KR101854604B1 - 마이크로 머시닝된 압전 3-축 자이로스코프 및 적층된 측면 오버랩 트랜스듀서 (slot) 기반의 3-축 가속도계 - Google Patents

마이크로 머시닝된 압전 3-축 자이로스코프 및 적층된 측면 오버랩 트랜스듀서 (slot) 기반의 3-축 가속도계 Download PDF

Info

Publication number
KR101854604B1
KR101854604B1 KR1020127031566A KR20127031566A KR101854604B1 KR 101854604 B1 KR101854604 B1 KR 101854604B1 KR 1020127031566 A KR1020127031566 A KR 1020127031566A KR 20127031566 A KR20127031566 A KR 20127031566A KR 101854604 B1 KR101854604 B1 KR 101854604B1
Authority
KR
South Korea
Prior art keywords
drive
frame
sensing
beams
axis
Prior art date
Application number
KR1020127031566A
Other languages
English (en)
Other versions
KR20130095646A (ko
Inventor
필립 제이슨 스테파노우
센크 아카르
라빈드라 바만 쉐노이
데이비드 윌리엄 번즈
저스틴 펠프스 블랙
커트 에드워드 피터슨
스리니바산 코다가날루르 가나파티
Original Assignee
퀄컴 엠이엠에스 테크놀로지스 인크.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 퀄컴 엠이엠에스 테크놀로지스 인크. filed Critical 퀄컴 엠이엠에스 테크놀로지스 인크.
Publication of KR20130095646A publication Critical patent/KR20130095646A/ko
Application granted granted Critical
Publication of KR101854604B1 publication Critical patent/KR101854604B1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5769Manufacturing; Mounting; Housings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5705Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis
    • G01C19/5712Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using masses driven in reciprocating rotary motion about an axis the devices involving a micromechanical structure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • G01C19/5733Structural details or topology
    • G01C19/574Structural details or topology the devices having two sensing masses in anti-phase motion
    • G01C19/5747Structural details or topology the devices having two sensing masses in anti-phase motion each sensing mass being connected to a driving mass, e.g. driving frames
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments or devices referred to in the other groups of this subclass
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/0802Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/03Assembling devices that include piezoelectric or electrostrictive parts
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/071Mounting of piezoelectric or electrostrictive parts together with semiconductor elements, or other circuit elements, on a common substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/072Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by laminating or bonding of piezoelectric or electrostrictive bodies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/082Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for two degrees of freedom of movement of a single mass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/42Piezoelectric device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49005Acoustic transducer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49117Conductor or circuit manufacturing
    • Y10T29/49124On flat or curved insulated base, e.g., printed circuit, etc.
    • Y10T29/49155Manufacturing circuit on or in base

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Micromachines (AREA)
  • Gyroscopes (AREA)
  • Pressure Sensors (AREA)

Abstract

본 개시물은 x-축 자이로스코프들, y-축 자이로스코프들, z-축 자이로스코프들, 2-축 가속도계들 및 3-축 가속도계들을 형성하고 이용하기 위해, 컴퓨터 저장 매체 상에 인코딩된 컴퓨터 프로그램들을 포함하여 시스템들, 방법들 및 장치들을 제공한다. 이러한 디바이스들에 대한 제작 프로세스들을 결합하는 것은, 단일 글래스 기판과 같은 단일 기판상에 6 개의 관성 감지 축들의 모놀리식 집적을 가능하게 할 수 있다. 이러한 디바이스들은 모바일 디스플레이 디바이스와 같은 모바일 디바이스에 포함될 수도 있다.

Description

마이크로 머시닝된 압전 3-축 자이로스코프 및 적층된 측면 오버랩 트랜스듀서 (SLOT) 기반의 3-축 가속도계{MICROMACHINED PIEZOELECTRIC THREE-AXIS GYROSCOPE AND STACKED LATERAL OVERLAP TRANSDUCER (SLOT) BASED THREE-AXIS ACCELEROMETER}
관련된 출원들의 상호 참조
본 출원은 2010 년 4 월 30 일에 출원된 "MICROMACHINED PIEZOELECTRIC X-AXIS GYROSCOPE" 라는 명칭의 미국 특허 가출원 제 61/343,598 호 (대리인 문서번호 QUALP030P/101702P1) 를 우선권 주장하며, 상기 가출원은 본 발명의 양수인에게 양도된다. 본 출원은 또한 2010 년 4 월 30 일에 출원된 "MICROMACHINED PIEZOELECTRIC Z-AXIS GYROSCOPE" 라는 명칭의 미국 특허 가출원 제 61/343,599 호 (대리인 문서번호 QUALP031P/101703P1) 를 우선권 주장하며, 상기 가출원은 본 발명의 양수인에게 양도된다. 본 출원은 또한 2010 년 4 월 30 일에 출원된 "STACKED LATERAL OVERLAP TRANDUCER (SLOT) BASED 3-AXIS MEMS ACCELEROMETER" 라는 명칭의 미국 특허 가출원 제 61/343,601 호 (대리인 문서번호 QUALP032P/101704P1) 를 우선권 주장하며, 상기 가출원은 본 발명의 양수인에게 양도된다. 본 출원은 또한 2010 년 4 월 30 일에 출원된 "MICROMACHINED PIEZOELECTRIC X-AXIS & Z-AXIS GYROSCOPE AND STACKED LATERAL OVERLAP TRANDUCER (SLOT) BASED 3-AXIS MEMS ACCELEROMETER" 라는 명칭의 미국 특허 가출원 제 61/343,600 호 (대리인 문서번호 QUALP034P/101704P2) 를 우선권 주장하며, 상기 가출원은 본 발명의 양수인에게 양도된다. 본 출원은 또한 2010 년 12 월 30 일에 출원된 "MICROMACHINED PIEZOELECTRIC X-AXIS & Z-AXIS GYROSCOPE AND STACKED LATERAL OVERLAP TRANDUCER (SLOT) BASED 3-AXIS MEMS ACCELEROMETER" 라는 명칭의 미국 특허 가출원 제 12/930,229 호 (대리인 문서번호 QUALP034/101704U2) 를 우선권 주장하며, 상기 가출원은 본 발명의 양수인에게 양도된다. 상기 우선 출원들의 개시물은 본 개시물의 일부로 간주되고, 본 개시물에서 참조로서 통합된다.
기술 분야
본 개시물은 전자 기계식 시스템들에 관한 것이고, 더욱 상세하게는 다중-축 자이로스코프들 및 가속도계들에 관한 것이다.
전자 기계식 시스템들은 전기 및 기계식 소자들, 액추에이터들, 트랜스듀서들, 센서들, 광학 컴포넌트들 (예컨대, 거울들) 및 전자장치들을 갖는 디바이스들을 포함한다. 전자 기계식 시스템들은 마이크로 스케일들 및 나노 스케일들을 포함하지만 이에 제한되지 않는 다양한 스케일들로 제조될 수 있다. 예를 들면, MEMS (microelectromechanical systems) 디바이스들은 약 1 마이크론 내지 수백 마이크론들 또는 그 이상의 범위의 사이즈들을 갖는 구조들을 포함할 수 있다. NEMS (nanoelectromechanical systems) 디바이스들은 예컨대, 수백 나노미터들 보다 작은 사이즈들을 포함하여 1 마이크론 보다 작은 사이즈를 갖는 구조들을 포함할 수도 있다. 전자 기계식 소자들은 기판들의 일부들 및/또는 증착된 물질층들을 에칭하거나 전자식 및 전자 기계식 디바이스들을 형성하기 위해 층들을 부가하는, 증착, 에칭, 리소그래피 및/또는 다른 마이크로기계식 프로세스들을 이용하여 생성될 수도 있다.
전자 기계식 시스템 디바이스의 하나의 타입은 IMOD (interferometric modulator) 라 불린다. 본 명세서에서 이용되는 것과 같이, 용어 간섭 변조기 또는 간섭 광 변조기는 광학 간섭 원리들을 이용하여 광을 선택적으로 흡수 및/또는 반사하는 디바이스를 지칭한다. 일부 구현들에서, 간섭 변조기는 한 쌍의 도전판들을 포함할 수도 있고, 이들 중 하나 또는 양자는 전체적으로 또는 부분적으로 투명하거나 및/또는 반사적일 수도 있고, 적절한 전기 신호의 적용하에 상대적인 모션이 가능할 수도 있다. 일 구현에서, 하나의 판은 기판상에 증착된 고정층을 포함할 수도 있고, 다른 판은 에어 갭에 의해 고정 층으로부터 분리된 반사막을 포함할 수도 있다. 다른 판에 대하여 하나의 판의 위치는 간섭 변조기 상에 입사하는 광의 광학 간섭을 변경시킬 수 있다. 간섭 변조기 디바이스들은 광범위한 애플리케이션들을 가지고, 특히 디스플레이 능력들을 갖는 기존의 제품들을 개선시키고 새로운 제품들을 생성하는데 이용되는 것으로 예상된다.
최근에, 소형 자이로스코프들 및 가속도계들을 제작하는데 관심이 증가되고 있다. 예를 들어, 일부 자이로스코프들 및/또는 가속도계들은 모바일 디스플레이 디바이스들과 같은 모바일 디바이스들에 통합된다. 이러한 자이로스코프들 및 가속도계들은 일부 측면들에서는 만족스럽지만, 개선된 소형 자이로스코프들 및 가속도계들을 제공하는 것이 바람직할 것이다.
본 개시물의 시스템들, 방법들 및 디바이스들은 각각 몇몇 혁신적인 양태들을 가지지만, 이들 중 어느 하나의 것도 본 명세서에 개시된 바람직한 특성들을 단독으로 담당하는 것은 아니다.
본 개시물에 기술된 주제의 하나의 혁신적인 양태는, 실질적으로 제 1 면에서 연장하는 기판; 실질적으로 기판상의 제 1 축을 따라 형성된 제 1 복수의 전극들; 실질적으로 기판상의 제 2 축을 따라 형성된 제 2 복수의 전극들을 포함하는 장치에서 구현될 수 있다. 그 장치는, 기판에 부착된 제 1 앵커; 제 1 앵커에 부착되고 실질적으로 제 2 면에서 연장하는 프레임; 및 프레임에 부착되고 실질적으로 제 2 면에서 연장하는 제 1 검사 질량체를 포함할 수도 있다. 프레임은 제 2 축을 따르는 모션에 대해 실질적으로 제한될 수도 있다. 제 1 검사 질량체는 제 1 축을 따라 연장하는 제 1 복수의 슬롯들 및 제 2 축을 따라 연장하는 제 2 복수의 슬롯들을 가질 수도 있다. 제 1 검사 질량체는 제 1 축을 따르고 제 2 축을 따르는 모션에 대해 실질적으로 제한될 수도 있다.
그 장치는 제 1 축을 따라 적용된 측면 가속도에 응답하는 제 1 검사 질량체의 측면 움직임이 제 2 복수의 전극들에서의 캐패시턴스의 제 1 변화를 발생하게 하도록 구성될 수도 있다. 그 장치는 또한 제 2 축을 따라 적용된 측면 가속도에 응답하는 제 1 검사 질량체의 측면 움직임이 제 1 복수의 전극들에서의 캐패시턴스의 제 2 변화를 발생하게 하도록 구성될 수도 있다.
그 장치는 또한 제 1 검사 질량체를 프레임에 커플링하는 제 1 플렉셔들을 더 포함할 수도 있다. 제 1 플렉셔들은 프레임으로 하여금 제 1 축을 따라 이동하게 하지 않고 제 1 검사 질량체가 제 1 축을 따라 이동하게 할 수도 있다. 그 장치는 또한 프레임을 제 1 앵커에 커플링하는 제 2 플렉셔들을 포함할 수도 있다. 제 2 플렉셔들은 제 1 검사 질량체 및 프레임이 제 2 축을 따라 함께 이동하게 할 수도 있다.
프레임은 제 1 앵커를 둘러쌀 수도 있다. 제 1 검사 질량체는 프레임을 둘러쌀 수도 있다. 일부 구현들에서, 하나 이상의 슬롯들은 제 1 검사 질량체를 통해 오직 부분적으로 연장한다. 제 1 검사 질량체와 프레임 중 적어도 하나는 적어도 부분적으로 금속으로 형성될 수도 있다.
그 장치는 또한 제 1 검사 질량체에 커플링된 부수 질량체; 및 기판상의 제 3 전극과 제 4 전극을 포함할 수도 있다. 부수 질량체와 제 3 및 제 4 전극들 사이의 캐패시턴스는 제 1 검사 질량체에 적용된 정규 가속도에 응답하여 변화할 수도 있다.
그 장치는 또한 기판상에 형성된 제 2 앵커; 제 2 앵커에 부착된 플렉셔를 포함할 수도 있다. 플렉셔 및 제 2 앵커는 피봇을 형성할 수 있다. 그 장치는 또한 기판상에 형성된 제 3 전극; 기판상에 형성된 제 4 전극; 제 3 전극에 근접한 제 1 측면 및 제 4 전극에 근접한 제 2 측면을 갖는 제 2 검사 질량체를 포함할 수도 있다. 제 2 검사 질량체는 피봇 주위의 회전을 위해 커플링되고 구성될 수 도 있다. 회전은 제 3 전극에서의 캐패시턴스의 제 3 변화 및 제 4 전극에서의 캐패시턴스의 제 4 변화를 발생할 수도 있다. 제 2 검사 질량체의 질량 중심은 피봇으로부터 실질적으로 오프셋될 수도 있다.
그 장치는 또한 제 1 드라이브 프레임; 제 1 중앙 앵커; 제 1 중앙 앵커의 대향하는 측면들 상에 배치된 복수의 제 1 드라이브 빔들을 포함할 수도 있다. 제 1 드라이브 빔들은 제 1 드라이브 프레임을 제 1 중앙 앵커에 연결할 수도 있다. 제 1 드라이브 빔들 각각은 압전층을 포함할 수도 있다. 제 1 드라이브 빔들 각각은 제 1 드라이브 프레임으로 하여금 제 1 드라이브 빔들의 일 면에서 비틀림 진동하게 하도록 구성될 수도 있다.
그 장치는 제 3 검사 질량체; 및 압전 감지 전극들의 층을 포함하는 복수의 제 1 감지 빔들을 포함할 수도 있다. 제 1 감지 빔들은 제 1 드라이브 프레임을 제 3 검사 질량체에 연결하기 위해 구성될 수도 있다. 제 1 감지 빔들은 적용된 각회전에 응답하여 제 1 드라이브 빔들의 면에 실질적으로 수직하는 감지 평면에서 벤딩하도록 구성되며, 따라서 압전 감지 전극들에서 압전 전하를 발생할 수도 있다. 제 1 드라이브 프레임은 제 3 검사 질량체 내에 배치될 수도 있다.
제 1 감지 빔들은 제 3 검사 질량체의 감지 모션을 응답하여 감지 평면에서 벤딩하도록 구성될 수도 있다. 제 1 감지 빔들은 앵커로부터의 거리가 증가할 때 감소하는 폭을 가지는 테이퍼된 감지 빔들일 수도 있다.
복수의 제 1 드라이브 빔들은 제 1 드라이브 빔들의 면에서 실질적으로 회전하도록 제 1 드라이브 프레임을 제한하도록 추가로 구성될 수도 있다. 복수의 제 1 드라이브 빔들은 제 1 중앙 앵커의 제 1 측면에 배치된 제 1 드라이브 빔들의 제 1 쌍 및 제 1 중앙 앵커의 대향 측면에 배치된 제 1 드라이브 빔들의 제 2 쌍을 포함할 수도 있다.
그 장치는 또한 제 1 감지 프레임; 제 1 감지 프레임 외부에 배치된 제 4 검사 질량체; 한 쌍의 앵커들; 제 1 감지 프레임의 대향하는 측면들 상에 및 한 쌍의 앵커들 사이에 배치된 복수의 제 2 드라이브 빔들을 포함할 수도 있다. 제 4 검사 질량체 및/또는 제 1 감지 프레임은 적어도 부분적으로 도금된 금속으로 형성될 수도 있다.
제 2 드라이브 빔들은 제 1 감지 프레임을 제 4 검사 질량체에 연결할 수도 있다. 제 2 드라이브 빔들 각각은 압전층을 포함하고 제 4 검사 질량체의 드라이브 모션들을 발생하도록 구성될 수도 있다. 드라이브 모션들은 실질적으로 제 2 드라이브 빔들의 제 1 면에서의 비틀림 진동들일 수도 있다. 제 2 드라이브 빔들은 차동 압전 드라이브를 통해 드라이브 진동들을 발생하도록 구성될 수도 있다. 제 2 드라이브 빔들은 제 1 면에 적용된 면 내 응력들에 순응하지만 면 외 응력들에는 반발할 수도 있다.
그 장치는 또한, 제 1 감지 프레임을 한 쌍의 앵커들에 연결하는 복수의 제 2 감지 빔들을 포함할 수도 있다. 제 2 감지 빔들 각각은 장치에 적용된 각회전에 응답하여 압전 전하를 생성하도록 구성된 압전 감지 전극들의 층을 포함할 수도 있다. 제 2 감지 빔들은 테이퍼된 감지 빔들일 수도 있다.
상기 제 1 감지 프레임은 제 4 검사 질량체의 드라이브 모션들로부터 실질적으로 디커플링될 수도 있다. 제 4 검사 질량체와 제 1 감지 프레임은 장치가 감지 모드에서 동작하고 있는 경우에 적용된 각회전에 응답하여 제 1 면 외부에서 함께 비틀림 진동할 수도 있다.
그 장치는 장치가 감지 모드에서 동작하고 있는 경우에 제 4 검사 질량체 감지 모션의 제 1 감지 프레임으로의 전달을 증가시키도록 구성된 링크 빔들을 포함할 수도 있다. 제 1 감지 프레임은 앵커 근처의 제 1 단부에서 더 넓고 앵커로부터 떨어진 제 2 단부에서 더 좁은 테이퍼링 부분을 포함할 수도 있다. 링크 빔들은 테이퍼링 부분들의 제 2 단부들 근처에서 제 1 감지 프레임에 연결될 수도 있다. 링크 빔들은 장치가 감지 모드에서 동작하고 있는 경우에 제 4 검사 질량체 감지 모션의 제 1 감지 프레임으로의 전달을 증가시키도록 구성될 수도 있다.
그 장치는 또한 제 2 중앙 앵커; 제 2 중앙 앵커 주위에 배치된 제 2 감지 프레임; 복수의 제 3 감지 빔들, 제 2 드라이브 프레임, 복수의 제 3 드라이브 빔들, 제 2 드라이브 프레임 서스펜션 및 제 2 감지 프레임 서스펜션을 포함할 수도 있다.
제 3 감지 빔들 각각은 압전 감지 전극들의 층을 포함할 수도 있다. 제 3 감지 빔들은 제 2 감지 프레임을 제 2 중앙 앵커에 연결하기 위해 구성될 수도 있다.
제 2 드라이브 프레임은 제 2 감지 프레임 주위에 배치되고 제 2 감지 프레임에 커플링될 수도 있다. 제 2 드라이브 프레임은 제 1 측면 및 제 2 측면을 포함할 수도 있다.
제 3 드라이브 빔들은 압전 드라이브 빔들일 수도 있다. 제 3 드라이브 빔들은 제 2 감지 프레임의 대향하는 측면들 상에 배치될 수도 있다. 제 3 드라이브 빔들은 제 2 드라이브 프레임의 제 1 측면을 실질적으로 제 2 드라이브 프레임의 면에서 제 3 축을 따라 제 1 방향으로 구동하도록 구성될 수도 있다. 제 3 드라이브 빔들은 제 2 드라이브 프레임의 제 2 측면을 제 3 축을 따라 제 2 의 대향하는 방향으로 구동하도록 구성될 수도 있다.
제 2 드라이브 프레임 서스펜션은 제 2 드라이브 프레임의 드라이브 모션을 제 3 축을 따른 실질적으로 선형의 변위의 드라이브 모션으로 실질적으로 제한하도록 구성될 수도 있다. 제 2 감지 프레임 서스펜션은 제 3 축에 직교하는 제 4 축 주위의 회전에 순응하도록 구성될 수도 있다. 그러나, 제 2 감지 프레임 서스펜션은 제 1 축을 따른 병진 모션에 저항하도록 구성될 수도 있다.
상기 제 2 감지 프레임은 제 2 드라이브 프레임의 드라이브 모션들로부터 실질적으로 디커플링될 수도 있다. 제 2 드라이브 프레임 서스펜션은 제 2 감지 프레임을 제 2 드라이브 프레임에 커플링하기 위해 구성된 복수의 플렉셔들을 포함할 수도 있다.
복수의 제 3 감지 빔들은 제 1 축을 따라 제 2 중앙 앵커의 제 1 측면으로부터 연장하는 감지 빔들의 제 1 쌍 및 제 3 축에 실질적으로 수직하는 제 2 축을 따라 제 2 중앙 앵커의 제 2 측면으로부터 연장하는 제 3 감지 빔들의 제 2 쌍을 포함할 수도 있다. 제 2 중앙 앵커의 제 2 측면은 제 2 중앙 앵커의 제 1 측면에 인접할 수도 있다.
그 장치는 가속도계 및 자이로스코프 중 적어도 하나를 포함할 수도 있다. 그 장치는 또한 디스플레이, 프로세서 및 메모리 디바이스를 포함할 수도 있다. 프로세서느 디스플레이와 통신하도록 구성될 수도 있고, 이미지 데이터를 처리하도록 구성될 수도 있다. 프로세서는 가속도계(들) 및/또는 자이로스코프(들) 과 통신하도록 구성될 수도 있다. 메모리 디바이스는 또한 프로세서와 통신하도록 구성될 수도 있다.
그 장치는 또한 적어도 하나의 신호를 디스플레이에 송신하도록 구성된 드라이버 회로; 및 이미지 데이터의 적어도 일 부분을 드라이버 회로에 송신하도록 구성된 제어기를 포함할 수도 있다. 그 장치는 또한 이미지 데이터를 프로세서에 송신하도록 구성된 이미지 소스 모듈을 포함할 수도 있다. 이미지 소스 모듈은 수신기, 트랜시버 및/또는 송신기를 포함할 수도 있다. 그 장치는 또한 입력 데이터를 수신하고 입력 데이터를 프로세서에 통신하도록 구성된 입력 디바이스를 포함할 수도 있다.
프로세서는 가속도계로부터 수신된 가속도계 데이터와 자이로스코프로부터 수신된 자이로스코프 데이터 중 적어도 하나를 처리하고 분석하도록 구성될 수도 있다. 프로세서는 가속도계로부터 수신된 가속도계 데이터 및/또는 자이로스코프로부터 수신된 자이로스코프 데이터 중 적어도 하나에 따라 디스플레이의 상태를 제어하도록 구성될 수도 있다. 프로세서는 가속도계 데이터 및/또는 자이로스코프 데이터에 따라 게임의 디스플레이를 제어하도록 구성될 수도 있다.
그 장치는 모바일 디바이스일 수도 있거나, 이를 포함할 수도 있다. 프로세서는 가속도계 데이터가 모바일 디바이스가 드롭된 것을 나타내는지 여부를 결정하도록 구성될 수도 있다. 프로세서는 가속도계 데이터가 모바일 디바이스가 드롭된 것을 나타낼 경우에 손상을 방지하도록 디스플레이를 제어하도록 구성될 수도 있다. 프로세서는 가속도계 데이터 및/또는 자이로스코프 데이터가 모바일 디바이스가 드롭된 것을 나타낼 경우에 가속도계 데이터 및/또는 자이로스코프 데이터를 메모리에 저장하도록 추가로 구성될 수도 있다.
프로세서는 가속도계 데이터 및/또는 자이로스코프 데이터와 연관된 시간 데이터가 모바일 디바이스가 드롭된 것을 나타낼 경우에 시간 데이터를 저장하도록 추가로 구성될 수도 있다. 그 장치는 클록을 포함할 수도 있다. 프로세서는 클록으로부터 시간 데이터를 획득할 수도 있다. 그 장치는 네트워크 인터페이스를 포함할 수도 있다. 프로세서는 네트워크 인터페이스를 통해 시간 서버로부터 시간 데이터를 획득하도록 추가로 구성될 수도 있다.
일부 방법들이 여기에 제공된다. 일부 방법은, 실질적으로 제 1 면에서 연장하는 기판상에, 실질적으로 제 1 축을 따르는 제 1 복수의 전극들, 실질적으로 제 2 축을 따르는 제 2 복수의 전극들, 및 제 1 앵커를 형성하는 단계를 포함한다. 그 방법은 실질적으로 제 2 면에서 연장하는 프레임 및 제 1 검사 질량체를 형성하는 단계를 포함할 수도 있다. 제 1 검사 질량체를 형성하는 공정은, 실질적으로 제 1 축을 따라 연장하는 제 1 복수의 슬롯들을 제 1 검사 질량체에 형성하는 단계, 및 실질적으로 제 2 축을 따라 연장하는 제 2 복수의 슬롯들을 제 1 검사 질량체에 형성하는 단계를 포함한다.
프레임을 형성하는 공정은, 제 1 검사 질량체를 프레임에 부착하고, 프레임으로 하여금 제 1 축을 따라 이동하게 하지 않고 제 1 검사 질량체가 실질적으로 제 1 축을 따라 이동하게 하도록 구성된 제 1 플렉셔들을 형성하는 단계를 포함할 수도 있다. 프레임을 형성하는 공정은, 제 2 축을 따른 모션에 대해 프레임을 실질적으로 제한하고, 제 1 검사 질량체와 프레임이 제 2 축을 따라 함께 이동하게 하기 위해, 프레임을 제 1 앵커에 부착하도록 구성된 제 2 플렉셔들을 형성하는 단계를 포함할 수도 있다. 그 방법은 또한 기판상에 피봇을 형성하는 단계; 기판상에 제 3 전극 및 제 4 전극을 형성하는 단계; 및 피봇에 인접하고 피봇 주위의 회전을 위해 구성된 제 2 검사 질량체를 형성하는 단계를 포함할 수도 있다.
그 방법은 기판상에 라우팅 전극들을 성막하는 단계; 기판상에 제 1 중앙 앵커를 형성하는 단계; 앵커상에 제 1 드라이브 프레임을 형성하는 단계; 앵커의 대향하는 측면들 상에 제 1 드라이브 빔들의 쌍들을 형성하는 단계를 포함할 수도 있다. 제 1 드라이브 빔들은 제 1 드라이브 프레임을 중앙 앵커에 연결하고, 제 1 드라이브 빔들은 제 1 드라이브 빔들의 면에서 실질적으로 회전하도록 제 1 드라이브 프레임을 제한하도록 구성될 수도 있다.
그 방법은 또한 제 1 드라이브 프레임 주위에 제 3 검사 질량체를 형성하는 단계; 및 제 1 드라이브 프레임을 제 3 검사 질량체에 연결하는 복수의 제 1 감지 빔들을 형성하는 단계를 포함할 수도 있다. 제 1 감지 빔들은 적용된 각회전에 응답하여 제 1 드라이브 빔들의 면에 실질적으로 수직하는 감지 평면에서 제 3 검사 질량체의 감지 모션들을 허용하도록 구성될 수도 있다. 제 1 감지 빔들은 제 3 검사 질량체 수단의 감지 모션들을 제 1 드라이브 프레임의 모션들로부터 실질적으로 디커플링하도록 구성될 수도 있다. 제 1 드라이브 빔들을 형성하는 단계는, 라우팅 전극들과 접촉하는 제 1 금속층을 성막하는 단계, 제 1 금속층 상에 압전층을 성막하는 단계, 압전층 상에 제 2 금속층을 성막하는 단계, 및 제 2 금속층 상에 제 3 금속층을 전기도금하는 단계를 포함할 수도 있다.
그 방법은 제 1 감지 프레임을 형성하는 단계; 제 1 감지 프레임 외부에 배치된 제 4 검사 질량체를 형성하는 단계; 기판상에 한 쌍의 앵커들을 형성하는 단계 및 제 1 감지 프레임의 대향하는 측면들 상에 및 한 쌍의 앵커들 사이에 배치된 복수의 제 2 드라이브 빔들을 형성하는 단계를 포함할 수도 있다. 제 2 드라이브 빔들은 제 1 감지 프레임을 제 4 검사 질량체에 연결하도록 구성될 수도 있다. 제 2 드라이브 빔들 각각은 압전층을 포함하고 제 4 검사 질량체의 드라이브 모션들을 발생하도록 구성될 수도 있다.
그 방법은 또한 복수의 제 2 드라이브 빔들을 형성하는 단계를 포함할 수도 있자. 제 2 감지 빔들은 압전 감지 전극들의 층을 포함할 수도 있고, 제 1 감지 프레임을 한 쌍의 앵커들에 연결하도록 구성될 수도 있다. 제 1 감지 프레임은 검사 질량체의 드라이브 모션들로부터 실질적으로 디커플링될 수도 있다. 복수의 제 2 드라이브 빔들은 제 1 금속층, 압전층, 제 2 금속층 및 제 3 금속층으로 형성될 수도 있다.
그 방법은 기판상에 제 2 중앙 앵커를 형성하는 단계; 제 2 중앙 앵커 주위에 배치된 제 2 감지 프레임을 형성하는 단계; 복수의 제 3 감지 빔들을 형성하는 단계를 포함할 수도 있다. 제 3 감지 빔들 각각은 압전 감지 전극들의 층을 포함할 수도 있다. 제 3 감지 빔들은 제 2 감지 프레임을 제 2 중앙 앵커에 연결하도록 구성될 수도 있다.
그 방법은 또한 제 2 감지 프레임 주위에 배치되고 제 2 감지 프레임에 커플링된 제 2 드라이브 프레임을 형성하는 단계를 포함할 수도 있다. 제 2 드라이브 프레임은 제 1 측면 및 제 2 측면을 포함할 수도 있다.
그 방법은 또한 제 2 감지 프레임의 대향하는 측면들 상에 배치된 복수의 압전 제 3 드라이브 빔들을 형성하는 단계를 포함할 수도 있다. 제 3 드라이브 빔들은 제 2 드라이브 프레임의 제 1 측면을 제 2 드라이브 프레임의 면에서 제 1 축을 따라 제 1 방향으로 구동하도록 구성될 수도 있다. 제 3 드라이브 빔들은 제 2 드라이브 프레임의 제 2 측면을 제 1 축을 따라 제 2 의 대향하는 방향으로 구동하도록 추가로 구성될 수도 있다. 복수의 제 3 감지 빔들은 제 1 금속층, 압전층, 제 2 금속층 및 제 3 금속층으로 형성될 수도 있다.
그 방법은 제 2 드라이브 프레임의 드라이브 모션을 제 1 축을 따른 실질적으로 선형의 변위의 드라이브 모션으로 실질적으로 제한하도록 구성된 제 2 드라이브 프레임 서스펜션을 형성하는 단계를 포함할 수도 있다. 그 방법은 또한 제 1 축에 직교하는 제 2 축 주위의 회전에 순응하도록 구성되지만 제 1 축을 따른 병진 모션에 저항하도록 구성된 제 2 감지 프레임 서스펜션을 형성하는 단계를 더 포함할 수도 있다.
본 명세서에서 설명된 주제의 하나 이상의 구현들에 대한 세부사항들이 첨부된 도면들 및 하기의 설명에서 설명된다. 다른 특징들, 양태들 및 장점들은 설명, 도면 및 청구범위로부터 명백해질 것이다. 하기의 도면들의 상대적인 크기는 스케일링하여 도시되지 않을 수도 있음에 유의한다.
37 C.F.R.§1.84(a)(2)(ⅲ) 에 따른 언급 : 특허 및 출원 파일은 적어도 하나의 컬러 도면을 포함한다. 컬러 도면(들) 을 갖는 이러한 특허 또는 특허 출원 공보의 사본들은 필수 요금의 요청 및 지불 하에 사무소에서 제공될 것이다.
도 1 은 간섭 변조기 (IMOD) 디스플레이 디바이스의 픽셀들의 시리즈에서 2 개의 인접 픽셀들을 도시하는 등거리도의 일 예를 도시한다.
도 2 는 3×3 간섭 변조기 디스플레이를 통합하는 전자 디바이스를 예시하는 시스템 블록도의 일 예를 도시한다.
도 3 은 도 1 의 간섭 변조기에 대한 적용된 전압 대 이동가능한 반사층 위치를 예시하는 다이어그램의 일 예를 도시한다.
도 4 는 다양한 공통 및 세그먼트 전압들이 적용될 경우에 간섭 변조기의 다양한 상태들을 예시하는 테이블의 일 예를 도시한다.
도 5a 는 도 2 의 3×3 간섭 변조기 디스플레이에서 디스플레이 데이터의 일 프레임을 예시하는 다이어그램의 일 예를 도시한다.
도 5b 는 도 5a 에 도시된 디스플레이 데이터의 프레임을 기록하는데 이용될 수도 있는 공통 및 세그먼트 신호들에 대한 타이밍 다이어그램의 일 예를 도시한다.
도 6a 는 도 1 의 간섭 변조기 디스플레이의 일부 단면의 일 예를 도시한다.
도 6b 내지 도 6e 는 간섭 변조기의 다양한 구현들의 단면들의 예들을 도시한다.
도 7 은 간섭 변조기에 대한 제조 프로세스를 도시하는 흐름도의 일 예를 도시한다.
도 8a 내지 도 8e 는 간섭 변조기를 형성하는 방법에서 다양한 스테이지들에 대한 단면도들의 예들을 도시한다.
도 9a 및 도 9b 는 싱글 엔디드 튜닝 포크 자이로스코프의 드라이브 및 감지 모드들의 예들을 도시한다.
도 10a 는 중앙 앵커에 부착된 드라이브 빔들에 의해 매달린 검사 질량체를 갖는 자이로스코프의 일 예를 도시한다.
도 10b 는 도 10a 와 유사하지만, 드라이브 전극들 사이에 갭을 갖는 자이로스코프 구현의 일 예를 도시한다.
도 11a 는 도 10a 에 도시된 것과 같은 자이로스코프 구현의 드라이브 모드의 일 예를 도시한다.
도 11b 는 도 11a 에 도시된 것과 같이 구동되고 있는 자이로스코프 구현의 감지 모드의 일 예를 도시한다.
도 12 는 드라이브 프레임이 드라이브 빔들을 통해 중앙 앵커에 부착되는 드라이브 프레임 자이로스코프 구현의 일 예를 도시한다.
도 13a 는 도 12 에 도시된 것과 같은 자이로스코프 구현의 단면의 일 예를 도시한다.
도 13b 는 도 13a 에 도시된 자이로스코프 구현의 확대된 드라이브 빔 쌍의 일 예를 도시한다.
도 14a 는 도 12 에 도시된 것과 같은 자이로스코프 구현의 드라이브 모드의 일 예를 도시한다.
도 14b 는 도 14a 에 도시된 것과 같이 구동되고 있는 자이로스코프 구현의 감지 모드의 일 예를 도시한다.
도 15 는 감지 프레임 자이로스코프 구현의 일 예를 도시한다.
도 16a 는 도 15 에 도시된 자이로스코프 구현의 드라이브 모드의 일 예를 도시한다.
도 16b 는 도 16a 에 도시된 것과 같이 구동되고 있는 자이로스코프 구현의 감지 모드의 일 예를 도시한다.
도 17 은 테이퍼 감지 빔들을 갖는 대안적인 감지 프레임 자이로스코프 구현의 일 예를 도시한다.
도 18 은 도 17 에서와 같은 자이로스코프 구현시 겹쳐지는 유한 요소 분석의 일 예를 도시하며, 이는 실제로 감지 모드에서 동작할 경우에 테이퍼 감지 빔들 상의 균일한 응력들을 보여준다.
도 19 는 도 17 에서와 같은 자이로스코프 구현을 위한 중심으로부터의 거리 대 테이퍼 감지 빔들 상의 응력 레벨의 그래프의 일 예를 도시한다.
도 20a 는 z-축 자이로스코프 구현의 평면도의 일 예를 도시한다.
도 20b 는 도 20a 에 도시된 z-축 자이로스코프 구현의 드라이브 빔들의 확대도의 일 예를 도시한다.
도 21a 는 도 20a 에 도시된 것과 같은 z-축 자이로스코프 구현의 드라이브 모드의 일 예를 도시한다.
도 21b 는 도 20a 에 도시된 것과 같이 구동되는 z-축 자이로스코프 구현의 감지 모드의 일 예를 도시한다.
도 22 는 z-축 자이로스코프로부터 테이퍼 감지 빔의 일 구현의 클로즈업 도면의 일 예를 도시한다.
도 23 은 검사 질량체의 진동 모드 형상들을 미세 튜닝하기 위해 수정 정전력들을 적용하도록 구성될 수도 있는 전극 어레이의 일 예를 도시한다.
도 24 는 면 내 가속도를 측정하기 위한 가속도계의 일 예를 도시한다.
도 25 는 면 외 가속도를 측정하기 위한 가속도계의 일 예의 컴포넌트들을 도시한다.
도 26a 는 면 내 가속도를 측정하기 위한 가속도계의 일 예의 컴포넌트들을 도시한다.
도 26b 는 제 1 축을 따르는 가속도에 대한 도 26a 의 가속도계의 응답의 일 예를 도시한다.
도 26c 는 제 2 축을 따른 가속도에 대한 도 26a 의 가속도계의 응답의 일 예를 도시한다.
도 26d 는 면 내 및 면 외 가속도를 측정하기 위한 가속도계의 일 예를 도시한다.
도 27 은 면 외 가속도를 측정하기 위한 가속도계의 일 예를 도시한다.
도 28 은 면 내 및 면 외 가속도를 측정하기 위한 대안적인 가속도계 구현의 일 예를 도시한다.
도 29 는 면 내 및 면 외 가속을 측정하기 위한 다른 대안적인 가속도계 구현의 일 예를 도시한다.
도 30 은 가속도계 또는 자이로스코프를 형성하는데 이용될수도 있는 다양한 물질들에 의해 인에이블되는 상대적인 감도를 보여주는 그래프를 도시한다.
도 31a 는 콤-핑거 (comb-finger) 가속도계의 일 예를 도시한다.
도 31b 는 콤 드라이브 및 SLOT-기반 가속도계들의 성능을 보여주는 그래프를 도시한다.
도 32 는 관통 슬롯을 포함하여 다양한 깊이의 슬롯들을 갖는 SLOT-기반 가속도계들의 성능을 보여주는 그래프를 도시한다.
도 33 은 모바일 디바이스에서 하나 이상의 자이로스코프들 또는 가속도계들의 이용을 수반하는 방법의 스테이지들을 설명하는 흐름도의 일 예를 도시한다.
도 34 는 가속도계들을 제작하는 방법의 개요를 제공하는 흐름도의 일 예를 도시한다.
도 35a 내지 도 39b 는 가속도계들을 제작하는 프로세스에서 다양한 블록들의 단면도들의 예들을 도시한다.
도 40a 내지 도 40c 는 MEMS 다이 및 집적 회로를 포함하는 디바이스를 형성하는 프로세스에서 다양한 블록들의 단면도들의 예들을 도시한다.
도 41 은 자이로스코프들 및 관련 구조들을 제작하는 프로세스의 개요를 제공하는 흐름도의 일 예를 도시한다.
도 42a 내지 도 46b 는 도 41 에서 설명된 프로세스 동안의 다양한 스테이지들에서, 기판, 자이로스코프의 일부분 및 자이로스코프를 패키징하고 자이로스코프와의 전기 접속들을 실시하는 구조들의 부분들을 통한 단면도들의 예들을 도시한다.
도 47a 및 도 47b 는 복수의 간섭 변조기들, 자이로스코프들 및/또는 가속도계들을 포함하는 디스플레이 디바이스를 도시하는 시스템 블록도들의 예들을 도시한다.
다양한 도면들에서 유사한 도면 부호들 및 명칭들은 유사한 엘리먼트들을 나타낸다.
하기의 상세한 설명은 혁신적인 양태들을 설명하기 위한 특정 구현들에 관한 것이다. 그러나, 본 명세서의 교시들은 다수의 상이한 방식들로 적용될 수 있다. 설명된 구현들은 이미지를 움직이고 있는 것으로 (예컨대, 비디오) 또는 정지한 것으로 (예컨대, 스틸 이미지), 및 텍스트, 그래픽 또는 그림으로 디스플레이하도록 구성된 임의의 디바이스에서 구현될 수도 있다. 더욱 상세하게는, 구현들은 모바일 전화기들, 멀티미디어 인터넷 가능 셀룰러 전화기들, 모바일 텔레비전 수신기들, 무선 디바이스들, 스마트폰들, 블루투스 디바이스들, 개인휴대 정보 단말기들 (PDAs), 무선 전자 메일 수신기들, 핸드헬드 또는 포터블 컴퓨터들, 넷북들, 노트북들, 스마트북들, 프린터들, 복사기들, 스캐너들, 팩시밀리 디바이스들, GPS 수신기들/네비게이터들, 카메라들, MP3 플레이어들, 캠코드들, 게임 콘솔들, 손목 시계들, 시계들, 계산기들, 텔레비전 모니터들, 평판 디스플레이들, 전자 판독 디바이스들 (예컨대, e-리더들), 컴퓨터 모니터들, 오디오 디스플레이들 (예컨대, 주행기록계 디스플레이, 등), 콕핏 (cockpit) 콘트롤들 및/또는 디스플레이들, 카메라 뷰 디스플레이들 (예컨대, 차량 내의 후방 카메라 디스플레이), 전자 사진들, 전자 광고판 또는 간판들, 프로젝터들, 건축 구조물들, 초음파들, 냉장고들, 스테레오 시스템들, 카세트 레코더들 또는 플레이어들, DVD 플레이어들, CD 플레이어들, VCR들, 라디오들, 포터블 메모리 칩들, 세탁기들, 건조기들, 세탁기 겸용 건조기들, 주차료 징수기들, 패키징 (예컨대, MEMS 및 비-MEMS), 미적 구조들 (예컨대, 보석의 일부분 상에 이미지들의 디스플레이), 및 다양한 전자 기계식 시스템 디바이스들과 같지만 이에 제한되지 않는 다양한 전자 디바이스들에서 또는 이들과 결합하여 구현될 수도 있음이 고려된다. 본 명세서의 교시들은 또한 전자 스위칭 디바이스들, 무선 주파수 필터들, 센서들, 가속도계들, 자이로스코프들, 모션-감지 디바이스들, 자력계들, 가전제품용 관성 부품들, 가전제품들의 일부들, 버랙터들, 액정 디바이스들, 전기 영동 디바이스들, 드라이브 방식들, 제작 프로세스들 및 전자 테스트 장비와 같지만 이에 제한되지 않는 비-디스플레이 애플리케이션들에서 이용될 수 있다. 따라서, 교시들은 오직 도면들에만 도시된 구현들로 한정되는 것이 아니라, 당업자에게 용이하게 인식될 수 있는 것처럼 넓은 적용가능성을 가질 것이다.
본 개시물은 다양한 타입의 관성 센서들, 관성 센서들이 제작될 수도 있는 방식, 및 관성 센서들이 이용될 수도 있는 방식을 설명한다. 예를 들면, 본 명세서에 설명된 일부 구현들은 적은 쿼드러처 에러 및 바이어스 에러를 x-축 자이로스코프에 제공한다. 자이로스코프는 평판 디스플레이 글래스 상에 제작하는 것이 적합하다. 이러한 일부 구현들은 드라이브 모드에서 (z-축에 대하여) 면 내 비틀림 진동할 수 있고, 감지 모드에서 면 외 비틀림 진동할 수 있다. 면 내에서 그 배향을 변경시킴으로써, 자이로스코프는 y-축 자이로스코프로서 기능할 수 있다. 추가로, 직교 면에 자이로스코프를 배치함으로써, 자이로스코프는 z-축 자이로스코프로서 기능할 수도 있다.
그러나, 본 명세서에서 설명되는 일부 구현들은 x-축 자이로스코프와 y-축 자이로스크프와 동일면에서 제작 및/또는 배치될 수도 있는 z-축 자이로스코프를 제공한다. 본 명세서에 설명된 다양한 z-축 자이로스코프는 또한 적은 쿼드러처 에러 및 바이어스 에러를 가질 수 있다. 일부 구현들은 실질적으로 선형의 x-방향 모션 (면 내) 으로 압전 구동될 수도 있는 드라이브 검사 질량체를 포함한다. 드라이브 검사 질량체는 z-축에 대한 각회전의 존재시 비틀림 진동하는 감지 검사 질량체에 기계적으로 커플링될 수도 있다. 감지 검사 질량체의 모션은 감지 질량을 기판 앵커에 연결하는 빔들 상의 압전 막에서 전하를 유도할 수 있다. 전하는 전기적으로 레코딩되고 처리될 수도 있다.
검사 질량체들은 두꺼운 도금-금속 합금들 (예컨대, 니켈-망간 (Ni-Mn)), 실리콘 온 인슐레이터 (SOI) 웨이퍼의 디바이스 층으로부터 단결정 실리콘, 유리, 및 다른 물질들과 같은 다양한 물질들로 형성될 수 있다. 압전 필름은 질화알루미늄 (AlN), 산화 아연 (ZnO), 티탄산 지르콘산 납 (PZT), 또는 다른 박막들, 또는 석영, 리튬, 니오브산염, 리튬 탄탈산염 등일 수 있다. 일부 구현들은 평판 디스플레이 글래스 상에 제작하는 것이 적합하다.
본 명세서에 설명된 다양한 구현들은 신규한 3-축 가속도계들 및 그 컴포넌트들을 제공한다. 이러한 3-축 가속도계들은 포터블 네비게이션 디바이스들 및 스마트폰들과 같은 가전제품 애플리케이션들에서 이용하기에 적합한 사이즈, 성능 레벨 및 비용을 갖는다. 이들 일부 구현들은 용량성 SLOT (stacked lateral overlap transducer) 기반의 3-축 가속도계들을 제공한다. 일부 구현들은 2 개의 검사 질량체들을 이용하는 3-축 감지를 제공하는 반면, 다른 구현들은 단 하나의 검사 질량체를 이용하는 3-축 감지를 제공한다. 각각의 축에 대하여 상이한 플렉셔 타입들이 최적화될 수도 있다.
본 개시물에서 설명되는 주제의 특정 구현은 하기의 잠재적인 장점들 중 하나 이상을 실현하도록 구현될 수 있다. 예를 들어, 일부 구현들에서, x-축 자이로스코프들, z-축 자이로스코프들 및/또는 SLOT-기반의 3-축 가속도계들은 제작 프로세스 동안 성막된 층들을 공유할 수도 있다. 이러한 프로세스들의 결합은 단일 글래스 기판과 같은 단일 기판상에 6 개의 관성 감지 축들의 모놀리식 집적을 가능하게 할 수 있다. 본 명세서에 설명된 다수의 구현들은 넓은 영역의 글래스 패널들 상에 제작될 수도 있다. 넓은 영역의 글래스 패널들 상에 SLOT-기반 3-축 가속도계들을 형성할 때 이용될 수도 있는 제작 프로세스들은 본 명세서에서 설명된 x-축, y-축 및 z-축 자이로스코프들과 같은 도금된 금속 다중-축 MEMS 자이로스코프들 상에 압전 질화 알루미늄 (AIN) (또는 다른 압전 물질들) 을 제작하기 위한 프로세스들과 호환가능하다. 따라서, 본 명세서에 설명된 일부 구현들은 동일한 글래스 기판상에 x-축 자이로스코프들, y-축 자이로스코프들, z-축 자이로스코프들 및 SLOT-기반 3축 가속도계들을 제작하는 것을 수반한다.
설명된 구현들이 적용될 수도 있는 적절한 MEMS 디바이스의 일 예는 반사형 디스플레이 디바이스이다. 반사형 디스플레이 디바이스들은 광학 간섭 원리들을 이용하여 그 위에 입사하는 광을 선택적으로 흡수 및/또는 반사하기 위한 간섭 변조기들 (IMODs) 을 포함할 수도 있다. IMOD들은 흡수체, 흡수체에 대하여 이동가능한 반사기, 및 흡수체와 반사기 사이에 한정된 광학 공진 공동을 포함할 수 있다. 반사기는 광학 공진 공동의 사이즈를 변경시키고 따라서 간섭 변조기의 반사율에 영향을 미칠 수 있는 2 이상의 상이한 위치들로 이동될 수 있다. IMOD들의 반사 스펙트럼들은 상이한 색상들을 생성하기 위해 가시 파장들에 걸쳐 시프트될 수 있는 상당히 넓은 스펙트럼 대역들을 생성할 수 있다. 스펙트럼 대역의 위치는 광학 공진 공동의 두께를 변경시킴으로써, 즉 반사기의 위치를 변경시킴으로써 조절될 수 있다.
도 1 은 간섭 변조기 (IMOD) 디스플레이 디바이스의 픽셀 시리즈에서 2 개의 인접 픽셀들을 보여주는 등거리도의 일 예를 도시한다. IMOD 디스플레이 디바이스는 하나 이상의 간섭 MEMS 디스플레이 소자들을 포함한다. 이러한 디바이스들에서, MEMS 디스플레이 소자들의 픽셀들은 밝거나 어두운 상태일 수 있다. 밝은 ("릴랙스", "개방", 또는 "온") 상태에서, 디스플레이 소자는 입사 가시광의 넓은 부분을 예컨대 사용자에게 반사한다. 반대로, 어두운 ("작동", "폐쇄" 또는 "오프") 상태에서, 디스플레이 소자는 적은 입사 가시광을 반사한다. 일부 구현들에서, 온 및 오프 상태들의 광 반사 특성들은 반전될 수도 있다. MEMS 픽셀들은 블랙 및 화이트에 부가하여 컬러 디스플레이를 감안한 특정 파장들에서 대부분 반사하도록 구성될 수도 있다.
IMOD 디스플레이 디바이스는 IMOD들의 로우/컬럼 어레이를 포함할 수 있다. 각각의 IMOD 는 (광학 갭 또는 공동이라 지칭되는) 에어 갭을 형성하기 위해 서로에 대하여 가변하는 및 제어가능한 거리로 위치된 한 쌍의 반사층들, 즉 이동가능한 반사층과 고정된 부분 반사층을 포함할 수 있다. 이동가능한 반사층은 적어도 2 개의 위치들 사이에서 이동될 수도 있다. 제 1 위치, 즉 릴랙스 위치에서, 이동가능한 반사층은 고정된 부분 반사층으로부터 상대적으로 먼 거리에 위치될 수 있다. 제 2 위치, 즉 작동 위치에서, 이동가능한 반사층은 부분 반사층에 더 가깝게 위치될 수 있다. 2 개의 층들로부터 반사하는 입사광은 각각의 픽셀에 대하여 전체 반사 상태 또는 비-반사 상태를 생성하는, 이동가능한 반사층의 위치에 따라 건설적으로 또는 파괴적으로 간섭할 수 있다. 일부 구현들에서, IMOD 는 작동되지 않을 경우에 가시 스펙트럼 내의 광을 반사하는 반사 상태일 수도 있고, 작동되지 않을 경우에 가시 범위 밖의 광 (예컨대, 적외선 광) 을 반사하는 어두운 상태일 수도 있다. 그러나, 일부 다른 구현들에서, IMOD 는 작동되지 않을 경우에는 어두운 상태이고, 작동될 경우에는 반사 상태일 수도 있다. 일부 구현들에서, 적용된 전압의 도입은 픽셀들이 상태들을 변경시키도록 구동할 수 있다. 일부 다른 구현들에서, 적용된 전하는 픽셀들이 상태들을 변경시키도록 구동할 수 있다.
도 1 의 픽셀 어레이의 도시된 부분은 2 개의 인접한 간섭 변조기들 (12) 을 포함한다. (도시된 것과 같이) 좌측의 IMOD (12) 에서, 이동가능한 반사층 (14) 은 부분 반사층을 포함하는 광학 스택 (16) 으로부터 미리 결정된 거리의 릴랙스 위치에 도시된다. 좌측의 IMOD (12) 에 걸쳐 적용된 전압 V0 은 이동가능한 반사층 (14) 의 작동을 유발하기에 불충분하다. 우측의 IMOD (12) 에서, 이동가능한 반사층 (14) 은 광학 스택 (16) 근처의 또는 인접한 작동 위치에 도시된다. 우우측의 IMOD (12) 에 걸쳐 적용된 전압 Vbias 은 작동 위치에서 이동가능한 반사층 (14) 을 유지하기에 충분하다.
도 1 에서, 픽셀들 (12) 의 반사 특성들은 일반적으로 픽셀들 (12) 에 입사하는 광을 나타내는 화살표 (13) 및 좌측의 IMOD (12) 로부터 반사하는 광 (15) 으로 도시된다. 상세히 도시되지 않았지만, 픽셀들 (12) 에 입사하는 광 (13) 의 대부분은 투명 기판 (20) 을 통해 광학 스택 (16) 쪽으로 전송될 것임이 당업자에 의해 이해될 것이다. 광학 스택 (16) 에 입사하는 광의 일부분은 광학 스택 (16) 의 부분 반사층을 통해 전송될 것이고, 투명 기판 (20) 을 통해 다시 반사될 것이다. 광학 스택 (16) 을 통해 전송되는 광 (13) 의 일부는 이동가능한 반사층 (14) 에서 투명 기판 (20) 쪽으로 (및 이를 통해) 다시 반사될 것이다. 광학 스택 (16) 의 부분 반사층으로부터 반사되는 광과 이동가능한 반사층 (14) 으로부터 반사되는 광 사이에 (건설적인 또는 파괴적인) 간섭은 IMOD (12) 로부터 반사된 광 (15) 의 파장(들) 을 결정할 것이다.
광학 스택 (16) 은 단일 층 또는 몇몇 층들을 포함할 수 있다. 층(들) 은 전극 층, 부분 반사층 및 부분 투과층 및 투명한 유전층 중 하나 이상을 포함할 수 있다. 일부 구현들에서, 광학 스택 (16) 은 전기적으로 전도성이고, 부분적으로 투명하고, 부분적으로 반사형이며, 예컨대 상기 층들 중 하나 이상을 투명한 기판 (20) 상에 성막시킴으로써 제작될 수도 있다. 전극층은 다양한 금속들, 예컨대 산화인듐 (ITO) 과 같은 다수 물질들로 형성될 수 있다. 부분 반사층은 다양한 금속들, 예컨대 크롬 (Cr), 반도체들, 및 유전체들과 같은 부분 반사형의 다수 물질들로 형성될 수 있다. 부분 반사층은 물질들의 하나 이상의 층들로 형성될 수 있고, 층들 각각은 단일 물질 또는 결합 물질로 형성될 수 있다. 일부 구현들에서, 광학 스택 (16) 은 광학 흡수체 및 컨덕터 양자로서 기능하는 단일 반투명 두께의 금속 또는 반도체를 포함하지만, 이와 상이한, (IMOD 의 광학 스택 (16) 또는 다른 구조들의) 더 도전성의 층들 또는 부분들은 IMOD 픽셀들 사이에 버스 신호들로서 기능할 수 있다. 광학 스택 (16) 은 또한 하나 이상의 도전성 층들 또는 도전/흡수층을 커버하는 하나 이상의 절연 및 유전층들을 포함할 수 있다.
일부 구현들에서, 광학 스택 (16) 의 층(들) 은 병렬 스트립들로 패터닝될 수 있고, 하기에서 더 설명되는 것과 같이 디스플레이 디바이스에 로우 전극들을 형성할 수도 있다. 당업자에 의해 이해되는 것과 같이, 용어 "패턴화 (patterned)" 는 본 명세서에서 마스킹 및 에칭 프로세스들을 지칭하도록 이용된다. 일부 구현들에서, 알루미늄 (Al) 과 같은 고 도전성 및 반사율 물질은 이동가능한 반사층 (14) 을 위해 이용될 수도 있고, 이들 스트립들은 디스플레이 디바이스에 컬럼 전극들을 형성할 수도 있다. 이동가능한 반사층 (14) 은 포스트들 (18) 의 상부에 성막된 컬럼들 및 포스트들 (18) 사이에 성막된 간섭 희생물질을 형성하기 위해 (광학 스택 (16) 의 로우 전극들과 직교하는) 성막된 금속 층 또는 층들의 병렬 스트립 시리즈들로 형성될 수도 있다. 희생 물질이 에칭되면, 한정된 갭 (19) 또는 광학 공동은 이동가능한 반사층 (14) 과 광학 스택 (16) 사이에 형성될 수 있다. 일부 구현들에서, 포스트들 (18) 간의 간격은 약 1 - 1000um 일 수도 있지만, 갭 (19) 은 약 10,000 옹스트롬 (Å) 미만일 수도 있다.
일부 구현들에서, IMOD 의 각각의 픽셀은 작동 상태 또는 릴랙스 상태에서 본질적으로 고정 및 이동 반사층들에 의해 형성된 캐패시터이다. 전압이 적용되지 않을 경우에, 이동가능한 반사층 (14) 은 도 1 의 좌측에 IMOD (12) 로 도시된 것과 같이 이동가능한 반사층 (14) 과 광학 스택 (16) 사이에 갭 (19) 에 따라 기계적으로 릴랙스 상태를 유지한다. 그러나, 선택된 로우 및 컬럼 중 적어도 하나에 전위 차이, 예컨대 전압이 적용될 경우에, 대응하는 픽셀에서 로우 및 컬럼 전극들의 교차점에 형성된 캐패시터는 충전되고 정전력은 전극들을 서로 끌어당긴다. 적용된 전압이 임계치를 초과하면, 이동가능한 반사층 (14) 은 변형되고, 광학 스택 (16) 근처 또는 그 반대로 이동한다. 광학 스택 (16) 내의 유전층 (비도시) 은 도 1 의 우측의 작동된 IMOD (12) 에 의해 도시되는 것과 같이, 층들 (14 및 16) 사이에 구분 거리가 감소하는 것을 방지하고 이를 제어할 수도 있다. 거동은 적용된 전위 차이의 극성과 관계없이 동일하다. 어레이 내의 픽셀 시리즈는 일부 경우에 "로우들" 또는 "컬럼들" 로 지칭될 수도 있지만, 당업자는 일 방향을 "로우" 로 지칭하고 다른 방향을 "컬럼" 으로 지칭하는 것이 임의적인 것임을 용이하게 인식할 것이다. 다시 말해서, 어떤 배향에서는 로우들이 컬럼들로 고려될 수 있고, 컬럼들은 로우들로 고려될 수 있다. 추가로, 디스플레이 소자들은 직교하는 로우들 및 컬럼들로 균등하게 배열되거나 ("어레이"), 예컨대 서로에 대하여 특정 위치의 오프셋들를 갖는 비선형의 구성들로 배열될 수도 있다 ("모자이크"). 용어 "어레이" 및 "모자이크" 는 이들 중 하나의 구성을 지칭할 수도 있다. 따라서, 디스플레이는 "어레이" 또는 "모자이크" 를 포함하는 것으로 지칭되지만, 엘리먼트들 자체는 서로에 대하여 직교로 배열되거나 균등한 분포로 배치되어야 하는 것이 아니라, 임의의 경우에 비대칭적인 형상들을 및 불균등하게 분포된 엘리먼트들을 갖는 배열들을 포함할 수도 있다.
도 2 는 3×3 간섭 변조기 디스플레이를 통합하는 전자 디바이스를 예시하는 시스템 블록도의 일 예를 도시한다. 전자 디바이스는 하나 이상의 소프트웨어 모듈들을 실행하도록 구성될 수도 있는 프로세서 (21) 를 포함한다. 운영 시스템을 실행하는데 부가하여, 프로세서 (21) 는 웹 브라우저, 전화 애플리케이션, 이메일 프로그램 또는 다른 소프트웨어 애플리케이션을 포함하여 하나 이상의 소프트웨어 애플리케이션들을 실행하도록 구성될 수도 있다.
프로세서 (21) 는 어레이 드라이버 (22) 와 통신하도록 구성될 수도 있다. 어레이 드라이버 (22) 는 신호들을 예컨대, 디스플레이 어레이 또는 패널 (30) 에 제공하는 로우 드라이버 회로 (24) 및 컬럼 드라이버 회로 (26) 를 포함할 수도 있다. 도 1 에 도시된 IMOD 디스플레이 디바이스의 단면이 도 2 의 라인 1-1에 의해 도시된다. 도 2 는 명확함을 위해 3×3 어레이의 IMOD들을 도시하지만, 디스플레이 어레이 (30) 는 다수의 IMOD들을 포함할 수도 있고, 컬럼들에서와 상이한 수의 IMOD들을 로우들에서 가지고 있을 수도 있고, 그 반대도 가능하다.
도 3 은 도 1 의 간섭 변조기에 대한 적용된 전압 대 이동가능한 반사층 위치를 예시하는 다이어그램의 일 예를 도시한다. MEMS 간섭 변조기들에 대하여, 로우/컬럼 (즉, 공통/세그먼트) 기록 절차는 도 3 에 도시된 것과 같은 이러한 디바이스들의 히스테리시스 특성을 이용할 수도 있다. 간섭 변조기는, 이동가능한 반사층 또는 미러가 릴랙스 상태로부터 작동 상태로 변화하게 하는, 예컨대 10 볼트 전위차이를 요구할 수도 있다. 전압이 상기 값으로부터 감소될 경우, 이동가능한 반사층은 전압이 예컨대, 10 볼트 미만으로 다시 떨어지기 때문에 그 상태를 유지하지만, 이동가능한 반사층은 전압이 2 볼트 미만으로 떨어질 때까지 완전히 릴랙스하지 않는다. 따라서, 약 3 내지 7 볼트의 전압 범위는, 도 3 에 도시된 것과 같이 디바이스가 릴랙스 또는 작동 상태로 안정되는 적용된 전압의 윈도우가 발생할 경우에 존재한다. 이는 본 명세서에서 "히스테리시스 윈도우" 또는 "안정성 윈도우" 라 지칭된다. 도 3 의 히스테리시스 특징들을 갖는 디스플레이 어레이 (30) 에 대하여, 로우/컬럼 기록 절차는 일정 시간에 하나 이상의 로우들을 어드레싱하도록 설계될 수 있고, 따라서 소정 로우의 어드레싱 동안, 작동될 어드레싱된 로우의 픽셀들은 약 10 볼트의 전압 차이에 노출되고, 릴렉싱될 픽셀들은 거의 0 볼트의 전압 차이에 노출된다. 어드레싱 이후에, 픽셀들은 대략 5 볼트의 바이어스 전압 차이 또는 안정 상태로 노출되고, 따라서 이전의 스트로빙 (strobing) 상태를 유지한다. 이러한 예에서, 어드레싱된 후에, 각각의 픽셀은 약 3 - 7 볼트의 "안정성 윈도우" 내의 전위 차이를 확인한다. 이러한 히스테리시스 특성 특징은 예컨대 도 1 에 도시된 픽셀 설계가 동일한 적용된 전압 조건들에서 작동되거나 릴랙스된 기존의 상태에서 안정성을 유지하게 할 수 있다. 각각의 IMOD 픽셀은 작동 상태 또는 릴랙스 상태에서 본질적으로 고정된 및 이동하는 반사 층들에 의해 형성된 캐패시터이기 때문에, 이러한 안정 상태는 전력을 상당히 소비하거나 손실하지 않고 히스테리시스 윈도우 내의 정상 전압에 고정될 수 있다. 또한, 적용된 전압 전위가 실질적으로 고정되는 것을 유지할 경우에 IMOD 픽셀에는 본질적으로 적은 전류가 흐르거나 어떤 전류도 흐르지 않는다.
일부 구현들에서, 이미지의 프레임은 (임의의 경우에) 소정 로우에서 픽셀들의 상태로의 요구되는 변경에 따라 컬럼 전극들의 세트를 따라 "세그먼트" 전압들의 형태로 데이터 신호들을 적용함으로써 생성될 수도 있다. 어레이의 각각의 로우는 차례로 어드레싱 될 수 있고, 따라서 프레임은 한번에 하나의 로우씩 기록된다. 요구되는 데이터를 제 1 로우의 픽셀들에 기록하기 위해, 제 1 로우에서 요구되는 상태의 픽셀들에 대응하는 세그먼트 전업들은 컬럼 전극들에 적용될 수 있고, 특정 "공통" 전압 또는 신호의 형태인 제 1 로우 펄스는 제 1 로우 전극에 적용될 수 있다. 그 후에 세그먼트 전압들의 세트는 (임의의 경우에) 제 2 로우의 픽셀들의 상태로의 요구되는 변경에 대응하도록 변경될 수 있고, 제 2 공통 전압은 제 2 로우 전극에 적용될 수 있다. 일부 구현들에서, 제 1 로우의 픽셀들은 컬럼 전극들을 따라 적용되는 세그먼트 전압들에서의 변경에 의해 영향받지 않고, 제 1 공통 전압 로우 펄스 동안 설정된 상태를 유지한다. 이러한 프로세스는 전체 로우 또는 대안적으로 컬럼 시리즈 동안 이미지 프레임을 생성하기 위해 순차적인 방식으로 반복될 수도 있다. 프레임들은 초당 일부 요구되는 수의 프레임들로 이러한 프로세스를 계속해서 반복함으로써 새로운 이미지 데이터로 리프레시 및/또는 업데이트될 수 있다.
각각의 픽셀에 걸쳐 적용되는 세그먼트 및 공통 신호들의 결합 (즉, 각각의 픽셀에 걸친 전위 차이) 는 각각의 픽셀의 결과적인 상태를 결정한다. 도 4 는 다양한 공통 및 세그먼트 전압들이 적용될 경우에 간섭 변조기의 다양한 상태들을 예시하는 표의 일 예를 도시한다. 당업자에 의해 용이하게 이해되는 것과 같이, "세그먼트" 전압들은 컬럼 전극들 또는 로우 전극들에 적용되고, "공통" 전압들은 다른 컬럼 전극들 또는 로우 전극들에 적용될 수 있다.
도 4 (및 도 5 에 도시된 타이밍도) 에 예시된 것과 같이, 릴리스 전압 VCREL 이 공통 라인을 따라 적용될 경우, 공통 라인을 따른 모든 간섭 변조기 엘리먼트들은, 세그먼트 라인들을 따라 적용된 전압들, 즉 높은 세그먼트 전압 VSH 및 낮은 세그먼트 전압 VSL 과 상관없이 릴랙스 상태, 대안적으로 릴랙스 상태 또는 비작동 상태가 될 것이다. 특히, 공통 라인을 따라 릴리스 전압 VCREL 이 적용될 경우에, (대안적으로 픽셀 전압이라 지칭되는) 변조기를 통한 전위 전압은 높은 세그먼트 전압 VSH 및 낮은 세그먼트 전압 VSL 양자가 그 픽셀에 대한 대응 세그먼트 라인을 따라 적용될 경우에 릴랙스 윈도우 (도 3 에서 릴리스 윈도우라 지칭됨) 내에 있다.
높은 홀드 전압 VCHOLD_H 및 낮은 홀드 전압 VCHOLD_L 과 같은 홀드 전압이 공통 라인 상에 적용될 경우에, 예컨대 간섭 변조기의 상태는 일정하게 유지될 것이다. 예를 들면, 릴렉싱된 IMOD 는 릴랙스 위치를 유지할 것이고, 작동된 IMOD 는 작동 위치를 유지할 것이다. 홀드 전압들은 높은 세그먼트 전압 VSH 및 낮은 세그먼트 전압 VSL 양자가 대응하는 세그먼트 라인을 따라 적용될 경우에 안정성 윈도우 내에서 픽셀 전압이 유지되도록 선택될 수 있다. 따라서, 세그먼트 전압 스윙, 즉 높은 세그먼트 전압 VSH 및 낮은 세그먼트 전압 VSL 간의 차이는 포지티브 또는 네거티브 안정성 윈도우 중 하나의 폭 미만이다.
높은 어드레싱 전압 VCADD_H 또는 낮은 어드레싱 전압 VCADD_L 과 같은 어드레싱 또는 작동 전압이 공통 라인 상에 적용될 경우에, 데이터는 개별 세그먼트 라인들을 따른 세그먼트 전압들의 적용에 의해 공통 라인을 따라 변조기들에 선택적으로 기록될 수 있다. 세그먼트 전압들은 작동이 적용된 세그먼트 전압에 의존하도록 선택될 수도 있다. 어드레싱 전압이 공통 라인을 따라 적용될 경우에, 일 세그먼트 전압의 적용으로 인해 안정성 윈도우 내에 픽셀 전압이 발생하며, 이는 픽셀이 작동되지 않고 유지되게 할 것이다. 대조적으로, 다른 세그먼트 전압의 적용으로 인해 안정성 윈도우를 넘어서 픽셀 전압이 발생하며, 이는 픽셀의 작동을 유발할 것이다. 작동을 유발하는 특정 세그먼트 전압은 이용되는 어드레싱 전압에 따라 변화할 수 있다. 일부 구현들에서, 높은 어드레싱 전압 VCADD_H 이 공통 라인을 따라 적용될 경우에, 높은 세그먼트 전압 VSH 의 적용은 변조기가 그 현재 위치를 유지하게 할 수 있지만, 로우 세그먼트 전압 VSL 의 적용은 변조기의 작동을 유발할 수 있다. 결과적으로, 세그먼트 전압들의 영향은 낮은 어드레싱 전압 VCADD_L 이 적용될 경우와 반대가 될 수 있으며, 높은 세그먼트 전압 VSH 은 변조기의 작동을 유발하고 낮은 세그먼트 전압 VSL 은 변조기의 상태에 어떤 영향도 미치지 않는다 (즉, 안정적으로 유지된다).
일부 구현들에서, 홀드 전압들, 어드레스 전압들, 및 세그먼트 전압들이 이용될 수도 있고, 이들은 항상 변조기들에 걸쳐 동일한 극성의 전위 차이를 생성한다. 일부 다른 구현들에서, 변조기의 전위 차이의 극성을 교번시키는 신호들을 이용될 수 있다. 변조기들에 걸친 극성의 교번 (즉, 기록 절차들의 극성의 교번) 은 단일 극성의 기록 동작들이 반복된 이후 발생할 수 있는 전하 누적을 감소시키거나 억제할 수도 있다.
도 5a 는 도 2 의 3×3 간섭 변조기 디스플레이에서 디스플레이 데이터의 일 프레임을 예시하는 다이어그램의 일 예를 도시한다. 도 5b 는 도 5a 에 도시된 디스플레이 데이터의 프레임을 기록하는데 이용될 수도 있는 공통 및 세그먼트 신호들에 대한 타이밍 다이어그램의 일 예를 도시한다. 신호들은 도 2 의 3×3 어레이에 적용될 수 있고 이는 결과적으로 도 5a 에 도시된 라인 시간 (60e) 디스플레이 배열을 발생할 것이다. 도 5a 에서 작동된 변조기들은 어두운 상태이고, 즉 반사된 광의 상당한 부분은 예컨대 뷰어에게 어두운 외형을 발생하도록 가시 스펙트럼 밖에 있다. 도 5a 에 도시된 프레임을 기록하기 전에, 픽셀들은 임의의 상태일 수 있지만, 도 5b 의 타이밍도에 도시된 기록 절차는 각각의 변조기가 릴리스되고 제 1 라인 시간 (60a) 이전에 비작동 상태에 있다고 추정한다.
제 1 라인 시간 (60a) 동안, 릴리스 전압 (70) 은 공통 라인 (1) 상에 적용되고; 공통 라인 (2) 상에 적용된 전압은 높은 홀드 전압 (72) 에서 시작하여 릴리스 전압 (70) 으로 이동하고; 낮은 홀드 전압 (76) 은 공통 라인 (3) 을 따라 적용된다. 따라서, 공통 라인 (1) 을 따른 변조기들 (공통 1, 세그먼트 1), (1, 2) 및 (1, 3) 은 제 1 라인 시간 (60a) 기간 동안 릴릭스 또는 비작동 상태를 유지하고, 공통 라인 (2) 을 따른 변조기들 (2, 1), (2, 2) 및 (2, 3) 은 릴랙스 상태로 이동하고, 공통 라인 (3) 을 따른 변조기들 (3, 1), (3, 2) 및 (3, 3) 은 그들의 이전 상태를 유지할 것이다. 도 4 를 참조하여, 세그먼트 라인들 (1, 2, 3) 을 따라 적용된 세그먼트 전압들은 간섭 변조기들의 상태에 어떤 영향도 미치지 않으며, 이는 공통 라인들 (1, 2 또는 3) 중 어느 것도 라인 시간 (60a) 동안 작동을 유발하는 전압 레벨들 (즉, VCREL - 릴랙스 및 VCHOLD_L - 안정) 에 노출되지 않기 때문이다.
제 2 라인 시간 (60b) 동안, 공통 라인 (1) 상의 전압은 높은 홀드 전압 (72) 으로 이동하고, 공통 라인 (1) 을 따른 모든 변조기들은 공통 라인 (1) 상에 어떤 어드레싱 또는 작동 전압도 적용되지 않기 때문에 적용된 세그먼트 전압에 관계없이 릴랙스 상태를 유지한다. 공통 라인 (2) 을 따른 변조기들은 릴리스 전압 (70) 의 적용으로 인해 릴랙스 상태를 유지하고, 공통 라인 (3) 을 따른 변조기들 (3, 1), (3, 2) 및 (3, 3) 은 공통 라인 (3) 을 따른 전압이 릴리스 전압 (70) 으로 이동할 경우에 릴랙스될 것이다.
제 3 라인 시간 (60c) 동안, 공통 라인 (1) 은 공통 라인 (1) 상에 높은 어드레스 전압 (74) 을 적용함으로써 어드레싱된다. 이러한 어드레스 전압의 적용 동안 낮은 세그먼트 전압 (64) 이 세그먼트 라인들 (1 및 2) 을 따라 적용되기 때문에, 변조기들 (1, 1) 및 (1, 2) 을 통한 픽셀 전압은 변조기들의 포지티브 안정성 윈도우의 상단부보다 크고 (즉, 미리 정의된 임계치를 초과하는 전압 차이), 변조기들 (1, 1) 및 (1, 2) 은 작동된다. 반대로, 높은 세그먼트 전압 (62) 이 세그먼트 라인 (3) 을 따라 적용되기 때문에, 변조기 (1, 3) 를 통한 픽셀 전압은 변조기들 (1, 1) 및 (1, 2) 의 픽셀 전압 미만이며, 변조기의 포지티브 안정성 윈도우 내에서 유지되고; 따라서 변조기 (1, 3) 는 릴랙스를 유지한다. 라인 시간 (60c) 동안, 공통 라인 (2) 을 따른 전압은 낮은 홀드 전압 (76) 으로 감소하고, 공통 라인 (3) 을 따른 전압은 릴리스 전압 (70) 을 유지하며, 공통 라인들 (2 및 3) 을 따른 변조기들은 릴랙스 위치를 벗어난다.
제 4 라인 시간 (60d) 동안, 공통 라인 (1) 상의 전압은 높은 홀드 전압 (72) 으로 리턴하고, 공통 라인 (1) 을 따른 변조기들은 그들의 개별 어드레싱 상태를 벗어난다. 공통 라인 (2) 상의 전압은 낮은 어드레스 전압 (78) 으로 감소된다. 높은 세그먼트 전압 (62) 이 세그먼트 라인 (2) 을 따라 적용되기 때문에, 변조기 (2, 2) 를 통한 픽셀 전압은 변조기의 네거티브 안정성 윈도우의 하단부 미만이고, 이는 변조기 (2, 2) 가 작동하게 한다. 대조적으로, 낮은 세그먼트 전압 (64) 이 세그먼트 라인들 (1 및 3) 을 따라 적용되기 때문에, 변조기들 (2, 1) 및 (2, 3) 은 릴랙스 위치를 유지한다. 공통 라인 (3) 상의 전압은 높은 홀드 전압 (72) 으로 증가하며, 공통 라인 (3) 을 통한 변조기들은 릴랙스 상태를 벗어난다.
결과적으로, 제 5 라인 시간 (60e) 동안, 공통 라인 (1) 상의 전압은 높은 홀드 전압 (72) 을 유지하고, 공통 라인 (2) 상의 전압은 낮은 홀드 전압 (76) 을 유지하며, 공통 라인들 (1 및 2) 을 따른 변조기들은 그들의 개별 어드레스 상태들을 벗어난다. 공통 라인 (3) 상의 전압은 공통 라인 (3) 을 따른 변조기들을 어드레싱하기 위해 높은 어드레스 전압 (74) 으로 증가한다. 낮은 세그먼트 전압 (64) 이 세그먼트 라인들 (2 및 3) 상에 적용되기 때문에, 변조기들 (3, 2) 및 (3, 3) 은 작동하고, 세그먼트 라인 (1) 을 따라 적용된 높은 세그먼트 전압 (62) 은 변조기 (3, 1) 가 릴랙스 위치에서 유지되도록 한다. 따라서, 제 5 라인 시간 (60e) 의 단부에서, 3×3 픽셀 어레이는 도 5a 에 도시된 상태이고, 다른 공통 라인들 (비도시) 을 따른 변조기들이 어드레싱될 경우에 발생할 수도 있는 세그먼트 전압의 변화들에 관계없이 홀드 전압들이 공통 라인들을 따라 적용되기만 한다면 그 상태로 유지될 것이다.
도 5b 의 타이밍도에서, 소정의 기록 절차 (즉, 라인 시간들 (60a-60e)) 은 높은 홀드 및 어드레스 전압들 또는 낮은 홀드 및 어드레스 전압들을 이용하는 것을 포함할 수 있다. 소정의 공통 라인에 대한 기록 절차가 완료되면 (그리고 공통 전압이 작동 전압과 동일한 극성을 갖는 홀드 전압으로 세팅되면), 픽셀 전압은 소정의 안정성 윈도우 내에서 유지되고, 릴리스 전압이 공통 라인 상에 적용될 때까지 릴랙스 윈도우를 통과하지 않는다. 추가로, 각각의 변조기는 그 변조기를 어드레싱 하기 전에 기록 절차의 일부로서 릴리스되기 때문에, 변조기의 작동 시간은 릴리스 시간보다 필수 라인 시간을 결정할 수 있다. 상세하게는, 변조기의 릴리스 시간이 작동 시간보다 큰 구현들에서, 릴리스 전압은 도 5b에 도시된 것과 같은 단일 라인 시간 보다 더 오랫동안 적용될 수도 있다. 일부 다른 구현들에서, 공통 라인들 또는 세그먼트 라인들을 따라 적용된 전압들은 상이한 컬러의 변조기들과 같은 상이한 변조기들의 작동 및 릴리스 전압의 변화들을 설명하도록 변화될 수도 있다.
전술된 원리들에 따라 동작하는 간섭 변조기들의 구성의 세부사항들은 광범위하게 변화될 수도 있다. 예를 들면, 도 6a 내지 도 6e 는 이동가능한 반사층 (14) 및 그 지지 구조들을 포함하는 간섭 변조기의 구현들을 변경시키는 단면들의 예들을 도시한다. 도 6a 는 도 1 의 간섭 변조기 디스플레이의 일부 단면의 일 예를 도시하며, 여기서 금속 물질의 스트립, 즉 이동가능한 반사층 (14) 은 기판 (20) 으로부터 직각으로 연장하는 지지부들 (18) 상에 성막된다. 도 6b 에서, 각각의 IMOD 의 이동가능한 반사층 (14) 은 일반적으로 정사각형 또는 직사각형이고 테더들 (thethers; 32) 상의 코너들에서 또는 그 근처에서 지지부들에 부착된다. 도 6c 에서, 이동가능한 반사층 (14) 은 일반적으로 정사각형 또는 직사각형이고, 플렉셔블 금속을 포함할 수도 있는 변형가능 층 (34) 에 매달린다. 변형가능 층 (34) 은 이동가능한 반사층 (14) 주위의 기판 (20) 에 간접적으로 또는 직접적으로 연결될 수 있다. 이러한 연결들은 본 명세서에서 지지 포스트들이라 지칭된다. 도 6c 에 도시된 구현은 변형가능 층 (34) 에 의해 실행되는 기계적인 기능들로부터 이동가능한 반사층 (14) 의 광학 기능들을 디커플링함으로써 유도되는 추가의 장점들을 갖는다. 이러한 디커플링은 반사층 (14) 을 위해 이용된 구조적 설계 및 물질들이 변형가능 층 (34) 을 위해 이용된 구조적 설계 및 물질들이 서로에 대하여 독립적으로 최적화되도록 한다.
도 6d 는 IMOD 의 다른 예를 도시하고, 여기서 반사층 (14) 은 반사 서브층 (14a) 을 포함한다. 이동가능한 반사층 (14) 은 지지 포스트들 (18) 과 같은 지지 구조로 받쳐진다. 지지 포스트들 (18) 은 더 낮은 고정 전극 (즉, 도시된 IMOD 에서 광학 스택 (16) 의 일부) 으로부터 이동가능한 반사층 (14) 의 분리를 제공하며, 따라서 예컨대, 이동가능한 반사층 (14) 이 릴랙스 위치에 있을 경우 이동가능한 반사층 (14) 과 광학 스택 (16) 사이에 갭 (19) 이 형성된다. 이동가능한 반사층 (14) 은 또한 하나의 전극으로서 기능하도록 구성될 수도 있는 도전층 (14c) 및 지지층 (14b) 을 포함할 수 있다. 이러한 예에서, 도전층 (14c) 은 기판 (20) 으로부터 떨어진 지지층 (14b) 의 일 측면 상에 배치되고, 반사 서브층 (14a) 은 기판 (20) 에 인접한 지지층 (14b) 의 다른 측면 상에 배치된다. 일부 구현들에서, 반사 서브층 (14a) 은 도전성일 수 있고, 지지층 (14b) 과 광학 스택 (16) 사이에 배치될 수 있다. 지지층 (14b) 은 예컨대, 실리콘 옥시니트라이드 (SiON) 또는 실리콘 다이옥사이드 (SiO2) 과 같은 유전 물질의 하나 이상의 층들을 포함할 수 있다. 일부 구현들에서, 지지층 (14b) 은 예컨대, SiO2/SiON/SiO2 3-층 스택과 같이 층들로 이루어진 스택일 수 있다. 반사 서브층 (14a) 및 도전층 (14c) 중 하나 또는 양자는 약 0.5 % 의 구리 (Cu) 를 갖는 알루미늄 합금 (Al alloy) 또는 다른 반사 금속 물질을 포함할 수 있다. 유전 지지층 (14b) 상부 및 하부에 도전층들 (14a, 14c) 을 채용하는 것은 응력들을 조정하고 강화된 도전성을 제공한다. 일부 구현들에서, 반사 서브층 (14a) 및 도전층 (14c) 은 이동가능한 반사층 (14) 내에서 특정 응력 프로파일들을 달성하는 것과 같은 다양한 설계 목적들을 위해 상이한 물질들로 형성될 수 있다.
도 6d 에 도시된 것과 같이, 일부 구현들은 또한 블랙 마스크 구조 (23) 를 포함할 수 있다. 블랙 마스크 구조 (23) 는 주변광 또는 미광을 흡수하기 위해 (예컨대, 픽셀들 사이 또는 포스트들 (18) 밑의) 광학적으로 비활성 영역에 형성될 수 있다. 블랙 마스크 구조 (23) 는 또한 광이 디스플레이의 비활성 부분들로부터 반사되거나 이를 통해 전송되는 것을 금지함으로써 디스플레이 디바이스의 광학 특성들을 개선할 수 있다. 추가로, 블랙 마스크 구조 (23) 는 도전성일 수 있고, 전기 버싱 (bussing) 층으로서 기능하도록 구성될 수 있다. 일부 구현들에서, 로우 전극들은 연결된 로우 전극의 저항을 감소시키도록 블랙 마스크 구조 (23) 에 연결될 수 있다. 블랙 마스크 구조 (23) 는 성막 및 패터닝 기술들을 포함하는 다양한 방법들을 이용하여 형성될 수 있다. 블랙 마스크 구조 (23) 는 하나 이상의 층들을 포함할 수 있다. 예를 들면, 일부 구현들에서, 블랙 마스크 구조 (23) 는 광학 흡수체로서 기능하는 몰리브디늄-크로미윰 (molybdenium chromium; MoCr) 층, SiO2 층, 및 각각 약 30 - 80 Å, 500 - 1000 Å 및 500 - 6000 Å 범위의 두께를 갖는 반사기 및 버싱 층으로서 기능하는 알루미늄 합금을 포함한다. 하나 이상의 층들은 예컨대, MoCr 및 SiO2 층들에 대하여 CF4 및/또는 O2 및 알루미늄 합금 층에 대하여 Cl2 및/또는 BCl3 을 포함하여 포토리소그래피 및 드라이 에칭을 포함하는 다양한 기술들을 이용하여 패터닝될 수 있다. 일부 구현들에서, 블랙 마스크 (23) 는 에탈론 (etalon) 또는 간섭 스택 구조일 수 있다. 이러한 간섭 스택 블랙 마스크 구조들 (23) 에서, 도전성 흡수체들은 각각의 로우 또는 컬럼의 광학 스택 (16) 에서 더 적은 고정 전극들 사이에 신호들을 전송 또는 버싱하는데 이용될 수 있다. 일부 구현들에서, 스페이서층 (35) 은 일반적으로 블랙 마스크 (23) 내의 도전층들로부터 흡수층 (16a) 을 전기적으로 분리하는 기능을 할 수 있다.
도 6e 는 이동가능한 반사층 (14) 이 자체적으로 지지하는 IMOD 의 다른 예를 도시한다. 도 6d 와는 대조적으로, 도 6e 의 구현은 지지 포스트들 (18) 을 포함하지 않는다. 대신에, 이동가능한 반사층 (14) 은 복수 위치들에서 기저 광학 스택 (16) 에 접촉하고, 이동가능한 반사층 (14) 의 곡률은 간섭 변조기를 통한 전압이 작동을 유발하기에 불충분할 경우에 이동가능한 반사층 (14) 이 도 6e 의 비작동 위치로 복귀하도록 충분한 지지를 제공한다. 복수의 상이한 층들을 포함할 수도 있는 광학 스택 (16) 은 본 명세서에서는 간단함을 위해 광합 흡수체 (16a) 및 유전체 (16b) 를 포함하는 것으로 도시된다. 일부 구현들에서, 광학 흡수체 (16a) 는 고정된 전극 및 부분 반사층 양자로서 기능할 수도 있다.
도 6a 내지 도 6e 에 도시된 것과 같은 구현들에서, IMOD들은 이미지들이 투명 기판 (20) 의 앞면, 즉 변조기가 배열된 것과 대향하는 면에서 보여지는 다이렉트-뷰 디바이스들로서 기능한다. 이러한 구현들에서, 디바이스의 뒷부분들 (즉, 예컨대 도 6c 에 도시된 변형가능 층 (34) 을 포함하여 이동가능한 반사층 (14) 뒤의 디스플레이 디바이스의 임의의 부분) 은 반사층 (14) 이 디바이스의 부분들을 광학적으로 차폐하기 때문에 디스플레이 디바이스의 이미지 품질에 영향을 주거나 부정적인 영향을 끼치지 않고 구성되고 동작될 수 있다. 예를 들어, 일부 구현들에서, 버스 구조 (비도시) 는 전압 어드레싱 및 이러한 어드레싱에 의해 발생하는 움직임들과 같은 변조기의 전자기계적 특성들로부터 변조기의 광학 특성들을 구분하는 능력을 제공하는 이동가능한 반사층 (14) 뒤에 포함될 수 있다. 추가로, 도 6a 내지 도 6e 의 구현들은 예컨대, 패터닝와 같은 프로세싱을 간략화할 수 있다.
도 7 은 간섭 변조기에 대한 제조 프로세스 (80) 를 도시하는 흐름도의 일 예를 도시하고, 도 8a - 도 8e 는 상기 제조 프로세스 (80) 의 대응하는 스테이지들에 대한 단면도들의 예들을 도시한다. 일부 구현들에서, 제조 프로세스 (80) 는 도 7 에 도시되지 않은 다른 블록들에 부가하여 도 1 및 도 6 에 도시된 일반적인 타입의 간섭 변조기들을 제조하도록 구현될 수 있다. 도 1, 도 6 및 도 7 을 참조하여, 프로세스 (80) 는 블록 (82) 에서 기판 (20) 위에 광학 스택 (16) 의 형성에 의해 시작한다. 도 8a 는 기판 (20) 위에 형성된 광학 스택 (16) 을 도시한다. 기판 (20) 은 글래스 또는 플라스틱과 같은 투명 기판일 수도 있고, 플렉시블하거나 상대적으로 뻣뻣하고 구부러지지 않을 수도 있으며, 광학 스택 (16) 의 효율적인 형성을 용이하게 하도록 사전 준비 프로세스들, 예컨대 클리닝이 실시될 수도 있다. 전술된 것과 같이, 광학 스택 (16) 은 전기적으로 도전성이고, 부분적으로 투명하며, 부분적으로 반사형일 수 있고, 예컨대, 요구되는 특성들을 갖는 하나 이상의 층들을 투명 기판 (20) 에 성막함으로써 제작될 수도 있다. 도 8a 에서, 광학 스택 (16) 은 서브-층들 (16a 및 16b) 을 갖는 다중층 구조를 포함하지만, 더 많거나 더 적은 서브층들이 일부 다른 구현들에 포함될 수도 있다. 일부 구현들에서, 서브층들 (16a, 16b) 중 하나는 결합된 도전체/흡수체 서브층 (16a) 과 같이 광학적으로 흡수하는 특성 및 도전하는 특성 양자를 가지도록 구성될 수 있다. 추가로, 서브층들 (16a, 16b) 중 하나 이상이 병렬 스트립들 내에 패터닝될 수 있고, 디스플레이 디바이스에 로우 전극들을 형성할 수도 있다. 이러한 패터닝은 마스킹 및 에칭 프로세스 또는 당업계에 공지된 다른 적절한 프로세스에 의해 수행될 수 있다. 일부 구현들에서, 서브층들 (16a, 16b) 중 하나는 하나 이상의 금속층들 (예컨대, 하나 이상의 반사 및/또는 도전층들) 위에 성막된 절연 또는 유전층, 예컨대 서브층 (16b) 일 수 있다. 추가로, 광학 스택 (16) 은 디스플레이의 로우들을 형성하는 개별 및 병렬 스트립들 내에 패터닝될 수 있다.
프로세스 (80) 는 블록 84 에서 광학 스택 (16) 위에 희생층 (25) 의 형성에 의해 계속된다. 희생층 (25) 은 이후에 공동 (19) 을 형성하도록 제거되고 (예컨대, 블록 90), 따라서 희생층 (25) 은 도 1 에 도시된 결과적인 간섭 변조기들 (12) 에는 도시되지 않는다. 도 8b 는 광학 스택 (16) 위에 형성된 희생층 (25) 을 포함하는 부분 제작된 디바이스를 도시한다. 광학 스택 (16) 위에 희생층 (25) 의 형성은 후속 제거 이후에 요구되는 디자인 사이즈를 갖는 갭 또는 공동 (19; 도 1 및 도 8e 에 도시) 를 제공하도록 선택된 두께로, 몰리브덴 (Mo) 또는 비결정성 실리콘 (Si) 과 같은 XeF2 (xenon difluoride) - 에칭가능 물질의 성막을 포함한다. 희생 물질의 성막은 PVD (Physical Vapor Deposition, 예컨대, 스퍼터링), PECVD (Plasma-Enhanced Chemical Vapor Deposition), 열 CVD (Chemical Vapor Deposition), 또는 스핀-코팅과 같은 증착 기술들을 이용하여 실행될 수 있다.
프로세스 (80) 는 블록 86 에서 도 1, 도 6 및 도 8c 에 도시된 것과 같은 지지 구조, 예컨대 포스트 (18) 의 형성에 의해 계속된다. 포스트 (18) 의 형성은 지지 구조 애퍼처를 형성하기 위해 희생층 (25) 을 패터닝한 후, PVD, PECVD, 열 CVD, 또는 스핀-코팅과 같은 증착 방법을 이용하여 물질 (예컨대, 폴리머 또는 무기물질, 예컨대 실리콘 산화물) 을 애퍼처에 성막하여 포스트 (18) 를 형성하는 것을 포함한다. 일부 구현들에서, 희생층 내에 형성된 지지 구조 애퍼처는 희생층 (25) 과 광학 스택 (16) 양자를 통해 기저 기판 (20) 으로 연장할 수 있고, 따라서 포스트 (18) 의 하단부는 도 6a 에 도시된 것과 같이 기판 (20) 에 접촉한다. 대안적으로, 도 8c 에 도시된 것과 같이, 희생층 (25) 에 형성된 애퍼처는 광학 스택 (16) 을 통해서가 아니라 희생층 (25) 을 통해 연장할 수 있다. 예를 들면, 도 8e 는 광학 스택 (16) 의 상부면과 접촉하는 지지 포스트들 (18) 의 하단부들을 도시한다. 포스트 (18) 또는 다른 지지 구조들은 희생층 (25) 위에 지지 구조 물질의 층을 성막하고, 희생층 (25) 내의 애퍼처들로부터 떨어져서 위치된 지지 구조 물질의 부분들을 패터닝함으로써 형성될 수 있다. 지지구조들은 도 8c 에 도시된 것과 같이 애퍼처들 내에 위치될 수도 있지만, 적어도 부분적으로는 희생층 (25) 의 일부분을 넘어서 연장할 수 있다. 전술된 것과 같이, 희생층 (25) 및/또는 지지 포스트들 (18) 의 패터닝은 패터닝 또는 에칭 프로세스에 의해 수행될 수 있지만, 대안적인 에칭 방법들에 의해 수행될 수도 있다.
프로세스 (80) 는 블록 88 에서 도 1, 도 6 및 도 8d 에 도시된 이동가능한 반사층 (14) 과 같은 이동가능한 반사층 또는 막의 형성에 의해 계속된다. 이동가능한 반사층 (14) 은 예컨대 반사층 (예컨대, 알루미늄, 알루미늄 합금) 성막과 같은 하나 이상의 성막 프로세스들과 함께 하나 이상의 패터닝, 마스킹 및/또는 에칭 프로세스들을 채용함으로써 형성될 수도 있다. 이동가능한 반사층 (14) 은 전기적으로 도전성일 수 있고, 전기적으로 도전층으로 지칭된다. 일부 구현들에서, 이동가능한 반사층 (14) 은 도 8d 에 도시된 것과 같은 복수의 서브층들 (14a, 14b, 14c) 을 포함할 수도 있다. 일부 구현들에서, 서브층들 (14a, 14c) 과 같은 하나 이상의 서브층들은 그들의 광학 특성들에 대하여 선택된 높은 반사 서브층들을 포함할 수도 있고, 다른 서브층 (14b) 은 그 기계적인 특성들에 대하여 선택된 기계적인 서브층을 포함할 수도 있다. 희생층 (25) 이 여전히 블록 88 에서 형성된 부분 제작된 간섭 변조기 내에 존재하지만, 이동가능한 반사층 (14) 은 통상적으로 상기 스테이지에서 이동가능하지 않다. 부분 제작된 IMOD 는 희생층 (25) 을 포함하고, 본 명세서에서 "언릴리스 (unreleased)" IMOD 로 지칭될 수도 있다. 도 1 과 관련하여 전술된 것과 같이, 이동가능한 반사층 (14) 은 디스플레이의 컬럼들을 형성하는 개별 병렬 스트립들 내에 패터닝될 수 있다.
프로세스 (80) 는 블록 90 에서 도 1, 도 6 및 도 8e 에 도시된 것과 같은 공동 (19) 과 같은 공동의 형성에 의해 계속된다. 공동 (19) 은 (블록 84 에서 성막된) 희생 물질 (25) 을 에천트로 노출시킴으로써 형성될 수도 있다. 예를 들어, 에칭가능한 희생 물질, 예컨대 Mo 또는 비결정성 Si 는 건식 화학적 에칭에 의해, 예컨대 희생 물질 (25) 을 기체 또는 증기 에천트, 예컨대 요구되는 양의 물질을 제거하는데 효율적인 기간 동안 고체 XeF2 로부터 유도된 증기들로 노출시킴으로써 제거될 수도 있으며, 통상적으로 공동 (19) 주위의 구조들에 대하여 선택적으로 제거될 수도 있다. 에칭가능한 희생 물질 및 에칭 방법들, 예컨대 습싱 에칭 및/또는 플라즈마 에칭의 다른 조합들이 이용될 수도 있다. 블록 90 동안 희생 물질 (25) 이 제거되기 때문에, 이동가능한 반사층 (14) 은 통상적으로 상기 스테이지 이후에 이동가능하다. 희생 물질 (25) 의 제거 이후에, 결과적으로 완전히 또는 부분적으로 제작된 IMOD 는 본 명세서에서 "릴리스" IMOD 로 지칭될 수도 있다.
마이크로머신 압전 x-축 및 y-축 자이로스코프 구현들의 설명
일부 개시된 마이크로머신 압전 자이로스코프 구조들은 종래의 압전 튜닝 포크 자이로스코프들의 일부 성능-관련 제한들을 극복하는, 개선된 기계적인 감지 엘리먼트를 제공한다.
종래의 자이로스코프들
종래의 압전 자이로스코프들은 싱글 엔디드 또는 더블 엔디드 튜닝 포크 구조를 활용한다. 도 9a 및 도 9b 는 싱글 엔디드 튜닝 포크 자이로스코프의 드라이브 및 감지 모드들의 예들을 도시한다. 도 9a 및 도 9b 에 도시된 것과 같이, 싱글 엔디드 튜닝 포크들은 드라이브 및 감지 기능들 양자를 위해 이용되는 2 개의 가지들로 구성된다. 도 9a 및 도 9b 에서, 어두운 영역들은 자이로스코프 (900) 의 움직이지 않는 부분들을 나타내고, 밝은 영역들은 자이로스코프 (900) 의 움직이는 부분들을 나타낸다. 가지들 (910a 및 910b) 은 도 9a 에 도시된 것과 같이 통상적으로 면 내에서 역위상으로 압전 구동된다. 적용된 회전에 응답하여, 콜리올리 힘 (Coriolis force) 은 가지들 (910a 및 910b) 이 면 외에서 반대 방향으로 진동하게 한다 (도 9b 에 도시). 결과적인 감지 모드 진동들은 자이로스코프 (900) 의 압전 물질 상에 감지 전하를 생성하며, 이는 자이로스코프 (900) 의 구조적 물질 상에 성막된 벌크 물질 또는 압전층일 수도 있다.
이러한 튜닝 포크 시스템들의 1차 제한은 감지 픽업을 위해 이용된 가지들 (910a 및 910b) 이 감지 모션보다 큰 자릿수일 수도 있는 드라이브 모션을 경험한다는 점이다. 따라서, 가지들 (910a 및 910b) 에서 기계적인 결함들 및 비대칭성들은 감지 신호에서 상당한 레벨의 구동 간섭을 발생할 수 있고, 이는 쿼드러처 및 바이어스 에러들을 발생할 수 있다.
상기 튜닝 포크 시스템들의 다른 단점은 동작 주파수들 미만의 기생 공진 모드들이 불가피하다는 점이다. 동위상 병진 모드들은 일반적으로 역위상 동작 모드들보다 적고, 진동에 의해 쉽게 여기될 수 있다.
더블 엔디드 튜닝 포크 시스템들 (비도시) 에서, 개별 가지들은 드라이브 및 감지 기능들을 위해 이용된다. 2 개의 가지들이 역위상으로 구동된다. 드라이브 가지들 상에서 유도된 콜리오리 힘들은 공통의 비틀림 감지 모드를 여기하며, 결국 감지 가지들 상에 진동을 발생한다. 더블 엔디드 튜닝 포크들은 감지 가지들 상의 구동 간섭을 감소시키지만, 소정 디바이스 사이즈에 대한 효율성이 감소된다. 추가로, 다수의 원하지 않는 기생 모드들이 동작 주파수 미만 또는 이상에 발생하며, 이는 싱글 엔디드 튜닝 포크들에서 발생하는 것보다 훨씬 많다.
압전 x-축 자이로스코프 구조
본 명세서에 개시된 일부 마이크로머신 압전 자이로스코프들의 구조는 드라이브 모드에서 동작할 경우에 (z-축 주위의) 면 내에서 비틀림 진동할 수 있고, 감지 모드에서 동작할 경우에 (x-축 자이로스코프에 대한 y-축 주위 및 y-축 자이로스코프에 대한 x-축 주위의) 면 외에서 비틀림 진동할 수 있는 검사 질량체를 포함한다.
도 10a 는 중앙 앵커에 부착된 드라이브 빔들에 의해 매달린 검사 질량체를 갖는 자이로스코프 (1000) 의 일 예를 도시한다. 여기서, 검사 질량체 (1020) 는 중앙 앵커 (1005) 에 부착된 플렉셔들 (1010a 및 1010b) 에 의해 매달린다. 드라이브 전극들 (1015a - 1015d) 는 플렉셔들의 상부 및/또는 하부 측들 상에 패터닝될 수도 있다. 검사 질량체 (1020), 플렉셔들 (1010a 및 1010b), 및 중앙 앵커 (1005) 는 두꺼운 도금 금속 합금들 (예컨대, Ni-Co 또는 Ni-Mn 과 같은 니켈 합금들), 단결정 실리콘, 다결정 실리콘, 등과 같은 다양한 물질들로 이루어질 수 있다. 상기 예에서, 자이로스코프 (1000) 의 전체 x 및 y 치수들은 약 수 밀리미터 또는 그 미만이다. 예컨대, 일부 구현들에서, 폭은 0.25 ㎜ 내지 1 ㎜ 의 범위이고, 길이는 1 ㎜ 내지 4 ㎜ 의 범위일 수도 있다. 두께는 1 마이크론 미만에서 50 마이크론 이상까지일 수도 있다.
상기 도시된 실시예에서, 드라이브 전극들 (1015a - 1015d) 은 중앙선 (1017a) 의 각 측면 상에 대칭적으로 배열된다. 중앙선 (1017a) 은 상기 예에서 x-축과 대응한다. 여기서, 드라이브 전극들 (1015) 은 플렉셔들 (1010a 및 1010b) 상에 배치되며, 플렉셔들 (1010a 및 1010b) 이 드라이브 빔들로서 기능하게 한다. 압전 필름은 질화 알루미늄 (AlN), 산화 아연 (ZnO), 티탄산 지르콘산 아연 (PZT), 또는 다른 박막들일 수도 있다. 일부 구현들에서, 드라이브 전극들 (1015) (및 본 명세서에 개시된 다른 드라이브 전극들) 은 압전 필름을 통해 전압을 제공하는데 이용된 2 개의 금속층들 사이에 배치된 압전 필름을 포함할 수도 있다. 압전 필름은, 예컨대 비-도전성 압전 필름일 수도 있다. 금속 층들을 통해 전압을 제공하는 것은 드라이브 전극들의 이동을 발생할 수도 있다. 대안적으로, 압전 물질은 석영, 니오브산 리튬, 탄탈산 리튬 등과 같은 단결정 물질들일 수도 있다.
도 10a 에 도시된 구현에서, 감지 전극들 (1025a 및 1025b) 은 중앙선 (1017a) 을 따라 형성된 압전 필름들이다. 대안적인 구현들에서, 감지 전극들 (1025a 및 1025b) 은 검사 질량체 (1020) 상에 형성될 수도 있다. 대안적으로, 감지 전극들 (1025a 및 1025b) 은 드라이브 전극들 (1015) 이 형성된 것과 동일한 측면 위에, 드라이브 전극들 (1015) 위 또는 아래의 층에서 플렉셔들 (1010a 및 1010b) 상에 형성된다. 일부 다른 구현들에서, 감지 전극들 (1025a 및 1025b) 은 플렉셔들 (1010a 및 1010b) 의 대향하는 측면 상에 형성될 수도 있다. 일부 구현들에서, 감지 전극들 (1025a 및 1025b) (및 본 명세서에 설명된 다른 감지 전극들) 은 압전 필름을 통해 전압을 제공하는데 이용된 2 개의 금속 층들 사이에 배치된 압전 필름을 포함할 수도 있다. 압전 필름은, 예컨대 비-도전성 압전 필름일 수도 있다. 감지 전극들의 이동은 금속층들에서 전압 변화를 발생할 수 있다.
도 10b 는 도 10a 와 유사하지만, 드라이브 전극들 사이에 갭을 갖는 자이로스코프 구현의 일 예를 도시한다. 상기 예에서, 자이로스코프 (1000a) 는 플렉셔들 (1010c 및 1010d) 내에 슬롯들 (1012a 및 1012b) 를 포함한다. 여기서, 슬롯들 (1012a 및 1012b) 은 중앙선 (1017b) 에 대하여 대칭적이다. 슬롯들 (1012a 및 1012b) 을 포함하는 것은 플랙서들 (1010c 및 1010d) 이 면 내 힘들에 상대적으로 더 순응하게 할 수도 있다.
역위상 신호들이 드라이브 전극들 (1015a - 1015d) 에 적용될 경우에, 플렉셔들 (1010a - 1010d) 에 벤딩 모멘트가 생성된다. 예를 들어, 도 10a 를 참조하면, 포지티브 드라이브 전압이 전극 (1015a) 에 적용되고, 네거티브 드라이브 전극이 전극 (1015b) 에 적용될 경우, 하나의 전극은 연장하고 다른 전극은 수축할 것이다. 벤딩 모멘트는 플렉셔 (1010a) 내에서 생성될 것이다. 유사하게, 포지티브 구동 전압이 전극 (1015d) 에 적용되고 네거티브 구동 전압이 전극 (1010c) 에 적용될 경우에, 하나의 전극은 연장하고 다른 전극은 수축할 것이며, 벤딩 모멘트가 플렉셔 (1010b) 에 생성될 것이다. 플렉셔들 (1010a 및 1010b) 이 상반된 방향으로 작동될 경우에, 비틀림 면 내 드라이브 모드가 여기된다. 감지 전극들 (1025a 및 1025b) 은 x-축에 대하여 적용된 회전에 응답하여 검사 질량체 (1020) 의 면 외 비틀림 움직임을 검출한다. 유사하게, 도 10b 의 검사 질량체 (1020) 에 배치된 감지 전극들 (1025c 및 1025d) 은 x-축에 대하여 적용된 각회전을 검출하는데 이용될 수도 있다.
도 11a 및 도 11b 에서, 가장 어두운 영역들은 자이로스코프 (1000) 의 실질적으로 정지한 부분들을 나타내고, 밝은 영역들은 자이로스코프 (1000) 의 움직이는 부분들을 나타낸다. 도 11a 는 도 10a 에 도시된 것과 같은 자이로스코프 구현의 드라이브 모드의 일 예를 도시한다. 도 11a 에서, 자이로스코프 (1000) 의 측면 (1105a) 은 화살표 (1110a) 에 의해 표시되는 방향으로 구동되는 반면, 자이로스코프 (1000) 의 측면 (1105b) 은 화살표 (1110b) 에 의해 표시되는 방향으로 구동된다. 드라이브 전압들의 극성들이 반대가 될 경우, 측면들 (1105a 및 1105b) 은 도시된 것과 반대 방향으로 구동된다. 이러한 방식으로, 검사 질량체 (1020) 는 드라이브 전압들의 빈도와 공칭적으로 동일한 빈도로 진동 비틀림 모드로 구동될 수도 있다.
도 11b 는 도 11a 에 도시된 것과 같이 구동되는 구현의 감지 모드의 일 예를 도시한다. x-축에 대하여 적용된 회전의 존재시, y-축에 대한 순 콜리올리 모멘트는 검사 질량체 (1020) 상에 유도될 수도 있다. 도 11b 에 도시된 것과 같이, 콜리올리 모멘트는 면 외 감지 모드를 여기하며, 이는 측면들 (1105a 및 1105b) 을 면 외에서 상반된 방향으로 벤딩한다. 이러한 감지 모션은 도 10a 및 도 10b 에 도시된 것과 같은 감지 전극들 (1025a - 1025d) 상에 압전 전하를 생성할 수 있다.
도 10a 및 도 10b 에 도시된 것과 같은 구현들은 종래의 튜닝 포크 시스템에 내재하는 동위상 모드들을 실질적으로 제거할 수 있다. 일부 구현들은 큰 검사 질량체 (1020) 를 활용함으로써 성능을 추가로 개선할 수도 있다.
드라이브 및 감지 디커플링
전술된 간단한 구현들에서, 감지 전극들 (1025a - 1025d) 은 드라이브 모션에 의해 영향받을 수도 있다. 드라이브 모션의 영향들은 공통 모드가 거부되게 할 수도 있지만, 비대칭성 및 결함들은 드라이브 모션의 감지 신호 경로로의 커플링을 발생할 수도 있다. 일부 고성능 애플리케이션들에서, 결과적인 에러들은 최고 미만의 성능을 발생한다.
드라이브 간섭을 감지할 경우에 이를 감소시키기 위해, 드라이브 및 감지 빔들은 프레임 구조를 활용함으로써 분리될 수 있다. 드라이브 및 감지 모드들을 디커플링하기 위한 2 가지 일반적인 접근 방식들이 하기에 설명된다. 하기에서 설명되는 자이로스코프들은 대략 수 밀리미터 또는 그 미만의 전체 길이 및 폭을 가질 수도 있다. 예를 들어, 일부 구현들은 0.5 ㎜ 내지 3 ㎜ 범위의 길이들 및 0.3 ㎜ 내지 1.5 ㎜ 범위의 폭들을 가지며, 약 1 마이크론과 50 마이크론 또는 그 이상 사이의 두께들을 갖는다.
드라이브 프레임 구현들
일부 드라이브 프레임 자이로스코프 구현들은 드라이브 모드에서만 진동하는 드라이브 프레임을 포함한다. 드라이브 프레임은 중앙 앵커와 검사 질량체 사이에 배치될 수도 있다. 이러한 구현들은 도 10a 및 도 10b 에 도시된 구현들과 비교할 때 드라이브 모션을 감지 모션으로부터 더 효율적으로 디커플링할 수도 있다.
도 12 는 드라이브 프레임이 드라이브 빔들을 통해 중앙 앵커에 부착된 드라이브 프레임 자이로스코프 구현의 일 예를 도시한다: 여기서, 자이로스코프 (1200) 의 드라이브 프레임 (1210) 은 중앙 앵커 (1205) 를 둘러싸고, 드라이브 빔들 (1215a - 1215d) 를 통해 중앙 앵커 (1205) 에 부착된다. 상기 예에서, 슬롯들 (1207) 은 중앙 앵커 (1205) 의 대부분에서 드라이브 프레임 (1210) 을 분리한다.
검사 질량체 (1220) 는 드라이브 프레임 (1210) 을 둘러싼다. 검사 질량체 (1220) 는 감지 빔들 (1225a - 1225d) 에 의해 드라이브 프레임 (1210) 에 커플링된다. 상기 예에서, 검사 질량체 (1220) 는 상기 예에서 y-축에 대응하는 중심축 (1218) 으로부터 떨어진 감지 빔들 (1225a - 1225d) 의 말단부들 (1226) 에서 드라이브 프레임 (1210) 에 드라이브 프레임 (1210) 에만 커플링된다. 슬롯들 (1217 및 1229) 은 검사 질량체 (1220) 로부터 감지 빔들 (1225a - 1225d) 의 다른 부분들을 분리한다. 슬롯들 (1217) 은 또한 검사 질량체 (1220) 로부터 드라이브 프레임 (1210) 을 분리한다.
드라이브 빔들 (1215a - 1215d) 은 상기 예에서 x-축과 대응하는 중앙선 (1231) 에 대하여 대칭적으로 배치된다. 드라이브 진동들을 생성하기 위해, 차동 드라이브가 이용될 수 있다. 이러한 구현들에서, 앵커 (1205) 의 일 측면 상의 2 개의 드라이브 빔들은 역위상 신호들에 의해 일 방향으로 작동될 수도 있고, 앵커 (1205) 의 다른 측면 상의 다른 2 개의 빔들은 z-축에 대한 순 회전을 생성하기 위해 반대 방향으로 작동될 수도 있다. 여기에서, 네거티브 전압은 포지티브 전압이 드라이브 빔들 (1215b 및 1215c) 의 드라이브 전극들에 적용되는 것과 동시에 드라이브 빔들 (1215a 및 1215d) 의 드라이브 전극들 (비도시) 에 적용된다.
상기 예에서, 드라이브 및 감지 전극들은 도 13a 및 도 13b 에 더 명확히 도시될 수 있는 압전 필름들을 포함한다. 도 13a 는 도 12 에 도시된 것과 같은 자이로스코프 구현의 단면의 일 예를 도시한다. 앞서, 자이로스코프 (1200) 의 도면에서, 감지 빔 (1225a) 의 압전 감지 전극 (1305a) 및 감지 빔 (1225b) 의 압전 감지 전극 (1305b) 은 명확히 보여질 수도 있다. 감지 빔들 (1225c 및 1225d) 의 압전 감지 전극들 (1305c 및 1350d) 은 개별적으로 보여질 수도 있다. 도 13b 는 도 13a 에 도시된 자이로스코프 구현의 확대된 드라이브 빔 쌍의 일 예를 도시한다. 도 13b 에서, 압전 드라이브 전극들 (1305e 및 1305f) 은 각각 드라이브 빔들 (1215a 및 1215b) 상에 보여질 수도 있다. 도 41 등을 참조하여 하기에서 상세히 설명되는 것과 같이, 일부 구현들에서 단일층은 전극들 (1305a - 1305f) 의 압전 필름을 형성하도록 성막 및 패터닝될 수도 있다.
본 명세서에 설명된 압전 드라이브 및 감지 전극들은 종종 자이로스코프 드라이브 및 감지 프레임들, 검사 질량체들, 등등의 상부에 있는 것으로 예시되지만, 이러한 예시들은 주로 명확함을 목적으로 실시된다. 대안적인 구현들에서, 상기 드라이브 및 감지 전극들은 드라이브 및 감지 프레임들, 검사 질량체들, 등등 (보다 기판에 인접하여) "밑에" 위치될 수도 있다. 도 41 내지 도 46b 를 참조하여 하기에서 설명되는 것과 같이, 드라이브 프레임들, 감지 프레임들, 검사 질량체들, 등등을 형성하기 전에 드라이브 및 감지 전극들을 형성하는 것이 유리할 수도 있다. 상기 제작 방법들은 드라이브 및 감지 전극들이 드라이브 프레임들, 감지 프레임들, 검사 질량체들 등등의 밑에 배치된 자이로스코프들을 생성할 수도 있다.
도 14a 는 도 12 에 도시된 것과 같은 자이로스코프 구현의 감지 모드의 일 예를 도시한다. 도 14a 및 도 14b 에서, 자이로스코프 (1200) 의 쿨-컬러 부분들은 핫-컬러 부분들보다 상대적으로 적게 이동하고 있다: 자이로스코프 (1200) 의 블루 부분들은 실질적으로 정지하고 있는 반면, 레드 및 오렌지-컬러 부분들은 자이로스코프 (1200) 의 다른 부분들 보다 더 이동하고 있다. 여기에서, 드라이브 빔들 (1215) 은 전술된 것과 같은 차동 압전 드라이브를 통해 구동되고 있다.
드라이브 빔들 (1215) 은 상대적으로 면 내 모션에 순응하며, 이는 자이로스코프 (1200) 가 z-축에 대하여 회전하게 한다. 드라이브 빔들 (1215) 은 모든 다른 방향들에서 상대적으로 뻣뻣하게 형성될 수도 있으며, 따라서 드라이브 프레임을 드라이브 모드에서만 회전하도록 실질적으로 제한한다 (즉, x-y 면). 여기서, 예컨대 드라이브 빔들 (1215) 은 원하지 않는 진동 모드들을 억제하기 위해 x-축을 따라 상대적으로 뻣뻣하다. 예를 들면, 슬롯들 (1207) 의 부분들에서, 평행한 중앙 라인 (1218) 은 드라이브 프레임 (1210) 의 y-축을 따르는 천공들을 생성한다. 초과하는 강성 없이, 상기 천공들은 y-축을 따라 순응하는 힌지를 형성하는 경향이 있고, 이는 드라이브 프레임 (1210) 이 힌지 주위를 밴딩하게 한다.
도 14b 는 도 14a 에 도시된 것과 같이 구동되는 자이로스코프 구현의 감지 모드의 일 예를 도시한다. 감지 모드에서, 검사 질량체 (1220) 는 y-축 주위에서 진동하며, 감지 빔들 (1225a - 1225d) 상에 응력을 유도한다. 여기에서, 검사 질량체 측면 (1220a) 은 검사 질량체 측면 (1220b) 이 하향 이동하는 것과 동시에 상향 이동한다. 이러한 면 외 감지 모션은 감지 빔들 (1225a - 1225d) 이 면 외로 벤딩하게 하고, 압전 전하가 대응하는 감지 전극들 (1305a - 1305d) 에 의해 발생되게 한다. 도 14b 의 예에 도시된 모멘트에서, 감지 빔들 (1225c 및 1225d) 은 하향 벤딩하고, 감지 빔들 (1225a 및 1225b) 은 상향 벤딩한다. 따라서, 감지 빔들 (1225c 및 1225d) 의 상부면은 연장하고, 감지 빔들 (1225a 및 1225b) 의 상부면은 수축한다. 드라이브 모션이 반대 방향일 경우에, 감지 빔들 (1225c 및 1225d) 은 상향 벤딩하고, 감지 빔들 (1225a 및 1225b) 은 하향 벤딩한다. 이러한 구현들은 차동 검출 메카니즘을 제공하며, 여기서 센서 출력은 배향에 따라 센서 빔들 (1225a 및 1225b) 의 전극들의 합에서 감지 빔들 (1225c 및 1225d) 의 전극들의 합을 뺀 값, 또는 그 반대의 값이다.
자이로스코프 (1200) 의 상기 구성에서, 검사 질량체 (1220) 의 감지 모션들은 실질적으로 드라이브 프레임 (1210) 으로부터 디커플링된다. 드라이브 모션과 감지 모션을 디커플링하는 것은, 부분적으로 감지 전극들이 큰 진폭의 드라이브 모션들을 경험하지 않기 때문에 감지 전극들을 안정하게 유지하는 것을 돕는다. 일부 구현들에서, 감지 빔들은 드라이브 모션으로 인해 오직 축 방향으로 로딩될 수도 있다.
도 12 내지 도 14b 에 도시된 구성들에서, 감지 빔들 (1225a - 1225d) 은 x-y 면에서 실질적으로 직사각형이다. 그러나, 대안적인 구현들에서, 감지 빔들 (1225a - 1225d) 은 다른 형상들을 갖는다. 일부 구현들에서, 감지 빔들 (1225a - 1225d) 은 예컨대, 도 17 에 도시된 것과 같이 테이퍼링된다.
감지 프레임 구현들
본 명세서에 설명된 다양한 감지 프레임 자이로스코프 구현들은 감지 모드에서 진동하지만 드라이브 모드에서 실질적으로 정지된 감지 프레임을 포함한다. 도 15 는 감지 프레임 자이로스코프 구현의 일 예를 도시한다. 감지 프레임 (1510) 은 드라이브 빔들 (1515a - 1515d) 을 통해 검사 질량체 (1530) 에 연결될 수도 있다. 여기서, 드라이브 빔들 (1515a - 1515d) 은 감지 프레임 (1510) 의 중심 부분 (1510a) 을 검사 질량체 (1530) 에 연결한다. 중심 부분 (1510a) 은 한 쌍의 앵커들 (1505a 및 1505b) 사이에 배치된다. 여기서, 앵커들 (1505a 및 1505b) 은 슬롯들 (1522) 에 의해 중심 부분 (1510a) 으로부터 분리된다.
자이로스코프 (1500) 는 감지 빔들 (1520a - 1520d) 을 통해 앵커들 (1505a 및 1505b) 에 연결된 감지 프레임 (1510) 을 특징으로 한다. 이 예에서, 감지 프레임 (1510) 은 각각 앵커들 (1505a 또는 1505b) 중 하나 근처의 제 1 단부 (1513) 에서 더 넓어지고 앵커들 (1505a 또는 1505b) 중 하나로부터 떨어진 제 2 단부 (1514) 에서 더 좁아지는 테이퍼링 부분들 (1512) 을 포함한다. 감지 빔들 (1520a - 1520d) 각각은 앵커들 (1505a 또는 1505b) 중 하나로부터 제 2 단부들 (1514) 중 하나로 연장한다. 여기서, 감지 빔들 (1520a - 1520d) 은 제 2 단부들 (1514) 에서 오직 감지 프레임 (1510) 에만 연결된다. 감지 빔들 (1520a - 1520d) 은 슬롯들 (1522) 에 의해 제 1 단부들 (1513) 로부터 분리된다.
검사 질량체 (1530) 는 슬롯들 (1524) 에 의해 감지 빔들 (1520) 로부터 및 감지 프레임 (1510) 으로부터 분리된다. 추가로, 검사 질량체 (1530) 는 슬롯들 (1517) 에 의해 감지 프레임 (1510) 으로부터 분리된다. 따라서, 감지 프레임 (1510) 은 검사 질량체 (1530) 의 드라이브 모션들로부터 실질적으로 디커플링된다.
도 16a 는 도 15 에 도시된 자이로스코프 구현의 드라이브 모드의 일 예를 도시한다. 도 16a 에서, 감지 프레임 (1510) 에 대한 검사 질량체 (1530) 의 배치는 그들의 상대적인 모션을 더 명확히 보기 위해 과장된다. 자이로스코프 (1500) 의 다크 블루 부분들은 실질적으로 정지하고, 레드 및 오렌지-컬러 부분들은 자이로스코프 (1500) 의 다른 부분들보다 이동하고 있다. 여기서, 감지 프레임 (1510) 은 균일하게 다크 블루 음영 처리되어 도시되고, 이는 감지 프레임 (1510) 이 실제로 움직이지 않는 것을 나타낸다. 검사 질량체 (1530) 의 배치는 라이트 블루로부터 레드로의 컬러 진행에 의해 표시되는 것과 같이 앵커들 (1505) 로부터 거리가 증가함에 따라 증가한다.
감지 프레임 (1510) 은 드라이브 빔들 (1515) 뿐만 아니라 링크 빔들 (1525) 에 검사 질량체 (1530) 에 커플링된다. 드라이브 빔들 (1515) 및 링크 빔들 (1525) 은 면 내 변형에 순응하고, 검사 질량체 (1530) 가 감지 프레임에 대하여 드라이브 모드에서 면 내 회전하게 한다. 그러나, 감지 프레임 (1510) 은 검사 질량체 (1530) 의 드라이브 모션들로부터 실질적으로 디커플링된다.
도 16b 는 도 16a 에 도시된 것과 같이 구동되고 있는 자이로스코프 구현의 감지 모드의 일 예를 도시한다. 감지 모드 동작들 동안, 검사 질량체 (1530) 및 감지 프레임 (1510) 은 함께 면 외로 비틀림 진동할 수 있다. 도 16b 에 도시된 모멘트에서, 검사 질량체 (1530) 의 단부 (1605) 는 상향 벤딩하고, 검사 질량체 (1530) 의 단부 (1610) 는 하향 벤딩한다. 여기에서, 링크 빔들 (1525) 은 면 외 힘들에 대하여 반발한다. 그러므로, 링크 빔들 (1525) 은 감사 질량체 (1530) 의 감지 모션들의 감지 프레임 (1510) 으로의 전달을 증가시킨다.
테이퍼 감지 빔들
압전 자이로스코프 시스템의 전기 감도는 감지 빔들 상의 응력 균일도를 개선시킴으로써 증가될 수 있다. 직사각형 감지 빔의 일부 구현들을 위해, 감지 빔 상의 최대 휨 응력은 앵커 연결에서 존재하고, 이는 앵커로부터의 거리에 따라 선형으로 감소한다. 이러한 구성은 감지 전극에서 감소된 전체 압전 전하를 발생할 수 있다.
테이버 감지 빔 프로파일을 이용함으로써, 휨 응력의 감소는 점진적으로 감소하는 빔 폭으로 인한 응력 증가에 의해 보상될 수 있다. 따라서, 균일한 응력 프로파일은 감지 빔을 따라 달성될 수도 있고, 감지 전극을 통해 생성되는 전하가 최대화될 수도 있다.
도 17 은 테이퍼 감지 빔들을 갖는 대안적인 감지 프레임 자이로스코프 구현의 일 예를 도시한다. 자이로스코프 (1700) 의 다수의 특징들은 자이로스코프 (1500) 의 대응하는 특징들과 유사하다. 예를 들면, 드라이브 빔들 (1715) 은 감지 프레임 (1710) 의 중심 부분을 검사 질량체 (1730) 에 연결한다. 감지 빔들 (1720a - 1720d) 은 앵커들 (1705a 및 1705b) 로부터, 앵커들 (1705a 및 1705b) 로부터 떨어진 감지 빔 (1710) 의 말단부들 (1714) 로 연장한다.
검사 질량체 (1730) 는 슬롯들 (1724) 에 의해 감지 빔들 (1720a - 1720d) 로부터 분리된다. 추가로, 검사 질량체 (1730) 는 슬롯들 (1717) 에 의해 감지 프레임 (1710) 의 대부분으로부터 분리된다. 자이로스코프 (1500) 의 감지 프레임 (1510) 과 유사하게, 감지 프레임 (1710) 은 검사 질량체 (1730) 의 드라이브 모션들로부터 실질적으로 디커플링된다.
그러나, 도 17 에 도시된 예에서, 테이퍼 감지 빔 설계는 디커플링된 감지 프레임 구현에 통합된다. 자이로스코프 (1700) 에서, 감지 빔들 (1720a - 1720d) 은 앵커들 (1705a 및 1705b) 로부터 거리가 증가함에 따라 감소하는 폭들을 갖는다. 예를 들면, 테이퍼 감지 빔 (1720c) 은 앵커 (1705b) 에 부착된 더 넓은 단부 (1722) 및 감지 프레임 (1710) 에 부착된 더 좁은 단부 (1723) 를 포함한다.
감지 모션 동안 감지 빔들 상의 스트레스들이 유한 요소 분석 (FEA) 에 따라 모델링될 경우에, 테이퍼 감지 빔의 일부 구현들은 감지 빔을 다라 더 균일한 응력들을 제공한다. 도 18 은 도 17 에서와 같은 자이로스코프 구현시 겹쳐지는 유한 요소 분석의 일 예를 도시하며, 이는 감지 모드에서 동작할 경우에 테이퍼 감지 빔들 상에서 실제로 균일한 응력들을 보여준다. 테이퍼 감지 빔들 (1720a 및 1720c) 상의 실제로 균일한 밝은 음영은 실질적으로 균일한 압축을 나타내는 반면, 테이퍼 감지 빔들 (1720b 및 1720d) 상의 실질적으로 균일한 어두운 음영은 실질적으로 균일한 장력 (tension) 을 나타낸다.
도 19 는 도 17 에서와 같은 자이로스코프 구현을 위한 중심 (y-축) 으로부터의 거리 대 테이퍼 감지 빔들 상의 응력 레벨의 그래프의 일 예를 도시한다. 도 19 에서, 감지 빔들 (1720c 및 1720d) 을 따른 응력들은 x-축을 따르는 거리에 대하여 도식화된다. 도 19 로부터, 상기 구현에서의 응력 레벨은 상대적으로 일정하게 유지되고, 각각의 감지 빔을 다른 위치에 따라 실질적으로 감소하지 않는 것이 관찰될 수도 있다. 영역 (1905) 은 테이퍼 감지 빔 (1720d) 의 실질적으로 균일한 장력에 대응하지만, 영역 (1910) 은 테이퍼 감지 빔 (1720c) 의 실질적으로 균일한 응력에 대응한다. 최적의 테이퍼 각도에서, 각각의 감지 빔 (1720a - 1720d) 을 따라 실질적으로 일정한 응력 레벨이 달성될 수 있다. 최적의 테이퍼 각도는 자이로스코프 설계에 따라 변화할 것이며, 반복되는 FEA 모델링에 의해 결정될 수도 있다. 최적의 테이퍼 각도는 영역들 (1905 및 1910) 에서 "가장 평평한" 또는 최소 변화하는 곡선에 대응할 것이다.
테이퍼 감지 빔들이 감지 프레임 자이로스코프 구현들의 문맥에서 본 명세서에 도시되지만, 테이퍼 감지 빔들은 또한 다른 구현들에서 감도를 개선하는데 이용될 수 있다. 예를 들면, 테이퍼 감지 빔들은 예컨대 도 15 를 참조하여 전술된 것과 같은 드라이브 프레임 자이로스코프 구현들에서 이용될 수 있다.
테이퍼 감지 빔들 (1720) 을 제외하고, 자이로스코프 (1500) 와 자이로스코프 (1700) 사이에는 약간의 추가의 차이들이 있다. 도 17 을 다시 참조하면, 링크 빔들 (1725) 은 사행식 플렉셔들이고, 자이로 스코프 (1500) 에서 보다 y-축으로부터 상대적으로 더 멀리 떨어진 감지 프레임 (1710) 의 말단 부분들에 연결된다. 이는 검사 질량체 (1730) 의 감지 모션의 결합과 관련하여 자이로스코프 (1500) 의 구성에 비해 약간 개선된 것이며, 이는 힘들이 y-축으로부터 더 멀리 떨어져서 검사 질량체 (1730) 의 감지 모션의 최대 진폭 지점에 더 가깝게 적용되고 있기 때문이다. 적용된 힘을 날개 형상의 감지 프레임 (1710) 의 팁 (tip) 에 더 가깝게 이동시키는 것은 검사 질량체 (1730) 로부터 감지 프레임 (1710) 으로 상대적으로 더 많은 힘을 전한다.
추가로, 자이로스코프 (1700) 에서, (감지 프레임 (1710) 으로부터 앵커들 (1705a 및 1705b) 을 분리시키는) 슬롯들 (1726) 의 부분들은 (검사 질량체 (1730) 로부터 감지 프레임 (1710) 을 분리시키는) 슬롯들 (1717) 의 대응하는 부분들과 실질적으로 평행한다. 이러한 변경은 감지 프레임 (1710) 의 대응하는 부분들에서 충분한 강성을 제공하도록 도울 수도 있다.
마이크로 머시닝된 압전 z-축 자이로스코프 구현들의 설명
본 명세서에 설명된 일부 구현들은 적은 쿼드러처 및 바이어스 에러들을 z-축 자이로스코프에 제공한다. 일부 구현들은 실질적으로 선형의 x-방향 모션 (면 내) 에서 압전으로 구동되는 드라이브 검사 질량체를 포함한다. 드라이브 검사 질량체는 z-축에 대한 각회전의 존재시 비틀림 진동하는 감지 검사 질량체에 기계적으로 커플링될 수도 있다. 감지 검사 질량체의 모션은 감지 질량을 기판 앵커에 연결하는 감지 빔들 위 또는 아래에 배치된 압전 막에서 전하를 유도할 수 있다. 유도된 전하는 전기적으로 레코딩되고 처리될 수도 있는 압전 감지 전극들의 전압에서의 변화를 발생할 수 있다.
검사 질량체들은 두꺼운 도금 금속 합금들 (예컨대, Ni-Co, Ni-Mn, 등과 같은 니켈 합금들), SOI 웨이퍼의 디바이스 층으로부터의 단결정 실리콘, 유리, 및 다른 물질들과 같은 다양한 물질들로 형성될 수 있다. 압전 필름은 질화 알루미늄 (AlN), 산화 아연 (ZnO), 티탄산 지르콘산 납 (PZT), 또는 다른 박막들, 또는 석영, 리튬, 니오브산염, 리튬 탄탈산염 등과 같은 단결정 물질들일 수 있다. 일부 구현들은 평판 디스플레이 글래스 상에 제작하는 것이 적합하다.
일부 구현들은 또한 직교 성분의 감지 프레임으로의 커플링을 억압하기 위해 드라이브 모션의 기계적 모드 형상을 튜닝하는데 정전식 액추에이터들의 어레이의 이용을 포함한다. 예를 들어, 일부 구현들에서, 정전식 액추에이터들은 도 23 을 참조하여 하기에서 더 상세히 설명되는 것과 같이 원하지 않는 수직 모션을 억제하기 위해 검사 질량체 및/또는 기판과 검사 질량체 사이의 정전식 갭의 면 내 모션을 미세 튜닝하기 위한 콤-핑거 전극들의 어레이를 포함한다.
z-축 자이로스코프 구조
도 20a 는 z-축 자이로스코프 (2000) 구현의 평면도의 일 예를 도시한다. 자이로스코프 (2000) 는 중앙 앵커 (2005) 주위에 배치된 감지 프레임 (2010) 을 포함한다. 감지 프레임 (2010) 은 감지 빔들 (2020a - 2020d) 을 통해 중앙 앵커 (2005) 에 연결된다.
드라이브 프레임 (2030) 은 감지 프레임 (2010) 주위에 배치되거나 연결된다. 상기 예에서, 드라이브 빔들 (2015a - 2015d) 은 실질적으로 선형의 x-방향 모션 (면 내) 으로 드라이브 프레임 (2030) 을 압전으로 구동한다. 여기에서, 드라이브 프레임 (2030) 은 드라이브 프레임 부분들 (2030a 및 2030b) 로 구성된다. 드라이브 프레임 (2030) 은 인접하는 드라이브 빔들의 각 쌍에 역위상 전압들을 적용함으로써, 예컨대 포지티브 전압을 드라이브 빔 (2015a) 으로 및 네거티브 전압을 드라이브 빔 (2015b) 으로 적용함으로써 작동될 수 있다.
도 20b 는 도 20a 에 도시된 z-축 자이로스코프 구현의 드라이브 빔들 (2015c 및 2015d) 의 확대도의 일 예를 도시한다. 상기 확대도에서, 드라이브 빔들 (2015c 및 2015d) 은 더 명확히 보여질 수도 있다. 드라이브 빔들 (2015c 및 2015d) 은 슬롯 (2035c) 내에 배치된 플렉셔 (2045b) 에 의해 드라이브 프레임 부분 (2030b) 에 접합된다. (각각 압전 필름을 포함하는) 전극들 (2050a 및 2050b) 은 각각 드라이브 빔들 (2015c 및 2015d) 상에 배치된다. 상기 예에서, 포지티브 전압은 네거티브 전압이 전극 (2050a) 에 적용되는 것과 동시에 전극 (2050b) 에 적용된다. 적용된 전압들은 압축 응력이 드라이브 빔 (2015d) 에 적용되고 신장 응력이 드라이브 빔 (2015c) 에 적용되게 한다. 압전 물질에 의해 유도된 대향 축 압력들은 드라이브 프레임 부분 (2030b) 을 포지티브 x 방향으로 이동시키는 순 모멘트를 발생한다.
도 21a 는 도 20a 에 도시된 것과 같은 z-축 자이로스코프 구현의 드라이브 모드의 일 예를 도시한다. 도 21a 및 도 21b 에서, 용이하게 관찰할 수 있도록 배치들이 과장된다. 도 21a 에서, 드라이브 프레임 부분 (2030b) 은 포지티브 x 방향으로 이동하고, 드라이브 프레임 부분 (2030a) 은 네거티브 x 방향으로 이동한다. 그러나, 드라이브 모션은 감지 프레임 (2010) 으로부터 실질적으로 디커플링된다. 그러므로, 감지 프레임 (2010) 은 x-축을 따라 이동하지 않는다. 대신에, 감지 프레임 (2010) 은 z-축에 대한 회전의 부재시 실질적으로 정지된다.
갭들 (2035a - 2035e) 및 그 내부에 배치된 플렉셔들의 기능은 도 21a 에서 명백하다. 갭들 (2035a - 2035e) 은 y-축과 실질적으로 평행한다. y-축을 따라 실질적으로 연장하는 갭 (2035b) 은 개방된다. 갭 (2035b) 을 가로지르고 드라이브 프레임 부분들 (2030a 및 2030b) 을 연결하는 플렉셔들 (2047a 및 2047b) 또한 개방된다. 갭들 (2035d 및 2035e) 을 따라 연장하는 플렉셔들 (2040a 및 2040b) 은 면 내 벤딩에 순응하고, 감지 프레임 (2030) 이 드라이브 프레임 부분들 (2030a 및 2030b) 이 구동될 경우와 실질적으로 동일한 위치에서 유지되게 한다. 유사하게, 갭들 (2035a 및 2035b) 을 따라 연장하는 플렉셔들 (2045a 및 2045b) 은 감지 프레임 (2010) 이 드라이브 프레임 (2030) 이 구동될 경우와 실질적으로 동일한 위치에서 유지되게 한다.
도 21b 는 도 21a 에 도시된 것과 같이 구동되는 z-축 자이로스코프 구현의 감지 모드의 일 예를 도시한다. 감지 빔들 (2020) 은 z-축 주위의 회전에 순응한다. 따라서, 감지 프레임 (2010) 은 각회전의 존재시 비틀림 진동할 수 있다. 감지 프레임 (2010) 의 이러한 비틀림 감지 모션들은 감지 빔들 (2020) 에 배치된 압전 필름들에서 압력 및 변화를 유도할 수 있다. 도 21b 로부터, 플렉셔들 (2047a 및 2047b) 이 감지 프레임 (2010) 의 감지 모션에 의해 변형될 수 있음이 관찰될 수 있다. 그러나, 플렉셔들 (2040a, 2040b, 2045a 및 2045b) 은 실질적으로 변형되지 않는다.
본 명세서에 개시된 z-축 자이로스코프 구현들에서, 드라이브 및 감지 프레임들은 기계적으로 직교하는 진동 모드들에 따라 설계될 수도 있다. 도 21a 에 도시된 것과 같이, 일부 구현들에서, 드라이브 서스펜션은 드라이브 모션을 x-축을 따른 실질적으로 선형의 변위의 드라이브 모션으로 제한할 수 있다.
대조적으로, 감지 프레임 서스펜션은 z-축에 대한 비틀림 회전들에 순응할 수도 있지만, x 또는 y 방향들로의 병진 모션에 대하여 비교적 반발할 수도 있다. 드라이브 프레임 (2030) 및 감지 프레임 (2010) 을 연결하는 플렉셔들은 x-방향 (직교) 힘들에는 순응하지만, y-방향의 콜리올리-커플링 비틀림 힘들에 대하여 비교적 반발하도록 형성될 수도 있다. 이러한 구성들은 드라이브 모션으로부터 감지 모션으로의 드라이브 모션 쿼드러처 커플링을 실질적으로 감소시킬 수도 있다.
추가로, 일부 구현들에서, 자이로스코프 차동 드라이브 프레임의 엘리먼트들은 기생 공진들의 수를 감소시키고 대칭 및 반대칭 모드들의 빈도들을 구분하도록 기계적으로 커플링될 수도 있다. 반대로, 상기 구현들은 쿼드러처-유도 기생 공진들에 저항한다.
감지 빔 최적화
압전 자이로스코프 시스템의 전기 감도는 감지 빔들 상의 응력 균일도를 개선시킴으로써 증가될 수 있다. 균일한 직사각형 단면을 갖는 감지 빔을 위해, 감지 빔 상의 휨 응력은 앵커 연결부에서 최대값이고, 앵커로부터의 거리의 함수에 따라 선형으로 감소한다. 그 결과 감지 전극 상에 최고 미만의 집적된 압전 전하 및 따라서 전압이 발생한다.
도 22 는 z-축 자이로스코프로부터의 테이퍼 감지 빔의 일 구현의 클로즈업 도면의 일 예를 도시한다. 도 22 에 도시된 것과 같이, 테이퍼 감지 빔 프로파일을 활용함으로써, 실질적으로 균일한 응력 프로파일이 감지 빔들 (2020c 및 2020d) 을 따라 달성될 수도 있다. 따라서, 감지 전극 상에 생성된 전체 전하는 강화될 수도 있다.
평판 디스플레이 글래스 상의 제조
본 명세서에 개시된 일부 x-축, y-축 및 z-축 자이로스코프들은 넓은 영역의 평판 디스플레이 글래스를 제조하는데 적합하다. 도금 금속 합금 검사 질량체들 및 스퍼터 압전 AlN 필름을 이용한 일부 구현들에서, 프로세싱은 400℃ 미만에서 발생할 수 있다. 도금 금속 검사 질량체는 (실리콘과 비교할 때) 높은 질량 밀도를 가질 수 있고, 실리콘-기반 정전 설계들에 공통인 DRIE (deep reactive-ion etching) 측벽 슬로프의 부재는 쿼드러처를 유도한다. 일부 제작 프로세스들의 세부내용들은 도 41 등을 참조하여 하기에서 설명된다.
일부 구현들에서, 글래스는 기판 및 패키지 양자로서 기능하여 컴포넌트 비용의 감소를 발생할 수도 있다. z-축 자이로스코프는 복수의 다른 센서들 및 액추에이터들, 예컨대 가속도계들, x-축 및/또는 y-축 자이로스코프들, 자력계들, 마이크로폰들, 압력 센서들, 공진기들, 액추에이터들 및/또는 다른 디바이스들과 함께 집적될 수 있다.
정전식 액추에이터들을 이용한 쿼드러처 튜닝
본 명세서에 설명된 일부 구현들은 쿼드러처 및 바이어스 에러들을 억제하기 위해 드라이브 및/또는 감지 프레임들의 기계적인 모드 형상을 능동적으로 미세 튜닝하는데 정전식 액추에이터들을 이용한다. 쿼드러처는 감지 프레임으로의 드라이브 프레임 커플링에서 원하지 않는 변위들에 의해 발생될 수 있다.
도 23 은 검사 질량체의 진동 모드 형상들을 미세 튜닝하기 위해 수정 정전력들을 적용하도록 구성될 수도 있는 전극 어레이의 일 예를 도시한다. 도 23 은 자이로스코프 또는 가속도계 검사 질량체일 수도 있는, 검사 질량체 (2305) 를 도시한다. 검사 질량체 (2305) 의 요구되는 모션은 도시된 것과 같이 면 내의 모션이다. 그러나, 검사 질량체 (2305) 의 진동 모드들은 면 외 컴포넌트들을 가질 수도 있다. 상기 면 외 컴포넌트의 일 예, 즉 작은, 수직의, 원하지 않는 변위 (검사 질량체 (2305) 의 점선으로 도시됨) 는 도 23 에서 1차 면 내 병진 구동 모드 상에 겹쳐지는 것으로 도시된다. 전극 어레이 (2310) 는 정전 수정 능력을 검사 질량체 (2305) 에 적용하기 위해 구성될 수 있다. 검사 질량체 (2305) 의 모션의 원하지 않는 수직 성분을 상쇄하는 정전력을 능동적으로 적용하도록 전극 어레이 (2310) 를 제어함으로써, 감지 프레임에 커플링하는 쿼드러처 유도 가속도들은 감소될 수 있다.
본 개념은 복수의 다른 구현들에도 적용될 수 있다. 예를 들면, 정전식 액추에이터들은 원하지 않는 y-방향 모션을 상쇄시키기 위한 정전력을 적용하도록 구성된 콤 핑거들로 구성될 수도 있다.
가속도계 구현들의 설명
본 명세서에서 설명된 다양한 구현들은 신규한 3 축 가속도계들뿐만 아니라 그 컴포넌트들을 제공한다. 이러한 3 축 가속도계들은 포터블 네비게이션 디바이스들 및 스마트폰들과 같은 광범위한 가전제품 애플리케이션들에서 이용하기에 적합한 사이즈들, 성능 레벨들 및 비용들을 갖는다. 이러한 일부 부현들은 용량성 SLOT (stacked lateral overlap transducer) 기반의 3 축 가속도계를 제공한다. 일부 구현들은 2 개의 검사 질량체들을 이용하는 3 축 감지를 제공하는 반면, 다른 구현들은 오직 하나의 검사 질량체를 이용하는 3 축 감지를 제공한다. 상이한 플렉셔 타입들이 각각의 축에 대하여 최적화될 수도 있다.
가속도계의 구현들은 넓은 영역 글래스 패널들과 같은 넓은 영역 기판들 상에 제작될 수도 있다. 하기에서 상세히 설명되는 것과 같이, 넓은 영역 기판들 상에 SLOT-기반의 3 축 가속도계들을 형성하는데 이용되는 제작 프로세스들은 넓은 영역 기판들 상에 자이로스코프들을 제작하기 위한 프로세스들과 호환가능할 수 있다. 이러한 프로세스들을 결합하는 것은 단일 글래스 기판상에 6 개의 관성 감지 축들의 모놀리식 집적을 가능하게 할 수 있다.
x-y-축 면 내 감지를 위해, 일부 구현들은 희생 갭의 일 측면 상에 도전성 검사 질량체 및 패터닝된 전극들을 제공한다. 면 내 적용된 가속도는 검사 질량체를 측면으로 이동시키고, 이는 제 1 전극과 검사 질량체 사이의 오버랩을 감소시키고, 제 2 전극과 검사 질량체 사이의 오버랩을 증가시킨다. 면 내 벤딩 플렉셔들은 매달려있는 검사 질량체에 대한 구조적 지지부를 제공할 수도 있다.
z-축 면 외 감지를 위해, 피봇의 일 측면 상의 모멘트 불균형들은 검사 질량체의 일 측면이 검사 질량체의 다른 측면보다 상대적으로 많은 (또는 적은) 부피를 가지도록 형성함으로써 생성될 수도 있다. 예를 들면, 피봇의 일 측면 상의 모멘트 불균형들은 검사 질량체의 일 측면을 천공하고 및/또는 다른 측면 상에 상이한 폭 및/또는 길이를 가지는 검사 질량체를 형성함으로써 생성될 수도 있다. 일부 구현들에서, 네거티브 z-가속도는 검사 질량체를 시계방향으로 회전시키고, 이는 제 1 전극과 검사 질량체 사이의 갭을 증가시키고 제 2 전극과 검사 질량체 사이의 갭을 감소시킨다. z-축 가속도계는 비틀림 플렉셔들을 포함할 수도 있다. 일부 구현들에서, 3-축 감지는 1 또는 2 개의 검사 질량체들을 이용하여 달성될 수 있다. 일부 예들이 하기에 설명된다.
도 24 는 면 내 가속도를 측정하기 위한 가속도계의 일 예를 도시한다. 가속도계 (2400) 는 기판 (2401) 상에 형성된 전극들 (2405a 및 2405b) 을 포함한다. 전극들 (2405a 및 2405b) 은 금속과 같은 임의의 편리한 도전성 물질로 형성될 수도 있다. 가속도계 (2400) 는 갭 (2415) 에 의해 전극들 (2405a 및 2405b) 로부터 분리되는 도전성 검사 질량체 (2410) 를 포함한다. 갭 (2415) 은 예컨대, 대략 수 마이크론, 예컨대 0.5 또는 2 마이크론까지일 수도 있거나, 상당히 작거나 클 수도 있다.
도전성 검사 질량체 (2410) 는 슬롯 (2420) 을 포함한다. 상기 예에서, 슬롯 (2420) 의 에지들 (2425) 은 가속도계 (2400) 가 정지하고 있을 경우에 전극들 (2405a 및 2405b) 위에 매달린다. 슬롯 (2420) 은 그 구현에 따라 도전성 검사 질량체 (2410) 를 통해 부분적으로 또는 완전히 연장할 수도 있다. 상이한 슬롯 깊이들을 가지는 다양한 도전성 검사 질량체들 (2410) 의 캐패시턴스는 하기에서 설명되는 도 32 에 도시된다. 가속도계 (2400) 의 일반적인 구성을 갖는 가속도계들은 SLOT-기반의 가속도계들로 지칭될 수도 있다.
포지티브 x-가속도는 도전성 검사 질량체 (2410) 를 측면으로 이동시키며, 이는 슬롯 (2420) 의 위치를 쉬프팅한다. 슬롯 (2420) 의 더 많은 부분이 전극 (2425a) 상에 위치되어 더 많은 공기와 더 적은 도전성 물질이 전극 (2405a) 근처에 위치되게 한다. 이는 전극 (2405a) 에서의 캐패시턴스를 △C 만큼 감소시킨다. 이와 반대로, 슬롯 (2420) 의 더 많은 부분이 전극 (2405b) 상에 위치되어 더 적은 공기와 더 많은 도전성 물질이 전극 (2405b) 근처에 위치되게 한다. 이는 전극 (2405b) 에서의 캐패시턴스를 △C 만큼 증가시킨다. 2△C 에 비례하는 대응하는 면 내 가속도 차동 출력 신호는 도전성 검사 질량체 (2410) 의 병진에 의해 발생된 오버랩에서의 변경을 발생한다.
도 25 는 면 외 가속도를 측정하기 위한 가속도계의 일 예를 도시한다. 상기 예에서, 가속도계 (2500) 는 지지부 (2515) 및 비틀림 플렉셔 (2525) 에 의해 기판 (2401) 에 부착된 도전성 검사 질량체 (2510) 를 포함한다. 지지부 (2515) 및 비틀림 플렉셔 (2525) 는 피봇 (2530) 을 형성한다. 모멘트 불균형은 지지부 (2515) 의 일 측면 상에, 예컨대, 도전성 검사 질량체 (2510) 의 일 측면을 천공하거나, 지지부 (2515) 의 다른 측면 상에 상이한 폭 및/또는 길이로 검사 질량체 (2515) 를 형성하거나, 이들의 조합을 수행함으로써 생성될 수도 있다. 모멘트 불균형은 또한 도전성 검사 질량체 (2510) 의 다른 측면을 형성하는데 이용된 물질보다 상대적으로 더 많이 밀집하거나 더 적게 밀집한 물질로부터 도전성 검사 질량체 (2510) 의 일 측면을 형성함으로써 생성될 수도 있다. 그러나, 이러한 구현들은 상대적으로 제작하기에 더 복잡할 수도 있다. 상기 예에서, 무멘트 불균형은 그 측면 (2510b) 에 천공들 (2520) 을 형성함으로써 생성된다.
네거티브 z-가속도는 도전성 검사 질량체 (2510) 를 시계방향으로 회전시키고, 이는 전극 (2405c) 과 도전성 검사 질량체 (2510) 사이의 갭을 증가시키고 전극 (2405d) 과 도전성 검사 질량체 (2510) 사이의 갭을 감소시킨다. 이는 전극 (2405c) 에서의 캐패시턴스를 △C 만큼 감소시키고, 전극 (2405d) 에서의 캐패시턴스를 △C 만큼 증가시킨다. 2△C 에 비례하는 대응하는 면 외 가속도 출력 신호가 발생한다.
도 26a 는 면 내 가속도를 측정하기 위한 가속도계의 일 예를 도시한다. 가속도계 (2400a) 는 대략 수밀리미터의 전체 x 및 y 크기들을 가질 수도 있다. 일부 구현들에서, 가속도계 (2400a) 는 1 밀리미터 미만의 x 및 y 크기들을 가질 수도 있다.
상기 예에서, 가속도계 (2400a) 는 내부 프레임 (2610a) 주위에 배치된 도전성 검사 질량체 (2410a) 를 포함한다. 도전성 검사 질량체 (2410a) 는 상기 예에서는 x-축인 제 1 축을 따라 실질적으로 연장하는 슬롯들 (2420a) 을 포함한다. 도전성 검사 질량체 (2410a) 는 또한 상기 예에서는 y-축인 제 2 축을 따라 실질적으로 연장하는 슬롯들 (2420b) 을 포함한다. 하기에서 더 상세히 설명되는 것과 같이, 도전성 검사 질량체 (2410a) 는 x-축, y-축, 또는 x 및 y-축의 조합을 따라 실질적으로 이동하도록 제한된다.
내부 프레임 (2610a) 은 앵커 (2605) 를 통해 기판에 연결되는 실질적으로 고정된 부분 (2612a) 을 포함한다. 앵커 (2605) 는 도 26a 에 도시된 평면 아래에 배치된다. 여기서, 고정된 부분 (2612a) 은 또한 상기 예에서 y-축을 따라 실질적으로 연장하는 한 쌍의 응력 분리 슬릿들 (2625) 을 포함하며, 이들은 상기 예에서 y-축을 따라 실질적으로 연장한다. 응력 분리 슬릿들 (2625) 은 가속도 측정들이 필름, 기판 및/또는 패키지 내의 응력들에 둔감하게 할 수도 있다. 내부 프레임 (2610a) 은 또한 이동가능한 부분 (2614a) 을 포함한다. 플렉셔들 (2615a) 은 이동가능한 부분 (2614a) 을 도전성 검사 질량체 (2410a) 에 연결한다. 플렉셔들 (2620a) 은 이동가능한 부분 (2614a) 을 고정된 부분 (2612a) 에 연결한다. 플렉셔들은 벤딩 컴플라이언스를 증가시킬 수 있는 폴디드 (folded) 플렉셔들일 수 있다. 일부 실시형태들에서, 플렉셔들은 사행식 플렉셔들일 수도 있다. 상기 예에서, 내부 프레임 (2610a) 은 복수의 슬롯들 (2420a) 을 포함한다. 추가 슬롯들 (2420a) 이 도 26a 에 도시된 것과 같은 검사 질량체 (2410a) 내에 형성될 수도 있다.
도 26b 는 제 1 축을 따르는 가속도에 대한 도 26a 의 가속도계의 응답의 일 예를 도시한다. 여기서, 가속도계 (2400a) 의 도전성 검사 질량체 (2410a) 는 x-축을 따라 이동하고 있다. 슬롯들 (2420b) 은 x-축을 따라 쉬프팅되며, 도 24 를 참조하여 전술된 것과 같이, 캐패시턴스에서의 변화가 대응하는 전극들 (2405) 에 의해 검출되게 한다. 전극들 (2405) 은 도 26b 에 도시된 면 밑에 있는 기판 (2401; 비도시) 상에 성막된다. 가속도계 (2400a), 기판 (2401) 및 전극들 (2405) 사이의 특정 관계가 도 28 에 도시되고, 하기에서 설명된다. 도 26b 에서 변형된 플렉셔들 (2615a) 은 내부 프레임 (2610a) 이 실질적으로 정지하고 있는 동안 도전성 검사 질량체 (2410a) 가 x-축을 따라 이동하게 한다. 상기 구현에서, 플렉셔들 (2620a) 은 실질적으로 변형되지 않는다. 슬롯들 (2420a) 과 연관된 캐패시턴스는 검사 질량체의 x 병진에서는 실질적으로 변화되지 않는다.
도 26c 는 제 2 축을 따른 가속도에 대한 도 26a 의 가속도계의 응답의 일 예를 도시한다. 여기서, 도전성 검사 질량체 (2410a) 및 내부 프레임 (2610a) 의 이동가능한 부분 (2614a) 은 y-축을 따라 이동하고 있다. 슬롯들 (2420a) 은 y-축을 따라 쉬프팅되며, 전술된 것과 같이, 캐패시턴스에서의 변화가 대응하는 전극들 (2405) 에 의해 검출되게 한다. 도 26c 에서 변형된 플렉셔들 (2620a) 은 이동가능한 부분 (2614a) 이 도전성 검사 질량체 (2410a) 와 함께 y-축을 따라 이동하게 한다. 상기 구현에서, 플렉셔들 (2615a) 은 실질적으로 변형되지 않는다. 슬롯들 (2420b) 과 연관된 캐패시턴스는 검사 질량체 (2410a) 와 이동가능한 부분 (2614a) 의 y 병진에서는 실질적으로 변화되지 않는다.
도 26d 는 면 내 및 면 외 가속도를 측정하기 위한 가속도계의 일 예를 도시한다. 상기 예에서, 가속도계 (2400b) 는 확장부 (2670) 를 갖는 도전성 검사 질량체 (2410b) 를 포함한다. 확장부 (2670) 는 확장부 (2670) 의 측면 상에 있는 도전성 검사 질량체 (2410b) 의 부분이 앵커 (2605) 의 다른 측면 상에 있는 도전성 검사 질량체 (2410b) 의 부분 보다 더 많은 질량을 가지게 한다. 확장부 (2670) 의 추가 질량은 도 25 를 참조하여 전술된 타입의 모멘트 불균형을 생성하며, 이는 가속도계 (2400b) 가 z-축을 따르는 가속도에 민감하게 한다.
이전의 도면들에서 설명된, 가속도계 (2400b) 와 가속도계 (2400a) 사이에는 다른 차이들이 존재한다. 도 26d 에 도시된 구현에서, 내부 프레임 (2610b) 의 고정된 부분 (2612b) 은 예컨대, 도 26a 에 도시된 구현에서 내부 프레임 (2610a) 의 고정된 부분 (2612a) 보다 상대적으로 작다. 이러한 구성은 슬롯들 (2420a) 이내부 프레임 (2610b) 의 상대적으로 더 많은 영역을 점유하게 하며, 결과적으로 y-축을 따른 가속도를 측정하기 위해 더 큰 감도를 발생한다. 추가로, 도 26d 에 도시된 구현에서, 플렉셔들 (2615b 및 2620b) 은 사행식 플렉셔들이다.
도 27 은 면 외 가속도를 측정하기 위한 가속도계의 일 예를 도시한다. z-축 가속도계 (2500a) 는 도 25 를 참조하여 전술된, 가속도계 (2500) 의 일반적인 원리들에 따라 동작하도록 구성된다. 여기에서, 도전성 검사 질량체 (2510) 는 앵커 (2515a) 및 피봇 (2530a) 을 형성하는 한 쌍의 비틀림 플렉셔들 (2525a) 에 의해 기판 (2401; 비도시) 에 부착된다. 모멘트 불균형은 도전성 검사 질량체 (2510) 의 측면 (2510b) 을 다른 측면 (2510a) 보다 상대적으로 작게 형성함으로써 피봇 (2530a) 의 일 측면 상에 생성된다.
전극들 (2405c 및 2405d) 은, 도 25 및 도 28 에 도시된 것과 같이, 기판 (2401) 상의 가속도계 (2500a) 아래의 일 평면에 배치된다. 상기 예에서, 전극 (2405c) 은 도전성 검사 질량체 (2510) 의 측면 (2510b) 의 에지로부터 거리 (2710) 만큼 삽입된다. z-축을 따르는 가속도는, 도 25 를 참조하여 전술된 것과 같이 도전성 검사 질량체 (2510) 가 y-축 주위 및 피봇 (2530a) 주위를 회전하게 한다. 예를 들면, z-축을 따른 가속도는 도전성 검사 질량체 (2510) 의 측면 (2510a) 을 (전극 (2405d) 을 향한) 네거티브 z 방향으로 회전시키고, 측면 (2510b) 을 (전극 (2405c) 으로부터 떨어진) 포지티브 z 방향으로 회전시킨다. 피봇 (2530a) 주위에서 도전성 검사 질량체 (2510) 의 상기 회전은 도 25 를 참조하여 전술된 것과 같이 전극 (2405c) 에서의 캐패시턴스를 △C 만큼 감소시키고, 전극 (2405d) 에서의 캐패시턴스를 △C 만큼 증가시킨다. 2△C 에 비례하는 대응하는 면 외 가속도 출력 신호가 발생한다. 전극들 (2405c 및 2405d) 에서의 캐패시턴스의 변화는 전극들 (2405c 및 2405d) 의 사이즈, z-축을 따른 가속도의 크기, 등등과 같은 다양한 인자들에 의존할 수도 있다. 일부 구현들에서, 전극들 (2405c 및 2405d) 에서 캐패시턴스의 변화는 팸토패럿 (femtofarad) 의 범위 내에 있을 수도 있다.
도 28 은 면 내 및 면 외 가속도를 측정하기 위한 대안적인 가속도계 구현의 일 예를 도시한다. 상기 예에서, 3-축 가속도계 (2800) 는 (도 27의) z-축 가속도계 (2500a) 를 (도 26a - 도 26c 의) x-y-축 가속도계 (2400a) 와 결합한다. 일부 구현들에서, 가속도계 (2800) 는 대략 수 밀리미터 또는 그 미만인 길이 (2805) 와 폭 (2810) 을 가질 수도 있다. 예를 들면, 길이 (2805) 는 0.5 내지 5 mm 의 범위일 수도 있고, 폭은 0.25 내지 3 mm 범위일 수도 있다.
전극들 (2405c - 2405f) 은 가속도계 (2500a) 와 가속도계 (2600a) 가 인접하여 제작될 기판 (2401) 의 영역들 상에 배치된다. 전극들 (2405c 및 2405d) 은 z-축 가속도에 대한 가속도계 (2500a) 의 응답들을 측정하도록 구성될 수 있다. 전극들 (2405e) 은 x-축을 따른 가속도계 (2600a) 의 가속도를 검출하도록 구성될 수 있는 반면, 전극들 (2405f) 은 y-축을 따른 가속도계 (2600a) 의 가속도를 검출하도록 구성될 수 있다.
도 29 는 면 내 및 면 외 가속을 측정하기 위한 다른 대안적인 가속도계 구현의 일 예를 도시한다. 상기 예에서, 가속도계 (2400c) 는 디커플링 프레임 (2910) 내에 배치된 도전성 검사 질량체 (2410c) 를 포함한다. 플렉셔들 (2615c) 은 도전성 검사 질량체 (2410c) 를 디커플링 프레임 (2910) 에 연결하고, 도전성 검사 질량체 (2410c) 가 x-축을 따라 이동하도록 한다. 인접 기판 (비도시) 상에 배치된 전극들은 하나 이상의 슬롯들 (2420b) 의 움직임들에 의해 발생된 캐패시턴스의 변경들에 따라 x-축을 따른 가속도를 검출할 수 있다.
디커플링 프레임 (2910) 은 앵커 프레임 (2915) 내에 배치될 수 있다. 플렉셔들 (2620c) 은 디커플링 프레임 (2910) 을 앵커 프레임 (2915) 에 연결하고, 디커플링 프레임 (2910) 및 도전성 검사 질량체 (2410c) 가 y-축을 따라 이동하게 한다. 인접 기판 (비도시) 상에 배치된 전극들은 하나 이상의 슬롯들 (2420a) 의 움직임들에 의해 발생된 캐패시턴스의 변경들에 따라 y-축을 따른 가속도를 검출할 수 있다.
피봇 (2515b) 은 (도 29 에 도시되지 않은) 기판 (2401) 에 앵커 프레임 (2915) 을 연결할 수 있다. 모멘트 불균형은 피봇 (2515b) 의 일 측면 상에 가속도계 (2600c) 의 대부분을 제작함으로써 생성된다. z-축을 따른 가속도는 기판 (2401) 상의 전극 (2405g) 쪽으로 또는 그로부터 멀리 가속도계 (2600c) 를 회전시킨다. 이러한 회전은 도 25 및 도 27 을 참조하여 전술된 것과 같이, 전극 (2405c) 에서 캐패시턴스를 △C 만큼 증가시키거나 감소시킨다. 회전으로 인해, △C 에 비례하는 대응하는 면 외 가속도 출력 신호가 발생한다. 응력 분리 슬릿들 (2720a) 은 필름, 기판 및/또는 패키지 내의 응력들에 대해 가속도 측정들을 둔감하게 하는 것을 도울 수도 있다.
일부 가속도계 구현들은 검사 질량체 및 인접 구조들을 잠정적으로 해로운 초과 이동 및 정지 마찰로부터 보호하기 위하여 검사 질량체 및/또는 플렉셔들의 모션들에 경계들을 배치하는 도금 스톱들을 특징으로 한다. 예를 들어, 도 28 을 참조하면, 포스트들은 가속도계 (2400a) 의 x 및/또는 y 변위를 제한하기 위해 가속도계 (2400a) 의 주변부의 기판 (2401) 상에 제작될 수도 있다. 가속도계 (2500a) 가 전극 (2405c), 전극 (2405d) 또는 기판 (2101) 에 접촉하는 것을 방지하기 위해, 가속도계 (2500a) 밑에 유사한 구조들이 형성될 수도 있다. 이러한 구현들은 따라서 신뢰도를 개선하고 생존성에 충격을 준다. 이러한 특징들은 검사 질량체 및 플렉셔들을 제작하는데 이용된 동일한 포토리소그래피 및 도금 프로세스들 동안 제작될 수도 있다.
도 30 은 가속도계 또는 자이로스코프를 형성하는데 이용될 수도 있는 다양한 물질들에 의해 인에이블되는 상대적인 감도를 보여주는 그래프를 도시한다. 그래프 (3000) 에 도시된 상대적인 감도는 실리콘으로 만든 센서의 감도로 정규화된 동일한 토폴로지들이지만 상이한 물질들과 센서들의 이론적인 비교에 기초한다. 곡선 (3005) 은 2 개의 디바이스들의 크기들이 동일하다고 가정할 때 구조적 물질로서 도금 니켈 합금을 이용하는 것이 동일한 설계를 가지는 디바이스에 대한 구조적 물질로서 실리콘을 이용하는 것보다 대략 3 배 더 큰 감도를 산출할 수 있다. 그래프 (3000) 의 데이터 포인트들은 동일한 물질이 검사 질량체와 플렉셔들을 위해 이용된다는 가정에 기초한다. 파속도는 (영률 (Young's modulus) / 질량 밀도) 의 제곱근으로 정의된다. 낮은 영률은 소정의 관성력에 대하여 큰 변위를 제공하는 반면, 높은 질량 밀도는 소정의 가속도에 대하여 큰 관성력을 제공한다.
도 31a 는 콤 핑거 가속도계의 일 예를 도시한다. 콤 핑거 가속도계들은 또한 연계형-캐패시터 가속도계들 및 콤-드라이브 가속도계들로서 공지된다. 콤 핑거 가속도계 (3100) 는, 전극 "핑거들" (3105a 및 3105b) 이 개별적으로 배치된 멤버들 (3102 및 3102b) 을 포함한다. 상기 예에서, 멤버 (3102a) 는 실질적으로 x-축을 따라 이동하도록 제한된, 이동가능한 멤버이다. 멤버 (3102a) 가 고정된 멤버 (3102b) 쪽으로 이동할 경우, 핑거들 (3105a 및 3105b) 사이의 오버랩이 증가한다. 따라서, 포지티브 x 방향에서 멤버 (3102a) 의 모션은 핑거들 (3105a 및 3105b) 사이에 증가된 캐패시턴스를 발생한다.
도 31b 는 콤 드라이브 및 SLOT-기반 가속도계들의 성능을 보여주는 그래프를 도시한다. 용량성-SLOT 및 콤 핑거 기반의 가속도계들의 감도에 대하여 희생 갭 높이와 검사 질량체 두께를 변경시키는 상대적인 효과가 도 31b 에서 관찰될 수도 있다. 곡선 (3115) 은 인셋 (3155) 의 콤 핑거 기반 가속도계에 대응하는 반면, 곡선 (3120) 은 인셋 (3160) 의 콤 핑거 기반 가속도계에 대응한다. 인셋들 (3155 및 3160) 은 기판 위에 도시된 핑거들과 함께 콤 핑거 기반 가속도계들의 단면도를 도시한다. 인셋들 (3155 및 3160) 은 또한 핑거들 (3105a 및 3105b) 의 크기들 및 간격의 예들을 도시한다. 곡선 (3125) 은 인셋 (3165) 의 SLOT-기반 가속도계에 대응하고, 곡선 (3130) 은 인셋 (3170) 의 SLT-기반 가속도계에 대응한다.
결과적인 그래프 (3110) 는 개시된 SLOT 트랜스듀서 토폴로지들이 고-종횡비의 구조적인 특징들에 대한 요구 없이 고감도를 가능하게 할 수 있다. 또한, SLOT-기반 가속도계 구현들은 피처 사이즈가 증가할 때 콤 드라이브 디바이스들에 대한 효율을 획득한다. 수평축 상에 표시된 최소 측면 피처 사이즈는 콤 핑거 타입 가속도계들의 경우에 핑거 폭 및 간격과 SLOT-기반 가속도계들의 경우에 슬롯의 폭을 지칭한다. 수직축 상의 특정 스케일 인자는 검사 질량체의 100 ㎚ 측면 병진에 응답하여 가속도계의 단위 면적당 캐패시턴스의 변화를 지칭한다. 상대적으로 더 큰 최소 측면 피처 사이즈들 (예컨대, 6 마이크론보다 큰 최소 측면 피처 사이즈들) 에 대하여, SLOT-기반 가속도계들의 양자의 예들은 콤 핑거 가속도계들 보다 더 큰 단위 면적당 캐패시턴스의 변화를 제공한다. 1 마이크론 갭을 갖는 SLT-기반 가속도계는 모든 도시된 최소 측면 피처 사이즈들에 대하여 더 큰 단위 면적당 캐패시턴스의 변화를 제공한다.
도 32 는 슬롯이 검사 질량체를 통해 완전히 연장하는 관통 슬롯을 포함하여 다양한 깊이의 슬롯들을 갖는 SLOT-기반 가속도계들의 성능을 보여주는 그래프를 도시한다. 곡선들 (3205, 3210, 3215 및 3220) 은, 그 내부에서 검사 질량체가 블라인드 슬롯을 포함하는 인셋 (3250) 에 대응하며, 여기서 슬롯은 검사 질량체 내로 부분적으로 연장한다. 곡선들 (3205, 3210, 3215 및 3220) 은 상기 블라인드 슬롯의 증가하는 깊이들에 대응한다. 곡선 (3225) 은 검사 질량체가 관통 슬롯을 포함하는, 인셋 (3260) 에 대응한다.
도 32 에 도시된 것과 같이, SLOT-기반의 면 내 가속도계들의 일부의 성능은 검사 질량체의 관통 슬롯들을 블라인드 슬롯들로 대체함으로써 강화될 수도 있다. 검사 질량체를 통해 완전히 연장하는 슬롯을 검사 질량체를 통해 완전히 연장하지 않는 슬롯으로 대체하는 것은 요구되는 도금 종횡비 (슬롯의 높이 대 폭의 비율) 를 감소시킬 수 있다. 검사 질량체 영역 밀도를 증가시키는 것은 소정의 센서 영역에 대한 감도를 개선할 수 있다. 따라서, 상대적으로 얕은 슬롯들이 또한 소정 영역에 대한 가속도계 감도를 개선할 수 있다. 시뮬레이션을 위해, 공기 충전형 그루브가 검사 질량체와 밑에 있는 전극 사이의 갭의 깊이의 적어도 2 배라면 본질적으로 어떤 감도 (△C/△x) 도 손실되지 않는 것으로 결정된다. 감도는 옵션의 그루브 충전 유전체의 유전율이 증가함에 따라 감소한다.
도 33 은 모바일 디바이스에서 하나 이상의 자이로스코프들 또는 가속도계들의 이용을 수반하는 방법의 스테이지들을 설명하는 흐름도의 일 예를 도시한다. 일부 모바일 디바이스들의 컴포넌트들은 도 47a 및 도 47b 를 참조하여 하기에 설명된다. 이러한 모바일 디바이스들은 디스플레이, 디스플레이와 통신하도록 구성된 프로세서 및 프로세서와 통신하도록 구성된 메모리 디바이스를 포함할 수도 있다. 프로세서는 이미지 데이터를 처리하도록 구성될 수도 있다.
그러나, 프로세서 (및/또는 다른 컴포넌트 또는 디바이스) 는 또한 하나 이상의 가속도계들 및/또는 자이로스코프들과 통신을 위해 구성될 수도 있다. 프로세서는 자이로스코프 데이터 및/또는 가속도계 데이터를 처리하고 분석하도록 구성될 수도 있다. 일부 구현들에서, 모바일 디바이스는 3 개의 선형 자유도와 3 개의 회전 자유도를 포함하여 6 개의 자유도에 대응하는 응직임에 응답하는 관성 센서를 종합적으로 제공하는 가속도계들 및 자이로스코프들을 포함할 수도 있다.
블록 3301 에서, 프로세서는 정규 디스플레이 동작을 위한 디스플레이를 제어할 수도 있다. 각회전 및 선형 가속도가 검출될 경우에 (블록 3305), 자이로스코프 데이터 및/또는 가속도계 데이터는 프로세서에 제공될 수도 있다 (블록 3310). 블록 3315 에서, 프로세서는 자이로스코프 데이터에 응답하는지 및/또는 가속도계 데이터에 응답하는지 여부를 결정한다. 예를 들면, 프로세서는 자이로스코프 데이터 및/또는 가속도계 데이터가 각회전을 나타내지 않거나, 선형 가속도가 미리 결정된 임계 레벨의 가속도 보다 크지 않다면, 어떤 응답도 실행되지 않을 것임을 결정할 수도 있다. 만약 자이로스코프 데이터 및/또는 가속도계 데이터가 미리 결정된 임계치보다 큰 값을 나타내지 않는다면, 프로세서는 예컨대, 도 2 내지 도 5b 를 참조하여 전술된 것과 같이 정규 디스플레이 동작에 대한 절차들에 따라 디스플레이를 제어할 수도 있다.
그러나, 자이로스코프 데이터 및/또는 가속도계 데이터가 미리 결정된 임계치보다 큰 값을 나타내지 않는다면 (또는 프로세서가 다른 기준에 따라 응답이 요구되는 것을 결정한다면), 프로세서는 자이로스코프 데이터 및/또는 가속도계 데이터에 따라 적어도 부분적으로 디스플레이를 제어할 것이다 (블록 3320). 예를 들면, 프로세서는 가속도계 데이터에 따라 디스플레이의 상태를 제어할 수도 있다. 프로세서는 가속도계 데이터가 예컨대, 모바일 디바이스가 드롭되었거나 드롭되고 있는 것을 나타내는지 여부를 결정하도록 구성된다. 프로세서는 가속도계 데이터가 디스플레이가 드롭되었거나 드롭되고 있는 것을 나타낼 경우에 손상을 방지하거나 경감하기 위해 디스플레이의 상태를 제어하도록 추가로 구성될 수도 있다.
가속도계 데이터가 모바일 디바이스가 드롭되었다고 나타낸다면, 프로세서는 또한 상기 가속도계 데이터를 메모리 내에 저장할 수도 있다. 프로세서는 또한 가속도계 데이터가 모바일 디바이스가 드롭되었다고 나타낼 경우에 가속도계 데이터와 연관된 시간 데이터를 저장하도록 구성될 수도 있다. 예를 들어, 모바일 디바이스는 또한 네트워크 인터페이스를 포함할 수도 있다. 프로세서는 네트워크 인터페이스를 통해 시간 서버로부터 시간 데이터를 획득하도록 구성될 수도 있다. 대안적으로, 모바일 디바이스는 내부 클록을 포함할 수도 있다.
대안적으로, 또는 부가적으로, 프로세서는 가속도계 및/또는 자이로스코프 데이터에 따라 게임의 디스플레이를 제어하도록 구성될 수도 있다. 예를 들어, 가속도계 및/또는 자이로스코프 데이터는 게임 플레이 동안 사용자의 모바일 디바이스와의 상호작용을 발생할 수도 있다. 사용자의 상호작용은, 예컨대 디스플레이상에 제시되고 있는 게임 이미지들에 응답할 수도 있다.
대안적으로, 또는 부가적으로, 프로세서는 자이로스코프 또는 가속도계 데이터에 따라 디스플레이의 배향을 제어하도록 구성될 수도 있다. 프로세서는, 예를 들어 사용자가 모바일 디바이스를 새로운 디바이스 배향으로 회전시킬 것을 결정할 수도 있고, 새로운 디바이스 배향에 따라 디바이스를 제어할 수도 있다. 프로세서는 디바이스의 상이한 부분이 위쪽으로 면하고 있을 경우에 디스플레이된 디바이스들이 모바일 디바이스의 회전 및 방향에 따라 재배향되어야 하는 것을 결정할 수도 있다.
그 후에, 프로세서는 프로세스 (3300) 이 계속될 것인지 여부를 결정할 수도 있다 (블록 3325). 예를 들어, 프로세서는 사용자가 디바이스를 파워 오프할지 여부, 미리 결정된 기간 동안 사용자 입력의 부족으로 인해 디바이스가 "슬립 모드" 에 들어가야하는지 여부 등등을 결정할 수도 있다. 프로세스 (3300) 이 계속된다면, 프로세스 (3300) 는 블록 3301 으로 복귀할 수도 있다. 그렇지 않으면, 프로세스는 종료할 것이다 (블록 3330).
가속도계들 및 관련 장치를 제작하기 위한 프로세스의 일 예는 지금 도 34 내지 도 40c 를 참조하여 설명될 것이다. 도 34 는 가속도계들을 제작하는 방법의 개요를 제공하는 흐름도의 일 예를 도시한다. 도 35a 내지 도 39b 는 제작 프로세스 동안 다양한 스테이지들에서, 기판을 통한 단면들, 가속도계의 일부분 및 가속도계를 패키징하고 가속도계와의 전기적인 접속들을 형성하기 위한 구조들의 부분들을 도시한다. 도 40a 내지 도 40c 는 MEMS 다이 및 집적 회뢰를 포함하는 디바이스를 형성하는 프로세스에서 다양한 블록들의 단면도들의 예들을 도시한다.
도 34 를 참조하면, 방법 (3400) 의 일부 동작들이 설명될 것이다. 방법 (3400) 의 프로세스 흐름은 제 1 동작 세트가 예컨대, 넓은 영역의 글래스 패널들과 같은 넓은 영역의 기판들 상에 MEMS 디바이스들 (또는 유사한 디바이스들) 을 구축하는 능력을 갖는 설비에서 수행되도록 허용한다. 상기 설비는, 예를 들어 1100 mm × 1300 mm 의 기판들 상에 디바이스들을 제작하는 능력을 갖는 Gen 5 "패브 (fab)" 또는 1500 mm × 1850 mm 의 기판들 상에 디바이스들을 제작하는 능력을 갖는 Gen 6 패브일 수도 있다.
따라서, 블록 3401 에서, 패스 스루 금속화 및 가속도계 전극들은 상기 예에서 넓은 영역의 글래스 기판인 넓은 영역 기판상에 형성된다. 블록 3405 에서, 가속도계들 및 관련 구조들에 대한 복수의 피처들이 넓은 영역의 기판상에 형성된다. 일부 구현들에서, 수 십만 또는 그 이상의 디바이스들에 대한 피처들이 단일의 넓은 영역 기판상에 형성될 수도 있다. 일부 구현들에서, 가속도계들 및 자이로스코프들은 일 측면 상에 약 1 mm 미만 대 일 측면 상에 3 mm 또는 그 이상의 다이 사이즈를 가질 수도 있다. 관련된 피처들은, 예컨대 전극들, 전극 패드들, (실 링 구조들과 같은) 캡슐화를 위한 구조들, 등등을 포함할 수도 있다. 상기 프로세스들의 예들은 도 35a 내지 도 38d 를 참조하여 하기에 설명될 것이다.
도 34 의 블록 3410 에서, 부분 제작된 가속도계들 및 다른 디바이스들은 후속 전기도금 프로세스를 위해 준비된다. 도 38a 를 참조하여 하기에서 설명되는 것과 같이, 블록 3410 은 니켈, 니켈 합금, 구리, 또는 크롬/금과 같은 시드층을 적층하고, 후속 도금을 위해 고 종횡비의 리소그래피 물질의 두꺼운 층들을 형성하는 것을 포함할 수도 있다.
방법 (3400) 에 따르면, 가속도계들 및 다른 구조들은 넓은 영역의 글래스 기판들 상에 오직 부분적으로 제작된다. 이러한 부분적인 제작의 한가지 원인은 현재 Gen 4 또는 Gen 5 기판 사이즈들을 처리할 수 있는 도금 설비들의 수가 적기 때문이다. 그러나, Gen 2 기판들 (350 mm ×450 mm) 과 같은 더 작은 기판들을 핸들링 할 수 있는 도금 설비들의 수는 많다. 그러므로, 블록 3415 에서, 가속도계들 및 다른 구조들이 부분적으로 제작된 넓은 영역의 글래스 기판은 전기도금 프로세스(들) 동안 서브-패널들로 분할된다.
블록 3420 에서, 전기도금 프로세스(들) 이 수행된다. 이러한 프로세스들은 도 38b 를 참조하여 하기에 설명된다. 전기도금 프로세스는 일부 구현들에서, 각각의 가속도계의 검사 질량체, 프레임, 앵커(들) 및 다른 구조들의 금속 대부분을 성막하는 것을 포함한다. 고 종횡비의 리소그래피 물질은 제거될 수도 있고, 희생 물질은 각각의 가속도계의 검사 질량체 및 프레임을 릴리스하도록 제거될 수도 있다 (블록 3425). 상기 동작들의 예들이 도 38c 및 도 38d 를 참조하여 하기에 설명된다.
블록 3430 은 옵션의 가속도계 캡슐화뿐만 아니라 (예컨대, 다이싱에 의한) 싱귤레이션 및 다른 프로세스들을 포함한다. 일부 구현들에서, 방법 (3400) 은 집적회로를 캡슐화된 가속도계에 부착하는 것, 다른 기판들과의 전기적인 접속들을 형성하는 것, 몰딩 및 시뮬레이션을 포함할 수도 있다. 이러한 프로세스들은 도 39a 내지 도 40c 를 참조하여 하기에서 설명된다.
도 35a 를 참조하면, 가속도계들을 제작하는 프로세스가 더 상세히 설명될 것이다. 도 35a 는 상기 예에서 글래스 기판인 넓은 영역의 기판 (3505) 의 작은 부분 (예컨대, 대략 수 밀리미터들) 을 통한 단면을 도시한다. 이러한 스테이지에서, 크롬 (Cr) / 금 (Au) 층과 같은 금속층 (3510) 은 넓은 영역의 기판 (3505) 상에 성막된다. 다른 도전성 물질들은 알루미늄 (Al), 티타늄 (Ti), 탄탈륨 (Ta), 탄탈륨 질화물 (TaN), 은 (Ag), 니켈 (Ni), 도핑된 실리콘 또는 TiW 대신에 이용될 수도 있다.
금속층 (3510) 은 그 후에 도 35b 에 도시된 것과 같이 패터닝 및 에칭될 수도 있다. 상기 예에서, 금속층 (3510) 의 중심 부분은 가속도계의 일부를 형성하는 전극 영역 (3510b) 을 형성하도록 패터닝 및 에칭된다. 가속도계 및/또는 다른 디바이스들은, 예컨대 금속 영역들 (3510a) 사이에 형성된 공동 내로 실링될 수도 있다. 금속 영역들 (3510a) 은 패키징 내부로부터 패키징 외부로의 "패스 스루" 전기 접속을 형성할 수 있다. 금속 영역들 (3510a) 은 또한 상기 디바이스들과 패키징 외부의 다른 디바이스들 사이에 전기 접속이 형성되게 할 수 있다.
도 35c 는 금속층 (3510) 위에 성막된 유전층 (3515) 을 도시한다. SiO2, SiON, Si3N4 또는 다른 적절한 유전체일 수도 있는 유전층 (3515) 은 유전층 (3515) 을 통해 금속 영역들 (3510a) 로의 개구부들 (3605a, 3605b, 3605c 및 3605d) 을 형성하도록 패터닝 및 에칭될 수도 있다 (도 36a 에 도시).
도 36b 에 도시된 스테이지에서, 금속층 (3610) 은 유정층 (3515) 위에 개구부들 (3605a, 3605b, 3605c 및 3605d) 내로 성막된다. 금속층 (3610) 은 Cr, Au, Al, Ti, Ta, TaN, Pt, Ag, Ni, 도핑된 실리콘 또는 TiW 와 같은 임의의 적절한 도전성 물질로 형성될 수도 있다.
금속층 (3610) 은 도 36c 에 도시된 것과 같이 패터닝 및 에칭된다. 결과적으로, 리드 영역들 (3615a 및 3615b) 은 유전층 (3515) 의 표면 위에 노출되고, 금속 영역들 (3510a) 과의 전기적 접속을 위해 구성된다. 유사하게, (일부 구현들에서 앵커 영역들일 수도 있는) 가속도계 베이스 영역들 (3625a 및 3625b) 은 또한 유전층 (3515) 의 표면 위에 유지되고, 금속 영역들 (3510a) 과의 전기적 접속을 위해 구성된다. 실 링 영역들 (3620a 및 3620b) 은 또한 유전층 (3515) 의 표면 위에 있지만 금속 영역들 (3510a) 에 전기적으로 접속되지 않을 수 있다. 도 36d 에 도시된 스테이지에서, 유전층 (3515) 은 전극 영역 (3510b) 으로부터 제거된다.
도 37a 는 이후에 희생층 (3705) 이 성막되는 스테이지를 도시한다. 상기 예에서, 희생층 (3705) 은 MoCr 로 형성되지만, Cu 와 같은 다른 물질들이 희생층 (3705) 을 위해 이용될 수도 있다. 도 37b 는 희생층 (3705) 이 패터닝 및 에칭된 이후 프로세스의 스테이지를 도시한다. 상기 스테이지에서, 리드 영역들 (3615a 및 3615b), 실 링 영역들 (3620a 및 3620b) 및 가속도계 베이스 영역들 (3625a 및 3625b) 이 노출된다. 희생층 (3705) 의 일부분은 전극 영역 (3510b) 위에 남는다.
그 후에, 부분-제작된 가속도계 및 관련 구조들이 전기 도금을 위해 준비된다. 일부 구현들에서, 도금 시드층은 전술된 것과 같은 전기도금 프로세스(들) 이전에 성막될 수도 있다. 시드층은, 예컨대 스퍼터링 (sputtering) 프로세스에 의해 형성될 수도 있고, 니켈, 니켈 합금 (예컨대, 니켈 철, 니켈 코발트 또는 니켈 망간), 구리 또는 크롬/금으로 형성될 수도 있다. 도 38a 에 도시된 것과 같이, 포토레지스트와 같은 고 종횡비 리소그래피 물질 (3805) 의 두꺼운 층은, 그 위에서 금속이 차후에 도금되지 않게 하는 영역들 위에 형성된다. 고 종횡비 리소그래피 물질 (3805) 은 포토마스크를 통해 선택적으로 노출되고, 전기도금 프로세스(들) 동안 몰드를 통해 차후에 도금되는 금속 구조들의 형상들을 정의하는 몰드를 형성하도록 개발된다. 일부 구현들에 따르면, 고 종횡비 리소그래피 물질 (3805) 의 층은 수십 마이크론 두께, 예컨대 10 내지 50 마이크론 두께 또는 그 이상이다. 다른 구현들에서, 고 종횡비 리소그래피 물질 (3805) 의 층은 예컨대, 가속도계의 요구되는 구성에 따라 더 두껍거나 더 얇아질 수 있다. 고 종횡비 리소그래피 물질 (3805) 은 다양한 상업적으로 이용가능한 고 종횡비 리소그래피 물질들 중 임의의 물질, 예컨대, Micro-Chem 에 의해 제공된 KMPR® 포토레지스트 또는 DuPont® 에 의해 제공된 MTF™ WBR2050 포토레지스트일 수도 있다.
고 종횡비 리소그래피 물질 (3805) 의 두꺼운 층들은 리드 영역들 (3615a 및 3615b), 실 링 영역들 (3620a 및 3620b) 및 여전히 남아있는 희생층 (3705) 의 일부의 선택 영역들 위에 형성될 수도 있다. 선택된 영역들은 도금되지 않은 희생층 (3705) 의 영역들이다. 갭들 (3810) 은 가속도계 베이스 영역들 (3625a 및 3625b) 및 희생층 (3705) 위의 다른 영역들을 노출시킨다.
전술된 구조들이 부분적으로 형성된 넓은 영역의 기판은 금속 도금 프로세스 이전에 더 작은 서브 패널들로 분할될 수도 있다. 상기 예에서, 넓은 영역 글래스 기판은 스크라이브 (scribe) 되고 브레이크 (break) 되지만, 넓은 영역의 글래스 기판은 임의의 적절한 방식, 예컨대 소잉 (sawing) 또는 다이싱 (dicing) 에 의해 분할될 수도 있다.
도 38b 는 두꺼운 금속층 (3815) 이 고 종횡비 리소그래피 물질 (3805) 에 의해 형성된 구조들 사이의 영역에서 도금된 후의 장치를 도시한다. 일부 구현들에서, 두꺼운 금속층 (3815) 은 수십 마이크론 두께, 예컨대 5 내지 50 마이크론 두께일 수도 있다. 다른 구현들에서, 두꺼운 금속층 (3815) 은 예컨대, 가속도계의 요구되는 구성에 따라 더 두껍거나 더 얇아질 수 있다. 상기 예에서, 두꺼운 금속층 (3815) 은 니켈 합금으로 형성되지만, 다른 구현들에서, 두꺼운 금속층 (3815) 은 도금된 니켈, 무전해 니켈, CoFe, Fe 기반 합금들, NiW, NiRe, PdNi, PdCo 또는 다른 도금된 물질들로 형성될 수도 있다. 일부 구현들에서, 얇은 금 층은 부식을 막기 위해 주로 두꺼운 금속층 (3815) 상에 성막될 수도 있다.
도 38c 는 두꺼운 금속층 (3815) 의 성막 및 고 종횡비 리소그래피 물질 (3805) 의 제거를 도시한다. 고 종횡비 리소그래피 물질 (3805) 를 제거하는 것은 리드 영역들 (3615a 및 3615b), 실 링 영역들 (3620a 및 3620b) 및 희생층 (3705) 의 선택된 영역들을 노출시킨다. 희생층 (3705) 은 예컨대, 몰리브덴 또는 몰리크롬 희생층을 위해 XeF2 또는 구리 희생층을 위해 구리 에천트를 이용하여 가속도계 (3850; 도 38d 에 도시) 의 이동가능한 영역 (3840) 을 릴리스하기 위해 예컨대, 습식 에칭 프로세스 또는 플라즈마 에칭 프로세스에 의해 에칭될 수도 있다. 니켈 합금들, Cr 또는 Au 를 에칭하지 않고 Cu 를 선택적으로 에칭하기 위한 Cu 의 습식 에칭은, 예컨대 인쇄 회로 기판 산업에서 공통으로 이용되는 암모니아성 Cu 에천트들을 이용함으로써, 또는 과산화 수소 및 아세트산의 결합물을 이용함으로써 수행될 수도 있다. 이동가능한 영역 (3840) 은, 예컨대 전술된 것과 같은 검사 질량체 및/또는 프레임을 포함할 수도 있다. 가속도계 (3850) 의 동작 동안, 갭들 (3860) 의 모션은 전극들 (3510b) 에 의해 검출된 캐패시턴스에서의 변경들을 유도할 수도 있다.
도 39a 는 일 예에 따른 후속 캡슐화 프로세스의 결과를 도시한다. 여기서, 커버 (3905) 는 가속도계 (3850) 를 캡슐화하기 위해 실 링 영역들 (3620a 및 3620b) 에 부착된다. 일부 구현들에서, 커버 (3905) 는 글래스 커버, 금속 커버, 등일 수도 있다. 커버 (3905) 는 다른 기판 상에 형성된 복수의 커버들 중 하나일 수도 있다. 상기 예에서, 커버는 가속도계 (3850) 주위에 엔클로저를 형성할 수 있는 복수의 커버 부분들 (3905a) 을 포함한다. 상기 예에서, 커버 부분들 (3905a) 은 커버 영역들 (3905b) 에 의해 연결된다. 커버 부분들 (3905a) 은, 예컨대 솔더링 (soldering) 또는 공융 접합 프로세스에 의해, 또는 에폭시와 같은 접착제에 의해 실 링 영역들 (3620a 및 3620b) 에 부착될 수도 있다. 일부 구현들에서, 커버 부분들 (3905a) 은 가속도계 (3850) 를 완전히 엔클로징할 수도 있는 반면, 다른 구현들에서, 커버 부분들 (3905a) 은 가속도계 (3850) 를 오직 부분적으로 엔클로징할 수도 있다. 상기 예에서, 리드 영역들 (3615a 및 3615b) 은 가속도계 (3850) 로의 편리한 전기 접속을 고려하여 커버 (3905) 에 의해 캡슐화된 영역 외부에 남는다.
일부 구현들에서, 커버 (3905) 의 부분들이 제거될 수도 있다. 예를 들면, 리드 영역들 (3615a 및 3615b) 로의 더 편리한 액세스를 허용하기 위해 커버 영역들 (3905b) 의 적어도 일부가 (예컨대, 다이싱 프로세스에 의해) 제거될 수도 있다 (도 39b 에 도시). 결과적인 캡슐화된 가속도계 (3910) 의 두께 또한 원하는 경우에 감소될 수도 있다. 상기 예에서, 화학적-기계적 연마 (CMP) 프로세스는 기판 (3505) 을 얇게 하는데 이용된다. 일부 구현들에서, 캡슐화된 가속도계 (3910) 는 1 mm 미만의 전체 두께 및 더욱 상세하게는 0.7 mm 또는 그 미만으로 얇아질 수도 있다. 결과적인 캡슐화된 가속도계 (3910) 는 예컨대, 다이싱에 의해 싱귤레이트될 수도 있다.
도 40a 는 캡슐화된 가속도계 (3910) 를 집적 회로 (4005) 와 결합하고, 양자의 디바이스들을 상기 예에서 인쇄 회로 기판인 다른 기판 (4015) 에 부착함으로써 형성된 장치를 도시한다. 상기 도면에서, 집적 회로 (4005) 는 솔더링 프로세스에 의해 캡슐화된 가속도계 (3910) 에 부착된다 (솔더층 (4010) 참조). 유사하게, 캡슐화된 가속도계 (3910) 는 솔더링 프로세스에 의해 기판 (4015) 에 부착된다 (솔더층 (4020) 참조). 대안적으로, 집적 회로 (4005) 는 에폭시와 같은 접착제에 의해 가속도계 (3910) 에 부착될 수도 있다.
도 40b 는 집적 회로 (4005) 와 캡슐화된 가속도계 (3910) 사이 및 캡슐화된 가속도계 (3910) 와 기판 (4015) 사이에 전기적인 접속들을 형성하는데 이용되는 와이어 본드들 (4025) 을 도시한다. 대안적인 구현들에서, 캡슐화된 가속도계 (3910) 는 표면 장착에 의한 전기적인 접속들을 형성하도록 구성된, 기판 (3905) 을 통한 바이어스들을 포함할 수도 있다.
도 40c 에 도시된 스테이지에서, 집적 회로 (4005) 및 캡슐화된 가속도계 (3910) 는 폴리머, 액정 폴리머 (LCP) 와 같은 사출 성형 물질, SiO2 또는 SiON 과 같은 유전 물질일 수도 있는 보호 물질 (4030) 로 캡슐화된다. 상기 예에서, 기판 (4015) 은 인쇄 회로 기판 또는 다른 장치 상에 장착하기 위해 구성된 전기 커넥터들 (4035) 을 포함한다. 따라서, 결과적인 패키지 (4040) 는 표면 장착 기술을 위해 구성된다.
자이로스코프 및 관련 장치를 제작하기 위한 프로세스의 일 예는 지금부터 도 41 내지 도 46b 을 참조하여 설명될 것이다. 도 41 는 자이로스코프들 및 관련 구조들을 제작하기 위한 프로세스의 개요를 제공하는 흐름도의 일 예를 도시한다. 도 42a 내지 도 46b 는 도 41 에 강조된 프로세스 동안의 다양한 스테이지들에서, 기판, 자이로스코프의 일부분, 및 자이로스코프를 패키징하고 자이로스코프와의 전기 접속들을 형성하기 위한 구조들의 부분들을 통한 단면도들의 예들을 도시한다.
도 41 을 참조하면, 방법 (4100) 의 일부 동작들이 설명될 것이다. 방법 (4100) 의 프로세스 흐름은 제 1 동작 세트가 MEMS 를 구축할 능력을 갖는 설비 및 넓은 영역의 글래스 패널들과 같은 넓은 영역 기판들 상의 유사 디바이스들에서 수행되게 한다. 상기 설비는 예컨대, Gen 5 패브 또는 Gen 6 패브일 수도 있다. 따라서, 블록 4105 에서, 다수의 자이로스코프 피처들 및 관련 구조들은 넓은 영역의 기판상에 형성된다. 예를 들면, 수십만 이상의 구조들이 넓은 영역 기판상에 제작될 수 있다. 관련된 구조들은, 예컨대 전극들, 전기 패드들, (실 링 구조들과 같이) 캡슐화를 위한 구조들, 등등을 포함할 수도 있다. 상기 프로세스들의 예들이 도 42a 내지 도 44b 를 참조하여 하기에 설명될 것이다.
도 41 의 블록 4110 에서, 부분 제작된 자이로스코프들 및 다른 디바이스들이 후속 전기도금 프로세스를 위해 준비된다. 도 44b 및 도 44c 를 참조하여 하기에서 설명된 것과 같이, 블록 4110 은 도금 시드층 성막 및 포토레지스트와 같은 고 종횡비 리소그래피 물질의 두꺼운 층들의 형성을 포함한다.
방법 (4100) 에 따르면, 자이로스코프들 및 다른 구조들은 넓은 영역 글래스 기판들 상에 부분적으로 제작된다. 이러한 부분적인 제작의 한가지 원인은 현재 Gen 4 또는 Gen 5 기판 사이즈들을 처리할 수 있는 도금 설비들의 수가 적다는 것이다. 그러나, Gen 2 기판들과 같은 더 작은 기판들을 핸들링할 수 있는 도금 설비들이 수는 많다. 따라서, 블록 4115 에서, 자이로스코프들 및 다른 구조들이 부분적으로 제작되는 넓은 영역의 글래스 기판은 전기도금 절차(들) 을 위해 서브-패널들로 분할된다.
블록 4120 에서, 전기도금 프로세스(들) 이 수행될 것이다. 이러한 프로세스들은 도 45a 를 참조하여 하기에 설명된다. 전기도금 프로세스는, 일부 구현들에서 각각의 자이로스코프의 검사 질량체, 프레임 및 다른 구조들의 금속 대부분을 성막시키는 것을 포함한다. 그 후에, 고 종횡비 리소그래피 물질은 제거될 수도 있고, 희생 물질은 각각의 자이로스코프의 검사 질량체 및 프레임을 릴리스하도록 제거될 수도 있다 (블록 4125). 상기 동작들의 예들이 도 45b 및 도 46a 를 참조하여 하기에 설명된다.
블록 4130 은 자이로스코프 캡슐화뿐만 아니라, (예컨대, 다이싱에 의한) 싱귤레이션 및 다른 프로세스들을 포함할 수도 있다. 이러한 프로세스들은 도 46b 를 참조하여 하기에서 설명된다.
도 42a 는 본 예에서 글래스 기판인 넓은 영역 기판 (4200) 을 통한 단면을 도시한다. 넓은 영역의 글래스 기판 (4200) 은 그 기판상에 성막된 상기 예에서 Cr/Au 층인 금속층 (4205) 을 갖는다. 다른 도전성 물질들은 Co, Fe 또는 Mn, Ti/Au, Ta/Au 또는 도핑된 실리콘에서 Al, TiW, Pt, Ag, Ni, 니켈 합금들과 같은 크롬 및/또는 금 대신에 이용될 수도 있다. 금속층 (4205) 은 예컨대, 도 42a 에 도시된 것과 같이 패터닝되고 에칭될 수도 있다. 금속층 (4205) 은 실 링 내부로부터 실 링 외부로의 "패스 스루" 전기 접속을 형성하는데 이용될 수 있다. 자이로스코프(들) 및/또는 다른 디바이스들은, 예컨대 패키징 내부의 공동 내에 실링될 수도 있다. 금속층 (4205) 은 상기 디바이스들과 패키징 외부의 다른 디바이스들 사이에 전기 접속이 형성되게 한다.
도 42b 는 금속층 (4205) 위에 성막된 SiO2, SiON 또는 다른 유전 물질과 같은 유전층 (4215) 을 도시한다. 그 후에, 유전층 (4215) 은 유전층 (4215) 을 통해 금속층 (4205) 으로의 개구부들 (4220a, 4220b, 4220c) 을 형성하도록 에칭될 수도 있다.
도 42c 는 이후에 희생층 (4225) 이 성막되는 스테이지를 도시한다. 상기 예에서, 희생층 (4225) 은 MoCr 로 형성되지만, 구리 또는 성막된 비결정성 또는 다결정 실리콘과 같은 다른 물질들이 희생층 (4225) 을 위해 이용될 수도 있다. 도 42d 는 희생층 (4225) 이 패터닝되고 에칭된 후에 남아있는 희생층 (4225) 의 영역들을 나타낸다.
도 43a 는 이후에 유전층 (4305) 이 희생층 (4225) 상에 성막되는 스테이지를 도시한다. 추가로, 유전층 (4305) 은 패터닝 및 에칭된다. 도 43b 에서, 금속층 (4310) 은 성막되고, 패터닝되고, 에칭된다. 상기 예에서, 금속층 (4310) 은 앵커 영역 (4315) 내의 금속층 (4205) 과 접촉한다.
도 43c 는 성막되고, 패터닝되고, 에칭되는 압전 필름 (4320) 의 일 실시예를 도시한다. 상기 예에서, 압전 필름 (4320) 은 질화 알루미늄으로 형성되지만, ZnO 또는 티탄산 지르콘산 연 (PZT) 과 같은 다른 압전 물질들이 이용될 수도 있다. 도 43d 에서, 금속층 (4325) 이 성막되고, 패터닝되고, 에칭된다. 여기서, 금속층 (4325) 은 그 구현에 따라 압전 드라이브 전극 또는 압전 감지 전극일 수도 있는 전극 (4330) 의 최상위층을 형성한다.
도 44a 는 성막되고, 패터닝되고, 에칭된 유전층 (4405) 의 일 실시예를 도시한다. 이러한 단계 동안, 유전층 (4405) 은 앵커 영역 (4315) 및 전극 (4330) 에 인접한 영역을 제외하고 도 44a 에 도시된 대부분의 영역들로부터 제거된다.
이러한 스테이지에서, 부분 제작된 자이로스코프 컴포넌트들 및 관련 구조들은 하나 이상의 전기도금 프로세스들을 위해 준비될 수 있다. 도 44b 는 전기도금 프로세스 전에 성막될 수 있는 니켈, 니켈 합금, 구리, 또는 크롬/금과 같은 도금 시드층 (4405) 의 일 예를 도시한다. 도 44c 에 도시된 것과 같이, 도금 시드층 (4405) 이 성막된 후에, 두꺼운 포토레지스트와 같은 고 종횡비 리소그래피 물질 (4410) 의 두꺼운 층이 검사 질량체 영역 (4415) 및 프레임 영역 (4420) 사이에 형성될 수 있다. 일부 구현들에 따라, 고 종횡비 리소그래피 물질 (4410) 의 층은 수십 마이크론 두께, 예컨대 40 내지 50 마이크론 두께이다. 다른 구현들에서, 고 종횡비 리소그래피 물질 (4410) 의 층은 예컨대, 자이로스코프의 요구되는 구성에 따라 더 얇아지거나 더 두꺼워질 수 있다. 고 종횡비 리소그래피 물질 (4410) 은 다양한 상업적으로 이용가능한 고 종횡비 리소그래피 물질들 중 임의의 물질, 예컨대, Micro-Chem 에 의해 제공된 KMPR® 포토레지스트 또는 DuPont® 에 의해 제공된 MTF™ WBR2050 포토레지스트일 수도 있다. 고 종횡비 리소그래피 물질 (4410) 의 두꺼운 층들은 프레임 영역 (4420) 과 실 링 영역 (4425) 사이뿐만 아니라 실 링 영역 (4425) 과 전기 패드 영역 (4430) 사이에 형성될 수 있다. 고 종횡비 리소그래피 물질 (4410) 은 적절한 포토마스크에 의해 노출되고, 차후에 형성되는 전기도금 금속 구조들의 형상들을 정의하도록 개발될 수도 있다.
전술된 것과 같이, 그 위에 전술된 구조들이 부분적으로 형성되는 넓은 영역의 기판은 전기도금 프로세스 이전에 더 작은 서브 패널들로 분할될 수도 있다. 상기 예에서, 넓은 영역 글래스 기판은 스크라이브되고 브레이크되지만, 넓은 영역 글래스 기판은 (다이싱에 의해) 임의의 적절한 방식으로 분할될 수도 있다.
도 45a 에 도시된 것과 같이, 두꺼운 금속층 (4505) 은 고 종횡비 리소그래피 물질 (4410) 사이의 영역들에 전기도금될 수도 있다. 상기 예에서, 두꺼운 금속층 (4505) 은 니켈 합금으로 형성되지만, 다른 구현들에서 두꺼운 금속층 (4505) 은 코발트 철, 니켈 텅스텐, 팔라듐 니켈 또는 팔라듐 코발트와 같은, 니켈 또는 다른 도금 금속 합금들로 형성될 수도 있다. 여기서, 얇은 금 층 (4510) 은 주로 두꺼운 금속층 (4505) 의 부식을 방지하기 위해 두꺼운 금속층 (4505) 상에 성막된다. 금 층 (4510) 은 또한 전기도금 프로세스에 의해 형성될 수도 있다.
도 45b 에 도시된 것과 같이, 상기 금속 층들이 성막된 후에, 고 종횡비 리소그래피 물질 (4410) 은 두꺼운 금속층 (4505) 이 성막된 영역들 사이에서 제거될 수 있다. 고 종횡비 리소그래피 물질 (4410) 을 제거하는 것은 희생 물질 (4225) 을 노출시키기 위해 에칭될 수도 있는 시드층 (4405) 의 부분들을 노출시킨다. 도 46a 는 검사 질량체 (4605) 및 프레임 (4610) 을 릴리스하기 위해 습식 에칭 프로세스 또는 플라즈마 에칭 프로세스에 의해 에칭된 희생 물질 (4225) 을 도시한다.
도 46b 는 일 예에 따른 캡슐화 프로세스의 결과를 도시한다. 여기서, 커버 (4615) 는 자이로스코프 (4625) 를 캡슐화하기 위해 실 링 (4620) 에 부착된다. 일부 구현들에서, 커버 (4615) 는 글래스 커버, 메탈 커버, 등일 수도 있다. 커버 (4615) 는 예컨대, 솔더링 프로세스 또는 에폭시와 같은 접착제에 의해 실 링 (4620) 에 부착될 수도 있다. 전기 패드 (4630) 는 커버 (4615) 에 의해 캡슐화된 영역의 외부에 남아있고, 이는 금속층 (4205) 을 통한 자이로스코프 (4625) 로의 편리한 전기 접속을 허용한다.
상기 예의 제작 프로세스로부터 발생하는 자이로스코프 (4625) 는, 예컨대 도 12 에 도시되고 전술된 드라이브 프레임 x-축 자이로스코프 (1200) 에 대응할 수도 있다. 자이로스코프 (4625) 의 앵커 (4635) 는 도 12 에 도시된 중앙 앵커 (1205) 와 대응할 수도 있다. 전극 (4330) 은 도 12 에 도시된 드라이브 전극 (1215) 과 대응할 수도 있다. 검사 질량체 (4605) 는 도 12 의 드라이브 프레임 (1210) 과 대응할 수도 있지만, 프레임 (4610) 은 도 12 의 검사 질량체 (1220) 와 대응할 수도 있다.
다른 예로서, 자이로스코프 (4625) 는 도 20a 등에 도시된 z-축 자이로스코프 (2000) 와 대응할 수도 있다. 자이로스코프 (4625) 의 앵커 (4635) 는 도 20a 등에 도시된 중앙 앵커 (2005) 와 대응할 수도 있다. 전극 (4330) 은 감지 전극들 (2020a - 2020d) 중 하나와 대응할 수도 있다. 검사 질량체 (4605) 는 도 20a 의 감지 프레임 (2010) 과 대응할 수도 있고, 프레임 (4610) 은 도 20a 의 드라이브 프레임 (2030) 과 대응할 수도 있다.
자이로스코프들 및 가속도계들을 제작하는 프로세스들이 별개로 설명되지만, 다수의 디바이스 타입들이 요구되는 경우에 동일한 넓은 영역 기판상에 형성될 수도 있다. 본 명세서에 설명된 가속도계들은, 예를 들어, 자이로스코프들을 제작하기 위한 프로세스들의 서브 세트를 이용함으로써 형성될 수도 있다. 예를 들면, 본 명세서에 설명된 가속도계들은 압전 드라이브 전극들 또는 압전 감지 전극들을 요구하지 않는다. 따라서, 상기 가속도계들을 제작할 경우에 어떤 압전 층도 요구되지 않는다. 가속도계들 및 자이로스코프들이 동일한 넓은 영역 기판상에 제작된다면, 가속도계 부분(들) 은 압전층이 성막되고, 패터닝되고, 에칭될 경우에 마스킹될 수도 있다.
일부 구현들에서, 본 명세서에 설명된 자이로스코프들 및 가속도계들은 그들의 제작을 위해 상이한 두께의 희생 물질을 이용할 수도 있다. 예를 들면, 가속도계 전극들과 검사 질량체 사이의 갭은, 일부 구현들에서 검사 질량체와 자이로스코프의 금속층 사이의 갭 보다 더 클 수도 있다. 희생 물질로서 구리를 이용하는 일부 구현들에서, 희생층 두께에 있어 상기와 같은 차이는 가속도계들이 제작되는 영역들에서만 구리 시드층 상에 구리를 도금함으로써 생성된다.
일부 자이로스코프 구현들에서, 자이로스코프는 진공으로 캡술화될 수도 있지만, 가속도계들은 진공으로 캡슐화될 필요가 없다. 일부 구현들에서, 캡술화된 가속도계들 내에 가스를 가지는 것은 댐핑 (damping) 을 제공하기 때문에 실질적으로 유리할 수도 있다. 그러므로, 일부 구현들에서, 넓은 영역 기판 상에 자이로스코프들 및 가속도계들 양자를 제작할 경우에 2 개의 상이한 캡슐화 프로세스들이 이용될 수도 있다. 하나의 캡슐화 프로세스는 실질적으로 진공으로 수행될 수도 있지만, 다른 캡슐화 프로세스는 진공으로 수행되지 않을 것이다. 다른 구현들에서, 단일 캡슐화 프로세스는 실질적으로 진공으로 수행될 수도 있다. 갭슐화된 가속도계들은 이러한 프로세스 동안 부분적으로 오픈될 수도 있고, 따라서 가스가 캡슐화된 가속도계들의 패키징에 상당히 진입할 수 있다. 가속도계들의 패키징은 요구되는 경우에 후속 프로세스 동안 (예컨대, 솔더에 의해) 전체적으로 밀봉될 수 있다.
도 47a 및 도 47b 는 복수의 간섭 변조기들을 포함하는 디스플레이 디바이스 (40) 를 도시하는 시스템 블록도들의 예들을 도시한다. 디스플레이 디바이스 (40) 는 예컨대, 셀룰러 전화 또는 모바일 전화일 수도 있다. 그러나, 디스플레이 디바이스 (40) 의 동일한 컴포넌트 및 그 약간의 변형들은 텔레비전, e-리더, 및 포터블 미디어 플레이어들과 같은 다양한 타입의 디스플레이 디바이스들의 예시아다.
디스플레이 디바이스 (40) 는 하우징 (41), 디스플레이 (30), 안테나 (43), 스피커 (45), 입력 디바이스 (48) 및 마이크로폰 (46) 을 포함한다. 하우징 (41) 은 사출 성형 및 진공 성형을 포함하는 다양한 제작 프로세스들 중 임의의 프로세스로 형성될 수 있다. 추가로, 하우징 (41) 은 플라스틱, 금속, 유리, 고무 및 세라믹, 또는 이들의 조합을 포함하지만 이에 결합되지 않는 다양한 물질들 중 임의의 물질로 형성될 수도 있다. 하우징 (41) 은 상이한 로고들, 화상들 또는 심볼들을 포함하여 상이한 컬러의 다른 제거가능한 부분들과 상호교환될 수도 있는 제거가능한 부분들 (비도시) 을 포함할 수 있다.
디스플레이 (30) 는 본 명세서에서 설명된 것과 같이, 쌍안정 또는 아날로그 디스플레이를 포함하는 다양한 디스플레이들 중 임의의 디스플레이일 수도 있다. 디스플레이 (30) 는 또한 플라즈마, EL, OLED, STN LCD 또는 TFT LCD 와 같은 평판 디스플레이 또는 CRT 또는 다른 튜브 디바이스와 같은 비-평판 디스플레이를 포함하도록 구성될 수 있다. 추가로, 디스플레이 (30) 는 본 명세서에 설명된 것과 같이, 간섭 변조기 디스플레이를 포함할 수 있다.
디스플레이 디바이스 (40) 는 도 47b 에 개략적으로 도시된다. 디스플레이 디바이스 (40) 는 하우징 (41) 및 그 내부에 부분적으로 엔클로징된 추가의 컴포넌트들을 포함할 수 있다. 예를 들면, 디스플레이 디바이스 (40) 는 트랜시버 (47) 에 커플링된 안테나 (43) 를 포함하는 네트워크 인터페이스 (27) 를 포함한다. 트랜시버 (47) 는 컨디셔닝 하드웨어 (52) 에 접속된 프로세서 (21) 에 접속된다. 컨디셔닝 하드웨어 (52) 는 신호를 컨디셔닝 (예컨대, 신호를 필터링) 하도록 구성될 수도 있다. 컨디셔닝 하드웨어 (52) 는 스피커 (45) 와 마이크로폰 (46) 에 접속된다. 프로세서 (21) 는 또한 입력 디바이스 (48) 및 드라이버 컨트롤러 (29) 에 접속된다. 드라이버 컨트롤러 (29) 는 프레임 버퍼 (28) 및 어레이 드라이버 (22) 에 커플링되고, 그 결과 디스플레이 어레이 (30) 에 커플링된다. 전원 (50) 은 특정 디스플레이 디바이스 (40) 설계에 의해 요구되는 바에 따라 모든 컴포넌트들에 전력을 제공할 수 있다.
네트워크 인터페이스 (27) 는 안테나 (43) 와 트랜시버 (47) 를 포함하며, 따라서 디스플레이 디바이스 (40) 는 네트워크를 통해 하나 이상의 디바이스들과 통신할 수 있다. 네트워크 인터페이스 (27) 는 또한, 예컨대 프로세서 (21) 의 데이터 프로세싱 요건들을 완화시키기 위해 일부 프로세싱 능력들을 가질 수도 있다. 안테나 (43) 는 신호들을 송신 및 수신할 수 있다. 일부 구현들에서, 안테나 (43) 는 IEEE 16.11(a), (b), 또는 (g) 를 포함하는 IEEE 16.11 표준, 또는 IEEE 802.11a, b, g 또는 n 을 포함하는 IEEE 802.11 표준에 따라 RF 신호들을 송수신한다. 일부 다른 구현들에서, 안테나 (43) 는 블루투스 표준에 따라 RF 신호들을 송수신한다. 셀룰러 폰의 경우에, 안테나 (43) 는 CDMA (code division multiple access), FDMA (frequency division multiple access), TDMA (time division multiple access), GSM (Global System for Mobile communications), GSM/GPRS (General Packet Radio Service), EDGE (Enhanced Data GSM Environment), TETRA (Terrestrial Trunked Radio), W-CDMA (Wideband-CDMA), EV-DO (Evolution Data Optimized), 1xEV-DO, EV-DO Rev A, EV-DO Rev B, HSPA (High Speed Packet Access), HSDPA (High Speed Downlink Packet Access), HSUPA (High Speed Uplink Packet Access), HSPA+ (Evolved High Speed Packet Access), LTE (Long Term Evolution), AMPS, 또는 3G 또는 4G 기술을 이용하는 시스템과 같은 무선 네트워크 내에서 통신하는 데 사용되는 다른 공지된 신호들을 수신하도록 설계될 수 있다. 트랜시버 (47) 는 안테나 (43) 로부터 수신된 신호들이, 프로세서 (21) 에 의해 수신되고 그에 의해 더 조작될 수 있도록, 그 신호들을 사전 처리할 수 있다. 트랜시버 (47) 는 또한 프로세서 (21) 로부터 수신된 신호들이, 안테나 (43) 를 통해 디스플레이 장치 (40) 로부터 송신될 수 있도록, 그 신호를 처리할 수 있다. 프로세서 (21) 는 네트워크 인터페이스 (27) 를 통해 예컨대 타임 서버로부터 타임 데이터를 수신하도록 구성될 수도 있다.
일부 구현들에서, 트랜시버 (47) 는 수신기로 대체될 수 있다. 또한, 네트워크 인터페이스 (27) 는 이미지 소스로 대체될 수 있고, 이미지 소스는 프로세서 (21) 에 송신될 이미지 데이터를 저장하거나 생성할 수 있다. 프로세서 (21) 는 디스플레이 장치 (40) 의 전체 동작을 제어할 수 있다. 프로세서 (21) 는 네트워크 인터페이스 (27) 또는 이미지 소스로부터 압축된 이미지 데이터와 같은 데이터를 수신하고, 그 데이터를 원시 이미지 데이터로 처리하거나 원시 이미지 데이터로 쉽게 처리되는 포맷으로 처리한다. 프로세서 (21) 는 처리된 데이터를 드라이버 컨트롤러 (29) 에, 또는 저장을 위해 프레임 버퍼 (28) 에 송신할 수 있다. 원시 데이터는 통상적으로 이미지 내의 각 위치에서 이미지 특성들을 식별하는 정보를 지칭한다. 예를 들어, 그러한 이미지 특성들은 컬러, 채도, 그레이 스케일 레벨을 포함할 수 있다.
프로세서 (21) 는 디스플레이 디바이스 (40) 의 동작을 제어하는 마이크로컨트롤러, CPU, 또는 로직 유닛을 포함할 수 있다. 컨디셔닝 하드웨어 (52) 는 스피커 (45) 에 신호를 송신하고, 마이크로폰 (46) 으로부터 신호를 수신하기 위한 증폭기들 및 필터들을 포함할 수 있다. 컨디셔닝 하드웨어 (52) 는 디스플레이 디바이스 (40) 내의 개별 컴포넌트들일 수도 있고, 또는 프로세서 (21) 또는 다른 컴포넌트들 내에 통합될 수도 있다.
일부 구현들에서, 디스플레이 디바이스 (40) 는 하나 이상의 자이로스코프들 및/또는 가속도계들 (75) 을 포함할 수도 있다. 그러한 자이로스코프들 및/또는 가속도계들 (75) 은 예컨대, 실제로 본 명세서에 설명된 것과 같을 수도 있고, 본 명세서에 설명된 프로세스들에 따라 형성될 수도 있다. 자이로스코프들 및/또는 가속도계들 (75) 은 자이로스코프 데이터 또는 가속도계 데이터를 프로세서 (21) 에 제공하기 위해 프로세서 (21) 와 통신하도록 구성될 수도 있다. 따라서, 디스플레이 디바이스 (40) 는 자이로스코프 데이터 및/또는 가속도계 데이터의 이용과 관련된 전술된 방법들 중 일부를 수행할 수도 있다. 추가로, 상기 데이터는 디스플레이 디바이스 (40) 의 메모리 내에 저장될 수도 있다.
드라이버 컨트롤러 (29) 는 프로세서 (21) 에 의해 생성된 원시 이미지 데이터를 프로세서 (21) 로부터 직접 또는 프레임 버퍼 (28) 로부터 획득할 수 있고, 어레이 드라이버 (22) 로의 고속 전송에 알맞게 원시 이미지 데이터를 다시 포맷할 수 있다. 일부 구현들에서, 드라이버 컨트롤러 (29) 는 원시 이미지 데이터를, 디스플레이 어레이 (30) 에 걸쳐 스캐닝하기에 적합한 시간 순서를 갖도록, 래스터형 (raster-like) 포맷을 갖는 데이터 플로우로 다시 포맷할 수 있다. 그 후 드라이버 컨트롤러 (29) 는 포맷된 정보를 어레이 드라이버 (22) 에 송신한다. LCD 컨트롤러와 같은 드라이버 컨트롤러 (29) 가 종종 독립형 집적 회로 (IC) 로서 시스템 프로세서 (21) 와 결합되지만, 그러한 컨트롤러는 다수의 방식들로 구현될 수도 있다. 예를 들어, 컨트롤러들은 하드웨어로서 프로세서 (21) 에 내장되거나, 소프트웨어로서 프로세서 (21) 에 내장되거나, 어레이 드라이버 (22) 와 함께 하드웨어에 완전히 통합될 수도 있다.
어레이 드라이버 (22) 는 드라이버 컨트롤러 (29) 로부터 포맷된 정보를 수신할 수 있고, 그 비디오 데이터를 디스플레이의 x-y 행렬의 픽셀들로부터 오는 수백 개, 또는 때때로 수천 개 (또는 그 이상) 의 리드들에 초당 여러 번 적용되는 파형들의 병렬 세트로 다시 포맷할 수 있다.
일부 구현들에서, 드라이버 컨트롤러 (29), 어레이 드라이버 (22), 및 디스플레이 어레이 (30) 는 본 명세서에 기술된 디스플레이들의 유형들 중 어느 것에나 적당하다. 예를 들어, 드라이버 컨트롤러 (29) 는 종래의 디스플레이 컨트롤러 또는 쌍안정 디스플레이 컨트롤러 (예를 들어, IMOD 컨트롤러) 일 수 있다. 또한, 어레이 드라이버 (22) 는 종래의 드라이버 또는 쌍안정 디스플레이 드라이버 (예를 들어, IMOD 디스플레이 드라이버) 일 수 있다. 또한, 디스플레이 어레이 (30) 는 종래의 디스플레이 어레이 또는 쌍안정 디스플레이 어레이 (예를 들어, IMOD들의 어레이를 포함하는 디스플레이) 일 수 있다. 일부 구현들에서, 드라이버 컨트롤러 (29) 는 어레이 드라이버 (22) 와 통합될 수 있다. 그러한 구현은 셀룰러 폰, 시계 및 다른 소면적 디스플레이와 같은 고도로 집적된 시스템들에서 일반적이다.
일부 구현들에서, 입력 디바이스 (48) 는, 예를 들어, 사용자가 디스플레이 디바이스 (40) 의 동작을 제어하게 하도록 구성될 수 있다. 입력 디바이스 (48) 는 쿼티 (QWERTY) 키보드 또는 전화 키패드와 같은 키패드, 버튼, 스위치, 로커 (rocker), 터치 감응 스크린 (touch-sensitive screen), 압력 감응 멤브레인 또는 열 감응 멤브레인을 포함할 수 있다. 마이크로폰 (46) 은 디스플레이 디바이스 (40) 에 대한 입력 장치로서 구성될 수 있다. 일부 구현들에서, 마이크로폰 (46) 을 통한 음성 명령들이 디스플레이 디바이스 (40) 의 동작을 제어하기 위해 이용될 수 있다.
전원 (50) 은 당업계에 공지되어 있는 각종 에너지 저장 디바이스들을 포함할 수 있다. 예를 들어, 전원 (50) 은 니켈-카드뮴 배터리 또는 리튬-이온 배터리와 같은 충전식 배터리일 수 있다. 전원 (50) 은 또한 재생 가능 에너지 소스, 캐패시터, 또는 플라스틱 태양 전지 또는 태양 전지 페인트를 포함하는 태양 전지일 수 있다. 전원 (50) 은 또한 벽 콘센트로부터 전력을 수신하도록 구성될 수 있다.
일부 구현들에서는, 전자 디스플레이 시스템 내의 몇몇 장소들에 위치할 수 있는 드라이버 컨트롤러 (29) 에 제어 프로그램 능력 (control programmability) 이 상주한다. 일부 다른 구현들에서는, 제어 프로그램 능력이 어레이 드라이버 (22) 에 상주한다. 전술한 최적화는 임의의 수의 하드웨어 및/또는 소프트웨어 컴포넌트들에서 그리고 다양한 구성들에서 구현될 수도 있다.
본 명세서에 개시된 구현들과 관련하여 기술된 다양한 예시적인 로직들, 논리 블록들, 모듈들, 회로들 및 알고리즘 단계들은 전자 하드웨어, 컴퓨터 소프트웨어, 또는 이들의 조합으로 구현될 수 있다. 하드웨어와 소프트웨어의 호환성이, 기능 면에서, 일반적으로 기술되었고, 전술한 다양한 예시적인 컴포넌트들, 블록들, 모듈들, 회로들 및 단계들에서 예시되었다. 그러한 기능이 하드웨어에서 구현되는지 소프트웨어에서 구현되는지는 전체 시스템에 부과된 특정의 애플리케이션 및 설계 제한들에 의존한다.
본 명세서에 개시된 양태들과 관련하여 기술된 다양한 예시적인 로직들, 논리 블록들, 모듈들 및 회로들을 구현하는 데 사용되는 하드웨어 및 데이터 프로세싱 장치는 본 명세서에 기술된 기능들을 수행하도록 설계된 범용 단일 또는 멀티칩 프로세서, 디지털 신호 프로세서 (DSP), ASIC (application specific integrated circuit), FPGA (field programmable gate array) 또는 기타 PLD (programmable logic device), 개별 게이트 또는 트랜지스터 로직, 개별 하드웨어 컴포넌트들, 또는 이들의 조합을 이용하여 구현되거나 수행될 수 있다. 범용 프로세서는 마이크로프로세서, 또는 임의의 종래의 프로세서, 컨트롤러, 마이크로컨트롤러, 또는 상태 기계일 수 있다. 프로세서는 또한 컴퓨팅 디바이스들의 조합, 예를 들어, DSP와 마이크로프로세서의 조합, 복수의 마이크로프로세서, DSP 코어와 결합한 하나 이상의 마이크로프로세서, 또는 임의의 다른 그러한 구성으로서 구현될 수도 있다. 일부 구현들에서, 주어진 기능에 특정한 회로에 의해 특정의 프로세스들 및 방법들이 수행될 수 있다.
하나 이상의 양태들에서, 기술된 기능들은 본 명세서에서 개시된 구조들 및 그 구조상 등가물들을 포함하여, 하드웨어, 디지털 전자 회로, 컴퓨터 소프트웨어, 펌웨어에서, 또는 그의 임의의 조합에서 구현될 수 있다. 이 명세서에서 기술된 내용의 구현들은 또한 하나 이상의 컴퓨터 프로그램들, 즉, 데이터 처리 장치에 의한 실행을 위해, 또는 데이터 처리 장치의 동작을 제어하기 위해 컴퓨터 저장 매체 상에 인코딩된, 컴퓨터 프로그램 명령들의 하나 이상의 모듈들로서 구현될 수 있다.
본 명세서에 개시된 구현들과 관련하여 기술된 다양한 예시적인 로직들, 논리 블록들, 모듈들, 회로들 및 알고리즘 단계들은 전자 하드웨어, 컴퓨터 소프트웨어, 또는 이들의 조합으로 구현될 수 있다. 하드웨어와 소프트웨어의 호환성이, 기능 면에서, 일반적으로 기술되었고, 전술한 다양한 예시적인 컴포넌트들, 블록들, 모듈들, 회로들 및 단계들에서 예시되었다. 그러한 기능이 하드웨어에서 구현되는지 소프트웨어에서 구현되는지는 전체 시스템에 부과된 특정의 애플리케이션 및 설계 제한들에 의존한다.
본 명세서에 개시된 양태들과 관련하여 기술된 다양한 예시적인 로직들, 논리 블록들, 모듈들 및 회로들을 구현하는 데 사용되는 하드웨어 및 데이터 프로세싱 장치는 본 명세서에 기술된 기능들을 수행하도록 설계된 범용 단일 또는 멀티칩 프로세서, 디지털 신호 프로세서 (DSP), ASIC (application specific integrated circuit), FPGA (field programmable gate array) 또는 기타 PLD (programmable logic device), 개별 게이트 또는 트랜지스터 로직, 개별 하드웨어 컴포넌트들, 또는 이들의 조합을 이용하여 구현되거나 수행될 수 있다. 범용 프로세서는 마이크로프로세서, 또는 임의의 종래의 프로세서, 컨트롤러, 마이크로컨트롤러, 또는 상태 기계일 수 있다. 프로세서는 또한 컴퓨팅 디바이스들의 조합, 예를 들어, DSP와 마이크로프로세서의 조합, 복수의 마이크로프로세서, DSP 코어와 결합한 하나 이상의 마이크로프로세서, 또는 임의의 다른 그러한 구성으로서 구현될 수도 있다. 일부 구현들에서, 주어진 기능에 특정한 회로에 의해 특정의 프로세스들 및 방법들이 수행될 수 있다.
하나 이상의 양태들에서, 기술된 기능들은 본 명세서에서 개시된 구조들 및 그 구조상 등가물들을 포함하여, 하드웨어, 디지털 전자 회로, 컴퓨터 소프트웨어, 펌웨어에서, 또는 그의 임의의 조합에서 구현될 수 있다. 이 명세서에서 기술된 내용의 구현들은 또한 하나 이상의 컴퓨터 프로그램들, 즉, 데이터 처리 장치에 의한 실행을 위해, 또는 데이터 처리 장치의 동작을 제어하기 위해 컴퓨터 저장 매체 상에 인코딩된, 컴퓨터 프로그램 명령들의 하나 이상의 모듈들로서 구현될 수 있다.
소프트웨어로 구현되면, 그 기능들은 컴퓨터 판독가능 매체 상에 하나 이상의 명령들 또는 코드로서 저장되거나 송신될 수도 있다. 여기에 개시된 알고리즘 또는 방법의 프로세스들은 컴퓨터 판독가능 매체 상에 상주할 수도 있는, 프로세서 실행가능 소프트웨어 모듈로 구현될 수도 있다. 컴퓨터 판독가능 매체는 컴퓨터 프로그램을 하나의 장소에서 다른 장소로 전달하는 것이 가능할 수 있는 임의의 매체를 포함하는 통신 매체 및 컴퓨터 저장 매체 양자를 포함한다. 저장 매체는 컴퓨터에 의해 액세스될 수도 있는 임의의 사용가능한 매체일 수도 있다. 제한되지 않는 예로서, 이러한 컴퓨터 판독가능 매체는 RAM, ROM, EEPROM, CD-ROM 또는 다른 광 디스크 저장부, 자기 디스크 저장부 또는 다른 자기 저장 디바이스들, 또는 명령 또는 데이터 구조의 형태로 요구되는 프로그램 코드를 저장하기 위해 이용될 수도 있고 컴퓨터에 의해 액세스될 수도 있는 임의의 다른 매체를 포함할 수도 있다. 또한, 임의의 결합체가 컴퓨터 판독가능 매체로서 적절히 지칭될 수 있다. 여기에 사용된 바와 같이, 디스크 (disk) 및 디스크 (disc) 는 컴팩트 디스크 (CD), 레이저 디스크, 광 디스크, DVD (digital versatile disc), 플로피 디스크 및 블루레이 디스크를 포함하며, 여기서, 디스크 (disk) 는 일반적으로 데이터를 자기적으로 재생하지만, 디스크 (disc) 는 레이저로 데이터를 광학적으로 재생한다. 상기의 조합들이 또한 컴퓨터 판독가능 매체의 범위 내에 포함되어야 한다. 부가적으로, 방법 또는 알고리즘의 동작들은 컴퓨터 프로그램 제품에 통합될 수도 있는 머신 판독가능 매체 및/또는 컴퓨터 판독가능 매체 상에 명령들 및/또는 코드들 중 하나 또는 임의의 조합 또는 세트로서 상주할 수도 있다.
본 명세서에서 기술된 구현들에 대한 다양한 수정들이 당업자들에게 명백할 수 있고, 본 명세서에서 정의된 일반 원리들은 이 개시 내용의 사상 및 범위에서 벗어나지 않고 다른 구현들에 적용될 수 있다. 따라서, 이 개시 내용은 본 명세서에서 도시된 구현들에 제한되어서는 안 되고, 본 명세서에 개시된 청구항들, 원리들 및 새로운 특징들과 일치하는 가장 넓은 범위가 부여되어야 한다. "예시적인"이라는 용어는 오로지 본 명세서에서만 "일 예, 예시, 또는 예증으로서 제공되는"을 의미하도록 사용된다. 본 명세서에서 "예시적인"으로서 기술된 어떤 구현이라도 반드시 다른 구현들에 비하여 선호되거나 유리한 것으로 간주되어서는 안 된다. 또한, 당업자는 "상부" 및 "하부" 라는 용어들은 때때로 도면의 설명을 용이하게 하기 위해 이용되고, 적절히 배향된 페이지 상의 도면의 배향에 대응하는 상대적 위치들을 나타내며, 이는 구현된 것과 같이 IMOD (또는 다른 디바이스) 의 적절한 배향을 반영하지 않을 수 있다는 것을 곧 알 것이다.
개별 구현들에 관련하여 이 명세서에서 기술되어 있는 소정의 특징들이 단일 구현에서 조합으로 구현될 수도 있다. 반대로, 단일 구현에 관련하여 기술되어 있는 다양한 특징들이 다수의 구현들에서 개별적으로 또는 임의의 적당한 부분 조합으로 구현될 수도 있다. 또한, 특징들이 위에서는 소정의 조합으로 작용하는 것으로 기술되고 심지어 처음에는 그와 같이 청구될 수 있지만, 청구된 조합으로부터의 하나 이상의 특징들이 일부 경우에는 그 조합으로부터 삭제될 수 있고, 청구된 조합은 부분 조합 또는 부분 조합의 변형으로 지향될 수 있다.
유사하게, 동작들이 도면들에서는 특정 순서로 도시될지라도, 이것은 그러한 동작들이 도시된 특정 순서로 또는 순차적 순서로 수행되거나, 바람직한 결과들을 달성하기 위해 모든 예시된 동작들이 수행될 것을 요구하는 것으로 이해되어서는 안 된다. 추가로, 도면들은 흐름도의 형태로 하나 이상의 예시적인 프로세스들을 개략적으로 도시할 수도 있다. 그러나, 도시되지 않은 다른 동작들은 개략적으로 도시된 예시적인 프로세스들에 통합될 수 있다. 예를 들어, 하나 이상의 추가 동작들은 예시된 동작들 중 임의의 동작 이전, 이후, 동시 또는 그 사이에 수행될 수 있다. 어떤 상황에서는, 멀티태스킹 및 병렬 처리가 유리할 수 있다. 또한, 전술한 구현들에서 다양한 시스템 컴포넌트들의 분리는 모든 구현들에서 그러한 분리를 요구하는 것으로 이해되어서는 안 되고, 기술된 프로그램 컴포넌트들 및 시스템들은 일반적으로 단일 소프트웨어 제품에 함께 통합되거나 다수의 소프트웨어 제품들로 패키징될 수 있다는 것을 이해해야 한다. 또한, 다른 구현들이 다음의 청구항들의 범위 내에 있다. 일부 경우에, 청구항들에서 언급된 동작들은 상이한 순서로 수행되고도 바람직한 결과들을 달성할 수 있다.

Claims (50)

  1. 제 1 면에서 연장하는 기판;
    상기 기판상의 제 1 축을 따라 형성된 제 1 복수의 전극들;
    상기 기판상의 제 2 축을 따라 형성된 제 2 복수의 전극들;
    상기 기판에 부착된 제 1 앵커;
    상기 제 1 앵커에 부착되고 제 2 면에서 연장하는 프레임으로서, 상기 프레임은 상기 제 2 축을 따르는 모션에 대해 제한되는, 상기 프레임; 및
    상기 프레임에 부착되고 상기 제 2 면에서 연장하는 제 1 검사 질량체를 포함하며,
    상기 제 1 검사 질량체는 상기 제 1 축을 따라 연장하는 제 1 복수의 슬롯들 및 상기 제 2 축을 따라 연장하는 제 2 복수의 슬롯들을 가지고, 상기 제 1 검사 질량체는 상기 제 1 축을 따르고 상기 제 2 축을 따르는 모션에 대해 제한되며,
    상기 제 1 축을 따라 적용된 측면 가속도에 응답한 상기 제 1 검사 질량체의 측면 움직임은 상기 제 2 복수의 전극들에서의 캐패시턴스의 제 1 변화를 발생하고,
    상기 제 2 축을 따라 적용된 측면 가속도에 응답한 상기 제 1 검사 질량체의 측면 움직임은 상기 제 1 복수의 전극들에서의 캐패시턴스의 제 2 변화를 발생하며, 그리고
    상기 제 1 및 제 2 의 복수의 전극들은 상기 제 1 면과 상기 제 2 면 사이에 배치된 제 3 면에 형성되고, 상기 제 3 면은 갭에 의해 상기 제 2 면으로부터 분리되는, 장치.
  2. 제 1 항에 있어서,
    상기 제 1 검사 질량체를 상기 프레임에 커플링하는 제 1 플렉셔들을 더 포함하고,
    상기 제 1 플렉셔들은 상기 프레임으로 하여금 상기 제 1 축을 따라 이동하게 하지 않고 상기 제 1 검사 질량체가 상기 제 1 축을 따라 이동하게 하는, 장치.
  3. 제 1 항에 있어서,
    상기 프레임을 상기 제 1 앵커에 커플링하는 제 2 플렉셔들을 더 포함하고,
    상기 제 2 플렉셔들은 상기 제 1 검사 질량체 및 상기 프레임이 상기 제 2 축을 따라 함께 이동하게 하는, 장치.
  4. 제 1 항에 있어서,
    상기 프레임은 상기 제 1 앵커를 둘러싸고, 상기 제 1 검사 질량체는 상기 프레임을 둘러싸는, 장치.
  5. 제 1 항에 있어서,
    하나 이상의 슬롯들이 상기 제 1 검사 질량체를 통해 오직 부분적으로 연장하는, 장치.
  6. 제 1 항에 있어서,
    상기 제 1 검사 질량체와 상기 프레임 중 적어도 하나는 적어도 부분적으로 금속으로 형성되는, 장치.
  7. 제 1 항에 있어서,
    상기 제 1 검사 질량체에 커플링된 부수 질량체; 및
    상기 기판상의 제 3 전극과 제 4 전극을 더 포함하며,
    상기 부수 질량체와 상기 제 3 및 제 4 전극들 사이의 캐패시턴스는 상기 제 1 검사 질량체에 적용된 법선 가속도에 응답하여 변화하는, 장치.
  8. 제 1 항에 있어서,
    상기 기판상에 형성된 제 2 앵커;
    상기 제 2 앵커에 부착된 플렉셔로서, 상기 플렉셔 및 상기 제 2 앵커는 피봇을 형성하는, 상기 플렉셔;
    상기 기판상에 형성된 제 3 전극;
    상기 기판상에 형성된 제 4 전극;
    상기 제 3 전극에 근접한 제 1 측면 및 상기 제 4 전극에 근접한 제 2 측면을 갖는 제 2 검사 질량체를 더 포함하고,
    상기 제 2 검사 질량체는 상기 피봇에 인접하게 배치되고, 상기 제 2 검사 질량체는 상기 피봇 주위의 회전을 위해 커플링되고 구성되며, 상기 회전은 상기 제 3 전극에서의 캐패시턴스의 제 3 변화 및 상기 제 4 전극에서의 캐패시턴스의 제 4 변화를 발생하는, 장치.
  9. 제 8 항에 있어서,
    상기 제 2 검사 질량체의 질량 중심은 상기 피봇으로부터 오프셋되는, 장치.
  10. 제 1 항 내지 제 9 항 중 어느 한 항에 있어서,
    제 1 드라이브 프레임;
    제 1 중앙 앵커;
    상기 제 1 중앙 앵커의 대향하는 측면들 상에 배치된 복수의 제 1 드라이브 빔들로서, 상기 제 1 드라이브 빔들은 상기 제 1 드라이브 프레임을 상기 제 1 중앙 앵커에 연결하고, 상기 제 1 드라이브 빔들 각각은 압전층을 포함하고 상기 제 1 드라이브 프레임으로 하여금 상기 제 1 드라이브 빔들의 일 면에서 비틀림 진동하게 하도록 구성되는, 상기 복수의 제 1 드라이브 빔들;
    제 3 검사 질량체; 및
    압전 감지 전극들의 층을 포함하는 복수의 제 1 감지 빔들을 더 포함하며,
    상기 제 1 감지 빔들은 상기 제 1 드라이브 프레임을 상기 제 3 검사 질량체에 연결하기 위해 구성되고, 상기 제 1 감지 빔들은 적용된 각회전에 응답하여 상기 제 1 드라이브 빔들의 상기 면에 수직하는 감지 평면에서 벤딩하도록 구성되어 상기 압전 감지 전극들에서 압전 전하를 발생하는, 장치.
  11. 제 10 항에 있어서,
    상기 복수의 제 1 드라이브 빔들은 상기 제 1 드라이브 빔들의 상기 면에서 회전하도록 상기 제 1 드라이브 프레임을 제한하도록 추가로 구성되는, 장치.
  12. 제 10 항에 있어서,
    상기 복수의 제 1 드라이브 빔들은 상기 제 1 중앙 앵커의 제 1 측면상에 배치된 제 1 드라이브 빔들의 제 1 쌍 및 상기 제 1 중앙 앵커의 대향하는 측면 상에 배치된 제 1 드라이브 빔들의 제 2 쌍을 포함하는, 장치.
  13. 제 10 항에 있어서,
    상기 제 1 드라이브 프레임은 상기 제 3 검사 질량체 내에 배치되는, 장치.
  14. 제 10 항에 있어서,
    상기 제 1 감지 빔들은 상기 제 3 검사 질량체의 감지 모션을 응답하여 상기 감지 평면에서 벤딩하도록 구성되는, 장치.
  15. 제 10 항에 있어서,
    상기 제 1 감지 빔들은 앵커로부터의 거리가 증가할 때 감소하는 폭을 가지는 테이퍼된 감지 빔들인, 장치.
  16. 제 1 항 내지 제 9 항 중 어느 한 항에 있어서,
    제 1 감지 프레임;
    상기 제 1 감지 프레임 외부에 배치된 제 4 검사 질량체;
    한 쌍의 앵커들;
    상기 제 1 감지 프레임의 대향하는 측면들 상에 및 상기 한 쌍의 앵커들 사이에 배치된 복수의 제 2 드라이브 빔들로서, 상기 제 2 드라이브 빔들은 상기 제 1 감지 프레임을 상기 제 4 검사 질량체에 연결하고, 상기 제 2 드라이브 빔들 각각은 압전층을 포함하고 상기 제 4 검사 질량체의 드라이브 모션들을 발생하도록 구성되며, 상기 드라이브 모션들은 상기 제 2 드라이브 빔들의 제 1 면에서의 비틀림 진동들인, 상기 복수의 제 2 드라이브 빔들; 및
    상기 제 1 감지 프레임을 상기 한 쌍의 앵커들에 연결하는 복수의 제 2 감지 빔들을 더 포함하며,
    상기 제 2 감지 빔들 각각은 상기 장치에 적용된 각회전에 응답하여 압전 전하를 생성하도록 구성된 압전 감지 전극들의 층을 포함하고,
    상기 제 1 감지 프레임은 상기 제 4 검사 질량체의 상기 드라이브 모션들로부터 디커플링되는, 장치.
  17. 제 16 항에 있어서,
    상기 제 4 검사 질량체와 상기 제 1 감지 프레임은 상기 장치가 감지 모드에서 동작하고 있는 경우 상기 적용된 각회전에 응답하여 상기 제 1 면 외부에서 함께 비틀림 진동하는, 장치.
  18. 제 16 항에 있어서,
    상기 제 2 감지 빔들은 테이퍼된 감지 빔들인, 장치.
  19. 제 16 항에 있어서,
    상기 장치가 감지 모드에서 동작하고 있는 경우에 제 4 검사 질량체 감지 모션의 상기 제 1 감지 프레임으로의 전달을 증가시키도록 구성된 링크 빔들을 더 포함하는, 장치.
  20. 제 16 항에 있어서,
    상기 제 1 감지 프레임은 앵커 근처의 제 1 단부에서 더 넓고 상기 앵커로부터 떨어진 제 2 단부에서 더 좁은 테이퍼링 부분들을 포함하는, 장치.
  21. 제 16 항에 있어서,
    상기 제 2 드라이브 빔들은 상기 제 1 면에 적용된 면 내 응력들에 순응하지만 면 외 응력들에는 반발하는, 장치.
  22. 제 16 항에 있어서,
    상기 제 4 검사 질량체 및 상기 제 1 감지 프레임 중 적어도 하나는 적어도 부분적으로 도금된 금속으로 형성되는, 장치.
  23. 제 16 항에 있어서,
    상기 제 2 드라이브 빔들은 상이한 압전 드라이브를 통해 드라이브 진동들을 생성하도록 구성되는, 장치.
  24. 제 20 항에 있어서,
    상기 장치가 감지 모드에서 동작하고 있는 경우에 제 4 검사 질량체 감지 모션의 상기 제 1 감지 프레임으로의 전달을 증가시키도록 구성된 링크 빔들을 더 포함하며, 상기 링크 빔들은 상기 테이퍼링 부분들의 제 2 단부들 근처에서 상기 제 1 감지 프레임에 연결되는, 장치.
  25. 제 1 항 내지 제 9 항 중 어느 한 항에 있어서,
    제 2 중앙 앵커;
    상기 제 2 중앙 앵커 주위에 배치된 제 2 감지 프레임;
    복수의 제 3 감지 빔들로서, 상기 제 3 감지 빔들 각각은 압전 감지 전극들의 층을 포함하고, 상기 제 3 감지 빔들은 상기 제 2 감지 프레임을 상기 제 2 중앙 앵커에 연결하기 위해 구성된, 상기 복수의 제 3 감지 빔들;
    상기 제 2 감지 프레임 주위에 배치되고 상기 제 2 감지 프레임에 커플링된 제 2 드라이브 프레임으로서, 상기 제 2 드라이브 프레임은 제 1 측면 및 제 2 측면을 포함하는, 상기 제 2 드라이브 프레임;
    상기 제 2 감지 프레임의 대향하는 측면들 상에 배치된 복수의 압전 제 3 드라이브 빔들로서, 상기 제 3 드라이브 빔들은 상기 제 2 드라이브 프레임의 상기 제 1 측면을 상기 제 2 드라이브 프레임의 면에서 제 3 축을 따라 제 1 방향으로 구동하도록 구성되고, 상기 제 3 드라이브 빔들은 상기 제 2 드라이브 프레임의 상기 제 2 측면을 상기 제 3 축을 따라 제 2 의 대향하는 방향으로 구동하도록 추가로 구성되는, 상기 복수의 압전 제 3 드라이브 빔들;
    상기 제 2 드라이브 프레임의 드라이브 모션을 상기 제 3 축을 따른 선형의 변위의 드라이브 모션으로 제한하도록 구성된 제 2 드라이브 프레임 서스펜션; 및
    상기 제 3 축에 직교하는 제 4 축 주위의 회전에 순응하도록 구성된 제 2 감지 프레임 서스펜션을 더 포함하며,
    상기 제 2 감지 프레임 서스펜션은 상기 제 1 축을 따를 병진 모션에 저항하도록 구성되는, 장치.
  26. 제 25 항에 있어서,
    상기 제 2 감지 프레임은 상기 제 2 드라이브 프레임의 드라이브 모션들로부터 디커플링되는, 장치.
  27. 제 25 항에 있어서,
    상기 제 2 드라이브 프레임 서스펜션은 상기 제 2 감지 프레임을 상기 제 2 드라이브 프레임에 커플링하기 위해 구성된 복수의 플렉셔들을 포함하는, 장치.
  28. 제 25 항에 있어서,
    상기 복수의 제 3 감지 빔들은 상기 제 1 축을 따라 상기 제 2 중앙 앵커의 제 1 측면으로부터 연장하는 감지 빔들의 제 1 쌍 및 상기 제 3 축에 수직하는 제 2 축을 따라 상기 제 2 중앙 앵커의 제 2 측면으로부터 연장하는 제 3 감지 빔들의 제 2 쌍을 포함하고,
    상기 제 2 중앙 앵커의 상기 제 2 측면은 상기 제 2 중앙 앵커의 상기 제 1 측면에 인접하는, 장치.
  29. 제 1 항 내지 제 9 항 중 어느 한 항에 있어서,
    상기 장치는 가속도계 및 자이로스코프 중 적어도 하나를 포함하고,
    디스플레이;
    상기 디스플레이 및 상기 가속도계와 상기 자이로스코프 중 적어도 하나와 통신하도록 구성된 프로세서로서, 상기 프로세서는 이미지 데이터를 처리하도록 구성된, 상기 프로세서; 및
    상기 프로세서와 통신하도록 구성된 메모리 디바이스를 더 포함하는, 장치.
  30. 제 29 항에 있어서,
    적어도 하나의 신호를 상기 디스플레이에 송신하도록 구성된 드라이버 회로; 및
    상기 이미지 데이터의 적어도 일 부분을 상기 드라이버 회로에 송신하도록 구성된 제어기를 더 포함하는, 장치.
  31. 제 29 항에 있어서,
    상기 이미지 데이터를 상기 프로세서에 송신하도록 구성된 이미지 소스 모듈을 더 포함하는, 장치.
  32. 제 31 항에 있어서,
    상기 이미지 소스 모듈은 수신기, 트랜시버 및 송신기 중 적어도 하나를 포함하는, 장치.
  33. 제 29 항에 있어서,
    입력 데이터를 수신하고 상기 입력 데이터를 상기 프로세서에 통신하도록 구성된 입력 디바이스를 더 포함하는, 장치.
  34. 제 29 항에 있어서,
    상기 프로세서는 상기 가속도계로부터 수신된 가속도계 데이터와 상기 자이로스코프로부터 수신된 자이로스코프 데이터 중 적어도 하나를 처리하고 분석하도록 구성된, 장치.
  35. 제 34 항에 있어서,
    상기 프로세서는 상기 가속도계로부터 수신된 가속도계 데이터와 상기 자이로스코프로부터 수신된 자이로스코프 데이터 중 적어도 하나에 따라 상기 디스플레이의 상태를 제어하도록 구성된, 장치.
  36. 제 34 항에 있어서,
    상기 장치는 모바일 디바이스를 포함하고,
    상기 프로세서는 상기 가속도계 데이터가 상기 모바일 디바이스가 드롭된 것을 나타내는지 여부를 결정하도록 구성되는, 장치.
  37. 제 36 항에 있어서,
    상기 프로세서는 상기 가속도계 데이터가 상기 모바일 디바이스가 드롭된 것을 나타낼 경우에 손상을 방지하도록 상기 디스플레이를 제어하도록 구성되는, 장치.
  38. 제 35 항에 있어서,
    상기 프로세서는 상기 가속도계 데이터 및 상기 자이로스코프 데이터 중 적어도 하나에 따라 게임의 디스플레이를 제어하도록 구성되는, 장치.
  39. 제 36 항에 있어서,
    상기 프로세서는 상기 가속도계 데이터가 상기 모바일 디바이스가 드롭된 것을 나타낼 경우에 상기 가속도계 데이터를 메모리에 저장하도록 추가로 구성되는, 장치.
  40. 제 36 항에 있어서,
    네트워크 인터페이스를 더 포함하고,
    상기 프로세서는 상기 네트워크 인터페이스를 통해 시간 서버로부터 시간 데이터를 획득하도록 추가로 구성되며,
    상기 프로세서는 상기 가속도계 데이터가 상기 모바일 디바이스가 드롭된 것을 나타낼 경우에 상기 가속도계 데이터와 연관된 시간 데이터를 저장하도록 추가로 구성되는, 장치.
  41. 제 1 면에서 연장하는 기판 수단;
    상기 기판 수단 상의 제 1 축을 따라 형성된 제 1 복수의 전극 수단들;
    상기 기판 수단 상의 제 2 축을 따라 형성된 제 2 복수의 전극 수단들;
    상기 기판 수단에 부착된 제 1 앵커 수단;
    상기 제 1 앵커 수단에 부착되고 제 2 면에서 연장하는 프레임 수단으로서, 상기 프레임 수단은 상기 제 2 축을 따르는 모션에 대해 제한되는, 상기 프레임 수단; 및
    상기 제 2 복수의 전극 수단들에서의 캐패시턴스의 제 1 변화를 발생함으로써 상기 제 1 축을 따라 적용된 측면 가속도에 응답하고, 상기 제 1 복수의 전극 수단들에서의 캐패시턴스의 제 2 변화를 발생함으로써 상기 제 2 축을 따라 적용된 측면 가속도에 응답하는 제 1 검사 질량체 수단을 포함하고,
    상기 제 1 검사 질량체 수단은 상기 프레임 수단에 부착되고 상기 제 2 면에서 연장하며, 상기 제 1 검사 질량체 수단은 상기 제 1 축을 따라 연장하는 제 1 복수의 슬롯들 및 상기 제 2 축을 따라 연장하는 제 2 복수의 슬롯들을 가지고, 상기 제 1 검사 질량체 수단은 상기 제 1 축을 따르고 상기 제 2 축을 따르는 모션에 대해 제한되며, 그리고
    상기 제 1 및 제 2 의 복수의 전극 수단들은 상기 제 1 면과 상기 제 2 면 사이에 배치된 제 3 면에 형성되고, 상기 제 3 면은 갭에 의해 상기 제 2 면으로부터 분리되는, 장치.
  42. 제 41 항에 있어서,
    상기 기판 수단 상에 형성된 제 2 앵커 수단;
    상기 제 2 앵커 수단에 부착된 플렉셔 수단으로서, 상기 플렉셔 수단 및 상기 제 2 앵커 수단은 피봇 수단을 형성하는, 상기 플렉셔 수단;
    기판상에 형성된 제 3 전극 수단;
    상기 기판상에 형성된 제 4 전극 수단; 및
    상기 피봇 수단 주위의 회전을 위한 제 2 검사 질량체 수단을 더 포함하며,
    상기 회전은 상기 제 3 전극 수단에서의 캐패시턴스의 제 3 변화 및 상기 제 4 전극 수단에서의 캐패시턴스의 제 4 변화를 발생하고, 상기 제 2 검사 질량체 수단은 상기 제 3 전극 수단에 근접한 제 1 측면 및 상기 제 4 전극 수단에 근접한 제 2 측면을 가지는, 장치.
  43. 제 41 항에 있어서,
    제 1 드라이브 프레임 수단;
    제 1 중앙 앵커 수단;
    상기 제 1 드라이브 프레임 수단을 상기 제 1 중앙 앵커 수단에 연결하는 복수의 제 1 드라이브 빔 수단들로서, 상기 제 1 드라이브 빔 수단들은 상기 제 1 중앙 앵커 수단의 대향하는 측면들 상에 배치되고, 상기 제 1 드라이브 빔 수단들 각각은 압전층을 포함하고 상기 제 1 드라이브 프레임 수단으로 하여금 상기 제 1 드라이브 빔 수단들의 일 면에서 비틀림 진동하게 하도록 구성되는, 상기 복수의 제 1 드라이브 빔 수단들;
    제 3 검사 질량체 수단; 및
    상기 제 1 드라이브 프레임 수단을 제 1 감지 빔 수단에 연결하고 적용된 각회전에 응답하여 상기 제 1 드라이브 빔 수단들의 상기 면과 수직하는 감지 평면에서 벤딩하는 복수의 제 1 감지 빔 수단들을 더 포함하며,
    상기 제 3 검사 질량체 수단은 압전 감지 전극들의 층을 포함하고, 상기 벤딩은 상기 압전 감지 전극들에서 압전 전하를 발생하는, 장치.
  44. 제 41 항 내지 제 43 항 중 어느 한 항에 있어서,
    제 1 감지 프레임 수단;
    상기 제 1 감지 프레임 수단 외부에 배치된 제 4 검사 질량체 수단;
    쌍을 이룬 앵커 수단;
    상기 제 1 감지 프레임 수단을 상기 제 4 검사 질량체 수단에 연결하고, 제 4 검사 질량체의 드라이브 모션들을 발생하는 제 2 드라이브 빔 수단으로서, 상기 드라이브 모션들은 상기 제 2 드라이브 빔 수단의 제 1 면에서의 비틀림 진동들이고, 상기 제 2 드라이브 빔 수단은 상기 제 1 감지 프레임 수단의 대향하는 측면들 상에 및 상기 쌍을 이룬 앵커 수단 사이에 배치되는, 상기 제 2 드라이브 빔 수단; 및
    상기 제 1 감지 프레임 수단을 상기 쌍을 이룬 앵커 수단에 연결하고, 상기 장치에 적용된 각회전에 응답하여 압전 전하를 생성하는 복수의 제 2 감지 빔 수단을 더 포함하고,
    상기 제 1 감지 프레임 수단은 상기 제 4 검사 질량체 수단의 상기 드라이브 모션들로부터 디커플링되는, 장치.
  45. 제 41 항 내지 제 43 항 중 어느 한 항에 있어서,
    제 2 중앙 앵커 수단;
    상기 제 2 중앙 앵커 수단 주위에 배치된 제 2 감지 프레임 수단;
    제 2 감지 프레임을 제 2 중앙 앵커에 연결하는 제 3 감지 빔 수단;
    상기 제 2 감지 프레임 수단 주위에 배치되고 상기 제 2 감지 프레임 수단에 커플링된 제 2 드라이브 프레임 수단으로서, 상기 제 2 드라이브 프레임 수단은 제 1 측면 및 제 2 측면을 포함하는, 상기 제 2 드라이브 프레임 수단;
    제 2 드라이브 프레임의 상기 제 1 측면을 상기 제 2 드라이브 프레임의 면에서 제 3 축을 따라 제 1 방향으로 구동하고, 상기 제 2 드라이브 프레임의 상기 제 2 측면을 상기 제 3 축을 따라 제 2 의 대향하는 방향으로 구동하는 제 3 드라이브 빔 수단으로서, 상기 제 3 드라이브 빔 수단은 상기 제 2 감지 프레임 수단의 대향하는 측면들 상에 배치되는, 상기 제 3 드라이브 빔 수단;
    상기 제 2 드라이브 프레임 수단의 드라이브 모션을 상기 제 3 축을 따른 선형의 변위의 드라이브 모션으로 제한하는 제 2 드라이브 프레임 서스펜션 수단; 및
    상기 제 1 축을 따른 병진 모션에 저항하고 상기 제 3 축에 직교하는 제 4 축 주위의 회전에 순응하는 제 2 감지 프레임 서스펜션 수단을 더 포함하는, 장치.
  46. 제 1 면에서 연장하는 기판상에,
    제 1 축을 따르는 제 1 복수의 전극들,
    제 2 축을 따르는 제 2 복수의 전극들, 및
    제 1 앵커
    를 형성하는 단계; 및
    제 2 면에서 연장하는 프레임 및 제 1 검사 질량체를 형성하는 단계를 포함하며,
    상기 제 1 및 제 2 의 복수의 전극들은 상기 제 1 면과 상기 제 2 면 사이에 배치된 제 3 면에 형성되고, 상기 제 3 면은 갭에 의해 상기 제 2 면으로부터 분리되고,
    상기 제 1 검사 질량체를 형성하는 공정은,
    상기 제 1 축을 따라 연장하는 제 1 복수의 슬롯들을 상기 제 1 검사 질량체에 형성하는 단계, 및
    상기 제 2 축을 따라 연장하는 제 2 복수의 슬롯들을 상기 제 1 검사 질량체에 형성하는 단계를 포함하고,
    상기 프레임을 형성하는 공정은,
    상기 제 1 검사 질량체를 상기 프레임에 부착하고, 상기 프레임으로 하여금 상기 제 1 축을 따라 이동하게 하지 않고 상기 제 1 검사 질량체가 상기 제 1 축을 따라 이동하게 하도록 구성된 제 1 플렉셔들을 형성하는 단계, 및
    상기 제 2 축을 따른 모션에 대해 상기 프레임을 제한하고, 상기 제 1 검사 질량체와 상기 프레임이 상기 제 2 축을 따라 함께 이동하게 하기 위해, 상기 프레임을 상기 제 1 앵커에 부착하도록 구성된 제 2 플렉셔들을 형성하는 단계를 포함하는, 방법.
  47. 제 46 항에 있어서,
    상기 기판상에 피봇을 형성하는 단계;
    상기 기판상에 제 3 전극 및 제 4 전극을 형성하는 단계; 및
    상기 피봇에 인접하고 상기 피봇 주위의 회전을 위해 구성된 제 2 검사 질량체를 형성하는 단계를 더 포함하는, 방법.
  48. 제 47 항에 있어서,
    상기 기판상에 라우팅 전극들을 성막하는 단계;
    상기 기판상에 제 1 중앙 앵커를 형성하는 단계;
    상기 제 1 중앙 앵커상에 제 1 드라이브 프레임을 형성하는 단계;
    상기 제 1 중앙 앵커의 대향하는 측면들 상에 제 1 드라이브 빔들의 쌍들을 형성하는 단계로서, 상기 제 1 드라이브 빔들은 상기 제 1 드라이브 프레임을 상기 제 1 중앙 앵커에 연결하고, 상기 제 1 드라이브 빔들은 상기 제 1 드라이브 빔들의 면에서 회전하도록 상기 제 1 드라이브 프레임을 제한하도록 구성되는, 상기 제 1 드라이브 빔들의 쌍들을 형성하는 단계;
    상기 제 1 드라이브 프레임 주위에 제 3 검사 질량체를 형성하는 단계; 및
    상기 제 1 드라이브 프레임을 상기 제 3 검사 질량체에 연결하는 복수의 제 1 감지 빔들을 형성하는 단계를 더 포함하며,
    상기 제 1 감지 빔들은 적용된 각회전에 응답하여 상기 제 1 드라이브 빔들의 상기 면에 수직하는 감지 평면에서 상기 제 3 검사 질량체의 감지 모션들을 허용하도록 구성되고, 상기 제 1 감지 빔들은 상기 제 3 검사 질량체 수단의 감지 모션들을 상기 제 1 드라이브 프레임의 모션들로부터 디커플링하도록 구성되며,
    상기 제 1 드라이브 빔들을 형성하는 단계는,
    상기 라우팅 전극들과 접촉하는 제 1 금속층을 성막하는 단계,
    상기 제 1 금속층 상에 압전층을 성막하는 단계,
    상기 압전층 상에 제 2 금속층을 성막하는 단계, 및
    상기 제 2 금속층 상에 제 3 금속층을 전기도금하는 단계를 포함하는, 방법.
  49. 제 48 항에 있어서,
    제 1 감지 프레임을 형성하는 단계;
    상기 제 1 감지 프레임 외부에 배치된 제 4 검사 질량체를 형성하는 단계;
    상기 기판상에 한 쌍의 앵커들을 형성하는 단계;
    상기 제 1 감지 프레임의 대향하는 측면들 상에 및 상기 한 쌍의 앵커들 사이에 배치된 복수의 제 2 드라이브 빔들을 형성하는 단계로서, 상기 제 2 드라이브 빔들은 상기 제 1 감지 프레임을 상기 제 4 검사 질량체에 연결하고, 상기 제 2 드라이브 빔들 각각은 압전층을 포함하고 상기 제 4 검사 질량체의 드라이브 모션들을 발생하도록 구성되는, 상기 복수의 제 2 드라이브 빔들을 형성하는 단계; 및
    압전 감지 전극들의 층을 포함하는 복수의 제 2 감지 빔들을 형성하는 단계를 더 포함하며,
    상기 제 2 감지 빔들은 상기 제 1 감지 프레임을 상기 한 쌍의 앵커들에 연결하도록 구성되고,
    상기 제 1 감지 프레임은 상기 검사 질량체의 상기 드라이브 모션들로부터 디커플링되며, 그리고
    상기 복수의 제 2 드라이브 빔들은 상기 제 1 금속층, 상기 압전층, 상기 제 2 금속층 및 상기 제 3 금속층으로 형성되는, 방법.
  50. 제 49 항에 있어서,
    상기 기판상에 제 2 중앙 앵커를 형성하는 단계;
    상기 제 2 중앙 앵커 주위에 배치된 제 2 감지 프레임을 형성하는 단계;
    복수의 제 3 감지 빔들을 형성하는 단계로서, 상기 제 3 감지 빔들 각각은 압전 감지 전극들의 층을 포함하고, 상기 제 3 감지 빔들은 상기 제 2 감지 프레임을 상기 제 2 중앙 앵커에 연결하도록 구성된, 상기 복수의 제 3 감지 빔들을 형성하는 단계;
    상기 제 2 감지 프레임 주위에 배치되고 상기 제 2 감지 프레임에 커플링된 제 2 드라이브 프레임을 형성하는 단계로서, 상기 제 2 드라이브 프레임은 제 1 측면 및 제 2 측면을 포함하는, 상기 제 2 드라이브 프레임을 형성하는 단계;
    상기 제 2 감지 프레임의 대향하는 측면들 상에 배치된 복수의 압전 제 3 드라이브 빔들을 형성하는 단계로서, 상기 제 3 드라이브 빔들은 상기 제 2 드라이브 프레임의 상기 제 1 측면을 상기 제 2 드라이브 프레임의 면에서 제 1 축을 따라 제 1 방향으로 구동하도록 구성되고, 상기 제 3 드라이브 빔들은 상기 제 2 드라이브 프레임의 상기 제 2 측면을 상기 제 1 축을 따라 제 2 의 대향하는 방향으로 구동하도록 추가로 구성되는, 상기 복수의 압전 제 3 드라이브 빔들을 형성하는 단계;
    상기 제 2 드라이브 프레임의 드라이브 모션을 상기 제 1 축을 따른 선형의 변위의 드라이브 모션으로 제한하도록 구성된 제 2 드라이브 프레임 서스펜션을 형성하는 단계; 및
    상기 제 1 축에 직교하는 제 2 축 주위의 회전에 순응하도록 구성되지만 상기 제 1 축을 따른 병진 모션에 저항하도록 구성된 제 2 감지 프레임 서스펜션을 형성하는 단계를 더 포함하며,
    상기 복수의 제 3 감지 빔들은 상기 제 1 금속층, 상기 압전층, 상기 제 2 금속층 및 상기 제 3 금속층으로 형성되는, 방법.
KR1020127031566A 2010-04-30 2011-04-18 마이크로 머시닝된 압전 3-축 자이로스코프 및 적층된 측면 오버랩 트랜스듀서 (slot) 기반의 3-축 가속도계 KR101854604B1 (ko)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US34360010P 2010-04-30 2010-04-30
US34360110P 2010-04-30 2010-04-30
US34359910P 2010-04-30 2010-04-30
US34359810P 2010-04-30 2010-04-30
US61/343,600 2010-04-30
US61/343,598 2010-04-30
US61/343,599 2010-04-30
US61/343,601 2010-04-30
US12/930,229 US9021880B2 (en) 2010-04-30 2010-12-30 Micromachined piezoelectric three-axis gyroscope and stacked lateral overlap transducer (slot) based three-axis accelerometer
US12/930,229 2010-12-30
PCT/US2011/032926 WO2011136970A1 (en) 2010-04-30 2011-04-18 Micromachined piezoelectric three-axis gyroscope and stacked lateral overlap transducer (slot) based three-axis accelerometer

Publications (2)

Publication Number Publication Date
KR20130095646A KR20130095646A (ko) 2013-08-28
KR101854604B1 true KR101854604B1 (ko) 2018-05-04

Family

ID=44857191

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020127031559A KR101810266B1 (ko) 2010-04-30 2011-04-18 마이크로 머시닝된 압전 x-축 자이로스코프
KR1020127031565A KR101845221B1 (ko) 2010-04-30 2011-04-18 적층형 측면 오버랩 트랜스듀서 (slot) 기반의 3-축 가속도계
KR1020127031567A KR101851812B1 (ko) 2010-04-30 2011-04-18 마이크로 머시닝된 압전 z-축 자이로스코프
KR1020127031566A KR101854604B1 (ko) 2010-04-30 2011-04-18 마이크로 머시닝된 압전 3-축 자이로스코프 및 적층된 측면 오버랩 트랜스듀서 (slot) 기반의 3-축 가속도계

Family Applications Before (3)

Application Number Title Priority Date Filing Date
KR1020127031559A KR101810266B1 (ko) 2010-04-30 2011-04-18 마이크로 머시닝된 압전 x-축 자이로스코프
KR1020127031565A KR101845221B1 (ko) 2010-04-30 2011-04-18 적층형 측면 오버랩 트랜스듀서 (slot) 기반의 3-축 가속도계
KR1020127031567A KR101851812B1 (ko) 2010-04-30 2011-04-18 마이크로 머시닝된 압전 z-축 자이로스코프

Country Status (7)

Country Link
US (9) US8516886B2 (ko)
EP (5) EP2564217B1 (ko)
JP (7) JP5658356B2 (ko)
KR (4) KR101810266B1 (ko)
CN (5) CN102959356B (ko)
TW (4) TW201215847A (ko)
WO (5) WO2011136960A1 (ko)

Families Citing this family (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5293557B2 (ja) * 2008-12-17 2013-09-18 セイコーエプソン株式会社 超音波トランスデューサー、超音波トランスデューサーアレイ及び超音波デバイス
DE102009002066A1 (de) * 2009-03-31 2010-10-07 Sensordynamics Ag Verfahren zum Erfassen von Beschleunigungen und Drehraten sowie MEMS-Sensor
US8151641B2 (en) 2009-05-21 2012-04-10 Analog Devices, Inc. Mode-matching apparatus and method for micromachined inertial sensors
US8739626B2 (en) 2009-08-04 2014-06-03 Fairchild Semiconductor Corporation Micromachined inertial sensor devices
US8616057B1 (en) * 2010-01-23 2013-12-31 Minyao Mao Angular rate sensor with suppressed linear acceleration response
US8516886B2 (en) 2010-04-30 2013-08-27 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric X-Axis gyroscope
US9095072B2 (en) 2010-09-18 2015-07-28 Fairchild Semiconductor Corporation Multi-die MEMS package
US8813564B2 (en) 2010-09-18 2014-08-26 Fairchild Semiconductor Corporation MEMS multi-axis gyroscope with central suspension and gimbal structure
KR101352827B1 (ko) 2010-09-18 2014-01-17 페어차일드 세미컨덕터 코포레이션 단일 프루프 매스를 가진 미세기계화 3축 가속도계
WO2012037538A2 (en) 2010-09-18 2012-03-22 Fairchild Semiconductor Corporation Micromachined monolithic 6-axis inertial sensor
DE112011103124T5 (de) 2010-09-18 2013-12-19 Fairchild Semiconductor Corporation Biegelager zum Verringern von Quadratur für mitschwingende mikromechanische Vorrichtungen
EP2616388A4 (en) 2010-09-18 2014-08-13 Fairchild Semiconductor HERMETIC ENCLOSURE FOR MICROELECTROMECHANICAL SYSTEMS
US9006846B2 (en) 2010-09-20 2015-04-14 Fairchild Semiconductor Corporation Through silicon via with reduced shunt capacitance
EP2619536B1 (en) 2010-09-20 2016-11-02 Fairchild Semiconductor Corporation Microelectromechanical pressure sensor including reference capacitor
US9540232B2 (en) 2010-11-12 2017-01-10 MCube Inc. Method and structure of MEMS WLCSP fabrication
US9276080B2 (en) 2012-03-09 2016-03-01 Mcube, Inc. Methods and structures of integrated MEMS-CMOS devices
US9000656B2 (en) 2011-03-15 2015-04-07 Qualcomm Mems Technologies, Inc. Microelectromechanical system device including a metal proof mass and a piezoelectric component
CN102760049A (zh) * 2011-04-26 2012-10-31 蓝云科技股份有限公司 行动装置及其与具有显示功能的电子装置互动的方法
CN103003704B (zh) * 2011-05-23 2016-05-04 深迪半导体(上海)有限公司 感测旋转及加速度两者的微机电系统装置
JP5870532B2 (ja) * 2011-08-09 2016-03-01 セイコーエプソン株式会社 物理量検出素子、物理量検出装置および電子機器
US9176530B2 (en) 2011-08-17 2015-11-03 Apple Inc. Bi-stable spring with flexible display
US10914584B2 (en) 2011-09-16 2021-02-09 Invensense, Inc. Drive and sense balanced, semi-coupled 3-axis gyroscope
KR101264549B1 (ko) * 2011-11-11 2013-05-14 삼성전기주식회사 관성센서의 제조방법
US20130127879A1 (en) * 2011-11-18 2013-05-23 Qualcomm Mems Technologies, Inc. Glass-encapsulated pressure sensor
JP6031682B2 (ja) 2011-11-22 2016-11-24 パナソニックIpマネジメント株式会社 角速度センサとそれに用いられる検出素子
FR2983574B1 (fr) * 2011-12-06 2014-01-10 Sagem Defense Securite Capteur angulaire inertiel de type mems equilibre et procede d'equilibrage d'un tel capteur
US9366690B2 (en) * 2012-01-12 2016-06-14 Murata Electronics Oy Vibration tolerant acceleration sensor structure
US8689632B2 (en) 2012-01-17 2014-04-08 Freescale Semiconductor, Inc. Fully decoupled lateral axis gyroscope with thickness-insensitive Z-axis spring and symmetric teeter totter sensing element
US9291638B2 (en) * 2012-01-20 2016-03-22 Mcube, Inc. Substrate curvature compensation methods and apparatus
DE102012200929B4 (de) * 2012-01-23 2020-10-01 Robert Bosch Gmbh Mikromechanische Struktur und Verfahren zur Herstellung einer mikromechanischen Struktur
US9062972B2 (en) 2012-01-31 2015-06-23 Fairchild Semiconductor Corporation MEMS multi-axis accelerometer electrode structure
US8978475B2 (en) 2012-02-01 2015-03-17 Fairchild Semiconductor Corporation MEMS proof mass with split z-axis portions
US8887573B2 (en) * 2012-02-21 2014-11-18 Taiwan Semiconductor Manufacturing Co., Ltd. MEMS vacuum level monitor in sealed package
JP2013181855A (ja) 2012-03-02 2013-09-12 Seiko Epson Corp 物理量センサーおよび電子機器
US8754694B2 (en) 2012-04-03 2014-06-17 Fairchild Semiconductor Corporation Accurate ninety-degree phase shifter
US8742964B2 (en) 2012-04-04 2014-06-03 Fairchild Semiconductor Corporation Noise reduction method with chopping for a merged MEMS accelerometer sensor
US9488693B2 (en) 2012-04-04 2016-11-08 Fairchild Semiconductor Corporation Self test of MEMS accelerometer with ASICS integrated capacitors
EP2647955B8 (en) 2012-04-05 2018-12-19 Fairchild Semiconductor Corporation MEMS device quadrature phase shift cancellation
EP2647952B1 (en) 2012-04-05 2017-11-15 Fairchild Semiconductor Corporation Mems device automatic-gain control loop for mechanical amplitude drive
KR102058489B1 (ko) 2012-04-05 2019-12-23 페어차일드 세미컨덕터 코포레이션 멤스 장치 프론트 엔드 전하 증폭기
US9069006B2 (en) 2012-04-05 2015-06-30 Fairchild Semiconductor Corporation Self test of MEMS gyroscope with ASICs integrated capacitors
KR101999745B1 (ko) 2012-04-12 2019-10-01 페어차일드 세미컨덕터 코포레이션 미세 전자 기계 시스템 구동기
US9625272B2 (en) 2012-04-12 2017-04-18 Fairchild Semiconductor Corporation MEMS quadrature cancellation and signal demodulation
US9212908B2 (en) 2012-04-26 2015-12-15 Analog Devices, Inc. MEMS gyroscopes with reduced errors
KR101299730B1 (ko) * 2012-05-31 2013-08-22 삼성전기주식회사 센서
US8872764B2 (en) * 2012-06-29 2014-10-28 Qualcomm Mems Technologies, Inc. Illumination systems incorporating a light guide and a reflective structure and related methods
GB2505875A (en) 2012-09-04 2014-03-19 Cambridge Entpr Ltd Dual and triple axis inertial sensors and methods of inertial sensing
DE102013014881B4 (de) 2012-09-12 2023-05-04 Fairchild Semiconductor Corporation Verbesserte Silizium-Durchkontaktierung mit einer Füllung aus mehreren Materialien
JP5799929B2 (ja) * 2012-10-02 2015-10-28 株式会社村田製作所 加速度センサ
US9638524B2 (en) * 2012-11-30 2017-05-02 Robert Bosch Gmbh Chip level sensor with multiple degrees of freedom
JP5935901B2 (ja) * 2012-12-11 2016-06-15 株式会社村田製作所 角速度検出素子
US10036635B2 (en) * 2013-01-25 2018-07-31 MCube Inc. Multi-axis MEMS rate sensor device
US9249012B2 (en) 2013-01-25 2016-02-02 Mcube, Inc. Method and device of MEMS process control monitoring and packaged MEMS with different cavity pressures
US10132630B2 (en) * 2013-01-25 2018-11-20 MCube Inc. Multi-axis integrated MEMS inertial sensing device on single packaged chip
US8564076B1 (en) * 2013-01-30 2013-10-22 Invensense, Inc. Internal electrical contact for enclosed MEMS devices
US10913653B2 (en) 2013-03-07 2021-02-09 MCube Inc. Method of fabricating MEMS devices using plasma etching and device therefor
US10046964B2 (en) 2013-03-07 2018-08-14 MCube Inc. MEMS structure with improved shielding and method
WO2014172487A1 (en) 2013-04-16 2014-10-23 The Regents Of The University Of California Continuous mode reversal for rejecting drift in gyroscopes
JP6011574B2 (ja) * 2013-06-27 2016-10-19 株式会社村田製作所 積層セラミックコンデンサ
FI126199B (en) * 2013-06-28 2016-08-15 Murata Manufacturing Co CAPACITIVE MICROMECHANICAL SENSOR STRUCTURE AND MICROMECHANICAL ACCELEROMETER
US10167187B2 (en) 2013-07-09 2019-01-01 Seiko Epson Corporation Physical quantity sensor having an elongated groove, and manufacturing method thereof
WO2015045916A1 (ja) * 2013-09-27 2015-04-02 ソニー株式会社 再生装置、再生方法、および記録媒体
US8893563B1 (en) * 2014-01-15 2014-11-25 King Fahd University Of Petroleum And Minerals Differential capacitance torque sensor
FI126071B (en) * 2014-01-28 2016-06-15 Murata Manufacturing Co Improved gyroscope structure and gyroscope
US20150247879A1 (en) * 2014-03-03 2015-09-03 Infineon Technologies Ag Acceleration sensor
CN103900545B (zh) * 2014-03-20 2017-01-18 东南大学 一种单片集成全对称三轴硅微音叉陀螺仪
CN103900547B (zh) * 2014-03-20 2016-06-08 东南大学 一种单片集成的全解耦三轴硅微陀螺仪
CN103972232B (zh) * 2014-04-18 2017-01-18 京东方科技集团股份有限公司 一种阵列基板及其制作方法、显示装置
US9463976B2 (en) * 2014-06-27 2016-10-11 Freescale Semiconductor, Inc. MEMS fabrication process with two cavities operating at different pressures
US9658244B2 (en) 2014-07-08 2017-05-23 Honeywell International Inc. Reducing hysteresis effects in accelerometer
JP2016018432A (ja) * 2014-07-09 2016-02-01 ローム株式会社 ユーザインタフェイス装置
US9689888B2 (en) 2014-11-14 2017-06-27 Honeywell International Inc. In-plane vibrating beam accelerometer
US10823754B2 (en) 2014-11-14 2020-11-03 Honeywell International Inc. Accelerometer with strain compensation
JP6476869B2 (ja) 2015-01-06 2019-03-06 セイコーエプソン株式会社 電子デバイス、電子機器および移動体
US9715156B2 (en) * 2015-03-18 2017-07-25 Qualcomm Incorporated Interferometric modulator mirror design without metal layer in the hinge
US9869552B2 (en) * 2015-03-20 2018-01-16 Analog Devices, Inc. Gyroscope that compensates for fluctuations in sensitivity
EP3304607B1 (en) * 2015-06-03 2019-10-23 Koninklijke Philips N.V. Actuator matrix array and driving method
JP6575187B2 (ja) * 2015-07-10 2019-09-18 セイコーエプソン株式会社 物理量センサー、物理量センサー装置、電子機器および移動体
US10036765B2 (en) * 2015-07-10 2018-07-31 Honeywell International Inc. Reducing hysteresis effects in an accelerometer
CN105154827B (zh) * 2015-09-11 2017-11-03 兰州空间技术物理研究所 空间静电加速度计敏感结构表面的耐焊导电薄膜及制作工艺
CN105300369A (zh) * 2015-10-26 2016-02-03 马国才 一种电子系统多轴结构
US9611135B1 (en) * 2015-10-30 2017-04-04 Infineon Technologies Ag System and method for a differential comb drive MEMS
US10352960B1 (en) * 2015-10-30 2019-07-16 Garmin International, Inc. Free mass MEMS accelerometer
US10877063B2 (en) * 2015-12-10 2020-12-29 Invensense, Inc. MEMS sensor with compensation of residual voltage
KR101673362B1 (ko) * 2015-12-14 2016-11-07 현대자동차 주식회사 가속도 센서 및 그 제조 방법
US10649000B2 (en) * 2015-12-17 2020-05-12 Panasonic Intellectual Property Management Co., Ltd. Connection assembly
WO2017105472A1 (en) * 2015-12-17 2017-06-22 Intel Corporation Microelectronic devices for isolating drive and sense signals of sensing devices
EP3187201B2 (en) * 2015-12-30 2022-07-20 Paul Hartmann AG Portable medical device
US10118696B1 (en) 2016-03-31 2018-11-06 Steven M. Hoffberg Steerable rotating projectile
US10371521B2 (en) 2016-05-26 2019-08-06 Honeywell International Inc. Systems and methods for a four-mass vibrating MEMS structure
US10696541B2 (en) 2016-05-26 2020-06-30 Honeywell International Inc. Systems and methods for bias suppression in a non-degenerate MEMS sensor
US10180445B2 (en) 2016-06-08 2019-01-15 Honeywell International Inc. Reducing bias in an accelerometer via current adjustment
US10126129B2 (en) * 2016-07-11 2018-11-13 Nxp Usa, Inc. Vibration and shock robust gyroscope
US10335897B2 (en) * 2016-07-28 2019-07-02 Applied Physics, Inc. Laser ablation of accelerometer proof mass
CN108008149A (zh) * 2016-10-27 2018-05-08 南京理工大学 对应力不敏感的自校准硅微谐振式加速度计
CN106595624A (zh) * 2016-12-03 2017-04-26 哈尔滨工业大学 挠性支撑转子式微陀螺
CN106771366B (zh) * 2016-12-29 2023-07-14 中国工程物理研究院电子工程研究所 一种mems加速度计健康状态监测装置及监测方法
US10697994B2 (en) 2017-02-22 2020-06-30 Semiconductor Components Industries, Llc Accelerometer techniques to compensate package stress
US10429407B2 (en) * 2017-03-27 2019-10-01 Nxp Usa, Inc. Three-axis inertial sensor for detecting linear acceleration forces
JP2018179575A (ja) 2017-04-05 2018-11-15 セイコーエプソン株式会社 物理量センサー、電子機器、および移動体
JP6627912B2 (ja) 2017-05-24 2020-01-08 株式会社村田製作所 圧電回転mems共振器
JP6627911B2 (ja) * 2017-05-24 2020-01-08 株式会社村田製作所 圧電回転mems共振器
JP6696530B2 (ja) * 2017-05-24 2020-05-20 株式会社村田製作所 圧電ジャイロスコープにおける連結懸架
JP6610706B2 (ja) * 2017-05-24 2019-11-27 株式会社村田製作所 横駆動変換器を備える圧電ジャイロスコープ
US10386204B2 (en) * 2017-06-28 2019-08-20 Intel Corporation Integrated sensor and homologous calibration structure for resonant devices
EP3783310B1 (en) * 2017-07-06 2022-07-27 InvenSense, Inc. Drive and sense balanced, semi-coupled 3-axis gyroscope
US11085766B2 (en) * 2017-11-10 2021-08-10 Semiconductor Components Industries, Llc Micromachined multi-axis gyroscopes with reduced stress sensitivity
US11712637B1 (en) 2018-03-23 2023-08-01 Steven M. Hoffberg Steerable disk or ball
CN109297512A (zh) * 2018-11-05 2019-02-01 西安飞机工业(集团)有限责任公司 一种三轴角速率陀螺仪试验装置
CN109682364B (zh) * 2018-12-13 2020-10-20 中国科学院半导体研究所 压电mems解耦结构及mems陀螺仪
TWI740132B (zh) * 2019-04-19 2021-09-21 國立中興大學 門檻式陀螺儀
JP7188311B2 (ja) * 2019-07-31 2022-12-13 セイコーエプソン株式会社 ジャイロセンサー、電子機器、及び移動体
CN112556675B (zh) * 2019-09-10 2023-03-07 昇佳电子股份有限公司 微机电陀螺仪
DE112021001186T5 (de) * 2020-04-30 2022-12-15 Murata Manufacturing Co., Ltd. Piezoelektrisches bauelement
US11692825B2 (en) 2020-06-08 2023-07-04 Analog Devices, Inc. Drive and sense stress relief apparatus
CN115812153A (zh) 2020-06-08 2023-03-17 美国亚德诺半导体公司 应力释放mems陀螺仪
US11698257B2 (en) 2020-08-24 2023-07-11 Analog Devices, Inc. Isotropic attenuated motion gyroscope
RU2746762C1 (ru) * 2020-09-15 2021-04-20 Акционерное общество "Инерциальные технологии "Технокомплекса" (АО "ИТТ") Микромеханический акселерометр с низкой чувствительностью к термомеханическим воздействиям
DE112021006521T5 (de) 2020-12-18 2023-12-07 Analog Devices, Inc. Beschleunigungsmesser mit translationsbewegung von massen
CN112834783B (zh) * 2020-12-31 2022-09-13 中国电子科技集团公司第十三研究所 微机械检测结构及mems惯性测量器件
KR102584513B1 (ko) * 2020-12-31 2023-10-06 세메스 주식회사 온도 변화가 수반되는 분위기에 제공되는 기판 지지 부재의 수평 측정용 기판형 센서, 이를 이용한 수평 측정 방법 및 비일시적 컴퓨터 판독가능 매체
US11525680B2 (en) * 2021-02-17 2022-12-13 Nxp Usa, Inc. Angular rate sensor with centrally positioned coupling structures
CN115183772A (zh) * 2022-09-13 2022-10-14 北京小马智行科技有限公司 一种惯性测量单元、方法、设备、移动设备及存储介质
CN116147601B (zh) * 2023-04-23 2023-07-04 成都量子时频科技有限公司 一种一体化三轴核磁共振原子陀螺仪系统
CN116470880B (zh) * 2023-06-20 2023-09-19 麦斯塔微电子(深圳)有限公司 反对称驱动的微机电系统谐振器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281264A (ja) 2000-03-30 2001-10-10 Denso Corp 半導体力学量センサ
JP2005249454A (ja) 2004-03-02 2005-09-15 Mitsubishi Electric Corp 容量型加速度センサ

Family Cites Families (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US595668A (en) * 1897-12-14 Acetylene-gas machine
US3938113A (en) 1974-06-17 1976-02-10 International Business Machines Corporation Differential capacitive position encoder
US4030347A (en) 1975-10-31 1977-06-21 Electrical Power Research Institute Biaxial capacitance strain transducer
SE411392B (sv) 1977-12-09 1979-12-17 Inst Mikrovagsteknik Vid Tekni Metanordning for kapacitiv bestemning av det inbordes leget hos tva relativt varandra rorliga delar
JPS58221109A (ja) 1982-06-17 1983-12-22 Tokyo Keiki Co Ltd ジヤイロ装置
CH648929A5 (fr) 1982-07-07 1985-04-15 Tesa Sa Dispositif de mesure capacitif de deplacement.
DE3429607A1 (de) 1984-08-09 1986-02-20 Klaus 1000 Berlin Oppermann Messwertaufnehmer zum elektrischen messen von kraeften, druecken und spannungen
CH670306A5 (ko) 1986-11-13 1989-05-31 Hans Ulrich Meyer
US4896098A (en) 1987-01-08 1990-01-23 Massachusetts Institute Of Technology Turbulent shear force microsensor
US4944181A (en) 1988-08-30 1990-07-31 Hitec Products, Inc. Capacitive strain gage having fixed capacitor plates
US5209117A (en) * 1990-10-22 1993-05-11 Motorola, Inc. Tapered cantilever beam for sensors
US5199298A (en) 1991-06-21 1993-04-06 Massachusetts Institute Of Technology Wall shear stress sensor
CH685214A5 (fr) 1991-10-15 1995-04-28 Hans Ulrich Meyer Capteur capacitif de position.
US5359893A (en) 1991-12-19 1994-11-01 Motorola, Inc. Multi-axes gyroscope
US5408877A (en) 1992-03-16 1995-04-25 The Charles Stark Draper Laboratory, Inc. Micromechanical gyroscopic transducer with improved drive and sense capabilities
US5767405A (en) * 1992-04-07 1998-06-16 The Charles Stark Draper Laboratory, Inc. Comb-drive micromechanical tuning fork gyroscope with piezoelectric readout
US5650568A (en) 1993-02-10 1997-07-22 The Charles Stark Draper Laboratory, Inc. Gimballed vibrating wheel gyroscope having strain relief features
US5555765A (en) 1993-02-10 1996-09-17 The Charles Stark Draper Laboratory, Inc. Gimballed vibrating wheel gyroscope
US6149190A (en) 1993-05-26 2000-11-21 Kionix, Inc. Micromechanical accelerometer for automotive applications
US6199874B1 (en) 1993-05-26 2001-03-13 Cornell Research Foundation Inc. Microelectromechanical accelerometer for automotive applications
US5488862A (en) 1993-10-18 1996-02-06 Armand P. Neukermans Monolithic silicon rate-gyro with integrated sensors
DE19547642A1 (de) * 1994-12-20 1996-06-27 Zexel Corp Beschleunigungssensor und Verfahren zu dessen Herstellung
JPH08304450A (ja) 1995-05-12 1996-11-22 Zexel Corp 加速度センサ及び加速度センサの製造方法
JPH09318649A (ja) 1996-05-30 1997-12-12 Texas Instr Japan Ltd 複合センサ
US5992233A (en) 1996-05-31 1999-11-30 The Regents Of The University Of California Micromachined Z-axis vibratory rate gyroscope
JPH09325032A (ja) 1996-06-03 1997-12-16 Ngk Spark Plug Co Ltd 角速度センサ
JPH1089968A (ja) 1996-09-12 1998-04-10 Murata Mfg Co Ltd 角速度センサ
US5955668A (en) 1997-01-28 1999-09-21 Irvine Sensors Corporation Multi-element micro gyro
JP3753209B2 (ja) 1997-08-27 2006-03-08 アイシン精機株式会社 角速度センサ
JPH1194873A (ja) * 1997-09-18 1999-04-09 Mitsubishi Electric Corp 加速度センサ及びその製造方法
JPH11142157A (ja) 1997-11-12 1999-05-28 Hitachi Ltd ジャイロセンサ
JPH11211748A (ja) 1998-01-20 1999-08-06 Matsushita Electric Ind Co Ltd 機械−電気変換子及びその製造方法並びに加速度センサ
US6230563B1 (en) 1998-06-09 2001-05-15 Integrated Micro Instruments, Inc. Dual-mass vibratory rate gyroscope with suppressed translational acceleration response and quadrature-error correction capability
JP2000046558A (ja) 1998-07-24 2000-02-18 Murata Mfg Co Ltd 外力検知センサ
JP3301403B2 (ja) 1999-02-26 2002-07-15 株式会社村田製作所 振動ジャイロ
US6481283B1 (en) 1999-04-05 2002-11-19 Milli Sensor Systems & Actuators, Inc. Coriolis oscillating gyroscopic instrument
US6189381B1 (en) 1999-04-26 2001-02-20 Sitek, Inc. Angular rate sensor made from a structural wafer of single crystal silicon
DE19937747C2 (de) 1999-08-10 2001-10-31 Siemens Ag Mechanischer Resonator für Rotationssensor
US6262520B1 (en) 1999-09-15 2001-07-17 Bei Technologies, Inc. Inertial rate sensor tuning fork
JP2001183138A (ja) 1999-12-22 2001-07-06 Ngk Spark Plug Co Ltd 角速度センサ
JP2002131331A (ja) 2000-10-24 2002-05-09 Denso Corp 半導体力学量センサ
DE10060091B4 (de) 2000-12-02 2004-02-05 Eads Deutschland Gmbh Mikromechanischer Inertialsensor
US20020134154A1 (en) 2001-03-23 2002-09-26 Hsu Ying W. Method and apparatus for on-chip measurement of micro-gyro scale factors
US20020189351A1 (en) 2001-06-14 2002-12-19 Reeds John W. Angular rate sensor having a sense element constrained to motion about a single axis and flexibly attached to a rotary drive mass
US6792804B2 (en) 2001-10-19 2004-09-21 Kionix, Inc. Sensor for measuring out-of-plane acceleration
JP3972790B2 (ja) 2001-11-27 2007-09-05 松下電器産業株式会社 薄膜微小機械式共振子および薄膜微小機械式共振子ジャイロ
WO2003058166A1 (de) 2002-01-12 2003-07-17 Robert Bosch Gmbh Drehratensensor
US6776042B2 (en) 2002-01-25 2004-08-17 Kinemetrics, Inc. Micro-machined accelerometer
JP2003345508A (ja) 2002-03-20 2003-12-05 Sony Corp 電子動作対話型装置及びその操作方法
JP4698221B2 (ja) 2002-08-12 2011-06-08 ザ・ボーイング・カンパニー 内部径方向検知およびアクチュエーションを備える分離型平面ジャイロスコープ
US6823733B2 (en) 2002-11-04 2004-11-30 Matsushita Electric Industrial Co., Ltd. Z-axis vibration gyroscope
US7043986B2 (en) 2003-02-05 2006-05-16 Ngk Insulators, Ltd. Vibrators and vibratory gyroscopes
US6978673B2 (en) 2003-02-07 2005-12-27 Honeywell International, Inc. Methods and systems for simultaneously fabricating multi-frequency MEMS devices
JP4075833B2 (ja) 2003-06-04 2008-04-16 セイコーエプソン株式会社 圧電振動ジャイロ素子、その製造方法、及び圧電振動ジャイロセンサ
US6845670B1 (en) 2003-07-08 2005-01-25 Freescale Semiconductor, Inc. Single proof mass, 3 axis MEMS transducer
JP4352975B2 (ja) 2003-07-25 2009-10-28 セイコーエプソン株式会社 圧電振動片、圧電振動片の支持構造、圧電振動子及び振動型圧電ジャイロスコープ
JP2005070030A (ja) 2003-08-04 2005-03-17 Seiko Epson Corp ジャイロ振動子及び電子機器
US6892575B2 (en) 2003-10-20 2005-05-17 Invensense Inc. X-Y axis dual-mass tuning fork gyroscope with vertically integrated electronics and wafer-scale hermetic packaging
US7197928B2 (en) 2003-11-04 2007-04-03 Chung-Shan Institute Of Science And Technology Solid-state gyroscopes and planar three-axis inertial measurement unit
JP2005227215A (ja) 2004-02-16 2005-08-25 Matsushita Electric Ind Co Ltd 角速度センサおよびその設計方法
JP2005283402A (ja) 2004-03-30 2005-10-13 Fujitsu Media Device Kk 慣性センサ
TWI255341B (en) 2004-06-10 2006-05-21 Chung Shan Inst Of Science Miniature accelerator
US7421898B2 (en) * 2004-08-16 2008-09-09 The Regents Of The University Of California Torsional nonresonant z-axis micromachined gyroscope with non-resonant actuation to measure the angular rotation of an object
EP1779121A1 (en) 2004-08-17 2007-05-02 Analog Devices, Inc. Multiple axis acceleration sensor
DE602005020725D1 (de) 2004-09-24 2010-06-02 Seiko Epson Corp Piezoelektrisches Resonatorelement und piezoelektrisches Bauelement
DE102004061804B4 (de) 2004-12-22 2015-05-21 Robert Bosch Gmbh Mikromechanischer Drehratensensor mit Fehlerunterdrückung
CN100449265C (zh) 2005-02-28 2009-01-07 北京大学 一种水平轴微机械陀螺及其制备方法
JP2006242931A (ja) 2005-03-04 2006-09-14 Sony Corp 振動ジャイロセンサ素子の製造方法
JP2006292690A (ja) 2005-04-14 2006-10-26 Asahi Kasei Electronics Co Ltd 落下判定装置及び落下判定方法
US7240552B2 (en) 2005-06-06 2007-07-10 Bei Technologies, Inc. Torsional rate sensor with momentum balance and mode decoupling
US7617728B2 (en) 2006-05-17 2009-11-17 Donato Cardarelli Tuning fork gyroscope
CN1766528B (zh) 2005-11-11 2010-09-15 中北大学 具有较高灵敏度和带宽的差分式微机械陀螺
US7258011B2 (en) 2005-11-21 2007-08-21 Invensense Inc. Multiple axis accelerometer
JP4887034B2 (ja) 2005-12-05 2012-02-29 日立オートモティブシステムズ株式会社 慣性センサ
JP4812000B2 (ja) 2006-01-31 2011-11-09 セイコーインスツル株式会社 力学量センサ
EP1832841B1 (en) 2006-03-10 2015-12-30 STMicroelectronics Srl Microelectromechanical integrated sensor structure with rotary driving motion
US7444868B2 (en) 2006-06-29 2008-11-04 Honeywell International Inc. Force rebalancing for MEMS inertial sensors using time-varying voltages
JP5030135B2 (ja) 2006-07-18 2012-09-19 Necトーキン株式会社 圧電単結晶振動子および圧電振動ジャイロ
WO2008010336A1 (fr) 2006-07-21 2008-01-24 Murata Manufacturing Co., Ltd. Vibrateur de type fourche et gyroscope à vibrations l'utilisant
US7487661B2 (en) 2006-10-11 2009-02-10 Freescale Semiconductor, Inc. Sensor having free fall self-test capability and method therefor
US7461552B2 (en) 2006-10-23 2008-12-09 Custom Sensors & Technologies, Inc. Dual axis rate sensor
CN1948906B (zh) 2006-11-10 2011-03-23 北京大学 一种电容式全解耦水平轴微机械陀螺
JP2008175578A (ja) 2007-01-16 2008-07-31 Nec Tokin Corp 圧電振動ジャイロ用振動子
DE102007017209B4 (de) 2007-04-05 2014-02-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikromechanischer Inertialsensor zur Messung von Drehraten
JP2009063430A (ja) 2007-09-06 2009-03-26 Japan Aviation Electronics Industry Ltd 2軸静電容量型加速度センサ、及び2軸静電容量型加速度計
CN100487376C (zh) 2007-10-15 2009-05-13 北京航空航天大学 一种双质量块调谐输出式硅mems陀螺仪
US7677099B2 (en) 2007-11-05 2010-03-16 Invensense Inc. Integrated microelectromechanical systems (MEMS) vibrating mass Z-axis rate sensor
US8037757B2 (en) 2007-12-12 2011-10-18 Honeywell International Inc. Parametric amplification of a MEMS gyroscope by capacitance modulation
US7793542B2 (en) * 2007-12-28 2010-09-14 Freescale Semiconductor, Inc. Caddie-corner single proof mass XYZ MEMS transducer
US20090183570A1 (en) 2008-01-18 2009-07-23 Custom Sensors & Technologies, Inc. Micromachined cross-differential dual-axis accelerometer
JP4645656B2 (ja) 2008-02-07 2011-03-09 株式会社デンソー 半導体力学量センサ
JP5332262B2 (ja) 2008-03-28 2013-11-06 Tdk株式会社 角速度センサ素子
DE102008002748A1 (de) 2008-06-27 2009-12-31 Sensordynamics Ag Mikro-Gyroskop
JP2010054263A (ja) 2008-08-27 2010-03-11 Pioneer Electronic Corp 回転振動型ジャイロ
TWI374268B (en) * 2008-09-05 2012-10-11 Ind Tech Res Inst Multi-axis capacitive accelerometer
JP2010078500A (ja) * 2008-09-26 2010-04-08 Toshiba Corp 慣性センサ
US8499629B2 (en) 2008-10-10 2013-08-06 Honeywell International Inc. Mounting system for torsional suspension of a MEMS device
US8020443B2 (en) 2008-10-30 2011-09-20 Freescale Semiconductor, Inc. Transducer with decoupled sensing in mutually orthogonal directions
US8256290B2 (en) 2009-03-17 2012-09-04 Minyao Mao Tri-axis angular rate sensor
US8186221B2 (en) 2009-03-24 2012-05-29 Freescale Semiconductor, Inc. Vertically integrated MEMS acceleration transducer
US8424383B2 (en) 2010-01-05 2013-04-23 Pixart Imaging Incorporation Mass for use in a micro-electro-mechanical-system sensor and 3-dimensional micro-electro-mechanical-system sensor using same
US8418556B2 (en) * 2010-02-10 2013-04-16 Robert Bosch Gmbh Micro electrical mechanical magnetic field sensor utilizing modified inertial elements
US8516886B2 (en) 2010-04-30 2013-08-27 Qualcomm Mems Technologies, Inc. Micromachined piezoelectric X-Axis gyroscope

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001281264A (ja) 2000-03-30 2001-10-10 Denso Corp 半導体力学量センサ
JP2005249454A (ja) 2004-03-02 2005-09-15 Mitsubishi Electric Corp 容量型加速度センサ

Also Published As

Publication number Publication date
WO2011136960A1 (en) 2011-11-03
JP2014089206A (ja) 2014-05-15
KR101810266B1 (ko) 2017-12-18
TW201213764A (en) 2012-04-01
US20130333175A1 (en) 2013-12-19
US20110265564A1 (en) 2011-11-03
US8516887B2 (en) 2013-08-27
TW201215847A (en) 2012-04-16
US8584522B2 (en) 2013-11-19
US20110265568A1 (en) 2011-11-03
US9032796B2 (en) 2015-05-19
EP2564157A1 (en) 2013-03-06
JP5453575B2 (ja) 2014-03-26
CN102947675B (zh) 2016-03-09
CN102959405A (zh) 2013-03-06
JP2015108633A (ja) 2015-06-11
TW201215888A (en) 2012-04-16
EP2564217B1 (en) 2016-07-13
TW201211504A (en) 2012-03-16
CN102959404B (zh) 2015-12-16
JP5687329B2 (ja) 2015-03-18
JP5628412B2 (ja) 2014-11-19
US8516886B2 (en) 2013-08-27
KR20130072215A (ko) 2013-07-01
KR101845221B1 (ko) 2018-04-04
WO2011136971A1 (en) 2011-11-03
EP2564158B1 (en) 2016-04-06
US20110270569A1 (en) 2011-11-03
JP5658356B2 (ja) 2015-01-21
JP2013525797A (ja) 2013-06-20
EP2564159A1 (en) 2013-03-06
US20140013557A1 (en) 2014-01-16
EP2564159B1 (en) 2016-04-06
EP2564157B1 (en) 2016-06-01
CN102947712B (zh) 2015-08-05
JP5706518B2 (ja) 2015-04-22
KR20130095646A (ko) 2013-08-28
JP2013533461A (ja) 2013-08-22
US9410805B2 (en) 2016-08-09
CN102959356A (zh) 2013-03-06
WO2011136970A1 (en) 2011-11-03
US10209072B2 (en) 2019-02-19
CN102959405B (zh) 2015-12-16
EP2564217A1 (en) 2013-03-06
JP2013532272A (ja) 2013-08-15
JP2013529300A (ja) 2013-07-18
CN102959404A (zh) 2013-03-06
US20110265566A1 (en) 2011-11-03
US9021880B2 (en) 2015-05-05
EP2564158A1 (en) 2013-03-06
WO2011136969A1 (en) 2011-11-03
US20150219457A1 (en) 2015-08-06
US20140041174A1 (en) 2014-02-13
CN102947675A (zh) 2013-02-27
US9459099B2 (en) 2016-10-04
KR20130072216A (ko) 2013-07-01
KR101851812B1 (ko) 2018-04-24
CN102959356B (zh) 2016-01-20
JP5658355B2 (ja) 2015-01-21
US9605965B2 (en) 2017-03-28
CN102947712A (zh) 2013-02-27
US20110265565A1 (en) 2011-11-03
EP2564218A1 (en) 2013-03-06
JP2013532273A (ja) 2013-08-15
KR20130069658A (ko) 2013-06-26
WO2011136972A1 (en) 2011-11-03

Similar Documents

Publication Publication Date Title
KR101854604B1 (ko) 마이크로 머시닝된 압전 3-축 자이로스코프 및 적층된 측면 오버랩 트랜스듀서 (slot) 기반의 3-축 가속도계

Legal Events

Date Code Title Description
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right