CN106980899B - 预测血管树血管路径上的血流特征的深度学习模型和系统 - Google Patents
预测血管树血管路径上的血流特征的深度学习模型和系统 Download PDFInfo
- Publication number
- CN106980899B CN106980899B CN201710213469.7A CN201710213469A CN106980899B CN 106980899 B CN106980899 B CN 106980899B CN 201710213469 A CN201710213469 A CN 201710213469A CN 106980899 B CN106980899 B CN 106980899B
- Authority
- CN
- China
- Prior art keywords
- blood vessel
- point
- feature
- sequence
- neural network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 210000004204 blood vessel Anatomy 0.000 title claims abstract description 217
- 230000017531 blood circulation Effects 0.000 title claims abstract description 163
- 238000013136 deep learning model Methods 0.000 title claims abstract description 113
- 238000013528 artificial neural network Methods 0.000 claims abstract description 111
- 230000000306 recurrent effect Effects 0.000 claims abstract description 68
- 238000004364 calculation method Methods 0.000 claims abstract description 35
- 238000012549 training Methods 0.000 claims description 111
- 238000000034 method Methods 0.000 claims description 55
- 230000015654 memory Effects 0.000 claims description 34
- 238000012545 processing Methods 0.000 claims description 34
- 238000001514 detection method Methods 0.000 claims description 28
- 230000006870 function Effects 0.000 claims description 25
- 238000000605 extraction Methods 0.000 claims description 17
- 238000011144 upstream manufacturing Methods 0.000 claims description 15
- 230000001186 cumulative effect Effects 0.000 claims description 12
- 230000002457 bidirectional effect Effects 0.000 claims description 11
- 238000004088 simulation Methods 0.000 claims description 11
- 238000005094 computer simulation Methods 0.000 claims description 9
- 238000012935 Averaging Methods 0.000 claims description 6
- 238000009472 formulation Methods 0.000 claims description 6
- 230000036772 blood pressure Effects 0.000 claims description 5
- 238000002790 cross-validation Methods 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 72
- 230000002792 vascular Effects 0.000 description 25
- 208000031481 Pathologic Constriction Diseases 0.000 description 23
- 208000037804 stenosis Diseases 0.000 description 23
- 230000036262 stenosis Effects 0.000 description 23
- 230000008569 process Effects 0.000 description 16
- 230000009467 reduction Effects 0.000 description 11
- 238000004891 communication Methods 0.000 description 10
- 239000012530 fluid Substances 0.000 description 10
- 210000002569 neuron Anatomy 0.000 description 10
- 238000004422 calculation algorithm Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 238000010801 machine learning Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000011478 gradient descent method Methods 0.000 description 5
- 238000005457 optimization Methods 0.000 description 5
- 238000003860 storage Methods 0.000 description 5
- 239000013598 vector Substances 0.000 description 5
- 238000013459 approach Methods 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 230000000004 hemodynamic effect Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000002356 single layer Substances 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 3
- 230000001746 atrial effect Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 238000004590 computer program Methods 0.000 description 3
- 238000013527 convolutional neural network Methods 0.000 description 3
- 238000013135 deep learning Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000003709 image segmentation Methods 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 230000006403 short-term memory Effects 0.000 description 3
- 208000019553 vascular disease Diseases 0.000 description 3
- 241001522296 Erithacus rubecula Species 0.000 description 2
- 238000002583 angiography Methods 0.000 description 2
- 238000013473 artificial intelligence Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 238000012417 linear regression Methods 0.000 description 2
- 230000007787 long-term memory Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000010200 validation analysis Methods 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- 200000000007 Arterial disease Diseases 0.000 description 1
- 201000000057 Coronary Stenosis Diseases 0.000 description 1
- 206010011089 Coronary artery stenosis Diseases 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000002473 artificial blood Substances 0.000 description 1
- 230000006399 behavior Effects 0.000 description 1
- 230000003542 behavioural effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 238000002591 computed tomography Methods 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000002651 drug therapy Methods 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000013152 interventional procedure Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 210000004165 myocardium Anatomy 0.000 description 1
- 238000003058 natural language processing Methods 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 230000010412 perfusion Effects 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- APTZNLHMIGJTEW-UHFFFAOYSA-N pyraflufen-ethyl Chemical compound C1=C(Cl)C(OCC(=O)OCC)=CC(C=2C(=C(OC(F)F)N(C)N=2)Cl)=C1F APTZNLHMIGJTEW-UHFFFAOYSA-N 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- 238000011277 treatment modality Methods 0.000 description 1
- 230000002861 ventricular Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- Computational Linguistics (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Image Analysis (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
Abstract
Description
Claims (25)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201711394462.6A CN107977709B (zh) | 2017-04-01 | 2017-04-01 | 预测血管树血管路径上的血流特征的深度学习模型和系统 |
CN201710213469.7A CN106980899B (zh) | 2017-04-01 | 2017-04-01 | 预测血管树血管路径上的血流特征的深度学习模型和系统 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710213469.7A CN106980899B (zh) | 2017-04-01 | 2017-04-01 | 预测血管树血管路径上的血流特征的深度学习模型和系统 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711394462.6A Division CN107977709B (zh) | 2017-04-01 | 2017-04-01 | 预测血管树血管路径上的血流特征的深度学习模型和系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106980899A CN106980899A (zh) | 2017-07-25 |
CN106980899B true CN106980899B (zh) | 2020-11-17 |
Family
ID=59343702
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711394462.6A Active CN107977709B (zh) | 2017-04-01 | 2017-04-01 | 预测血管树血管路径上的血流特征的深度学习模型和系统 |
CN201710213469.7A Active CN106980899B (zh) | 2017-04-01 | 2017-04-01 | 预测血管树血管路径上的血流特征的深度学习模型和系统 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201711394462.6A Active CN107977709B (zh) | 2017-04-01 | 2017-04-01 | 预测血管树血管路径上的血流特征的深度学习模型和系统 |
Country Status (1)
Country | Link |
---|---|
CN (2) | CN107977709B (zh) |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019046003A1 (en) * | 2017-08-30 | 2019-03-07 | Verily Life Sciences Llc | GRANULARITY CONTRAST ANALYSIS USING AUTOMATIC LEARNING TO VISUALIZE A FLOW |
CN109378043A (zh) * | 2017-10-13 | 2019-02-22 | 北京昆仑医云科技有限公司 | 基于患者的医学图像生成诊断报告的系统和方法及介质 |
CN108305246B (zh) * | 2017-11-15 | 2020-10-09 | 深圳科亚医疗科技有限公司 | 基于医学图像预测血流特征的装置及系统 |
CN107978371B (zh) * | 2017-11-30 | 2021-04-02 | 博动医学影像科技(上海)有限公司 | 快速计算微循环阻力的方法及系统 |
CN109635876B (zh) * | 2017-12-21 | 2021-04-09 | 北京科亚方舟医疗科技股份有限公司 | 为生理树结构生成解剖标签的计算机实现的方法、装置和介质 |
CN108461152A (zh) * | 2018-01-12 | 2018-08-28 | 平安科技(深圳)有限公司 | 医疗模型训练方法、医疗识别方法、装置、设备及介质 |
CN108363774B (zh) * | 2018-02-09 | 2020-10-27 | 西北大学 | 一种基于多层卷积神经网络的药物关系分类方法 |
EP3755504A1 (en) * | 2018-02-23 | 2020-12-30 | ABB Schweiz AG | Robot system and operation method |
CN108462707B (zh) * | 2018-03-13 | 2020-08-28 | 中山大学 | 一种基于深度学习序列分析的移动应用识别方法 |
US10430949B1 (en) * | 2018-04-24 | 2019-10-01 | Shenzhen Keya Medical Technology Corporation | Automatic method and system for vessel refine segmentation in biomedical images using tree structure based deep learning model |
CN108665449B (zh) * | 2018-04-28 | 2022-11-15 | 杭州脉流科技有限公司 | 预测血流矢量路径上的血流特征的深度学习模型及装置 |
CN108711847B (zh) * | 2018-05-07 | 2019-06-04 | 国网山东省电力公司电力科学研究院 | 一种基于编码解码长短期记忆网络的短期风电功率预测方法 |
US10937549B2 (en) | 2018-05-22 | 2021-03-02 | Shenzhen Keya Medical Technology Corporation | Method and device for automatically predicting FFR based on images of vessel |
CN110070534B (zh) * | 2018-05-22 | 2021-11-23 | 深圳科亚医疗科技有限公司 | 用于基于血管图像自动获取特征序列的方法和预测血流储备分数的装置 |
CN108830848B (zh) * | 2018-05-25 | 2022-07-05 | 深圳科亚医疗科技有限公司 | 利用计算机确定血管上的血管状况参数的序列的装置和系统 |
CN109949300B (zh) * | 2018-06-03 | 2020-07-17 | 北京昆仑医云科技有限公司 | 解剖树结构分析的方法、系统和计算机可读介质 |
CN109036551B (zh) * | 2018-07-10 | 2021-05-11 | 北京心世纪医疗科技有限公司 | 一种冠状动脉生理学指标关系建立及应用方法、装置 |
CN109493933B (zh) * | 2018-08-08 | 2022-04-05 | 浙江大学 | 一种基于注意力机制的不良心血管事件的预测装置 |
CN110599444B (zh) * | 2018-08-23 | 2022-04-19 | 深圳科亚医疗科技有限公司 | 预测血管树的血流储备分数的设备、系统以及非暂时性可读存储介质 |
CN110490927B (zh) * | 2018-08-23 | 2022-04-12 | 深圳科亚医疗科技有限公司 | 用于为图像中的对象生成中心线的方法、装置和系统 |
CN109124635B (zh) * | 2018-09-25 | 2022-09-02 | 上海联影医疗科技股份有限公司 | 模型生成方法、磁共振成像扫描方法及系统 |
CN110664524B (zh) * | 2018-10-08 | 2022-11-25 | 科亚医疗科技股份有限公司 | 用于引导血管中的支架植入的装置、系统和介质 |
CN110084867B (zh) * | 2019-04-24 | 2023-06-20 | 河北科技大学 | 基于cnn和多电极电磁测量的动静脉图像重建方法 |
CN110111840B (zh) * | 2019-05-14 | 2021-04-09 | 吉林大学 | 一种体细胞突变检测方法 |
EP3751580B1 (en) * | 2019-06-11 | 2024-04-03 | Siemens Healthineers AG | Hemodynamic analysis of vessels using recurrent neural network |
CN110459324B (zh) * | 2019-06-27 | 2023-05-23 | 平安科技(深圳)有限公司 | 基于长短期记忆模型的疾病预测方法、装置和计算机设备 |
CN110522465B (zh) * | 2019-07-22 | 2024-09-06 | 通用电气精准医疗有限责任公司 | 基于图像数据估计血液动力学参数的方法和系统 |
CN110517279B (zh) * | 2019-09-20 | 2022-04-05 | 北京深睿博联科技有限责任公司 | 头颈血管中心线提取方法及装置 |
CN111341420B (zh) * | 2020-02-21 | 2022-08-30 | 四川大学 | 基于全心七维模型的心血管影像识别系统及方法 |
CN111680447B (zh) * | 2020-04-21 | 2023-11-17 | 深圳睿心智能医疗科技有限公司 | 血流特征预测方法、装置、计算机设备和存储介质 |
CN111523593B (zh) * | 2020-04-22 | 2023-07-21 | 北京康夫子健康技术有限公司 | 用于分析医学影像的方法和装置 |
CN112052617B (zh) * | 2020-09-11 | 2024-04-02 | 西安交通大学 | 一种非疾病诊断用途的用于预测支路血管流场的方法及系统 |
CN112869704B (zh) * | 2021-02-02 | 2022-06-17 | 苏州大学 | 一种基于循环自适应多目标加权网络的糖尿病视网膜病变区域自动分割方法 |
CN112967234B (zh) * | 2021-02-09 | 2022-12-09 | 复旦大学附属中山医院 | 冠状动脉功能生理学病变模式定量评价方法 |
CN113035298B (zh) * | 2021-04-02 | 2023-06-20 | 南京信息工程大学 | 递归生成大阶数行限制覆盖阵列的药物临床试验设计方法 |
CN113223671B (zh) * | 2021-05-18 | 2022-05-27 | 浙江工业大学 | 基于条件生成对抗网络和约束规则的微血管树生成方法 |
CN113539516B (zh) * | 2021-07-07 | 2024-06-14 | 深圳睿心智能医疗科技有限公司 | 治疗方案的应用后效果的获取方法及装置 |
CN113744246B (zh) * | 2021-09-03 | 2023-07-18 | 乐普(北京)医疗器械股份有限公司 | 根据血管断层扫描图像预测血流储备分数的方法和装置 |
CN113705531B (zh) * | 2021-09-10 | 2023-06-20 | 北京航空航天大学 | 一种基于显微成像的合金粉末夹杂物的识别方法 |
CN114757944B (zh) * | 2022-06-13 | 2022-08-16 | 深圳科亚医疗科技有限公司 | 一种血管图像的分析方法、装置及存储介质 |
CN117094917B (zh) * | 2023-10-20 | 2024-02-06 | 高州市人民医院 | 一种心血管3d打印数据处理方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014022804A1 (en) * | 2012-08-03 | 2014-02-06 | Volcano Corporation | Devices, systems, and methods for assessing a vessel |
CN104854592A (zh) * | 2012-09-12 | 2015-08-19 | 哈特弗罗公司 | 用于根据血管几何形状和生理学估计血流特性的系统和方法 |
CN106250707A (zh) * | 2016-08-12 | 2016-12-21 | 王双坤 | 一种基于深度学习算法处理头部结构像数据的方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8315812B2 (en) * | 2010-08-12 | 2012-11-20 | Heartflow, Inc. | Method and system for patient-specific modeling of blood flow |
CN104768465B (zh) * | 2012-11-06 | 2018-06-19 | 皇家飞利浦有限公司 | 血流储备分数(ffr)指标 |
CN103186895A (zh) * | 2013-04-15 | 2013-07-03 | 武汉大学 | 一种基于神经网络模型的ct灌注医疗图像智能融合方法 |
US9700219B2 (en) * | 2013-10-17 | 2017-07-11 | Siemens Healthcare Gmbh | Method and system for machine learning based assessment of fractional flow reserve |
-
2017
- 2017-04-01 CN CN201711394462.6A patent/CN107977709B/zh active Active
- 2017-04-01 CN CN201710213469.7A patent/CN106980899B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014022804A1 (en) * | 2012-08-03 | 2014-02-06 | Volcano Corporation | Devices, systems, and methods for assessing a vessel |
CN104854592A (zh) * | 2012-09-12 | 2015-08-19 | 哈特弗罗公司 | 用于根据血管几何形状和生理学估计血流特性的系统和方法 |
CN106250707A (zh) * | 2016-08-12 | 2016-12-21 | 王双坤 | 一种基于深度学习算法处理头部结构像数据的方法 |
Non-Patent Citations (1)
Title |
---|
A Machine Learning Approach for Computation of Fractional Flow Reserve from Coronary Computed Tomography;Itu L et al.;《J Appl Physiol》;20160414;第42-48页 * |
Also Published As
Publication number | Publication date |
---|---|
CN106980899A (zh) | 2017-07-25 |
CN107977709A (zh) | 2018-05-01 |
CN107977709B (zh) | 2021-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106980899B (zh) | 预测血管树血管路径上的血流特征的深度学习模型和系统 | |
US10249048B1 (en) | Method and system for predicting blood flow features based on medical images | |
US11538161B2 (en) | Systems and methods for determining blood vessel conditions | |
US10888234B2 (en) | Method and system for machine learning based assessment of fractional flow reserve | |
JP6539736B2 (ja) | 純粋幾何学的機械学習に基づいて血流予備量比を求める方法及びシステム | |
US10463336B2 (en) | Method and system for purely geometric machine learning based fractional flow reserve | |
US10595790B2 (en) | Method and system for personalized non-invasive hemodynamic assessment of renal artery stenosis from medical images | |
KR102358996B1 (ko) | 혈관 기하학적 구조 및 생리학으로부터 혈류 특징들을 추정하기 위한 시스템들 및 방법들 | |
CN108962381B (zh) | 用于动脉粥样硬化的个性化评定、长期预测和管理的基于学习的方法 | |
CN110998744A (zh) | 针对弥漫性和串联性病变中冠状动脉疾病的非侵入性评估和治疗指导 | |
CN109979593A (zh) | 血管路径的健康半径的预测方法、血管路径的候选狭窄处的预测方法、血管狭窄度预测装置 | |
WO2016075331A2 (en) | Method and system for purely geometric machine learning based fractional flow reserve | |
CN108665449B (zh) | 预测血流矢量路径上的血流特征的深度学习模型及装置 | |
CN109949300B (zh) | 解剖树结构分析的方法、系统和计算机可读介质 | |
Gharleghi et al. | Deep learning for time averaged wall shear stress prediction in left main coronary bifurcations | |
CN117393162A (zh) | 术后风险预测方法、装置、存储介质及电子设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Wang Xin Inventor after: Cao Kunlin Inventor after: Zhou Yujie Inventor after: Yin Youbing Inventor after: Li Yuwei Inventor after: Wu Dan Inventor before: Wang Xin Inventor before: Cao Kunlin Inventor before: Yin Youbing Inventor before: Li Yuwei Inventor before: Wu Dan |
|
CB03 | Change of inventor or designer information | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP01 | Change in the name or title of a patent holder |
Address after: Block B, Mingyang International Center, 46 xizongbu Hutong, Dongcheng District, Beijing, 100005 Patentee after: Beijing Keya ark Medical Technology Co.,Ltd. Address before: Block B, Mingyang International Center, 46 xizongbu Hutong, Dongcheng District, Beijing, 100005 Patentee before: BEIJING CURACLOUD TECHNOLOGY Co.,Ltd. |
|
CP01 | Change in the name or title of a patent holder | ||
CP03 | Change of name, title or address |
Address after: 3f301, East Tower, hadmen square, 8 Chongwenmenwai Street, Dongcheng District, Beijing 100062 Patentee after: Beijing Keya ark Medical Technology Co.,Ltd. Address before: Block B, Mingyang International Center, 46 xizongbu Hutong, Dongcheng District, Beijing, 100005 Patentee before: Beijing Keya ark Medical Technology Co.,Ltd. |
|
CP03 | Change of name, title or address | ||
CP01 | Change in the name or title of a patent holder |
Address after: 3f301, East Tower, hadmen square, 8 Chongwenmenwai Street, Dongcheng District, Beijing 100062 Patentee after: Keya Medical Technology Co.,Ltd. Address before: 3f301, East Tower, hadmen square, 8 Chongwenmenwai Street, Dongcheng District, Beijing 100062 Patentee before: Beijing Keya ark Medical Technology Co.,Ltd. |
|
CP01 | Change in the name or title of a patent holder |