KR101561376B1 - 리튬 인산철 나노분말 제조방법 - Google Patents

리튬 인산철 나노분말 제조방법 Download PDF

Info

Publication number
KR101561376B1
KR101561376B1 KR1020140002573A KR20140002573A KR101561376B1 KR 101561376 B1 KR101561376 B1 KR 101561376B1 KR 1020140002573 A KR1020140002573 A KR 1020140002573A KR 20140002573 A KR20140002573 A KR 20140002573A KR 101561376 B1 KR101561376 B1 KR 101561376B1
Authority
KR
South Korea
Prior art keywords
lithium
precursor
nano powder
iron phosphate
lithium iron
Prior art date
Application number
KR1020140002573A
Other languages
English (en)
Other versions
KR20140090952A (ko
Inventor
전인국
조승범
오명환
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to TW103100907A priority Critical patent/TWI538879B/zh
Priority to JP2015528416A priority patent/JP5967600B2/ja
Priority to PCT/KR2014/000269 priority patent/WO2014109578A1/ko
Priority to CN201480002200.9A priority patent/CN104603060B/zh
Priority to EP14738037.2A priority patent/EP2871160B1/en
Publication of KR20140090952A publication Critical patent/KR20140090952A/ko
Priority to US14/510,370 priority patent/US9865875B2/en
Application granted granted Critical
Publication of KR101561376B1 publication Critical patent/KR101561376B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/45Phosphates containing plural metal, or metal and ammonium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/30Three-dimensional structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Dispersion Chemistry (AREA)

Abstract

본 발명은 (a) 글리세롤(glycerol) 용매에 리튬 전구체, 철 전구체 및 인 전구체를 넣고 혼합 용액을 제조하는 단계; 및 (b) 상기 혼합 용액을 반응기에 투입하고 가열하여, 1bar 이상 10bar 미만의 압력 조건 하에서 리튬 인산철 나노분말을 합성하는 단계; 를 포함하는 리튬 인산철 나노분말 제조방법 및 상기 방법에 따라 제조된 리튬 인산철 나노분말에 관한 것으로, 종래의 수열 합성법, 초임계수법 및 글리코써멀 방법과 대비할 때, 상대적인 저압 조건에서 반응을 진행시킬 수 있게 되고, 이에 따라 고온/고압 반응기를 사용하지 않아 공정의 안전성과 경제성을 확보하면서도, 균일한 입자 크기를 가진 입도 분포가 제어된 리튬 인산철 나노분말을 용이하게 제조할 수 있다.

Description

리튬 인산철 나노분말 제조방법{METHOD FOR PREPARING LITHIUM IRON PHOSPHATE NANOPOWDER}
본 발명은 리튬 인산철 나노분말의 제조 방법에 관한 것이다.
모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서 이차전지의 수요가 급격히 증가하고 있다. 이러한 이차전지 중 높은 에너지 밀도와 전압을 가지며, 사이클 수명이 길고, 자기방전율이 낮은 리튬 이차전지가 상용화되어 널리 사용되고 있다.
종래의 리튬 이차전지는 양극 활물질의 주성분으로 리튬 함유 코발트 산화물(LiCoO2)을 사용하였는데, 상기 리튬 함유 코발트 산화물은 안정성이 낮고 고가이기 때문에, 리튬 이차전지를 대량 생산하기 어려운 문제점이 있었다.
최근에는 리튬 대비 ~3.5V 전압, 3.6g/cm3의 높은 용적 밀도, 170mAh/g의 이론 용량을 가지되, 코발트에 비해 고온 안정성이 우수할 뿐만 아니라, 가격 또한 저렴한 리튬 인산철(LiFePO4) 화합물이 리튬 이차전지의 양극 활물질로서 조명되고 있다.
상기 리튬 인산철 화합물의 제조방법으로는 고상법 또는 수열 합성법 및 초임계수법 등의 액상법이 알려져 있으며, 최근에는 에틸렌 글리콜 또는 디에틸렌 글리콜 등의 비수용액을 반응 용매로 하는 글리코써멀(glycothermal) 방법이 개발되고 있다. 상기 수열 합성법, 초임계수법 및 글리코써멀 방법의 경우 리튬 인산철 나노분말 제조 시 고온/고압에서 반응이 진행되므로 안전성에 문제가 있었으며, 상기 방법들에 따라 제조되는 리튬 인산철 나노분말은 입자 크기 및 입도 분포를 제어하기가 어려운 문제점이 있었다.
본 발명은 상기와 같은 문제점을 해결하기 위하여, 신규한 반응 용매를 사용함으로써, 종래의 수열 합성법, 초임계수법 및 글리코써멀 방법과 대비할 때, 상대적인 저압 조건에서 반응을 진행시킬 수 있고, 이에 따라 고온/고압 반응기를 사용하지 않아 공정의 안전성과 경제성을 확보하면서도, 균일한 입자 크기를 가진 입도 분포가 제어된 리튬 인산철 나노분말을 제조할 수 있는 방법을 제공하고자 한다.
본 발명의 목적을 달성하기 위한 일실시예에서, (a) 글리세롤(glycerol) 용매에 리튬 전구체, 철 전구체 및 인 전구체를 넣고 혼합 용액을 제조하는 단계; 및 (b) 상기 혼합 용액을 반응기에 투입하고 가열하여, 1bar 이상 10bar 미만의 압력 조건 하에서 리튬 인산철 나노분말을 합성하는 단계; 를 포함하는 리튬 인산철 나노분말 제조방법을 제공한다.
한편, 본 발명의 일실시예에서, 상기 방법에 의해 제조된 리튬 인산철 나노분말 및 이를 포함하는 양극 활물질을 제공한다.
한편, 본 발명의 일실시예에서, 상기 양극 활물질을 포함하는 양극 및 이를 포함하는 리튬 이차전지를 제공한다.
본 발명의 리튬 인산철 나노분말 제조방법에 따르면, 종래의 수열 합성법, 초임계수법 및 글리코써멀 방법과 대비할 때, 상대적인 저압 조건에서 반응을 진행시킬 수 있게 되고, 이에 따라 고온/고압 반응기를 사용하지 않아 공정의 안전성과 경제성을 확보하면서도, 균일한 입자 크기를 가진 입도 분포가 제어된 리튬 인산철 나노분말을 용이하게 제조할 수 있다.
상기 제조된 리튬 인산철 나노분말을 양극활물질로 포함하는 리튬 이차전지는 용량 및 안정성 면에서 우수하다.
도 1은 본 발명의 일실시예에 따라 제조된 리튬 인산철 나노분말의 X선 회절 (XRD) 패턴을 나타낸 것이다(실시예 1a, 1b 및 1c).
도 2는 본 발명의 일실시예에 따라 제조된 리튬 인산철 나노분말의 전자현미경(SEM) 사진이다(실시예 1a, 1b 및 1c).
도 3은 본 발명의 일실시예에 따라 제조된 리튬 인산철 나노분말의 입도 분포를 나타낸 그래프이다(실시예 1c).
도 4는 본 발명의 일실시예에 따라 제조된 리튬 인산철 나노분말의 X선 회절 (XRD) 패턴을 나타낸 것이다(실시예 2a, 2b 및 2c).
도 5는 본 발명의 일실시예에 따라 제조된 리튬 인산철 나노분말의 전자현미경(SEM) 사진이다(실시예 2a, 2b 및 2c).
도 6은 본 발명의 일실시예에 따라 제조된 리튬 인산철 나노분말의 입도 분포를 나타낸 그래프이다(실시예 2c).
이하, 본 발명을 더욱 상세하게 설명한다.
본 발명에서는 고온/고압 조건에서 반응이 진행되는 수열 합성법, 초임계법 또는 밀폐형 고온/고압 반응기(예를 들어, 오토클레이브)를 사용하는 글리코써멀 방법 등에 있어서 문제되는 공정의 안전성과 경제성 문제를 해결하기 위하여, 구체적으로 반응 용매로서 글리세롤(glycerol)을 사용하여 상대적 저압 조건에서 리튬 인산철 나노분말을 제조함으로써, 수열 합성법, 초임계법 또는 글리코써멀 방법과 대비하여 공정의 안전성과 경제성이 크게 향상되고, 동시에 균일한 입자 크기를 가지면서 입도 분포가 효과적으로 제어된 리튬 인산철 나노분말을 제조한다.
본 발명의 목적을 달성하기 위한 일실시예에서, (a) 글리세롤(glycerol) 용매에 리튬 전구체, 철 전구체 및 인 전구체를 넣고 혼합 용액을 제조하는 단계; 및 (b) 상기 혼합 용액을 반응기에 투입하고 가열하여, 1bar 이상 10bar 미만의 압력 조건 하에서 리튬 인산철 나노분말을 합성하는 단계; 를 포함하는 리튬 인산철 나노분말 제조방법을 제공한다.
본 발명의 또 다른 일실시예에서, (c) 상기 합성된 리튬 인산철 나노분말을 열처리하여, 상기 나노분말의 개별 입자 표면의 일부 또는 전체에 코팅층을 형성하는 단계;를 더 포함할 수 있다.
우선, 리튬 전구체, 철 전구체 및 인 전구체를 준비하고, 이를 반응 용매인 글리세롤(glycerol)에 넣고 균일한 혼합 용액을 제조한다(단계 (a)).
상기 투입되는 리튬 전구체는 리튬 아세테이트 디하이드레이트 (CH3COOLi·2H2O), 리튬 히드록사이드 모노하이드레이트 (LiOH·H2O), 리튬 하이드록사이드(LiOH), 리튬 카보네이트(Li2CO3), 리튬 포스페이트(Li3PO4), 리튬 포스페이트 도데카하이드레이트(Li3PO4·2H2O) 및 리튬 옥살레이트(Li2C2O4)로 이루어진 군으로부터 선택된 1 또는 2 이상의 혼합물일 수 있다.
상기 투입되는 철 전구체는 구연산 제2철(FeC6H5O7), 구연산 제2철 수화물(FeC6H5O7·nH2O), 황산 제1철 7수화물(FeSO4·H2O), 옥살산 철 2수화물(FeC2O4·H2O), 철 아세틸아세토네이트(Fe(C5H7O2)3), 인산 제2철 2수화물(FePO4·H2O) 및 수산화 제2철(FeO(OH))로 이루어진 군으로부터 선택된 1 또는 2 이상의 혼합물일 수 있다.
상기 투입되는 인 전구체는 트리-암모늄포스페이트 트리하이드레이트((NH4)3PO4·H2O), 암모늄 포스페이트((NH4)2HPO4), 암모늄 디히드로젠 포스페이트(NH4H2PO4), 및 인산(H3PO4)으로 이루어진 군으로부터 선택된 1 또는 2 이상의 혼합물일 수 있다.
한편, 상기 혼합 용액 제조 시, 리튬, 철 및 인 전구체의 투입 비율은 특별히 제한되지 않으나 예를 들어 0.1 ~ 10 : 1 : 0.1 ~ 10 에 해당하는 몰 비로 투입될 수 있다.
또한, 반응 용매인 글리세롤(glycerol)의 양을 1 중량부로 기준 삼았을 때, 약 0.005 내지 1 중량부의 철 전구체가 투입되는 것일 수 있으며, 리튬 전구체 및 인 전구체는 상기 철 전구체에 대응하는 상기의 몰 비로 투입될 수 있다.
상기 혼합 용액 제조 시, 리튬, 철 및 인 전구체들이 반응 용매인 글리세롤(glycerol) 내에 균일하게 분산되도록 교반하는 단계를 더 포함할 수 있다.
한편, 본 발명에서 반응 용매는 비수용액으로서 끓는점이 비교적 높은 글리세롤(glycerol)일 수 있다.
상기 글리세롤(glycerol)의 끓는점은 약 290℃ 정도이다.
한편, 리튬 인산철 나노분말은 약 150℃ 이상의 온도 조건에서 합성될 수 있는 것으로 확인되었다.
즉, 리튬 인산철 나노분말 합성 시, 상기와 같은 반응 용매를 사용하면, 반응 용매의 끓는점 이하의 온도에서도 반응을 진행시킬 수 있게 되며, 이에 따라 반응 용매가 기화되는 정도가 적어진다. 이에 따라, 반응이 진행하는 동안 기화되는 용매에 의한 압력 상승이, 종래의 수열 합성법 등에 비하여 아주 적어진다. 이에 따라 공정 전반의 안전성이 향상되는 것이다.
또한, 상기 반응 용매인 글리세롤(glycerol)은 비수용액이므로, 별도의 환원제를 사용하지 않더라도 철의 산화 문제를 해결하게 된다.
다음으로, 상기 혼합 용액을 반응기 내에 투입하고 가열하여, 1bar 이상 10bar 미만의 압력 조건 하에서 리튬 인산철 나노분말을 합성한다(단계(b)).
상기 반응기는 당해 기술분야에서 일반적으로 사용되는 반응기일 수 있으며, 개방형 반응기일 수도 있고, 리플럭스 장치를 연결한 압력이 높지 않은 밀폐형의 반응기일 수도 있으나 특별히 제한되지 않는다.
즉 본 발명의 (b) 단계에서 압력 조건은 특별히 고온/고압을 견디기 위한 내압성 용기가 필요한 정도에 해당하지 않는다. 따라서, 본 발명은 리튬 인산철 나노분말 합성을 위하여 내압성 반응기를 사용하는 것이 필수적이었던 종래의 수열 합성법(약 100bar 이상), 초임계법(약 220bar 이상) 또는 글리코써멀 방법(약 10 내지 100bar)과는 달리, 고압 반응기가 필요하지 않게 되므로, 상대적으로 공정의 안전성과 경제성이 향상된다.
한편, 상기 (b) 단계는 리튬 인산철 나노분말을 합성할 수 있는 최소의 온도인 150℃ 이상의 온도 범위에서 진행되되, 상기 사용되는 반응 용매의 끓는점 이하의 온도 범위에서 진행될 수 있다.
본 발명에서 사용되는 반응 용매는 글리세롤이므로 상기 (b) 단계는 150 내지 약 290℃에서 진행될 수 있다.
즉, 리튬 인산철 나노분말을 합성할 수 있는 최소의 온도 이상 내지 반응 용매의 끓는점 이하의 온도에서 반응이 진행됨으로써, 반응 용매의 기화가 둔화되고 이에 따라, 종래의 수열 합성법 등과 대비할 때, 용매의 기화로 인한 반응기의 압력 상승이 적어진다.
한편, 상기 (b) 단계가 진행될 때, 반응기 내의 압력 조건은 1bar이상 10bar 미만의 범위에 해당하는 것일 수 있다. 상기 압력 조건은 종래의 수열합성법(약 100bar 이상), 초임계법(약 220bar 이상) 및 글리코써멀 방법(약 10 내지 100bar)과 대비할 때, 상대적으로 저압에 해당하는 것으로, 공정의 안전성과 경제성 측면에서 더 나은 효과를 가진다.
한편, 상기 (b) 단계의 진행 시간은 상기와 같이 사용되는 반응 용매 및 반응 온도에 따라 달라질 수 있다.
본 발명의 일실시예에서, 상기 (b) 단계는 150 ~ 290℃ 온도 범위에서 1 ~ 72 시간 동안 진행될 수 있으며, 더 상세하게는 180 ~ 290℃의 온도 범위에서 1 ~ 48 시간 동안 진행될 수 있다.
단계 (b)가 종결되면 리튬 인산철 나노분말 입자가 합성되며, 상기 (b) 단계에서 합성된 리튬 인산철 나노분말 입자를 회수하기 위한 세척 단계 및 건조 단계를 순차적으로 더 거칠 수 있다.
상기 세척 단계는 아세톤과 메탄올을 순차적으로 사용하여 세척하는 것일 수 있다.
상기 건조 단계에서 건조 방법은 특별히 제한되지 않으며, 예를 들어 20 ~ 160℃ 온도에서 2 ~ 40 시간 동안 진행되는 것일 수 있다.
한편, 상기 일련의 과정을 통하여 합성된 리튬 인산철 나노분말을 열처리하여 상기 분말의 개별 입자 표면의 일부 또는 전체에 코팅층을 형성할 수 있다(단계(c)).
상기 (c) 단계는 열처리를 통하여 진행되는 것일 수 있으며, 상기 열처리 방법은 특별히 제한되지 않으나, 예를 들어 400 ~ 900℃ 온도 범위로 가열하여 진행되는 것일 수 있으며, 상기 열처리의 결과로 상기 입자 표면의 일부 또는 전체에 탄소 코팅층 또는 유리질 리튬 화합물로 이루어진 코팅층이 형성될 수 있다.
상기 코팅층이 탄소 코팅층인 경우, 상기 코팅층의 전구체는 입자 표면에 잔류하고 있는 사용된 반응 용매일 수 있다. 상세하게는 상기 사용된 용매인 글리세롤(glycerol)이 건조 단계 이후에도 입자 표면에 일부 남아 있을 수 있는데, 이들은 400 ~ 900℃ 온도 범위로 가열되는 열처리 과정을 통해 탄화됨으로써, 입자 표면에 탄소 코팅층으로 형성될 수 있다.
한편, 상기 탄소 코팅층의 전구체로서 별도의 유기 화합물이 사용될 수도 있으며, 상기 별도의 유기 화합물이 리튬 인산철 나노분말 입자의 표면에 탄소 코팅층을 형성하기 위하여 투입되는 단계는 특별히 제한되지 않는다.
본 발명의 일실시예에서, 상기 유기 화합물은 리튬 전구체, 철 전구체, 인 전구체와 함께 용매에 혼합되고 반응함으로써, 리튬 인산철 입자가 형성될 때 입자 표면에 탄소 코팅층으로 형성되는 것일 수 있다.
한편, 또 다른 일실시예에서, 상기 유기 화합물은 리튬 전구체, 철 전구체, 인 전구체가 용매에 혼합되고 반응하여 리튬 인산철 입자가 형성된 후, 이에 투입되어 입자 표면에 탄소 코팅층으로 형성되는 것일 수도 있다.
더 나아가 또 다른 실시예에서는, 리튬 전구체, 철 전구체, 인 전구체가 용매에 혼합되고 반응하여 리튬 인산철 입자가 형성되고, 이를 세척 및 건조 한 다음, 여기에 투입되어 혼합되고 열처리됨으로써 입자 표면에 탄소 코팅층으로 형성되는 것일 수도 있다.
상기 유기 화합물은 특별히 제한되지 않으나, 예를 들어 글루코오스, 수크로오스, 갈라톡오스, 프록토오스, 락토오스, 녹말, 마노스, 리보스, 알도헥소스, 케도헥소스 및 이들의 조합으로 이루어지는 군에서 선택되는 1 또는 2 이상의 혼합물일 수 있다.
한편, 상기 코팅층이 유리질 리튬 화합물 코팅층인 경우, 특별히 제한되지 않으나 예를 들어, 리튬 포스페이트계의 비정질의 코팅층일 수 있으며, 이때 전구체 물질은 과량의 리튬 전구체 및 인 전구체일 수 있으며, 추가적인 리튬과 인 화합물일 수도 있다.
상기 단계에서 입자 표면에 형성되는 탄소 코팅층 또는 유리질 리튬 화합물 코팅층은 특별히 제한되지 않으나, 예를 들어 10㎚ 이하의 두께를 가질 수 있다.
리튬 인산철 분말은 전기전도도가 낮기 때문에, 제조된 미세한 크기의 리튬 인산철 분말 입자의 일부 표면 또는 전면에 상기와 같이 탄소 코팅층 또는 유리질 리튬 화합물을 포함하는 코팅층을 형성함으로써, 리튬 인산철 분말의 전기전도도를 높일 수 있다.
상기 일련의 단계를 통하여 합성되는 리튬 인산철 나노분말 입자는 올리빈 구조를 가진다.
한편, 상기 입자 크기 및 입도 분포는 리튬 전구체, 철 전구체, 인 전구체를 달리하거나, 반응 온도 및 반응 시간 등의 공정 변수를 조절함으로써 제어할 수 있다. 예를 들어, 리튬 전구체로 리튬 아세테이트를 사용하면 제조되는 리튬 인산철 입자의 크기를 줄일 수 있으며, 반응 온도를 올리거나 반응 시간을 늘릴수록 리튬 인산철 입자의 크기가 커진다.
상기 과정으로 제조되는 리튬 인산철 나노분말의 입자 크기(이하, 입경이라 한다)는 특별히 제한되지 않으나, 예를 들어 30 ~ 300㎚일 수 있으며, 입도 분포 또한 특별히 제한되지 않으나, 예를 들어 입경 평균 값의 50% 이하일 수 있다.
리튬 2차 전지 구현
아울러, 본 발명에서는 상기 올리빈 결정 구조의 리튬 인산철 나노분말을 포함하는 포함하는 양극 활물질을 제공할 수 있다. 상기 양극 활물질에는 상기 리튬 인산철 분말 이외에도 선택적으로 도전재, 바인더 및 충진제 등을 더 포함하여 구성될 수 있다.
상기 도전재는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되지 않으며, 예를 들어 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 도전재는 통상적으로 양극 활물질을 포함한 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 포함될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합 및 집전체에 대한 결합에 조력하는 성분이면 특별히 제한되지 않으며, 예를 들어 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무, 불소 고무, 다양한 공중합제 등을 들 수 있다.
상기 바인더는 통상적으로 양극 활물질을 포함하는 혼합물 전체 중량을 기준으로 1 내지 30 중량%로 포함될 수 있다.
상기 충진제는 전극의 팽창을 억제하는 성분으로서 선택적으로 사용될 수 있으며, 당해 전지에 화학적 변화를 유발하지 않는 섬유상 재료라면 특별히 제한되지 않으며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올레핀계 중합제; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용될 수 있다.
또한, 본 발명의 일실시예에서, 상기 양극 활물질이 집전체 상에 도포되어 있는 리튬 이차전지용 양극을 제공한다.
상기 리튬 이차전지용 양극은, 예를 들면 상기 양극 활물질을 용매에 용해하여 슬러리를 만든 후 이를 집전체 상에 도포한 후 건조 및 압연하여 제조될 수 있다.
상기 양극 집전체는 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소 또는 알루미늄이나 스테인레스 스틸 표면에 탄소, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
한편, 상기 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 상기 집전체 표면 상에 미세한 요철을 형성하여 양극 활물질의 접착력을 높일 수도 있다. 예를 들어 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
또한, 본 발명의 일실시예에서, 상기 양극 활물질을 포함하는 양극과, 음극, 분리막, 및 리튬염 함유 비수 전해액으로 구성된 리튬 이차전지를 제공할 수 있다.
상기 음극은, 예를 들어 음극 집전체 상에 음극 활물질을 포함하고 있는 음극 합제를 도포한 후 건조하여 제조되며, 상기 음극 합제에는, 필요에 따라, 앞서 설명한 바와 같은 도전재, 바인더, 충진제 등의 성분들이 포함될 수 있다.
상기 음극 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인레스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인레스 스틸의 표면에 탄소, 니켈, 티탄, 은 등으로 표면처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다.
한편, 상기 집전체는 통상적으로 3 내지 500㎛의 두께를 가질 수 있으며, 양극 집전체와 마찬가지로, 상기 집전체 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있다. 예를 들어, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 분리막은 양극과 음극 사이에 개재되며, 높은 이온 투과도와 기계적 강도를 가지는 절연성의 얇은 박막이 사용될 수 있다.
분리막의 기공 직경은 일반적으로 0.01 내지 10㎛이고, 두께는 일반적으로 5 내지 300㎛일 수 있다.
상기 분리막은 예를 들어, 내화학성 및 소수성의 폴리프로필렌 등의 올레핀계 폴리머; 유리섬유 또는 폴리에틸렌 등으로 만들어진 시트나 부직포 등이 사용될 수 있다.
전해질로서 폴리머 등의 고체 전해질이 사용되는 경우에는 고체 전해질이 분리막을 겸할 수도 있다.
상기 리튬염 함유 비수계 전해액은 전해액과 리튬염으로 이루어져 있으며, 상기 전해액으로는 비수계 유기용매 또는 유기 고체 전해질 등이 사용된다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카르보네이트, 에틸렌 카르보네이트, 부틸렌 카르보네이트, 디메틸 카르보네이트, 디에틸 카르보네이트, 감마-부티로락톤, 1,2-디메톡시에탄, 테트라히드록시푸란, 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카르보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
상기 유기 고체 전해질로는, 예를 들어, 폴리에틸렌 유도체, 폴리에틸렌 옥사이드 유도체, 폴리프로필렌 옥사이드 유도체, 인산 에스테르 폴리머, 폴리 에지테이션 리신(agitation lysine), 폴리에스테르 술파이드, 폴리비닐 알코올, 폴리 불화 비닐리덴, 이온성 해리기를 포함하는 중합제 등이 사용될 수 있다.
상기 리튬염은 상기 비수계 전해질에 용해되기 좋은 물질로서, 예를 들어, LiCl, LiBr, LiI, LiClO4, LiBF4, LiB10C10, LiPF6, LiCF3SO3, LiCF3CO2, LiAsF6, LiSbF6, LiAlCl4, CH3SO3Li, CF3SO3Li, (CF3SO2)2NLi, 클로로 보란 리튬, 저급 지방족 카르본산 리튬, 4-페닐붕산리튬, 이미드 등이 사용될 수 있다.
또한, 전해액에는 충방전 특성, 난연성 등의 개선을 목적으로, 예를 들어, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사 인산 트리 아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환 옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올, 삼염화 알루미늄 등이 첨가될 수도 있다. 경우에 따라서는, 불연성을 부여하기 위하여, 사염화탄소, 삼불화에틸렌 등의 할로겐 함유 용매를 더 포함시킬 수도 있고, 고온 보존 특성을 향상시키기 위하여 이산화탄산 가스를 더 포함시킬 수도 있다.
상기한바와 같이 본 발명의 리튬 인산철 나노분말 제조방법은, 비수용액으로서 신규한 반응 용매인 글리세롤(glycerol)을 사용함으로써, 종래의 수열 합성법, 초임계수법 및 글리코써멀 방법과 대비할 때, 상대적인 저압 조건에서 반응을 진행시킬 수 있게 되고, 이에 따라 고온/고압 반응기를 사용하지 않아 공정의 안전성과 경제성을 확보하면서도, 균일한 입자 크기를 가진 입도 분포가 제어된 리튬 인산철 나노분말을 용이하게 제조할 수 있다.
또한, 상기 제조된 리튬 인산철 나노분말을 양극활물질로 포함하는 리튬 이차전지는 용량 및 안정성 면에서 우수하다.
실시예
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명한다. 그러나, 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예 1a, 1b 및 1c
리튬 히드록사이드(LiOH) 1.44g, 구연산 제이철(FeC6H5O7) 14.7g 및 인산(H3PO4) 5.88g을 글리세롤 300ml에 넣고 충분히 교반시켜 혼합 용액을 제조하였다.
충분히 교반된 상기 혼합 용액을 500ml 반응기에 투입한 후, 260℃에서 각각 4시간(실시예 1a), 24시간(실시예 1b) 및 48시간(실시예 1c) 동안 반응시켰다.
상기 반응 후, 남아있는 반응액을 냉각하고, 이를 아세톤 및 메탄올로 순차적으로 세척하였다.
세척이 끝난 후, 진공 건조기로 생성물을 건조시켰다.
상기 세척/건조가 끝난 후 얻어진 반응 생성물을 X-회절 분광법 및 전자현미경을 이용하여 분석한 결과, 상기 반응 생성물은 약 120㎚ 입자 크기를 가진 순수한 올리빈 결정 구조의 리튬 인산철 나노분말인 것을 확인할 수 있었다(도 1 및 2 참조).
아울러, 상기 방법에 의해 얻어진 리튬 인산철 나노분말(실시예 1c)의 입도 분포를 측정한 그래프는 도 3과 같다. 상기 그래프에서 알 수 있듯이, 입도 분포가 균일한 것을 확인할 수 있었다.
실시예 2a, 2b 및 2c
리튬 히드록사이드 하이드레이트(LiOH·H2O) 2.52g, 구연산 제이철 수화물(FeC6H5O7·nH2O) 14.6964g 및 인산(H3PO4) 5.88g을 글리세롤 300ml에 넣고 충분히 교반시켜 혼합 용액을 제조하였다.
충분히 교반된 상기 혼합 용액을 500ml 반응기에 투입한 후, 260℃에서 4시간(실시예 2a), 24시간(실시예 2b) 및 72시간(실시예 2c) 동안 반응시켰다.
상기 반응 후, 남아있는 반응액을 냉각하고, 이를 아세톤 및 메탄올을 이용하여 순차적으로 세척하였다. 그 다음으로, 진공 건조기에서 생성물을 건조시켰다.
상기 세척/건조가 끝난 후 얻어진 반응 생성물을 X-회절 분광법 및 전자현미경을 이용하여 분석한 결과, 상기 반응 생성물은 약 200㎚ 입자 크기를 가진 순수한 올리빈 결정 구조의 리튬 인산철 나노분말인 것을 확인할 수 있었다(도 4 및 5 참조).
아울러, 상기 방법에 의해 얻어진 리튬 인산철 나노분말(실시예 2c)의 입도 분포를 측정한 그래프는 도 6과 같다. 상기 그래프에서 알 수 있듯이, 입도 분포가 균일한 것을 확인할 수 있었다.
상기 실시예를 통하여 확인할 수 있듯이, 본 발명의 방법에 따라 제조되는 리튬 인산철 나노분말은 입자 크기가 작고 균일하며, 입도 분포 특성이 우수하다.

Claims (20)

  1. (a) 글리세롤(glycerol) 용매에 리튬 전구체, 철 전구체 및 인 전구체를 넣고 혼합 용액을 제조하는 단계; 및
    (b) 상기 혼합 용액을 반응기에 투입하고 가열하여, 1bar 이상 10bar 미만의 압력 조건 하에서 리튬 인산철 나노분말을 합성하는 단계; 를 포함하고, 상기 반응 용매는 비수용액인 것을 특징으로 하는 리튬 인산철 나노분말 제조방법.
  2. 제 1 항에 있어서,
    (c) 상기 합성된 리튬 인산철 나노분말을 열처리하여, 상기 나노분말의 개별 입자 표면의 일부 또는 전체에 코팅층을 형성하는 단계;를 더 포함하는 리튬 인산철 나노분말 제조방법.
  3. 제 1 항에 있어서,
    상기 (b) 단계에서 합성된 리튬 인산철 나노분말은 세척 단계 및 건조 단계를 순차적으로 거치는 리튬 인산철 나노분말 제조방법.
  4. 제 1 항에 있어서,
    상기 (b) 단계는 글리세롤(glycerol)의 끓는점 이하의 온도에서 진행되는 리튬 인산철 나노분말 제조방법.
  5. 제 1 항에 있어서,
    상기 (b) 단계는 150 ~ 290℃ 온도 범위 내에서 진행되는 리튬 인산철 나노분말 제조방법.
  6. 제 1 항에 있어서,
    상기 (b) 단계는 1 ~ 72 시간 동안 진행되는 리튬 인산철 나노분말 제조방법.
  7. 제 1 항에 있어서,
    상기 리튬 전구체는 리튬 아세테이트 디하이드레이트 (CH3COOLi·2H2O), 리튬 히드록사이드 모노하이드레이트 (LiOH·H2O), 리튬 하이드록사이드(LiOH), 리튬 카보네이트(Li2CO3), 리튬 포스페이트(Li3PO4), 리튬 포스페이트 도데카하이드레이트(Li3PO4·2H2O) 및 리튬 옥살레이트(Li2C2O4)로 이루어진 군으로부터 선택된 1 또는 2 이상의 혼합물인 리튬 인산철 나노분말 제조방법.
  8. 제 1 항에 있어서,
    상기 철 전구체는 구연산 제2철(FeC6H5O7), 구연산 제2철 수화물(FeC6H5O7·nH2O), 황산 제1철 7수화물(FeSO4·H2O), 옥살산 철 2수화물(FeC2O4·H2O), 철 아세틸아세토네이트(Fe(C5H7O2)3), 인산 제2철 2수화물(FePO4·H2O) 및 수산화 제2철(FeO(OH))로 이루어진 군으로부터 선택된 1 또는 2 이상의 혼합물인 리튬 인산철 나노분말 제조방법.
  9. 제 1 항에 있어서,
    상기 인 전구체는 트리-암모늄포스페이트 트리하이드레이트((NH4)3PO4·H2O), 암모늄 포스페이트((NH4)2HPO4), 암모늄 디히드로젠 포스페이트(NH4H2PO4), 및 인산(H3PO4)으로 이루어진 군으로부터 선택된 1 또는 2 이상의 혼합물인 리튬 인산철 나노분말 제조방법.
  10. 제 2 항에 있어서,
    상기 열처리는 400 ~ 900℃ 온도 범위로 가열하여 진행되는 것인 리튬 인산철 나노분말 제조방법.
  11. 제 3 항에 있어서,
    상기 세척 단계는 아세톤과 메탄올을 순차적으로 사용하여 세척하는 리튬 인산철 나노분말 제조방법.
  12. 삭제
  13. 삭제
  14. 삭제
  15. 삭제
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
KR1020140002573A 2013-01-10 2014-01-08 리튬 인산철 나노분말 제조방법 KR101561376B1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
TW103100907A TWI538879B (zh) 2013-01-10 2014-01-09 用於製備磷酸鋰鐵奈米粉末之方法
JP2015528416A JP5967600B2 (ja) 2013-01-10 2014-01-09 リチウムリン酸鉄ナノ粉末の製造方法
PCT/KR2014/000269 WO2014109578A1 (ko) 2013-01-10 2014-01-09 리튬 인산철 나노분말 제조방법
CN201480002200.9A CN104603060B (zh) 2013-01-10 2014-01-09 磷酸铁锂纳米粉末的制备方法
EP14738037.2A EP2871160B1 (en) 2013-01-10 2014-01-09 Method for preparing lithium iron phosphate nanopowder
US14/510,370 US9865875B2 (en) 2013-01-10 2014-10-09 Method for preparing lithium iron phosphate nanopowder

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130003032 2013-01-10
KR1020130003032 2013-01-10
KR1020130055476 2013-05-16
KR20130055476 2013-05-16

Publications (2)

Publication Number Publication Date
KR20140090952A KR20140090952A (ko) 2014-07-18
KR101561376B1 true KR101561376B1 (ko) 2015-10-19

Family

ID=51738343

Family Applications (3)

Application Number Title Priority Date Filing Date
KR1020140002572A KR101561375B1 (ko) 2013-01-10 2014-01-08 리튬 인산철 나노분말 제조방법
KR1020140002574A KR101561377B1 (ko) 2013-01-10 2014-01-08 리튬 인산철 나노분말 제조방법
KR1020140002573A KR101561376B1 (ko) 2013-01-10 2014-01-08 리튬 인산철 나노분말 제조방법

Family Applications Before (2)

Application Number Title Priority Date Filing Date
KR1020140002572A KR101561375B1 (ko) 2013-01-10 2014-01-08 리튬 인산철 나노분말 제조방법
KR1020140002574A KR101561377B1 (ko) 2013-01-10 2014-01-08 리튬 인산철 나노분말 제조방법

Country Status (7)

Country Link
US (3) US9608270B2 (ko)
EP (3) EP2924006B1 (ko)
JP (3) JP5974412B2 (ko)
KR (3) KR101561375B1 (ko)
CN (3) CN104583127B (ko)
TW (3) TWI522316B (ko)
WO (3) WO2014109578A1 (ko)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101561373B1 (ko) * 2013-01-10 2015-10-19 주식회사 엘지화학 리튬 인산철 나노분말 제조방법
KR101572345B1 (ko) * 2013-01-10 2015-11-26 주식회사 엘지화학 탄소 코팅 리튬 인산철 나노분말 제조방법
KR101561375B1 (ko) 2013-01-10 2015-10-19 주식회사 엘지화학 리튬 인산철 나노분말 제조방법
CN105110305B (zh) * 2015-08-19 2017-03-08 南京邮电大学 一种超临界二氧化碳辅助制备多原子层黑磷的方法
JP2018136625A (ja) * 2017-02-20 2018-08-30 Kddi株式会社 識別装置、識別方法及び識別プログラム
CN110383564B (zh) * 2017-03-17 2022-09-20 旭化成株式会社 非水系电解液、非水系二次电池、电池包和混合动力系统
CN109305917B (zh) * 2017-07-28 2021-11-12 中国石油化工股份有限公司 一种卤代苯胺的合成方法
CN108682798B (zh) * 2018-04-23 2021-01-01 北大先行科技产业有限公司 一种立方体碳包覆钒基正极材料的制备方法
CN109761210A (zh) * 2018-12-13 2019-05-17 天津力神电池股份有限公司 磷酸锰铁锂的制备方法及其包覆三元材料的方法
CN111646449B (zh) * 2019-03-04 2023-02-03 贝特瑞(天津)纳米材料制造有限公司 一种磷酸铁锂材料、及其制备方法和用途
KR20210117414A (ko) 2020-03-19 2021-09-29 (주)닥터송에이치앤비 눈 및 애교 필러용 캐뉼라 및 그 제조 방법
WO2022171074A1 (zh) * 2021-02-09 2022-08-18 贝特瑞(天津)纳米材料制造有限公司 磷酸铁锂及其制备方法、锂离子电池
CN113264515B (zh) * 2021-05-19 2023-11-17 西北工业大学 一种磷酸镍纳米管多级组装结构材料及其制备方法和应用
CN114105115B (zh) * 2021-11-22 2023-09-19 青岛九环新越新能源科技股份有限公司 磷酸铁及磷酸铁锂的生产方法和应用
CN114057176B (zh) * 2021-11-22 2023-09-19 青岛九环新越新能源科技股份有限公司 磷酸铁锂及其制备方法和应用
CN114644329B (zh) 2022-04-12 2023-07-07 深圳市沃伦特新能源有限公司 一种纳米磷酸铁锰锂的水热合成方法
CN115028153A (zh) * 2022-04-18 2022-09-09 福州华复新能源科技有限公司 一种低成本等摩尔节省锂资源的水热法生产磷酸铁锂的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100808446B1 (ko) 2006-12-26 2008-03-03 건국대학교 산학협력단 리튬 전지의 LiFePO4 분말의 제조방법
JP2008103094A (ja) 2006-10-17 2008-05-01 Samsung Sdi Co Ltd 非水二次電池
JP2008130526A (ja) 2006-11-27 2008-06-05 Hitachi Maxell Ltd 電気化学素子用活物質、その製造方法、および電気化学素子

Family Cites Families (73)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5747193A (en) * 1996-07-11 1998-05-05 Bell Communications Research, Inc. Process for synthesizing lixmny04 intercalation compounds
JP3993394B2 (ja) 2001-03-30 2007-10-17 カウンシル オブ サイエンティフィク アンド インダストリアル リサーチ カンラン石構造リチウムニッケルホスフェート複合体
DE60333921D1 (de) 2002-06-21 2010-10-07 Umicore Nv Kohlenstoffbeschichtete li-haltige pulver und prozess zu deren herstellung
US7390472B1 (en) 2002-10-29 2008-06-24 Nei Corp. Method of making nanostructured lithium iron phosphate—based powders with an olivine type structure
US7632317B2 (en) 2002-11-04 2009-12-15 Quallion Llc Method for making a battery
US8337804B2 (en) 2003-04-28 2012-12-25 Centrum Fur Angewandte Nanotechnologie (Can) Gmbh Synthesis of nanoparticles comprising metal (III) vanadate
JP4522683B2 (ja) 2003-10-09 2010-08-11 住友大阪セメント株式会社 電極材料粉体の製造方法と電極材料粉体及び電極並びにリチウム電池
DE10353266B4 (de) * 2003-11-14 2013-02-21 Süd-Chemie Ip Gmbh & Co. Kg Lithiumeisenphosphat, Verfahren zu seiner Herstellung und seine Verwendung als Elektrodenmaterial
TWI279020B (en) 2004-11-03 2007-04-11 Tatung Co Ltd Preparation of olivine LiFePO4 cathode materials for lithium batteries via a solution method
DE102005015613A1 (de) 2005-04-05 2006-10-12 Süd-Chemie AG Kristallines Ionenleitendes Nanomaterial und Verfahren zu seiner Herstellung
US8323832B2 (en) 2005-08-08 2012-12-04 A123 Systems, Inc. Nanoscale ion storage materials
CN100420075C (zh) 2005-12-22 2008-09-17 上海交通大学 一种锂离子电池正极材料磷酸铁锂的制备方法
CN101415640B (zh) * 2006-04-06 2015-08-12 陶氏环球技术公司 锂二次电池正极材料的锂金属磷酸盐的纳米粒子的合成
KR100940979B1 (ko) 2006-05-08 2010-02-05 주식회사 엘지화학 LiFeP04의 제조방법
CN100461507C (zh) * 2006-12-27 2009-02-11 中国科学院上海微系统与信息技术研究所 纳米磷酸亚铁锂-碳复合正极材料的制备方法
EP2124272B1 (en) 2006-12-28 2015-06-03 GS Yuasa International Ltd. Positive electrode material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery comprising the same, and method for producing the same
CN100480178C (zh) 2007-01-16 2009-04-22 北大先行科技产业有限公司 一种可调控其颗粒形貌的磷酸铁锂制备方法
KR100821832B1 (ko) 2007-04-20 2008-04-14 정성윤 리튬전이금속 인산화물의 나노입자 분말의 제조방법
US8404390B2 (en) * 2007-04-20 2013-03-26 Ube Industries, Ltd. Nonaqueous electrolyte solution for lithium secondary battery and lithium secondary battery using the same
KR20090131680A (ko) 2007-07-31 2009-12-29 비와이디 컴퍼니 리미티드 리튬 이온 2차 전지용 양극 활성 물질로서 리튬 철 인산염을 제조하는 방법
US20090117020A1 (en) 2007-11-05 2009-05-07 Board Of Regents, The University Of Texas System Rapid microwave-solvothermal synthesis and surface modification of nanostructured phospho-olivine cathodes for lithium ion batteries
DE102007058674A1 (de) 2007-12-06 2009-07-02 Süd-Chemie AG Nanopartikuläre Zusammensetzung und Verfahren zu deren Herstellung
CN105355920A (zh) 2008-03-31 2016-02-24 户田工业株式会社 磷酸铁锂颗粒粉末及其制造方法、正极材料片和二次电池
US8460573B2 (en) 2008-04-25 2013-06-11 Sumitomo Osaka Cement Co., Ltd. Method for producing cathode active material for lithium ion batteries, cathode active material for lithium ion batteries obtained by the production method, lithium ion battery electrode, and lithium ion battery
CN101591012B (zh) 2008-05-27 2012-06-13 北京有色金属研究总院 一种用于锂离子电池正极材料磷酸铁锂的制备方法
JP5135098B2 (ja) 2008-07-18 2013-01-30 パナソニック株式会社 無線通信装置
KR101003136B1 (ko) * 2008-08-08 2010-12-21 전남대학교산학협력단 졸-겔법을 이용한 저가형 리튬 2차 전지용 LiFePO4 양극 물질의 제조방법
KR101089089B1 (ko) * 2008-10-22 2011-12-06 주식회사 엘지화학 올리빈 구조의 리튬 철인산화물 및 이의 분석 방법
KR100939647B1 (ko) 2009-01-22 2010-02-03 한화석유화학 주식회사 전극 활물질인 음이온 부족형 비화학양론 리튬 전이금속 다중산 화합물, 그 제조 방법 및 그를 이용한 전기화학 소자
JP2010231958A (ja) 2009-03-26 2010-10-14 Sanyo Electric Co Ltd 非水電解質二次電池
JP5509918B2 (ja) 2009-03-27 2014-06-04 住友大阪セメント株式会社 リチウムイオン電池用正極活物質の製造方法とリチウムイオン電池用正極活物質及びリチウムイオン電池用電極並びにリチウムイオン電池
US9682861B2 (en) * 2009-05-04 2017-06-20 Meecotech, Inc. Electrode active composite materials and methods of making thereof
CN101635352A (zh) 2009-07-20 2010-01-27 万向电动汽车有限公司 一种碳包覆锂离子电池正极材料的制备方法
EP2494634A1 (en) * 2009-10-29 2012-09-05 Uchicago Argonne, LLC, Operator Of Argonne National Laboratory Autogenic pressure reactions for battery materials manufacture
CN101719548A (zh) * 2009-11-05 2010-06-02 翟东军 用作锂离子电池正极材料的复合磷酸亚铁锂及其制备方法
JP5529286B2 (ja) 2009-11-10 2014-06-25 ロックウッド イタリア スパ LiFePO4粉末の製造のための水熱方法
KR101313156B1 (ko) 2009-12-04 2013-09-30 주식회사 아모그린텍 다성분계 나노 복합산화물 분말과 그 제조방법, 이를 이용한 전극의 제조방법과 이를 이용한 박막 전지 및 그 제조방법
KR101146556B1 (ko) 2009-12-21 2012-05-25 한국과학기술연구원 인산화물계 양극활물질 나노입자 연속 제조방법
CN101777648B (zh) 2010-01-26 2012-08-22 中国科学院宁波材料技术与工程研究所 单分散磷酸铁锂纳米材料的制备方法及其锂离子二次电池
US20110223359A1 (en) 2010-02-12 2011-09-15 Applied Materials, Inc. HYDROTHERMAL SYNTHESIS OF LiFePO4 NANOPARTICLES
US9139429B2 (en) * 2010-03-02 2015-09-22 Guiqing Huang High performance cathode material LiFePO4, its precursors and methods of making thereof
JP5544934B2 (ja) * 2010-03-03 2014-07-09 住友大阪セメント株式会社 リチウムイオン電池用正極活物質の製造方法
CN102844916B (zh) * 2010-04-21 2018-12-04 株式会社Lg 化学 橄榄石晶体结构的锂铁磷酸盐和使用所述锂铁磷酸盐的锂二次电池
KR101392816B1 (ko) 2010-04-21 2014-05-08 주식회사 엘지화학 이차전지용 양극 활물질 및 이를 포함하는 리튬 이차전지
CN202042565U (zh) 2010-07-30 2011-11-16 比亚迪股份有限公司 一种电池的加热电路
JP5630673B2 (ja) 2010-08-18 2014-11-26 株式会社村田製作所 リン酸鉄の製造方法、リン酸鉄リチウム、電極活物質、及び二次電池
CN101944601B (zh) 2010-09-27 2012-08-01 彩虹集团公司 一种纳米磷酸铁锂均匀碳包覆的方法
CN102640332B (zh) 2010-09-27 2014-11-05 松下电器产业株式会社 锂离子二次电池用正极活性物质粒子、使用了该正极活性物质粒子的正极及锂离子二次电池
PL2500965T3 (pl) 2010-09-30 2020-05-18 Lg Chem, Ltd. Katoda do dodatkowego akumulatora litowego i zawierający ją dodatkowy akumulator litowy
KR101235596B1 (ko) 2010-10-14 2013-02-21 한국과학기술연구원 리튬 전이금속 인산화물 나노입자, 분산용액, 박막과 이를 이용한 리튬이차전지 및 그 제조방법
JP5557715B2 (ja) * 2010-12-06 2014-07-23 株式会社日立製作所 リチウムイオン二次電池用正極材料およびその製造方法,リチウムイオン二次電池用正極活物質,リチウムイオン二次電池用正極,リチウムイオン二次電池
JP5678685B2 (ja) 2011-01-25 2015-03-04 住友金属鉱山株式会社 リチウム二次電池用正極活物質の前駆体とその製造方法およびリチウム二次電池用正極活物質の製造方法
JP2012167314A (ja) 2011-02-14 2012-09-06 Kri Inc 金属ナノ粒子の製造方法
JP2012195156A (ja) 2011-03-16 2012-10-11 Toyo Ink Sc Holdings Co Ltd リチウム二次電池用正極活物質材料、その製造方法、及びそれを用いたリチウム二次電池
CN102420324A (zh) 2011-03-23 2012-04-18 上海中兴派能能源科技有限公司 纳米核壳结构的磷酸铁锂正极材料及其制备方法
CN102971893B (zh) 2011-05-06 2015-07-01 丰田自动车株式会社 锂离子二次电池
TWI443899B (zh) 2011-06-22 2014-07-01 Nat Univ Tsing Hua 鋰離子電池之磷酸鋰鐵粉末及其製作方法
CN102275890A (zh) * 2011-07-19 2011-12-14 彩虹集团公司 一种纳米磷酸铁锂的微波合成方法
CN102299322B (zh) * 2011-07-22 2014-12-03 合肥工业大学 一种磷酸铁锂正极材料的离子热制备方法
US9929398B2 (en) 2011-07-29 2018-03-27 Toyota Jidosha Kabushiki Kaisha Lithium-ion secondary battery and method of manufacturing the same
JP6029898B2 (ja) 2011-09-09 2016-11-24 株式会社半導体エネルギー研究所 リチウム二次電池用正極の作製方法
CN102367170A (zh) 2011-09-26 2012-03-07 宁波工程学院 核壳型碳包覆纳米级磷酸铁锂复合正极材料及其制备方法
WO2013055792A1 (en) 2011-10-10 2013-04-18 The Regents Of The University Of California Size and morphologically controlled nanostructures for energy storage
CN103137964B (zh) 2011-11-24 2016-02-17 清华大学 磷酸铁锂二次结构及其制备方法以及锂离子电池
EP2600451A3 (en) * 2011-11-29 2015-02-11 Samsung Electronics Co., Ltd Electrode catalyst for fuel cell, method of preparing the same, and membrane electrode assembly and fuel cell including electrode catalyst
CN102491304B (zh) * 2011-12-02 2014-04-09 东北大学 在离子型低共熔混合物中制备磷酸铁锂的方法
CN102544488A (zh) 2011-12-26 2012-07-04 彩虹集团公司 一种动力电池正极材料LiFePO4粉末的制备方法
TW201405920A (zh) 2012-05-29 2014-02-01 Clariant Canada Inc 製備晶形電極材料的方法及由之獲致的材料
WO2014012258A1 (zh) 2012-07-20 2014-01-23 深圳市德方纳米科技有限公司 一种电池正极材料的自热蒸发液相合成法
CN102790216A (zh) 2012-08-24 2012-11-21 广州市香港科大霍英东研究院 一种锂离子电池正极材料磷酸铁锂的超临界溶剂热制备方法
KR101572345B1 (ko) 2013-01-10 2015-11-26 주식회사 엘지화학 탄소 코팅 리튬 인산철 나노분말 제조방법
KR101561373B1 (ko) 2013-01-10 2015-10-19 주식회사 엘지화학 리튬 인산철 나노분말 제조방법
KR101561375B1 (ko) 2013-01-10 2015-10-19 주식회사 엘지화학 리튬 인산철 나노분말 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008103094A (ja) 2006-10-17 2008-05-01 Samsung Sdi Co Ltd 非水二次電池
JP2008130526A (ja) 2006-11-27 2008-06-05 Hitachi Maxell Ltd 電気化学素子用活物質、その製造方法、および電気化学素子
KR100808446B1 (ko) 2006-12-26 2008-03-03 건국대학교 산학협력단 리튬 전지의 LiFePO4 분말의 제조방법

Also Published As

Publication number Publication date
CN104583127B (zh) 2016-08-24
EP2924006B1 (en) 2019-08-28
US9543582B2 (en) 2017-01-10
CN104918888A (zh) 2015-09-16
EP2871160B1 (en) 2019-09-11
WO2014109578A1 (ko) 2014-07-17
TW201442946A (zh) 2014-11-16
EP2871157A1 (en) 2015-05-13
CN104918888B (zh) 2017-04-12
US9865875B2 (en) 2018-01-09
KR20140090951A (ko) 2014-07-18
WO2014109579A1 (ko) 2014-07-17
TWI658028B (zh) 2019-05-01
EP2871160A1 (en) 2015-05-13
CN104603060B (zh) 2018-01-26
US20150280236A1 (en) 2015-10-01
KR101561375B1 (ko) 2015-10-19
TW201446654A (zh) 2014-12-16
JP2016508115A (ja) 2016-03-17
KR101561377B1 (ko) 2015-10-20
EP2924006A4 (en) 2015-12-09
EP2871160A4 (en) 2015-10-21
KR20140090952A (ko) 2014-07-18
CN104603060A (zh) 2015-05-06
EP2871157B1 (en) 2019-08-28
EP2871157A4 (en) 2016-02-10
KR20140090953A (ko) 2014-07-18
CN104583127A (zh) 2015-04-29
JP2015527291A (ja) 2015-09-17
TWI538879B (zh) 2016-06-21
US20150024265A1 (en) 2015-01-22
WO2014109574A1 (ko) 2014-07-17
JP5974412B2 (ja) 2016-08-23
TWI522316B (zh) 2016-02-21
JP6179040B2 (ja) 2017-08-16
EP2924006A1 (en) 2015-09-30
US9608270B2 (en) 2017-03-28
TW201442987A (zh) 2014-11-16
JP5967600B2 (ja) 2016-08-10
JP2015531738A (ja) 2015-11-05
US20150030918A1 (en) 2015-01-29

Similar Documents

Publication Publication Date Title
KR101561376B1 (ko) 리튬 인산철 나노분말 제조방법
KR101586556B1 (ko) 탄소 코팅 리튬 인산철 나노분말 제조방법
KR101561373B1 (ko) 리튬 인산철 나노분말 제조방법
KR101580030B1 (ko) 탄소 코팅 리튬 인산철 나노분말의 제조방법
KR101736558B1 (ko) 다공성 리튬 인산철 입자 제조방법
KR20160080243A (ko) 리튬철-망간인산화물 제조 방법 및 이로부터 제조된 올리빈형 리튬철-망간인산화물
KR101768755B1 (ko) 리튬 망간인산화물 합성 방법 및 이로부터 제조된 리튬 망간인산화물
KR101764474B1 (ko) 리튬 망간인산화물 합성 방법 및 이로부터 제조된 다공성 리튬 망간인산화물

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20181002

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20191001

Year of fee payment: 5