KR20120068857A - 반도체 발광 소자 - Google Patents

반도체 발광 소자 Download PDF

Info

Publication number
KR20120068857A
KR20120068857A KR1020127006037A KR20127006037A KR20120068857A KR 20120068857 A KR20120068857 A KR 20120068857A KR 1020127006037 A KR1020127006037 A KR 1020127006037A KR 20127006037 A KR20127006037 A KR 20127006037A KR 20120068857 A KR20120068857 A KR 20120068857A
Authority
KR
South Korea
Prior art keywords
layer
light
light emitting
sapphire substrate
diffraction
Prior art date
Application number
KR1020127006037A
Other languages
English (en)
Other versions
KR101417541B1 (ko
Inventor
사또시 가미야마
모또아끼 이와야
히로시 아마노
이사무 아까사끼
도시유끼 곤도
후미하루 데라마에
쯔까사 기따노
아쯔시 스즈끼
Original Assignee
엘시드 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘시드 가부시끼가이샤 filed Critical 엘시드 가부시끼가이샤
Publication of KR20120068857A publication Critical patent/KR20120068857A/ko
Application granted granted Critical
Publication of KR101417541B1 publication Critical patent/KR101417541B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/10Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a light reflecting structure, e.g. semiconductor Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0066Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound
    • H01L33/007Processes for devices with an active region comprising only III-V compounds with a substrate not being a III-V compound comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials

Abstract

반도체층과 투광성 기판 사이의 반사를 억제하여 광의 취출 효율을 향상시킨다. 반도체 발광 소자에서, 기판의 표면 상에 형성되며 발광층을 포함하는 반도체 적층부와, 기판의 표면측에 형성되며 발광층으로부터 발하여지는 광이 입사되고 그 광의 광학 파장보다 크고 그 광의 코히어런트 길이보다 작은 주기로 오목부 또는 볼록부가 형성된 회절면과, 기판의 이면측에 형성되며 회절면에서 회절된 광을 반사하여 회절면으로 재입사시키는 반사면을 구비하도록 하였다.

Description

반도체 발광 소자{SEMICONDUCTOR LIGHT EMITTING ELEMENT}
본 발명은, 반도체 발광 소자에 관한 것이다.
저온 퇴적 완충층 기술, p형 전도성 제어, n형 전도성 제어, 고효율 발광층의 제작법 등의 기간 기술의 축적에 의해, 고휘도의 청색, 녹색, 백색 등의 발광 다이오드가 이미 실용화되어 있다. 현재, 발광 다이오드에서는, 반도체의 굴절률이 기판, 공기 등의 굴절률보다도 커서, 발광층으로부터 발하여진 광의 많은 부분이 전반사 혹은 프레넬 반사에 의해 발광 다이오드의 외부로 취출할 수 없기 때문에, 광 취출 효율의 향상이 과제로 되고 있다.
이 과제를 해결하기 위해서, 반도체 표면에 수마이크론 주기의 요철 가공을 실시한 구조가 제안되어 있다(예를 들면, 비특허 문헌 1 참조). 반도체 표면의 광 취출측에 요철 구조를 형성하면, 광 산란의 효과에 의해 전반사는 소실되고, 비교적 넓은 방사각에 걸쳐 50% 정도의 투과율을 얻을 수 있어, 광 취출 효율을 50% 정도까지 향상시킬 수 있다.
또한, 요철 구조의 주기를 발광 다이오드의 광학 파장의 2배 이하까지 작게 하여, 광 취출 효율을 향상시키는 것도 제안되어 있다(예를 들면, 특허 문헌 1 참조). 이 경우, 수마이크론 주기의 요철 구조와는 광 취출의 메카니즘이 상이하여, 광의 파동성이 현재화되어, 굴절률의 경계가 소실되어 프레넬 반사가 억제된다. 이와 같은 구조는, 포토닉 결정이나, 모스아이 구조로 불리고 있으며, 광 취출 효율을 50% 정도까지는 향상시킬 수 있다.
일본 특허 출원 공개 제2005-354020호 공보
Japanese Journal of Applied Physics Vol.41, 2004, L1431
그러나, 특허 문헌 1 및 비특허 문헌 1에 들어진 광 취출 효율의 향상은 한정적이며, 한층 더한 효율의 향상이 요망되고 있다.
본 발명은, 상기 사정을 감안하여 이루어진 것이며, 그 목적으로 하는 바는, 광 취출 효율을 향상시킬 수 있는 반도체 발광 소자를 제공하는 것에 있다.
상기 목적을 달성하기 위해서, 본 발명에서는, 기판의 표면 상에 형성되며, 발광층을 포함하는 반도체 적층부와, 상기 기판의 표면측에 형성되며, 상기 발광층으로부터 발하여지는 광이 입사되고, 그 광의 광학 파장보다 크고 그 광의 코히어런트 길이보다 작은 주기로 오목부 또는 볼록부가 형성된 회절면과, 상기 기판의 이면측에 형성되며, 상기 회절면에서 회절된 광을 반사하여 상기 회절면으로 재입사시키는 반사면을 구비하는 반도체 발광 소자가 제공된다.
상기 반도체 발광 소자에 있어서, 상기 오목부 또는 상기 볼록부의 주기는, 상기 광학 파장의 2배보다 커도 된다.
상기 반도체 발광 소자에 있어서, 상기 오목부 또는 상기 볼록부의 주기는, 상기 코히어런트 길이의 절반 이하이어도 된다.
상기 반도체 발광 소자에 있어서, 상기 발광층은, 청색광을 발하고, 상기 주기는, 300㎚ 이상 1500㎚ 이하이어도 된다.
상기 반도체 발광 소자에 있어서, 상기 회절면은, 굴절률의 차가 0.5 이상의 상이한 재료끼리의 계면에 형성되어 있어도 된다.
본 발명의 반도체 발광 소자에 따르면, 광 취출 효율을 향상시킬 수 있다.
도 1은 본 발명의 제1 실시 형태를 도시하는 반도체 발광 소자의 모식 단면도이다.
도 2는 사파이어 기판을 도시하고, (a)가 모식 사시도, (b)가 A-A 단면을 도시하는 모식 설명도, (c)가 모식 확대 설명도이다.
도 3은 사파이어 기판을 가공하는 설명도로서, (a)는 회절면에 제1 마스크층이 형성된 상태를 도시하고, (b)는 제1 마스크층 상에 레지스트층이 형성된 상태를 도시하고, (c)는 레지스트층에 선택적으로 전자선을 조사하는 상태를 도시하고, (d)는 레지스트층을 현상하여 제거한 상태를 도시하고, (e)는 제2 마스크층이 형성된 상태를 도시하고 있다.
도 4는 사파이어 기판을 가공하는 설명도로서, (a)는 레지스트층을 완전히 제거한 상태를 도시하고, (b)는 제2 마스크층을 마스크로 하여 제1 마스크층을 에칭한 상태를 도시하고, (c)는 제2 마스크층을 제거한 상태를 도시하고, (d)는 제1 마스크층을 마스크로 하여 회절면을 에칭한 상태를 도시하고, (e)는 제1 마스크층을 제거한 상태를 도시하고, (f)는 웨트 에칭에 의해 볼록부에 만곡부를 형성한 상태를 도시한다.
도 5는 변형예를 도시하는 반도체 발광 소자의 모식 단면도이다.
도 6은 변형예를 도시하는 반도체 발광 소자의 모식 단면도이다.
도 7은 본 발명의 제2 실시 형태를 도시하는 반도체 발광 소자의 모식 단면도이다.
도 8은 사파이어 기판을 도시하고, (a)가 모식 사시도, (b)가 B-B 단면을 도시하는 모식 종단면도이다.
도 9는 상이한 굴절률의 계면에서의 광의 회절 작용을 도시하는 설명도로서, (a)는 계면에서 반사되는 상태를 도시하고, (b)는 계면을 투과하는 상태를 도시한다.
도 10은 Ⅲ족 질화물 반도체층으로부터 사파이어 기판으로 입사하는 광의 회절 작용을 도시하는 설명도이다.
도 11은 오목부 또는 볼록부의 주기를 500㎚로 한 경우의, Ⅲ족 질화물 반도체층과 사파이어 기판의 계면에서의, 반도체층측으로부터 계면으로 입사하는 광의 입사각과, 계면에서의 회절 작용에 의한 반사각의 관계를 도시하는 그래프이다.
도 12는 오목부 또는 볼록부의 주기를 500㎚로 한 경우의, Ⅲ족 질화물 반도체층과 사파이어 기판의 계면에서의, 반도체층측으로부터 계면으로 입사하는 광의 입사각과, 계면에서의 회절 작용에 의한 투과각의 관계를 도시하는 그래프이다.
도 13은 오목부 또는 볼록부의 주기를 500㎚로 한 경우의, Ⅲ족 질화물 반도체층과 사파이어 기판의 계면에서의, 반도체층측으로부터 계면으로 1회째에 입사하는 광의 입사각과, 계면에서의 회절 작용에 의해 반사된 후, 2회째에 입사한 광의 계면에서의 회절 작용에 의한 투과각의 관계를 도시하는 그래프이다.
도 14는 광학 파장을 258㎚로 하고, 사파이어 기판과 Ⅲ족 질화물 반도체층의 계면에 회절면을 형성한 경우의, 회절면의 주기와 상대광 출력의 관계를 도시하는 그래프이다.
도 15는 사파이어 기판을 가공하는 설명도로서, (a)는 회절면에 제1 마스크층이 형성된 상태를 도시하고, (b)는 제1 마스크층 상에 레지스트층이 형성된 상태를 도시하고, (c)는 레지스트층에 선택적으로 전자선을 조사하는 상태를 도시하고, (d)는 레지스트층을 현상하여 제거한 상태를 도시하고, (e)는 제2 마스크층이 형성된 상태를 도시하고 있다.
도 16은 사파이어 기판을 가공하는 설명도로서, (a)는 레지스트층을 완전히 제거한 상태를 도시하고, (b)는 제2 마스크층을 마스크로 하여 제1 마스크층을 에칭한 상태를 도시하고, (c)는 제2 마스크층을 제거한 상태를 도시하고, (d)는 제1 마스크층을 마스크로 하여 회절면을 에칭한 상태를 도시하고, (e)는 제1 마스크층을 제거한 상태를 도시하고 있다.
도 17은 변형예를 도시하는 반도체 발광 소자의 모식 단면도이다.
도 18은 변형예를 도시하는 반도체 발광 소자의 모식 단면도이다.
도 19는 변형예를 도시하는 반도체 발광 소자의 모식 단면도이다.
도 1 내지 도 4는 본 발명의 제1 실시 형태를 도시하는 것이며, 도 1은 발광 소자의 모식 단면도이다.
도 1에 도시한 바와 같이, 발광 소자(1)는, 회절면(2a)을 갖는 사파이어 기판(2)의 표면 상에, Ⅲ족 질화물 반도체층으로 이루어지는 반도체 적층부(19)가 형성된 것이다. 이 발광 소자(1)는, 페이스 업형이며, 사파이어 기판(2)과 반대측으로부터 주로 광이 취출된다. Ⅲ족 질화물 반도체층은, 버퍼층(10), n형 GaN층(12), 다중 양자웰 활성층(14), 전자 블록층(16), p형 GaN층(18)을 사파이어 기판(2)측으로부터 이 순서로 갖고 있다. p형 GaN층(18) 상에는 p측 전극(20)이 형성됨과 함께, n형 GaN층(12) 상에는 n측 전극(24)이 형성되어 있다.
사파이어 기판(2)은, 질화물 반도체가 성장되는 c면({0001})인 회절면(2a)을 표면측에 갖고 있다. 회절면(2a)에는, 평탄부(2b)(도 2의 (a) 참조)와, 평탄부(2b)에 주기적으로 형성된 복수의 볼록부(2c)(도 2의 (a) 참조)가 형성되어 있다. 각 볼록부(2c)의 형상은, 원뿔, 다각뿔 등의 뿔 형상 외에, 뿔의 상부를 잘라낸 원뿔대, 다각뿔대 등의 뿔대 형상으로 할 수 있다. 본 실시 형태에서는, 주기적으로 배치되는 각 볼록부(2c)에 의해, 광의 회절 작용을 얻을 수 있다.
사파이어 기판(2)의 이면측에는, 예를 들면 Al로 이루어지는 반사막(26)이 형성되어 있다. 이 발광 소자(1)에서는, 반사막(26)의 사파이어 기판(2)측의 면이 반사면(28)을 이루고 있어, 활성층(14)으로부터 발하여진 광이 회절면(2a)을 회절 작용에 의해 투과하고, 투과한 광을 반사면(28)에서 반사한다. 이에 의해, 회절 작용에 의해 투과한 광을 회절면(2a)에 재입사시켜, 회절면(2a)에서 다시 회절 작용을 이용하여 투과시킴으로써, 복수의 모드에서 광을 소자 외부로 취출할 수 있다.
버퍼층(10)은, 사파이어 기판(2)의 회절면(2a) 상에 형성되며, AlN으로 구성되어 있다. 본 실시 형태에서는, 버퍼층(10)은, MOCVD(Metal Organic Chemical Vapor Deposition)법에 의해 형성되지만, 스퍼터링법을 이용할 수도 있다. 또한, 버퍼층(10)은, 각 볼록부(2c)를 따라서 주기적으로 형성되는 복수의 뿔대 형상의 오목부를 회절면(2a)측에 갖고 있다. 제1 도전형층으로서의 n형 GaN층(12)은, 버퍼층(10) 상에 형성되며, n-GaN으로 구성되어 있다. 발광층으로서의 다중 양자웰 활성층(14)은, n형 GaN층(12) 상에 형성되며, GalnN/GaN으로 구성되고, 전자 및 정공의 주입에 의해 청색광을 발한다. 여기서, 청색광이란, 예를 들면, 피크 파장이 430㎚ 이상 480㎚ 이하의 광을 말하는 것으로 한다. 본 실시 형태에서는, 다중 양자웰 활성층(14)의 발광의 피크 파장은 450㎚이다.
전자 블록층(16)은, 다중 양자웰 활성층(14) 상에 형성되며, p-AIGaN으로 구성되어 있다. 제2 도전형층으로서의 p형 GaN층(18)은, 전자 블록층(16) 상에 형성되며, p-GaN으로 구성되어 있다. n형 GaN층(12)부터 p형 GaN층(18)까지는, Ⅲ족 질화물 반도체의 에피택셜 성장에 의해 형성되고, 사파이어 기판(2)의 회절면(2a)에는 주기적으로 볼록부(2c)가 형성되어 있지만, Ⅲ족 질화물 반도체의 성장 초기에 가로 방향 성장에 의한 평탄화가 도모된다. 또한, 제1 도전형층, 활성층 및 제2 도전형층을 적어도 포함하고, 제1 도전형층 및 제2 도전형층에 전압이 인가되면, 전자 및 정공의 재결합에 의해 활성층에서 광이 발하여지는 것이면, 반도체층의 층 구성은 임의이다.
p측 전극(20)은, p형 GaN층(18) 상에 형성되며, 예를 들면 ITO(Indium Tin Oxide) 등의 투명한 재료로 이루어진다. 본 실시 형태에서는, p측 전극(120)은, 진공 증착법, 스퍼터링법, CVD(Chemical Vapor Deposition)법 등에 의해 형성된다.
n측 전극(24)은, p형 GaN층(18)으로부터 n형 GaN층(12)을 에칭하여, 노출된 n형 GaN층(12) 상에 형성된다. n측 전극(24)은, 예를 들면 Ti/Al/Ti/Au로 구성되고, 진공 증착법, 스퍼터링법, CVD(Chemical Vapor Deposition)법 등에 의해 형성된다.
다음으로, 도 2를 참조하여 사파이어 기판(2)에 대하여 상술한다. 도 2는 사파이어 기판을 도시하고, (a)가 모식 사시도, (b)가 A-A 단면을 도시하는 모식 설명도, (c)가 모식 확대 설명도이다.
도 2의 (a)에 도시한 바와 같이, 회절면(2a)은, 평면에서 보아, 각 볼록부(2c)의 중심이 정삼각형의 정점의 위치로 되도록, 소정의 주기로 가상의 삼각 격자의 교점에 정렬하여 형성된다. 각 볼록부(2c)의 주기는, 다중 양자웰 활성층(14)으로부터 발하여지는 광의 광학 파장보다 크고, 그 광의 코히어런트 길이보다 작게 되어 있다. 또한, 여기서 말하는 주기란, 인접하는 볼록부(2c)에서의 높이의 피크 위치의 거리를 말한다. 또한, 광학 파장이란, 실제의 파장을 굴절률로 나눈 값을 의미한다. 또한, 코히어런트 길이란, 소정의 스펙트럼 폭의 포톤군의 개개의 파장의 차이에 의해, 파의 주기적 진동이 서로 상쇄되어, 가간섭성이 소실될 때까지의 거리에 상당한다. 코히어런트 길이 lc는, 광의 파장을 λ, 그 광의 반값 폭을 Δλ로 하면, 대략 lc=(λ2/Δλ)의 관계에 있다. 여기서, 각 볼록부(2c)의 주기는, 다중 양자웰 활성층(14)으로부터 발하여지는 광의 광학 파장의 2배보다 큰 것이 바람직하다. 또한, 각 볼록부(2c)의 주기는, 다중 양자웰 활성층(14)으로부터 발하여지는 광의 코히어런트 길이의 절반 이하인 것이 바람직하다.
본 실시 형태에서는, 각 볼록부(2c)의 주기는, 500㎚이다. 활성층(14)으로부터 발하여지는 광의 파장은 450㎚이고, Ⅲ족 질화물 반도체층의 굴절률이 2.4이기 때문에, 그 광학 파장은 187.5㎚이다. 또한, 활성층(14)으로부터 발하여지는 광의 반값 폭은 63㎚이기 때문에, 그 광의 코히어런트 길이는 3214㎚이다. 즉, 회절면(2a)의 주기는, 활성층(14)의 광학 파장의 2배보다 크고, 또한, 코히어런트 길이의 절반 이하로 되어 있다.
본 실시 형태에서는, 도 2의 (c)에 도시한 바와 같이, 회절면(2a)의 각 볼록부(2c)는, 평탄부(2b)로부터 상방으로 신장하는 측면(2d)과, 측면(2d)의 상단으로부터 볼록부(2c)의 중심측으로 만곡하여 신장하는 만곡부(2e)와, 만곡부(2e)와 연속적으로 형성되는 평탄한 상면(2f)을 갖는다. 후술하는 바와 같이, 측면(2d)과 상면(2f)의 회합부에 의해 각이 형성된 만곡부(2e) 형성 전의 볼록부(2c)(도 4의 (e) 참조)의 웨트 에칭에 의해, 각을 없앰으로써 만곡부(2e)가 형성된다. 또한, 평탄한 상면(2f)이 소실되어 볼록부(2c)의 상측 전체가 만곡부(2e)로 될 때까지 웨트 에칭을 실시하도록 해도 지장은 없다. 본 실시 형태에서는, 구체적으로, 각 볼록부(2c)는, 기단부의 직경이 200㎚이고, 높이는 250㎚로 되어 있다. 사파이어 기판(2)의 회절면(2a)은, 각 볼록부(2c) 이외에는 평탄부(2b)로 되어 있어, 반도체층의 가로 방향 성장이 조장되도록 되어 있다.
여기서, 도 3 및 도 4를 참조하여 발광 소자(1)용의 사파이어 기판(2)의 제작 방법에 대하여 설명한다. 도 3은 사파이어 기판을 가공하는 설명도로서, (a)는 회절면에 제1 마스크층이 형성된 상태를 도시하고, (b)는 제1 마스크층 상에 레지스트층이 형성된 상태를 도시하고, (c)는 레지스트층에 선택적으로 전자선을 조사하는 상태를 도시하고, (d)는 레지스트층을 현상하여 제거한 상태를 도시하고, (e)는 제2 마스크층이 형성된 상태를 도시하고 있다.
우선, 도 3의 (a)에 도시한 바와 같이, 평판 형상의 사파이어 기판(2)을 준비하고, 사파이어 기판(2)의 표면에 제1 마스크층(30)을 형성한다. 제1 마스크층(30)은, 예를 들면 SiO2로 이루어지고, 스퍼터링법, 진공 증착법, CVD법 등에 의해 형성된다. 제1 마스크층(30)의 두께는, 임의이지만, 예를 들면 1.0㎛이다.
다음으로, 도 3의 (b)에 도시한 바와 같이, 사파이어 기판(2)의 제1 마스크층(30) 상에 레지스트층(32)을 형성한다. 레지스트층(32)은, 예를 들면, 일본 제온사제의 ZEP 등의 전자선 감광 재료로 이루어지며, 제1 마스크층(30) 상에 도포된다. 레지스트층(32)의 두께는, 임의이지만, 예를 들면 100㎚ 내지 2.0㎛이다.
다음으로, 도 3의 (c)에 도시한 바와 같이, 레지스트층(32)과 이격하여 스텐실 마스크(34)를 세트한다. 레지스트층(32)과 스텐실 마스크(34) 사이는, 1.0㎛?100㎛의 간극이 있다. 스텐실 마스크(34)는, 예를 들면 다이아몬드, SiC 등의 재료로 형성되어 있고, 두께는 임의이지만, 예를 들면, 두께가 500㎚?100㎛로 된다. 스텐실 마스크(34)는, 전자선을 선택적으로 투과하는 개구(34a)를 갖고 있다.
이 후, 도 3의 (c)에 도시한 바와 같이, 스텐실 마스크(34)에 전자선을 조사하여, 레지스트층(32)을 스텐실 마스크(34)의 각 개구(34a)를 통과한 전자선에 노출시킨다. 구체적으로는, 예를 들면, 10?100μC/㎠의 전자 빔을 이용하여, 스텐실 마스크(34)의 패턴을 레지스트층(32)에 전사한다.
전자선의 조사가 완료된 후, 소정의 현상액을 이용하여 레지스트층(32)을 현상한다. 이에 의해, 도 3의 (d)에 도시한 바와 같이, 전자선이 조사된 부위가 현상액에 용출되고, 전자선이 조사되지 않은 부위가 잔류하여, 개구(32a)가 형성된다. 레지스트층(32)으로서 일본 제온사제의 ZEP를 이용한 경우, 현상액으로서 예를 들면 아세트산아밀을 이용할 수 있다.
다음으로, 도 3의 (e)에 도시한 바와 같이, 레지스트층(32)이 패터닝된 제1 마스크층(30) 상에, 제2 마스크층(36)을 형성한다. 이와 같이 하여, 제1 마스크층(30) 상에 제2 마스크층(36)을 전자선 조사를 이용하여 패터닝한다. 제2 마스크층(36)은, 예를 들면 Ni로 이루어지고, 스퍼터링법, 진공 증착법, CVD법 등에 의해 형성된다. 제2 마스크층(36)의 두께는, 임의이지만, 예를 들면 20㎚이다.
도 4는 사파이어 기판을 가공하는 설명도로서, (a)는 레지스트층을 완전히 제거한 상태를 도시하고, (b)는 제2 마스크층을 마스크로 하여 제1 마스크층을 에칭한 상태를 도시하고, (c)는 제2 마스크층을 제거한 상태를 도시하고, (d)는 제1 마스크층을 마스크로 하여 회절면을 에칭한 상태를 도시하고, (e)는 제1 마스크층을 제거한 상태를 도시하고, (f)는 웨트 에칭에 의해 볼록부에 만곡부를 형성한 상태를 도시한다.
도 4의 (a)에 도시한 바와 같이, 레지스트층(32)을 박리액을 이용하여 제거한다. 예를 들면, 레지스트층(32)을 박리액 중에 침지하고, 소정 시간만큼 초음파를 조사함으로써 제거할 수 있다. 구체적으로, 박리액으로서는 예를 들면 디에틸케톤을 이용할 수 있다. 이에 의해, 제1 마스크층(30) 상에, 스텐실 마스크(34)의 개구(34a)의 패턴을 반전시킨 제2 마스크층(36)의 패턴이 형성된다.
다음으로, 도 4의 (b)에 도시한 바와 같이, 제2 마스크층(36)을 마스크로 하여, 제1 마스크층(30)의 드라이 에칭을 행한다. 이에 의해, 제1 마스크층(30)에 개구(30a)가 형성되어, 제1 마스크층(30)의 패턴이 형성된다. 이때, 에칭 가스로서, 제2 마스크층(36)에 비해 사파이어 기판(2) 및 제1 마스크층(30)이 내성을 갖는 것이 이용된다. 예를 들면, 제1 마스크층(30)이 SiO2이고 제2 마스크층(36)이 Ni인 경우, SF6 등의 불소계 가스를 이용하면, Ni는 SiO2에 대하여 에칭의 선택비가 100 정도이기 때문에, 제1 마스크층(30)의 패터닝을 적확하게 행할 수 있다.
이 후, 도 4의 (c)에 도시한 바와 같이, 제1 마스크층(30) 상의 제2 마스크층(36)을 제거한다. 제1 마스크층(30)이 SiO2이고, 제2 마스크층(36)이 Ni인 경우, 물로 희석하여 1 : 1 정도로 혼합한 염산 및 질산에 침지하거나, 아르곤 가스에 의한 드라이 에칭에 의해 Ni를 제거할 수 있다.
그리고, 도 4의 (d)에 도시한 바와 같이, 제1 마스크층(30)을 마스크로 하여, 사파이어 기판(2)의 드라이 에칭을 행한다. 이때, 사파이어 기판(2) 중 제1 마스크층(30)이 제거된 부위만이 에칭 가스에 노출되게 되기 때문에, 사파이어 기판(2)에 스텐실 마스크(34)의 각 개구(34a)의 반전 패턴을 전사할 수 있다. 이때, 제1 마스크층(30)은, 사파이어 기판(2)보다도, 에칭 가스에의 내성이 크기 때문에, 제1 마스크층(30)으로 피복되어 있지 않은 개소를 선택적으로 에칭할 수 있다. 그리고, 사파이어 기판(2)의 에칭 깊이가 소정의 깊이로 되는 부분에서 에칭을 종료시킨다. 여기서, 에칭 가스로서는, 예를 들면, BCl3 등의 염소계 가스가 이용된다.
이 후, 도 4의 (e)에 도시한 바와 같이, 소정의 박리액을 이용하여 사파이어 기판(2) 상에 남은 제1 마스크층(30)을 제거한다. 이에 의해, 측면(2d)과 상면(2f)의 회합부에 의해 각이 형성된 만곡부(2e) 형성 전의 볼록부(2c)가 형성된다. 박리액으로서는, 예를 들면, 제1 마스크층(30)에 SiO2가 이용되고 있는 경우에는 희불산을 이용할 수 있다.
그리고, 도 4의 (f)에 도시한 바와 같이, 웨트 에칭에 의해 볼록부(2c)의 각을 제거하여 만곡부(2e)를 형성한다. 여기서, 에칭액은 임의이지만, 예를 들면 160℃ 정도로 가온한 인산 수용액, 소위 "열 인산"을 이용할 수 있다. 또한, 에칭 방식으로서 드라이 에칭과 같은 다른 방식을 이용해도 되고, 요컨대 볼록부(2c)의 각에 만곡부(2e)가 형성되면 된다.
이상과 같이 제작된 사파이어 기판(2)의 회절면(2a)에, 가로 방향 성장을 이용하여 Ⅲ족 질화물 반도체를 에피택셜 성장시켜, 각 전극을 형성한 후에, 다이싱에 의해 복수의 발광 소자(1)로 분할함으로써, 발광 소자(1)가 제조된다.
이상과 같이 구성된 발광 소자(1)에서는, 활성층(14)으로부터 발하여지는 광의 광학 파장보다 크고, 그 광의 코히어런트 길이보다 작은 주기로 볼록부(2c)가 형성된 회절면(2a)과, 회절면(2a)에서 회절한 광을 반사하여 회절면(2a)으로 재입사시키는 반사면(28)을 구비함으로써, 사파이어 기판(2)과 Ⅲ족 질화물 반도체층의 계면에서, 전반사 임계각을 초과하는 각도로 입사하는 광에 대해서도 회절 작용을 이용하여 소자 외부로 광을 취출할 수 있다. 구체적으로는, 회절 작용에 의해 투과한 광을 회절면(2a)에 재입사시켜, 회절면(2a)에서 다시 회절 작용을 이용하여 투과시킴으로써, 복수의 모드에서 광을 소자 외부로 취출할 수 있다. 본 실시 형태에 대해서는, 회절 작용에 의해 광을 취출하고 있기 때문에, 산란 작용에 의해 광을 취출하는 것과는 이질적인 작용 효과를 발휘하여, 발광 소자(1)의 광 취출 효율을 비약적으로 향상시킬 수 있다.
여기서, 볼록부(2c)가 짧은 주기로 형성되어 있으므로, 단위 면적당의 볼록부(2c)의 수가 많아진다. 볼록부(2c)가 코히어런트 길이의 2배를 초과하는 경우에는, 이 볼록부(2c)에 전위의 기점으로 되는 각부가 존재한다고 해도, 전위 밀도가 작기 때문에 발광 효율에는 거의 영향을 주지 않는다. 그러나, 볼록부(2c)의 주기가 코히어런트 길이보다 작아지면, 반도체 적층부(19)의 버퍼층(10) 중의 전위 밀도가 커져, 발광 효율의 저하가 현저해진다. 이 경향은, 주기가 1㎛ 이하로 되면 더욱 현저해진다. 이것은, 볼록부(2c)의 주기를 코히어런트 이하까지 작게 한 경우의 신규의 과제이며, 종래 공지의 문헌에서는 발하여진 광의 취출 효율에만 주목하여 주기를 짧게 하는 점에 대한 개시가 있지만, 발광 효율의 저하에 대해서는 일절 고려되어 있지 않다. 또한, 발광 효율의 저하는, 버퍼층(10)의 제법에 상관없이 발생하고, MOCVD법으로 형성되어 있어도, 스퍼터링법으로 형성되어 있어도 발생한다. 본 실시 형태에서는, 각 볼록부(2c)의 상측에 전위의 기점으로 되는 각부가 없으므로, 버퍼층(10)의 형성 시에 그 각부를 기점으로 하여 전위가 발생하는 일은 없다. 이 결과, 다중 양자웰 활성층(14)에서도, 전위의 밀도가 비교적 작은 결정으로 되어 있어, 회절면(2a)에 볼록부(2c)가 형성됨으로써, 발광 효율이 손상되는 일은 없어, 상기의 신규의 과제를 해결한 것이라고 할 수 있다.
또한, 본 실시 형태의 발광 소자(1)에 따르면, 사파이어 기판(2)의 회절면(2a)에 볼록부(2c)가 형성되어 있지만, Ⅲ족 질화물 반도체층의 가로 방향 성장에 의한 평탄화 시에 전위의 종단이 생기므로, 이에 의해서도 Ⅲ족 질화물 반도체층에서 전위의 밀도가 비교적 작은 결정이 얻어지고 있다. 이 결과, 다중 양자웰 활성층(14)에서도, 전위의 밀도가 비교적 작은 결정으로 되어 있어, 회절면(2a)에 볼록부(2c)가 형성됨으로써, 발광 효율이 손상되는 일은 없다.
또한, 상기 실시 형태에서는, 발광 소자(1)가 페이스 업형인 것을 나타냈지만, 예를 들면 도 5에 도시한 바와 같이, 발광 소자(1)를 플립 칩형으로 해도 된다. 도 5의 발광 소자(1)는, 사파이어 기판(2) 상에, 버퍼층(10), n형 GaN층(12), 다중 양자웰 활성층(14), 전자 블록층(16), p형 GaN층(18)이 이 순서로 형성되고, p형 GaN층(18) 상에 예를 들면 Ag계, Rh계 등의 반사성 재료로 이루어지는 p측 전극(20)이 형성됨과 함께, n형 GaN층(12) 상에는 n측 전극(24)이 형성되어 있다. 이 경우, p측 전극(20)의 p형 GaN층(18)측의 면이 반사면(22)을 이룬다.
또한, 예를 들면 도 6에 도시한 바와 같이, p측 전극(20)의 표면에 제2 회절면(20a)을 형성해도 된다. 이 제2 회절면(20a)의 요철 주기도, 다중 양자웰 활성층(14)으로부터 발하여지는 광의 코히어런트 길이보다 작게 하는 것이 바람직하다. 이에 의해, 사파이어 기판(2)의 회절면(2a)과, p측 전극(20)의 회절면(20a)의 양방의 회절 작용을 얻을 수 있다.
도 7 내지 도 16은 본 발명의 제2 실시 형태를 도시하는 것이며, 도 7은 발광 소자의 모식 단면도이다.
도 7에 도시한 바와 같이, 발광 소자(100)는, 회절면(102a)을 갖는 사파이어 기판(102) 상에, Ⅲ족 질화물 반도체층으로 이루어지는 반도체 적층부(119)가 형성된 것이다. 이 발광 소자(100)는, 플립 칩형이며, 사파이어 기판(102)의 이면(도 1 중에는 상면)으로부터 주로 광이 취출된다. Ⅲ족 질화물 반도체층은, 버퍼층(110), n형 GaN층(112), 다중 양자웰 활성층(114), 전자 블록층(116), p형 GaN층(118)을 사파이어 기판(102)측으로부터 이 순서로 갖고 있다. p형 GaN층(118) 상에는 p측 전극(120)이 형성됨과 함께, n형 GaN층(112) 상에는 n측 전극(124)이 형성되어 있다.
사파이어 기판(102)은, 질화물 반도체가 성장되는 c면({0001})인 회절면(102a)을 갖고 있다. 회절면(102a)에는, 평탄부(102b)와, 평탄부(102b)에 주기적으로 형성된 복수의 뿔 형상의 오목부(102c)가 형성되어 있다. 각 오목부(102c)의 형상은, 원뿔, 다각뿔 등의 형상으로 할 수 있다. 본 실시 형태에서는, 주기적으로 배치되는 각 오목부(102c)에 의해, 광의 회절 작용을 얻을 수 있다.
버퍼층(110)은, 사파이어 기판(102)의 회절면(102a) 상에 형성되며, GaN으로 구성되어 있다. 본 실시 형태에서는, 버퍼층(110)은, 후술하는 n형 GaN층(112) 등보다도 저온에서 성장되어 있다. 또한, 버퍼층(110)은, 각 오목부(102c)를 따라서 주기적으로 형성되는 복수의 뿔 형상의 볼록부를 회절면(102a)측에 갖고 있다. 제1 도전형층으로서의 n형 GaN층(112)은, 버퍼층(110) 상에 형성되며, n-GaN으로 구성되어 있다. 발광층으로서의 다중 양자웰 활성층(114)은, n형 GaN층(112) 상에 형성되며, GalnN/GaN으로 구성되고, 전자 및 정공의 주입에 의해 청색광을 발한다. 여기서, 청색광이란, 예를 들면, 피크 파장이 430㎚ 이상 480㎚ 이하의 광을 말하는 것으로 한다. 본 실시 형태에서는, 다중 양자웰 활성층(114)의 발광의 피크 파장은 450㎚이다.
전자 블록층(116)은, 다중 양자웰 활성층(114) 상에 형성되며, p-AIGaN으로 구성되어 있다. 제2 도전형층으로서의 p형 GaN층(118)은, 전자 블록층(116) 상에 형성되며, p-GaN으로 구성되어 있다. 버퍼층(110)부터 p형 GaN층(118)까지는, Ⅲ족 질화물 반도체의 에피택셜 성장에 의해 형성되고, 사파이어 기판(102)의 회절면(102a)에는 주기적으로 오목부(102c)가 형성되어 있지만, Ⅲ족 질화물 반도체의 성장 초기에 가로 방향 성장에 의한 평탄화가 도모된다. 또한, 제1 도전형층, 활성층 및 제2 도전형층을 적어도 포함하고, 제1 도전형층 및 제2 도전형층에 전압이 인가되면, 전자 및 정공의 재결합에 의해 활성층에서 광이 발하여지는 것이면, 반도체층의 층 구성은 임의이다.
p측 전극(120)은, p형 GaN층(118) 상에 형성되며, p측 GaN층(118)측의 면이 반사면(122)을 이루고 있다. p측 전극(120)은, 다중 양자웰 활성층(114)으로부터 발하여지는 광에 대하여 높은 반사율을 갖는다. p측 전극(120)은, 활성층(114)으로부터 발하여지는 광에 대하여 80% 이상의 반사율을 갖는 것이 바람직하다. 본 실시 형태에서는, p측 전극(120)은, 예를 들면 Ag계, Rh계의 재료로 이루어지고, 진공 증착법, 스퍼터링법, CVD(Chemical Vapor Deposition)법 등에 의해 형성된다.
n측 전극(124)은, p형 GaN층(118)으로부터 n형 GaN층(112)을 에칭하여, 노출된 n형 GaN층(112) 상에 형성된다. n측 전극(124)은, 예를 들면 Ti/Al/Ti/Au로 구성되고, 진공 증착법, 스퍼터링법, CVD(Chemical Vapor Deposition)법 등에 의해 형성된다.
다음으로, 도 8을 참조하여 사파이어 기판(102)에 대하여 상술한다. 도 8은 사파이어 기판을 도시하고, (a)가 모식 사시도, (b)가 B-B 단면을 도시하는 모식 종단면도이다.
도 8의 (a)에 도시한 바와 같이, 회절면(102a)은, 평면에서 보아, 각 오목부(102c)의 중심이 정삼각형의 정점의 위치로 되도록, 소정의 주기로 가상의 삼각 격자의 교점에 정렬하여 형성된다. 각 오목부(102c)의 주기는, 다중 양자웰 활성층(114)으로부터 발하여지는 광의 광학 파장보다 크고, 그 광의 코히어런트 길이보다 작게 되어 있다. 또한, 여기서 말하는 주기란, 인접하는 오목부(102c)에서의 깊이의 피크 위치의 거리를 말한다. 또한, 광학 파장이란, 실제의 파장을 굴절률로 나눈 값을 의미한다. 또한, 코히어런트 길이란, 소정의 스펙트럼 폭의 포톤군의 개개의 파장의 차이에 의해, 파의 주기적 진동이 서로 상쇄되어, 가간섭성이 소실될 때까지의 거리에 상당한다. 코히어런트 길이 lc는, 광의 파장을 λ, 그 광의 반값 폭을 Δλ로 하면, 대략 lc=(λ2/Δλ)의 관계에 있다. 여기서, 각 오목부(102c)의 주기는, 다중 양자웰 활성층(114)으로부터 발하여지는 광의 광학 파장의 2배보다 큰 것이 바람직하다. 또한, 각 오목부(102c)의 주기는, 다중 양자웰 활성층(114)으로부터 발하여지는 광의 코히어런트 길이의 절반 이하인 것이 바람직하다.
본 실시 형태에서는, 각 오목부(102c)의 주기는 500㎚이다. 활성층(114)으로부터 발하여지는 광의 파장은 450㎚이고, Ⅲ족 질화물 반도체층의 굴절률이 2.4이기 때문에, 그 광학 파장은 187.5㎚이다. 또한, 활성층(114)으로부터 발하여지는 광의 반값 폭은 63㎚이기 때문에, 그 광의 코히어런트 길이는 3214㎚이다. 즉, 회절면(102a)의 주기는, 활성층(114)의 광학 파장의 2배보다 크고, 또한, 코히어런트 길이의 절반 이하로 되어 있다.
본 실시 형태에서는, 도 8의 (b)에 도시한 바와 같이, 회절면(102a)의 각 오목부(102c)는, 원뿔 형상으로 형성된다. 구체적으로, 각 오목부(102c)는, 기단부의 직경이 200㎚이고, 깊이는 250㎚로 되어 있다. 사파이어 기판(102)의 회절면(102a)은, 각 오목부(102c) 이외는 평탄부(102b)로 되어 있어, 반도체층의 가로 방향 성장이 조장되도록 되어 있다.
도 9는 상이한 굴절률의 계면에서의 광의 회절 작용을 도시하는 설명도로서, (a)는 계면에서 반사되는 상태를 도시하고, (b)는 계면을 투과하는 상태를 도시한다.
여기서, 브래그의 회절 조건으로부터, 계면에서 광이 반사되는 경우에서, 입사각 θin에 대하여 반사각 θref가 충족시켜야 할 조건은,
Figure pct00001
이다. 여기서, n1은 입사측의 매질의 굴절률, λ는 입사하는 광의 파장, m은 정수이다. 본 실시 형태에서는, n1은, Ⅲ족 질화물 반도체의 굴절률로 된다. 도 9의 (a)에 도시한 바와 같이, 상기 수학식 1을 충족시키는 반사각 θref로, 계면으로 입사되는 광은 반사된다.
한편, 브래그의 회절 조건으로부터, 계면에서 광이 투과되는 경우에서, 입사각 θin에 대하여 투과각 θout가 충족시켜야 할 조건은,
Figure pct00002
이다. 여기서, n2는 출사측의 매질의 굴절률이고, m'는 정수이다. 본 실시 형태에서는, n2는 사파이어의 굴절률로 된다. 도 9의 (b)에 도시한 바와 같이, 상기 수학식 2를 충족시키는 투과각 θout로, 계면으로 입사하는 광은 투과된다.
상기 수학식 1 및 2의 회절 조건을 충족시키는 반사각 θref 및 투과각 θout가 존재하기 위해서는, 회절면(102a)의 주기는, 소자 내부의 광학 파장인 (λ/n1)이나 (λ/n2)보다도 커야만 한다. 일반적으로 알려져 있는 모스아이 구조는, 주기가 (λ/n1)이나 (λ/n2)보다도 작게 설정되어 있어, 회절광은 존재하지 않는다. 그리고, 회절면(102a)의 주기는, 광이 파로서의 성질을 유지할 수 있는 코히어런트 길이보다 작아야만 하여, 코히어런트 길이의 절반 이하로 하는 것이 바람직하다. 코히어런트 길이의 절반 이하로 함으로써, 회절에 의한 반사광 및 투과광의 강도를 확보할 수 있다.
도 10은 Ⅲ족 질화물 반도체층으로부터 사파이어 기판으로 입사하는 광의 회절 작용을 도시하는 설명도이다.
도 10에 도시한 바와 같이, 발광 소자(100)에서 활성층(114)으로부터 등방적으로 방출되는 광 중, 사파이어 기판(102)으로 입사각 θin으로 입사하는 광은, 상기 수학식 1을 충족시키는 반사각 θref로 반사됨과 함께, 상기 수학식 2를 충족시키는 투과각 θout로 투과된다. 여기서, 전반사 임계각 이상의 입사각 θin에서는, 강한 반사광 강도로 된다. 반사광은, p측 전극(120)의 반사면(122)에서 반사되어, 다시 모스아이면(102a)으로 입사하지만 앞서 입사하였을 때의 입사각 θin과 상이한 입사각 θin으로 입사하기 때문에, 앞의 입사 조건과는 상이한 투과 특성으로 된다.
도 11은 오목부 또는 볼록부의 주기를 500㎚로 한 경우의, Ⅲ족 질화물 반도체층과 사파이어 기판의 계면에서의, 반도체층측으로부터 계면으로 입사하는 광의 입사각과, 계면에서의 회절 작용에 의한 반사각의 관계를 도시하는 그래프이다.
회절면(102a)에 입사하는 광에는, 일반적인 평탄면과 마찬가지로 전반사의 임계각이 존재한다. GaN계 반도체층과 사파이어 기판(102)과의 계면에서는, 임계각은 약 45°이다. 도 5에 도시한 바와 같이, 입사각 θin이 45°를 초과한 영역에서는, 상기 수학식 2의 회절 조건을 충족시키는 m=1, 2, 3, 4에서의 회절 모드에서의 투과가 가능하다. 단, 발광 소자(100)의 광 출사면을 이루는 사파이어 기판(102)의 이면이 평탄면이면, 사파이어 기판(102)과 소자 외부와의 전반사 임계각이 존재하기 때문에, 투과각 θout가 그 임계각 이내가 아니면, 투과광을 발광 소자(100)의 외부로 취출할 수는 없다. 만약 외부가 공기인 경우, 사파이어 기판(102)과 공기의 계면에서의 임계각은 약 ±34°로 되고, 이 경우에서의 유효한 회절 모드는 m=2, 3이다.
도 12는 오목부 또는 볼록부의 주기를 500㎚로 한 경우의, Ⅲ족 질화물 반도체층과 사파이어 기판의 계면에서의, 반도체층측으로부터 계면으로 입사하는 광의 입사각과, 계면에서의 회절 작용에 의한 투과각의 관계를 도시하는 그래프이다.
도 12에 도시한 바와 같이, 입사각이 45°를 초과한 영역에서는, 상기 수학식 1의 회절 조건을 충족시키는 m'=1, 2, 3, 4에서의 회절 모드에서의 반사가 가능하다. 이들 회절 모드에서 반사된 반사광은, p측 전극(120)의 반사면(122)에서 반사되어, 다시 회절면(102a)으로 입사한다. 이때의 입사각 θin은, 앞서 회절면(102a)에서 반사된 각도를 유지하고 있어, 2회째의 입사에 의해 다시 회절되게 된다.
도 13은 오목부 또는 볼록부의 주기를 500㎚로 한 경우의, Ⅲ족 질화물 반도체층과 사파이어 기판의 계면에서의, 반도체층측으로부터 계면으로 1회째에 입사하는 광의 입사각과, 계면에서의 회절 작용에 의해 반사된 후, 2회째에 입사한 광의 계면에서의 회절 작용에 의한 투과각의 관계를 도시하는 그래프이다.
도 13에서는, 2회째에 입사한 광의 투과에 대한 모드 지수 l을, 1회째에 입사하였을 때의 반사에 대한 모드 지수 m과, 2회째에 입사하였을 때의 투과에 대한 모드 지수 m'의 합으로서 정의하고 있어, l=m+m'이다. 2회째에 입사한 광의 투과에 대한 모드 지수 l은, 1회째의 반사의 모드 지수 m과, 2회째의 투과의 모드 지수 m'가 어떠한 값을 취해도, 모드 지수 l이 동일하면 마찬가지의 투과 특성을 갖고 있다. 1회째에 입사하는 광의 투과 특성에서는, m'=0이 허용되고 있지 않지만, 2회째에 입사하는 광의 투과 특성에서는, l=0이 허용된다. 예를 들면, l=1의 경우, (m, m')=(2, -1), (3, -2), (4, -3), (-1, 2), (-2, 3)의 5개의 모드가 존재한다. 즉, l=1에서 투과하는 각도의 광 강도가 비교적 강한 것으로 된다. 회절면(102a)에서의 주기가 코히어런트 길이보다도 무한으로 작다고 가정하면, 고반사율의 p측 전극(120)의 부가에 의해, 회절 작용에 의해 취출되는 광의 증가분은 약 5배로 된다.
이와 같이, 활성층(114)으로부터 발하여지는 광의 광학 파장보다 크고, 그 광의 코히어런트 길이보다 작은 주기로 오목부(102c)가 형성된 회절면(102a)과, 회절면(102a)에서 회절된 광을 반사하여 회절면(102a)으로 재입사시키는 반사면(120)을 구비함으로써, 사파이어 기판(102)과 Ⅲ족 질화물 반도체층의 계면에서, 전반사임계각을 초과하는 각도로 입사하는 광에 대해서도 회절 작용을 이용하여 소자 외부로 광을 취출할 수 있다. 본 실시 형태에 대해서는, 회절 작용에 의해 광을 취출하고 있기 때문에, 산란 작용에 의해 광을 취출하는 것과는 이질적인 작용 효과를 발휘하여, 발광 소자(100)의 광 취출 효율을 비약적으로 향상시킬 수 있다.
특히, 본 실시 형태에서는, 발광층으로서의 활성층(114)을, 회절면(102a)과 반사면(120) 사이에 두고 있기 때문에, 회절면(102a)에서 입사각 θin과 상이한 반사각 θin으로 반사된 광을, 앞의 입사각 θin과 상이한 각도로 다시 입사시킬 수 있다. 이와 같이, 1회째와 2회째에서 상이한 조건에서 회절면(102a)으로 광이 입사하기 때문에, 많은 투과 모드가 존재하여, 광 취출에서 매우 유리하다.
또한, 본 실시 형태에서는, Ⅲ족 질화물 반도체층의 굴절률이 2.4이고, 사파이어의 굴절률이 1.8이기 때문에, 회절면(102a)은 굴절률의 차가 0.5 이상의 상이한 재료끼리의 계면에 형성되어 있다. 재료끼리의 굴절률의 차가 0.5 이상이면, 광 취출이 비교적 불리하지만, 본 실시 형태의 발광 소자(100)에서는 적확하게 광을 취출할 수 있어, 실용 시에 매우 유리하다.
여기서, 도 14를 참조하여 회절면의 주기와 소자의 발광 출력의 관계를 설명한다. 도 14는 광학 파장을 258㎚로 하고, 사파이어 기판과 Ⅲ족 질화물 반도체층의 계면에 회절면을 형성한 경우의, 회절면의 주기와 상대광 출력의 관계를 도시하는 그래프이다. 상대광 출력은, 사파이어 기판과 Ⅲ족 질화물 반도체층의 계면이 평탄면에서의 광 출력을 1.0으로 하고 있다. 또한, 도 14에서는, 활성층으로부터 회절면까지의 거리를 3.0㎛, 회절면으로부터 사파이어 기판의 이면까지의 거리를 100㎛로 하여, 실온에서 1.0㎜×1.0㎜의 칩에 100㎃의 직류 전류를 흘려 데이터를 취득하였다. 또한, 상대광 출력이 1.0배이며 40㎷에 상당하고 있다.
도 14에 도시한 바와 같이, 회절면의 주기가 광학 파장의 1배 이하의 영역에서는, 전반사 임계각 이하에서의 프레넬 반사 억제의 작용에 의해 광 취출 효율이 향상된다. 그리고, 광학 파장의 1배를 초과하여 2배 이하의 영역에서는, 회절 작용과, 프레넬 반사 억제의 작용의 양방을 얻을 수 있어, 광 취출 효율이 향상된다. 광학 파장의 2배를 초과하여 2.5배 이하의 영역에서는, 프레넬 반사 억제의 작용이 소실되기 때문에, 광 취출 효율이 약간 저하된다. 광학 파장의 2.5배를 초과하면 회절 조건을 충족시키는 입사각이 증가하기 때문에, 다시 광 취출 효율이 향상된다. 그리고, 광학 파장의 3배 이상 5배 이하의 영역에서는, 광 취출 효율은 평탄면의 3배 이상으로 된다. 여기서, 도 14에서는, 주기에 대하여 광학 파장의 6배 정도까지만 도시하고 있지만, 주기가 코히어런트 길이의 절반으로 되면 발광 출력은 평탄면의 2.0배 정도로 되고, 코히어런트 길이로 하면 발광 출력은 평탄면의 1.8배 정도로 된다. 코히어런트 길이에서도 출력이 평탄면보다도 큰 것은, 오목부 또는 볼록부에 의한 산란 효과를 얻을 수 있기 때문이다. 이와 같이, 계면에서의 회절 작용은, 주기가 광학 파장의 1.0배를 초과하면 얻어지지만, 광학 파장의 2.5배를 초과하면 발광 소자(1)의 광 출력이 현저하게 증대되는 것이 이해된다.
여기서, 도 15 및 도 16을 참조하여 발광 소자(100)용의 사파이어 기판(102)의 제작 방법에 대하여 설명한다. 도 15는 사파이어 기판을 가공하는 설명도로서, (a)는 회절면에 제1 마스크층이 형성된 상태를 도시하고, (b)는 제1 마스크층 상에 레지스트층이 형성된 상태를 도시하고, (c)는 레지스트층에 선택적으로 전자선을 조사하는 상태를 도시하고, (d)는 레지스트층을 현상하여 제거한 상태를 도시하고, (e)는 제2 마스크층이 형성된 상태를 도시하고 있다.
우선, 도 15의 (a)에 도시한 바와 같이, 평판 형상의 사파이어 기판(102)을 준비하고, 사파이어 기판(102)의 표면에 제1 마스크층(130)을 형성한다. 제1 마스크층(130)은, 예를 들면 SiO2로 이루어지고, 스퍼터링법, 진공 증착법, CVD법 등에 의해 형성된다. 제1 마스크층(130)의 두께는, 임의이지만, 예를 들면 1.0㎛이다.
예를 들면, 마그네트론 스퍼터링 장치를 이용하여 제1 마스크층(130)을 형성하는 경우, Ar 가스를 이용하고, 고주파(RF) 전원을 이용할 수 있다. 구체적으로는, 예를 들면, Ar 가스를 25sccm으로 하고, RF 전원의 전력을 재료에 따라서 200?500W로 하여, 600㎚의 제1 마스크층(130)을 사파이어 기판(102)에 퇴적할 수 있다. 이때, 스퍼터링의 시간은 적절히 조절할 수 있다.
다음으로, 도 15의 (b)에 도시한 바와 같이, 사파이어 기판(102)의 제1 마스크층(130) 상에 레지스트층(132)을 형성한다. 레지스트층(132)은, 예를 들면, 일본 제온사제의 ZEP 등의 전자선 감광 재료로 이루어지며, 제1 마스크층(130) 상에 도포된다. 레지스트층(132)의 두께는, 임의이지만, 예를 들면 100㎚ 내지 2.0㎛이다.
예를 들면, 스핀 코팅에 의해 레지스트층(132)을 형성하는 경우, 스피너의 회전수를 1500rpm으로 하여 균일한 막을 형성한 후, 180℃에서 4분간 베이킹을 행하여 경화시킴으로써, 160?170㎚의 막 두께의 레지스트층(132)을 얻을 수 있다. 구체적으로 레지스트층(132)의 재료로서, 일본 제온사제의 ZEP와, 일본 제온사제의 희석액 ZEP-A를, 1 : 1.4의 비율로 혼합한 것을 이용할 수 있다.
다음으로, 도 15의 (c)에 도시한 바와 같이, 레지스트층(132)과 이격하여 스텐실 마스크(134)를 세트한다. 레지스트층(132)과 스텐실 마스크(134)와의 사이는, 1.0㎛?100㎛의 간극이 있다. 스텐실 마스크(134)는, 예를 들면 다이아몬드, SiC 등의 재료로 형성되어 있고, 두께는 임의이지만, 예를 들면, 두께가 500㎚?100㎛로 된다. 스텐실 마스크(134)는, 전자선을 선택적으로 투과하는 개구(134a)를 갖고 있다.
여기서, 스텐실 마스크(134)는, 두께가 일정한 박판 형상으로 형성되어 있지만, 예를 들면 격자 형상, 돌조의 두께부를 형성하거나 하여 부분적으로 두께를 크게 하여 강도를 부여하도록 해도 된다. 본 실시 형태에서는, 웨이퍼 형상의 사파이어 기판(102)에 일괄하여 복수의 발광 소자(100)에 대응하는 오목부(102c)를 작성하고, Ⅲ족 질화물 반도체의 에피택셜 성장 후에 다이싱함으로써, 복수의 발광 소자(100)를 제조한다. 따라서, 스텐실 마스크(134)의 두께부를, 다이싱 블레이드의 통과 위치에 대응시켜 형성하는 것이 가능하게 되어 있다. 또한, 두께부는, 사파이어 기판(102)측으로 돌출되어도, 사파이어 기판(102)과 반대측으로 돌출되어도, 또한 양측으로 돌출되어도 된다. 사파이어 기판(102)측으로 돌출되는 경우, 두께부의 선단을 레지스트층(132)과 맞닿게 함으로써, 두께부에 레지스트층(132)과의 스페이서의 기능을 부여할 수 있다.
이 후, 도 15의 (c)에 도시한 바와 같이, 스텐실 마스크(134)에 전자선을 조사하여, 레지스트층(132)을 스텐실 마스크(134)의 각 개구(134a)를 통과한 전자선에 노출시킨다. 구체적으로는, 예를 들면, 10?100μC/㎠의 전자 빔을 이용하여, 스텐실 마스크(134)의 패턴을 레지스트층(132)에 전사한다. 또한, 전자선은, 스텐실 마스크(134) 상에서 스폿 형상으로 조사되기 때문에, 실제로는 전자선을 주사시킴으로써, 스텐실 마스크(134)의 전체면에 걸쳐 전자선을 조사하게 된다. 레지스트층(132)은, 포지티브 타입이며, 감광하면 현상액에 대하여 용해도가 증대된다. 또한, 네가티브 타입의 레지스트층(132)을 이용해도 된다. 여기서, 레지스트층(132)이 감광될 때에, 레지스트층(132)에 포함되어 있던 용제가 휘발하게 되지만, 레지스트층(132)과 스텐실 마스크(134) 사이에 간극이 있음으로써 휘발 성분이 확산되기 쉬워져, 휘발 성분에 의해 스텐실 마스크(134)가 오염되는 것을 방지할 수 있다.
전자선의 조사가 완료된 후, 소정의 현상액을 이용하여 레지스트층(132)을 현상한다. 이에 의해, 도 15의 (d)에 도시한 바와 같이, 전자선이 조사된 부위가 현상액에 용출되고, 전자선이 조사되지 않은 부위가 잔류하여, 개구(132a)가 형성된다. 레지스트층(132)으로서 일본 제온사제의 ZEP를 이용한 경우, 현상액으로서 예를 들면 아세트산아밀을 이용할 수 있다. 또한, 현상 후에 린스액으로 세정할지의 여부는 임의이지만, 레지스트층(132)으로서 일본 제온사제의 ZEP를 이용한 경우, 린스액으로서 예를 들면 IPA(이소프로필 알코올)를 이용할 수 있다.
다음으로, 도 15의 (e)에 도시한 바와 같이, 레지스트층(132)이 패터닝된 제1 마스크층(130) 상에, 제2 마스크층(136)을 형성한다. 이와 같이 하여, 제1 마스크층(130) 상에 제2 마스크층(136)을 전자선 조사를 이용하여 패터닝한다. 제2 마스크층(136)은, 예를 들면 Ni로 이루어지고, 스퍼터링법, 진공 증착법, CVD법 등에 의해 형성된다. 제2 마스크층(136)의 두께는, 임의이지만, 예를 들면 20㎚이다. 제2 마스크층(136)도, 제1 마스크층(130)과 마찬가지로, 예를 들면, 마그네트론 스퍼터링 장치를 이용하여 형성할 수 있다.
도 16은 사파이어 기판을 가공하는 설명도로서, (a)는 레지스트층을 완전히 제거한 상태를 도시하고, (b)는 제2 마스크층을 마스크로 하여 제1 마스크층을 에칭한 상태를 도시하고, (c)는 제2 마스크층을 제거한 상태를 도시하고, (d)는 제1 마스크층을 마스크로 하여 회절면을 에칭한 상태를 도시하고, (e)는 제1 마스크층을 제거한 상태를 도시하고 있다.
도 16의 (a)에 도시한 바와 같이, 레지스트층(132)을 박리액을 이용하여 제거한다. 예를 들면, 레지스트층(132)을 박리액 중에 침지하고, 소정 시간만큼 초음파를 조사함으로써 제거할 수 있다. 구체적으로, 박리액으로서는 예를 들면 디에틸케톤을 이용할 수 있다. 또한, 레지스트층(132) 제거 후에 린스액으로 세정할지의 여부는 임의이지만, 린스액으로서 예를 들면 아세톤, 메탄올 등을 이용하여 세정을 행할 수 있다. 이에 의해, 제1 마스크층(130) 상에, 스텐실 마스크(134)의 개구(134a)의 패턴을 반전시킨 제2 마스크층(136)의 패턴이 형성된다.
다음으로, 도 16의 (b)에 도시한 바와 같이, 제2 마스크층(136)을 마스크로 하여, 제1 마스크층(130)의 드라이 에칭을 행한다. 이에 의해, 제1 마스크층(130)에 개구(130a)가 형성되어, 제1 마스크층(130)의 패턴이 형성된다. 이때, 에칭 가스로서, 제2 마스크층(136)에 비해 사파이어 기판(102) 및 제1 마스크층(130)이 내성을 갖는 것이 이용된다. 예를 들면, 제1 마스크층(130)이 SiO2이며 제2 마스크층(136)이 Ni인 경우, SF6 등의 불소계 가스를 이용하면, Ni는 SiO2에 대하여 에칭의 선택비가 100 정도이기 때문에, 제1 마스크층(130)의 패터닝을 적확하게 행할 수 있다.
이 후, 도 16의 (c)에 도시한 바와 같이, 제1 마스크층(130) 상의 제2 마스크층(136)을 제거한다. 제1 마스크층(130)이 SiO2이고, 제2 마스크층(136)이 Ni인 경우, 물로 희석하여 1 : 1 정도로 혼합한 염산 및 질산에 침지하거나, 아르곤 가스에 의한 드라이 에칭에 의해 Ni를 제거할 수 있다.
그리고, 도 16의 (d)에 도시한 바와 같이, 제1 마스크층(130)을 마스크로 하여, 사파이어 기판(102)의 드라이 에칭을 행한다. 이때, 사파이어 기판(102) 중 제1 마스크층(130)이 제거된 부위만이 에칭 가스에 노출되게 되기 때문에, 사파이어 기판(102)에 스텐실 마스크(134)의 각 개구(134a)의 반전 패턴을 전사할 수 있다. 이때, 제1 마스크층(130)은, 사파이어 기판(102)보다도, 에칭 가스에의 내성이 크기 때문에, 제1 마스크층(130)으로 피복되어 있지 않은 개소를 선택적으로 에칭할 수 있다. 그리고, 사파이어 기판(102)의 에칭 깊이가 소정의 깊이로 되는 부분에서 에칭을 종료시킨다. 본 실시 형태에서는, 에칭 초기의 단계에서는 제1 마스크층(130)에 전사된 개구(130a)는, 직경 50㎚이지만, 에칭이 깊이 방향으로 진행됨에 따라서, 사이드 에칭도 진행되기 때문에, 최종적으로는 기단부의 직경이 150㎚의 원뿔 형상의 오목부(102c)가 형성되도록 되어 있다. 본 실시 형태에서는, 에칭의 진행에 수반하여, 제1 마스크층(130)과 사파이어 기판(102)과의 접점이 상실되어, 제1 마스크층(130)이 외연으로부터 제거되어 간다. 여기서, 에칭 가스로서는, 예를 들면, BCl3 등의 염소계 가스가 이용된다. 또한, 사이드 에칭이 진행되지 않는 제1 마스크층(130)과 에칭 가스의 조합을 선택하는 경우에는, 스텐실 마스크(134)의 개구(134a)의 반전 패턴이, 각 오목부(102c)의 기단부와 동일 형상으로 되도록 설계하면 된다.
이 후, 도 16의 (e)에 도시한 바와 같이, 소정의 박리액을 이용하여 사파이어 기판(102) 상에 남은 제1 마스크층(130)을 제거한다. 박리액으로서는, 예를 들면, 제1 마스크층(130)에 SiO2가 이용되고 있는 경우에는 희불산을 이용할 수 있다.
이상과 같이 제작된 사파이어 기판(102)의 회절면(102a)에, 가로 방향 성장을 이용하여 Ⅲ족 질화물 반도체를 에피택셜 성장시켜, 각 전극을 형성한 후에, 다이싱에 의해 복수의 발광 소자(100)로 분할함으로써, 발광 소자(100)가 제조된다.
이상과 같이 발광 소자(100)를 제조하면, 사파이어 기판(102)의 회절면(102a)에 오목부(102c)가 형성되어 있지만, Ⅲ족 질화물 반도체층의 가로 방향 성장에 의한 평탄화 시에 전위의 종단이 생기므로, Ⅲ족 질화물 반도체층에서 전위의 밀도가 비교적 낮은 결정이 얻어지고 있다. 이 결과, 다중 양자웰 활성층(114)에서도, 전위의 밀도가 비교적 낮은 결정으로 되어 있어, 회절면(102a)에 오목부(102c)가 형성됨으로써, 발광 효율이 손상되는 일은 없다.
또한, 상기 실시 형태에서의 활성층(114)의 발광 파장이나, 회절면(102a)의 주기는 임의이지만, 활성층(114)이 청색광을 발하는 경우에는, 회절면(102a)의 주기를 300㎚ 이상 1500㎚ 이하로 하면 양호한 광 취출 특성을 얻을 수 있다.
또한, 상기 실시 형태에서는, 발광 소자(100)가 플립 칩형인 것을 나타냈지만, 예를 들면 도 17에 도시한 바와 같이, 발광 소자(200)를 페이스 업형으로 해도 된다. 도 17의 발광 소자(200)는, 사파이어 기판(202) 상에, Ⅲ족 질화물 반도체층이, 버퍼층(210), n형 GaN층(212), 다중 양자웰 활성층(214), 전자 블록층(216), p형 GaN층(218)이 이 순서로 형성되고, p형 GaN층(218) 상에 예를 들면 ITO(Indium Tin Oxide)로 이루어지는 p측 투명 전극(220)이 형성됨과 함께, n형 GaN층(212) 상에는 n측 전극(224)이 형성되어 있다. 사파이어 기판(202)의 이면측에는, 예를 들면 Al로 이루어지는 반사막(226)이 형성되어 있다. 이 발광 소자(200)에서는, 반사막(226)의 사파이어 기판(202)측의 면이 반사면(228)을 이루고 있어, 활성층(214)으로부터 발하여진 광이 회절면(202a)을 회절 작용에 의해 투과하고, 투과한 광을 반사면(228)에서 반사한다. 이에 의해, 회절 작용에 의해 투과한 광을 회절면(202a)에 재입사시켜, 회절면(202a)에서 다시 회절 작용을 이용하여 투과시킴으로써, 복수의 모드에서 광을 소자 외부로 취출할 수 있다.
또한, 상기 실시 형태에서는, 사파이어 기판(102)과 Ⅲ족 질화물 반도체의 계면에 회절면(102a)을 형성한 것을 나타냈지만, 예를 들면 도 18에 도시한 바와 같이, 발광 소자(300)의 표면에 회절면(312a)을 형성해도 된다. 도 18의 발광 소자(300)는, 소위 박막형의 발광 다이오드이며, 도전성 기판(302) 상에 고반사 재료로 이루어지는 p측 전극(320), p형 GaN층(318), 전자 블록층(316), 다중 양자웰 활성층(314), n형 GaN층(312)이 이 순서로 형성되어 있다. n형 GaN층(312)의 표면의 중앙에는 n측 전극(324)이 형성되고, n형 GaN층(312)에서의 n측 전극(324) 이외의 부분은 소자 표면을 이루고, 이 부분에 회절면(312a)이 형성되어 있다. 이 발광 소자(300)에서는, 상기 실시 형태와 마찬가지로, 회절면(312a)과 p측 전극(320)의 반사면(322)은, 활성층(314)을 사이에 두고 서로 반대측에 배치되어 있다. 이 발광 소자(300)는, 회절면(312a)은, n형 GaN층(312)과 소자 외부와의 매질의 계면을 이루고, 그 계면에서 회절 작용을 얻을 수 있다.
또한, 상기 실시 형태에서는, 회절면(102a)에 복수의 오목부(102c)가 형성된 것을 나타냈지만, 예를 들면 도 19에 도시한 바와 같이, 사파이어 기판(402)의 회절면(402a)에 복수의 볼록부(402c)를 형성해도 된다. 도 19의 발광 소자(400)는, 도 17의 발광 소자(200)의 회절면(402a)을 변경한 것이며, 각기둥 형상의 볼록부(402c)가 소정의 주기로 가상의 정방 격자의 교점에 정렬하여 형성된다. 또한, 오목부 또는 볼록부를 삼각뿔 형상, 사각뿔 형상과 같은 다각뿔 형상으로 해도 되고, 구체적인 세부 구조 등에 대해서도 적절하게 변경 가능한 것은 물론이다.
본 발명의 반도체 발광 소자는, 광 취출 효율을 향상시킬 수 있으므로, 산업상 유용하다.
1 : 발광 소자
2 : 사파이어 기판
2a : 회절면
2b : 평탄부
2c : 볼록부
2d : 측면
2e : 만곡부
2f : 상면
10 : 버퍼층
12 : n형 GaN층
14 : 다중 양자웰 활성층
16 : 전자 블록층
18 : p형 GaN층
20 : p측 전극
20a : 회절면
22 : 반사면
24 : n측 전극
26 : 반사막
28 : 반사면
30 : 제1 마스크층
30a : 개구
32 : 레지스트층
32a : 개구
34 : 스텐실 마스크
34a : 개구
36 : 제2 마스크층
100 : 발광 소자
102 : 사파이어 기판
102a : 회절면
102b : 평탄부
102c : 오목부
110 : 버퍼층
112 : n형 GaN층
114 : 다중 양자웰 활성층
116 : 전자 블록층
118 : p형 GaN층
119 : 반도체 적층부
120 : p측 전극
122 : 반사면
124 : n측 전극
130 : 제1 마스크층
130a : 개구
132 : 레지스트층
132a : 개구
134 : 스텐실 마스크
134a : 개구
136 : 제2 마스크층
200 : 발광 소자
202 : 사파이어 기판
202a : 회절면
210 : 버퍼층
212 : n형 GaN층
214 : 다중 양자웰 활성층
216 : 전자 블록층
218 : p형 GaN층
220 : p측 투명 전극
224 : n측 전극
226 : 반사막
228 : 반사면
300 : 발광 소자
302 : 도전성 기판
310 : 버퍼층
312 : n형 GaN층
312a : 회절면
314 : 다중 양자웰 활성층
316 : 전자 블록층
318 : p형 GaN층
320 : p측 전극
322 : 반사면
400 : 발광 소자
402a : 회절면
402c : 볼록부

Claims (5)

  1. 기판의 표면 상에 형성되며, 발광층을 포함하는 반도체 적층부와,
    상기 기판의 표면측에 형성되며, 상기 발광층으로부터 발하여지는 광이 입사되고, 상기 광의 광학 파장보다 크고 상기 광의 코히어런트 길이보다 작은 주기로 오목부 또는 볼록부가 형성된 회절면과,
    상기 기판의 이면측에 형성되며, 상기 회절면에서 회절된 광을 반사하여 상기 회절면으로 재입사시키는 반사면을 구비하는 반도체 발광 소자.
  2. 제1항에 있어서,
    상기 오목부 또는 상기 볼록부의 주기는, 상기 광학 파장의 2배보다 큰 반도체 발광 소자.
  3. 제1항 또는 제2항에 있어서,
    상기 오목부 또는 상기 볼록부의 주기는, 상기 코히어런트 길이의 절반 이하인 반도체 발광 소자.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서,
    상기 발광층은, 청색광을 발하고,
    상기 주기는, 300㎚ 이상 1500㎚ 이하인 반도체 발광 소자.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서,
    상기 회절면은, 굴절률의 차가 0.5 이상의 상이한 재료끼리의 계면에 형성되어 있는 반도체 발광 소자.
KR1020127006037A 2009-09-07 2010-08-23 반도체 발광 소자 KR101417541B1 (ko)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2009-205931 2009-09-07
JP2009205931 2009-09-07
PCT/JP2010/064154 WO2011027679A1 (ja) 2009-09-07 2010-08-23 半導体発光素子

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020147014333A Division KR20140082852A (ko) 2009-09-07 2010-08-23 반도체 발광 소자

Publications (2)

Publication Number Publication Date
KR20120068857A true KR20120068857A (ko) 2012-06-27
KR101417541B1 KR101417541B1 (ko) 2014-07-08

Family

ID=43649218

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020127006037A KR101417541B1 (ko) 2009-09-07 2010-08-23 반도체 발광 소자
KR1020177023492A KR20170102364A (ko) 2009-09-07 2010-08-23 반도체 발광 소자
KR1020147014333A KR20140082852A (ko) 2009-09-07 2010-08-23 반도체 발광 소자

Family Applications After (2)

Application Number Title Priority Date Filing Date
KR1020177023492A KR20170102364A (ko) 2009-09-07 2010-08-23 반도체 발광 소자
KR1020147014333A KR20140082852A (ko) 2009-09-07 2010-08-23 반도체 발광 소자

Country Status (8)

Country Link
US (2) US8941136B2 (ko)
EP (2) EP2477238B1 (ko)
JP (6) JP4768894B2 (ko)
KR (3) KR101417541B1 (ko)
CN (2) CN102484183B (ko)
ES (1) ES2663320T3 (ko)
HK (1) HK1207742A1 (ko)
WO (1) WO2011027679A1 (ko)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0752060A (ja) * 1993-08-13 1995-02-28 Matsushita Electric Works Ltd インパクトレンチ
CN102484183B (zh) * 2009-09-07 2015-01-14 崇高种子公司 半导体发光元件及其制造方法
KR20120100193A (ko) * 2011-03-03 2012-09-12 서울옵토디바이스주식회사 발광 다이오드 칩
JP2012216753A (ja) * 2011-03-30 2012-11-08 Toyoda Gosei Co Ltd Iii族窒化物半導体発光素子
KR101803569B1 (ko) * 2011-05-24 2017-12-28 엘지이노텍 주식회사 발광 소자
CN102255013B (zh) * 2011-08-01 2013-09-04 华灿光电股份有限公司 一种通过湿法剥离GaN基外延层和蓝宝石衬底来制备垂直结构发光二极管的方法
JP6429626B2 (ja) * 2011-09-06 2018-11-28 センサー エレクトロニック テクノロジー インコーポレイテッド 層成長のためのパターンを有する基板の設計
KR20130035658A (ko) * 2011-09-30 2013-04-09 서울옵토디바이스주식회사 발광 다이오드 소자용 기판 제조 방법
KR101843726B1 (ko) 2011-10-06 2018-03-30 엘지이노텍 주식회사 발광소자
JP5142236B1 (ja) * 2011-11-15 2013-02-13 エルシード株式会社 エッチング方法
US20140339566A1 (en) * 2011-12-14 2014-11-20 Seoul Viosys Co., Ltd. Semiconductor device and method of fabricating the same
TWI546979B (zh) * 2012-03-05 2016-08-21 晶元光電股份有限公司 對位接合之發光二極體裝置與其製造方法
JP6024533B2 (ja) 2012-03-28 2016-11-16 日亜化学工業株式会社 サファイア基板及びその製造方法並びに窒化物半導体発光素子
EP2942820A1 (en) * 2012-04-02 2015-11-11 Asahi Kasei E-materials Corporation Optical substrate, semiconductor light-emitting element and method of manufacturing semiconductor light-emitting element
EP2889922B1 (en) 2012-08-21 2018-03-07 Oji Holdings Corporation Method for producing substrate for semiconductor light emitting element and method for manufacturing semiconductor light emitting element
JP5435523B1 (ja) * 2012-10-12 2014-03-05 エルシード株式会社 半導体発光素子及びその製造方法
CN103094488B (zh) * 2013-01-24 2015-04-08 合肥京东方光电科技有限公司 电致发光器件及其制造方法
JP6091909B2 (ja) * 2013-01-25 2017-03-08 旭化成株式会社 半導体発光素子用基材の製造方法、半導体発光素子の製造方法、及び、GaN系半導体発光素子
US20160005923A1 (en) * 2013-02-12 2016-01-07 El-Seed Corporation Led element and manufacturing method for same
JP6048233B2 (ja) * 2013-03-12 2016-12-21 豊田合成株式会社 Iii 族窒化物半導体発光素子
US9793434B2 (en) 2013-04-16 2017-10-17 El-Seed Corporation LED element and method of manufacturing the same
JP2015005696A (ja) * 2013-06-24 2015-01-08 旭化成イーマテリアルズ株式会社 半導体発光素子用ウェハ、エピタキシャルウェハ、及び半導体発光素子
US9640729B2 (en) * 2013-07-03 2017-05-02 Koninklijke Philips N.V. LED with stress-buffer layer under metallization layer
JP2015072751A (ja) * 2013-10-01 2015-04-16 株式会社ジャパンディスプレイ 有機el表示装置
JP6226681B2 (ja) * 2013-10-09 2017-11-08 エルシード株式会社 Led素子
JP6387780B2 (ja) 2013-10-28 2018-09-12 日亜化学工業株式会社 発光装置及びその製造方法
JP5553292B1 (ja) * 2013-12-03 2014-07-16 エルシード株式会社 Led素子
WO2015114936A1 (ja) * 2014-01-30 2015-08-06 エルシード株式会社 発光素子
JP6248786B2 (ja) * 2014-04-25 2017-12-20 日亜化学工業株式会社 窒化物半導体素子およびその製造方法
JP5740031B2 (ja) * 2014-05-12 2015-06-24 エルシード株式会社 Led素子
JP5866044B1 (ja) * 2014-11-13 2016-02-17 エルシード株式会社 発光素子の製造方法及び発光素子
WO2015194382A1 (ja) * 2014-06-17 2015-12-23 エルシード株式会社 発光素子の製造方法及び発光素子
US9853183B2 (en) 2014-06-17 2017-12-26 El-Seed Corporation Method for manufacturing light emitting element and light emitting element
CN104362232B (zh) * 2014-10-28 2019-03-29 天津三安光电有限公司 一种发光二极管
TW201709317A (zh) * 2015-04-15 2017-03-01 El-Seed Corp Led元件
EP3163634A4 (en) * 2015-07-17 2018-01-17 Scivax Corporation Light emitting element
JP2018022919A (ja) * 2017-10-06 2018-02-08 エルシード株式会社 Led素子
KR102506441B1 (ko) * 2017-12-04 2023-03-06 삼성전자주식회사 반도체 발광 어레이의 제조 방법 및 반도체 발광 어레이
US10304993B1 (en) * 2018-01-05 2019-05-28 Epistar Corporation Light-emitting device and method of manufacturing the same
JP6785455B2 (ja) * 2018-05-11 2020-11-18 パナソニックIpマネジメント株式会社 発光ダイオード素子、及び発光ダイオード素子の製造方法
JP7305428B2 (ja) * 2018-06-05 2023-07-10 株式会社小糸製作所 半導体成長用基板、半導体素子、半導体発光素子および半導体素子製造方法
US11119405B2 (en) * 2018-10-12 2021-09-14 Applied Materials, Inc. Techniques for forming angled structures

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02205365A (ja) * 1989-02-03 1990-08-15 Nippon Telegr & Teleph Corp <Ntt> スーパールミネッセントダイオード
JP2927279B2 (ja) * 1996-07-29 1999-07-28 日亜化学工業株式会社 発光ダイオード
JP3439063B2 (ja) * 1997-03-24 2003-08-25 三洋電機株式会社 半導体発光素子および発光ランプ
CN1227749C (zh) * 1998-09-28 2005-11-16 皇家菲利浦电子有限公司 照明系统
JP5800452B2 (ja) 2001-07-24 2015-10-28 日亜化学工業株式会社 半導体発光素子
JP4055503B2 (ja) * 2001-07-24 2008-03-05 日亜化学工業株式会社 半導体発光素子
US6743721B2 (en) * 2002-06-10 2004-06-01 United Microelectronics Corp. Method and system for making cobalt silicide
JP4309106B2 (ja) * 2002-08-21 2009-08-05 士郎 酒井 InGaN系化合物半導体発光装置の製造方法
JP2005005679A (ja) * 2003-04-15 2005-01-06 Matsushita Electric Ind Co Ltd 半導体発光素子およびその製造方法
KR101183776B1 (ko) * 2003-08-19 2012-09-17 니치아 카가쿠 고교 가부시키가이샤 반도체 소자
JP2005223154A (ja) * 2004-02-05 2005-08-18 Nichia Chem Ind Ltd 基板の形成方法、半導体基板及び半導体素子
US7615798B2 (en) * 2004-03-29 2009-11-10 Nichia Corporation Semiconductor light emitting device having an electrode made of a conductive oxide
TW200419832A (en) * 2004-04-16 2004-10-01 Uni Light Technology Inc Structure for increasing the light-emitting efficiency of a light-emitting device
JP4471726B2 (ja) * 2004-04-26 2010-06-02 京セラ株式会社 単結晶サファイア基板の製造方法
JP2005354020A (ja) 2004-05-10 2005-12-22 Univ Meijo 半導体発光素子製造方法および半導体発光素子
JP2006049855A (ja) * 2004-06-28 2006-02-16 Matsushita Electric Ind Co Ltd 半導体発光素子およびその製造方法
US7161188B2 (en) * 2004-06-28 2007-01-09 Matsushita Electric Industrial Co., Ltd. Semiconductor light emitting element, semiconductor light emitting device, and method for fabricating semiconductor light emitting element
EP1801892A4 (en) 2004-08-31 2008-12-17 Univ Meijo METHOD FOR PRODUCING SEMICONDUCTOR LIGHT EMITTING ELEMENT AND SEMICONDUCTOR LIGHT EMITTING ELEMENT
JP2006100518A (ja) * 2004-09-29 2006-04-13 Toyoda Gosei Co Ltd 基板表面処理方法及びiii族窒化物系化合物半導体発光素子の製造方法。
JP2006196658A (ja) * 2005-01-13 2006-07-27 Matsushita Electric Ind Co Ltd 半導体発光素子およびその製造方法
JP2007019318A (ja) * 2005-07-08 2007-01-25 Sumitomo Chemical Co Ltd 半導体発光素子、半導体発光素子用基板の製造方法及び半導体発光素子の製造方法
JP2007273975A (ja) 2006-03-10 2007-10-18 Matsushita Electric Works Ltd 発光素子
CN101395728B (zh) 2006-03-10 2011-04-13 松下电工株式会社 发光元件及其制造方法
JP4637781B2 (ja) 2006-03-31 2011-02-23 昭和電工株式会社 GaN系半導体発光素子の製造方法
JP2007281130A (ja) * 2006-04-05 2007-10-25 Luminous:Kk 青色発光ダイオードおよび青色発光ダイオードの製造方法
JP2008034822A (ja) * 2006-06-28 2008-02-14 Nichia Chem Ind Ltd 半導体発光素子
TWI309481B (en) * 2006-07-28 2009-05-01 Epistar Corp A light emitting device having a patterned substrate and the method thereof
JP2008112957A (ja) 2006-10-06 2008-05-15 Mitsubishi Cable Ind Ltd GaN系LEDチップ
US8716728B2 (en) 2006-10-20 2014-05-06 Mitsubishi Chemical Corporation Nitride semiconductor light-emitting diode device
JP2008141015A (ja) 2006-12-01 2008-06-19 Mitsubishi Cable Ind Ltd 発光ダイオード素子
JP5082752B2 (ja) * 2006-12-21 2012-11-28 日亜化学工業株式会社 半導体発光素子用基板の製造方法及びそれを用いた半導体発光素子
JP4908381B2 (ja) * 2006-12-22 2012-04-04 昭和電工株式会社 Iii族窒化物半導体層の製造方法、及びiii族窒化物半導体発光素子、並びにランプ
JP5023691B2 (ja) * 2006-12-26 2012-09-12 日亜化学工業株式会社 半導体発光素子
JP2008182110A (ja) * 2007-01-25 2008-08-07 Matsushita Electric Ind Co Ltd 窒化物半導体発光装置
TWI343663B (en) 2007-05-15 2011-06-11 Epistar Corp Light emitting diode device and manufacturing method therof
JP2009021349A (ja) * 2007-07-11 2009-01-29 Rohm Co Ltd 半導体発光素子の製造方法及び半導体発光素子
JP2009054882A (ja) * 2007-08-28 2009-03-12 Univ Of Tokushima 発光装置の製造方法
JP2009070928A (ja) * 2007-09-11 2009-04-02 Daido Steel Co Ltd 面発光ダイオード
KR101159438B1 (ko) * 2007-11-16 2012-06-22 가부시키가이샤 아루박 기판 처리 방법, 및 이 방법에 의해 처리된 기판
JP2009177528A (ja) * 2008-01-24 2009-08-06 Sharp Corp 送信装置、受信装置、指示装置、通信システム、送信方法、受信方法、指示方法、プログラム、及び、記録媒体
JP2009277882A (ja) * 2008-05-14 2009-11-26 Showa Denko Kk Iii族窒化物半導体発光素子の製造方法及びiii族窒化物半導体発光素子、並びにランプ
JP5379434B2 (ja) 2008-09-22 2013-12-25 学校法人 名城大学 発光素子用サファイア基板の製造方法
JP2010103424A (ja) * 2008-10-27 2010-05-06 Showa Denko Kk 半導体発光素子の製造方法
JP5306779B2 (ja) * 2008-11-04 2013-10-02 学校法人 名城大学 発光素子及びその製造方法
JP5311408B2 (ja) * 2008-12-26 2013-10-09 シャープ株式会社 窒化物半導体発光素子
JP5507874B2 (ja) * 2009-04-14 2014-05-28 株式会社島津製作所 波長変換レーザ装置
CN102484183B (zh) * 2009-09-07 2015-01-14 崇高种子公司 半导体发光元件及其制造方法

Also Published As

Publication number Publication date
JP5913664B2 (ja) 2016-04-27
JP5706862B2 (ja) 2015-04-22
JP2016146502A (ja) 2016-08-12
KR20170102364A (ko) 2017-09-08
CN102484183B (zh) 2015-01-14
EP3293775A1 (en) 2018-03-14
JP2015099939A (ja) 2015-05-28
US20150091039A1 (en) 2015-04-02
EP2477238B1 (en) 2017-12-20
CN102484183A (zh) 2012-05-30
JP5126800B2 (ja) 2013-01-23
ES2663320T3 (es) 2018-04-12
JPWO2011027679A1 (ja) 2013-02-04
KR20140082852A (ko) 2014-07-02
US8941136B2 (en) 2015-01-27
JP6410751B2 (ja) 2018-10-24
CN104600167B (zh) 2017-12-12
WO2011027679A1 (ja) 2011-03-10
JP4768894B2 (ja) 2011-09-07
JP2018198340A (ja) 2018-12-13
JP2011176379A (ja) 2011-09-08
US20120228656A1 (en) 2012-09-13
EP2477238A1 (en) 2012-07-18
JP2013042162A (ja) 2013-02-28
KR101417541B1 (ko) 2014-07-08
HK1207742A1 (en) 2016-02-05
CN104600167A (zh) 2015-05-06
EP2477238A4 (en) 2015-03-11

Similar Documents

Publication Publication Date Title
JP6410751B2 (ja) 半導体発光素子
JP5379434B2 (ja) 発光素子用サファイア基板の製造方法
US7675084B2 (en) Photonic crystal light emitting device
JP5643920B1 (ja) Led素子及びその製造方法
JP5435523B1 (ja) 半導体発光素子及びその製造方法
KR20060131534A (ko) 요철 구조를 포함하는 발광 소자 및 그 제조 방법
EP1855311B1 (en) Two-light flux interference exposure device, two-light flux interference exposure method, semiconductor light emitting element manufacturing method, and semiconductor light emitting element
KR100900644B1 (ko) 미세패턴 형성방법 및 이를 이용한 반도체 발광소자제조방법
KR100679739B1 (ko) 광결정 발광다이오드의 제조방법
KR100878979B1 (ko) 광결정 구조를 가지는 발광 다이오드
US20230006096A1 (en) Semiconductor light-emitting device
KR20100061134A (ko) 질화물 반도체 발광소자의 제조방법 및 이 방법에 의해 제조된 질화물 반도체 발광소자
KR20110096990A (ko) 반도체 소자의 패턴 형성방법

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170525

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180604

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190603

Year of fee payment: 6