다. 따라서, 컴퓨터 시스템은 이러한 관상 동맥에 스텐트 삽입을 시뮬레이션하기 위해 LAD 동맥과 LCX 동맥의 광폭화를 표시하도록 고형 모델(320)의 변경을 사용자에게 제안할 수 있다. 사용자는 시뮬레이션되는 스텐트의 위치 및 크기에 대응하는 (가령, 길이 및 직경과 같은) 광폭화의 위치 및 양을 선택할 것을 프람프트로 제시받을 수 있다. 대안으로서, 광폭화의 위치 및 양이 0.75 미만의 cFFR 값을 갖는 노드의 위치, 혈관의 현저한 협폭화 위치, 종래의 스켄트의 크기, 등과 같은 다양한 인자에 기초하여 컴퓨터 시스템에 의해 자동적으로 결정될 수 있다.
도 25는 위치(512)에서 LAD 동맥의 일부분과 위치(514)에서 LCX 동맥의 일부분을 광폭화시킴으로써 생성되는 고형 모델에 기초하여 결정되는 수정 cFFR 모델(510)의 예를 보여준다. 예시적인 실시예에서, 앞서 설명한 단계들 중 임의의 단계, 예를 들어, 단계(310-314, 402-408)는 수정 고형 모델을 이용하여 반복될 수 있다. 단계(406)에서, 최종 리포트는 도 23에 도시되는 정보와 같은, 치료받지 않은 환자에 관한 정보(가령, 스텐트없음)와, 도 25 및 도 26에 도시되는 정보와 같은, 환자에 대해 시뮬레이션된 치료에 관한 정보를 포함할 수 있다.
도 25는 수정 cFFR 모델(510)을 포함하고, 제안된 치료와 관련된 수정 고형 모델에 대해 주요 관상 동맥 및 이로부터 연장되는 지류의 최저 cFFR 값과 같은 요약 정보를 또한 포함한다. 예를 들어, 도 25는 LAD 동맥의 최저 cFFR 값이 0.78, LCX 동맥(및 그 하류 지류)의 최저 cFFR 값이 0.78, RCA 동맥(및 그 하류 지류)의 최저 cFFR 값이 0.79임을 표시한다. 따라서, 치료받지 않은 환자(스텐트없음)의 cFFR 모델(54)과 제한된 치료(스텐트 삽입됨)에 대한 cFFR 모델(510)의 비교는 제안된 치료가 LAD 동맥에서의 최소 cFFR을 0.66으로부터 0.78까지 증가시킬 수 있고, LCX 동맥에서의 최소 cFFR을 0.72부터 0.76까지 증가시킬 수 있으며, RCA 동맥의 최소 cFFR은 0.80으로부터 0.79까지 최소 감소가 나타날 것이다.
도 26은 앞서 설명한 위치(512)의 LAD 동맥과 위치(514)의 LCX 동맥의 부분들의 광폭화 이후 결정되는 수정 시뮬레이션 혈류 모델(520)의 예를 보여준다. 도 26은 제안된 치료와 관련된 수정 고형 모델에 대해 주요 관상 동맥 및 이로부터 연장되는 지류 내 다양한 위치에서의 혈류 값과 같은 요약 정보를 또한 포함한다. 예를 들어, 도 26은 치료받지 않은 환자(스텐트없음) 및 치료받은 환자(스텐트 삽입됨)에 대한 LAD 동맥 내 4개의 위치(LAD1, LAD2, LAD3, LAD4)와, LCX 동맥 내 2개의 위치(LCX1, LCX2)에 대한 혈류값을 표시한다. 도 26은 치료받지 않은 상태 및 치료받은 상태 사이의 혈류값들의 퍼센티지 변화를 또한 표시한다. 따라서, 치료받지 않은 환자의 시뮬레이션된 혈류 모델(52)과 제안된 치료에 대한 시뮬레이션된 혈류 모델(520)의 비교는, 모든 위치(LAD1-LAD4, LCX1, LCX2)에서 LAD 동맥 및 LCX 동맥을 통한 유동을 위치에 따라 9% 내지 19%만큼 증가시킬 수 있다.
관상 동맥 혈압과 같이 치료받지 않은 상태와 치료받은 상태 사이에 다른 정보가 또한 비교될 수 있다. 이 정보에 기초하여, 의사는 제안된 치료 옵션을 진행할 지 여부를 환자와 논의할 수 있다.
다른 치료 옵션은 서로 다른 방식으로 고형 모델(320)을 수정하는 단계를 또한 포함할 수 있다. 예를 들어, 관상 동맥 우회술은 고형 모델(320)에 새 내강 또는 통로를 생성하는 과정을 포함할 수 있고, 병변의 제거는 내강 또는 통로의 광폭화를 또한 포함할 수 있다. 다른 치료 옵션은 고형 모델(320)의 수정을 포함하지 않을 수 있다. 예를 들어, 운동 또는 활동 증가, 다이어트 변화 또는 다른 라이프스타일 변화, 약품 처방, 등은 가령, 혈관 수축, 확장, 심박동수 감소, 등으로 인해 단계(310)에서 결정된 경계 조건의 변화를 포함할 수 있다. 예를 들어, 환자의 심박동수, 심박출량, 일회 박출량, 혈압, 관상 동맥 미소순환 기능, 집중 파라미터 모델의 컨피규레이션, 등은 처방 약품, 채택한 운동(또는 다른 활동)의 종류 및 빈도, 채택한 라이프스타일 변화의 종류(가령, 금연, 다이어트 변화, 등)에 따라 좌우되어, 서로 다른 방식으로 단계(310)에서 결정된 경계 조건에 영향을 미친다.
예시적인 실시예에서, 수정 경계 조건은 많은 환자로부터의 데이터를 이용하여 실험적으로 결정될 수 있고, 유사 치료 옵션이 마찬가지 방식으로 경계 조건들의 수정을 요구할 수 있다. 실험적 모델은 대단위 환자별 데이터로부터 발전되어, 차후 분석에서 유사 환자에 적용될 수 있는 구체적 치료 옵션에 대응하는, 경계 조건의 라이브러리, 또는 경계 조건의 연산 기능을 생성한다.
경계 조건 수정 후, 앞서 설명한 단계들, 가령, 단계(312, 314, 402-408)는 수정 경계 조건을 이용하여 반복될 수 있고, 단계(406)에서, 최종 리포트는 도 23에 도시되는 정보와 같이, 치료받지 않은 환자에 관한 정보와, 도 25 및 도 26에 도시되는 정보와 같이, 환자에 대해 시뮬레이션된 치료에 관한 정보를 포함할 수 있다.
대안으로서, 의사, 환자, 또는 타 사용자는 3차원 모델(가령, 도 8의 고형 모델(320))과 상호작용하는 사용자 인터페이스를 제공받을 수 있다. 모델(320)은 하나 이상의 치료 옵션을 반영하기 위해 사용자에 의해 편집될 수 있는 사용자-선택가능한 세그먼트로 나누어질 수 있다. 예를 들어, 사용자는 협착증(또는 폐색증, 가령, 급성 폐색증)을 갖는 세그먼트를 선택할 수 있고, 협착증 제거를 위해 상기 세그먼트를 조정할 수 있으며, 사용자는 바이패스, 등으로 기능하도록 모델(320)에 하나의 세그먼트를 더할 수 있다. 사용자는 예를 들어, 심박출량 변화, 심박동수, 일회 박출량, 혈압, 운동 또는 활동 레벨, 충혈 레벨, 약물, 등의 변화와 같이, 앞서 결정한 경계 조건을 변경시킬 수 있는 다른 치료 옵션 및/또는 생리학적 파라미터를 명시할 것을 프람프트로 또한 제시받을 수 있다. 대안의 실시예에서, 컴퓨터 시스템은 치료 옵션을 결정 또는 제안할 수 있다.
사용자 인터페이스는 사용자가 협착증(또는 폐색증, 가령, 급성 폐색증)을 시뮬레이션할 수 있도록 3차원 모델(320)과 상호작용할 수 있다. 예를 들어, 사용자는 협착증을 포함하기 위한 세그먼트를 선택할 수 있고, 컴퓨터 시스템은 연산 분석으로부터 결정된 정보가 협착증의 추가에 기초하여 어떻게 변화할 것인지를 에측하는 데 사용될 수 있다. 따라서, 여기서 설명되는 방법은 동맥의 폐색 효과를 에측하는 데 사용될 수 있다.
사용자 인터페이스는, 악성 종양의 제거시와 같이, 예를 들어, 소정의 외과적 과정에서, 발생할 수 있는 동맥 제거 또는 손상 동맥을 시뮬레이션하기 위해 3차원 모델(320)과 또한 상호작용할 수 있다. 이 모델은 환자에게 적절한 혈류를 공급하기 위한 부행 경로에 대한 가능성을 예측하기 위해, 소정의 동맥을 통한 혈류를 방지하는 효과를 시뮬레이션하도록 또한 수정될 수 있다.
A. 서로 다른 처리 옵션의 비교를 위해 차수 축소 모델 이용
예시적인 실시예에서, 컴퓨터 시스템은 3차원 고형 모델(320) 또는 메시(380)를 차수 축소 모델로 대체함으로써 더욱 신속하게 다양한 치료 옵션을 사용자로 하여금 시뮬레이션할 수 있게 한다. 도 27은 예시적인 실시예에 따라, 차수 축소 모델을 이용하여 다양한 치료 옵션을 시뮬레이션하기 위한 방법(700)에 관한 개략도를 보여준다. 방법(700)은 앞서 설명한 컴퓨터 시스템에서 구현될 수 있다.
혈류 또는 다른 파라미터를 나타내는 하나 이상의 환자별 시뮬레이션된 혈류 모델은 앞서 설명한 연산 분석으로부터 출력될 수 있다(단계(701)). 예를 들어, 시뮬레이션된 혈류 모델은, 앞서 설명한 도 2 및 도 3에서 도시되는 방법을 이용하여 제공되는, 도 1의 시뮬레이션된 혈압 모델(50), 도 1의 시뮬레이션된 혈류 모델(52), 도 1의 cFFR 모델(54), 등을 포함할 수 있다. 앞서 설명한 바와 같이, 시뮬레이션된 혈류 모델은 환자 신체의 3차원 기하학적 모델을 포함할 수 있다.
차수 축소 모델에 대한 조건을 명시하기 위해, 시뮬레이션된 혈류 모델로부터 기능 정보를 추출할 수 있다(단계(702)). 예를 들어, 기능 정보는 앞서 설명한 연산 분석을 이용하여 결정되는, 혈압, 유동, 또는 속도 정보를 포함할 수 있다.
단계(701)에서 발생된 환자별 시뮬레이션된 혈류 모델의 발생에 사용되는 3차원 고형 모델(320)을 대체하기 위해 차수 축소(가령, 0차원 또는 1차원) 모델이 제공될 수 있고, 환자의 관상 동맥 혈류에 관한 정보를 결정하기 위해 차수 축소 모델이 사용될 수 있다(단계(703)). 예를 들어,차수 축소 모델은 도 3의 단계(310)와 연계하여 앞서 설명한 바와 같이 발생되는 집중 파라미터 모델일 수 있다. 따라서, 집중 파라미터 모델은 도 17 내지 도 19의 메시(380)와 연계된 방정식의 더욱 복잡한 시스템을 풀 필요없이, 환자의 관상 동맥 혈류에 관한 정보의 결정에 사용될 수 있는 환자 신체의 단순화된 모델이다.
단계(703)에서 차수 축소 모델을 풀어 결정되는 정보는 그 후, 환자 신체의 3차원 고형 모델(가령, 고형 모델(320))에 매핑되거나 외삽될 수 있고(단계(704)), 사용자는 사용자에 의해 선택될 수 있는, 환자에 대한 생리학적 파라미터에 대한 변화 및/또는 다양한 처리 옵션의 시뮬레이션을 위해 요망되는 대로 차수 축소 모델에 변화를 행할 수 있다(단계(705)). 선택가능한 생리학적 파라미터는 심박출량, 운동 또는 활동 레벨, 충혈 레벨, 약물 종류, 등을 포함할 수 있다. 선택가능한 치료 옵션은 협착증 제거, 바이패스 추가, 등을 포함할 수 있다.
그 후, 차수 축소 모델은 사용자에 의해 선택되는 치료 옵션 및/또는 생리학적 파라미터에 기초하여 수정될 수 있고, 수정된 차수 축소 모델을 이용하여, 선택된 치료 옵션 및/또는 생리학적 파라미터와 관련된 환자의 관상 동맥 혈류에 관한 정보를 결정할 수 있다(단계(703)). 단계(703)에서 차수 축소 모델을 풀어 결정되는 정보는 환자 신체의 3차원 고형 모델(320)에 매핑되거나 외삽될 수 있어서, 환자 신체의 관상 동맥 혈류에 대한 생리학적 파라미터 및/또는 선택된 치료 옵션의 효과를 예측할 수 있다(단계(704)).
단계(703-705)는 다양한 처리 옵션의 예측되는 효과를 서로 비교하고 치료받지 않은 환자의 관상 동맥 혈류에 관한 정보에 비교하기 위해, 서로 다른 다양한 치료 옵션 및/또는 생리학적 파라미터에 대해 반복될 수 있다. 그 결과, 다양한 처리 옵션 및/또는 생리학적 파라미터에 대한 예측된 결과는, 3차원 메시(380)를 이용하여 더욱 복잡한 분석을 재가동할 필요없이, 서로에 대해 그리고 치료받지 않은 환자에 대한 정보에 대해 평가될 수 있다. 대신에, 차수 축소 모델이 사용될 수 있어서, 사용자가 서로 다른 치료 옵션 및/또는 생리학적 파라미터를 더욱 쉽고 신속하게 분석 및 비교할 수 있게 된다.
도 28은 예시적인 실시예에 따라, 차수 축소 모델을 이용하여 다양한 처리 옵션을 시뮬레이션하기 위한 예시적인 방법의 추가적 형태를 보여준다. 방법(700)은 앞서 설명한 컴퓨터 시스템에서 구현될 수 있다.
도 3의 단계(306)와 연계하여 앞서 설명한 바와 같이, 환자별 기하학적 모델은 환자에 대한 이미징 데이터에 기초하여 발생될 수 있다(단계(711)). 예를 들어, 이미징 데이터는 도 2의 단계(100)에서 얻은 CCTA 데이터를 포함할 수 있고, 기하학적 모델은 도 3의 단계(306)에서 발생된 도 8의 고형 모델(320), 및/또는 도 3의 단계(312)에서 발생된 도 17 내지 도 19의 메시(380)일 수 있다.
환자별 3차원 기하학적 모델을 이용하여, 예를 들어, 도 3의 단계(402)와 연계하여 앞서 설명한 바와 같이 연산 분석을 수행하여, 환자의 관상 동맥 혈류에 관한 정보를 결정할 수 있다(단계(712)). 연산 분석은 혈류 또는 다른 파라미터를 나타내는 하나 이상의 3차원 환자별 시뮬레이션된 혈류 모델, 가령, 도 1의 시뮬레이션된 혈압 모델(50), 도 1의 시뮬레이션된 혈류 모델(52), 도 1의 cFFR 모델(54), 등을 출력할 수 있다.
시뮬레이션된 혈류 모델은 모델의 신체 특징에 기초하여 (가령, 도 14와 연계하여 앞서 설명한 바와 같이) 분절될 수 있다(단계(713)). 예를 들어, 주요 관상 동맥으로부터 연장되는 지류는 별도의 세그먼트에 제공될 수 있고(단계(714)), 협착증 또는 환부를 갖는 부분은 별도의 세그먼트에 제공될 수 있으며(단계(716)), 지류와 협착증 또는 환부를 갖는 부분 사이의 부분은 별도의 세그먼트에 제공될 수 있다(단계(715)). 시뮬레이션된 혈류 모델을 분절화함에 있어서 가변 레벨의 해상도가 제공될 수 있고, 따라서, 각각의 혈관이 복수의 짧은, 개별 세그먼트 또는 가령, 전체 혈관을 포함한, 긴 세그먼트를 포함할 수 있다. 또한, 중심선을 발생시키고 발생된 중심선에 기초하여 섹션화하는 단계, 또는, 지류점을 검출하고 검출된 지류점에 기초하여 섹션화하는 단계를 포함한, 시뮬레이션된 혈류 모델을 분절화하기 위해 다양한 기술이 제공될 수 있다. 환부 및 협착증은, 예를 들어, 중심선의 길이를 따라 단면적을 측정함으로써, 그리고, 국부 최소 단면적을 연산함으로써, 식별될 수 있다. 단계(711-716)은 도 27의 단계(701)의 세부 단계로 간주될 수 있다.
세그먼트는 도 15와 연계하여 앞서 설명한 바와 같이, 저항기, 커패시터, 인덕터, 등과 같은 집중 파라미터 모델의 구성요소들에 의해 대체될 수 있다. 저항, 커패시턴스, 인덕턴스, 및 집중 파라미터 모델에 사용되는 다른 전기적 구성요소와 관련된 다른 변수에 대한 개별 값들은 단계(712)에서 제공되는 시뮬레이션된 혈류 모델로부터 도출될 수 있다. 예를 들어, 지류와 협착증 또는 환부를 갖는 부분 사이의 부분에 대해, 대응하는 세그먼트에 선형 저항을 할당하기 위해 시뮬레인션된 혈류 모델로부터 도출한 정보가 사용될 수 있다(단계(717)). 협착증 또는 환부를 갖는 복잡한 기하형태를 갖는 부분의 경우, 저항이 유량과 함께 변화할 수 있다. 따라서, 복수의 연산 분석을 이용하여 다양한 유동 및 압력 조건에 대해 시뮬레이션된 혈류 모델을 얻어, 도 15와 연계하여 앞서 설명한 바와 같이, 이와 같이 복잡한 기하 형태에 대한 환자별, 혈관별, 병변별 저항 기능을 도출할 수 있다. 따라서, 협착증 또는 환부를 갖는 부분의 경우, 이전 데이터로부터 도출된 모델 또는 이러한 복수의 연산 분석으로부터 도출된 정보를 이용하여, 대응하는 세그먼트에 비-선형, 유동-의존적 저항을 할당할 수 있다(단계(718)). 단계(717, 718)는 도 27의 단계(702)의 세부 단계로 간주될 수 있다.
단계(717, 718)에서 결정된 저항을 이용하여, 차수 축소(가령, 0차원 또는 1차원) 모델이 발생될 수 있다(단계(719)). 예를 들어, 차수 축소 모델은 도 3의 단계(310)와 연계하여 앞서 설명한 바와 같이 발생되는 집중 파라미터 모델일 수 있다. 따라서, 집중 파라미터 모델은 도 17 내지 도 19의 메시(380)와 관련한 방정식들의 더욱 복잡한 시스템을 풀 필요없이 환자의 관상 동맥 혈류에 관한 정보를 결정하는 데 사용될 수 있는 환자 신체의 단순화된 모델이다.
단계(719)에서 생성된 차수 축소 모델과 사용자가 상호작용할 수 있게 하는 사용자 인터페이스가 제공될 수 있다(단계(720)). 예를 들어, 사용자는 서로 다른 치료 옵션의 시뮬레이션을 위해 차수 축소 모델의 서로 다른 세그먼트를 선택 및 편집할 수 있고, 및/또는 다양한 생리학적 파라미터를 편집할 수 있다. 예를 들어, 환부의 보수를 위해 스텐트를 삽입하는 것과 같은, 인터벤션은, 스텐트가 삽입될 세그먼트의 저항을 감소시킴으로써 모델링될 수 있다. 바이패스 형성은 질환 세그먼트에 평행하게 낮은 저항을 갖는 세그먼트를 추가함으로써 모델링될 수 있다.
수정 차수 축소 모델의 해를 구하여, 단계(720)에서 선택한 생리학적 파라미터의 변화 및/또는 치료 하의 환자의 관상 동맥 혈류에 관한 정보를 결정할 수 있다(단계(721)). 단계(721)에서 결정된 각각의 세그먼트의 유동 및 압력에 대한 솔루션의 값은 단계(712)에서 결정된 3차원 모델이 비교될 수 있고, (가령, 단계(717, 718)에서 결정되는 바와 같이) 세그먼트의 저항 기능을 조정함으로써, 그리고 솔루션이 일치할 때까지 차수 축소 모델을 분석함으로써(가령, 단계(721)) 차이가 최소화될 수 있다. 그 결과, 차수 축소 모델이 생성되어 단순화된 한 세트의 방정식으로 풀릴 수 있고, 이러한 방정식은, (가령, 완전한 3차원 모델에 비해) 상대적으로 신속한 연산이 가능하고, 완전한 3차원 연산 솔루션의 결과에 가깝게 근사할 수 있는 유량 및 압력을 구하는 데 사용될 수 있다. 차수 축소 모델은 비교적 신속한 반복으로 서로 다른 다양한 치료 옵션을 모델링할 수 있다.
단계(721)에서 차수 축소 모델을 풀어 결정되는 정보는 그 후 환자 신체의 3차원 고형 모델(가령, 고형 모델(320))에 매핑 또는 외삽될 수 있다(단계(722)). 단계(719-722)는 도 27의 단계(703-705)와 유사할 수 있고, 치료 옵션 및/또는 생리학적 파라미터의 서로 다른 조합을 시뮬레이션하기 위해 사용자에 의해 요망되는 대로 반복될 수 있다.
대안으로서, (가령, 단계(717, 718)에 대해 앞서 설명한 바와 같이) 3차원 모델로부터 세그먼트를 따라 저항을 연산하기보다는, 중심선을 따라 간격을 두고 유량 및 압력이 집중 파라미터 또는 1차원 모델 내로 처방될 수 있다. 경계 조건 및 처방된 유량 및 압력의 제약 하에서, 유효 저항 또는 손실 계수를 얻을 수 있다.
또한, 개별 세그먼트간 유량 및 압력 구배를 사용하여, 차수 축소 모델로부터 도출되는 솔루션을 이용하여 심외막 관상 동맥 저항을 연산할 수 있다. 심외막 관상 동맥 저항은 심외막 관상 동맥의 동등한 저항으로 연산될 수 있다(관상 동맥 및 이로부터 연장되는 지류의 부분들이, 의료 이미징 데이터로부터 재구성된 환자별 모델에 포함되었슴). 이는 관상 동맥의 확산성 아테롬성 동맥 경화증을 갖는 환자가 어찌하여 국소성 빈혈 증상(혈액 공급의 제한)을 나타낼 수 있는 지를 설명함에 있어서 임상적 중요도를 가질 수 있다. 또한, 시뮬레이션된 약리적으로 유도되는 충혈 또는 가변적인 운동 강도의 조건 하에 심작업량 단위 당 유동 및/또는 심근 조직 체적(또는 질량) 단위 당 유동은 차수 축소 모델로부터의 데이터를 이용하여 연산될 수 있다.
그 결과, 3차원 혈류 모델링의 정확도는 1차원 및 집중 파라미터 모델링 기술에 내재된 연산 단순성 및 상대 속도와 조합될 수 있다. 3차원 연산법을 이용하여, 통상의 세그먼트, 협착부, 정션, 및 다른 신체 특징부에 대한 압력 손실에 대한 수치적으로-도출되는 실험적 모델을 갖는 환자별 1차원 또는 집중 파라미터 모델을 수치적으로 도출할 수 있다. 심장 혈관 질환을 갖는 환자에 대한 개선된 진단이 제공될 수 있고, 내과적, 인터벤션, 및 외과적 치료의 계획이 빠르게 수행될 수 있다.
또한, 3차원 연산 유체 동역학 기술의 정확도는 집중 파라미터 및 1차원 혈류 모델의 연산 단순성 및 성능 기능과 조합될 수 있다. 3차원 기하학적 및 생리학적 모델은 자동적으로 차수 축소 1차원 또는 집중 파라미터 모델로 분해될 수 있다. 3차원 모델은 통상의 세그먼트, 협착부, 및/또는 지류를 통해 혈류의 선형 또는 비-선형 혈류 역학적 효과를 연산하는 데 사용될 수 있고, 실험 모델의 파라미터를 설정하는 데 사용될 수 있다. 1차원 또는 집중 파라미터 모델은 환자별 모델의 혈류 및 압력을 보다 효율적으로 신속하게 얻을 수 있고, 집중 파라미터 또는 1차원 솔루션의 결과를 디스플레이할 수 있다.
차수 축소 환자별 신체 및 생리학적 모델을 이용하여, 관상 동맥 혈류에 대한 관상 동맥 미소순환 기능, 혈액, 일회 박출량, 심박동수를 변경시키는 서로 다른 처방 또는 라이프스타일 변화(가령, 금연, 다이어트 변화, 또는 물리적 활동 증가)의 효과를 결정할 수 있다. 이러한 정보를 이용하여, 처방의 잠재적으로 위험한 결과를 방지할 수 있고, 또는 내과적 처방을 최적화시킬 수 있다. 차수 축소 모델은 예를 들어, 축구할 때, 우주 비행 중, 스쿠버 다이빙시, 항공기 비행 중, 등과 같이, 잠재적 외인력에 노출될 위험 또는 가변 레벨의 물리적 활동, 및/또는 대안의 형태의 관상 동맥 혈류에 대한 효과를 결정하는 데 또한 사용될 수 있다. 이러한 정보를 이용하여, 특정 환자에 대해 안전하고 효과적일 수 있는 물리적 활동의 종류 및 정도를 식별할 수 있다. 차수 축소 모델은, 최적 인터벤션 기법을 선택하기 위해 관상 동맥 혈류에 대한 경피를 통한 관상 동맥 인터벤션의 잠재적 이점을 예측하는 데 또한 사용될 수 있고, 및/또는 최적의 외과적 기법을 선택하기 위해 관상 동맥 혈류에 대한 관상 동맥 우회술의 잠재적 이점을 예측하는 데 또한 사용될 수 있다.
차수 축소 모델은 관상 동맥 혈류에 대한 동맥 질환의 부담 증가의 잠재적인 유해 효과를 나타내기 위해 또한 사용될 수 있고, 질환 진행이 심장 근육에 대한 혈류의 절충으로 나타날 수 있을 때를, 기계론적 또는 현상학적 질환 진행 모델 또는 실험 데이터를 이용하여 예측하는 데 또한 사용될 수 있다. 이러한 정보는 비침습성 이미징을 이용한 혈역학적으로 중요한 질환으로부터 최초에 자유롭다고 관찰된 환자가 내과적, 인터벤션적, 또는 외과적 처방을 요구할 것을 기대하지 못할 수 있는 "보증 주기"의 결정을 가능하게 할 수 있고, 또는, 대안으로서, 조악 재료가 계속될 경우 진행이 이루어질 수 있는 속도의 결정을 가능하게 할 수 있다.
차수 축소 모델은 관상 동맥 질환의 부담 감소로부터 나타나는 관상 동맥 혈류에 대한 잠재적 유익한 효과를 나타내는 데 또한 사용될 수 있고, 기계론적 또는 현상학적 질환 진행 모델 또는 실험 데이터를 이용하여, 질환의 후퇴가 관상 동맥을 통해 심장 근육까지 혈류 증가로 나타날 수 있을 때를 예측하는 데 또한 사용될 수 있다. 이러한 정보는 다이어트 변화, 물리적 활동 증가, 스타틴 또는 다른 약물, 등의 처방전을 포함한, 그러나 이에 제한되지 않는, 내과적 관리 프로그램을 안내하는 데 사용될 수 있다.
차수 축소 모델은 의사가 심장 카테터법 랩에서 환자를 검사할 때 치료 옵션을 실시간으로 연산할 수 있게 하기 위해 혈관 조영 검사 시스템 내에 또한 포함될 수 있다. 모델은 혈관 조영 검사 디스플레이와 동일한 배향으로 등록될 수 있어서, 시뮬레이션된 혈류 솔루션과 함께 관상 동맥의 라이브 혈관 조영 뷰를 나란하게 또는 중첩시켜서 나타낼 수 있다. 의사는 과정 중 관찰이 이루어짐에 따라 치료 계획을 수립 및 변경할 수 있어서, 내과적 결정이 이루어지기 전에 비교적 빠른 피드백을 가능하게 한다. 의사는 압력, FFR, 또는 혈류 측정을 침습적으로 취할 수 있고, 측정치를 이용하여 예측 시뮬레이션이 수행되기 전에 모델을 추가적으로 개선시킬 수 있다. 차수 축소 모델은 의료 이미징 시스템 또는 워크스테이션 내에 또한 포함될 수 있다. 이전 환자별 시뮬레이션 결과의 라이브러리로부터 도출될 경우, 이미징 스캔 완료 후 혈류 정보를 상대적으로 신속하게 얻기 위해 기하학적 분절화 알고리즘과 연계하여 차수 축소 모델이 사용될 수 있다.
차수 축소 모델은 대단위 환자들에 대한 치료 옵션의 비용/이점 또는 새 내과적 요법의 유효성을 모델링하는 데 또한 사용될 수 있다. 복수의 환자별 집중 파라미터 모델(가령, 수백개, 수천개, 또는 그 이상)들의 데이터베이스는 비교적 짧은 시간에 풀기 위한 모델을 제공할 수 있다. 비교적 빠른 반복 및 최적화는 약물, 치료, 또는 임상 시도 시뮬레이션 또는 설계용으로 제공될 수 있다. 외과적 간섭, 약물에 대한 환자 반응, 치료를 나타내도록 모델의 적응시키는 것은, 비싸면서 잠재적으로 위험한 대단위 임상 실험을 수행할 필요없이 효과적인 추정치를 얻을 수 있게 한다.
VII. 다른 결과
A. 심근 관류 평가
다른 결과가 연산될 수 있다. 예를 들어, 연산 분석은 심근 관류(심근을 통한 혈류)를 정량화하는 결과를 제공할 수 있다. 심근 관류의 정량화는 국소 빈혈(혈액 공급의 제한사항), 흉터, 또는 다른 심장 문제로 인해서와 같이, 감소된 심근 혈류의 영역 식별을 도울 수 있다.
도 29는 예시적인 실시예에 따라, 특정 환자의 심근 관류에 관한 다양한 정보를 제공하기 위한 방법(800)에 관한 개략도를 도시한다. 방법(800)은 앞서 설명한 컴퓨터 시스템(예를 들어, 도 3에 도시되는 앞서 설명한 단계들 중 하나 이상을 구현하는 데 사용되는 컴퓨터 시스템)에서 구현될 수 있다.
방법(800)은 하나 이상의 입력(802)을 이용하여 수행될 수 있다. 입력(802)은 (가령, 도 2의 단계(100)에서 얻은) CCTA 데이터와 같이, 환자의 동맥, 관상 동맥(및 이로부터 연장되는 지류), 및 심장의 의료 이미징 데이터(803)를 포함할 수 있다. 입력(802)은 환자의 상완 혈압, 심박동수, 및/또는 다른 측정치(가령, 도 2의 단계(100)에서 얻음)와 같이, 환자로부터 측정되는 추가적인 생리학적 데이터(804)를 또한 포함할 수 있다. 추가적인 생리학적 데이터(804)는 비침습성으로 얻을 수 있다. 입력(802)은 아래 설명되는 단계들을 수행하는 데 사용될 수 있다.
환자의 심근 조직의 3차원 기하학적 모델은 이미징 데이터(803)에 기초하여 생성될 수 있고(단계(810)), 기하학적 모델은 세그먼트 또는 체적으로 나누어질 수 있다(단계(812)). 예를 들어, 도 31은 세그먼트(842)로 나누어지는 환자의 심근 조직의 3차원 기하학적 모델(838)을 포함하는 3차원 기하학적 모델(846)을 보여준다. 개별 세그먼트(842)의 크기 및 위치는 관상 동맥(및 이로부터 연장되는 지류)의 유출 경계(324)(도 8)의 위치, 각자의 세그먼트(842) 내의, 또는 이에 연결된 혈관(가령, 이웃 혈관)의 크기, 등에 기초하여 결정될 수 있다. 기하학적 심근 모델(838)을 세그먼트(842)로 나누는 것은, 고속 마칭법(fast marching method), 일반화된 고속 마칭법, 레벨 세트법, 확산 방정식, 다공 매체를 통한 흐름을 통제하는 방정식, 등과 같이, 다양한 알려진 방법을 이용하여 수행될 수 있다.
3차원 기하학적 모델은 환자의 대동맥 및 관상 동맥(및 이로부터 연장되는 지류)의 일부분을 또한 포함할 수 있고, 이는 이미징 데이터(803)에 기초하여 모델링될 수 있다(단계(814)). 예를 들어, 도 31의 3차원 기하학적 모델(846)은 환자의 대동맥 및 관상 동맥(및 이로부터 연장되는 지류)의 3차원 기하학적 모델(837)과, 단계(810)에서 생성된 환자의 심근 조직의 3차원 기하학적 모델(838)을 포함한다.
도 29를 다시 참조하면, 예를 들어, 도 3의 단계(402)와 연계하여 앞서 설명한 바와 같이, 연산 분석이 수행될 수 있어서, 사용자에 의해 결정되는 물리적 조건 하에 환자의 관상 동맥 혈류에 관한 정보를 포함하는 솔루션을 결정할 수 있다(단계(816)). 예를 들어, 물리적 조건은 휴지 상태, 선택된 레벨의 충혈, 선택된 레벨의 운동 또는 활동, 또는 다른 조건을 포함할 수 있다. 솔루션은 명시된 물리적 조건 하에서, 단계(814)에서 모델링된 환자의 신체 내 다양한 위치에서, 혈류 및 압력과 같은, 정보를 제공할 수 있다. 연산 분석은 집중 파라미터 또는 1차원 모델로부터 도출되는 유출 경계(324)(도 8)에서 경계 조건을 이용하여 수행될 수 있다. 1차원 모델은 도 30과 연계하여 아래 설명되는 바와 같이 세그먼트(842)를 충전하기 위해 발생될 수 있다.
단계(816)에서 결정된 혈류 정보에 기초하여, 단계(812)에서 생성된 심근의 각자의 세그먼트(842) 내로 혈류의 관류가 연산될 수 있다(단계(818)). 예를 들어, 관류는 유출 경계(324)(도 8)의 각각의 유출구로부터의 유동을, 유출구가 관류시키는 세그먼트화된 심근의 체적으로 나눔으로써 연산될 수 있다.
단계(818)에서 결정된 심근의 각자의 세그먼트에 대한 관류는 단계(810) 또는 단계(812)에서 발생된 심근의 기하학적 모델(가령, 도 31에 도시되는 환자의 심근 조직의 3차원 기하학적 모델(838)) 상에 디스플레이될 수 있다(단계(820)). 예를 들어, 도 31은 기하학적 모델(838)의 심근의 세그먼트(842)가 각자의 세그먼트(842) 내로 혈류의 관류를 표시하기 위해 서로 다른 음영 또는 색상으로 나타날 수 있음을 보여준다.
도 30은 예시적인 실시예에 따라, 특정 환자의 심근 관류에 관한 다양한 정보를 제공하기 위한 방법(820)에 관한 다른 개략적 도면을 보여준다. 방법(820)은 도 3에 도시되는 앞서 설명한 단계들 중 하나 이상을 구현하는 데 사용되는 컴퓨터 시스템과 같은, 앞서 설명한 컴퓨터 시스템에서 구현될 수 있다.
방법(820)은 (가령, 도 2의 단계(100)에서 얻은) CCTA 데이터와 같이, 환자의 대동맥, 관상 동맥(및 이로부터 연장되는 지류), 및 심장의 의료 이미징 데이터(833)를 포함할 수 있는, 하나 이상의 입력(832)을 이용하여 수행될 수 있다. 입력(832)은 아래 설명되는 단계들을 수행하는 데 사용될 수 있다.
환자의 심근 조직의 3차원 기하학적 모델은 이미징 데이터(833)에 기초하여 생성될 수 있다(단계(835)). 모델은 이미징 데이터(803)에 기초하여 또한 생성될 수 있는, 환자 동맥 및 관상 동맥(및 이로부터 연장되는 지류)의 일부분을 또한 포함할 수 있다. 예를 들어, 앞서 설명한 바와 같이 도 31은 환자의 동맥 및 관상 동맥(및 이로부터 연장되는 지류)의 기하학적 모델(837)과, 환자의 심근 조직의 기하학적 모델(838)을 포함하는 3차원 기하학적 모델(836)을 보여준다. 단계(835)는 앞서 설명한 도 29의 단계(810, 814)를 포함할 수 있다.
도 30을 다시 참조하면, 기하학적 심근 모델(838)은 체적 또는 세그먼트(842)로 나누어질 수 있다(단계(840)). 단계(840)는 앞서 설명한 도 29의 단계(812)를 포함할 수 있다. 앞서 설명한 바와 같이, 도 31은 세그먼트(842)로 나누어지는 환자의 심근 조직의 기하학적 모델(838)을 포함하는 3차원 기하학적 모델(846)을 보여준다.
도 30을 다시 참조하면, 기하학적 모델(846)은 관상 동맥 트리의 차세대 지류(857)를 포함하도록 수정될 수 있다(단계(855)). (도 31에 점선으로 도시되는) 지류(857)의 위치 및 크기는 관상 동맥(및 이로부터 연장되는 지류)에 대한 중심선에 기초하여 결정될 수 있다. 중심선은 예를 들어, 이미징 데이터(833)에 기초하여, 결정될 수 있다(단계(845)). 계량 형태적 모델(유출 경계(324)(도 8)에서 알려진 유출구 하류의 혈관 위치 및 크기를 예측하는 데 사용되는 모델) 및/또는 혈관 크기에 관련된 생리학적 지류 법칙에 기초하여 지류(857)의 위치 및 크기를 결정하는 데 알고리즘이 또한 사용될 수 있다(단계(850)). 계량 형태적 모델은 기하학적 모델(837)에 포함된, 그리고, 심외막 표면(심장 조직의 외층) 상에 제공되는, 또는, 심근벽의 기하학적 모델(838) 내에 놓인, 관상 동맥(및 이로부터 연장되는 지류)의 하류 단부까지 증강될 수 있다.
심근은 단계(855)에서 생성된 지류(857)에 기초하여 추가적으로 분절될 수 있다(단계(860)). 예를 들어, 도 31은 세그먼트(842)가 서브볼륨 또는 서브세그먼트(862)로 나누어질 수 있음을 보여준다.
추가적인 지류(857)가 서브세그먼트(862)에서 생성될 수 있고, 서브세그먼트(862)는 더 작은 세그먼트(867)로 추가적으로 분절될 수 있다(단계(865)). 지류를 생성하고 체적을 세부-분절화하는 단계들은 요망 해상도의 체적 크기 및/또는 지류 크기를 얻을 때까지 반복될 수 있다. 단계(855, 865)에서 새 지류(857)를 포함하도록 증강된 모델(846)은, 그 후, 단계(865)에서 발생된 서브세그먼트(867)와 같은, 서브세그먼트 내로 심근 관류 및 동맥 혈류를 연산하는 데 사용될 수 있다.
따라서, 증강된 모델을 이용하여 앞서 설명한 연산 분석을 수행할 수 있다. 연산 분석의 결과는 도 31의 모델(837)과 같은, 환자별 관상 동맥 모델로부터, 단계(865)에서 발생된 관류 서브세그먼트(867) 각각 내로 연장될 수 있는, 발생된 계량 형태적 모델(단계(855, 865)에서 발생된 지류(857)를 포함) 내로, 혈류에 관한 정보를 제공할 수 있다. 연산 분석은 연결된 심장 역학 모델로부터 데이터를 통합하는 동적 모델 또는 정적 심근 관류 체적을 이용하여 연산 분석이 수행될 수 있다.
도 32는 예시적인 실시예에 따라 특정 환자의 심근 관류에 관한 다양한 정보를 제공하기 위한 방법(870)에 관한 다른 개략도를 보여준다. 방법(870)은 도 3에 도시되는 앞서 설명한 단계들 중 하나 이상을 구현하는 데 사용되는 컴퓨터 시스템과 같은, 앞서 설명한 컴퓨터 시스템에서 구현될 수 있다.
방법(870)은 하나 이상의 입력(872)을 이용하여 수행될 수 있다. 입력(872)은 (가령, 도 2의 단계(100)에서 얻은) CCTA 데이터와 같은, 환자의 대동맥, 관상 동맥(및 이로부터 연장되는 지류) 및 심장의 의료 이미징 데이터(873)를 포함할 수 있다. 입력(872)은 환자의 상완 혈압, 심박동수, 및/또는 다른 측정치(가령, 도 2의 단계(100)에서 얻음)와 같은, 환자로부터 측정되는 추가적인 생리학적 데이터(874)를 또한 포함할 수 있다. 추가적인 생리학적 데이터(874)는 비침습성으로 얻을 수 있다. 입력(872)은 (가령, CT, PET, SPECT, 등을 이용하여) 환자로부터 측정되는 심장 관류 데이터(875)를 더 포함할 수 있다. 입력(872)은 아래 설명되는 단계들을 수행하는 데 사용될 수 있다.
환자의 동맥 및 관상 동맥(및 이로부터 연장되는 지류)의 3차원 기하학적 모델은 이미징 데이터(873)에 기초하여 생성될 수 있다(단계(880)). 예를 들어, 도 31은 환자의 대동맥 및 관상 동맥(및 이로부터 연장되는 지류)의 3차원 모델(837)을 보여준다. 단계(880)는 앞서 설명되는 도 29의 단계(814)와 유사할 수 있다.
가령, 도 3의 단계(402)와 연계하여 앞서 설명한 바와 같이, 연산 분석이 수행되어, 사용자에 의해 결정되는 물리적 조건 하에 환자의 관상 동맥 혈류에 관한 정보를 포함하는 솔루션을 결정할 수 있다(단계(882)). 예를 들어, 물리적 조건은 휴지 상태, 선택된 레벨의 충혈, 선택된 레벨의 운동 또는 활동, 또는 다른 조건을 포함할 수 있다. 이 솔루션은 명시된 물리적 조건 하에서, 단계(880)에서 모델링된 환자의 신체의 다양한 위치에서 혈류 및 압력과 같은 정보를 제공할 수 있다. 단계(882)는 앞서 설명되는 도 29의 단계(816)와 유사할 수 있다.
또한, 환자의 심근 조직의 3차원 기하학적 모델은 이미징 데이터(873)에 기초하여 생성될 수 있다(단계(884)). 예를 들어, 앞서 설명한 바와 같이, 도 31은 (가령, 단계(884)에서 생성되는) 환자의 심근 조직의 3차원 기하학적 모델(838)과 (가령, 단계(880)에서 생성되는) 환자의 동맥 및 관상 동맥(및 이로부터 연장되는 지류)의 3차원 기하하학적 모델(837)을 포함하는 3차원 기하학적 모델(836)을 보여준다. 단계(884)는 앞서 설명한 도 29의 단계(810)와 유사할 수 있다.
기하학적 모델은 세그먼트 또는 서브볼륨으로 나누어질 수 있다(단계(886)). 예를 들어, 도 31은 세그먼트(842)로 나누어지는 환자의 심근 조직의 모델(838)을 포함하는 기하학적 모델(846)을 보여준다. 단계(886)는 앞서 설명한 도 29의 단계(812)와 유사할 수 있다.
단계(882)에서 결정되는 혈류 정보에 기초하여, 단계(886)에서 생성되는 심근의 각자의 세그먼트(842) 내로 혈류의 관류가 연산될 수 있다(단계(888)). 단계(888)는 앞서 설명한 도 29의 단계(818)와 유사할 수 있다.
심근의 각자의 세그먼트에 대해 연산된 관류는 단계(884) 또는 단계(886)에서 발생되는 심근의 기하학적 모델(가령, 도 31에 도시되는 환자의 심근 조직의 3차원 기하학적 모델(838)) 상에 디스플레이될 수 있다(단계(890)). 예를 들어, 도 31은 기하학적 모델(838)의 심근의 세그먼트(842)가 서로 다른 음영 또는 색상으로 표현되어, 각자의 세그먼트(842) 내로 혈류의 관류를 표시할 수 있음을 보여준다. 단계(890)는 앞서 설명한 도 29의 단계(820)와 유사할 수 있다.
단계(890)의 심근의 3차원 기하학적 모델에 매핑되는 시뮬레이션된 관류 데이터는, 측정된 심장 관류 데이터(875)와 비교될 수 있다(단계(892)). 비교는 예를 들어, 유한 요소 메시와 같이, 심근의 서로 다른 개별 표현 또는 심근의 복셀-기반 표현에 대해 수행될 수 있다. 비교는 심근의 3차원 표현에 대해 다양한 색상 및/또는 음영을 이용하여 시뮬레이션 및 측정된 관류 데이터의 차이를 표시할 수 있다.
단계(880)에서 생성되는 3차원 기하학적 모델의 유출구에서의 경계 조건은 시뮬레이션 및 측정된 관류 데이터 사이의 에러를 감소시키도록 조정될 수 있다(단계(894)). 예를 들어, 에러를 감소시키기 위해, 시뮬레이션된 관류가 측정된 관류보다 낮은 영역(가령, 세그먼트(842, 862, 또는 867))에 공급되는 혈관의 유동에 대해 처방된 저항이 감소될 수 있도록, 경계 조건이 조정될 수 있다. 경계 조건의 다른 파라미터도 조정될 수 있다. 대안으로서, 모델의 지류 구조가 수정될 수 있다. 예를 들어, 단계(880)에서 생성된 기하학적 모델은 도 30 및 도 31과 연계하여 앞서 설명한 바와 같이 증강되어 계량 형태적 모델을 생성할 수 있다. 경계 조건 및/또는 계량 형태적 모델의 파라미터들이 미국특허출원공보 제2010/0017171호(발명의 명칭: "Method for Tuning Patient-Specific Cardiovascular Simulations")에 설명된 방법 또는 다른 방법과 같이, 파라미터 추정 또는 데이터 동화법을 이용하여 계통적으로 또는 실험적으로 조정될 수 있다.
단계(882, 888, 890, 892, 894) 및/또는 도 32의 다른 단계들은, 예를 들어, 시뮬레이션 및 측정된 데이터 간의 에러가 지정 임계값 미만일 때까지, 반복될 수 있다. 그 결과, 신체 정보, 관상 동맥 혈류 정보, 및 심근 관류 정보에 관계된 모델을 이용하여 연산 분석이 수행될 수 있다. 이러한 모델은 진단 용도로, 그리고, 내과적, 인터벤션적, 또는 외과적 요법의 이점을 예측함에 있어 유용할 수 있다.
그 결과, 휴지 시 및/또는 응력 조건 하의 관상 동맥 혈류 및 심근 관류가 3차원 의료 이미징 데이터로부터 구성되는 환자별 기하학적 모델에서 시뮬레이션될 수 있다. 측정되는 심근 관류 데이터는 (가령, 도 32와 연계하여 앞서 설명한 바와 같이) 시뮬레이션된 심근 관류 결과가 주어진 허용오차 내에서 측정된 심근 관류 데이터와 일치할 때까지 경계 조건을 조정하도록 시뮬레이션된 심근 관류 결과와 조합하여 사용될 수 있다. 더욱 정확한 환자별 관상 동맥 혈류 연산이 제공될 수 있고, 최대 운동 또는 활동, 시뮬레이션된 처리, 또는 다른 조건 하에서 환자를 시뮬레이션할 때와 같이, 측정된 데이터가 가용하지 않은 상황 하에서 심장 전문의가 관상 동맥 혈류 및 심근 관류를 예측할 수 있게 될 수 있다.
좌심실 및/또는 우심실 심근의 환자별 3차원 모델은 관류 세그먼트 또는 서브볼륨으로 나누어질 수 있다. 또한, 의료 이미징 데이터로부터 결정되는 관상 동맥의 환자별 3차원 기하학적 모델은 증강된 모델 형성을 위해 관류 서브볼륨에 의해 표현되는 좌심실 및/또는 우심실 심근 벽 내에 있는 또는 심외막 표면 상의 나머지 관상 동맥 트리의 일부분의 계량 형태적 모델과 조합될 수 있다. 주어진, 예를 들어, 질환이 있는, 증강 모델의 위치 하류의 총 심근 체적의 퍼센티지가 연산될 수 있다. 주어진, 예를 들어, 질환이 있는, 증강 모델의 위치에서 총 심근 혈류의 퍼센티지가 또한 연산될 수 있다. 증강 모델은 관상 동맥 혈류 및 심근 관류를 연산하는 데 사용될 수 있다. 관상 동맥 혈류 모델은 시뮬레이션된 관류가 처방된 허용오차 내에서 측정된 관류 데이터와 일치할 때까지 또한 수정될 수 있다.
B. 플라크 취약성 평가
연산 분석은 환자의 대동맥 및 관상 동맥(및 이로부터 연장되는 지류)에서 축적될 수 있는 플라크(예를 들어, 관상 동맥 아테롬경화성 플라크) 상에 작용하는 환자별 생체기계학적 힘을 정량화하는 결과를 또한 제공할 수 있다. 생체기계학적 힘은 맥동압, 유동, 및 심장 운동에 의해 야기될 수 있다.
도 33은 주요 관상 동맥 중 하나 또는 이로부터 연장되는 지류 중 하나의 벽과 같은, 혈관 벽(902)을 따라 축적되는 플라크(900)의 일례를 보여준다. 플라크의 상류 및 하류 단부 사이의 압력 및/또는 표면적의 차이는, 예를 들어, 혈관을 통해 흐르는 혈액에 의해 야기되는, 적어도 혈류의 방향을 따라 플라크(900)에 작용하는 힘(904)을 생성할 수 있다. 다른 힘(906)은 적어도 혈관 벽(902)에 수직으로 향하는 방향을 따라 플라크(900)의 표면 상에 작용할 수 있다. 힘(906)은 혈관을 통해 흐르는 혈액의 혈압에 의해 야기될 수 있다. 또 다른 힘(908)은 적어도 혈류의 방향을 따라 플라크(900)의 표면 상에 작용할 수 있고, 휴식 중, 운동 중, 등의 경우에 혈역학적 힘으로 인한 것일 수 있다.
결과는 (혈관벽 상에 누적되는 플라크가 불안정해져 떨어져나가가거나 부서질 때와 같이) 플라크 파열의 위험을 또한 평가할 수 있고, 이러한 파열에 의해 영향받을 수 있는 심근 체적을 또한 평가할 수 있다. 결과는 휴지 상태, 운동 상태, 등과 같은 다양한 시뮬레이션된 생리학적 조건 하에서 평가될 수 있다. 플라크 파열 위험은 (가령, 도 2의 단계(100)에서 결정되는) CCTA 또는 MRI로부터 도출된 재료 조성 데이터를 이용하여 추정되는 플라크 강도에 대한 시뮬레이션된 플라크 응력의 비로 규정될 수 있다.
예를 들어, 도 34는 연산 분석이 출력할 수 있는 결과의 예를 보여준다. 이 결과는 환자의 대동맥 및 관상 동맥(및 이로부터 연장되는 지류)의 3차원 기하학적 모델(837)과, 세그먼트(842)로 나누어진 환자의 심근 조직의 3차원 기하학적 모델(838)을 포함하는, 도 31의 3차원 기하학적 모델(846)을 포함할 수 있다. 결과는 플라크가 취약하다고 결정되는 관상 동맥(및 이로부터 연장되는 지류) 중 하나의 위치(910)를 또한 표시할 수 있고, 위치(910)는 사용자로부터의 입력에 기초하여, 및/또는 추가적으로 상세하게 아래에서 설명되는 바와 같이, 플라크 파열의 위험 평가에 기초하여 식별될 수 있다. 또한, 도 34에 도시되는 바와 같이, (복수의 세그먼트(842)의) 심근 세그먼트(912)는 위치(910)에서 식별되는 플라크의 파열로 인해 높은 확률의 저-관류를 갖는 것으로 식별될 수 있다.
도 35 및 도 36은 예시적인 실시예에 따라, 특정 환자의 플라크 취약성, 심근 볼륨 위험, 및 심근 관류 위험의 평가에 관한 다양한 정보를 제공하기 위한 방법(920)의 형태를 보여주는 개략도다. 방법(920)은 도 3에 도시되는 앞서 설명한 단계들 중 하나 이상의 구현에 사용되는 컴퓨터 시스템과 같은, 앞서 설명한 컴퓨터 시스템에서 구현될 수 있다. 방법(920)은 하나 이상의 입력(922)을 이용하여 수행될 수 있고, 입력(922)에 기초한 하나 이상의 모델(930)의 발생과, 모델(930) 들 중 하나 이상에 기초한 하나 이상의 생체기계학적 분석(940)의 수행과, 모델(930) 및 생체기계학적 분석(940)에 기초한 다양한 결과 제공을 포함할 수 있다.
입력(922)은 (가령, 도 2의 단계(100)에서 획득되는) CCTA 데이터와 같은, 환자의 대동맥, 관상 동맥(및 이로부터 연장되는 지류)와 심장의 의료 이미징 데이터(923)를 포함할 수 있다. 입력(922)은 환자의 상완 혈압, 심박동수, 및/또는 다른 측정치(가령, 도 2의 단계(100)에서 얻은 값)과 같이, 환자로부터 측정한 추가적인 생리학적 데이터(924)를 또한 포함할 수 있다. 추가적인 생리학적 데이터(924)는 비침습성으로 얻을 수 있다. 입력(922)은, 아래 설명되는 모델(930)을 발생시키고 및/또는 생체기계학적 분석(940)을 수행하는 데 사용될 수 있다.
앞서 언급한 바와 같이, 하나 이상의 모델(930)이 입력(922)에 기초하여 발생될 수 있다. 예를 들어, 방법(920)은 환자 신체의 3차원 기하학적 모델 전체를 통해 다양한 위치에서 연산된 혈류 및 압력 정보를 포함하는 혈역학적 모델(932)을 발생시키는 단계를 포함할 수 있다. 환자 신체의 모델은, 예를 들어, 도 3의 단계(306)에서 발생된 도 8의 고형 모델(320), 및/또는 도 3의 단계(312)에서 발생된 도 17 내지 도 19의 메시(380)과 같은, 의료 이미징 데이터를 이용하여 생성될 수 있고, 예시적인 실시예에서, 혈역학적 모델(932)은 시뮬레이션된 혈압 모델(50)(도 1), 시뮬레이션된 혈류 모델(52)(도 1), cFFR 모델(54)(도 1), 또는 도 3의 단계(402)와 연계하여 앞서 설명한 바와 같이, 연산 분석 수행 후 생성되는 다른 시뮬레이션일 수 있다. 유체 구조 상호작용 모델을 포함한 고형 기계식 모델은 공지된 수치 해법과 함께 연산 분석을 통해 풀릴 수 있다. 플라크 및 혈관의 성질은 선형 또는 비-선형, 등방성 또는 이방성으로 모델링될 수 있다. 솔루션은 플라크와 혈관 사이의 계면과 플라크의 응력 및 응력변형을 제공할 수 있다. 도 36의 예시적인 실시예에서, 혈역학적 모델(932)은 cFFR 모델(54)이다.
방법(920)은 휴지시, 가변 레벨의 운동, 또는 활동 등의 경우와 같이, 다양한 생리학적 상태에서 혈역학적 힘으로 인해 플라크 내강 표면 상에 작용하는 압력(906)(도 33) 및 전단 응력(908)(도 33)을 연산함으로써 혈역학적 모델(932)을 이용한 생체기계학적 분석(940)을 수행하는 단계를 포함할 수 있다(단계(942)). 압력(906) 및 전단 응력(908)은 가령, 혈압 및 유동과 같은 혈역학적 모델(932)로부터 정보에 기초하여 연산될 수 있다.
선택적 사항으로서, 방법(920)은 수축기 및 이완기와 같이, 심장 주기의 복수의 페이즈에서 얻는 이미징 데이터와 같은 4차원 이미징 데이터로부터 혈관 변형을 정량화하기 위한 기하학적 분석 모델(934)을 발생시키는 단계를 또한 포함할 수 있다. 이미징 데이터는 알려져 있는 다양한 이미징 방법을 이용하여 얻을 수 있다. 기하학적 분석 모델(934)은 심장 주기의 서로 다른 페이즈에서, 예를 들어, 심장 운동으로 인한, 혈관 위치, 변형, 배향, 및 크기에 관한 정보를 포함할 수 있다. 예를 들어, 종방향 길이변화(신장), 트위스팅(비틀림), 반경 방향 팽창 또는 압축, 및 구부림과 같은 플라크와, 환자의 동맥, 관상 동맥(및 이로부터 연장되는 지류)의 변형의 다양한 종류가 기하학적 분석 모델(934)에 의해 시뮬레이션될 수 있다.
방법(920)은 심장-유도 맥동압으로 인한 플라크와, 환자의 동맥, 관상 동맥(및 이로부터 연장되는 지류)의 종방향 연장(lengthening)(신장), 종방향 수축(shortening), 트위스팅(비틀림), 반경 방향 팽창 또는 압축, 및 구부림, 등과 같은 다양한 변형 특성을 연산함으로써 기하학적 분석 모델(934)을 이용하여 생체기계학적 분석을 수행하는 단계를 포함할 수 있다(단계(944)). 이러한 변형 특성은 심장 주기의 복수의 페이즈에 걸쳐, 혈관 위치, 배향, 및 크기의 변화와 같은, 기하학적 분석 모델(934)로부터의 정보에 기초하여 연산될 수 있다.
이러한 변형 특성의 연산은 환자의 대동맥, 관상 동맥(및 이로부터 연장되는 지류), 플라크, 등의 기하형태와 같은 모델링된 기하형태의 표면 메시 또는 중심선을 결정함으로써 단순화될 수 있다. 서로 다른 페이즈 사이의 모델링된 기하 형태 변화를 결정하기 위해, 지류구(branch osita), 석화 병변(clacified lesions), 및 소프트 플라크가 랜드마크로 사용될 수 있다. 랜드마크가 없는 영역에서, 모델링된 기하형태의 길이를 따른 단면 프로파일은 (두 이미지 프레임을 "등록"하기 위해) 두 이미지 프레임 사이의 대응 위치를 식별하는 데 사용될 수 있다. 원시 이미지 데이터에 기초하여 변형가능한 등록 알고리즘은 3차원 변형 필드를 추출하는 데 사용될 수 있다. 연산된 3차원 변형 필드는 그 후, (가령, 혈관 길이와 같은) 모델링된 기하형태와 정렬되는 곡선형 축에 투영될 수 있어서, 변형 필드의 접선 및 직교 성분을 연산할 수 있다. 모델링된 기하 형태(가령, 혈관 길이), 지류 이격 각도, 및 수축기와 이완기 사이의 곡률의 결과적 차이는 혈관이 나타내는 응력 변형의 결정에 사용될 수 있다.
방법(920)은 의료 이미징 데이터(923)로부터 플라크 조성 및 성질을 결정하기 위해 플라크 모델(936)의 발생을 또한 포함할 수 있다. 예를 들어, 플라크 모델(936)은 플라크의 밀도 및 다른 물성에 관한 정보를 포함할 수 있다.
방법(920)은 플라크, 혈관벽, 및/또는 플라크와 혈관벽 사이의 계면에 관한 정보를 연산하기 위한 혈관벽 모델(938)의 발생을 또한 포함할 수 있다. 예를 들어, 혈관벽 모델(938)은 응력 및 응력 변형에 관한 정보를 포함할 수 있고, 이는, 플라크 모델(936), 압력(906), 및 전단 응력(908)(단계(942)에서 연산됨) 및/또는 변형 특성(단계(944)에서 연산됨)에 포함되는 플라크 조성 및 성질에 기초하여 연산될 수 있다.
방법(920)은 혈역학적 힘과 심장 운동-유도 응력변형으로 인해 플라크 상의 응력(가령, 급성 또는 누적 응력)을 연산함으로써 혈관벽 모델(938)을 이용하여 생체기계학적 분석(940)을 수행하는 단계(946)를 포함할 수 있다. 예를 들어, 플라크 상에 작용하는 유동-유도력(904)(도 33)이 연산될 수 있다. 혈역학적 힘 및 심장 운동-유도 응력변형으로 인한 플라크 상의 응력 또는 힘은, 예를 들어, 플라크 상의 응력 및 응력변형과 같은, 혈관벽 모델(938)으로부터의 정보에 기초하여 연산될 수 있다.
방법(920)은 앞서 설명한 모델(930) 중 하나 이상과 생체기계학적 분석(940) 중 하나 이상에 기초하여 추가적 정보를 결정하는 단계를 포함할 수 있다.
플라크 파열 취약성 지수가 연산될 수 있다(단계(950)). 플라크 파열 취약성 지수는 예를 들어, 총 혈역학적 응력, 응력 빈도, 응력 방향, 및/또는 플라크 강도 또는 기타 성질에 기초하여, 연산될 수 있다. 예를 들어, 관심 대상인 플라크를 둘러싸는 영역은 플라크 모델(936)과 같은, 플라크의 3차원 모델(930)로부터 분리될 수 있다. 플라크의 강도는 플라크 모델(936)에 제공되는 물성으로부터 결정될 수 있다. 맥동압, 유동, 심장 운동으로 인한, 관심대상인 플라크 상의 혈역학 및 조직 응력은, 단계(946)에서 앞서 연산된 혈역학적 응력 및 운동-유도 응력변형을 이용함으로써 시뮬레이션된 기준선 및 운동(또는 활동) 조건 하에 연산될 수 있다. 플라크의 취약성은 플라크 강도에 대한 플라크 응력의 비에 기초하여 평가될 수 있다.
심근 볼륨 위험 지수(MVRI)가 또한 연산될 수 있다(단계(952)). MVRI는 동맥 트리 내 주어진 위치에서 혈관의 폐색(닫힘 또는 차단) 및 플라크 파열에 의해 영향받는 총 심근 볼륨의 퍼센티지로 규정될 수 있다. MVRI는 주어진 플라크 하류의 혈관에 의해 공급되는 심근의 부분에 기초하여 연산될 수 있고, 이는 3차원 혈역학적 솔루션에 기초하여 서로 다른 혈관 내로 플라크가 유동할 수 있는 확률과 하류 혈관의 크기에 대해 플라크의 크기를 고려할 수 있다.
심근은 (가령, 도 30의 단계(835, 840)와 연계하여 설명한 바와 같이) 혈역학적 시뮬레이션에서 각각의 혈관에 의해 공급되는 세그먼트(842)로 모델링 및 분할될 수 있다. 기하학적 모델은 (가령, 도 30의 단계(855)와 연계하여 설명한 바와 같이) 관상 동맥 트리내 차세대 지류(857)를 포함하도록 수정될 수 있고, (가령, 도 30의 단계(860)와 연계하여 설명되는 바와 같이) 심근은 추가적으로 분절될 수 있다. 추가적인 지류(857)는 서브세그먼트(862)에서 생성될 수 있고, 서브세그먼트(862)는 (도 30의 단계(865)와 연계하여 설명한 바와 같이) 더 작은 세그먼트(867)로 더 분절될 수 있다. 앞서 설명한 바와 같은 생리학적 관계를 이용하여, 공급되는 심근의 비례적 양에 혈관의 크기를 관련시킬 수 있다.
파열된 플라크가 따르게될 잠재적 경로가 결정될 수 있다. 혈역학적 솔루션을 이용하여, 플라크 조각 또는 색전물이 서로 다른 하류 혈관 내로 유동할 수 있는 퍼센트 기회를 결정할 수 있다.
파열된 플라크의 크기는 하류 혈관의 크기와 비교되어, 플라크가 궁극적으로 유동에 대한 장애물을 생성할 수 있는 위치를 결정할 수 있다. 이 정보는 파열된 플라크에 의해 잠재적으로 영향받을 수 있는 심근의 볼륨의 확률 맵을 제공하기 위해 취약성 지수와 조합될 수 있다. MVRI는 각각의 잠재적으로 영향받는 세그먼트에 할당될 수 있다. 도 34는, 원위 혈관 내 위치(910)의 취약 플라크가 작은 면적의 심근에 영향을 미칠 확률이 높은, 세그먼트(912)의 예를 보여준다.
심근 관류 위험 지수(MPRI) 역시 연산될 수 있다(단계(954)). MPRI는 동맥 트리 내 주어진 위치에서 혈관의 폐색 및 플라크 파열에 의해 영향받는 총 심근 혈류의 퍼센티지로 규정될 수 있다. 예를 들어, LAD 동맥의 원위부의 플라크 파열은 LAD 동맥의 근위부의 플라크 파열에 비해 낮은 MVRI 및 낮은 MPRI를 나타낼 것이다. 그러나 이러한 지수는, 공급 혈관 내 취약 플라크에 의해 영향받는 심근 볼륨의 일부분이 (예를 들어, 심근 경색에 이어 형성할 수 있는 반흔 조직(scar tissue)으로 인해) 가능하지 않을 경우, 다를 수 있다. 따라서, MPRI는 MVRI에 의해 표시되는 바와 같이 영향받는 볼륨보다는, 심근 세그먼트에 대한 관류의 잠재적 손실을 표시한다. 도 31의 각각의 세그먼트(842, 862, 또는 867)로의 관류 속도가 연산될 수 있고, 관류 손실은 취약성 지수, 혈역학적 솔루션, 및 플라크 및 혈관의 크기에 기초하여 연산될 수 있다.
그 결과, 맥동압, 맥동류, 맥동 전단 응력, 및/또는 맥동 심장 운동으로 인한 플라크 응력이 연산될 수 있고, 플라크 강도가 의료 이미징 데이터에 기초하여 추정될 수 있으며, 플라크 취약성, 심근 볼륨 위험, 및 심근 관류 위험에 관한 지수가 정량화될 수 있다.
VIII. 다른 응용예
앞서 설명한 실시예는 환자의 관상 동맥 혈류에 관한 정보의 평가와 관련된다. 대안으로서, 실시예는 목, 말초, 복부, 신장, 대퇴부, 슬와부, 및 뇌동맥과 같은, 그러나 이에 제한되지 않는, 신체의 다른 영역의 혈류에 또한 적응될 수 있다.
A. 두개내 및 두개외 혈류 모델링
뇌동맥에 관한 실시예가 이제 설명될 것이다. 수많은 질환들이 두개외 또는 두개내 동맥의 혈류 및 혈압에 영향을 미치거나 영향을 받을 수 있다. 두개외의, 예를 들어, 목 및 척추의, 동맥에서의 아테롬성 동맥 경화증은 뇌를 향한 혈류를 제한할 수 있다. 아테롬성 동맥 경화증의 극심한 현상은 일과성 뇌허혈 발작 또는 허혈성 뇌졸중을 야기할 수 있다. 두개내 또는 두개외 동맥의 동맥류 질환은 허혈성 뇌졸증을 이끄는 색전에 의한 폐색 위험, 또는, 출혈성 뇌졸중을 이끄는 동맥류 파열 위험을 제기할 수 있다. 두부 외상, 고혈압, 두경부암, 동정맥 기형, 기립성 조절 장애, 등과 같은 다른 조건들도 뇌혈류에 또한 영향을 미칠 수 있다. 더욱이, 뇌혈류 감소는 실신과 같은 증상을 유도할 수 있고, 또는, 알츠하이머병 또는 파킨슨병에 이어지는 치매와 같은 만성 신경 장애에 영향을 미칠 수 있다.
알려진 또는 의심되는 두개외 또는 두개내 동맥 질환을 갖는 환자는 다음의 비침습성 진단 검사 - US, MRI, CT, PET - 중 하나 이상을 통상적으로 수용할 수 있다. 그러나, 이러한 검사는 대부분의 환자들에 대한 두개외 및 두개내 동맥에 대한 산체적 및 생리학적 데이터를 효율적으로 제공하지 못할 수 있다.
도 37은 (두개골 내부의) 두개내 및 (두개골 외부의) 두개외 동맥을 포함한, 뇌동맥의 도면이다. 환자별 두개내 및 두개외 혈류에 관한 정보를 결정하기 위한 방법은 앞서 설명한 바와 같이 환자별 관상 동맥 혈류에 관한 정보를 결정하기 위한 방법과 일반적으로 유사할 수 있다.
도 38은 특정 환자의 두개내 및 두개외 혈류에 관한 다양한 정보를 제공하기 위한 방법(1000)의 형태를 보여주는 개략도다. 방법(1000)은 예를 들어, 도 3에 도시되는 앞서 설명한 단계들 중 하나 이상을 구현하는 데 사용되는 컴퓨터 시스템과 유사한, 컴퓨터 시스템에서 구현될 수 있다. 방법(1000)은 하나 이상의 입력(1010)을 이용하여 수행될 수 있고, 입력(1010)에 기초하여 하나 이상의 모델(1020)을 발생시키는 단계와, 입력(1010) 및/또는 모델(1020)에 기초하여 하나 이상의 조건(1030)을 할당하는 단계와, 모델(1020) 및 조건(1030)에 기초하여 하나 이상의 솔루션(1040)을 도출하는 단계를 포함할 수 있다.
입력(1010)은 (가령, 도 2의 단계(100)와 연계하여 앞서 설명한 바와 유사한 방식으로 얻는) CCTA 데이터와 같이, 환자의 두개내 및 두개외 동맥(예를 들어, 환자의 대동맥, 경동맥(도 37에 도시됨), 척추 동맥(도 37에 도시됨)) 및 뇌의 의료 이미징 데이터(1011)를 포함할 수 있다. 입력(1010)은 (예를 들어, 도 2의 단계(100)와 연계하여 앞서 설명한 것과 유사한 방식으로 얻는) 환자의 상완 혈압, 경동맥 혈압(가령, 토노메트리 이용), 및/또는 다른 측정의 측정치(1012)를 또한 포함할 수 있다. 측정치(1012)는 비침습성으로 얻을 수 있다. 입력(1010)은, 모델(1020)을 발생시키고 및/또는 아래 설명되는 조건(1030)을 결정하는 데 사용될 수 있다.
상술한 바와 같이, 하나 이상의 모델(1020)이 입력(1010)에 기초하여 발생될 수 있다. 예를 들어, 방법(1000)은 이미징 데이터(1011)에 기초하여 환자의 두개내 및 두개외 동맥의 하나 이상의 환자별 3차원 기하학적 모델을 발생시키는 단계(1021)를 포함할 수 있다. 3차원 기하학적 모델(1021)은 도 8의 고형 모델(320) 및 도 17 내지 도 19의 메시(380)를 발생시키기 위해 앞서 설명한 것과 유사한 방법을 이용하여 발생될 수 있다. 예를 들어, 도 3의 단계(306, 312)와 유사한 단계들이 사용되어, 환자의 두개내 및 두개외 동맥을 나타내는 3차원 고형 모델 및 메시를 발생시킬 수 있다.
다시 도 38을 참조하면, 방법(1000)은 하나 이상의 물리학-기반 혈류 모델을 발생시키는 단계(1022)를 또한 포함할 수 있다. 예를 들어, 혈류 모델은 단계(1021)에서 발생된 환자별 기하학적 모델을 통해 혈류, 심장 및 동맥 순환, 원위 두개내 및 두개외 순환, 등을 나타내는 모델일 수 있다. 혈류 모델은 3차원 기하학적 모델(1021)의 유입 경계 및/또는 유출 경계에서 도 3의 단계(310)와 연계하여 앞서 설명한 차수 축소 모델(예를 들어, 집중 파라미터 모델 또는 분배형(1차원 파동 전파) 모델, 등)을 포함할 수 있다. 대안으로서, 유입 경계 및/또는 유출 경계는 속도, 유량, 압력, 또는 다른 특성, 등을 위한 각자의 처방된 값 또는 필드를 할당받을 수 있다. 다른 대안으로서, 유입 경계가, 가령, 대동맥궁을 포함한, 심장 모델에 연결될 수 있다. 유입 및/또는 유출 경계에 대한 파라미터는 심박출량 및 혈압을 포함한, 그러나 이에 제한되지 않는, 측정된 또는 선택된 생리학적 조건에 일치하도록 조정될 수 있다.
앞서 언급한 바와 같이, 하나 이상의 조건(1030)들이 입력(1010) 및/또는 모델(1020)에 기초하여 결정될 수 있다. 조건(1030)은 단계(1022)(및 도 3의 단계(310))에서 결정된 경계 조건에 대해 연산된 파라미터를 포함한다. 예를 들어, 방법(1000)은 (가령, 도 3의 단계(240)와 연계하여 앞서 설명한 것과 유사한 방식으로 얻은) 이미징 데이터(1011)에 기초하여 환자별 뇌 또는 두부 볼륨을 연산함으로써 조건을 결정하는 단계(1031)를 포함할 수 있다.
방법(1000)은 단계(1031)에서 연산된 뇌 또는 두부 볼륨을 이용하여,
Figure pat00007
관계에 기초하여, 휴지 뇌혈류 Q를 연산함으로써 조건을 결정하는 단계(1032)를 포함할 수 있고, 이때, α는 기설정된 스케일링 지수이고, M은 뇌 EH는 두부 볼륨으로부터 결정되는 뇌 질량이며, Q0는 (가령, 도 3의 단계(310)에서 집중 파라미터 모델의 결정과 연계하여 앞서 설명한 생리학적 관계와 유사한) 기설정 상수다. 대안으로서, 이 관계는 도 3의 단계(310)에서 집중 파라미터 모델의 결정과 연계하여 앞서 설명한 바와 같이,
Figure pat00008
의 형태를 가질 수 있다.
방법(1000)은 단계(1032)에서 연산된 결과적 관상 동맥 혈류와, 환자의 측정된 혈압(1012)을 이용하여, (가령, 도 3의 단계(310)에서 집중 파라미터 모델의 결정과 연계하여 앞서 설명한 방법과 유사하게) 총 휴지 뇌 저항을 연산함으로써 조건을 결정하는 단계(1033)를 또한 포함할 수 있다. 예를 들어, 단계(1032)에서 결정되는 기준선(휴지) 조건 하에 3차원 기하학적 모델(1021)의 유출 경계에서의 총 뇌 혈류(Q)와 측정된 혈압(1012)을 이용하여, 기설정된, 실험적으로 도출되는 방정식에 기초하여 유출 경계에서 총 저항(R)을 결정할 수 있다. 저항, 커패시턴스, 인덕턴스, 및 집중 파라미터 모델에 사용된 다양한 전기적 구성요소에 관련된 다른 변수가, (가령, 도 3의 단계(310)에서 집중 파라미터 모델의 결정과 연계하여 앞서 설명한 바와 같이) 경계 조건에 포함될 수 있다.
방법(1000)은 단계(1033)에서 연산된 총 휴지 뇌저항과 모델(1020)을 이용하여, 개별 두개내 및 두개외 동맥에 대한 개별 저항을 연산함으로써 조건을 결정하는 단계(1034)를 또한 포함할 수 있다. 예를 들어, 도 3의 단계(310)와 연계하여 앞서 설명한 방법과 유사하게, 단계(1033)에서 연산된 총 휴지 뇌 저항(R)은 개별 두개내 및 두개외 동맥의 말단부의 (단계(1021)에서 발생된 기하학적 모델로부터 결정되는) 크기에 기초하여, 그리고,
Figure pat00009
관계에 기초하여, 개별 두개내 및 두개외 동맥에 분배될 수 있고, 이때, R은 특정 말단부에서의 유동에 대한 저항이고, R0는 기설정 상수이며, d는 크기(가령, 상기 말단부의 직경)이고, β는, 도 3의 단계(310)에서 집중 파라미터 모델의 결정과 연계하여 앞서 설명한 바와 같이, 기설정 거듭제곱 법칙 지수다.
도 38을 다시 참조하면, 방법(1000)은 환자의 하나 이상의 물리적 조건에 기초하여 경계 조건을 조정하는 단계(1035)를 포함할 수 있다. 예를 들어, 단계(1031-1034)에서 결정된 파라미터는, 솔루션(1040)이 휴지 상태, 가변 레벨의 응력, 가변 레벨의 압수용기 응답 또는 다른 자율 피드백 제어, 가변 레벨의 충혈, 가변 레벨의 운동, 활동, 고혈압, 또는 저혈압, 서로 다른 약품, 자세 변화, 및/또는 기타 조건을 시뮬레이션하도록 의도되는지 여부에 기초하여 수정될 수 있다. 파라미터(가령, 유출 경계에서의 경계 조건에 관한 파라미터)는 가령, 미세 혈관 기능 장애 또는 내피 건강으로 인해, 두개내 및 두개외 동맥의 혈관 확장 기능(혈관의 폭을 넓히는 능력)에 기초하여 또한 조정될 수 있다.
입력(1010), 모델(1020), 및 조건(1030)에 기초하여, 예를 들어, 도 3의 단계(402)와 연계하여 앞서 설명한 바와 같이, 연산 분석이 수행되어, 단계(1035)에서 선택된 물리적 조건 하에 환자의 관상 동맥 혈류에 관한 정보를 포함하는 솔루션(1040)을 결정할 수 있다(단계(1041)). 솔루션(1040)으로부터 제공될 수 있는 정보의 예는, 도 1 및 도 21 내지 도 24와 연계하여 앞서 설명한 예, 가령, 시뮬레이션된 혈압 모델, 시뮬레이션된 혈류 모델, 등과 유사할 수 있다. 결과는 예를 들어, 유량, 총 뇌 유동, 혈관벽 전단 응력, 혈관벽 상에 작용하는 트랙션 또는 전단력, 아테롬 경화성 플라크 또는 동맥류, 입자/혈액 체류 시간, 혈관벽 움직임, 혈액 전단율, 등을 결정하는 데 또한 사용될 수 있다. 이 결과는 혈액 순환으로 인해 혈관 시스템 내 특정 영역으로부터 빠져나가는 색전이 혈액 순환으로 인해 가장 이동하기 쉬울 수 있는 위치를 분석하는 데 또한 사용될 수 있다.
컴퓨터 시스템은 사용자가 기하학적으로 다양한 변화를 시뮬레이션할 수 있게 한다. 예를 들어, 모델(1020), 가령, 단계(1021)에서 발생된 환자별 기하학적 모델은, (가령, 급성 폐색과 같이) 동맥을 폐색하는 결과를 예측하도록 수정될 수 있다. 일부 외과적 절차에서, 암종양을 제거할 때와 같은 경우에, 하나 이상의 두개외 동맥이 손상되거나 제거될 수 있다. 따라서, 단계(1021)에서 발생된 환자별 기하학적 모델은, 환자에 대한 적정 혈류를 공급하기 위한 부행 경로의 가능성을 예측하기 위해, 두개외 동맥들 중 하나 이상에 대한 혈류를 방지하는 효과를 시뮬레이션하도록 또한 수정될 수 있다.
컴퓨터 시스템은 가령, 급성 폐색의, 인터벤션 또는 외과적 치료와 같이, 다양한 치료 옵션의 결과를 사용자가 시뮬레이션할 수 있게 한다. 시뮬레이션은 앞서 설명한 바와 같이, 두개내 및 두개외 동맥을 나타내는 3차원 고형 모델 또는 메시를, 도 27 및 도 28과 연계하여 앞서 설명한 바와 같이, 차수 축소 모델을 이용하여, 대체함으로써,더욱 신속하게 수행될 수 있다. 그 결과, 1차원 또는 집중 파라미터 모델과 같은 차수 축소 모델이 환자별 모델의 혈류 및 압력을 더욱 효율적으로 신속하게 구할 수 있고, 솔루션의 결과를 디스플레이할 수 있다.
특정 환자에 의한 혈관 확장 자극에 대한 반응은 휴지 상태의 환자에 대한 혈역학적 정보에 기초하여, 또는, 서로 다른 질환 상태에 대한 인구-기반 데이터에 기초하여, 예측될 수 있다. 예를 들어, (가령, 단계(1032)와 연계하여 앞서 설명한 바와 같이) 거듭제곱 법칙 및 뇌 질량에 기초하여 할당된 유동 분포로, 기준선에서(휴지 상태), (단계(1041)에서 앞서 설명한 바와 같이) 시뮬레이션이 가동된다. (가령, 단계(1033, 1034)에서 결정되는) 저항 값은 적절한 관류를 실현하도록 조정될 수 있다. 대안으로서, 당뇨병, 약물, 및 과거 심장 사고와 같은 요인들을 갖는 환자 인구로부터의 데이터는 서로 다른 저항을 할당하는 데 사용된다. 단독으로, 또는 혈역학적 정보(가령, 벽 전단 응력 또는 유동 및 혈관 크기의 관계)와 조합하여, 휴지 조건 하에서 저항의 조정은, 원위 뇌 혈관을 팽창시키기 위한 나머지 용량을 결정하는 데 사용될 수 있다. 높은 유동 대 혈관 크기 비를 갖는 환자 또는 휴지 유동 요건을 충족시키기 위해 저항 감소를 요구하는 환자는 생리학적 응력 하에 혈관을 추가적으로 팽창시키기 위해 감소된 용량을 가질 수 있다.
(가령, 단계(1041)에서 결정되는) 뇌동맥의 개별 세그먼트 간 유량 및 압력 구배를 이용하여 뇌동맥 저항을 연산할 수 있다. 뇌동맥 저항은 (가령, 단계(1021)로부터 발생되는) 의료 이미징 데이터로부터 발생되는 환자별 기하학적 모델에 포함된 두개외 및 두개내 동맥의 부분들의 대등한 저항으로 연산될 수 있다. 뇌동맥 저항은 두개외 및/또는 두개내 동맥의 확산성 아테롬성 동맥 경화증을 갖는 환자들이 왜 실신(의식 또는 자세의 일시적 상실, 가령, 기절) 또는 국소 빈혈(혈액 공급 제한)의 증상을 나타낼 수 있는 지를 설명함에 있어서 임상적 중요도를 가질 수 있다.
또한, 기준선 또는 변경된 생리학적 조건 하에서 뇌 조직 볼륨(또는 질량) 단위 당 유동은 가령, 단계(1041)에서 결정된 유동 정보와, 단계(1031)에서 연산된 뇌조직 볼륨 또는 질량에 기초하여, 연산될 수 있다. 이 연산은 만성 신경 장애에 대한 혈류 감소의 영향을 이해하는 데 유용할 수 있다. 이 연산은 항고혈압제 투여와 같은 내과적 처방을 선택 또는 개선함에 있어 또한 유용할 수 있다. 추가적인 결과는 트라우마(심적 외상), 뇌진탕, 외부 생리학적 응력, 과도한 G-포스, 무중력 상태, 우주 비행, 심해 분해(가령, 벤드), 등)의 결과의 정량화 단계를 포함할 수 있다.
조합된 환자별 신체적(기하학적) 및 생리학적(물리학-기반) 모델을 이용하여, 심박동수, 1회 박출량, 혈압, 또는 뇌동맥 혈류에 대한 뇌 미소순환 기능을 변경시키는 서로 다른 약물 치료 또는 라이프스타일 변화(가령, 금연, 다이어트 변화, 또는 물리적 활동 증가)의 효과를 결정할 수 있다. 조합된 모델은, 가령, 축구할 때, 우주 비행 중에, 스쿠버 다이빙 중에, 항공 비행 중, 등과 같이, 잠재적 외인력에 대한 노출 위험 또는 가변적 레벨의 물리적 활동 및/또는 대안의 형태의 뇌동맥 혈류에 대한 영향을 결정하는 데 또한 사용될 수 있다. 이러한 정보는 특정 환자에 대해 안전하고 효과적일 수 있는 물리적 활동의 수준 및 종류를 식별하는 데 사용될 수 있다. 조합된 모델은 최적의 인터벤션 기법을 선택하기 위해 뇌동맥 혈류에 대한 경피적 인터벤션의 잠재적 이점을 예측하는 데 또한 사용될 수 있고, 및/또는, 최적의 외과적 기법을 선택하기 위해 뇌동맥 혈류에 대한 경동맥 내막 절제술 또는 외부-경동맥으로부터 내부-경동맥으로의 우회술의 잠재적 이점을 예측하는 데 또한 사용될 수 있다.
조합 모델은 뇌동맥 혈류에 대한 동맥 질환의 부담 증가의 잠재적 유해 효과를 나타내기 위해 또한 사용될 수 있고, 질환 진행이 뇌를 향한 혈류의 절충으로 나타날 수 있을 때를, 기계론적 또는 현상학적 질환 진행 모델 또는 실험적 데이터를 이용하여 예측하는 데 또한 사용될 수 있다. 이러한 정보는 비침습성 이미징을 이용한 혈역학적으로 중요한 질환으로부터 최초에 자유롭다고 관찰된 환자가 내과적, 인터벤션적, 또는 외과적 처방을 요구할 것을 기대하지 못할 수 있는 "보증 주기"의 결정을 가능하게 할 수 있고, 또는, 대안으로서, 조악 재료가 계속될 경우 진행이 이루어질 수 있는 속도의 결정을 가능하게 할 수 있다.
조합 모델은 질환의 부담 감소로부터 나타나는 뇌동맥 혈류에 대한 잠재적 유익한 효과를 나타내는 데 또한 사용될 수 있고, 기계론적 또는 현상학적 질환 진행 모델 또는 실험 데이터를 이용하여, 질환의 후퇴가 뇌로의 혈류 증가로 나타날 수 있을 때를 예측하는 데 또한 사용될 수 있다. 이러한 정보는 다이어트 변화, 물리적 활동 증가, 스타틴 또는 다른 약물, 등의 처방전을 포함한, 그러나 이에 제한되지 않는, 내과적 관리 프로그램을 안내하는 데 사용될 수 있다.
조합 모델은 동맥 폐색 효과를 예측하는 데 또한 사용될 수 있다. 암종양의 제어과 같은, 일부 외과적 절차에서, 일부 두개외 동맥이 손상 또는 제거될 수 있다. 두개외 동맥 중 하나로의 혈류를 방지하는 효과의 시뮬레이션은 특정 환자에 대한 적절한 혈류 공급을 위한 부행 경로에 대한 가능성을 예측할 수 있게 한다.
i. 뇌 관류 평가
다른 결과를 연산할 수 있다. 예를 들어, 연산 분석은 뇌 관류(대뇌를 통한 혈류)를 정량화하는 결과를 제공할 수 있다. 뇌 관류 정량화는 뇌 혈류 감소 영역의 식별을 도울 수 있다.
도 39는 예시적인 실시예에 따라, 특정 환자의 뇌 관류에 관한 다양한 정보를 제공하기 위한 방법(1050)에 관한 개략도를 도시한다. 방법(1050)은 가령, 도 3에 도시되는 앞서 설명한 단계들 중 하나 이상의 구현에 사용되는 컴퓨터 시스템과 유사한, 앞서 설명한 컴퓨터 시스템에서 구현될 수 있다.
방법(1050)은 하나 이상의 입력(1052)을 이용하여 수행될 수 있다. 입력(1052)은 (가령, 도 2의 단계(100)와 연계하여 앞서 설명한 것과 유사한 방식으로 얻는) CCTA 데이터와 같이, 환자의 대동맥, 경동맥(도 37에 도시됨), 척추 동맥(도 37에 도시됨), 및 뇌와 같은 환자의 두개외 및 두개내 동맥의 의료 이미징 데이터(1053)를 포함할 수 있다. 입력(1052)은 환자의 상완 혈압, 심박동수, 및/또는 기타 측정치(가령, 도 2의 단계(100)와 연계하여 앞서 설명한 것과 유사한 방식으로 얻는 것)와 같이, 환자로부터 측정되는 추가적인 생리학적 데이터(1054)를 또한 포함할 수 있다. 추가적인 생리학적 데이터(1054)는 비침습성으로 얻을 수 있다. 입력(1052)은 아래 설명되는 단계들을 수행하는 데 사용될 수 있다.
환자의 뇌 조직의 3차원 기하학적 모델은 이미징 데이터(1053)에 기초하여 생성될 수 있고(단계(1060)), 기하학적 모델은 (가령, 도 29 내지 도 32와 연계하여 앞서 설명한 것과 유사한 방식으로) 세그먼트 또는 볼륨으로 나누어질 수 있다(단계(1062)). 개별 세그먼트의 크기 및 위치는 두개내 및 두개외 동맥의 유출 경계의 위치와, 각자의 세그먼트 내의 또는 각자의 세그먼트에 연결된 혈관의 크기(가령, 이웃 혈관), 등에 기초하여 결정될 수 있다. 기하학적 모델을 세그먼트로 나누는 것은 고속 마칭법(fast marching method), 일반화된 고속 마칭법, 레벨 세트법, 확산 방정식, 다공 매체를 통한 유동 통제 방정식, 등과 같이, 알려져 있는 다양한 방법을 이용하여 수행될 수 있다.
3차원 기하학적 모델은, 이미징 데이터(1053)에 기초하여 모델링될 수 있는, 환자의 두개내 및 두개외 동맥의 일부분을 또한 포함할 수 있다(단계(1064)). 예를 들어, 단계(1062, 1064)에서, 뇌 조직과 두개내 및 두개외 정맥을 포함하는 3차원 기하학적 모델이 생성될 수 있다.
가령, 도 3의 단계(402)와 연계하여 앞서 설명한 바와 같이 연산 분석이 수행되어, 사용자에 의해 결정되는 물리적 조건 하에 환자의 뇌혈류에 관한 정보를 포함하는 솔루션을 결정할 수 있다(단계(1066)). 예를 들어, 물리적 조건은 휴지 상태, 가변적 레벨의 응력, 가변적 레벨의 압수용기 반응, 또는 다른 자율 피드백 제어, 가변적 레벨의 충혈, 가변적 레벨의 운동 또는 활동, 서로 다른 약물 처방, 자세 변화, 및/또는 기타 조건을 포함할 수 있다. 솔루션은 명시된 물리적 조건 하에 단계(1064)에서 모델링된 환자의 신체 내 다양한 위치에서 혈류 및 혈압과 같은 정보를 제공할 수 있다. 연산 분석은 집중 파라미터 또는 일차원 모델로부터 도출되는 유출 경계에서 경계 조건을 이용하여 수행될 수 있다. 일차원 모델은 도 40과 연계하여 아래에서 설명되는 바와 같이 뇌 조직의 세그먼트를 충전시키도록 발생될 수 있다.
단계(1066)에서 결정된 혈류 정보에 기초하여, 단계(1062)에서 생성된 뇌의 각자의 세그먼트 내로 혈류의 관류가 순환될 수 있다(단계(1068)). 예를 들어, 관류는 유출 경계의 각각의 유출구로부터 유동을, 유출구가 관류되는 분절된 뇌의 볼륨으로 나눔으로써 연산될 수 있다.
단계(1068)에서 결정된 뇌의 각자의 세그먼트에 대한 관류는 단계(1060 또는 1062)에서 발생된 뇌의 기하학적 모델 상에 디스플레이될 수 있다(단계(1070)). 예를 들어, 단계(1060)에서 생성된 기하학적 모델에 도시되는 뇌의 세그먼트들은, 각자의 세그머트 내로 혈류의 관류를 표시하기 위해 서로 다른 음영 또는 색상으로 나타낼 수 있다.
도 40은 예시적인 실시예에 따라, 특정 환자의 뇌 관류에 관한 다양한 정보를 제공하기 위한 방법(1100)에 관한 다른 개략도를 보여준다. 방법(1100)은, 가령, 도 3에 도시되는, 앞서 설명한 단계들 중 하나 이상의 구현에 사용되는 컴퓨터 시스템과 유사한, 앞서 설명한 컴퓨터 시스템에서 구현될 수 있다.
방법(1100)은 (가령, 도 2의 단계(100)과 연계하여 앞서 설명한 것과 유사한 방식으로 획득되는) CCTA 데이터와 같이, 환자의 대동맥, 경동맥(도 37에 도시됨), 척추 동맥(도 37에 도시됨), 및 뇌의 의료 이미징 데이터(1103)를 포함할 수 있는 하나 이상의 입력(1102)을 이용하여 수행될 수 있다. 입력(1102)은 아래 설명되는 단계들을 수행하는 데 사용될 수 있다.
환자 뇌 조직의 3차원 기하학적 모델은 이미징 데이터(1103)에 기초하여 생성될 수 있다(단계(1110)). 모델은 이미징 데이터(1103)에 기초하여 또한 생성될 수 있는, 환자의 대동맥, 경동맥(도 37에 도시됨), 및 척추 동맥(도 37에 도시됨)의 일부분을 또한 포함할 수 있다. 예를 들어, 상술한 바와 같이, 뇌조직과 두개내 및 두개외 동맥을 포함하는 3차원 기하학적 모델이 생성될 수 있다. 단계(1110)는 앞서 설명된 도 39의 단계(1060, 1064)를 포함할 수 있다.
단계(1110)에서 생성된 기하학적 뇌 조직 모델은 볼륨 또는 세그먼트로 나누어질 수 있다(단계(1112)). 단계(1112)는 앞서 설명한 도 39의 단계(1062)를 포함할 수 있다. 기하학적 뇌조직 모델은 (가령, 도 29 내지 도 32와 연계하여 앞서 설명한 것와 유사한 방식으로) 뇌 트리 내 차세대 지류를 포함하도록 더 수정될 수도 있다(단계(1118)). 지류의 위치 및 크기는 두개내 및 두개외 동맥에 대한 중심선에 기초하여 결정될 수 있다. 중심선은 가령, 이미징 데이터(1103)에 기초하여, 결정될 수 있다(단계(1114)). 계량 형태적 모델(유출 경계에서 알려진 유출구 하류의 혈관 위치 및 크기를 예측하는 데 사용되는 모델)에 기초하여, 및/또는, 혈관 크기에 관련된 생리학적 지류 법칙에 기초하여, 지류의 위치 및 크기를 결정하는 데 알고리즘이 또한 사용될 수 있다(단계(1116)). 계량 형태적 모델은 뇌 조직의 기하학적 모델 내에 놓인 또는 뇌 조직의 외부층 상에 제공되는, 기하학적 모델에 포함된, 두개내 및 두개외 동맥의 하류 단부까지 증강될 수 있다.
뇌는 (도 29 내지 도 32와 연계하여 앞서 설명한 것과 유사한 방식으로) 단계(1118)에서 생성된 지류에 기초하여 추가적으로 분절될 수 있다(단계(1120)). 추가적인 지류가 서브세그먼트에서 생성될 수 있고, 이러한 서브세그먼트는 (가령, 도 29 내지 도 32와 연계하여 앞서 설명한 것과 유사한 방식으로) 더 작은 세그먼트로 추가적으로 분절될 수 있다(단계(1122)). 요망 해상도의 볼륨 크기 및/또는 뇌 크기를 얻을 때까지 지류의 생성 및 볼륨의 세부 분절 단계가 반복될 수 있다. 단계(1118, 11220에서 새 지류를 포함하도록 증강된 기하학적 모델은 그 후, 단계(1122)에서 발생된 서브세그먼트와 같은, 서브세그먼트 내로의 뇌 혈류 및 뇌 관류를 연산하는 데 사용될 수 있다.
따라서, 앞서 설명한 연산 분석을 수행하는 데 증강 모델이 사용될 수 있다. 연산 분석의 결과는 환자별 뇌동맥 모델로부터 혈류에 관한 정보를, (단계(1118, 1122)에서 발생되는 지류를 포함한) 발생된 계량 형태적 모델 내로 제공할 수 있고, 이는 단계(1122)에서 발생된 관류 서브세그먼트 각각 내로 연장될 수 있다.
도 41은 예시적인 실시예에 따라 특정 환자의 뇌 관류에 관한 다양한 정보를 제공하기 위한 방법(1150)에 관한 다른 개략도를 보여준다. 방법(1150)은 예를 들어, 도 3에 도시되는, 앞서 설명한 단계들 중 하나 이상의 구현에 사용되는 컴퓨터 시스템과 같은, 앞서 설명한 컴퓨터 시스템에서 구현될 수 있다.
방법(1150)은 하나 이상의 입력(1152)을 이용하여 수행될 수 있다. 입력(1152)은 (도 2의 단계(100)와 연계하여 앞서 설명한 것과 유사한 방식으로 얻는) CCTA 데이터와 같은, 환자의 대동맥, 경동맥(도 37에 도시됨), 척추 동맥(도 37에 도시됨), 및 뇌의 의료 이미징 데이터(1153)를 포함할 수 있다. 입력(1152)은 (가령, 도 2의 단계(100)에서 얻은) 환자의 상완 혈압, 심박동수, 및/또는 기타 측정치와 같이, 환자로부터 측정되는 추가적인 생리학적 데이터(1154)를 또한 포함할 수 있다. 추가적인 생리학적 데이터(1154)는 비침습성으로 얻을 수 있다. 입력(1152)은 (예를 들어, CT, PET, SPECT, MRI, 등을 이용하여) 환자로부터 측정되는 뇌 관류 데이터(1155)를 더 포함할 수 있다. 입력(1152)은 아래 설명되는 단계들을 수행하는 데 사용될 수 있다.
환자의 두개내 및 두개외 동맥의 3차원 기하학적 모델은 이미징 데이터(1153)에 기초하여 생성될 수 있다(단계(1160)). 단계(1160)는 앞서 설명한 도 39의 단계(1064)와 유사할 수 있다.
가령, 도 3의 단계(402)와 연계하여 앞서 설명한 바와 같이 연산 분석이 수행되어, 사용자에 의해 결정되는 물리적 조건 하에 환자의 뇌혈류에 관한 정보를 포함하는 솔루션을 결정할 수 있다(단계(1162)). 예를 들어, 물리적 조건은 휴지 상태, 가변적 레벨의 응력, 가변적 레벨의 압수용기 반응, 또는 다른 자율 피드백 제어, 가변적 레벨의 충혈, 가변적 레벨의 운동 또는 활동, 서로 다른 약물 처방, 자세 변화, 및/또는 기타 조건을 포함할 수 있다. 솔루션은 명시된 물리적 조건 하에 단계(1160)에서 모델링된 환자의 신체 내 다양한 위치에서 혈류 및 혈압과 같은 정보를 제공할 수 있다. 단계(1162)는 앞서 설명한 도 39의 단계(1066)와 유사할 수 있다.
또한, 환자의 뇌조직의 3차원 기하학적 모델이 이미징 데이터(11530에 기초하여 생성될 수 있다(단계(1164)). 예를 들어, 단계(1160, 1164)에서, 뇌조직과 두개내 및 두개외 동맥을 포함하는 3차원 기하학적 모델이 생성될 수 있다. 단계(1164)는 앞서 설명한 도 39의 단계(1060)와 유사할 수 있다.
기하학적 모델은 세그먼트 또는 서브볼륨으로 나누어질 수 있다(단계(1166)). 단계(1166)는 앞서 설명한 도 39의 단계(1062)와 유사할 수 있다.
단계(1162)에서 결정된 혈류 정보에 기초하여, 단계(1166)에서 생성된 뇌조직의 각자의 세그먼트 내로 혈류의 관류가, 연산될 수 있다(단계(1168)). 단계(1168)는 앞서 설명한 도 39의 단계(1068)과 유사할 수 있다.
뇌 조직의 각자의 세그먼트에 대한 연산된 관류는, 단계(1164, 또는 1166)에서 발생된 뇌조직의 기하학적 모델 상에 디스플레이될 수 있다(단계(1170)). 단계(1170)는 앞서 설명한 도 39의 단계(1070)와 유사할 수 있다.
단계(1170)에서 뇌조직의 3차원 기하학적 모델에 매핑된 시뮬레이션된 관류 데이터는 측정된 뇌 관류 데이터(1155)와 비교될 수 있다(단계(1172)). 이러한 비교는 뇌 조직의 3차원 표현 상에 다양한 색상 및/또는 음영을 이용하여 시뮬레이션 및 측정된 관류 데이터의 차이를 표시할 수 있다.
단계(1160)에서 생성된 3차원 기하학적 모델의 유출구에서 경계 조건은 시뮬레이션된, 그리고 측정된 관류 데이터 간의 에러를 감소시키도록 조정될 수 있다(단계(1174)). 예를 들어, 에러를 감소시키기 위해, 시뮬레이션된 관류가 측정된 관류보다 낮은 영역(예를 들어, 단계(1166)에서 생성된 세그먼트)에 공급되는 혈관의 유동에 대한 처방된 저항이 감소될 수 있도록, 경계 조건이 조정될 수 있다. 경계 조건의 다른 파라미터도 조정될 수 있다. 대안으로서, 모델의 지류 구조가 수정될 수 있다. 예를 들어, 단계(1160)에서 생성된 기하학적 모델은 도 40과 연계하여 앞서 설명한 바와 같이 증강되어 계량 형태적 모델을 생성할 수 있다. 계량 형태적 모델 및/또는 경계 조건의 파라미터는 미국특허출원공보 제2010/0017171호(발명의 명칭: "Method for Tuning Patient-Specific Cardiovascular Simulations")에 설명된 방법 또는 다른 방법과 같이, 파라미터 추정 또는 데이터 동화법을 이용하여 계통적으로 또는 실험적으로 조정될 수 있다.
단계(1162, 1168, 1170, 1172, 1174) 및/또는 도 41의 다른 단계들은, 예를 들어, 시뮬레이션 및 측정된 관류 데이터 간의 에러가 지정 임계값 미만일 때까지, 반복될 수 있다. 그 결과, 신체 정보, 뇌 혈류 정보, 및 뇌 관류 정보에 관계된 모델을 이용하여 연산 분석이 수행될 수 있다. 이러한 모델은 진단 용도로, 그리고, 내과적, 인터벤션적, 또는 외과적 요법의 이점을 예측함에 있어 유용할 수 있다.
그 결과, 기준선 조건 또는 변경된 생리학적 상태 하에서 두개외 및 두개내 동맥 혈류와 뇌 관류가 연산될 수 있다. 뇌 관류 데이터는 시뮬레이션된 뇌 관류 결과와 조합하여 사용되어, 시뮬레이션된 뇌 관류 결과가 주어진 허용 공차 내에서 측정된 뇌 관류 데이터와 일치할 때까지, 두개내 동맥 혈류의 경계 조건을 조정할 수 있다. 따라서, 더욱 정확한 환자별 두개외 및 두개내 동맥 혈류 연산이 제공될 수 있고, 측정된 데이터가 가용하지 않을 때 의사가 뇌동맥 혈류 및 뇌 관류를 예측할 수 있다(가령, 운동, 활동, 자세 변화, 또는 시뮬레이션된 치료와 같은, 소정의 물리적 조건). 뇌의 환자별 3차원 모델은 관류 세그먼트 또는 볼륨으로 나누어질 수 있고, 환자가 뇌의 다양한 영역에 대해 적절한 최소 관류를 수용하고 있는 지 여부가 결정될 수 있다.
두개내 동맥의 환자별 3차원 기하학적 모델은 의료 이미징 데이터로부터 발생될 수 있고, (가령, 도 40과 연계하여 설명되는 바와 같이) 관류 세그먼트 또는 서브볼륨으로 표현되는 나머지 두개내 동맥 트리의 일부분의 계량 형태적 모델과 조합될 수 있다. 주어진, 예를 들어, 질환이 있는, 증강 모델의 위치 하류의 총 뇌 체적(또는 질량)의 퍼센티지가 연산될 수 있다. 또한, 주어진, 예를 들어, 질환이 있는, 증강 모델의 위치에서 총 뇌 혈류의 퍼센티지가 연산될 수 있다. 추가적으로, 기능적 이미징 연구(가령, 기능적 자기 공명 이미징(fMRI)), 관류 CT 또는 MRI에서 언급되는 적자는 허혈성 뇌졸증, 실신, 기립성 조절 장애, 트라우마, 또는 만성 신경 장애를 갖는 환자의 경우 유용할 수 있는, 공급 혈관, 신체 변형, 손상된 자기조절 메커니즘, 저혈압, 또는 다른 조건의 질환으로 추적될 수 있다.
ii. 플라크 취약성 평가
연산 분석은 환자의 두개내 및 두개외 정맥, 가령, 경동맥 아테롬경화성 플라크 내에 축적될 수 있는 플라크 상에 작용하는 환자별 생체기계학적 힘을 정량화하는 결과를 또한 제공할 수 있다. 생체기계학적 힘은 맥동압, 유동, 및 심장 운동에 의해 야기될 수 있다.
도 42는 예시적인 실시예에 따라, 특정 환자의 플라크 취약성, 뇌 볼륨 위험, 및 뇌 관류 위험의 평가에 관한 다양한 정보를 제공하기 위한 방법(1200)의 형태를 보여주는 개략도다. 방법(1200)은 가령, 도 3에 도시되는, 앞서 설명한 단계들 중 하나 이상의 구현에 사용되는 컴퓨터 시스템과 유사한, 앞서 설명한 컴퓨터 시스템에서 구현될 수 있다. 방법(1200)은 하나 이상의 입력(1202)을 이용하여 수행될 수 있고, 입력(1202)에 기초하여 하나 이상의 모델(1210)을 발생시키는 단계와, 모델(1210) 중 하나 이상에 기초하여 하나 이상의 생체기계학적 분석(1220)을 수행하는 단계와, 모델(1210) 및 생체기계학적 분석(1220)에 기초하여 다양한 결과를 제공하는 단계를 포함할 수 있다.
입력(1202)은 (가령, 도 2의 단계(100)와 연계하여 앞서 설명한 바와 유사한 방식으로 얻는) CCTA 데이터와 같이, 환자의 대동맥, 경동맥(도 37에 도시됨), 척추 동맥(도 37에 도시됨), 및 뇌와 같은, 환자의 두개내 및 두개외 동맥의 의료 이미징 데이터(1203)를 포함할 수 있다. 입력(1202)은 (가령, 도 2의 단계(100)와 연계하여 앞서 설명한 바와 유사한 방식으로 얻는) 환자의 상완 혈압, 심박동수, 및/또는 기타 측정치와 같이, 환자로부터 측정되는 추가적인 생리학적 데이터를 또한 포함할 수 있다. 추가적인 생리학적 데이터(1204)는 비침습성으로 얻을 수 있다. 입력(1202)은 아래 설명되는 모델(1210)의 발생 및 생체기계학적 분석(1220)의 수행에 사용될 수 있다.
앞서 언급한 바와 같이, 하나 이상의 모델(1210)이 입력(1202)에 기초하여 발생될 수 있다. 예를 들어, 방법(1200)은 환자 신체의 3차원 기하학적 모델 전체를 통해 다양한 위치에서 연산된 혈류 및 혈압 정보를 포함하는 혈역학적 모델(1212)을 발생시키는 단계를 포함할 수 있다. 환자 신체의 모델은 의료 이미징 데이터(1203)를 이용하여 생성될 수 있고, 예시적인 실시예에서, 혈역학적 모델(1212)은, 가령, 도 3의 단계(402)와 연계하여 앞서 설명한 바와 같이, 연산 분석 수행 후 생성되는, 시뮬레이션된 혈압 모델, 시뮬레이션된 혈류 모델, 또는 기타 시뮬레이션일 수 있다. 유체 구조 상호작용 모델을 포함하는 고형 기계 모델은 알려져 있는 수치 해법을 이용한 연산 분석으로 풀릴 수 있다. 플라크 및 혈관의 성질은 선형 또는 비-선형, 등방성 또는 이방성으로 모델링될 수 있다. 솔루션은 플라크와 혈관 사이의 계면과 플라크의 응력 및 응력변형을 제공할 수 있다. 혈역학적 모델(1212)을 발생시키는 단계는 앞서 설명한 도 35의 혈역학적 모델(932)을 발생시키기 위한 단계와 유사할 수 있다.
방버(1200)은 휴지 상태, 가변 레벨의 운동 또는 활동, 등과 같이, 다양한 생리학적 상태에서 혈역학적 힘으로 인해 플라크 내강 표면 상에 작용하는 전단 응력 및 압력을 연산함으로써 혈역학적 모델(1212)을 이용하여 생체기계학적 분석(1220)을 수행하는 단계를 포함할 수 있다(단계(1222)). 압력 및 전단 응력은 혈역학적 모델(1212)로부터의 정보, 가령, 혈압 및 유동에 기초하여 연산될 수 있다. 단계(1222)는 앞서 설명한 도 35의 단계(942)와 유사할 수 있다.
선택적 사항으로서, 방법(1200)은 도 35의 기하학적 분석 모델(934)에 대해 앞서 설명한 것과 유사한 방식으로, 수축기 및 확장기와 같은, 심장 주기의 복수의 페이즈에서 얻는 이미징 데이터와 같은, 4차원 이미징 데이터로부터 혈관 변형을 정량화하기 위한 기하학적 분석 모델을 발생시키는 단계를 또한 포함할 수 있다. 방법(1200)은 도 35의 단계(944)에 대해 앞서 설명한 것과 유사한 방식으로, 심장-유도 맥동압으로 인한 환자의 두개내 및 두개외 동맥과 플라크의 종방향 연장(lengthening)(신장), 종방향 수축(shortening), 트위스팅(비틀림), 반경 방향 팽창 또는 압축, 및 구부림, 등과 같은 다양한 변형 특성을 연산함으로써 기하학적 분석 모델을 이용하여 생체기계학적 분석(1220)을 수행하는 단계를 또한 포함할 수 있다.
방법(1200)은 의료 이미징 데이터(1203)로부터 플라크 조성 및 성질을 결정하기 위한 플라크 모델(1214)을 발생시키는 단계를 또한 포함할 수 있다. 예를 들어, 플라크 모델(1214)은 플라크의 밀도 및 기타 물성에 관한 정보를 포함할 수 있다.
방법(1200)은 플라크, 혈관벽, 및/또는 플라크와 혈관벽 사이의 계면에 관한 정보를 연산하기 위한 혈관벽 모델(1216)을 발생시키는 단계를 또한 포함할 수 있다. 예를 들어, 혈관벽 모델(1216)은 단계(1220)에서 연산된 전단 응력 및 압력과 플라크 모델(1214)에 포함된 플라크 조성 및 성질에 기초하여 연산될 수 있는, 응력 및 응력변형에 관한 정보를 포함할 수 있다. 선택적 사항으로서, 응력 및 응력 변형은 앞서 설명한 바와 같이, 연산된 변형 특성을 이용하여 또한 연산될 수 있다. 플라크 모델(1214) 및/또는 혈관벽 모델(1216)을 발생시키기 위한 단계는 앞서 설명한 도 35의 플라크 모델(936) 및/또는 혈관벽 모델(938)을 발생시키기 위한 단계와 유사할 수 있다.
방법(1200)은 혈역학적 힘 및 목운동-유도 응력변형으로 인해 플라크 상의 응력(가령, 급성 또는 누적 응력)을 연산함으로써 혈관벽 모델(1216)을 이용하여 생체기계학적 분석(1220)을 수행하는 단계(1224)를 포함할 수 있다. 예를 들어, 플라크 상에 작용하는 유동-유도 힘(904)(도 33)이 연산될 수 있다. 혈역학적 힘 및 목운동-유도 응력변형으로 인한 플라크 상의 응력 또는 힘은 혈관벽 모델(1216)으로부터의 정보, 예를 들어, 플라크 상의 응력 및 응력변형에 기초하여 연산될 수 있다. 단계(1224)는 앞서 설명한 도 35의 단계(946)와 유사할 수 있다.
방법(1200)은 앞서 설명한 생체기계학적 분석 중 하나 이상과 모델(1210) 중 하나 이상에 기초하여 추가 정보를 결정하는 단계를 포함할 수 있다.
플라크 파열 취약성 지수가 연산될 수 있다(단계(1230)). 플라크 파열 취약성 지수는 가령, 혈역학적 응력, 응력 빈도, 응력 방향, 및/또는 플라크 강도 또는 기타 성질에 기초하여 연산될 수 있다. 예를 들어, 관심 대상인 플라크를 둘러싸는 영역은 플라크 모델(1214)과 같이, 플라크의 3차원 모델(1210)로부터 분리될 수 있다. 플라크의 강도는 플라크 모델(1214)에 제공되는 물성으로부터 결정될 수 있다. 맥동압, 유동, 및 목운동으로 인한 관심 대상인 플라크 상의 혈역학적 및 조직 응력은, 단계(1224)에서 앞서 연산된 혈역학적 응력 및 운동-유도 응력변형을 이용함으로써 시뮬레이션된 기준선 및 운동(또는 활동) 조건 하에 연산될 수 있다. 플라크의 취약성은, 플라크 강도에 대한 플라크 응력의 비에 기초하여 평가될 수 있다. 단계(1230)는 앞서 설명한 도 35의 단계(950)와 유사할 수 있다. 예를 들어, 플라크 파열 취약성 지수는 스트로크 평가를 위해 두개외 동맥에 위치한 플라크에 대해 연산될 수 있다.
뇌 볼륨 위험 지수(CVRI) 역시 연산될 수 있다(단계(1232)). CVRI는 동맥 트리 내 주어진 위치에서 혈관의 폐색(닫힘 또는 차단)과 플라크 파열 또는 색전에 의한 폐색에 의해 영향받는 총 뇌 볼륨의 퍼센티지로 규정될 수 있다. CVRI는 3차원 혈역학적 솔루션에 기초하여 서로 다른 혈관 내로 플라크가 유동할 확률과 하류 혈관의 크기에 대하여 플라크의 크기를 고려할 수 있는, 주어진 플라크의 하류에 위치한 혈관에 의해 공급되는 뇌의 부분에 기초하여 연산될 수 있다. CVRI는 질환이 있는 상태에서, 평가될 수 있고, 또는 인터벤션 전 또는 인터벤션 후에 평가될 수 있다. 단계(1232)는 앞서 설명한 도 35의 단계(952)와 유사할 수 있다.
뇌 조직은 (가령, 도 40의 단계(1110, 1112)와 연계하여 설명되는 바와 같이) 혈역학적 시뮬레이션에서 각각의 혈관에 의해 공급되는 세그먼트로 모델링 및 나누어질 수 있다. 이러한 기하학적 모델은 (가령, 도 40의 단계(1118)과 연계하여 설명되는 바와 같이) 뇌 트리 내 차세대 지류를 포함하도록 수정될 수 있고, 뇌 조직은 (가령, 도 40의 단계(1120)와 연계하여 설명되는 바와 같이) 추가적으로 분절될 수 있다. 추가적인 지류는 서브세그먼트 내에 생성될 수 있고, 서브세그먼트는 더 작은 세그먼트로 더 분절될 수 있다(도 40의 단계(11122)와 연계하여 설명되는 것와 유사함). 앞서 설명한 바와 같이 생리학적 관계를 이용하여, 공급되는 뇌 조직의 비례 양에 혈관의 크기를 관계시킬 수 있다.
파열 플라크가 따를 잠재적 경로가 결정될 수 있다. 혈역학적 솔루션을 이용하여, 플라크 조각 또는 색전이 서로 다른 하류 혈관 내로 유동할 퍼센트 기회를 결정할 수 있다.
파열 플라크의 크기는 하류 혈관의 크기와 비교되어, 플라크가 궁극적으로 유동에 장애물을 생성할 수 있는 위치를 결정할 수 있다. 이 정보는 취약성 지수와 조합되어, 파열 플라크에 의해 영향받을 가능성이 있는 뇌 조직의 볼륨의 확률 맵을 제공할 수 있다. CVRI는 각각의 영향받을 가능성이 있는 세그먼트에 할당될 수 있다.
뇌 관류 위험 지수(CPRI)가 또한 연산될 수 있다(단계(1234)). CPRI는 동맥 트리 내 주어진 위치에서 혈관의 폐색 및 플라크 파열에 의해 영향받는 총 뇌 혈류의 퍼센티지로 규정될 수 있다. CPRI는 CVRI에 의해 표시되는 바와 같이 영향받는 볼륨보다, 뇌 조직 세그먼트에 대한 관류의 손실 가능성을 표시한다. 예를 들어, 경동맥 플라크의 파열 또는 색전에 의해 폐색의 효과는 (도 37에 도시되는) 환자의 윌리스(Willis) 원의 기하 형태에 따라 변할 수 있고, 신체적으로 이러한 차이로 인해 서로 다른 CVRI 및 CPRI 값을 도출할 수 있다. 뇌 조직의 각각의 세그먼트에 대한 관류 속도가 연산될 수 있고, 관류 손실은 취약성 지수, 혈역학적 솔루션, 및 플라크 및 혈관의 크기에 기초하여 연산될 수 있다. CPRI는 질환을 가진 상태에서, 또는 인터벤션 전이나 후에, 평가될 수 있다. 단계(1234)는 앞서 설명한 도 35의 단계(954)와 유사할 수 있다.
그 결과, 맥동압, 맥동 혈류, 및/또는 선택적 사항인 목운동으로부터 나타나는 경동맥 아테롬 경화성 플라크 상에 작용하는 생체기계학적 힘이 평가될 수 있다. 맥동압, 맥동 혈류, 및/또는 선택적인 목운동으로부터 플라크가 경험하는 총 응력이 정량화될 수 있다. 솔루션은 플라크 상에, 또는 플라크와 혈관벽 사이의 계면 상에, 작용하는 환자별 혈역학적 응력의 복수의 소스를 고려할 수 있다. 또한, 플라크 강도가 의료 이미징 데이터에 기초하여 추정될 수 있고, 플라크 취약성, 뇌 볼륨 위험, 및 뇌 관류 위험에 관한 지수들이 정량화될 수 있다.
아래 설명되는 바와 같이, 두개외 및 두개내 동맥에 대한 신체적 및 생리학적 데이터를 결정함으로써, 다양한 물리적 조건에서 특정 환자에 대한 동맥 또는 기관 레벨에서 혈류 변화를 예측할 수 있다. 더욱이, 일과성 뇌허혈 발작, 허혈성 뇌졸중, 또는 동맥류 파열의 위험, 아테롬 경화성 플라크 또는 동맥류 상에 작용하는 힘, 두개내 또는 두개외 혈류, 압력, 벽 응력, 또는 뇌 관류에 대한 내과적, 인터벤션, 또는 외과적 요법의 예측되는 영향과 같은, 다른 정보가 제공될 수 있다. 두개내 또는 두개외 동맥의 혈류, 혈압, 및 벽 응력, 그리고, 전체 및 지역적 뇌 관류가 정량화될 수 있고, 질환의 기능적 중요도가 결정될 수 있다.
(가령, 단계(1212)에서 앞서 설명한 바와 같이) 이미징 데이터로부터 구성되는 3차원 기하학적 모델의 혈류 정량화에 추가하여, 모델은 질환의 진행 또는 후퇴, 또는 내과적, 경피형, 또는 외과적 인터벤션의 효과를 시뮬레이션하도록 수정될 수 있다. 예시적인 실시예에서, 아테롬성 동맥 경화증의 진행은, 시간에 따라 솔루션을 반복함으로써, 예를 들어, 전단 응력 또는 입자의 체류 시간을 풀고 혈역학적 요인 및/또는 환자별 생화학적 측정에 기초하여 아테롬 경화성 플라크 발전을 진행시키도록 기하학적 모델을 적응시킴으로써, 모델링될 수 있다. 더욱이, 두개외 및/또는 두개내 동맥 혈류 또는 뇌 관류에 대한 혈류, 심박동수, 혈압, 및 기타 생리학적 변수의 변화 효과는, 경계 조건의 변화를 통해 모델링될 수 있고, 시간에 따라 이러한 변수들의 누적 효과를 연산하는 데 사용될 수 있다.
임의의 실시예에서 제시된 임의의 형태는 여기서 제시된느 그외 다른 실시예와 함께 사용될 수 있다. 여기서 제시되는 모든 디바이스 및 장치는 임의의 적절한 의료 절차에 사용될 수 있고, 임의의 적절한 신체 내강 및 신체 공동을 통해 진보될 수 있으며, 임의의 적절한 신체부를 이미징하는 데 사용될 수 있다.
발명의 범위로부터 벗어나지 않으면서, 다양한 수정예 및 변형예가, 개시되는 시스템 및 프로세스 내에서 이루어질 수 있다. 여기서 개시되는 공개 내용의 실시와 명세서의 고려로부터 당 업자에게 다른 실시예들이 명백할 것이다. 명세서 및 예는 예시적인 것으로 간주되어야 하고, 개시내용의 진정한 범위 및 사상은 다음의 청구범위에 의해 표시된다.

Claims (26)

  1. 혈역학적 지수를 추정하는 방법으로서,
    적어도 환자 혈관의 협폭화를 묘사하는 하나 이상의 혈관 이미지를 획득하는 단계;
    환자의 생리학적 정보를 획득하는 단계;
    상기 하나 이상의 획득된 혈관 이미지 및 상기 환자의 생리학적 정보에 기초하여, 환자 혈관의 협폭화의 조합된 모델을 생성하는 단계;
    상기 환자 혈관의 협폭화의 조합된 모델을 통한 혈류를 시뮬레이션함으로써, 혈류 속도, 혈압, 또는 혈류량의 값을 포함하는 혈류 정보의 제1 값을 획득하는 단계;
    상기 환자 혈관의 협폭화의 조합된 모델을 통한 혈류를 시뮬레이션함으로써, 혈류 정보의 제2 값을 계산하는 단계; 및
    적어도 상기 획득된 혈류 정보의 제1 값, 상기 계산된 혈류 정보의 제2 값, 및 상기 환자의 생리학적 정보에 기초하여 상기 환자 혈관의 협폭화에서의 혈관 기능을 나타내는 혈역학적 지수를 추정하는 단계
    를 포함하는, 방법.
  2. 제1항에 있어서,
    하나 이상의 CT 이미지로부터 동맥을 세그먼팅(segmenting)하는 단계; 및
    적어도 상기 세그먼트된 동맥에 기초하여 상기 조합된 모델을 생성하는 단계
    를 포함하는, 방법.
  3. 제2항에 있어서,
    관심 대상의 초음파 볼륨을 식별하는 단계;
    상기 관심 대상의 초음파 볼륨에 대한 속도 데이터 세트를 생성하는 단계; 및
    상기 속도 데이터 세트를 사용하여 상기 혈류 정보의 제2 값을 계산하는 단계
    를 포함하는, 방법.
  4. 제1항에 있어서,
    하나 이상의 재구성된 이미지로부터 동맥을 세그먼팅하는 단계; 및
    적어도 상기 세그먼트된 동맥에 기초하여 상기 조합된 모델을 생성하는 단계
    를 포함하는, 방법.
  5. 제4항에 있어서, 상기 하나 이상의 재구성된 이미지는 중재적 영상 방식(interventional imaging modality)을 사용하여 획득된 데이터에 기초한 것인, 방법.
  6. 제1항에 있어서, 상기 조합된 모델은 혈관 나무(vessel tree)의 위치, 루멘 퇴화(lumen reduction)의 비율, 또는 협착증 요소(stenosis composition)를 더 포함하는, 방법.
  7. 제1항에 있어서, 상기 혈관의 협폭화는 협착증 병변을 포함하는, 방법.
  8. 제1항에 있어서, 상기 혈역학적 지수를 추정하는 단계는 적어도 상기 조합된 모델을 연산적 유체 역학 모델에 제공하는 단계를 포함하는, 방법.
  9. 제8항에 있어서, 상기 혈류 정보의 제2 값을 계산하는 단계는
    상기 연산적 유체 역학 모델에 사용되는 흐름 경계 조건(flow boundary condition)을 결정하는 단계
    를 더 포함하는, 방법.
  10. 하나 이상의 루틴(routine)을 인코딩하는 하나 이상의 비-일시적 컴퓨터-판독가능 매체로서, 상기 하나 이상의 루틴은
    적어도 환자 혈관의 협폭화를 묘사하는 하나 이상의 혈관 이미지를 획득하는 단계;
    환자의 생리학적 정보를 획득하는 단계;
    상기 하나 이상의 획득된 혈관 이미지 및 상기 환자의 생리학적 정보에 기초하여, 환자 혈관의 협폭화의 조합된 모델을 생성하는 단계;
    상기 환자 혈관의 협폭화의 조합된 모델을 통한 혈류를 시뮬레이션함으로써, 혈류 속도, 혈압, 또는 혈류량의 값을 포함하는 혈류 정보의 제1 값을 획득하는 단계;
    상기 환자 혈관의 협폭화의 조합된 모델을 통한 혈류를 시뮬레이션함으로써, 혈류 정보의 제2 값을 계산하는 단계; 및
    적어도 상기 획득된 혈류 정보의 제1 값, 상기 계산된 혈류 정보의 제2 값, 및 상기 환자의 생리학적 정보에 기초하여 상기 환자 혈관의 협폭화에서의 혈관 기능을 나타내는 혈역학적 지수를 추정하는 단계
    를 포함하는 행동이 수행되도록 하는, 하나 이상의 비-일시적 컴퓨터-판독가능 매체.
  11. 제10항에 있어서, 상기 하나 이상의 루틴은
    하나 이상의 CT 이미지로부터 동맥을 세그먼팅하는 단계; 및
    적어도 상기 세그먼트된 동맥에 기초하여 상기 조합된 모델을 생성하는 단계
    를 포함하는 행동이 더 수행되도록 하는, 하나 이상의 비-일시적 컴퓨터-판독가능 매체.
  12. 제11항에 있어서, 상기 하나 이상의 루틴은
    관심 대상의 초음파 볼륨을 식별하는 단계;
    상기 관심 대상의 초음파 볼륨에 대한 속도 데이터 세트를 생성하는 단계; 및
    상기 속도 데이터 세트를 사용하여 상기 혈류 정보의 제2 값을 계산하는 단계
    를 포함하는 행동이 더 수행되도록 하는, 하나 이상의 비-일시적 컴퓨터-판독가능 매체.
  13. 제10항에 있어서, 상기 하나 이상의 루틴은
    하나 이상의 재구성된 이미지로부터 동맥을 세그먼팅하는 단계; 및
    적어도 상기 세그먼트된 동맥에 기초하여 상기 조합된 모델을 생성하는 단계
    를 포함하는 행동이 더 수행되도록 하는, 하나 이상의 비-일시적 컴퓨터-판독가능 매체.
  14. 제13항에 있어서, 상기 하나 이상의 재구성된 이미지는 중재적 영상 방식을 사용하여 획득된 데이터에 기초한 것인, 하나 이상의 비-일시적 컴퓨터-판독가능 매체.
  15. 제10항에 있어서, 상기 조합된 모델은 혈관 나무의 위치, 루멘 퇴화의 비율, 또는 협착증 요소를 더 포함하는, 하나 이상의 비-일시적 컴퓨터-판독가능 매체.
  16. 제10항에 있어서, 상기 혈역학적 지수를 추정하는 단계는 적어도 상기 조합된 모델을 연산적 유체 역학 모델에 제공하는 단계를 포함하는, 하나 이상의 비-일시적 컴퓨터-판독가능 매체.
  17. 제16항에 있어서, 상기 혈류 정보의 제2 값을 계산하는 단계는
    상기 연산적 유체 역학 모델에 사용되는 흐름 경계 조건을 결정하는 단계
    를 더 포함하는, 하나 이상의 비-일시적 컴퓨터-판독가능 매체.
  18. 프로세서-기반 컴퓨터 시스템으로서,
    혈역학적 지수를 추정하기 위한 하나 이상의 루틴을 인코딩하는 디지털 컴퓨터 메모리 저장 디바이스; 및
    상기 하나 이상의 루틴을 실행하도록 구성된 컴퓨터 프로세서를 포함하고,
    상기 루틴은, 실행될 때, 상기 컴퓨터 시스템으로 하여금:
    상기 컴퓨터 프로세서에 의해, 적어도 환자 혈관의 협폭화를 묘사하는 하나 이상의 혈관 이미지를 획득하는 단계;
    환자의 생리학적 정보를 획득하는 단계;
    상기 하나 이상의 획득된 혈관 이미지 및 상기 환자의 생리학적 정보에 기초하여, 환자 혈관의 협폭화의 조합된 모델을 생성하는 단계;
    상기 컴퓨터 프로세서에 의해 및 상기 환자 혈관의 협폭화의 조합된 모델을 통한 혈류를 시뮬레이션함으로써, 혈류 속도, 혈압, 또는 혈류량의 값을 포함하는 혈류 정보의 제1 값을 획득하는 단계;
    상기 환자 혈관의 협폭화의 조합된 모델을 통한 혈류를 시뮬레이션함으로써, 혈류 정보의 제2 값을 계산하는 단계; 및
    적어도 상기 획득된 혈류 정보의 제1 값, 상기 계산된 혈류 정보의 제2 값, 및 상기 환자의 생리학적 정보에 기초하여 상기 환자 혈관의 협폭화에서의 혈관 기능을 나타내는 혈역학적 지수를 추정하는 단계
    를 포함하는 단계를 실행하게 하는, 프로세서-기반 컴퓨터 시스템.
  19. 제18항에 있어서, 상기 루틴은
    하나 이상의 CT 이미지로부터 동맥을 세그먼팅하는 단계; 및
    적어도 상기 세그먼트된 동맥에 기초하여 상기 조합된 모델을 생성하는 단계
    를 포함하는 행동이 더 수행되도록 하는, 프로세서-기반 컴퓨터 시스템.
  20. 제19항에 있어서, 상기 루틴은
    관심 대상의 초음파 볼륨을 식별하는 단계;
    상기 관심 대상의 초음파 볼륨에 대한 속도 데이터 세트를 생성하는 단계; 및
    상기 속도 데이터 세트를 사용하여 상기 혈류 정보의 제2 값을 계산하는 단계
    를 포함하는 행동이 더 수행되도록 하는, 프로세서-기반 컴퓨터 시스템.
  21. 제18항에 있어서, 상기 루틴은
    하나 이상의 재구성된 이미지로부터 동맥을 세그먼팅하는 단계; 및
    적어도 상기 세그먼트된 동맥에 기초하여 상기 조합된 모델을 생성하는 단계
    를 포함하는 행동이 더 수행되도록 하는, 프로세서-기반 컴퓨터 시스템.
  22. 제21항에 있어서, 상기 하나 이상의 재구성된 이미지는 중재적 영상 방식을 사용하여 획득된 데이터에 기초한 것인, 프로세서-기반 컴퓨터 시스템.
  23. 제18항에 있어서, 상기 조합된 모델은 혈관 나무의 위치, 루멘 퇴화의 비율, 또는 협착증 요소를 더 포함하는, 프로세서-기반 컴퓨터 시스템.
  24. 제18항에 있어서, 상기 혈역학적 지수를 추정하는 단계는 적어도 상기 조합된 모델을 연산적 유체 역학 모델에 제공하는 단계를 포함하는, 프로세서-기반 컴퓨터 시스템.
  25. 제24항에 있어서, 상기 혈류 정보의 제2 값을 계산하는 단계는
    상기 연산적 유체 역학 모델에 사용되는 흐름 경계 조건을 결정하는 단계
    를 더 포함하는, 프로세서-기반 컴퓨터 시스템.
  26. 제18항에 있어서, 상기 혈관의 협폭화는 협착증 병변을 포함하는, 프로세서-기반 컴퓨터 시스템.
KR1020207022263A 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템 KR102351887B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227000928A KR102414383B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
US40146210P 2010-08-12 2010-08-12
US61/401,462 2010-08-12
US40191510P 2010-08-20 2010-08-20
US61/401,915 2010-08-20
US40230810P 2010-08-26 2010-08-26
US61/402,308 2010-08-26
US40234510P 2010-08-27 2010-08-27
US61/402,345 2010-08-27
US40442910P 2010-10-01 2010-10-01
US61/404,429 2010-10-01
US13/013,561 US8315812B2 (en) 2010-08-12 2011-01-25 Method and system for patient-specific modeling of blood flow
US13/013,561 2011-01-25
KR1020207010781A KR102142242B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템
PCT/US2011/045869 WO2012021307A2 (en) 2010-08-12 2011-07-29 Method and system for patient-specific modeling of blood flow

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020207010781A Division KR102142242B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020227000928A Division KR102414383B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템

Publications (2)

Publication Number Publication Date
KR20200096670A true KR20200096670A (ko) 2020-08-12
KR102351887B1 KR102351887B1 (ko) 2022-01-18

Family

ID=45565333

Family Applications (14)

Application Number Title Priority Date Filing Date
KR1020157015549A KR101611805B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템
KR1020207022263A KR102351887B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템
KR1020197004428A KR102103126B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템
KR1020167018245A KR101732330B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템
KR1020137006145A KR101524955B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템
KR1020187019719A KR101952560B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템
KR1020167018243A KR101732329B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템
KR1020227000928A KR102414383B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템
KR1020227021399A KR102518799B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템
KR1020207010781A KR102142242B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템
KR1020167018240A KR101732328B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템
KR1020177010587A KR101783178B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템
KR1020147012826A KR101712248B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템
KR1020177025915A KR101879560B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020157015549A KR101611805B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템

Family Applications After (12)

Application Number Title Priority Date Filing Date
KR1020197004428A KR102103126B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템
KR1020167018245A KR101732330B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템
KR1020137006145A KR101524955B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템
KR1020187019719A KR101952560B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템
KR1020167018243A KR101732329B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템
KR1020227000928A KR102414383B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템
KR1020227021399A KR102518799B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템
KR1020207010781A KR102142242B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템
KR1020167018240A KR101732328B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템
KR1020177010587A KR101783178B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템
KR1020147012826A KR101712248B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템
KR1020177025915A KR101879560B1 (ko) 2010-08-12 2011-07-29 환자별 혈류 모델링 방법 및 시스템

Country Status (9)

Country Link
US (74) US8315812B2 (ko)
EP (8) EP2538361A3 (ko)
JP (19) JP5850583B2 (ko)
KR (14) KR101611805B1 (ko)
CN (6) CN107184186B (ko)
AU (8) AU2011289715B2 (ko)
CA (3) CA3027987C (ko)
DE (17) DE202011110678U1 (ko)
WO (1) WO2012021307A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022240234A1 (ko) * 2021-05-13 2022-11-17 연세대학교 산학협력단 합성곱 신경망을 이용한 투석 접근로의 협착 예측 방법 및 장치

Families Citing this family (595)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7900964A (nl) * 1979-02-07 1980-08-11 Byk Mallinckrodt Cil Bv Nieuwe radioactief gemerkte aminen, werkwijze ter bereiding van de nieuwe verbindingen, alsmede diagnostische preparaten op basis van de nieuwe verbindingen.
US6850788B2 (en) 2002-03-25 2005-02-01 Masimo Corporation Physiological measurement communications adapter
WO2006118548A1 (en) * 2005-05-02 2006-11-09 Agency For Science, Technology And Research Method and apparatus for registration of an atlas to an image
US10154819B2 (en) * 2006-04-20 2018-12-18 Jack S. Emery Systems and methods for impedance analysis of conductive medium
US8840549B2 (en) 2006-09-22 2014-09-23 Masimo Corporation Modular patient monitor
US9161696B2 (en) 2006-09-22 2015-10-20 Masimo Corporation Modular patient monitor
US11064964B2 (en) 2007-03-08 2021-07-20 Sync-Rx, Ltd Determining a characteristic of a lumen by measuring velocity of a contrast agent
US8781555B2 (en) 2007-11-26 2014-07-15 C. R. Bard, Inc. System for placement of a catheter including a signal-generating stylet
ES2651898T3 (es) 2007-11-26 2018-01-30 C.R. Bard Inc. Sistema integrado para la colocación intravascular de un catéter
US9521961B2 (en) 2007-11-26 2016-12-20 C. R. Bard, Inc. Systems and methods for guiding a medical instrument
US8200466B2 (en) 2008-07-21 2012-06-12 The Board Of Trustees Of The Leland Stanford Junior University Method for tuning patient-specific cardiovascular simulations
EP2347715A4 (en) * 2008-10-02 2012-10-10 Kwang Tae Kim CEREBROVASCULAR ANALYSIS SYSTEM
US9405886B2 (en) 2009-03-17 2016-08-02 The Board Of Trustees Of The Leland Stanford Junior University Method for determining cardiovascular information
US9532724B2 (en) 2009-06-12 2017-01-03 Bard Access Systems, Inc. Apparatus and method for catheter navigation using endovascular energy mapping
WO2011008906A1 (en) * 2009-07-15 2011-01-20 Mayo Foundation For Medical Education And Research Computer-aided detection (cad) of intracranial aneurysms
US20110150309A1 (en) * 2009-11-27 2011-06-23 University Health Network Method and system for managing imaging data, and associated devices and compounds
US9153112B1 (en) 2009-12-21 2015-10-06 Masimo Corporation Modular patient monitor
GB201008281D0 (en) 2010-05-19 2010-06-30 Nikonovas Arkadijus Indirect analysis and manipulation of objects
EP2912999B1 (en) 2010-05-28 2022-06-29 C. R. Bard, Inc. Apparatus for use with needle insertion guidance system
US8315812B2 (en) 2010-08-12 2012-11-20 Heartflow, Inc. Method and system for patient-specific modeling of blood flow
DE102010039407B3 (de) * 2010-08-17 2012-02-02 Siemens Aktiengesellschaft Verfahren zum Bereitstellen eines Hilfsmittels zur Verwendung bei der therapeutischen Behandlung eines körperlichen Objekts
US9119540B2 (en) * 2010-09-16 2015-09-01 Siemens Aktiengesellschaft Method and system for non-invasive assessment of coronary artery disease
WO2012038863A1 (en) 2010-09-20 2012-03-29 Koninklijke Philips Electronics N.V. Quantification of a characteristic of a lumen of a tubular structure
US20120084064A1 (en) * 2010-09-29 2012-04-05 Nutech Ventures, Inc. Model-based systems and methods for analyzing and predicting outcomes of vascular interventions and reconstructions
DE102010043849B3 (de) 2010-11-12 2012-02-16 Siemens Aktiengesellschaft Vorrichtung und Computertomograph zur Bestimmung und Darstellung der Durchblutung des Herzmuskels
GB201100136D0 (en) 2011-01-06 2011-02-23 Davies Helen C S Apparatus and method of characterising a narrowing in a filled tube
GB201100137D0 (en) 2011-01-06 2011-02-23 Davies Helen C S Apparatus and method of assessing a narrowing in a fluid tube
US9256933B2 (en) * 2011-02-08 2016-02-09 Region Nordjylland, Aalborg Sygehus System for determining flow properties of a blood vessel
US10186056B2 (en) 2011-03-21 2019-01-22 General Electric Company System and method for estimating vascular flow using CT imaging
WO2012174495A2 (en) 2011-06-17 2012-12-20 Carnegie Mellon University Physics based image processing and evaluation process of perfusion images from radiology imaging
TWI445520B (zh) * 2011-07-08 2014-07-21 私立中原大學 Methods of comparison of non - invasive cardiovascular status
US9179890B2 (en) * 2011-07-14 2015-11-10 Siemens Aktiengesellschaft Model-based positioning for intracardiac echocardiography volume stitching
WO2013028612A2 (en) * 2011-08-20 2013-02-28 Volcano Corporation Devices, systems, and methods for visually depicting a vessel and evaluating treatment options
US9339348B2 (en) 2011-08-20 2016-05-17 Imperial Colege of Science, Technology and Medicine Devices, systems, and methods for assessing a vessel
WO2013031741A1 (ja) * 2011-08-26 2013-03-07 イービーエム株式会社 血流性状診断のためのシステム、その方法及びコンピュータソフトウエアプログラム
KR101805624B1 (ko) * 2011-08-29 2017-12-08 삼성전자주식회사 장기 모델 영상 생성 방법 및 장치
US9974508B2 (en) * 2011-09-01 2018-05-22 Ghassan S. Kassab Non-invasive systems and methods for determining fractional flow reserve
EP2573961B1 (en) * 2011-09-12 2016-04-13 ADVA Optical Networking SE An optical frequency locking method and device for optical data transmission
US9943269B2 (en) 2011-10-13 2018-04-17 Masimo Corporation System for displaying medical monitoring data
WO2013056160A2 (en) 2011-10-13 2013-04-18 Masimo Corporation Medical monitoring hub
US10162932B2 (en) * 2011-11-10 2018-12-25 Siemens Healthcare Gmbh Method and system for multi-scale anatomical and functional modeling of coronary circulation
US20140357938A1 (en) * 2011-12-01 2014-12-04 The Trustees Of The University Of Pennsylvania Non-blood contacting mechanical device that improves heart function after injury
US9152740B1 (en) * 2012-01-18 2015-10-06 Msc.Software Corporation Interactive simulation and solver for mechanical, fluid, and electro-mechanical systems
US8965084B2 (en) * 2012-01-19 2015-02-24 Siemens Aktiengesellschaft Blood flow computation in vessels with implanted devices
US10311978B2 (en) 2012-01-30 2019-06-04 Siemens Healthcare Gmbh Method and system for patient specific planning of cardiac therapies on preoperative clinical data and medical images
US9129053B2 (en) 2012-02-01 2015-09-08 Siemens Aktiengesellschaft Method and system for advanced measurements computation and therapy planning from medical data and images using a multi-physics fluid-solid heart model
US10307111B2 (en) 2012-02-09 2019-06-04 Masimo Corporation Patient position detection system
US10149616B2 (en) 2012-02-09 2018-12-11 Masimo Corporation Wireless patient monitoring device
US9384546B2 (en) * 2012-02-22 2016-07-05 Siemens Aktiengesellschaft Method and system for pericardium based model fusion of pre-operative and intra-operative image data for cardiac interventions
US10034614B2 (en) * 2012-02-29 2018-07-31 General Electric Company Fractional flow reserve estimation
CN108294735B (zh) * 2012-03-13 2021-09-07 西门子公司 用于冠状动脉狭窄的非侵入性功能评估的方法和系统
US10373700B2 (en) 2012-03-13 2019-08-06 Siemens Healthcare Gmbh Non-invasive functional assessment of coronary artery stenosis including simulation of hyperemia by changing resting microvascular resistance
US9135699B2 (en) * 2012-03-15 2015-09-15 Siemens Aktiengesellschaft Method and system for hemodynamic assessment of aortic coarctation from medical image data
CN104244813B (zh) * 2012-03-15 2017-03-15 西门子公司 用于静息和充血期间冠状动脉血流计算的个性化的框架
AU2013245862A1 (en) 2012-04-11 2014-10-30 University Of Florida Research Foundation, Inc. System and method for analyzing random patterns
JP2015514520A (ja) * 2012-04-24 2015-05-21 ザ ユニヴァーシティー オブ メルボルン 血管領域の同定
US9811613B2 (en) 2012-05-01 2017-11-07 University Of Washington Through Its Center For Commercialization Fenestration template for endovascular repair of aortic aneurysms
JP5946127B2 (ja) * 2012-05-11 2016-07-05 富士通株式会社 シミュレーション方法、シミュレーション装置、およびシミュレーションプログラム
CN104321009B (zh) * 2012-05-14 2017-06-13 皇家飞利浦有限公司 针对血管狭窄的血流储备分数(ffr)值的确定
US8548778B1 (en) * 2012-05-14 2013-10-01 Heartflow, Inc. Method and system for providing information from a patient-specific model of blood flow
US10789772B2 (en) * 2012-05-16 2020-09-29 Feops Nv Pre-operative simulation of trans-catheter valve implantation
US11331149B2 (en) 2012-05-16 2022-05-17 Feops Nv Method and system for determining a risk of hemodynamic compromise after cardiac intervention
EP3358482A1 (en) 2017-02-03 2018-08-08 FEops NV Method and system for determining a risk of hemodynamic compromise after cardiac intervention
JP5988088B2 (ja) 2012-06-08 2016-09-07 富士通株式会社 描画プログラム、描画方法、および、描画装置
JP6134789B2 (ja) * 2012-06-26 2017-05-24 シンク−アールエックス,リミティド 管腔器官における流れに関連する画像処理
US9247918B2 (en) * 2012-07-09 2016-02-02 Siemens Aktiengesellschaft Computation of hemodynamic quantities from angiographic data
US9277970B2 (en) 2012-07-19 2016-03-08 Siemens Aktiengesellschaft System and method for patient specific planning and guidance of ablative procedures for cardiac arrhythmias
KR101939778B1 (ko) * 2012-07-27 2019-01-18 삼성전자주식회사 필요 혈류량 결정 방법 및 장치, 혈류 영상 생성 방법 및 장치, 심근 관류 영상 처리 방법 및 장치
EP3903672B1 (en) * 2012-08-03 2023-11-01 Philips Image Guided Therapy Corporation Devices, systems, and methods for assessing a vessel
WO2014027692A1 (ja) * 2012-08-16 2014-02-20 株式会社東芝 画像処理装置、医用画像診断装置及び血圧モニタ
JP6116833B2 (ja) * 2012-09-03 2017-04-19 東芝メディカルシステムズ株式会社 医用画像処理装置
GB2519907B (en) * 2012-09-05 2017-12-27 Goyal Mayank Systems and methods for diagnosing strokes
US9486176B2 (en) * 2012-09-05 2016-11-08 Mayank Goyal Systems and methods for diagnosing strokes
US10433740B2 (en) 2012-09-12 2019-10-08 Heartflow, Inc. Systems and methods for estimating ischemia and blood flow characteristics from vessel geometry and physiology
US10398386B2 (en) * 2012-09-12 2019-09-03 Heartflow, Inc. Systems and methods for estimating blood flow characteristics from vessel geometry and physiology
US9749232B2 (en) 2012-09-20 2017-08-29 Masimo Corporation Intelligent medical network edge router
US9262581B2 (en) * 2012-09-24 2016-02-16 Heartflow, Inc. Method and system for facilitating physiological computations
US10297341B2 (en) * 2012-09-24 2019-05-21 Siemens Healthcare Gmbh Viscoelastic modeling of blood vessels
EP2900142B1 (en) * 2012-09-25 2019-09-04 The Johns Hopkins University A method for estimating flow rates, pressure gradients, coronary flow reserve, and fractional flow reserve from patient specific computed tomography angiogram-based contrast distribution data
US9675301B2 (en) * 2012-10-19 2017-06-13 Heartflow, Inc. Systems and methods for numerically evaluating vasculature
JP6301102B2 (ja) * 2012-10-22 2018-03-28 学校法人藤田学園 医用画像診断装置、医用画像処理装置及び医用画像処理プログラム
US9858387B2 (en) * 2013-01-15 2018-01-02 CathWorks, LTD. Vascular flow assessment
US9943233B2 (en) 2012-10-24 2018-04-17 Cathworks Ltd. Automated measurement system and method for coronary artery disease scoring
US9814433B2 (en) 2012-10-24 2017-11-14 Cathworks Ltd. Creating a vascular tree model
US10595807B2 (en) 2012-10-24 2020-03-24 Cathworks Ltd Calculating a fractional flow reserve
US10210956B2 (en) 2012-10-24 2019-02-19 Cathworks Ltd. Diagnostically useful results in real time
JP6302922B2 (ja) * 2012-11-06 2018-03-28 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 冠血流予備量比(ffr)指標
US9414752B2 (en) * 2012-11-09 2016-08-16 Elwha Llc Embolism deflector
JP2014100249A (ja) * 2012-11-19 2014-06-05 Toshiba Corp 血管解析装置、医用画像診断装置、血管解析方法、及び血管解析プログラム
CN104812306A (zh) * 2012-11-29 2015-07-29 株式会社东芝 医用信息处理装置、医用图像诊断装置以及医用信息处理方法
JP6017284B2 (ja) * 2012-11-30 2016-10-26 東芝メディカルシステムズ株式会社 医用画像診断装置
WO2014084398A1 (ja) 2012-11-30 2014-06-05 株式会社 東芝 医用画像診断装置
JP5972768B2 (ja) * 2012-11-30 2016-08-17 東芝メディカルシステムズ株式会社 医用画像処理装置
JP6334902B2 (ja) 2012-11-30 2018-05-30 キヤノンメディカルシステムズ株式会社 医用画像処理装置
JP6139116B2 (ja) * 2012-11-30 2017-05-31 東芝メディカルシステムズ株式会社 医用画像処理装置
JP6553147B2 (ja) * 2012-11-30 2019-07-31 キヤノンメディカルシステムズ株式会社 医用画像処理装置及び医用画像処理方法
JP6491378B2 (ja) * 2012-11-30 2019-03-27 キヤノンメディカルシステムズ株式会社 表示方法、医用画像診断装置、及びプログラム
US9986966B2 (en) * 2012-12-04 2018-06-05 Oxford University Innovation Limited Computation method of relative cardiovascular pressure
JP6091870B2 (ja) * 2012-12-07 2017-03-08 東芝メディカルシステムズ株式会社 血管解析装置、医用画像診断装置、血管解析方法、及び血管解析プログラム
JP5953438B2 (ja) 2012-12-11 2016-07-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 冠状動脈を通る血流量を決定する方法
EP2936364B1 (en) * 2012-12-18 2019-09-25 Koninklijke Philips N.V. Method and apparatus for simulating blood flow under patient-specific boundary conditions derived from an estimated cardiac ejection output
WO2014105743A1 (en) * 2012-12-28 2014-07-03 Cyberheart, Inc. Blood-tissue surface based radiosurgical renal treatment planning
US10485517B2 (en) 2013-02-15 2019-11-26 The Johns Hopkins University Computational flow dynamics based method for estimating thromboembolic risk in patients with myocardial infarction
US20140236547A1 (en) * 2013-02-15 2014-08-21 Siemens Aktiengesellschaft Patient-specific automated tuning of boundary conditions for distal vessel tree
US9042613B2 (en) * 2013-03-01 2015-05-26 Heartflow, Inc. Method and system for determining treatments by modifying patient-specific geometrical models
US9424395B2 (en) * 2013-03-04 2016-08-23 Heartflow, Inc. Method and system for sensitivity analysis in modeling blood flow characteristics
US20160034665A1 (en) * 2013-03-14 2016-02-04 Cardioart Technologies Ltd. System and method for personalized hemodynamics modeling and monitoring
US10390713B2 (en) * 2013-03-15 2019-08-27 Ghassan S. Kassab Methods for the non-invasive determination of heart and pulmonary pressures
US8824752B1 (en) * 2013-03-15 2014-09-02 Heartflow, Inc. Methods and systems for assessing image quality in modeling of patient anatomic or blood flow characteristics
US9324157B2 (en) * 2013-03-26 2016-04-26 Kabushiki Kaisha Toshiba Medical image data processing apparatus and method
KR101530352B1 (ko) * 2013-04-02 2015-06-22 재단법인 아산사회복지재단 물질특성에 기반한 전산유체역학 모델링 및 분석 방법
WO2014163334A1 (ko) * 2013-04-02 2014-10-09 재단법인 아산사회복지재단 물질특성에 기반한 전산유체역학 모델링 및 분석 방법
CN105283119B (zh) 2013-04-12 2018-09-21 皇家飞利浦有限公司 形状感测超声探头
US10052032B2 (en) 2013-04-18 2018-08-21 Koninklijke Philips N.V. Stenosis therapy planning
US20140324400A1 (en) * 2013-04-30 2014-10-30 Marquette University Gesture-Based Visualization System for Biomedical Imaging and Scientific Datasets
EP2992513B1 (en) * 2013-05-02 2022-08-10 Smith & Nephew, Inc. Surface and image integration for model evaluation and landmark determination
WO2014182505A1 (en) * 2013-05-10 2014-11-13 Stenomics, Inc. Modeling and simulation system for optimizing prosthetic heart valve treatment
US9471989B2 (en) * 2013-06-03 2016-10-18 University Of Florida Research Foundation, Inc. Vascular anatomy modeling derived from 3-dimensional medical image processing
US10130325B2 (en) * 2013-06-10 2018-11-20 General Electric Company System and method of correcting banding artifacts in cardiac CT
US20190095589A1 (en) * 2013-06-28 2019-03-28 Board Of Regents Of The University Of Texas System System and method for selecting, modeling and analyzing mitral valve surgical techniques
CN105517487B (zh) * 2013-07-19 2019-09-13 火山公司 用于利用自动漂移校正来评估脉管的设备、系统和方法
CN105392429B (zh) * 2013-07-19 2020-11-24 火山公司 用于评价脉管的设备、系统和方法
WO2015017571A1 (en) 2013-07-30 2015-02-05 Heartflow, Inc. Method and system for modeling blood flow with boundary conditions for optimized diagnostic performance
WO2015023787A1 (en) 2013-08-13 2015-02-19 Coffey Dane Computer visualization of anatomical items
US9195800B2 (en) 2013-08-16 2015-11-24 Heartflow, Inc. Systems and methods for identifying personalized vascular implants from patient-specific anatomic data
JP2015039448A (ja) * 2013-08-20 2015-03-02 国立大学法人埼玉大学 血管出術後の血流配分を予測する方法及び予測プログラム
US9842401B2 (en) 2013-08-21 2017-12-12 Koninklijke Philips N.V. Segmentation apparatus for interactively segmenting blood vessels in angiographic image data
US9805463B2 (en) * 2013-08-27 2017-10-31 Heartflow, Inc. Systems and methods for predicting location, onset, and/or change of coronary lesions
ES2834636T3 (es) 2013-08-30 2021-06-18 Adherium Nz Ltd Un monitor de cumplimiento para un inhalador de medicamento
US9629563B2 (en) 2013-09-04 2017-04-25 Siemens Healthcare Gmbh Method and system for functional assessment of renal artery stenosis from medical images
EP3041414B1 (en) 2013-09-06 2018-10-10 Koninklijke Philips N.V. Processing apparatus for processing cardiac data
EP3846176A1 (en) 2013-09-25 2021-07-07 HeartFlow, Inc. Systems and methods for validating and correcting automated medical image annotations
US10832818B2 (en) 2013-10-11 2020-11-10 Masimo Corporation Alarm notification system
US9700219B2 (en) 2013-10-17 2017-07-11 Siemens Healthcare Gmbh Method and system for machine learning based assessment of fractional flow reserve
EP3057495B1 (en) * 2013-10-18 2020-07-15 Volcano Corporation System for assessing a stenosis in a blood vessel with optimized proximal and distal pressure measurements
US10595806B2 (en) * 2013-10-22 2020-03-24 Koninklijke Philips N.V. Fractional flow reserve (FFR) index with adaptive boundary condition parameters
US9092743B2 (en) 2013-10-23 2015-07-28 Stenomics, Inc. Machine learning system for assessing heart valves and surrounding cardiovascular tracts
EP3061015A2 (en) * 2013-10-24 2016-08-31 Cathworks Ltd. Vascular characteristic determination with correspondence modeling of a vascular tree
CN105682554A (zh) * 2013-10-25 2016-06-15 火山公司 用于脉管评估的设备、系统和方法
KR101753576B1 (ko) 2013-11-05 2017-07-04 강원대학교산학협력단 생리학적 압력-유량 관계를 이용한 관상동맥 유량과 압력을 구하는 방법
US10639103B2 (en) 2013-11-08 2020-05-05 Senol PISKIN Operation scenario flow and mechanical modeling and analysis system of cardiovascular repair operations for newborn and foetus
US9877660B2 (en) 2013-11-14 2018-01-30 Medtronic Vascular Galway Systems and methods for determining fractional flow reserve without adenosine or other pharmalogical agent
US10130269B2 (en) 2013-11-14 2018-11-20 Medtronic Vascular, Inc Dual lumen catheter for providing a vascular pressure measurement
JP6362853B2 (ja) * 2013-11-20 2018-07-25 キヤノンメディカルシステムズ株式会社 血管解析装置、および血管解析装置の作動方法
JP6362851B2 (ja) * 2013-11-20 2018-07-25 キヤノンメディカルシステムズ株式会社 血管解析装置、血管解析プログラム、及び血管解析装置の作動方法
WO2015081025A1 (en) * 2013-11-29 2015-06-04 The Johns Hopkins University Cranial reference mount
WO2015082576A1 (en) * 2013-12-04 2015-06-11 Koninklijke Philips N.V. Local ffr estimation and visualisation for improved functional stenosis analysis
US8977339B1 (en) * 2013-12-05 2015-03-10 Intrinsic Medical Imaging Llc Method for assessing stenosis severity through stenosis mapping
JP6260989B2 (ja) 2013-12-05 2018-01-17 富士通株式会社 形状データ生成装置、形状データ生成方法、および形状データ生成プログラム
US9155512B2 (en) * 2013-12-18 2015-10-13 Heartflow, Inc. Systems and methods for predicting coronary plaque vulnerability from patient-specific anatomic image data
US9152761B2 (en) 2014-01-10 2015-10-06 Heartflow, Inc. Systems and methods for identifying medical image acquisition parameters
US9913585B2 (en) 2014-01-15 2018-03-13 Medtronic Vascular, Inc. Catheter for providing vascular pressure measurements
WO2015109121A1 (en) * 2014-01-15 2015-07-23 The Regents Of The University Of California Physical deformable lung phantom with subject specific elasticity
KR20160114142A (ko) * 2014-01-27 2016-10-04 아리조나 보드 오브 리젠츠 온 비하프 오브 아리조나 스테이트 유니버시티 혈관 내 치료를 시뮬레이션하기 위한 장치 특정 유한요소 모델
US10290230B2 (en) 2014-01-27 2019-05-14 Arizona Board Of Regents On Behalf Of Arizona State University Device specific finite element models for simulating endovascular treatment
US10332255B2 (en) * 2014-02-04 2019-06-25 Zhongle Wu Method for assessing stenosis severity in a lesion tree through stenosis mapping
US20150228115A1 (en) 2014-02-10 2015-08-13 Kabushiki Kaisha Toshiba Medical-image processing apparatus and medical-image diagnostic apparatus
US10496729B2 (en) * 2014-02-25 2019-12-03 Siemens Healthcare Gmbh Method and system for image-based estimation of multi-physics parameters and their uncertainty for patient-specific simulation of organ function
JP6152218B2 (ja) * 2014-02-28 2017-06-21 株式会社日立製作所 超音波撮像装置及び方法
US9501622B2 (en) 2014-03-05 2016-11-22 Heartflow, Inc. Methods and systems for predicting sensitivity of blood flow calculations to changes in anatomical geometry
JP6262027B2 (ja) 2014-03-10 2018-01-17 東芝メディカルシステムズ株式会社 医用画像処理装置
KR102404538B1 (ko) * 2014-03-11 2022-05-31 더 존스 홉킨스 유니버시티 환자 특정 컴퓨팅 단층촬영 혈관 조영술-기반 콘트라스트 분포 데이터로부터 동맥 그물에서의 유량 및 압력 구배를 추정하기 위한 방법
JP2015171486A (ja) * 2014-03-12 2015-10-01 国立大学法人大阪大学 血流解析システムおよび血流解析プログラム
JPWO2015136853A1 (ja) * 2014-03-14 2017-04-06 テルモ株式会社 画像処理装置、画像処理方法及びプログラム
CN104933756B (zh) * 2014-03-21 2018-03-30 北京冠生云医疗技术有限公司 三维冠状动脉分析模型的构建方法和系统
US9390232B2 (en) * 2014-03-24 2016-07-12 Heartflow, Inc. Systems and methods for modeling changes in patient-specific blood vessel geometry and boundary conditions
US9785746B2 (en) * 2014-03-31 2017-10-10 Heartflow, Inc. Systems and methods for determining blood flow characteristics using flow ratio
RU2016142360A (ru) * 2014-03-31 2018-05-03 Конинклейке Филипс Н.В. Устройство для обработки и способ обработки данных о сердечной деятельности живого существа
US10354349B2 (en) 2014-04-01 2019-07-16 Heartflow, Inc. Systems and methods for using geometry sensitivity information for guiding workflow
US9773219B2 (en) 2014-04-01 2017-09-26 Heartflow, Inc. Systems and methods for using geometry sensitivity information for guiding workflow
JP6636500B2 (ja) 2014-04-15 2020-01-29 4ディーエックス リミテッド イメージング方法
US9058692B1 (en) 2014-04-16 2015-06-16 Heartflow, Inc. Systems and methods for image-based object modeling using multiple image acquisitions or reconstructions
US9514530B2 (en) 2014-04-16 2016-12-06 Heartflow, Inc. Systems and methods for image-based object modeling using multiple image acquisitions or reconstructions
CN106537392B (zh) 2014-04-22 2019-07-26 西门子保健有限责任公司 用于冠状动脉中的血液动力学计算的方法和系统
US9449145B2 (en) * 2014-04-22 2016-09-20 Heartflow, Inc. Systems and methods for virtual contrast agent simulation and computational fluid dynamics (CFD) to compute functional significance of stenoses
CN105095615B (zh) * 2014-04-23 2019-05-21 北京冠生云医疗技术有限公司 对血管中血流数据进行处理的方法和系统
US8958623B1 (en) 2014-04-29 2015-02-17 Heartflow, Inc. Systems and methods for correction of artificial deformation in anatomic modeling
KR101515400B1 (ko) * 2014-05-02 2015-05-04 연세대학교 산학협력단 Gpu 기반의 격자 볼츠만 기법을 활용한 환자 맞춤형 혈류 영상 진단 방법 및 장치
WO2015171276A1 (en) * 2014-05-05 2015-11-12 Siemens Aktiengesellschaft Method and system for non-invasive functional assessment of coronary artery stenosis using flow computations in diseased and hypothetical normal anatomical models
US9595089B2 (en) 2014-05-09 2017-03-14 Siemens Healthcare Gmbh Method and system for non-invasive computation of hemodynamic indices for coronary artery stenosis
US10206587B2 (en) * 2014-05-16 2019-02-19 Toshiba Medical Systems Corporation Image processing apparatus, image processing method, and storage medium
JP6667999B2 (ja) * 2014-05-16 2020-03-18 キヤノンメディカルシステムズ株式会社 画像処理装置、画像処理方法、及びプログラム
JP6425916B2 (ja) * 2014-05-16 2018-11-21 キヤノンメディカルシステムズ株式会社 処理装置、画像処理方法、プログラム、および、造形装置
JP2015217113A (ja) * 2014-05-16 2015-12-07 株式会社東芝 血管解析装置、医用画像診断装置、血管解析方法及び血管解析プログラム
US20150348260A1 (en) * 2014-05-29 2015-12-03 Siemens Aktiengesellschaft System and Method for Mapping Patient Data from One Physiological State to Another Physiological State
JP6576690B2 (ja) * 2014-05-29 2019-09-18 キヤノンメディカルシステムズ株式会社 医用画像処理装置
US9754082B2 (en) * 2014-05-30 2017-09-05 Heartflow, Inc. Systems and methods for reporting blood flow characteristics
JP6407569B2 (ja) * 2014-06-02 2018-10-17 キヤノンメディカルシステムズ株式会社 医用画像処理装置及び医用画像処理方法
DE102014210591B4 (de) 2014-06-04 2022-09-22 Siemens Healthcare Gmbh Fluiddynamische Analyse eines Gefäßbaums mittels Angiographie
US10201284B2 (en) 2014-06-16 2019-02-12 Medtronic Vascular Inc. Pressure measuring catheter having reduced error from bending stresses
US10973418B2 (en) 2014-06-16 2021-04-13 Medtronic Vascular, Inc. Microcatheter sensor design for minimizing profile and impact of wire strain on sensor
US11330989B2 (en) 2014-06-16 2022-05-17 Medtronic Vascular, Inc. Microcatheter sensor design for mounting sensor to minimize induced strain
US9747525B2 (en) 2014-06-16 2017-08-29 Siemens Healthcare Gmbh Method and system for improved hemodynamic computation in coronary arteries
US9589379B2 (en) 2014-06-24 2017-03-07 Siemens Healthcare Gmbh System and method for visualization of cardiac changes under various pacing conditions
US10535149B2 (en) * 2014-06-25 2020-01-14 Koninklijke Philips N.V. Imaging device for registration of different imaging modalities
WO2016001017A1 (en) * 2014-06-30 2016-01-07 Koninklijke Philips N.V. Apparatus for determining a fractional flow reserve value
US10130266B2 (en) * 2014-06-30 2018-11-20 Siemens Healthcare Gmbh Method and system for prediction of post-stenting hemodynamic metrics for treatment planning of arterial stenosis
JP6570812B2 (ja) * 2014-07-08 2019-09-04 株式会社根本杏林堂 血管状態解析装置およびそれを備えたシステム
US10849511B2 (en) 2014-07-14 2020-12-01 Philips Image Guided Therapy Corporation Devices, systems, and methods for assessment of vessels
JP6380949B2 (ja) * 2014-07-17 2018-08-29 富士通株式会社 可視化装置、可視化方法、および可視化プログラム
EP3169237B1 (en) 2014-07-18 2023-04-12 Koninklijke Philips N.V. Stenosis assessment
US9888968B2 (en) * 2014-07-22 2018-02-13 Siemens Healthcare Gmbh Method and system for automated therapy planning for arterial stenosis
US9195801B1 (en) 2014-08-05 2015-11-24 Heartflow, Inc. Systems and methods for treatment planning based on plaque progression and regression curves
US11213220B2 (en) 2014-08-11 2022-01-04 Cubisme, Inc. Method for determining in vivo tissue biomarker characteristics using multiparameter MRI matrix creation and big data analytics
US11311200B1 (en) 2014-08-27 2022-04-26 Lightlab Imaging, Inc. Systems and methods to measure physiological flow in coronary arteries
EP3536230B1 (en) 2014-08-27 2022-03-16 St. Jude Medical Systems AB System for evaluating a cardiac system by determining minimum ratio pd/pa (distal pressure / arterial pressure)
WO2016030744A1 (ko) * 2014-08-29 2016-03-03 강원대학교산학협력단 환자별 혈관 정보 결정 방법
US9386933B2 (en) * 2014-08-29 2016-07-12 Heartflow, Inc. Systems and methods for determination of blood flow characteristics and pathologies through modeling of myocardial blood supply
US9390224B2 (en) 2014-08-29 2016-07-12 Heartflow, Inc. Systems and methods for automatically determining myocardial bridging and patient impact
EP3188650B1 (en) * 2014-09-05 2021-07-21 Lakeland Ventures Development, LLC Method and apparatus for the continous estimation of human blood pressure using video images
US9668700B2 (en) 2014-09-09 2017-06-06 Heartflow, Inc. Method and system for quantifying limitations in coronary artery blood flow during physical activity in patients with coronary artery disease
US10373719B2 (en) * 2014-09-10 2019-08-06 Intuitive Surgical Operations, Inc. Systems and methods for pre-operative modeling
CN104657576B (zh) * 2014-09-28 2017-09-22 东软熙康健康科技有限公司 一种血糖变化的呈现方法和设备
JP6382050B2 (ja) * 2014-09-29 2018-08-29 キヤノンメディカルシステムズ株式会社 医用画像診断装置、画像処理装置、画像処理方法及び画像処理プログラム
JP6561348B2 (ja) * 2014-10-08 2019-08-21 イービーエム株式会社 血流シミュレーションのための血流解析機器、その方法及びコンピュータソフトウエアプログラム
US10271910B2 (en) * 2014-10-16 2019-04-30 Corindus, Inc. Robotic catheter system with FFR integration
WO2016059498A1 (en) * 2014-10-17 2016-04-21 Koninklijke Philips N.V. System for real-time organ segmentation and tool navigation during tool insertion in interventional therapy and method of opeperation thereof
US10482215B2 (en) 2014-10-22 2019-11-19 Indiana University Research And Technology Corporation Unified computational method and system for patient-specific hemodynamics
KR101579900B1 (ko) * 2014-10-29 2015-12-24 연세대학교 산학협력단 심근의 생존능 정량적 분석 방법 및 장치
US9292659B1 (en) 2014-10-29 2016-03-22 Heartflow, Inc. Systems and methods for vessel reactivity to guide diagnosis or treatment of cardiovascular disease
US9336354B1 (en) 2014-11-04 2016-05-10 Heartflow, Inc. Systems and methods for simulation of hemodialysis access and optimization
US10080872B2 (en) 2014-11-04 2018-09-25 Abbott Cardiovascular Systems Inc. System and method for FFR guidewire recovery
US9594876B2 (en) * 2014-11-04 2017-03-14 Heartflow, Inc. Systems and methods for simulation of occluded arteries and optimization of occlusion-based treatments
US10409235B2 (en) 2014-11-12 2019-09-10 Siemens Healthcare Gmbh Semantic medical image to 3D print of anatomic structure
US9349178B1 (en) * 2014-11-24 2016-05-24 Siemens Aktiengesellschaft Synthetic data-driven hemodynamic determination in medical imaging
EP3218872A2 (en) * 2014-11-14 2017-09-20 Siemens Healthcare GmbH Method and system for purely geometric machine learning based fractional flow reserve
AU2015353601B2 (en) 2014-11-24 2019-10-24 The Johns Hopkins University A cutting machine for resizing raw implants during surgery
KR102361733B1 (ko) 2014-11-28 2022-02-11 삼성전자주식회사 3d cta영상으로부터 관상동맥의 구조를 모델링하는 방법 및 장치
WO2016087396A1 (en) 2014-12-02 2016-06-09 Koninklijke Philips N.V. Fractional flow reserve determination
EP3229721B1 (en) 2014-12-08 2021-09-22 Koninklijke Philips N.V. Interactive cardiac test data systems
US10194812B2 (en) 2014-12-12 2019-02-05 Medtronic Vascular, Inc. System and method of integrating a fractional flow reserve device with a conventional hemodynamic monitoring system
DE102014226685A1 (de) * 2014-12-19 2016-06-23 Siemens Healthcare Gmbh Verfahren zum Identifizieren von Versorgungsgebieten,Verfahren zur graphischen Darstellung von Versorgungsgebieten, Computerprogramm und maschinenlesbares Medium sowie bildgebendes Gerät
US20160196384A1 (en) * 2015-01-06 2016-07-07 Siemens Aktiengesellschaft Personalized whole-body circulation in medical imaging
WO2016115206A1 (en) * 2015-01-14 2016-07-21 Heartflow, Inc. Systems and methods for embolism prediction using embolus source and destination probabilities
US10646185B2 (en) 2015-01-15 2020-05-12 Koninklijke Philips N.V. iFR-CT
KR101863240B1 (ko) * 2015-01-28 2018-06-01 주식회사 인피니트헬스케어 스텐트 추천 시스템 및 방법
KR20160093251A (ko) * 2015-01-29 2016-08-08 주식회사 인피니트헬스케어 의료 영상 디스플레이 시스템 및 방법
US10987010B2 (en) * 2015-02-02 2021-04-27 Heartflow, Inc. Systems and methods for vascular diagnosis using blood flow magnitude and/or direction
US20160224753A1 (en) * 2015-02-02 2016-08-04 Heartflow, Inc. Systems and methods for diagnosis, risk assessment, and/or virtual treatment assessment of visceral ischemia
US10299862B2 (en) * 2015-02-05 2019-05-28 Siemens Healthcare Gmbh Three-dimensional quantitative heart hemodynamics in medical imaging
US10638940B2 (en) * 2015-02-06 2020-05-05 The Trustees Of The University Of Pennsylvania Assessment of hemodynamic function in arrhythmia patients
JP6513413B2 (ja) 2015-02-13 2019-05-15 キヤノンメディカルシステムズ株式会社 医用画像処理装置及び磁気共鳴イメージング装置
US10478130B2 (en) * 2015-02-13 2019-11-19 Siemens Healthcare Gmbh Plaque vulnerability assessment in medical imaging
JP6449675B2 (ja) * 2015-02-23 2019-01-09 ▲高▼田 玄紀 部分冠動脈血流予備能を予測する指標を算出する核医学検査方法
EP3062248A1 (en) * 2015-02-27 2016-08-31 Pie Medical Imaging BV Method and apparatus for quantitative flow analysis
US10002419B2 (en) * 2015-03-05 2018-06-19 Siemens Healthcare Gmbh Direct computation of image-derived biomarkers
US10595728B2 (en) * 2015-04-02 2020-03-24 Heartflow, Inc. Systems and methods for predicting tissue viability deficits from physiological, anatomical, and patient characteristics
WO2016161293A1 (en) 2015-04-02 2016-10-06 Heartflow, Inc. Systems and methods for providing personalized estimates of bioheat transfer
KR101541267B1 (ko) 2015-04-02 2015-08-03 한양대학교 산학협력단 들로네 삼각분할을 이용한 혈관의 모델링 방법 및 장치와, 이를 이용한 심근 영역의 분할 방법
WO2016161274A1 (en) * 2015-04-02 2016-10-06 Heartflow, Inc. Systems and methods for determining and visualizing a functional relationship between a vascular network and perfused tissue
US10420610B2 (en) 2015-04-10 2019-09-24 Heartflow, Inc. System and method for vascular tree generation using patient-specific structural and functional data, and joint prior information
CA2982526C (en) * 2015-04-13 2020-04-14 Case Western Reserve University Dual energy x-ray coronary calcium grading
US10716513B2 (en) * 2015-04-17 2020-07-21 Heartflow, Inc. Systems and methods for cardiovascular blood flow and musculoskeletal modeling for predicting device failure or clinical events
US10007762B2 (en) 2015-04-17 2018-06-26 Heartflow, Inc. Systems and methods for assessment of tissue function based on vascular disease
US9839483B2 (en) 2015-04-21 2017-12-12 Heartflow, Inc. Systems and methods for risk assessment and treatment planning of arterio-venous malformation
WO2016172694A1 (en) 2015-04-23 2016-10-27 Richard Van Bibber Devices and methods for anatomic mapping for prosthetic implants
DE102015207596A1 (de) * 2015-04-24 2016-10-27 Siemens Healthcare Gmbh Verfahren sowie Rechen- und Druckeinheit zum Erstellen einer Gefäßstütze
WO2016182508A1 (en) * 2015-05-12 2016-11-17 Singapore Health Services Pte Ltd Medical image processing methods and systems
US9922433B2 (en) 2015-05-29 2018-03-20 Moira F. Schieke Method and system for identifying biomarkers using a probability map
JP6621851B2 (ja) * 2015-06-04 2019-12-18 ライニール コルネリス ヤンセン,ヨーゼフ 心臓センサ出力を処理する方法及びコンピュータ・システム
JP7091071B2 (ja) 2015-06-12 2022-06-27 コーニンクレッカ フィリップス エヌ ヴェ 表面筋電図検査システム、レコーダー及び方法
US10943504B2 (en) * 2015-06-25 2021-03-09 Koninklijke Philips N.V. Interactive intravascular procedure training and associated devices, systems, and methods
JP6564475B2 (ja) 2015-06-25 2019-08-21 アナリティクス フォー ライフ インコーポレイテッド 数学的分析および機械学習を使用して病気を診断する方法およびシステム
CA2991235A1 (en) 2015-07-01 2017-01-05 Everist Genomics, Inc. System and method of assessing endothelial function
CN107949346B (zh) * 2015-07-08 2020-09-04 主动脉公司 用于假体植入物的解剖映射的设备和方法
US9785748B2 (en) 2015-07-14 2017-10-10 Heartflow, Inc. Systems and methods for estimating hemodynamic forces acting on plaque and monitoring patient risk
CA2991784A1 (en) 2015-07-17 2017-01-26 Heartflow, Inc. Systems and methods for assessing the severity of plaque and/or stenotic lesions using contrast distribution predictions and measurements
US10872698B2 (en) 2015-07-27 2020-12-22 Siemens Healthcare Gmbh Method and system for enhancing medical image-based blood flow computations using physiological measurements
JP6631072B2 (ja) * 2015-07-31 2020-01-15 富士通株式会社 生体シミュレーションシステムおよび生体シミュレーション方法
US11031136B2 (en) 2015-08-05 2021-06-08 Koninklijke Philips N.V. Assistance device and method for an interventional hemodynamic measurement
US11094058B2 (en) 2015-08-14 2021-08-17 Elucid Bioimaging Inc. Systems and method for computer-aided phenotyping (CAP) using radiologic images
US11676359B2 (en) 2015-08-14 2023-06-13 Elucid Bioimaging Inc. Non-invasive quantitative imaging biomarkers of atherosclerotic plaque biology
US10176408B2 (en) 2015-08-14 2019-01-08 Elucid Bioimaging Inc. Systems and methods for analyzing pathologies utilizing quantitative imaging
US11087459B2 (en) 2015-08-14 2021-08-10 Elucid Bioimaging Inc. Quantitative imaging for fractional flow reserve (FFR)
US11113812B2 (en) 2015-08-14 2021-09-07 Elucid Bioimaging Inc. Quantitative imaging for detecting vulnerable plaque
US11071501B2 (en) 2015-08-14 2021-07-27 Elucid Bioiwaging Inc. Quantitative imaging for determining time to adverse event (TTE)
EP4173554A1 (en) 2015-08-31 2023-05-03 Masimo Corporation Wireless patient monitoring system
WO2017039646A1 (en) * 2015-09-02 2017-03-09 Siemens Healthcare Gmbh Cfd simulation assisted 4d dsa reconstruction
KR102537926B1 (ko) 2015-09-04 2023-05-31 더 존스 홉킨스 유니버시티 저 프로파일의 두개내 장치
WO2017049197A1 (en) * 2015-09-16 2017-03-23 Heartflow, Inc. Systems and methods for patient-specific imaging and modeling of drug delivery
WO2017047135A1 (ja) * 2015-09-18 2017-03-23 イービーエム株式会社 血流解析装置、その方法、及びそのコンピュータソフトウェアプログラム
WO2017047822A1 (ja) * 2015-09-18 2017-03-23 イービーエム株式会社 血管病変発症・成長予測装置及び方法
WO2017056007A1 (en) * 2015-09-29 2017-04-06 Imperial Innovations Limited Devices, systems, and methods for coronary intervention assessment, planning, and treatment based on desired outcome
WO2017055228A1 (en) * 2015-09-29 2017-04-06 Koninklijke Philips N.V. Estimating flow, resistance or pressure from pressure or flow measurements and angiography
US10517678B2 (en) * 2015-10-02 2019-12-31 Heartflow, Inc. System and method for diagnosis and assessment of cardiovascular disease by comparing arterial supply capacity to end-organ demand
JP6818492B2 (ja) 2015-10-05 2021-01-20 キヤノンメディカルシステムズ株式会社 画像処理装置、画像処理方法、及びプログラム
EP3359041B1 (en) * 2015-10-07 2021-03-03 Koninklijke Philips N.V. Mobile ffr simulation
CN106562779B (zh) * 2015-10-12 2021-06-08 深圳迈瑞生物医疗电子股份有限公司 图形化显示心室射血分数变化的装置、方法和监护系统
WO2017066373A1 (en) * 2015-10-14 2017-04-20 Surgical Theater LLC Augmented reality surgical navigation
JP6484760B2 (ja) 2015-11-05 2019-03-13 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 非侵襲的血流予備量比(ffr)に対する側副血流モデル化
US10438355B2 (en) * 2015-11-10 2019-10-08 General Electric Company System and method for estimating arterial pulse wave velocity
EP3374895A1 (en) * 2015-11-10 2018-09-19 HeartFlow, Inc. Systems and methods for anatomical modeling using information from a procedure
US10499990B2 (en) * 2015-11-23 2019-12-10 Heartflow, Inc. Systems and methods for assessing organ and/or tissue transplantation by simulating one or more transplant characteristics
EP3379999B1 (en) 2015-11-24 2023-09-20 The Regents of the University of California Mapping and quantifying blood stasis and thrombus risk in the heart
US10002428B2 (en) 2015-12-01 2018-06-19 Ottawa Hospital Research Institute Method and system for identifying bleeding
WO2017096242A1 (en) * 2015-12-03 2017-06-08 Heartflow, Inc. Systems and methods for associating medical images with a patient
CN108475428B (zh) * 2015-12-22 2022-04-29 皇家飞利浦有限公司 心脏模型引导的冠状动脉分割的系统及方法
KR101954272B1 (ko) 2016-01-28 2019-03-05 연세대학교 산학협력단 유체-구조 상호작용을 고려한 협착 병변 영역의 혈류역학 시뮬레이션 방법
US11723617B2 (en) 2016-02-03 2023-08-15 4DMedical Limited Method and system for imaging
US10278662B2 (en) 2016-02-05 2019-05-07 Toshiba Medical Systems Corporation Image processing apparatus and medical image diagnostic apparatus
US10748312B2 (en) 2016-02-12 2020-08-18 Microsoft Technology Licensing, Llc Tagging utilizations for selectively preserving chart elements during visualization optimizations
US10347017B2 (en) * 2016-02-12 2019-07-09 Microsoft Technology Licensing, Llc Interactive controls that are collapsible and expandable and sequences for chart visualization optimizations
KR101967226B1 (ko) 2016-02-22 2019-08-13 연세대학교 산학협력단 관상동맥 분지관의 체적을 이용한 혈류 역학 모델링 방법
EP3420483B1 (en) 2016-02-26 2020-07-22 HeartFlow, Inc. Systems and methods for identifying and modeling unresolved vessels in image-based patient-specific hemodynamic models
CN109414218B (zh) 2016-03-04 2022-09-23 肆迪医疗有限公司 成像方法及系统
CN108778107B (zh) 2016-03-04 2021-08-03 皇家飞利浦有限公司 用于脉管表征的装置
US9786069B2 (en) * 2016-03-07 2017-10-10 Siemens Healthcare Gmbh Refined reconstruction of time-varying data
DE102016203860A1 (de) 2016-03-09 2017-09-14 Siemens Healthcare Gmbh Vorrichtung und Verfahren zum Ermitteln zumindest eines individuellen fluiddynamischen Kennwerts einer Stenose in einem mehrere serielle Stenosen aufweisenden Gefäßsegment
CN109069014B (zh) 2016-03-16 2021-07-06 哈特弗罗公司 用于估计在冠状动脉中的健康管腔直径和狭窄定量的系统和方法
US9824492B2 (en) 2016-03-24 2017-11-21 Vital Images, Inc. Hollow object model visualization in medical images
US10971271B2 (en) 2016-04-12 2021-04-06 Siemens Healthcare Gmbh Method and system for personalized blood flow modeling based on wearable sensor networks
JP6611660B2 (ja) * 2016-04-13 2019-11-27 富士フイルム株式会社 画像位置合わせ装置および方法並びにプログラム
JP6721155B2 (ja) 2016-04-15 2020-07-08 オムロン株式会社 生体情報分析装置、システム、及び、プログラム
US10674986B2 (en) 2016-05-13 2020-06-09 General Electric Company Methods for personalizing blood flow models
EP3457930B1 (en) 2016-05-16 2023-11-15 Cathworks Ltd. System for vascular assessment
IL263066B2 (en) 2016-05-16 2023-09-01 Cathworks Ltd Selecting blood vessels from images
NL2016792B1 (en) * 2016-05-18 2017-11-30 Endovascular Diagnostics B V Method for determining a parameter which is indicative for the position and apposition of a tubular member, such as a stent graft, inserted in a lumen of an anatomical vessel or duct of a patient
CN106073894B (zh) * 2016-05-31 2017-08-08 博动医学影像科技(上海)有限公司 基于植入虚拟支架的血管压力降数值及血流储备分数的评估方法和系统
JP6060302B1 (ja) * 2016-06-10 2017-01-11 日本メジフィジックス株式会社 心筋核医学画像データの解析方法及び解析装置
EP3468505B1 (en) 2016-06-13 2021-02-24 Aortica Corporation Systems and devices for marking and/or reinforcing fenestrations in prosthetic implants
JP6945204B2 (ja) 2016-06-24 2021-10-06 アナリティクス フォー ライフ インコーポレイテッド 心筋虚血の測定、狭窄識別、位置特定、および血流予備量比推定の非侵襲性方法およびシステム
EP3264365A1 (en) * 2016-06-28 2018-01-03 Siemens Healthcare GmbH Method and device for registration of a first image data set and a second image data set of a target region of a patient
KR20190022623A (ko) * 2016-06-28 2019-03-06 하트플로우, 인크. 지리적 지역들에 걸친 분석용 건강 데이터를 수정 및 편집하기 위한 시스템 및 방법
WO2018001099A1 (zh) * 2016-06-30 2018-01-04 上海联影医疗科技有限公司 一种血管提取方法与系统
CN107203741B (zh) * 2017-05-03 2021-05-18 上海联影医疗科技股份有限公司 血管提取方法、装置及其系统
US10776963B2 (en) 2016-07-01 2020-09-15 Cubismi, Inc. System and method for forming a super-resolution biomarker map image
US10617302B2 (en) 2016-07-07 2020-04-14 Masimo Corporation Wearable pulse oximeter and respiration monitor
US11020563B2 (en) 2016-07-14 2021-06-01 C. R. Bard, Inc. Automated catheter-to-vessel size comparison tool and related methods
WO2018018033A1 (en) * 2016-07-22 2018-01-25 Cornell University Rapid prototyping and in vitro modeling of patient-specific coronary artery bypass grafts
EP3493766B1 (en) 2016-08-02 2024-03-06 Bolton Medical, Inc. Assembly for coupling a prosthetic implant to a fenestrated body
US11272850B2 (en) 2016-08-09 2022-03-15 Medtronic Vascular, Inc. Catheter and method for calculating fractional flow reserve
WO2018031663A1 (en) 2016-08-10 2018-02-15 Heartflow, Inc. Systems and methods for modeling nutrient transport and/or predicting weight change
US10025902B2 (en) * 2016-08-12 2018-07-17 Verily Life Sciences Llc Enhanced pathology diagnosis
US10835318B2 (en) * 2016-08-25 2020-11-17 DePuy Synthes Products, Inc. Orthopedic fixation control and manipulation
KR102000614B1 (ko) 2016-08-25 2019-07-16 연세대학교 산학협력단 심근 체적의 분할을 이용한 혈류 역학 시뮬레이션 방법
DE102016215976A1 (de) * 2016-08-25 2018-03-01 Siemens Healthcare Gmbh Ermittelung einer klinischen Kenngröße mit einer Kombination unterschiedlicher Aufnahmemodalitäten
US11039804B2 (en) 2016-09-16 2021-06-22 Koninklijke Philips N.V. Apparatus and method for determining a fractional flow reserve
WO2018057507A1 (en) 2016-09-20 2018-03-29 Heartflow, Inc. Systems and methods for monitoring and updating blood flow calculations with user-specific anatomic and physiologic sensor data
EP3516561B1 (en) 2016-09-20 2024-03-13 HeartFlow, Inc. Method, system and non-transitory computer-readable medium for estimation of blood flow characteristics using a reduced order model and machine learning
US10292596B2 (en) 2016-09-21 2019-05-21 Analytics For Life Inc. Method and system for visualization of heart tissue at risk
USD843382S1 (en) 2016-09-21 2019-03-19 Analytics For Life Display with graphical user interface
JP6808824B2 (ja) * 2016-09-23 2021-01-06 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 被検者の心臓の流出路狭窄を評価するためのシステム、当該システム作動方法、及び被検者の心臓の流出路狭窄を評価するコンピュータプログラム
JP6125705B2 (ja) * 2016-09-23 2017-05-10 東芝メディカルシステムズ株式会社 医用画像診断装置及び医用画像診断装置の作動方法
DE202017106017U1 (de) 2016-10-04 2018-02-05 Toshiba Medical Systems Corporation Medizinische Informationsverarbeitungsvorrichtung
DE202017106016U1 (de) 2016-10-04 2017-12-07 Toshiba Medical Systems Corporation Medizinische Informationsverarbeitungsvorrichtung, Röntgen-CT-Vorrichtung und computerlesbares Speichermedium mit einem Programm für ein medizinisches Informationsverarbeitungsverfahren
DE102016219709B3 (de) * 2016-10-11 2018-03-01 Siemens Healthcare Gmbh Verfahren zur Ermittlung eines Perfusionsdatensatzes, sowie Röntgenvorrichtung, Computerprogramm und elektronisch lesbarer Datenträger
EP3525661A1 (en) 2016-10-13 2019-08-21 Masimo Corporation Systems and methods for patient fall detection
US10362949B2 (en) 2016-10-17 2019-07-30 International Business Machines Corporation Automatic extraction of disease-specific features from doppler images
JP6975235B2 (ja) * 2016-11-22 2021-12-01 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 生物物理的シミュレーション用の血管樹標準化及び/又はプルーニングされた部分用の拡張シミュレーション
US11202612B2 (en) 2016-11-28 2021-12-21 Canon Medical Systems Corporation Medical image-processing apparatus, X-ray CT apparatus, and medical image-processing method performing fluid analysis to switch displayed color information
ES2836104T3 (es) * 2016-12-15 2021-06-24 Sintef Tto As Método y proceso para proporcionar un modelo computacional específico de un sujeto utilizado para apoyar la decisión y hacer el diagnóstico de enfermedades cardiovasculares
CN108209862B (zh) * 2016-12-21 2021-04-30 中国电信股份有限公司 诊断结果展示方法和装置
WO2018119366A1 (en) 2016-12-23 2018-06-28 Heartflow, Inc. Machine learning of anatomical model parameters
DE102016226195B3 (de) * 2016-12-23 2018-02-01 Siemens Healthcare Gmbh Berechnen eines vierdimensionalen DSA-Datensatzes mit variabler räumlicher Auflösung
KR20180082114A (ko) * 2017-01-10 2018-07-18 삼성메디슨 주식회사 대상체의 초음파 영상을 디스플레이하는 방법 및 장치
EP3375364A4 (en) * 2017-01-23 2019-01-23 Shanghai United Imaging Healthcare Co., Ltd. SYSTEM AND METHOD FOR ANALYZING THE STATUS OF BLOOD CIRCULATION
US10991095B2 (en) 2017-01-24 2021-04-27 Spectrum Dynamics Medical Limited Systems and methods for computation of functional index parameter values for blood vessels
WO2018156961A1 (en) 2017-02-24 2018-08-30 Heartflow, Inc. Systems and methods for identifying anatomically relevant blood flow characteristics in a patient
US20200069197A1 (en) * 2017-02-28 2020-03-05 4Dx Limited Method of scanning and assessing lung and vascular health
KR101944854B1 (ko) 2017-03-02 2019-02-01 연세대학교 산학협력단 선택적 컴퓨터 단층촬영을 이용한 혈류 모델링 방법 및 그 장치
US11330994B2 (en) 2017-03-08 2022-05-17 Medtronic Vascular, Inc. Reduced profile FFR catheter
EP3378398A1 (en) * 2017-03-24 2018-09-26 Koninklijke Philips N.V. Myocardial ct perfusion image synthesis
CN110546646A (zh) 2017-03-24 2019-12-06 帕伊医疗成像有限公司 用于基于机器学习来评估血管阻塞的方法和系统
EP3382583A1 (en) * 2017-03-29 2018-10-03 Koninklijke Philips N.V. Hemodynamic simulation of movement inducted vascular deformations
US11523744B2 (en) * 2017-03-31 2022-12-13 Koninklijke Philips N.V. Interaction monitoring of non-invasive imaging based FFR
JP7181216B2 (ja) * 2017-03-31 2022-11-30 コーニンクレッカ フィリップス エヌ ヴェ 経カテーテル大動脈弁移植術(tavi)が冠血流量及び冠動脈圧に及ぼす影響のシミュレーション
CN106980899B (zh) * 2017-04-01 2020-11-17 北京昆仑医云科技有限公司 预测血管树血管路径上的血流特征的深度学习模型和系统
EP3384850A1 (en) * 2017-04-05 2018-10-10 Koninklijke Philips N.V. Method and apparatus for physiological functional parameter determination
WO2018185298A1 (en) * 2017-04-06 2018-10-11 Koninklijke Philips N.V. Fractional flow reserve simulation parameter customization, calibration and/or training
WO2018185040A1 (en) * 2017-04-06 2018-10-11 Koninklijke Philips N.V. Standardized coronary artery disease metric
US11232853B2 (en) 2017-04-21 2022-01-25 Cubisme, Inc. System and method for creating, querying, and displaying a MIBA master file
US10646122B2 (en) 2017-04-28 2020-05-12 Medtronic Vascular, Inc. FFR catheter with covered distal pressure sensor and method of manufacture
US10349911B2 (en) 2017-05-18 2019-07-16 Dassault Systemes Simulia Corp. System and method to produce corrected contrast levels in a CT scan of vasculature
JP7152192B2 (ja) * 2017-06-13 2022-10-12 キヤノンメディカルシステムズ株式会社 画像処理装置、医用画像診断装置及び画像処理プログラム
EP3270308B9 (en) 2017-06-14 2022-05-18 Siemens Healthcare GmbH Method for providing a secondary parameter, decision support system, computer-readable medium and computer program product
US10478074B1 (en) 2018-06-22 2019-11-19 Dextera AS Method for determining patient suitability for a surgical procedure
CN107411767B (zh) * 2017-06-28 2020-10-16 西北工业大学 基于冠状动脉ct血管造影的狭窄病灶血流阻力计算方法
CN110831501B (zh) 2017-06-30 2023-09-29 皇家飞利浦有限公司 机器学习谱ffr-ct
CN107330888A (zh) * 2017-07-11 2017-11-07 中国人民解放军第三军医大学 基于cta图像的动态心脏各腔室分割方法
EP3428925B1 (en) * 2017-07-12 2022-06-29 Siemens Healthcare GmbH Method and system for clinical decision support with local and remote analytics
US11589924B2 (en) 2017-08-01 2023-02-28 Siemens Healthcare Gmbh Non-invasive assessment and therapy guidance for coronary artery disease in diffuse and tandem lesions
EP3438989A1 (en) 2017-08-04 2019-02-06 Universität Zürich Method and apparatus for predicting fluid flow through a subject conduit
US11235124B2 (en) 2017-08-09 2022-02-01 Medtronic Vascular, Inc. Collapsible catheter and method for calculating fractional flow reserve
US11219741B2 (en) 2017-08-09 2022-01-11 Medtronic Vascular, Inc. Collapsible catheter and method for calculating fractional flow reserve
EP3447525B1 (en) * 2017-08-23 2020-05-06 Ecole Polytechnique Federale De Lausanne (Epfl) Model-based image reconstruction method
KR102032611B1 (ko) * 2017-08-23 2019-10-15 주식회사 메디웨일 Ct 영상을 이용하여 심혈관 병변을 판단하는 방법 및 애플리케이션
US10951715B2 (en) 2017-08-29 2021-03-16 Heartflow, Inc. Systems and methods for generating an anonymous interactive display in an extended timeout period
US11301994B2 (en) 2017-08-30 2022-04-12 Koninklijke Philips N.V. Coronary artery health state prediction based on a model and imaging data
EP3457413B1 (en) * 2017-09-15 2024-05-01 Siemens Healthineers AG Method for classifying a risk for thrombus formation in an organ, system for classifying a risk for thrombus formation in an organ, a computer program product and a computer readable medium
EP3684463A4 (en) 2017-09-19 2021-06-23 Neuroenhancement Lab, LLC NEURO-ACTIVATION PROCESS AND APPARATUS
KR101986424B1 (ko) 2017-09-21 2019-06-05 강원대학교산학협력단 환자별 혈관 정보 결정 방법
WO2019057266A1 (en) * 2017-09-23 2019-03-28 Amid S.R.L. METHOD AND DEVICE FOR CARDIAC ELECTRICAL SYNCHRONIZATION
CN111148484B (zh) 2017-09-25 2022-12-30 波尔顿医疗公司 用于将假体植入物联接到开窗体的系统、装置和方法
US10335106B2 (en) * 2017-09-29 2019-07-02 Infinitt Healthcare Co., Ltd. Computing system and method for identifying and visualizing cerebral thrombosis based on medical images
US11813104B2 (en) 2017-10-06 2023-11-14 Emory University Methods and systems for determining hemodynamic information for one or more arterial segments
EP3698325A1 (en) * 2017-10-18 2020-08-26 Koninklijke Philips N.V. Landmark visualization for medical image segmentation
CN107789058A (zh) * 2017-10-23 2018-03-13 南方医科大学南方医院 用于胃癌腔镜手术实时导航系统的基于条件随机场动静脉名称自动标识方法
CN107818220B (zh) * 2017-10-31 2019-03-08 钦州学院 基于生态系统动力学综合模型对海湾环境容量的估算方法
EP3488774A1 (en) 2017-11-23 2019-05-29 Koninklijke Philips N.V. Measurement guidance for coronary flow estimation from bernoulli´s principle
CN108022237B (zh) * 2017-11-30 2021-07-13 上海联影医疗科技股份有限公司 血管提取方法、系统及存储介质
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
CN108021770A (zh) * 2017-12-04 2018-05-11 北京理工大学 基于ct扫描的叶片寿命评价方法
CN108038848B (zh) * 2017-12-07 2020-08-11 上海交通大学 基于医学影像序列斑块稳定性指标的快速计算方法及系统
JP6530043B2 (ja) * 2017-12-12 2019-06-12 キヤノンメディカルシステムズ株式会社 医用画像処理装置、医用画像処理方法および記録媒体
US11871995B2 (en) * 2017-12-18 2024-01-16 Hemolens Diagnostics Sp. Z O.O. Patient-specific modeling of hemodynamic parameters in coronary arteries
WO2019126372A1 (en) 2017-12-20 2019-06-27 Heartflow, Inc. Systems and methods for performing computer-simulated evaluation of treatments on a target population
WO2019132048A1 (ko) * 2017-12-26 2019-07-04 부산대학교 산학협력단 안구 맥락막 혈류 시뮬레이션 방법
US11918333B2 (en) 2017-12-29 2024-03-05 Analytics For Life Inc. Method and system to assess disease using phase space tomography and machine learning
US11133109B2 (en) * 2017-12-29 2021-09-28 Analytics For Life Inc. Method and system to assess disease using phase space volumetric objects
US11318277B2 (en) 2017-12-31 2022-05-03 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to enhance emotional response
CN108078590B (zh) * 2018-01-03 2021-02-09 声泰特(成都)科技有限公司 基于超声频谱多普勒的血流动力学可视化方法与系统
US11523788B2 (en) 2018-01-11 2022-12-13 Canon Medical Systems Corporation Medical information processing apparatus, medical information processing system, and medical information processing method
JP7160659B2 (ja) * 2018-01-11 2022-10-25 キヤノンメディカルシステムズ株式会社 医用情報処理装置、医用情報処理システム及び医用情報処理方法
US10580526B2 (en) * 2018-01-12 2020-03-03 Shenzhen Keya Medical Technology Corporation System and method for calculating vessel flow parameters based on angiography
US10874305B2 (en) * 2018-01-15 2020-12-29 Microsoft Technology Licensing, Llc Sensor device
JP6483875B1 (ja) * 2018-01-25 2019-03-13 日本メジフィジックス株式会社 心筋画像表示方法、心筋画像表示処理プログラム及び心筋画像処理装置
CN108186038B (zh) * 2018-02-11 2020-11-17 杭州脉流科技有限公司 基于动脉造影影像计算冠脉血流储备分数的系统
JP6835014B2 (ja) * 2018-03-02 2021-02-24 株式会社豊田中央研究所 身体内部情報推定方法、コンピュータプログラム、それを記憶した記憶媒体、および、身体内部情報推定装置
CN110226923B (zh) * 2018-03-05 2021-12-14 苏州润迈德医疗科技有限公司 一种无需血管扩张剂测量血流储备分数的方法
CN108399647B (zh) * 2018-03-05 2021-10-26 四川和生视界医药技术开发有限公司 视网膜血管边缘线的编辑方法以及编辑装置
KR102172195B1 (ko) 2018-03-07 2020-10-30 고려대학교 산학협력단 척추관 협착증 진단 방법 및 장치
WO2019173830A1 (en) * 2018-03-09 2019-09-12 Emory University Methods and systems for determining coronary hemodynamic characteristic(s) that is predictive of myocardial infarction
CN111902879A (zh) * 2018-03-15 2020-11-06 皇家飞利浦有限公司 使用医学图像数据估计生理参数的方法
CN108564568A (zh) * 2018-03-23 2018-09-21 沈阳东软医疗系统有限公司 冠脉的显示方法、装置、设备及存储介质
CN108511075B (zh) * 2018-03-29 2022-10-25 杭州脉流科技有限公司 一种非侵入式获取血流储备分数的方法和系统
WO2019195783A1 (en) 2018-04-05 2019-10-10 The Regents Of The University Of California Mapping and quantifying shear stress and hemolysis in patients having lvads
CN108564574B (zh) * 2018-04-11 2021-04-20 上海联影医疗科技股份有限公司 确定血流储备分数的方法、计算机设备及计算机可读存储介质
US10699407B2 (en) 2018-04-11 2020-06-30 Pie Medical Imaging B.V. Method and system for assessing vessel obstruction based on machine learning
EP3782165A1 (en) 2018-04-19 2021-02-24 Masimo Corporation Mobile patient alarm display
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
CN108615259B (zh) * 2018-04-27 2022-06-24 苏州数算软云科技有限公司 建立血液流动计算模型用以评价冠状动脉血流情况的方法
US11389130B2 (en) 2018-05-02 2022-07-19 Siemens Healthcare Gmbh System and methods for fast computation of computed tomography based fractional flow reserve
EP3564963A1 (en) * 2018-05-02 2019-11-06 Siemens Healthcare GmbH System and methods for fast computation of computed tomography based fractional flow reserve
WO2019234587A1 (en) 2018-06-04 2019-12-12 Analytics For Life Method and system to assess pulmonary hypertension using phase space tomography and machine learning
CN108992057B (zh) * 2018-06-05 2021-08-10 杭州晟视科技有限公司 一种确定冠状动脉血流储备分数ffr的方法和装置
JP7314183B2 (ja) * 2018-06-15 2023-07-25 パイ メディカル イメージング ビー ヴイ 定量的血行動態フロー分析のための方法および装置
CA3104074A1 (en) 2018-06-18 2019-12-26 Analytics For Life Inc. Methods and systems to quantify and remove asynchronous noise in biophysical signals
EP3810015A1 (en) 2018-06-19 2021-04-28 Tornier, Inc. Mixed-reality surgical system with physical markers for registration of virtual models
CN109222980A (zh) * 2018-06-19 2019-01-18 北京红云智胜科技有限公司 基于深度学习的测量冠状动脉造影图像血管直径的方法
CN109009061B (zh) * 2018-06-20 2021-11-19 博动医学影像科技(上海)有限公司 基于血压修正获取血流特征值的计算方法及装置
CN109044324B (zh) * 2018-06-20 2021-11-19 博动医学影像科技(上海)有限公司 基于斑块位置修正血流特征值的方法及装置
CN109065170B (zh) * 2018-06-20 2021-11-19 博动医学影像科技(上海)有限公司 获取血管压力差的方法及装置
CN108784676B (zh) * 2018-06-20 2021-11-09 博动医学影像科技(上海)有限公司 基于年龄信息获取压力差的方法及装置
US11395597B2 (en) * 2018-06-26 2022-07-26 General Electric Company System and method for evaluating blood flow in a vessel
WO2020000102A1 (en) * 2018-06-27 2020-01-02 Opsens Inc. Hybrid image-invasive-pressure hemodynamic function assessment
KR102078622B1 (ko) 2018-06-28 2020-04-07 연세대학교 산학협력단 협착 병변의 수학적 모델링을 이용한 심혈관 정보 결정 방법
KR102192164B1 (ko) * 2018-08-08 2020-12-16 주식회사 딥바이오 생체 이미지 진단 시스템, 생체 이미지 진단 방법, 및 이를 수행하기 위한 단말
GB201813170D0 (en) * 2018-08-13 2018-09-26 Univ Sheffield Volumetric blood flow
US11185244B2 (en) 2018-08-13 2021-11-30 Medtronic Vascular, Inc. FFR catheter with suspended pressure sensor
US11210779B2 (en) * 2018-09-07 2021-12-28 Siemens Healthcare Gmbh Detection and quantification for traumatic bleeding using dual energy computed tomography
CN109359333B (zh) * 2018-09-12 2021-09-24 大连理工大学 一种包含多尺度形貌特征的体模型构建方法
WO2020056418A1 (en) 2018-09-14 2020-03-19 Neuroenhancement Lab, LLC System and method of improving sleep
JP6675458B2 (ja) * 2018-09-18 2020-04-01 キヤノンメディカルシステムズ株式会社 血管解析装置、血管解析方法及び血管解析プログラム
CN110384494A (zh) * 2018-09-19 2019-10-29 苏州润迈德医疗科技有限公司 测量微循环阻力指数的方法
PL427234A1 (pl) * 2018-09-28 2020-04-06 Fundacja Rozwoju Kardiochirurgii Im. Profesora Zbigniewa Religi Sposób modelowania naczyń krwionośnych i przepływu krwi w tych modelach naczyń krwionośnych
CN109118489B (zh) * 2018-09-29 2020-12-11 数坤(北京)网络科技有限公司 一种冠状动脉位置检测方法及系统
KR102180135B1 (ko) * 2018-10-12 2020-11-17 계명대학교 산학협력단 심혈관 질환 종류에 따른 심전도 패턴 시뮬레이션 생체신호 구현 시스템 및 방법
WO2020081373A1 (en) 2018-10-16 2020-04-23 Bard Access Systems, Inc. Safety-equipped connection systems and methods thereof for establishing electrical connections
AU2019361965A1 (en) 2018-10-17 2021-04-15 Heartflow, Inc. Systems and methods for assessing cardiovascular disease and treatment effectiveness from adipose tissue
CN109512450A (zh) * 2018-10-18 2019-03-26 深圳市孙逸仙心血管医院(深圳市心血管病研究所) 测量血管血流速度的方法
WO2020083719A1 (en) * 2018-10-26 2020-04-30 Koninklijke Philips N.V. Determination of a treatment response index
CN109493348B (zh) * 2018-10-26 2021-11-26 强联智创(北京)科技有限公司 一种颅内动脉瘤图像的形态学参数的测量方法及系统
CN109616200A (zh) * 2018-11-06 2019-04-12 北京三普威盛科技有限公司 用于冠脉狭窄评估的方法,装置,存储介质及电子设备
EP3881758A4 (en) * 2018-11-13 2022-07-27 Suzhou Rainmed Medical Technology Co., Ltd. METHOD, DEVICE AND SYSTEM FOR DETECTING A VASCULAR EVALUATION PARAMETER BASED ON ANGIOGRAPHIC IMAGES
CN109620199B (zh) * 2018-11-30 2021-03-16 博动医学影像科技(上海)有限公司 建立血管截面函数、血管压力差和血管应力的方法及装置
US11819279B2 (en) 2018-11-30 2023-11-21 Koninklijke Philips N.V. Patient lumen system monitoring
CN109615624B (zh) * 2018-12-05 2022-03-22 北京工业大学 一种基于超声图像的血流速度波形自动化识别方法
JP7246907B2 (ja) * 2018-12-12 2023-03-28 日本メジフィジックス株式会社 心筋核医学画像データのスコアリング
CN109620187B (zh) * 2018-12-14 2020-06-16 深圳先进技术研究院 一种中心动脉压推算方法及装置
EP3671649A1 (en) * 2018-12-19 2020-06-24 Siemens Healthcare GmbH Method and computer system for generating a combined tissue-vessel representation
CN113180734A (zh) * 2018-12-27 2021-07-30 深圳迈瑞生物医疗电子股份有限公司 一种超声血流成像方法及系统
CA3125192A1 (en) * 2019-01-06 2020-07-09 Covanos, Inc. Virtual stress test based on electronic patient data
CA3125211A1 (en) * 2019-01-06 2020-07-09 Covanos, Inc. Noninvasive determination of resting state diastole hemodynamic information
EP4122381B1 (en) 2019-01-11 2023-09-06 Hemolens Diagnostics Spólka Z Ograniczona Odpowiedzialnoscia Patient-specific modeling of hemodynamic parameters in coronary arteries
WO2020154398A1 (en) * 2019-01-22 2020-07-30 Arizona Board Of Regents On Behalf Of The University Of Arizona Noninvasive real-time patient-specific assessment of stroke severity
US10813612B2 (en) 2019-01-25 2020-10-27 Cleerly, Inc. Systems and method of characterizing high risk plaques
CN109770930B (zh) * 2019-01-29 2021-03-09 浙江大学 一种冠状动脉微循环阻力的确定方法和装置
US11950877B2 (en) 2019-02-05 2024-04-09 University Of Virginia Patent Foundation System and method for fully automatic LV segmentation of myocardial first-pass perfusion images
US20220107256A1 (en) 2019-02-06 2022-04-07 Universität Zürich Method and apparatus for predicting fluid flow through a subject conduit
WO2020167631A1 (en) 2019-02-11 2020-08-20 University Of Louisville Research Foundation, Inc. System and method for determining a blood flow characteristic
US11967435B2 (en) * 2019-02-28 2024-04-23 Medstar Health, Inc. Modeling of flow through a left ventricular assist device (LVAD)
CN109993786B (zh) * 2019-03-08 2021-05-18 中国石油大学(北京) 迂曲度获取方法、装置、设备以及存储介质
US11439436B2 (en) 2019-03-18 2022-09-13 Synthes Gmbh Orthopedic fixation strut swapping
CN109805949B (zh) 2019-03-19 2020-05-22 苏州润迈德医疗科技有限公司 基于压力传感器和造影图像计算血流储备分数的方法
JP7265392B2 (ja) * 2019-03-25 2023-04-26 ソニー・オリンパスメディカルソリューションズ株式会社 医療用画像処理装置、医療用観察システム、画像処理方法およびプログラム
EP3716207B1 (en) * 2019-03-26 2023-11-29 Active Medical B.V. Method and apparatus for diagnostic analysis of the function and morphology of microcirculation alterations
US11304757B2 (en) 2019-03-28 2022-04-19 Synthes Gmbh Orthopedic fixation control and visualization
US10861157B2 (en) * 2019-04-04 2020-12-08 Medtronic Vascular, Inc. System and methods for determining modified fractional flow reserve values
CN109907732B (zh) * 2019-04-09 2022-12-02 广州新脉科技有限公司 一种颅内动脉瘤破裂风险的评估方法及系统
KR102240501B1 (ko) * 2019-04-18 2021-04-15 중앙대학교 산학협력단 요로 조영술 영상 데이터에 기반한 방광 내압 진단 방법
JP6751178B2 (ja) * 2019-05-14 2020-09-02 キヤノンメディカルシステムズ株式会社 医用画像処理装置、医用画像処理方法および記録媒体
US11707325B2 (en) * 2019-05-17 2023-07-25 Heartflow, Inc. System and methods for estimation of blood flow using response surface and reduced order modeling
CN110223760B (zh) * 2019-05-23 2022-01-18 苏州阿基米德网络科技有限公司 一种医疗影像信息采集与融合方法及系统
US10709347B1 (en) 2019-06-10 2020-07-14 Vektor Medical, Inc. Heart graphic display system
EP3751580B1 (en) * 2019-06-11 2024-04-03 Siemens Healthineers AG Hemodynamic analysis of vessels using recurrent neural network
CN110264514B (zh) * 2019-06-27 2021-03-30 杭州智珺智能科技有限公司 一种基于随机寻优策略的人体胸围和腰围测量方法
US11328413B2 (en) 2019-07-18 2022-05-10 Ischemaview, Inc. Systems and methods for analytical detection of aneurysms
US11229367B2 (en) 2019-07-18 2022-01-25 Ischemaview, Inc. Systems and methods for analytical comparison and monitoring of aneurysms
CN110522465A (zh) 2019-07-22 2019-12-03 通用电气精准医疗有限责任公司 基于图像数据的血液动力学参数估计
KR20210121062A (ko) 2019-08-05 2021-10-07 엘루시드 바이오이미징 아이엔씨. 형태학적 및 혈관주위 질환 표지자의 조합 평가
CN110428417A (zh) * 2019-08-13 2019-11-08 无锡祥生医疗科技股份有限公司 颈动脉斑块的性质判别方法、存储介质及超声装置
CN110555261B (zh) * 2019-08-29 2021-06-18 清华大学 心脏运动的数字三生仿真方法及装置
DE102019214212B3 (de) * 2019-09-18 2021-03-11 Siemens Healthcare Gmbh Verfahren zur Unterstützung eines Auswerters bei der Auswertung eines Computertomographiedatensatzes, Recheneinrichtung, Computerprogramm und elektronisch lesbarer Datenträger
CA3152545A1 (en) 2019-09-20 2021-03-25 Bard Access Systems, Inc. Automatic vessel detection tools and methods
EP4035179A4 (en) * 2019-09-27 2023-10-25 Vitaa Medical Solutions Inc. METHOD AND SYSTEM FOR DETERMINING A POTENTIAL FOR REGIONAL RUPTURE OF A BLOOD VESSEL
CN110706770B (zh) * 2019-09-30 2020-08-04 上海杏脉信息科技有限公司 心脏数据处理设备及处理方法、计算机可读存储介质
WO2021072368A1 (en) * 2019-10-10 2021-04-15 Medstar Health, Inc. Noninvasive assessment of microvascular dysfunction
KR102130254B1 (ko) 2019-10-15 2020-07-03 주식회사 실리콘사피엔스 대상자 고유의 혈관에 대한 혈류 시뮬레이션 방법 및 장치
US11176740B2 (en) 2019-11-07 2021-11-16 Level Ex, Inc. Methods and systems for rendering images
WO2021102408A1 (en) * 2019-11-22 2021-05-27 The Regents Of The University Of Michigan Anatomical and functional assessment of coronary artery disease using machine learning
EP4276751A3 (en) * 2019-11-28 2024-01-10 Siemens Healthcare GmbH Computer-implemented method for evaluating a ct data set regarding perivascular tissue, evaluation device, computer program and electronically readable storage medium
US20220110530A2 (en) * 2019-12-09 2022-04-14 Nordsletten David Method and System for Estimating Pressure Difference in Turbulent Flow
CN111067495A (zh) * 2019-12-27 2020-04-28 西北工业大学 基于血流储备分数和造影图像的微循环阻力计算方法
CN111067494B (zh) * 2019-12-27 2022-04-26 西北工业大学 基于血流储备分数和血流阻力模型的微循环阻力快速计算方法
US11501436B2 (en) 2020-01-07 2022-11-15 Cleerly, Inc. Systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking
US20220392065A1 (en) 2020-01-07 2022-12-08 Cleerly, Inc. Systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking
US11232564B2 (en) 2020-01-07 2022-01-25 Cleerly, Inc. Systems, methods, and devices for medical image analysis, diagnosis, risk stratification, decision making and/or disease tracking
CN111227930B (zh) * 2020-01-08 2022-11-11 西安马克医疗科技有限公司 一种针对二尖瓣反流及钙化狭窄的3d模型构建及制备方法
CN111227931B (zh) * 2020-01-08 2022-11-11 西安马克医疗科技有限公司 一种针对主动脉瓣疾病的3d模型构建方法及制备方法
DE102020200750A1 (de) * 2020-01-22 2021-07-22 Siemens Healthcare Gmbh Bereitstellen eines Blutflussparametersatzes einer Gefäßmalformation
AU2021214689A1 (en) * 2020-01-31 2022-09-15 See-Mode Technologies Pte Ltd Methods and systems for risk assessment of ischemic cerebrovascular events
RU2727313C1 (ru) * 2020-02-11 2020-07-21 Федеральное государственное бюджетное учреждение "Национальный медицинский исследовательский центр акушерства, гинекологии и перинатологии имени академика В.И. Кулакова" Министерства здравоохранения Российской Метод функциональной магнитно-резонансной томографии для определения перфузионного кровотока в области рубца после кесарева сечения
USD938963S1 (en) * 2020-02-21 2021-12-21 Universität Zürich Display screen or portion thereof with graphical user interface for visual clot display
CN111243413B (zh) * 2020-03-06 2021-07-02 吉林大学 一种颜面部解剖教学的建模方法及教学系统
KR102190431B1 (ko) * 2020-03-18 2020-12-11 연세대학교 산학협력단 혈관 질환을 판단하는 방법 및 그를 위한 장치
US11587679B2 (en) * 2020-03-26 2023-02-21 International Business Machines Corporation Generating computer models from implicitly relevant feature sets
US11334997B2 (en) 2020-04-03 2022-05-17 Synthes Gmbh Hinge detection for orthopedic fixation
CN111508077B (zh) * 2020-04-29 2021-01-15 中国人民解放军总医院 双三角模型智能评估心脏功能的方法、装置、设备及介质
DE102020112649A1 (de) * 2020-05-11 2021-11-11 Volume Graphics Gmbh Computerimplementiertes Verfahren zur Messung eines Objekts
CN111419204A (zh) * 2020-05-12 2020-07-17 中国人民解放军陆军第八十二集团军医院 一种改良的压力容积导管实验方法
CN111755104B (zh) * 2020-05-18 2022-11-01 清华大学 一种心脏状态监测方法、系统、电子设备及存储介质
CN111631700B (zh) * 2020-05-25 2021-08-10 华南理工大学 一种根据最佳血压目标值调节血压的系统
CN111739026B (zh) * 2020-05-28 2021-02-09 数坤(北京)网络科技有限公司 一种基于血管中心线的黏连割除方法及装置
CN111862046B (zh) * 2020-07-21 2023-11-17 江苏省人民医院(南京医科大学第一附属医院) 一种心脏冠脉剪影中导管位置判别系统和方法
WO2022020351A1 (en) 2020-07-21 2022-01-27 Bard Access Systems, Inc. System, method and apparatus for magnetic tracking of ultrasound probe and generation of 3d visualization thereof
USD974193S1 (en) 2020-07-27 2023-01-03 Masimo Corporation Wearable temperature measurement device
USD980091S1 (en) 2020-07-27 2023-03-07 Masimo Corporation Wearable temperature measurement device
US20220044408A1 (en) * 2020-08-07 2022-02-10 Canon Medical Systems Corporation Medical image processing apparatus, system, and method
JP7041446B2 (ja) * 2020-08-12 2022-03-24 キヤノンメディカルシステムズ株式会社 医用画像処理方法、医用画像処理装置および医用画像処理システム
JP7443197B2 (ja) 2020-08-25 2024-03-05 キヤノンメディカルシステムズ株式会社 医用画像処理装置、システム及び方法
US11844567B2 (en) 2020-08-28 2023-12-19 Biosense Webster (Israel) Ltd. Fitting and directing an expandable catheter based on automatic pulmonary veins anatomical characterization
US11538153B2 (en) * 2020-08-31 2022-12-27 Huidan Yu Non-invasive functional assessment technique for determining hemodynamic severity of an arterial stenosis
WO2022051657A1 (en) 2020-09-03 2022-03-10 Bard Access Systems, Inc. Portable ultrasound systems and methods
JP2023540385A (ja) * 2020-09-09 2023-09-22 ユセフィロシャン、ハメド 個別化された脳治療のためのシミュレーションの方法及びシステム
CN112075934B (zh) * 2020-09-09 2021-07-23 清华大学 用于识别颈动脉斑块的磁共振单序列多参数定量成像系统
US11925505B2 (en) 2020-09-25 2024-03-12 Bard Access Systems, Inc. Minimum catheter length tool
CN112245006B (zh) * 2020-11-13 2022-03-04 范宁 一种基于三角模型的肝脏肿瘤手术方法及系统
CN112426143B (zh) * 2020-11-16 2021-07-23 清华大学 一种肾动脉及腹主动脉一站式无创磁共振血管壁成像系统
TWI790508B (zh) * 2020-11-30 2023-01-21 宏碁股份有限公司 血管偵測裝置及基於影像的血管偵測方法
JP2022090798A (ja) * 2020-12-08 2022-06-20 キヤノンメディカルシステムズ株式会社 解析装置、解析システム及び解析方法
CN112617771B (zh) * 2020-12-28 2021-11-09 深圳北芯生命科技股份有限公司 基于血管充血状态的诊断模式确定方法及系统
TWI768624B (zh) * 2020-12-28 2022-06-21 財團法人國家衛生研究院 預測冠狀動脈的阻塞的電子裝置和方法
CN112712507B (zh) * 2020-12-31 2023-12-19 杭州依图医疗技术有限公司 一种确定冠状动脉的钙化区域的方法及装置
US20220215534A1 (en) * 2021-01-04 2022-07-07 Shenzhen Keya Medical Technology Corporation Methods and systems for computer-assisted medical image analysis using sequential model
CN112842287B (zh) * 2021-01-05 2022-05-17 清华大学 测量血管硬化参数装置和方法
CN112950537A (zh) * 2021-01-26 2021-06-11 上海友脉科技有限责任公司 一种冠脉血流储备分数获取系统、方法及介质
CN112932434B (zh) * 2021-01-29 2023-12-05 苏州润迈德医疗科技有限公司 获取流量损失模型、损失比、供血能力的方法和系统
US11693078B2 (en) * 2021-02-08 2023-07-04 Purdue Research Foundation Hybrid spatial and circuit optimization for targeted performance of MRI coils
WO2022182975A1 (en) * 2021-02-26 2022-09-01 Massachusetts Institute Of Technology Methods to simulate metrics of vascular function from clinical data
KR102631241B1 (ko) * 2021-03-04 2024-01-31 에이아이메딕(주) 기계 학습을 이용하여 2차원 x-선 혈관 조영술 이미지로부터 3차원 혈관 모델을 생성하는 방법
CN113100719A (zh) * 2021-04-08 2021-07-13 中国人民解放军陆军特色医学中心 一种基于机器学习的肾透析患者心血管事件预测系统
EP4075446A1 (en) 2021-04-18 2022-10-19 Kardiolytics Inc. Method and system for modelling blood vessels and blood flow under high-intensity physical exercise conditions
WO2022228976A1 (en) * 2021-04-26 2022-11-03 Koninklijke Philips N.V. Ultrasound-guided prediction of local bolus velocities
EP4084011A1 (en) * 2021-04-30 2022-11-02 Siemens Healthcare GmbH Computer-implemented method and evaluation system for evaluating at least one image data set of an imaging region of a patient, computer program and electronically readable storage medium
WO2022250975A1 (en) * 2021-05-27 2022-12-01 Board Of Regents Of The University Of Nebraska Patient-specific computational simulation of coronary artery bypass grafting
US11948677B2 (en) 2021-06-08 2024-04-02 GE Precision Healthcare LLC Hybrid unsupervised and supervised image segmentation model
CN113298804B (zh) * 2021-06-16 2022-03-15 浙江大学 一种基于红外图像的实时固体燃料料层厚度的测量方法
CN113409343B (zh) * 2021-06-16 2022-03-15 浙江大学 一种实时固体燃料料层厚度的测量方法
CN113288087B (zh) * 2021-06-25 2022-08-16 成都泰盟软件有限公司 一种基于生理信号的虚实联动实验系统
EP4113434A1 (en) 2021-06-28 2023-01-04 Koninklijke Philips N.V. Generation of plaque information
CN113545846B (zh) * 2021-07-22 2023-04-25 强联智创(北京)科技有限公司 一种血流动力学仿真模拟方法、装置以及设备
CN113408152B (zh) * 2021-07-23 2023-07-25 上海友脉科技有限责任公司 冠脉旁路移植仿真系统、方法、介质及电子设备
CA3228337A1 (en) * 2021-08-09 2023-02-16 Vektor Medical, Inc. Tissue state graphic display system
CN113838572B (zh) * 2021-09-10 2024-03-01 深圳睿心智能医疗科技有限公司 血管生理参数获取方法、装置、电子设备及存储介质
USD1000975S1 (en) 2021-09-22 2023-10-10 Masimo Corporation Wearable temperature measurement device
KR102451624B1 (ko) * 2021-10-05 2022-10-11 연세대학교 산학협력단 수면 무호흡증 인자를 고려한 심혈관 질환 위험도 분석 시스템 및 그 방법
WO2023065048A1 (en) * 2021-10-22 2023-04-27 Mcmaster University A doppler-based non-invasive computational diagnostic method for personalized cardiology
CN114224481A (zh) * 2021-10-28 2022-03-25 彭小平 用于心脏再同步治疗中的手术辅助系统及手术机器人系统
US20230142152A1 (en) * 2021-11-05 2023-05-11 GE Precision Healthcare LLC System and method for deep-learning based estimation of coronary artery pressure drop
CN113925470A (zh) * 2021-11-09 2022-01-14 刘明明 一种小肠微循环功能测评方法
US20230165544A1 (en) 2021-11-29 2023-06-01 Heartflow, Inc. Systems and methods for processing electronic images using user inputs
US20230169702A1 (en) 2021-11-29 2023-06-01 Heartflow, Inc. Systems and methods for processing electronic images for physiology-compensated reconstruction
WO2023161671A1 (en) * 2022-02-22 2023-08-31 Hemolens Diagnostics Sp. Z O.O. A method for assessment of a hemodynamic response to an adenosine receptor agonist stimulation, system for assessment of it and computer readable medium
US20230289963A1 (en) 2022-03-10 2023-09-14 Cleerly, Inc. Systems, devices, and methods for non-invasive image-based plaque analysis and risk determination
WO2023175611A1 (en) * 2022-03-15 2023-09-21 Livemetric (Medical) S.A Devices and methods for evaluating the response to and/or the effectiveness of a cardiovascular medication administration program
JP2023135853A (ja) * 2022-03-16 2023-09-29 キヤノン株式会社 情報処理装置、情報処理方法、およびプログラム
US20230394654A1 (en) 2022-06-07 2023-12-07 Pie Medical Imaging B.V. Method and system for assessing functionally significant vessel obstruction based on machine learning
WO2024078882A1 (en) * 2022-10-11 2024-04-18 Koninklijke Philips N.V. Providing biomechanical plaque data for an interventional device simulation system
EP4353176A1 (en) * 2022-10-11 2024-04-17 Koninklijke Philips N.V. Providing biomechanical plaque data for an interventional device simulation system
CN115687309B (zh) * 2022-12-30 2023-04-18 浙江大学 非侵入式卷烟出入库全流程数据血缘构建方法、装置
US11773093B1 (en) 2023-01-19 2023-10-03 King Faisal University N-(pyrimido[2,3-b]indol-7-yl)acetamide compounds as antibacterial agents
CN115910379B (zh) * 2023-02-03 2023-06-02 慧影医疗科技(北京)股份有限公司 一种肾结石术后疗效评估方法、系统、设备及存储介质
CN115880323B (zh) * 2023-02-17 2023-06-02 长沙中联重科环境产业有限公司 一种热成像定位的区域密度人口的绿化环保方法及设备
CN116664564B (zh) * 2023-07-28 2023-10-31 杭州脉流科技有限公司 基于颅内医学影像获取血流量的方法和装置
CN116649925B (zh) * 2023-07-28 2023-10-31 杭州脉流科技有限公司 颅内动脉狭窄功能学评估的方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060149522A1 (en) * 2004-12-10 2006-07-06 Dalin Tang Image-based computational mechanical analysis and indexing for cardiovascular diseases
KR20070026135A (ko) * 2005-08-30 2007-03-08 바이오센스 웹스터 인코포레이티드 생리학적 데이터를 사용한 복합양식 이미지의 세그먼트화및 등록

Family Cites Families (339)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5944607B2 (ja) 1976-06-24 1984-10-31 三菱電機株式会社 薄膜光スイツチアレイ
IL77677A (en) * 1986-01-22 1990-04-29 Daniel Goor Method and apparatus for detecting mycardial ischemia
US4945478A (en) 1987-11-06 1990-07-31 Center For Innovative Technology Noninvasive medical imaging system and method for the identification and 3-D display of atherosclerosis and the like
US5205289A (en) 1988-12-23 1993-04-27 Medical Instrumentation And Diagnostics Corporation Three-dimensional computer graphics simulation and computerized numerical optimization for dose delivery and treatment planning
US5151856A (en) 1989-08-30 1992-09-29 Technion R & D Found. Ltd. Method of displaying coronary function
US5119816A (en) 1990-09-07 1992-06-09 Sam Technology, Inc. EEG spatial placement and enhancement method
EP0487110B1 (en) 1990-11-22 1999-10-06 Kabushiki Kaisha Toshiba Computer-aided diagnosis system for medical use
WO1993007580A1 (fr) 1991-10-02 1993-04-15 Fujitsu Limited Procede pour determiner la direction dans une region locale d'un segment de profil et procede pour determiner les lignes et les angles
US5343538A (en) 1992-10-02 1994-08-30 International Remote Imaging Systems, Inc. Method and an apparatus for identifying an object using quantile partitions
US5687737A (en) 1992-10-09 1997-11-18 Washington University Computerized three-dimensional cardiac mapping with interactive visual displays
US5506785A (en) * 1993-02-11 1996-04-09 Dover Systems Corporation Method and apparatus for generating hollow and non-hollow solid representations of volumetric data
DE69424733T2 (de) 1993-04-20 2001-02-01 Gen Electric Graphisches digitalverarbeitungssystem und echtzeitvideosystem zur verbesserung der darstellung von körperstrukturen während eines chirugischen eingriffs.
US5881124A (en) 1994-03-31 1999-03-09 Arch Development Corporation Automated method and system for the detection of lesions in medical computed tomographic scans
US5920319A (en) 1994-10-27 1999-07-06 Wake Forest University Automatic analysis in virtual endoscopy
US5782762A (en) 1994-10-27 1998-07-21 Wake Forest University Method and system for producing interactive, three-dimensional renderings of selected body organs having hollow lumens to enable simulated movement through the lumen
US6694163B1 (en) 1994-10-27 2004-02-17 Wake Forest University Health Sciences Method and system for producing interactive, three-dimensional renderings of selected body organs having hollow lumens to enable simulated movement through the lumen
JPH11506950A (ja) 1995-05-31 1999-06-22 モレキュラー バイオシステムズ,インコーポレイテッド コントラスト強調撮像を用いた自動境界線引きおよび部位寸法記入
US6151404A (en) 1995-06-01 2000-11-21 Medical Media Systems Anatomical visualization system
AU6273096A (en) 1995-06-09 1997-01-09 Interact Medical Technologies Corporation Anatomical visualization system
US5582173A (en) 1995-09-18 1996-12-10 Siemens Medical Systems, Inc. System and method for 3-D medical imaging using 2-D scan data
US5687208A (en) 1995-10-06 1997-11-11 Bhb General Partnership Method of and apparatus for predicting computed tomography contrast enhancement with feedback
US5970182A (en) 1995-11-15 1999-10-19 Focus Imaging, S. A. Registration process for myocardial images
US5682886A (en) 1995-12-26 1997-11-04 Musculographics Inc Computer-assisted surgical system
US5825908A (en) 1995-12-29 1998-10-20 Medical Media Systems Anatomical visualization and measurement system
US5729670A (en) 1996-01-16 1998-03-17 Ford Global Technologies, Inc. Method for producing a mesh of quadrilateral/hexahedral elements for a body to be analyzed using finite element analysis
US6047080A (en) 1996-06-19 2000-04-04 Arch Development Corporation Method and apparatus for three-dimensional reconstruction of coronary vessels from angiographic images
US6026173A (en) 1997-07-05 2000-02-15 Svenson; Robert H. Electromagnetic imaging and therapeutic (EMIT) systems
IL120881A (en) 1996-07-30 2002-09-12 It M R Medic L Cm 1997 Ltd Method and device for continuous and non-invasive monitoring of peripheral arterial tone
US5947899A (en) 1996-08-23 1999-09-07 Physiome Sciences Computational system and method for modeling the heart
US6331116B1 (en) 1996-09-16 2001-12-18 The Research Foundation Of State University Of New York System and method for performing a three-dimensional virtual segmentation and examination
US5971767A (en) 1996-09-16 1999-10-26 The Research Foundation Of State University Of New York System and method for performing a three-dimensional virtual examination
US6343936B1 (en) 1996-09-16 2002-02-05 The Research Foundation Of State University Of New York System and method for performing a three-dimensional virtual examination, navigation and visualization
US7194117B2 (en) 1999-06-29 2007-03-20 The Research Foundation Of State University Of New York System and method for performing a three-dimensional virtual examination of objects, such as internal organs
US5891030A (en) 1997-01-24 1999-04-06 Mayo Foundation For Medical Education And Research System for two dimensional and three dimensional imaging of tubular structures in the human body
US8682045B2 (en) 1997-02-25 2014-03-25 Wake Forest University Health Sciences Virtual endoscopy with improved image segmentation and lesion detection
US6035056A (en) 1997-03-27 2000-03-07 R2 Technology, Inc. Method and apparatus for automatic muscle segmentation in digital mammograms
IT1297396B1 (it) 1997-12-30 1999-09-01 Francesco Buzzigoli Metodo e dispositivo per la ricostruzione di immagini tridimensionali di vasi sanguigni, in particolare di arterie coronarie, o di altre
US6176838B1 (en) 1998-01-29 2001-01-23 Anzai Medical Kabushiki Kaisha Method and apparatus for measuring hepatic blood flow amount
US7191110B1 (en) 1998-02-03 2007-03-13 University Of Illinois, Board Of Trustees Patient specific circulation model
EP1059874A4 (en) 1998-02-03 2003-05-07 Univ Illinois MODEL OF THE CEREBRAL CIRCUIT AND APPLICATIONS
DE69805209T2 (de) 1998-02-23 2002-11-28 Algotec Systems Ltd System und methode zur automatischen wegplanung
US6117087A (en) 1998-04-01 2000-09-12 Massachusetts Institute Of Technology Method and apparatus for noninvasive assessment of a subject's cardiovascular system
EP1079727A1 (en) 1998-05-04 2001-03-07 Florence Medical Ltd. Apparatus and method for identification and characterization of lesions and therapeutic success by flow disturbances analysis
US6236878B1 (en) 1998-05-22 2001-05-22 Charles A. Taylor Method for predictive modeling for planning medical interventions and simulating physiological conditions
US6045512A (en) 1998-06-09 2000-04-04 Baxter International Inc. System and method for continuous estimation and display of cardiac ejection fraction and end diastolic volume
US6119574A (en) 1998-07-02 2000-09-19 Battelle Memorial Institute Blast effects suppression system
WO2000003318A2 (en) 1998-07-13 2000-01-20 Chandu Corporation Configurable bio-transport system simulator
US6950689B1 (en) 1998-08-03 2005-09-27 Boston Scientific Scimed, Inc. Dynamically alterable three-dimensional graphical model of a body region
US6292761B1 (en) 1998-09-02 2001-09-18 William Franklin Hancock, Jr. Methods and apparatus for interpreting measured laboratory data
US6379041B1 (en) 1998-11-02 2002-04-30 Siemens Aktiengesellschaft X-ray apparatus for producing a 3D image from a set of 2D projections
US6352509B1 (en) 1998-11-16 2002-03-05 Kabushiki Kaisha Toshiba Three-dimensional ultrasonic diagnosis apparatus
US6466205B2 (en) 1998-11-19 2002-10-15 Push Entertainment, Inc. System and method for creating 3D models from 2D sequential image data
CA2352671A1 (en) 1998-11-25 2000-06-08 Wake Forest University Virtual endoscopy with improved image segmentation and lesion detection
US6278460B1 (en) 1998-12-15 2001-08-21 Point Cloud, Inc. Creating a three-dimensional model from two-dimensional images
US6478735B1 (en) 1999-01-28 2002-11-12 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Physiological feedback method and system
US6471656B1 (en) 1999-06-25 2002-10-29 Florence Medical Ltd Method and system for pressure based measurements of CFR and additional clinical hemodynamic parameters
AU3187900A (en) 1999-03-09 2000-09-28 Florence Medical Ltd. A method and system for pressure based measurements of cfr and additional clinical hemodynamic parameters
US6793496B2 (en) 1999-04-15 2004-09-21 General Electric Company Mathematical model and a method and apparatus for utilizing the model
DE19922279A1 (de) 1999-05-11 2000-11-16 Friedrich Schiller Uni Jena Bu Verfahren zur Generierung patientenspezifischer Implantate
FR2793926B1 (fr) 1999-05-20 2001-07-20 Univ Rennes Procede de construction en trois dimensions d'un organe virtuel representatif d'un organe reel
US6605053B1 (en) 1999-09-10 2003-08-12 Percardia, Inc. Conduit designs and related methods for optimal flow control
WO2001022362A1 (en) 1999-09-20 2001-03-29 The Board Of Trustees Of The University Of Illinois Circulation model and applications
US6711433B1 (en) 1999-09-30 2004-03-23 Siemens Corporate Research, Inc. Method for providing a virtual contrast agent for augmented angioscopy
US6336903B1 (en) 1999-11-16 2002-01-08 Cardiac Intelligence Corp. Automated collection and analysis patient care system and method for diagnosing and monitoring congestive heart failure and outcomes thereof
US7333648B2 (en) 1999-11-19 2008-02-19 General Electric Company Feature quantification from multidimensional image data
DE19962666A1 (de) 1999-12-23 2001-07-05 Siemens Ag Verfahren zum Rekonstruieren von 3D-Bilddaten bezüglich eines interessierenden Volumens eines Untersuchungsobjekts
DE10000185A1 (de) 2000-01-05 2001-07-12 Philips Corp Intellectual Pty Verfahren zur Darstellung des zeitlichen Verlaufs des Blutflusses in einem Untersuchungsobjekt
US6672172B2 (en) * 2000-01-31 2004-01-06 Radi Medical Systems Ab Triggered flow measurement
US6606091B2 (en) 2000-02-07 2003-08-12 Siemens Corporate Research, Inc. System for interactive 3D object extraction from slice-based medical images
US6900721B1 (en) 2000-02-11 2005-05-31 Bio Medic Data Systems, Inc. Implantable inductively programmed temperature sensing transponder
ATE396648T1 (de) 2000-05-09 2008-06-15 Paieon Inc System und verfahren für drei-dimentionale rekonstruktion von einer arterie
DE10026666A1 (de) * 2000-05-29 2001-12-20 Gunther Burgard Verwendung von Hyaluronidase zur Prophylaxe und Behandlung von Herz-Kreislauf-Erkrankungen
AU2001268217A1 (en) 2000-06-06 2001-12-17 The Research Foundation Of State University Of New York Computer aided visualization, fusion and treatment planning
US6408201B1 (en) 2000-06-09 2002-06-18 General Electric Company Method and apparatus for efficient stenosis identification in peripheral arterial vasculature using MR imaging
US6503202B1 (en) 2000-06-29 2003-01-07 Acuson Corp. Medical diagnostic ultrasound system and method for flow analysis
US6507753B1 (en) 2000-08-09 2003-01-14 Ge Marquette Medical Systems, Inc. Method and apparatus to detect acute cardiac syndromes in specified groups of patients using ECG
US6650927B1 (en) 2000-08-18 2003-11-18 Biosense, Inc. Rendering of diagnostic imaging data on a three-dimensional map
US20020035458A1 (en) 2000-09-20 2002-03-21 Chang-Hun Kim Method and system for virtual surgery
US7840393B1 (en) 2000-10-04 2010-11-23 Trivascular, Inc. Virtual prototyping and testing for medical device development
US6558334B2 (en) 2000-10-19 2003-05-06 Florence Medical Ltd. Apparatus for diagnosing lesion severity, and method therefor
IL155527A0 (en) 2000-10-25 2003-11-23 Robarts John P Res Inst Method and apparatus for calculating blood flow parameters
US6754376B1 (en) 2000-11-22 2004-06-22 General Electric Company Method for automatic segmentation of medical images
US6643533B2 (en) 2000-11-28 2003-11-04 Ge Medical Systems Global Technology Company, Llc Method and apparatus for displaying images of tubular structures
US6666820B1 (en) 2000-11-28 2003-12-23 Michael D. Poole Mathematical therapeutic outcomes model for predicting clinical efficacy therapies
US6487432B2 (en) 2000-12-04 2002-11-26 Ge Medical Systems Global Technologies Company Llc Method and system for selecting and displaying medical image data
JP2004528828A (ja) 2001-02-07 2004-09-24 ザ ジェネラル ホスピタル コーポレーション 心疾患の診断および治療の方法
SG142164A1 (en) 2001-03-06 2008-05-28 Univ Johns Hopkins Simulation method for designing customized medical devices
US7526112B2 (en) 2001-04-30 2009-04-28 Chase Medical, L.P. System and method for facilitating cardiac intervention
US7327862B2 (en) 2001-04-30 2008-02-05 Chase Medical, L.P. System and method for facilitating cardiac intervention
DE10122875C1 (de) 2001-05-11 2003-02-13 Siemens Ag Kombiniertes 3D-Angio-Volumenrekonstruktionsverfahren
WO2002095686A1 (en) 2001-05-23 2002-11-28 Vital Images, Inc. Occlusion culling for object-order volume rendering
WO2002097735A1 (en) 2001-05-31 2002-12-05 Kent Ridge Digital Labs System and method of anatomical modeling
US7853312B2 (en) 2001-06-07 2010-12-14 Varian Medical Systems, Inc. Seed localization system for use in an ultrasound system and method of using the same
US6718004B2 (en) 2001-06-28 2004-04-06 General Electric Company Methods and apparatus for coronary-specific imaging reconstruction
WO2003007825A1 (en) 2001-07-19 2003-01-30 Atritech, Inc. Individually customized device for covering the ostium of left atrial appendage
US6856830B2 (en) * 2001-07-19 2005-02-15 Bin He Method and apparatus of three dimension electrocardiographic imaging
WO2003028536A2 (en) 2001-10-01 2003-04-10 The General Hospital Corporation Methods for diagnosing and treating heart disease
US7006955B2 (en) 2001-10-15 2006-02-28 General Electric Company System and method for statistical design of ultrasound probe and imaging system
ATE314703T1 (de) 2001-10-16 2006-01-15 Koninkl Philips Electronics Nv Verfahren zur automatischen etikettierung von zweigen
US7054679B2 (en) 2001-10-31 2006-05-30 Robert Hirsh Non-invasive method and device to monitor cardiac parameters
US7286866B2 (en) 2001-11-05 2007-10-23 Ge Medical Systems Global Technology Company, Llc Method, system and computer product for cardiac interventional procedure planning
DE10162272A1 (de) 2001-12-19 2003-07-10 Philips Intellectual Property Verfahren zur Unterstützung der Orientierung im Gefäßsystem
JP2005514997A (ja) 2001-12-28 2005-05-26 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 体器官内の流動の定量的な算出を実行するための超音波画像シーケンスを処理する手段を有する観察システム
DE10210650B4 (de) 2002-03-11 2005-04-28 Siemens Ag Verfahren zur dreidimensionalen Darstellung eines Untersuchungsbereichs eines Patienten in Form eines 3D-Rekonstruktionsbilds und medizinische Untersuchungs- und/oder Behandlungseinrichtung
WO2003081529A1 (en) 2002-03-23 2003-10-02 Philips Intellectual Property & Standards Gmbh Method for interactive segmentation of a structure contained in an object
US6996262B2 (en) 2002-05-20 2006-02-07 General Electric Company Method and apparatus of scoring an arterial obstruction
US20040034309A1 (en) 2002-07-12 2004-02-19 Auckland Uniservices Limited Method and system of defining a model of one or more organs
AU2003246989A1 (en) 2002-07-19 2004-02-09 Koninklijke Philips Electronics N.V. Simultaneous segmentation of multiple or composed objects by mesh adaptation
US7020510B2 (en) 2002-07-25 2006-03-28 Koninklijke Philips Electronics, N.V. Optimal view map V.0.01
US20040044282A1 (en) 2002-08-28 2004-03-04 Mixon Lonnie Mark Medical imaging systems and methods
TW558689B (en) 2002-08-30 2003-10-21 Univ Taipei Medical Three-dimensional surgery simulation system and method
US7182602B2 (en) 2002-09-10 2007-02-27 The University Of Vermont And State Agricultural College Whole-body mathematical model for simulating intracranial pressure dynamics
US7794230B2 (en) 2002-09-10 2010-09-14 University Of Vermont And State Agricultural College Mathematical circulatory system model
US8246673B2 (en) * 2002-09-19 2012-08-21 Exstent Limited External support for a blood vessel
AU2003275265A1 (en) 2002-09-26 2004-04-19 Robert Levine Medical instruction using a virtual patient
US6888914B2 (en) 2002-11-26 2005-05-03 General Electric Company Methods and apparatus for computing volumetric perfusion
US6628743B1 (en) 2002-11-26 2003-09-30 Ge Medical Systems Global Technology Company, Llc Method and apparatus for acquiring and analyzing cardiac data from a patient
WO2006020920A2 (en) 2003-01-29 2006-02-23 Medtronic, Inc. Catheter apparatus for treatment of heart arrhythmia
EP1593087A4 (en) 2003-01-30 2006-10-04 Chase Medical Lp METHOD AND SYSTEM FOR IMAGE PROCESSING AND CONTOUR EVALUATION
US20050043609A1 (en) 2003-01-30 2005-02-24 Gregory Murphy System and method for facilitating cardiac intervention
EP1593093B1 (en) 2003-01-31 2006-08-16 Philips Intellectual Property & Standards GmbH Method for the reconstruction of three-dimensional objects
US7574026B2 (en) 2003-02-12 2009-08-11 Koninklijke Philips Electronics N.V. Method for the 3d modeling of a tubular structure
US6887207B2 (en) * 2003-02-26 2005-05-03 Medtronic, Inc. Methods and apparatus for estimation of ventricular afterload based on ventricular pressure measurements
JP4421203B2 (ja) 2003-03-20 2010-02-24 株式会社東芝 管腔状構造体の解析処理装置
US7539529B2 (en) 2003-04-22 2009-05-26 Koninklijke Philips Electronics N.V. Apparatus for angiographic X-ray photography
US7343196B2 (en) 2003-05-09 2008-03-11 Ge Medical Systems Global Technology Company Llc Cardiac CT system and method for planning and treatment of biventricular pacing using epicardial lead
JP4559215B2 (ja) 2003-05-14 2010-10-06 ボルケーノ・コーポレイション 侵襲性心臓血管診断測定の捕捉および表示のための多目的ホストシステム
US7780595B2 (en) 2003-05-15 2010-08-24 Clinical Decision Support, Llc Panel diagnostic method and system
JP2005015789A (ja) 2003-06-06 2005-01-20 Mitsubishi Plastics Ind Ltd 紫外線吸収組成物および被覆材料
JP2007524461A (ja) 2003-06-25 2007-08-30 シーメンス メディカル ソリューションズ ユーエスエー インコーポレイテッド 乳房撮像の自動診断及び決定支援システム及び方法
JP2007526016A (ja) 2003-06-25 2007-09-13 シーメンス メディカル ソリューションズ ユーエスエー インコーポレイテッド 心撮像の自動局所心筋評価を行うシステム及び方法
US7813785B2 (en) 2003-07-01 2010-10-12 General Electric Company Cardiac imaging system and method for planning minimally invasive direct coronary artery bypass surgery
US20050010105A1 (en) 2003-07-01 2005-01-13 Sra Jasbir S. Method and system for Coronary arterial intervention
US7340026B2 (en) 2003-07-08 2008-03-04 Koninklijke Philips Electronics, N.V. Reconstruction of the current flow in a vessel system
DE112004001440T5 (de) 2003-08-04 2007-08-09 Siemens Medical Solutions Usa, Inc. Entfalten eines virtuellen Organs zur Visualisierung
EP1658009B1 (en) 2003-08-20 2011-10-12 Philips Intellectual Property & Standards GmbH Method and device for flow reconstruction
WO2005020155A1 (en) 2003-08-21 2005-03-03 Philips Intellectual Property & Standards Gmbh Device and method for generating a three-dimensional vascular model
AU2004268576A1 (en) 2003-08-21 2005-03-10 Ischem Corporation Automated methods and systems for vascular plaque detection and analysis
DE10340544B4 (de) 2003-09-01 2006-08-03 Siemens Ag Vorrichtung zur visuellen Unterstützung einer elektrophysiologischen Katheteranwendung im Herzen
JP4537681B2 (ja) * 2003-09-24 2010-09-01 株式会社東芝 血流解析装置
WO2005031635A1 (en) 2003-09-25 2005-04-07 Paieon, Inc. System and method for three-dimensional reconstruction of a tubular organ
JP2007507814A (ja) 2003-10-07 2007-03-29 エンテロス・インコーポレーテッド 患者に固有の結果のシミュレーション
JP4446049B2 (ja) 2003-11-06 2010-04-07 株式会社三重ティーエルオー 心筋血流の定量化装置
WO2005055008A2 (en) * 2003-11-26 2005-06-16 Viatronix Incorporated Automated segmentation, visualization and analysis of medical images
US20070014452A1 (en) 2003-12-01 2007-01-18 Mitta Suresh Method and system for image processing and assessment of a state of a heart
US20050143777A1 (en) 2003-12-19 2005-06-30 Sra Jasbir S. Method and system of treatment of heart failure using 4D imaging
RS49856B (sr) 2004-01-16 2008-08-07 Boško Bojović Uređaj i postupak za vizuelnu trodimenzionalnu prezentaciju ecg podataka
US20080051660A1 (en) 2004-01-16 2008-02-28 The University Of Houston System Methods and apparatuses for medical imaging
US7333643B2 (en) 2004-01-30 2008-02-19 Chase Medical, L.P. System and method for facilitating cardiac intervention
US7526115B2 (en) 2004-02-23 2009-04-28 Siemens Medical Solutions Usa, Inc. System and method for toboggan based object segmentation using divergent gradient field response in images
US20080146498A1 (en) 2004-03-03 2008-06-19 Masao Daimon Diagnostic Agent For Ischemic Heart Disease Risk Group
US8010175B2 (en) 2004-05-05 2011-08-30 Siemens Medical Solutions Usa, Inc. Patient-specific coronary territory mapping
US20070219448A1 (en) 2004-05-06 2007-09-20 Focus Surgery, Inc. Method and Apparatus for Selective Treatment of Tissue
WO2005119578A2 (en) 2004-06-02 2005-12-15 Medical Metrx Solutions, Inc. Anatomical visualization and measurement system
EP1811896A4 (en) 2004-06-23 2009-08-19 M2S Inc ANATOMICAL VISUALIZATION AND MEASURING SYSTEM
US7462153B2 (en) 2004-07-23 2008-12-09 Sonomedica, Inc. Method and system for modeling cardiovascular disease using a probability regession model
WO2006020792A2 (en) 2004-08-10 2006-02-23 The General Hospital Corporation Methods and apparatus for simulation of endovascular and endoluminal procedures
JP5276322B2 (ja) 2004-08-11 2013-08-28 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 虚血性心疾患の超音波診断方法及び装置
WO2007001352A2 (en) * 2004-08-31 2007-01-04 University Of Washington Ultrasonic technique for assessing wall vibrations in stenosed blood vessels
DE102004043676B4 (de) 2004-09-09 2014-01-09 Siemens Aktiengesellschaft Verfahren zur Visualisierung von Plaqueablagerungen aus 3D-Bilddatensätzen von Gefäßstrukturen
WO2006039358A2 (en) 2004-09-30 2006-04-13 The Regents Of The University Of California Method for assessment of the structure-function characteristics of structures in a human or animal body
WO2006063141A2 (en) 2004-12-07 2006-06-15 Medical Metrx Solutions, Inc. Intraoperative c-arm fluoroscope datafusion system
IL165636A0 (en) 2004-12-08 2006-01-15 Paieon Inc Method and apparatus for finding the coronary velocity and flow and related parameters
WO2006061815A1 (en) 2004-12-08 2006-06-15 Paieon Inc. Method and apparatus for blood vessel parameter determinations
CN101080747A (zh) 2004-12-17 2007-11-28 皇家飞利浦电子股份有限公司 来自单纯形网格的高质量的精确的曲面三角剖分
EP1835855B1 (en) * 2005-01-11 2017-04-05 Volcano Corporation Vascular image co-registration
EP1849120A2 (en) 2005-01-21 2007-10-31 The Board of Governors for Higher Education State of Rhode Island And Providence Plantations Integrate finite element and circulatory model for predicting hemodynamic effects of left ventricular impairment, resynchronization and remodeling
EP1848465A2 (en) 2005-02-03 2007-10-31 EPIX Pharmaceuticals, Inc. Steady state perfusion methods
JP5268365B2 (ja) 2005-02-04 2013-08-21 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 脈管幾何形状及び流れ特性を決定するシステム
FR2882172B1 (fr) * 2005-02-16 2007-11-02 Innothera Soc Par Actions Simp Dispositif d'aide a la selection d'une orthese de contention par simulation de ses effets sur l'hemodynamique du retour veineux
US8105259B2 (en) 2005-02-22 2012-01-31 Kaneka Corporation Catheter
JP4964422B2 (ja) 2005-02-22 2012-06-27 株式会社カネカ 脱血用カテーテル
US20060239524A1 (en) * 2005-03-31 2006-10-26 Vladimir Desh Dedicated display for processing and analyzing multi-modality cardiac data
US20060241461A1 (en) 2005-04-01 2006-10-26 White Chris A System and method for 3-D visualization of vascular structures using ultrasound
DE102005018327A1 (de) 2005-04-20 2006-10-26 Siemens Ag Betriebsverfahren für einen Rechner, Betriebsverfahren für eine bildgebende medizintechnische Anlage und hiermit korrespondierende Gegenstände
US20060253024A1 (en) 2005-04-26 2006-11-09 Altmann Andres C Software product for three-dimensional cardiac imaging using ultrasound contour reconstruction
US20060241445A1 (en) 2005-04-26 2006-10-26 Altmann Andres C Three-dimensional cardial imaging using ultrasound contour reconstruction
DE102005022345A1 (de) 2005-05-13 2006-11-16 Siemens Ag Verfahren zur Erzeugung und Darstellung von Untersuchungsbildern und zugehöriger Ultraschallkatheter
WO2006127960A2 (en) 2005-05-26 2006-11-30 The Board Of Regents University Of Oklahoma 3-dimensional finite element modeling of human ear for sound transmission
US20080205722A1 (en) 2005-08-17 2008-08-28 Koninklijke Phillips Electronics N.V. Method and Apparatus for Automatic 4D Coronary Modeling and Motion Vector Field Estimation
CN101258525A (zh) 2005-09-07 2008-09-03 皇家飞利浦电子股份有限公司 用于对心脏右心室进行可靠的3d评价的超声系统及其方法
US7775988B2 (en) 2005-09-30 2010-08-17 Radi Medical Systems Ab Method for determining the blood flow in a coronary artery
WO2007058997A2 (en) 2005-11-11 2007-05-24 The University Of Houston System Scoring method for imaging-based detection of vulnerable patients
JP5111387B2 (ja) 2005-11-14 2013-01-09 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 解剖学的構造のシルエット合成レンダリング
JP2007135894A (ja) 2005-11-18 2007-06-07 R Tech:Kk ヒト血流データをもとにした血流解析装置及びシミュレーション方法
US20070163353A1 (en) 2005-12-07 2007-07-19 Drexel University Detection of blood pressure and blood pressure waveform
EP1960965A2 (en) * 2005-12-09 2008-08-27 Koninklijke Philips Electronics N.V. Model-based flow analysis and visualization
US7650179B2 (en) * 2005-12-09 2010-01-19 Siemens Aktiengesellschaft Computerized workflow method for stent planning and stenting procedure
JP4721893B2 (ja) 2005-12-15 2011-07-13 パナソニック株式会社 超音波診断装置
EP1970009B1 (en) 2006-01-05 2013-02-13 National University Corporation Kanazawa University Continuous x-ray image screening examination device, program, and recording medium
US7879318B2 (en) 2006-01-23 2011-02-01 Mcw Research Foundation, Inc. Method of reducing the effects of ischemia by administration of a thrombopoietin receptor ligand
JP5223340B2 (ja) 2006-01-27 2013-06-26 日立金属株式会社 セラミックハニカムフィルタの製造方法
US8105239B2 (en) 2006-02-06 2012-01-31 Maui Imaging, Inc. Method and apparatus to visualize the coronary arteries using ultrasound
US20070231779A1 (en) 2006-02-15 2007-10-04 University Of Central Florida Research Foundation, Inc. Systems and Methods for Simulation of Organ Dynamics
US8184367B2 (en) 2006-02-15 2012-05-22 University Of Central Florida Research Foundation Dynamically focused optical instrument
US20070232883A1 (en) 2006-02-15 2007-10-04 Ilegbusi Olusegun J Systems and methods for determining plaque vulnerability to rupture
US20070208277A1 (en) 2006-03-06 2007-09-06 Rioux Robert F Vessel volume determination for embolization
EP2046223B1 (en) 2006-04-12 2011-03-02 NAVAB, Nassir Virtual penetrating mirror device for visualizing virtual objects in angiographic applications
US20070293936A1 (en) 2006-04-28 2007-12-20 Dobak John D Iii Systems and methods for creating customized endovascular stents and stent grafts
CN101448457B (zh) * 2006-05-22 2011-03-30 皇家飞利浦电子股份有限公司 由投影成像得到的经运动补偿的冠状动脉血流
KR101061624B1 (ko) 2006-06-13 2011-09-01 콸콤 인코포레이티드 무선 통신 시스템에 대한 역방향 링크 파일럿 송신
US20080133040A1 (en) 2006-06-16 2008-06-05 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Methods and systems for specifying a blood vessel sleeve
JP5078291B2 (ja) 2006-06-30 2012-11-21 オリンパスメディカルシステムズ株式会社 医療情報管理システム
EP1881458B1 (en) * 2006-07-21 2011-06-08 Dassault Systèmes Computer-implemented process for creating a parametric surface
BRPI0715126B8 (pt) 2006-08-04 2021-07-27 Medizinische Hochschule Hannover métodos para avaliação do risco de intervenções cardíacas e usos à base de gdf-15
US8364249B2 (en) 2006-08-11 2013-01-29 3M Innovative Properties Company Automatic generation of heart sounds and murmurs using a lumped-parameter recirculating pressure-flow model for the left heart
WO2008085193A2 (en) 2006-08-14 2008-07-17 University Of Maryland Quantitative real-time 4d strees test analysis
US7986821B2 (en) 2006-08-15 2011-07-26 General Electric Company Processes and apparatus for imaging protocols and analysis
US20080058642A1 (en) 2006-09-05 2008-03-06 Board Of Regents Of The University Of Texas System Method for detecting coronary endothelial dysfunction and early atherosclerosis
EP2059165B1 (en) 2006-09-06 2012-03-14 Agency for Science, Technology and Research Detection and localization of vascular occlusion from angiography data
US8014561B2 (en) 2006-09-07 2011-09-06 University Of Louisville Research Foundation, Inc. Virtual fly over of complex tubular anatomical structures
EP2075754A1 (en) 2006-09-15 2009-07-01 Keio University Platelet thrombus formation simulator
DE102006045423B4 (de) 2006-09-26 2016-07-14 Siemens Healthcare Gmbh 07.09.07Verfahren zur Nachbearbeitung eines dreidimensionalen Bilddatensatzes einer Gefäßstruktur
DE102006046045B4 (de) 2006-09-28 2014-05-28 Siemens Aktiengesellschaft Verfahren zur zweidimensionalen oder dreidimensionalen Bilddarstellung eines interessierenden Zielbereichs in einem Hohlorgan und medizinisches Untersuchungs- und Behandlungssystem
CN101172042B (zh) * 2006-11-01 2011-04-06 上海匡复医疗设备发展有限公司 一种脑血管循环动力学分析方法及仪器
US8007437B2 (en) 2006-11-08 2011-08-30 Siemens Aktiengesellschaft Method and apparatus for interactive 4-dimensional (4D) virtual endoscopy
US7792593B2 (en) 2006-11-17 2010-09-07 Siemens Aktiengesellschaft Method and system for patient-specific production of a cardiac electrode
US7912270B2 (en) 2006-11-21 2011-03-22 General Electric Company Method and system for creating and using an impact atlas
US7957574B2 (en) 2006-11-22 2011-06-07 General Electric Company Methods and apparatus for generating a risk metric for soft plaque in vessels
US8503741B2 (en) 2006-11-30 2013-08-06 Siemens Aktiengesellschaft Workflow of a service provider based CFD business model for the risk assessment of aneurysm and respective clinical interface
US20080317310A1 (en) 2006-12-08 2008-12-25 Mitta Suresh Method and system for image processing and assessment of blockages of heart blood vessels
US20080146252A1 (en) 2006-12-13 2008-06-19 Ashu Razdan Tandem transmission of data over signaling and paging
CN101568941A (zh) * 2006-12-26 2009-10-28 皇家飞利浦电子股份有限公司 医学成像系统
US8543338B2 (en) 2007-01-16 2013-09-24 Simbionix Ltd. System and method for performing computerized simulations for image-guided procedures using a patient specific model
WO2008091583A2 (en) 2007-01-23 2008-07-31 Dtherapeutics, Llc Image-based extraction for vascular trees
US20110282586A1 (en) 2007-01-23 2011-11-17 Kassab Ghassan S Systems and methods to determine optimal diameters of vessel segments in bifurcation
US9591994B2 (en) 2007-01-23 2017-03-14 Dtherapeutics, Llc Systems and methods to obtain a myocardial mass index indicative of an at-risk myocardial region
US8903472B2 (en) 2007-01-23 2014-12-02 Dtherapeutics, Llc Applications of scaling laws of tree structures
US8060186B2 (en) 2007-02-15 2011-11-15 Siemens Aktiengesellschaft System and method for intraoperative guidance of stent placement during endovascular interventions
US20080208068A1 (en) 2007-02-26 2008-08-28 Timothy Robertson Dynamic positional information constrained heart model
JP5639764B2 (ja) * 2007-03-08 2014-12-10 シンク−アールエックス,リミティド 運動する器官と共に使用するイメージング及びツール
EP2358269B1 (en) 2007-03-08 2019-04-10 Sync-RX, Ltd. Image processing and tool actuation for medical procedures
US20220031270A1 (en) * 2007-03-08 2022-02-03 Sync-Rx, Ltd Identification an dpresentation of device-tovessel relative motion
JP5449651B2 (ja) 2007-03-09 2014-03-19 株式会社東芝 X線ct装置および心筋パーフュージョン情報生成システム
US7773719B2 (en) 2007-03-26 2010-08-10 Siemens Medical Solutions Usa, Inc. Model-based heart reconstruction and navigation
CN201015590Y (zh) * 2007-03-28 2008-02-06 李楚雅 血流储备分数实时连续测量系统
US9275190B2 (en) 2007-04-23 2016-03-01 Siemens Aktiengesellschaft Method and system for generating a four-chamber heart model
US20080269611A1 (en) 2007-04-24 2008-10-30 Gianni Pedrizzetti Flow characteristic imaging in medical diagnostic ultrasound
CN101594817B (zh) 2007-04-24 2011-08-24 奥林巴斯医疗株式会社 医疗用图像处理装置以及医疗用图像处理方法
US7957570B2 (en) 2007-05-03 2011-06-07 General Electric Company System and method to generate an illustration of a cardiac region of interest
WO2008144404A1 (en) * 2007-05-16 2008-11-27 Massachusetts Instutute Of Technology Systems and methods for model-based estimation of cardiac output and total peripheral resistance
US8718944B2 (en) 2007-05-22 2014-05-06 Worcester Polytechnic Institute Patient-specific image-based computational modeling and techniques for human heart surgery optimization
US8411919B2 (en) 2008-07-07 2013-04-02 Siemens Aktiengesellschaft Fluid dynamics approach to image segmentation
CN101686825B (zh) 2007-06-21 2012-08-22 皇家飞利浦电子股份有限公司 使用动态模型调整用于动态医学成像的采集协议
US10295638B2 (en) 2007-06-28 2019-05-21 Toshiba Medical Systems Corporation Image processing apparatus, image diagnostic apparatus and image processing method
US20090012382A1 (en) 2007-07-02 2009-01-08 General Electric Company Method and system for detection of obstructions in vasculature
CN102172330B (zh) 2007-07-10 2013-03-27 株式会社东芝 X射线摄影装置以及图像处理显示装置
WO2009007910A2 (en) 2007-07-11 2009-01-15 Philips Intellectual Property & Standards Gmbh Method for acquiring 3-dimensional images of coronary vessels, particularly of coronary veins
JP2009028065A (ja) 2007-07-24 2009-02-12 Toshiba Corp X線ct装置
US8123670B2 (en) 2007-08-09 2012-02-28 Leo Antonovich Bokeriya Method for forming a blood flow in surgically reconstituted segments of the blood circulatory system and devices for carrying out said method
US7942820B2 (en) 2007-08-26 2011-05-17 Philip Chidi Njemanze Method and system for evaluation of the hemodynamic model in depression for diagnosis and treatment
EP2036497A1 (en) 2007-09-17 2009-03-18 Amid s.r.l. Method for generating quantitative images of the flow potential of a region under investigation
EP2219520B1 (en) 2007-10-31 2012-12-12 Cabra Technology A/S Method for calculating pressures in a fluid stream through a tube section, especially a blood vessel with atherosclerotic plaque
KR100933664B1 (ko) 2007-12-28 2009-12-23 재단법인서울대학교산학협력재단 대화형 치료계획 지원 시스템 및 그 방법
JP5148315B2 (ja) 2008-02-25 2013-02-20 株式会社東芝 医用画像処理装置、及び医用画像処理プログラム
US8926511B2 (en) 2008-02-29 2015-01-06 Biosense Webster, Inc. Location system with virtual touch screen
US8128570B2 (en) 2008-05-08 2012-03-06 The General Electric Company Personalized fluid assessment
US9427173B2 (en) 2008-05-09 2016-08-30 General Electric Company Determining mechanical force on aneurysms from a fluid dynamic model driven by vessel blood flow information
JP2009277783A (ja) 2008-05-13 2009-11-26 Japan Gore Tex Inc 導電性接着剤ならびにそれを用いた電気二重層キャパシタ用電極および電気二重層キャパシタ
US8010381B2 (en) 2008-05-20 2011-08-30 General Electric Company System and method for disease diagnosis from patient structural deviation data
JP5366612B2 (ja) 2008-05-20 2013-12-11 株式会社東芝 画像処理装置、画像処理方法および画像処理プログラム
US8041095B2 (en) 2008-06-11 2011-10-18 Siemens Aktiengesellschaft Method and apparatus for pretreatment planning of endovascular coil placement
US8200466B2 (en) 2008-07-21 2012-06-12 The Board Of Trustees Of The Leland Stanford Junior University Method for tuning patient-specific cardiovascular simulations
WO2010020933A2 (en) 2008-08-20 2010-02-25 Koninklijke Philips Electronics N.V. Processing cardiac data for personalized aha diagram
US8898022B2 (en) * 2008-08-25 2014-11-25 Eth Zurich Method, system and device for enhancing flow field data
US20100056931A1 (en) 2008-08-26 2010-03-04 Leah Soffer Cardiac output estimation using pulmonary artery pressure
US20100053209A1 (en) 2008-08-29 2010-03-04 Siemens Medical Solutions Usa, Inc. System for Processing Medical Image data to Provide Vascular Function Information
US8582854B2 (en) 2008-09-15 2013-11-12 Siemens Aktiengesellschaft Method and system for automatic coronary artery detection
US9405996B2 (en) 2008-09-18 2016-08-02 Siemens Aktiengesellschaft Method and system for generating a personalized anatomical heart model
US8702613B2 (en) 2008-09-22 2014-04-22 3Dt Holdings, Llc Methods for determining fractional flow reserve
US8170307B2 (en) 2008-09-23 2012-05-01 The Methodist Hospital Automated wall motion quantification in aortic dissections
US8391950B2 (en) 2008-09-30 2013-03-05 Siemens Medical Solutions Usa, Inc. System for multi-dimensional anatomical functional imaging
US7940886B2 (en) 2008-10-03 2011-05-10 Siemens Medical Solutions Usa, Inc. 3D medical anatomical image system using 2D images
JP2010115317A (ja) 2008-11-12 2010-05-27 Toshiba Corp 画像処理装置
US20100125197A1 (en) * 2008-11-18 2010-05-20 Fishel Robert S Method and apparatus for addressing vascular stenotic lesions
US20100130878A1 (en) 2008-11-24 2010-05-27 General Electric Company Systems, apparatus and processes for automated blood flow assessment of vasculature
WO2010061335A1 (en) 2008-11-28 2010-06-03 Koninklijke Philips Electronics N.V. Processing myocardial perfusion data
WO2010071896A2 (en) 2008-12-19 2010-06-24 Piedmont Healthcare, Inc. System and method for lesion-specific coronary artery calcium quantification
US8447552B2 (en) 2009-01-05 2013-05-21 Siemens Aktiengesellschaft Conditioned medical testing
US8755575B2 (en) 2009-01-29 2014-06-17 Koninklijke Philips N.V. Transmural perfusion gradient image analysis
US8554490B2 (en) * 2009-02-25 2013-10-08 Worcester Polytechnic Institute Automatic vascular model generation based on fluid-structure interactions (FSI)
US9405886B2 (en) 2009-03-17 2016-08-02 The Board Of Trustees Of The Leland Stanford Junior University Method for determining cardiovascular information
WO2010117025A1 (ja) * 2009-04-10 2010-10-14 株式会社 日立メディコ 超音波診断装置、および、血流動態の分布像の構成方法
JP4926199B2 (ja) 2009-04-16 2012-05-09 富士フイルム株式会社 診断支援装置、診断支援プログラムおよび診断支援方法
US8428319B2 (en) 2009-04-24 2013-04-23 Siemens Aktiengesellschaft Automatic measurement of morphometric and motion parameters of the coronary tree from a rotational X-ray sequence
US8527251B2 (en) 2009-05-01 2013-09-03 Siemens Aktiengesellschaft Method and system for multi-component heart and aorta modeling for decision support in cardiac disease
DK2255843T3 (da) * 2009-05-29 2011-10-24 Fluidda Respi Fremgangsmåde til at bestemme behandlinger under anvendelse af patient-specifikke lungemodeller og computerfremgangsmåder
JP2011040055A (ja) 2009-07-13 2011-02-24 Advancesoft Corp シミュレーション装置、及びプログラム
WO2011014562A1 (en) * 2009-07-28 2011-02-03 North Carolina State University Methods and devices for targeted injection of microspheres
GB0913930D0 (en) 2009-08-07 2009-09-16 Ucl Business Plc Apparatus and method for registering two medical images
EP2464278B1 (en) 2009-08-10 2015-09-16 P2-Science Aps Utp for the diagnosis of stenoses and other conditions of restricted blood flow
US8224640B2 (en) 2009-09-08 2012-07-17 Siemens Aktiengesellschaft Method and system for computational modeling of the aorta and heart
WO2011038044A2 (en) 2009-09-23 2011-03-31 Lightlab Imaging, Inc. Lumen morphology and vascular resistance measurements data collection systems, apparatus and methods
US8463729B2 (en) 2009-12-01 2013-06-11 International Business Machines Corporation LP relaxation modification and cut selection in a MIP solver
WO2011139282A1 (en) 2010-05-07 2011-11-10 Rheovector Llc Method for determining shear stress and viscosity distribution in a blood vessel
US20140142398A1 (en) 2010-06-13 2014-05-22 Angiometrix Corporation Multifunctional guidewire assemblies and system for analyzing anatomical and functional parameters
US8682626B2 (en) 2010-07-21 2014-03-25 Siemens Aktiengesellschaft Method and system for comprehensive patient-specific modeling of the heart
US8157742B2 (en) 2010-08-12 2012-04-17 Heartflow, Inc. Method and system for patient-specific modeling of blood flow
US8315812B2 (en) 2010-08-12 2012-11-20 Heartflow, Inc. Method and system for patient-specific modeling of blood flow
US9119540B2 (en) 2010-09-16 2015-09-01 Siemens Aktiengesellschaft Method and system for non-invasive assessment of coronary artery disease
US20120084064A1 (en) 2010-09-29 2012-04-05 Nutech Ventures, Inc. Model-based systems and methods for analyzing and predicting outcomes of vascular interventions and reconstructions
DE102010043849B3 (de) 2010-11-12 2012-02-16 Siemens Aktiengesellschaft Vorrichtung und Computertomograph zur Bestimmung und Darstellung der Durchblutung des Herzmuskels
US10186056B2 (en) 2011-03-21 2019-01-22 General Electric Company System and method for estimating vascular flow using CT imaging
WO2012166332A1 (en) * 2011-05-27 2012-12-06 Lightlab Imaging, Inc. Optical coherence tomography and pressure based systems and methods
US9974508B2 (en) 2011-09-01 2018-05-22 Ghassan S. Kassab Non-invasive systems and methods for determining fractional flow reserve
US8696584B2 (en) 2011-10-05 2014-04-15 3Dt Holdings, Llc Devices, systems and methods for determining fractional flow reserve in the presence of a catheter
US10162932B2 (en) 2011-11-10 2018-12-25 Siemens Healthcare Gmbh Method and system for multi-scale anatomical and functional modeling of coronary circulation
US9129053B2 (en) 2012-02-01 2015-09-08 Siemens Aktiengesellschaft Method and system for advanced measurements computation and therapy planning from medical data and images using a multi-physics fluid-solid heart model
US10034614B2 (en) 2012-02-29 2018-07-31 General Electric Company Fractional flow reserve estimation
US10373700B2 (en) 2012-03-13 2019-08-06 Siemens Healthcare Gmbh Non-invasive functional assessment of coronary artery stenosis including simulation of hyperemia by changing resting microvascular resistance
US8548778B1 (en) * 2012-05-14 2013-10-01 Heartflow, Inc. Method and system for providing information from a patient-specific model of blood flow
US20130324842A1 (en) 2012-05-29 2013-12-05 The Johns Hopkins University Method for Estimating Pressure Gradients and Fractional Flow Reserve from Computed Tomography Angiography: Transluminal Attenuation Flow Encoding
KR101939778B1 (ko) 2012-07-27 2019-01-18 삼성전자주식회사 필요 혈류량 결정 방법 및 장치, 혈류 영상 생성 방법 및 장치, 심근 관류 영상 처리 방법 및 장치
EP3903672B1 (en) 2012-08-03 2023-11-01 Philips Image Guided Therapy Corporation Devices, systems, and methods for assessing a vessel
US10433740B2 (en) 2012-09-12 2019-10-08 Heartflow, Inc. Systems and methods for estimating ischemia and blood flow characteristics from vessel geometry and physiology
US9675301B2 (en) * 2012-10-19 2017-06-13 Heartflow, Inc. Systems and methods for numerically evaluating vasculature
US10595807B2 (en) 2012-10-24 2020-03-24 Cathworks Ltd Calculating a fractional flow reserve
US9943233B2 (en) 2012-10-24 2018-04-17 Cathworks Ltd. Automated measurement system and method for coronary artery disease scoring
US9858387B2 (en) 2013-01-15 2018-01-02 CathWorks, LTD. Vascular flow assessment
WO2014084398A1 (ja) 2012-11-30 2014-06-05 株式会社 東芝 医用画像診断装置
JP6091870B2 (ja) 2012-12-07 2017-03-08 東芝メディカルシステムズ株式会社 血管解析装置、医用画像診断装置、血管解析方法、及び血管解析プログラム
JP5953438B2 (ja) 2012-12-11 2016-07-20 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 冠状動脈を通る血流量を決定する方法
US9042613B2 (en) * 2013-03-01 2015-05-26 Heartflow, Inc. Method and system for determining treatments by modifying patient-specific geometrical models
US10052031B2 (en) 2013-03-04 2018-08-21 Siemens Healthcare Gmbh Determining functional severity of stenosis
US9629563B2 (en) 2013-09-04 2017-04-25 Siemens Healthcare Gmbh Method and system for functional assessment of renal artery stenosis from medical images
EP3041414B1 (en) * 2013-09-06 2018-10-10 Koninklijke Philips N.V. Processing apparatus for processing cardiac data
US10595806B2 (en) 2013-10-22 2020-03-24 Koninklijke Philips N.V. Fractional flow reserve (FFR) index with adaptive boundary condition parameters
RU2016142360A (ru) 2014-03-31 2018-05-03 Конинклейке Филипс Н.В. Устройство для обработки и способ обработки данных о сердечной деятельности живого существа
US9785746B2 (en) * 2014-03-31 2017-10-10 Heartflow, Inc. Systems and methods for determining blood flow characteristics using flow ratio
WO2016001017A1 (en) 2014-06-30 2016-01-07 Koninklijke Philips N.V. Apparatus for determining a fractional flow reserve value
EP3169237B1 (en) * 2014-07-18 2023-04-12 Koninklijke Philips N.V. Stenosis assessment
US9888968B2 (en) 2014-07-22 2018-02-13 Siemens Healthcare Gmbh Method and system for automated therapy planning for arterial stenosis
US9349178B1 (en) * 2014-11-24 2016-05-24 Siemens Aktiengesellschaft Synthetic data-driven hemodynamic determination in medical imaging
US10194812B2 (en) * 2014-12-12 2019-02-05 Medtronic Vascular, Inc. System and method of integrating a fractional flow reserve device with a conventional hemodynamic monitoring system
DE102014226685A1 (de) 2014-12-19 2016-06-23 Siemens Healthcare Gmbh Verfahren zum Identifizieren von Versorgungsgebieten,Verfahren zur graphischen Darstellung von Versorgungsgebieten, Computerprogramm und maschinenlesbares Medium sowie bildgebendes Gerät
US10390718B2 (en) * 2015-03-20 2019-08-27 East Carolina University Multi-spectral physiologic visualization (MSPV) using laser imaging methods and systems for blood flow and perfusion imaging and quantification in an endoscopic design
US10748451B2 (en) * 2016-12-15 2020-08-18 Duke University Methods and systems for generating fluid simulation models
WO2019173830A1 (en) * 2018-03-09 2019-09-12 Emory University Methods and systems for determining coronary hemodynamic characteristic(s) that is predictive of myocardial infarction
JP6582337B1 (ja) * 2018-11-13 2019-10-02 Gva Tech株式会社 法律文書データ修正方法、法律文書データ修正システム及び法律文書データ修正プログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060149522A1 (en) * 2004-12-10 2006-07-06 Dalin Tang Image-based computational mechanical analysis and indexing for cardiovascular diseases
KR20070026135A (ko) * 2005-08-30 2007-03-08 바이오센스 웹스터 인코포레이티드 생리학적 데이터를 사용한 복합양식 이미지의 세그먼트화및 등록

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022240234A1 (ko) * 2021-05-13 2022-11-17 연세대학교 산학협력단 합성곱 신경망을 이용한 투석 접근로의 협착 예측 방법 및 장치

Also Published As

Publication number Publication date
JP7304390B2 (ja) 2023-07-06
US20130211728A1 (en) 2013-08-15
US9078564B2 (en) 2015-07-14
AU2015275298A1 (en) 2016-01-28
JP2015057103A (ja) 2015-03-26
US20120041318A1 (en) 2012-02-16
JP2014079649A (ja) 2014-05-08
US8812245B2 (en) 2014-08-19
US9152757B2 (en) 2015-10-06
JP5850588B2 (ja) 2016-02-03
US20120041324A1 (en) 2012-02-16
US20150150530A1 (en) 2015-06-04
US20160133015A1 (en) 2016-05-12
JP5944606B2 (ja) 2016-07-05
DE202011111119U1 (de) 2020-01-02
KR102142242B1 (ko) 2020-08-06
US20150379230A1 (en) 2015-12-31
US20160128661A1 (en) 2016-05-12
US20130066618A1 (en) 2013-03-14
US10166077B2 (en) 2019-01-01
CA2807586A1 (en) 2012-02-16
AU2017203113B2 (en) 2017-08-03
KR101783178B1 (ko) 2017-09-28
DE202011110679U1 (de) 2015-07-02
US11116575B2 (en) 2021-09-14
DE202011110620U1 (de) 2015-10-26
KR101732328B1 (ko) 2017-05-02
JP5944607B1 (ja) 2016-07-05
US20150339459A1 (en) 2015-11-26
AU2018267637B2 (en) 2019-04-11
AU2017203113A1 (en) 2017-06-01
AU2015275289B2 (en) 2017-04-13
US20170202621A1 (en) 2017-07-20
KR101712248B1 (ko) 2017-03-03
US20160117819A1 (en) 2016-04-28
US20170340392A1 (en) 2017-11-30
US8249815B2 (en) 2012-08-21
DE202011110621U1 (de) 2015-09-24
US10080614B2 (en) 2018-09-25
AU2017279633B2 (en) 2018-07-05
US9226672B2 (en) 2016-01-05
JP2022008936A (ja) 2022-01-14
CN107007352B (zh) 2019-10-11
US8734356B2 (en) 2014-05-27
CN107174219A (zh) 2017-09-19
US11298187B2 (en) 2022-04-12
US8594950B2 (en) 2013-11-26
KR20200043500A (ko) 2020-04-27
JP2020142096A (ja) 2020-09-10
JP6700363B2 (ja) 2020-05-27
US10154883B2 (en) 2018-12-18
US20160073991A1 (en) 2016-03-17
JP2017119151A (ja) 2017-07-06
AU2017279633A1 (en) 2018-01-18
CN107122621A (zh) 2017-09-01
DE202011110676U1 (de) 2015-07-02
US20150161348A1 (en) 2015-06-11
CN107122621B (zh) 2019-03-08
US8311750B2 (en) 2012-11-13
US9268902B2 (en) 2016-02-23
JP2016104327A (ja) 2016-06-09
US10376317B2 (en) 2019-08-13
US20120041320A1 (en) 2012-02-16
US9167974B2 (en) 2015-10-27
AU2011289715B2 (en) 2016-02-04
AU2015275298B2 (en) 2017-04-06
EP2499589A1 (en) 2012-09-19
AU2018267637A1 (en) 2018-12-13
US8812246B2 (en) 2014-08-19
JP6959391B2 (ja) 2021-11-02
US11135012B2 (en) 2021-10-05
JP2016135265A (ja) 2016-07-28
US20140107935A1 (en) 2014-04-17
US8630812B2 (en) 2014-01-14
KR20190018559A (ko) 2019-02-22
JP2017140391A (ja) 2017-08-17
JP2023112190A (ja) 2023-08-10
US9235679B2 (en) 2016-01-12
US8523779B2 (en) 2013-09-03
CA3064262C (en) 2023-10-24
US11090118B2 (en) 2021-08-17
US9706925B2 (en) 2017-07-18
US9839484B2 (en) 2017-12-12
JP2015044038A (ja) 2015-03-12
US9081882B2 (en) 2015-07-14
US20230218347A1 (en) 2023-07-13
US9888971B2 (en) 2018-02-13
KR101524955B1 (ko) 2015-06-01
CN107174219B (zh) 2019-01-25
US20140148693A1 (en) 2014-05-29
US20120041322A1 (en) 2012-02-16
EP2499589B1 (en) 2016-11-09
EP2538362A3 (en) 2013-04-17
WO2012021307A2 (en) 2012-02-16
US20210282860A1 (en) 2021-09-16
US11154361B2 (en) 2021-10-26
JP2017119152A (ja) 2017-07-06
US10179030B2 (en) 2019-01-15
DE202011110677U1 (de) 2015-07-02
US20160371455A1 (en) 2016-12-22
AU2017221811A1 (en) 2017-09-21
US20180161104A1 (en) 2018-06-14
US10327847B2 (en) 2019-06-25
EP3185156B1 (en) 2022-11-16
DE202011110772U1 (de) 2016-06-24
JP6221000B2 (ja) 2017-10-25
US20140348412A1 (en) 2014-11-27
KR102351887B1 (ko) 2022-01-18
JP2016137261A (ja) 2016-08-04
KR20170107105A (ko) 2017-09-22
JP2016104328A (ja) 2016-06-09
US8734357B2 (en) 2014-05-27
US11083524B2 (en) 2021-08-10
US20160007945A1 (en) 2016-01-14
US20160364859A1 (en) 2016-12-15
US20220241019A1 (en) 2022-08-04
CN103270513A (zh) 2013-08-28
DE202011110674U1 (de) 2015-07-02
JP2019022712A (ja) 2019-02-14
US20120041319A1 (en) 2012-02-16
US9449147B2 (en) 2016-09-20
US10492866B2 (en) 2019-12-03
JP5784208B2 (ja) 2015-09-24
US20160113726A1 (en) 2016-04-28
US20170053092A1 (en) 2017-02-23
AU2018226375B2 (en) 2018-11-29
KR20150070446A (ko) 2015-06-24
US20120053919A1 (en) 2012-03-01
EP2538361A2 (en) 2012-12-26
US10321958B2 (en) 2019-06-18
US20150088478A1 (en) 2015-03-26
CA3027987A1 (en) 2012-02-16
US20160113528A1 (en) 2016-04-28
JP5947990B2 (ja) 2016-07-06
US20140207432A1 (en) 2014-07-24
US8315813B2 (en) 2012-11-20
KR101879560B1 (ko) 2018-07-17
US20210244475A1 (en) 2021-08-12
CN107007352A (zh) 2017-08-04
US9861284B2 (en) 2018-01-09
EP2975545A1 (en) 2016-01-20
US8321150B2 (en) 2012-11-27
US8496594B2 (en) 2013-07-30
JP6222882B2 (ja) 2017-11-01
US11583340B2 (en) 2023-02-21
JP2017140390A (ja) 2017-08-17
DE202011110783U1 (de) 2016-08-22
EP2538362A2 (en) 2012-12-26
EP2845537B1 (en) 2017-11-01
DE202011110680U1 (de) 2015-07-02
US20140247970A1 (en) 2014-09-04
US20160364861A1 (en) 2016-12-15
US8606530B2 (en) 2013-12-10
KR20140071495A (ko) 2014-06-11
KR20170045390A (ko) 2017-04-26
US10080613B2 (en) 2018-09-25
KR20160085919A (ko) 2016-07-18
KR102518799B1 (ko) 2023-04-11
US20120053921A1 (en) 2012-03-01
US20210267690A1 (en) 2021-09-02
JP5769352B2 (ja) 2015-08-26
JP6329282B2 (ja) 2018-05-23
US20140243663A1 (en) 2014-08-28
US8386188B2 (en) 2013-02-26
DE202011110774U1 (de) 2016-06-24
DE202011110673U1 (de) 2015-09-02
CN107184186B (zh) 2019-06-18
US20140155770A1 (en) 2014-06-05
KR20220011782A (ko) 2022-01-28
KR20160087392A (ko) 2016-07-21
US20190000554A1 (en) 2019-01-03
KR20130138739A (ko) 2013-12-19
US10531923B2 (en) 2020-01-14
JP2015044037A (ja) 2015-03-12
KR101611805B1 (ko) 2016-04-11
AU2018226375A1 (en) 2018-09-27
US11793575B2 (en) 2023-10-24
US20130054214A1 (en) 2013-02-28
KR101732329B1 (ko) 2017-05-02
US10149723B2 (en) 2018-12-11
US20160140313A1 (en) 2016-05-19
US20160110867A1 (en) 2016-04-21
US20160117815A1 (en) 2016-04-28
US20120041321A1 (en) 2012-02-16
US10702339B2 (en) 2020-07-07
US20120041739A1 (en) 2012-02-16
US20160246939A1 (en) 2016-08-25
US9697330B2 (en) 2017-07-04
US9743835B2 (en) 2017-08-29
US8311748B2 (en) 2012-11-13
JP5850583B2 (ja) 2016-02-03
CN103270513B (zh) 2017-06-09
EP2975545B1 (en) 2023-01-25
US20150363941A1 (en) 2015-12-17
US20150332015A1 (en) 2015-11-19
DE202011110672U1 (de) 2015-07-02
US8311747B2 (en) 2012-11-13
US20140249791A1 (en) 2014-09-04
US9271657B2 (en) 2016-03-01
US20160110517A1 (en) 2016-04-21
KR101952560B1 (ko) 2019-02-26
EP2845537A3 (en) 2015-06-24
US20120041323A1 (en) 2012-02-16
JP2017080492A (ja) 2017-05-18
US20150088015A1 (en) 2015-03-26
EP2849107A1 (en) 2015-03-18
US20140249792A1 (en) 2014-09-04
KR102414383B1 (ko) 2022-07-01
US20130064438A1 (en) 2013-03-14
US8315814B2 (en) 2012-11-20
JP5986331B2 (ja) 2016-09-06
AU2015275289A1 (en) 2016-01-28
US9855105B2 (en) 2018-01-02
KR101732330B1 (ko) 2017-05-24
US10702340B2 (en) 2020-07-07
EP3185156A1 (en) 2017-06-28
US20160364860A1 (en) 2016-12-15
KR20180082640A (ko) 2018-07-18
US9149197B2 (en) 2015-10-06
CN106994003A (zh) 2017-08-01
US20150161326A1 (en) 2015-06-11
US20160110866A1 (en) 2016-04-21
EP2538361A3 (en) 2013-04-17
US20180368916A1 (en) 2018-12-27
US10092360B2 (en) 2018-10-09
JP2013534154A (ja) 2013-09-02
US10682180B2 (en) 2020-06-16
AU2011289715A1 (en) 2013-03-07
AU2017221811B2 (en) 2017-12-07
DE202011110678U1 (de) 2015-07-02
DE202011111118U1 (de) 2020-01-01
US20160296287A1 (en) 2016-10-13
KR20220095252A (ko) 2022-07-06
US10052158B2 (en) 2018-08-21
CN107184186A (zh) 2017-09-22
US20160232667A1 (en) 2016-08-11
US20130151163A1 (en) 2013-06-13
US9801689B2 (en) 2017-10-31
US20150201849A1 (en) 2015-07-23
US10441361B2 (en) 2019-10-15
EP2538362B1 (en) 2016-11-16
US20120041735A1 (en) 2012-02-16
JP2015044036A (ja) 2015-03-12
EP4086919A1 (en) 2022-11-09
KR20160087393A (ko) 2016-07-21
US20140222406A1 (en) 2014-08-07
CA2807586C (en) 2019-04-23
US20140236492A1 (en) 2014-08-21
US20160117816A1 (en) 2016-04-28
CN106994003B (zh) 2020-07-14
DE202011111113U1 (de) 2019-12-10
EP2845537A2 (en) 2015-03-11
US20200188029A1 (en) 2020-06-18
CA3064262A1 (en) 2012-02-16
US20140355859A1 (en) 2014-12-04
JP6440755B2 (ja) 2018-12-19
US20180071027A1 (en) 2018-03-15
JP6192864B2 (ja) 2017-09-06
US20120150516A1 (en) 2012-06-14
US10478252B2 (en) 2019-11-19
JP5847278B2 (ja) 2016-01-20
US9585723B2 (en) 2017-03-07
DE202011110771U1 (de) 2016-06-24
US8315812B2 (en) 2012-11-20
US10159529B2 (en) 2018-12-25
US20120059246A1 (en) 2012-03-08
KR102103126B1 (ko) 2020-04-21
CA3027987C (en) 2020-02-25
US20150073722A1 (en) 2015-03-12
US11033332B2 (en) 2021-06-15

Similar Documents

Publication Publication Date Title
JP6700363B2 (ja) 患者固有の血流のモデリングのための方法およびシステム
US9668700B2 (en) Method and system for quantifying limitations in coronary artery blood flow during physical activity in patients with coronary artery disease

Legal Events

Date Code Title Description
A107 Divisional application of patent
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant