KR100998860B1 - 전지 - Google Patents

전지 Download PDF

Info

Publication number
KR100998860B1
KR100998860B1 KR1020097024824A KR20097024824A KR100998860B1 KR 100998860 B1 KR100998860 B1 KR 100998860B1 KR 1020097024824 A KR1020097024824 A KR 1020097024824A KR 20097024824 A KR20097024824 A KR 20097024824A KR 100998860 B1 KR100998860 B1 KR 100998860B1
Authority
KR
South Korea
Prior art keywords
lithium
positive electrode
electrolyte
negative electrode
battery
Prior art date
Application number
KR1020097024824A
Other languages
English (en)
Other versions
KR20100004115A (ko
Inventor
모모에 아다치
시게루 후지타
다쿠야 엔도
야스노부 이와코시
고로 시바모토
Original Assignee
소니 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 소니 주식회사 filed Critical 소니 주식회사
Publication of KR20100004115A publication Critical patent/KR20100004115A/ko
Application granted granted Critical
Publication of KR100998860B1 publication Critical patent/KR100998860B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/40Alloys based on alkali metals
    • H01M4/405Alloys based on lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

충전시의 전지 전압이 높고, 에너지 밀도를 향상시킬 수 있는 전지를 제공한다. 양극(12)과 음극(14)이, 전해질이 함침된 세퍼레이터(15)를 개재시켜 적층되어 있다. 양극(12)은 양극 활성 물질에 리튬, 코발트 및 니켈 중의 하나 이상과 산소를 포함하는 리튬 복합 산화물을 포함한다. 충전시의 전지 전압은 4.25V 이상이다. 양극(12) 중의 탄산리튬 및 황산리튬의 총량은 양극 활성 물질에 대하여 1.0질량% 이하, 전해질 중의 양성자성 불순물의 농도는, 전해질에 대한 질량비로, 양성자로 환산하여 20ppm 이하 또는 전해질 중의 수분량은 전해질에 대한 질량비로 20ppm 이하로 되어 있다. 이에 의해 고전압하에서도 리튬 복합 산화물로부터 금속의 용출이 억제된다.
양극, 음극, 전지, 리튬 복합 산화물, 탄흑연화 탄소, 전해질, 수분량, 전지 전압, 흡장, 이탈, 음극 재료.

Description

전지{Battery}
본 발명은, 양극 및 음극과 함께 전해질을 구비한 전지에 관한 것이며, 특히 양극에서 리튬 복합 산화물을 사용하여 전지 반응종으로서 리튬(Li)을 사용함으로써 기동력(motive power)을 수득하는 전지에 관한 것이다.
최근, 카메라 일체형 VTR(Videotape Recorder; 비디오 테이프 레코더), 휴대전화 또는 랩탑 컴퓨터 등의 휴대용 전자 기기가 많이 등장하여, 이들의 소형화 및 경량화가 도모되고 있다. 이에 따라, 이러한 전자 기기의 휴대용 전원으로서, 전지, 특히 이차 전지의 에너지 밀도를 향상시키기 위한 연구개발이 활발히 진행되고 있다. 이 중에서도 리튬 이차 전지 및 리튬 이온 이차 전지는 종래의 납전지 및 니켈카드뮴 이차 전지에 비해 에너지 밀도가 크기 때문에 기대를 모으고 있다.
이러한 리튬 이차 전지 및 리튬 이온 이차 전지의 양극 활성 물질로서, 방전 용량 등의 여러 가지 특성이 우수하다는 이유에서 리튬과 코발트(Co)를 포함하는 리튬·코발트 복합 산화물, 또는 리튬과 니켈(Ni)을 포함하는 리튬·니켈 복합 산 화물 등이 사용되고 있다. 그러나, 이러한 리튬 복합 산화물을 사용한 리튬 이차 전지 및 리튬 이온 이차 전지에서는, 전지 전압을 4.25V 이상으로 하면, 리튬 복합 산화물이 열화하여 보존 특성 및 충방전 사이클 특성 등의 제특성이 악화된다. 따라서, 이러한 이차 전지의 충전시의 전지 전압은 4.2V 이하가 되도록 설계되어 있다.
그러나, 음극의 개발이 시시각각 진행되어 용량이 향상되거나, 또는 신규 충방전 프로파일을 갖는 재료도 발견됨에 따라, 4.2V보다도 높은 전압이 요구되고 있다. 또한, 일반적으로 리튬 이차 전지 및 리튬 이온 이차 전지의 에너지 밀도는 전지 전압에 의존하기 때문에, 4.2V 이하의 이차 전지에서는, 날마다 높아지는 에너지 밀도에 대한 요구에 대응하기 곤란하다는 문제도 있다. 따라서, 전지 전압을 높게 하는 것은, 리튬 이차 전지 및 리튬 이온 이차 전지에 있어서 중요한 문제이다.
본 발명은 이러한 문제점을 감안하여 이루어진 것으로, 본 발명의 목적은 충전시의 전지 전압이 높고, 에너지 밀도를 향상시킬 수 있는 전지를 제공하는 것이다.
발명의 개시
본 발명에 따르는 제1 전지는, 양극 및 음극과 함께 전해질을 구비한 것으로, 양극은 양극 활성 물질로서 리튬, 코발트 및 니켈 중의 하나 이상과 산소를 포함하는 리튬 복합 산화물을 함유하고, 음극은 음극 활성 물질로서 리튬을 흡장 및 이탈시킬 수 있는 음극 재료, 및 리튬 금속으로 이루어진 그룹으로부터 선택된 1종 이상을 함유하며, 충전시의 전지 전압은 4.25V 이상이고, 양극 중의 탄산리튬 및 황산리튬의 총량은 양극 활성 물질에 대하여 1.0질량% 이하인 것이다.
본 발명에 따르는 제2 전지는, 양극 및 음극과 함께 전해질을 구비한 것으로, 양극은 양극 활성 물질로서 리튬, 코발트 및 니켈 중의 하나 이상과 산소를 포함하는 리튬 복합 산화물을 함유하고, 음극은 음극 활성 물질로서 리튬을 흡장 및 이탈시킬 수 있는 음극 재료, 및 리튬 금속으로 이루어진 그룹으로부터 선택된 1종 이상을 함유하며, 충전시의 전지 전압은 4.25V 이상이고, 전해질 중의 양성자성 불순물의 농도는 전해질에 대한 질량비로 양성자(H+)로 환산하여 20ppm 이하인 것이 다.
본 발명에 따르는 제3 전지는, 양극 및 음극과 함께 전해질을 구비한 것으로, 양극은 양극 활성 물질로서 리튬, 코발트 및 니켈 중의 하나 이상과 산소를 포함하는 리튬 복합 산화물을 함유하고, 음극은 음극 활성 물질로서 리튬을 흡장 및 이탈시킬 수 있는 음극 재료, 및 리튬 금속으로 이루어진 그룹으로부터 선택된 1종 이상을 함유하며, 충전시의 전지 전압은 4.25V 이상이고, 전해질 중의 수분량은 전해질에 대한 질량비로 20ppm 이하인 것이다.
본 발명에 따르는 제1 내지 제3 중의 어느 하나의 전지에서는, 충전시의 전지 전압이 4.25V 이상이고, 또한 양극 중의 탄산리튬 및 황산리튬의 총량이 양극 활성 물질에 대하여 1.0질량% 이하, 또는 전해질 중의 양성자성 불순물의 농도가 전해질에 대한 질량비로 양성자로 환산하여 20ppm 이하, 또는 전해질 중의 수분량이 전해질에 대한 질량비로 20ppm 이하이기 때문에, 고전압하에서도 리튬 복합 산화물로부터의 전이금속의 용출이 억제되어 높은 에너지 밀도가 수득된다.
이하, 본 발명의 실시양태에 관해서, 도면을 참조하여 상세하게 설명한다.
제1 실시양태
도 1은, 본 발명의 제1 실시양태에 따르는 이차 전지의 단면 구조를 도시하 는 것이다. 이러한 이차 전지는 소위 코인형이라고 불리는 것이며, 외장캔(11) 내에 수용된 원판형의 양극(12)과 외장컵(13) 내에 수용된 원판형의 음극(14)이 세퍼레이터(15)를 개재시켜 적층된 것이다. 외장캔(11) 및 외장컵(13)의 주연부는 절연성의 가스켓(16)을 개재시켜 고정시킴으로써 밀폐되어 있다.
외장캔(11) 및 외장컵(13)은, 예를 들면, 스테인레스 또는 알루미늄(Al) 등의 금속에 의해 각각 구성되어 있다.
양극(12)은, 예를 들면, 양극 활성 물질을 포함하며, 필요에 따라 카본 블랙 또는 흑연 등의 전도제와, 폴리비닐리덴 플루오라이드 등의 결착제와 함께 구성되어 있다. 양극 활성 물질로서, 리튬, 코발트 및 니켈 중의 하나 이상과 산소를 포함하는 리튬 복합 산화물을 함유하는 것이 바람직하다. 이는, 높은 전지 전압을 수득할 수 있는 동시에, 가역성, 방전 용량, 충방전 효율 및 전위평탄성이 우수하기 때문이다. 이러한 리튬 복합 산화물로서, 예를 들면, 화학식 LiCoaNibMcO2으로 표시되는 것을 들 수 있다. 상기 화학식에서, M은 코발트 또는 니켈 이외의 금속 원소 중의 1종 이상이며, a, b 및 c의 값은, O<a+b, O≤c, a+b+c=1을 각각 만족시키는 범위내의 값이고, 리튬과 산소의 조성비는 Li:O=1:2에서 조금 벗어날 수 있다. 이 중에서도, 리튬, 코발트 및 니켈 중의 하나 이상 이외에, 망간(Mn), 알루미늄, 마그네슘(Mg), 티탄(Ti), 크롬(Cr) 및 철(Fe)로 이루어진 그룹으로부터 선택된 1종 이상의 금속 원소를 포함하는 것이 바람직하다. 이러한 원소를 첨가함으로써, 결정구조를 안정적으로 하여 화학적 안정성을 높일 수 있으며, 고전압하에서도 높은 특성을 수득할 수 있기 때문이다.
또한, 코발트와 니켈을 함께 포함하는 것이 바람직하다. 코발트를 포함하는 것은 단상(單相)합성이 용이하며, 또한 니켈을 포함하는 것은 고용량인 것이 많기 때문이다. 또한, 망간, 알루미늄, 마그네슘, 티탄, 크롬 및 철로 이루어진 그룹 중에서도 망간을 포함하는 것이 바람직하고, 망간과 상기 그룹의 다른 1종 이상의 금속 원소를 포함하는 것이 보다 바람직하다. 망간을 포함하면, 충방전 사이클 특성을 향상시킬 수 있으며, 망간과 상기 그룹의 다른 1종 이상의 금속 원소를 포함하면, 충방전 효율, 보존 특성 또는 전지 용량 등의 다른 전지 특성도 개선시킬 수 있는 동시에, 예를 들면, 철 등의 염가의 재료를 선택하면, 비용을 삭감할 수 있기 때문이다.
양극(12)은, 또한 리튬 복합 산화물 이외에, 다른 양극 활성 물질을 포함할 수 있다. 다른 양극 활성 물질로서, 예를 들면, 스피넬형 결정구조를 갖는 LiMn2O4 또는 올리빈형 결정구조를 갖는 LiFePO4를 들 수 있다.
음극(14)은, 예를 들면, 음극 활성 물질로서 리튬을 흡장 및 이탈시킬 수 있는 음극 재료를 포함하며, 필요에 따라 폴리비닐리덴 플루오라이드 등의 결착제와 함께 구성되어 있다. 또한, 본 명세서에 있어서 리튬의 흡장·이탈이라고 하는 것은, 리튬 이온이 그 이온성을 상실하지 않고 전기화학적으로 흡장·이탈되는 것을 말한다. 이것은 리튬이 완전한 이온 상태로 존재하는 경우 뿐만 아니라, 완전한 이온 상태라고는 말할 수 없는 상태로 존재하는 경우도 포함한다. 이에 해당하는 경우로서, 예를 들면, 흑연에 대한 리튬 이온의 전기화학적 인터칼레이션 반응에 의한 흡장을 들 수 있다. 또한, 금속간 화합물을 포함하는 합금으로의 리튬의 흡장, 또는 합금의 형성에 의한 리튬의 흡장도 들 수 있다.
리튬을 흡장 및 이탈시킬 수 있는 음극 재료로서, 예를 들면, (002)면의 면간격이 0.340nm 이하인 흑연, (002)면의 면간격이 0.370nm 이상인 난흑연화(難黑鉛化) 탄소 또는 이흑연화(易黑鉛化) 탄소 등의 탄소 재료를 들 수 있다. 이러한 탄소 재료는, 충방전시에 발생하는 결정구조의 변화가 대단히 적고, 높은 충방전 용량을 수득할 수 있는 동시에, 양호한 충방전 사이클 특성을 수득할 수 있기 때문에 바람직하다. 이 중에서도 난흑연화 탄소는 충방전시의 체적 변화를 작게 할 수 있어 보다 우수한 충방전 사이클 특성을 수득할 수 있기 때문에 바람직하다. 또한, 흑연은 초기 용량을 향상시킬 수 있기 때문에 바람직하다.
이러한 탄소 재료로서, 구체적으로는, 열분해 탄소류, 코크스류, 흑연류, 유리형 탄소류, 유기 고분자 화합물 소성체, 탄소섬유 또는 활성탄 등의 탄소질 재료를 들 수 있다. 이 중에서도 코크스류에는 피치 코크스, 니들 코크스 또는 석유 코크스 등이 있으며, 유기 고분자 화합물 소성체라고 하는 것은, 페놀 수지나 푸란 수지 등의 고분자 재료를 적당한 온도로 소성하여 탄소화한 것을 말한다.
리튬을 흡장 및 이탈시킬 수 있는 음극 재료로서, 또한 리튬과 합금을 형성할 수 있는 금속 원소 또는 반금속 원소의 단체(單體), 합금 또는 화합물을 들 수 있다. 이들은 높은 에너지 밀도를 수득할 수 있기 때문에 바람직하며, 특히 탄소 재료와 함께 사용하면, 고에너지 밀도를 수득할 수 있는 동시에, 우수한 충방전 사이클 특성을 수득할 수 있기 때문에 보다 바람직하다. 또한, 탄소 재료는 전도제 로서도 작용하며, 도전성을 향상시킬 수 있기 때문에 보다 바람직하다. 또한 본 명세서에 있어서, 합금에는 2종 이상의 금속 원소로 이루어진 것 외에, 1종 이상의 금속 원소와 1종 이상의 반금속 원소로 이루어진 것도 포함된다. 이러한 조직에는 고용체, 공정(공융혼합물), 금속간 화합물 또는 이들 중의 2종 이상이 공존하는 것이 있다.
이러한 금속 원소 또는 반금속 원소로서, 예를 들면, 주석(Sn), 납(Pb), 알루미늄, 인듐(In), 규소(Si), 아연(Zn), 구리(Cu), 코발트, 안티몬(Sb), 비스무트(Bi), 카드뮴(Cd), 마그네슘, 붕소(B), 갈륨(Ga), 게르마늄(Ge), 비소(As), 은(Ag), 하프늄(Hf), 지르코늄(Zr) 및 이트륨(Y)을 들 수 있다. 이들의 합금 또는 화합물로서, 예를 들면, 화학식 MasMbtLiu 또는 화학식 MapMcqMdr로 표시되는 것을 들 수 있다. 이들 화학식에 있어서, Ma는 리튬과 합금을 형성할 수 있는 금속 원소 및 반금속 원소 중의 1종 이상이고, Mb는 리튬 및 Ma 이외의 금속 원소 및 반금속 원소 중의 1종 이상이고, Mc는 비금속 원소의 1종 이상이고, Md는 Ma 이외의 금속 원소 및 반금속 원소 중의 1종 이상이다. 또한, s, t, u, p, q 및 r의 값은 각각 s>O, t≥O, u≥O, p>O, q>O 및 r≥O이다.
이 중에서도, 단주기형 주기표에서 4B족 금속 원소 또는 반금속 원소의 단체, 합금 또는 화합물이 바람직하고, 특히 바람직한 것은 규소 또는 주석, 또는 이들의 합금 또는 화합물이다. 이들은 결정질이나 무정형일 수 있다.
이러한 합금 또는 화합물에 관해서 구체적으로 예를 들면, LiAl, AlSb, CuMgSb, SiB4, SiB6, Mg2Si, Mg2Sn, Ni2Si, TiSi2, MoSi2, CoSi2, NiSi2, CaSi2, CrSi2, Cu5Si, FeSi2, MnSi2, NbSi2, TaSi2, VSi2, WSi2, ZnSi2, SiC, Si3N4, Si2N2O, SiOv(0<v≤2), SnOw(0<w≤2), SnSiO3, LiSiO 또는 LiSnO 등이 있다.
리튬을 흡장 및 이탈시킬 수 있는 음극 재료로서 추가로 다른 금속 화합물 또는 고분자 재료를 들 수 있다. 다른 금속 화합물로서, 산화철, 산화루테늄 또는 산화몰리브덴 등의 산화물, 또는 LiN3 등을 들 수 있으며, 고분자 재료로서 폴리아세틸렌, 폴리아닐린 또는 폴리피롤 등을 들 수 있다. 리튬을 흡장 및 이탈시킬 수 있는 음극 재료로서, 이들 중 1종 또는 2종 이상을 혼합하여 사용할 수 있다.
세퍼레이터(15)는, 양극(12)과 음극(14)을 격리시켜 양극의 접촉에 의한 전류의 단락을 방지하면서 리튬 이온을 통과시키는 것이다. 당해 세퍼레이터(15)는, 예를 들면, 폴리테트라플루오로에틸렌, 폴리프로필렌 또는 폴리에틸렌 등으로 이루어진 합성 수지제의 다공질막, 또는 세라믹제의 부직포 등의 무기재료로 이루어진 다공질막에 의해 구성되어 있으며, 이들 2종 이상의 다공질막을 적층시킨 구조로 이루어져 있어도 양호하다.
세퍼레이터(15)에는 액상의 전해질이 함침되어 있다. 당해 전해질은, 예를 들면, 용매와 전해질염인 리튬염을 포함하여 구성되어 있다. 용매는 전해질염을 용해시켜 해리시키는 것이다. 용매로서, 비양성자성 용매를 사용하는 것이 바람직하다. 비양성자성 용매로서, 예를 들면, 에틸렌 카보네이트, 프로필렌 카보네이트, 부틸렌 카보네이트, 비닐 에틸렌 카보네이트 또는 비닐렌 카보네이트 등의 환 상 탄산 에스테르, 또는 디메틸 카보네이트, 디에틸 카보네이트 또는 에틸메틸 카보네이트 등의 쇄상 탄산 에스테르, 또는 γ-부티로락톤 또는 γ-발레로락톤 등의 환상 카복실산 에스테르, 또는 아세트산메틸, 프로피온산메틸 또는 부티르산메틸 등의 쇄상 카복실산 에스테르, 또는 설포란, 테트라하이드로푸란, 2-메틸테트라하이드로푸란 또는 1,2-디메톡시에탄 등의 에테르류 등을 들 수 있으며, 이들 중 1종 또는 2종 이상을 혼합하여 사용한다. 이 중에서도, 산화안정성의 관점에서는 환상 탄산 에스테르를 혼합하여 사용하는 것이 바람직하고, 환상 탄산 에스테르를 용매에 있어서 20 내지 100체적%가 되도록 혼합하여 사용하면 보다 바람직하다. 20체적% 미만이면, 충전전압을 4.25V 이상으로 한 경우, 전해질의 산화분해에 의한 충방전 효율, 보존 특성 또는 충방전 사이클 특성 등의 전지 특성의 저하가 일어날 우려가 있기 때문이다.
또한, 환상 탄산 에스테르 중에서도, 비닐렌 카보네이트 및 비닐 에틸렌 카보네이트는 최초 충전시에 음극(14)의 표면에 안정적인 피막을 형성하여 전해질의 부반응을 억제하기 때문에 바람직하다. 단, 용매 중의 비닐렌 카보네이트 및 비닐 에틸렌 카보네이트의 함량은 10체적% 미만으로 하는 것이 바람직하고, 5체적% 이하로 하면 보다 바람직하다. 함량이 많으면, 내부저항이 높아져 전지 특성을 열화시킬 우려가 있기 때문이다.
또한, 환상 카복실산 에스테르는 산화에 강하고 특히 γ-부티로락톤은 산화전위가 +5.2V(단, 기준 전극으로서, SCE(saturated calomel electrode; 포화 카로멜 전극)을 사용한 경우)로 대단히 높으며, 전지 전압을 충분히 높일 수 있기 때문 에 바람직하다. 단, 환상 카복실산 에스테르는, 내환원성이 약하면, 음극(14)에서 분해되어 충방전 효율, 보존 특성 또는 충방전 사이클 특성 등의 전지 특성을 열화시킬 우려가 있어 단독으로 사용하지 않고, 다른 용매와 혼합하여 사용하는 것이 바람직하다. 구체적으로는, 비닐렌 카보네이트 및 비닐 에틸렌 카보네이트 중의 하나 이상과 혼합하여 사용하는 것이 바람직하다. 비닐렌 카보네이트 또는 비닐 에틸렌 카보네이트의 작용에 의해, 음극(14)에서의 환상 카복실산 에스테르의 분해가 억제되어 상대적으로 내산화성이 높은 환상 카복실산 에스테르의 특징이 도출되기 때문이다. 한편, 이러한 비닐렌 카보네이트 및 비닐 에틸렌 카보네이트와 같이 환상 카복실산 에스테르의 분해를 억제하는 작용이 작은 용매와 혼합하여 사용하는 경우는, 환상 카복실산 에스테르를 용매에 있어서 50체적% 미만, 또한 100/3체적% 이하가 되도록 사용하는 것이 바람직하다.
비양성자성 용매로서, 또한 쇄상 탄산 에스테르를 혼합하여 사용하는 것이 바람직하다. 쇄상 탄산 에스테르는 유사구조를 갖는 환상 탄산 에스테르보다도 점성이 낮아 전지 특성을 향상시킬 수 있기 때문이다. 단, 쇄상 탄산 에스테르를 용매에 있어서 80체적% 이상으로 다량 포함시키면 전지 특성이 열화되는 경향이 나타나기 때문에, 80체적% 이하의 함량으로 사용하는 것이 바람직하고, 이상적으로는 66.6체적% 이하의 함량으로 사용하는 것이 바람직하다.
리튬염으로서, 예를 들면, LiAsF6, LiPF6, LiBF4, LiClO4, LiB(C6H5)4, LiCH3SO3, LiCF3SO3, LiN(CF3SO2)2, LiN(C2F5SO2)2, LiC(CF3SO2)3, LiAlCl4, LiSiF6, LiCl 또는 LiBr를 들 수 있다. 이 중에서도, LiPF6는 높은 도전율을 수득할 수 있고 산화안정성도 우수하기 때문에 바람직하며, LiBF4는 열안정성 및 산화안정성이 우수하기 때문에 바람직하다. 또한, LiClO4은 높은 도전율이 수득되기 때문에 바람직하고, LiN(CF3SO2)2 및 LiN(C2F5SO2)2은 비교적 높은 도전율을 수득할 수 있고 열안정성도 높기 때문에 바람직하다. 리튬염의 함량은 용매에 대하여 0.6mol/kg 내지 2.0mol/kg인 것이 바람직하다. 이 범위 외에서는 이온전도도의 극단적인 저하에 의해 충분한 전지 특성을 수득할 수 없게 될 우려가 있기 때문이다.
또한, 액상의 전해질 대신, 겔상의 전해질 또는 고체상의 전해질을 사용할 수 있다. 겔상의 전해질은, 예를 들면, 고분자 화합물에 액상의 전해질을 유지시킨 것이다. 고분자 화합물로서, 예를 들면, 폴리에틸렌옥사이드 또는 폴리에틸렌옥사이드를 포함하는 가교체 등의 에테르계 고분자 화합물, 폴리메타크릴레이트 등의 에스테르계 고분자 화합물 또는 아크릴레이트계 고분자 화합물, 또는 폴리비닐리덴 플루오라이드 또는 비닐리덴플루오라이드와 헥사플루오로프로필렌과의 공중합체 등의 불소계 고분자 화합물을 들 수 있으며, 이들 중 1종 또는 2종 이상을 혼합하여 사용한다. 특히, 산화환원 안정성의 관점에서는 불소계 고분자 화합물을 사용하는 것이 바람직하다.
또한, 고체상의 전해질에는, 예를 들면, 이온전도성을 갖는 고분자 화합물에 전해질염을 분산시킨 유기 고체 전해질, 또는 이온전도성 세라믹, 이온전도성 유리 또는 이온성 결정 등으로 이루어진 무기 고체 전해질이 있다. 유기 고체 전해질 중의 고분자 화합물로서, 예를 들면, 폴리에틸렌옥사이드 또는 폴리에틸렌옥사이드를 포함하는 가교체 등의 에테르계 고분자 화합물, 또는 폴리메타크릴레이트등의 에스테르계 고분자 화합물 또는 아크릴레이트계 고분자 화합물을 단독 또는 혼합하여 사용하거나, 또는 분자중에 공중합시켜 사용할 수 있다. 또한, 고체상의 전해질을 사용하는 경우에는 세퍼레이터(15)를 제거할 수 있다.
이러한 이차 전지는, 예를 들면, 리튬을 흡장·이탈시킬 수 있는 음극 재료의 양이 양극 활성 물질에 대하여 상대적으로 많으며, 충전 도중에 음극(14)에 리튬 금속이 석출되지 않도록 되어 있다. 즉, 소위 리튬 이온 이차 전지이다. 또한, 양극 활성 물질과 음극 활성 물질의 비율은 충전시의 전지 전압이 4.25V 이상, 또는 4.30V 이상, 보다 바람직하게는 4.40V 이상이 되도록 설계되어 있으며, 보다 높은 에너지 밀도를 수득할 수 있게 되어 있다. 충전시에 있어서 전지 전압의 상한은 양극 활성 물질의 재료에 의해 결정되며, 예를 들면, 양극 활성 물질로서 상기의 리튬 복합 산화물을 주로 포함하는 경우에는 4.60V 이하가 된다.
이러한 이차 전지를 실용화하기 위해서는, 전지 전압을 4.25V 이상으로 하였을 때의 리튬 복합 산화물의 열화를 방지하고, 보존 특성 및 충방전 사이클 특성을 향상시키는 것이 바람직하다. 리튬 복합 산화물의 열화는, 여러 가지 원인에 의하지만, 대부분은 양극 활성 물질에 불순물로서 포함되는 탄산리튬 또는 황산리튬, 또는 전해질에 불순물로서 포함되는 양성자성 불순물 또는 물에 의해 고전위에서 불안정한 리튬 복합 산화물로부터 금속, 특히 전이금속이 용출되는 것에 기인하는 것으로 생각된다. 또한, 이러한 불순물은 리튬 복합 산화물을 열화시킬 뿐만 아니 라, 전해질을 분해하며, 이에 의해 보존 특성 및 충방전 사이클 특성을 저하시키는 한가지 원인도 된다. 또한, 리튬 복합 산화물로부터 용출된 금속은, 음극(14)으로 석출함으로써 내부단락을 야기하는 원인도 된다. 따라서, 이러한 불순물의 농도는 낮은 것이 바람직하고, 농도를 영으로 하면 보다 바람직하다.
구체적으로는, 양극(12) 중의 탄산리튬 및 황산리튬의 총량을 양극 활성 물질에 대하여 1.0질량% 이하로 하는 것이 바람직하다. 또는, 전해질 중의 양성자성 불순물의 농도를, 전해질에 대한 질량비로, 양성자로 환산하여 20ppm 이하로 하는 것이 바람직하다. 또는, 전해질 중의 수분량을 전해질에 대한 질량비로 20ppm 이하로 하는 것이 바람직하다. 또한, 이들 3개의 조건 중의 2개를 만족시키도록 하면 보다 바람직하며, 3개를 만족시키도록 하면 더욱 바람직하다. 보다 높은 효과가 수득되기 때문이다. 또한, 양극(12) 중의 탄산리튬 및 황산리튬의 총량을 구할 때의 양극 활성 물질의 질량은, 불순물로서 함유하고 있는 탄산리튬 및 황산리튬의 총량을 포함하는 것이다.
또한, 양성자성 불순물이라고 하는 것은 대이온이 양성자인 이온성 불순물을 말하며, 유리산분이라고 불리는 경우도 있다. 구체적으로는, HCl, HF, HBr, H2SO4, HNO3, H2S 또는 H2PO4 등의 무기산, 및 HCF3SO2, HCH3SO2 또는 HC2H5SO2 등의 유기산을 들 수 있다.
이러한 이차 전지는, 예를 들면, 다음과 같이 하여 제조할 수 있다.
우선, 예를 들면, 양극 활성 물질을 수세 등에 의해 정제하고, 탄산리튬 및 황산리튬의 총량을 양극 활성 물질에 대하여 1.0질량% 이하로 한다. 계속해서, 이러한 양극 활성 물질, 전도제 및 결착제를 혼합하여 양극 합제를 조정한 후, 이러한 양극 합제를 압축성형하여 펠릿 형상으로 함으로써 양극(12)을 제조한다. 또한, 양극 활성 물질, 전도제 및 결착제 이외에, N-메틸-2-피롤리돈 등의 용제를 첨가하여 혼합함으로써 양극 합제를 조정하며, 이러한 양극 합제를 건조시킨 후 압축성형할 수 있다.
이어서, 예를 들면, 음극 활성 물질과 결착제를 혼합하여 음극 합제를 조정한 후, 이러한 음극 합제를 압축성형하여 펠릿 형상으로 함으로써 음극(14)을 제조한다. 또한, 음극 활성 물질 및 결착제 이외에, N-메틸-2-피롤리돈 등의 용제를 첨가하여 혼합함으로써 음극 합제를 조정하며, 이러한 음극 합제를 건조시킨 후 압축성형할 수 있다.
그 후, 예를 들면, 음극(14), 전해질이 함침된 세퍼레이터(15) 및 양극(12)을 적층하여, 외장컵(13)과 외장캔(11) 사이에 넣고, 이들을 가스켓(16)을 개재시켜 고정시킨다. 이에 의해, 도 1에 도시하는 이차 전지가 형성된다. 또한, 전해질에는, 예를 들면, 산화알루미늄(Al2O3), 산화바륨(Ba0), 산화마그네슘(Mg0), 활성탄, 분자체, 미분화 이산화규소(SiO2) 또는 각종 금속 산화물의 미분말 등을 사용한 화학흡착으로 정제함으로써, 양성자성 불순물의 농도를 전해질에 대한 질량비로, 양성자로 환산하여 20ppm 이하, 또는 수분량을 전해질에 대한 질량비로 20ppm 이하로 한 것을 사용한다.
이러한 이차 전지는 다음과 같이 작용한다.
당해 이차 전지에서는, 충전을 실시하면, 양극(12)으로부터 리튬 이온이 이탈하여, 세퍼레이터(15)에 함침된 전해질을 통해 음극(14)에 흡장된다. 방전을 실시하면, 예를 들어, 음극(14)으로부터 리튬 이온이 이탈하여, 세퍼레이터(15)에 함침된 전해질을 통해 양극(12)에 흡장된다. 여기서는, 충전시의 전지 전압이 4.25V 이상이고, 또한 양극(12) 중의 탄산리튬 및 황산리튬의 총량 또는 전해질 중의 양성자성 불순물의 농도 또는 수분량이 소정량 이하이기 때문에, 고전압하에 있어서도 리튬 복합 산화물로부터 금속의 용출이 억제되어 높은 에너지 밀도가 수득된다.
이와 같이 본 실시양태에 의하면, 충전시의 전지 전압을 4.25V 이상으로 하고, 또한 양극(12) 중의 탄산리튬 및 황산리튬의 총량을 양극 활성 물질에 대하여 1.0질량% 이하, 또는 전해질 중의 양성자성 불순물의 농도를 전해질에 대한 질량비로 양성자로 환산하여 20ppm 이하, 또는 전해질 중의 수분량을 전해질에 대한 질량비로 20ppm 이하로 되도록 했기 때문에, 고전압하에서도 리튬 복합 산화물로부터 금속의 용출을 억제할 수 있어 높은 에너지 밀도를 수득할 수 있다.
특히, 양극(12) 중의 탄산리튬 및 황산리튬의 총량, 전해질 중의 양성자성 불순물의 농도, 또는 전해질 중의 수분량 중의 2개 이상을 상기범위 내라고 하면, 보다 높은 효과를 수득할 수 있다.
또한, 리튬 복합 산화물에, 리튬, 코발트 및 니켈 중의 하나 이상 이외에, 망간, 알루미늄, 마그네슘, 티탄, 크롬 및 철로 이루어진 그룹으로부터 선택된 1종 이상을 포함하도록 하면, 리튬 복합 산화물의 결정구조를 안정적으로 하여, 화학적 안정성을 향상시킬 수 있어 고전압하에서도 높은 전지 특성을 수득할 수 있다.
또한, 용매에 환상 탄산 에스테르를 포함하도록 하면, 산화분해가 발생하기 어려워 보다 높은 전지 특성을 수득할 수 있다.
추가로, 용매에 환상 카복실산 에스테르를 50체적% 미만의 함량으로 포함하도록 하면, 환상 카복실산 에스테르가 음극(14)에서 분해되는 것을 방지할 수 있어 높은 전지 특성을 수득할 수 있다.
또한, 용매에 비닐렌 카보네이트 또는 비닐 에틸렌 카보네이트를 10체적% 미만의 함량으로 포함하도록 하면, 내부저항을 저하시키지 않고 높은 전지 특성을 수득할 수 있으며, 추가로 환상 카복실산 에스테르를 포함하도록 하면, 비닐렌 카보네이트 또는 비닐 에틸렌 카보네이트에 의해 상대적으로 내산화성이 높은 환상 카복실산 에스테르의 특징이 도출되기 때문에, 보다 높은 전지 특성을 수득할 수 있다.
추가로 또한, 용매에 쇄상 탄산 에스테르를 80체적% 이하의 함량으로 포함하도록 하면, 용매의 점성을 낮출 수 있어 전지 특성을 향상시킬 수 있다.
제2 실시양태
본 발명의 제2 실시양태에 따르는 이차 전지는, 음극의 용량이 리튬의 석출 및 용해에 의한 용량 성분으로 표시되는 소위 리튬 이차 전지이다. 당해 이차 전지는 음극이 리튬 금속 등에 의해 구성되는 것을 제외하고는 제1 실시양태와 동일한 구성을 가지고 있으며, 예를 들면, 음극에 리튬 금속박을 사용하는 것을 제외하 고는 제1 실시양태와 동일하게 하여 제조할 수 있다. 따라서, 여기서는 도 1을 참조하여 동일한 부호를 사용하여 설명한다. 또한, 동일부분에 관한 상세한 설명은 생략한다.
당해 이차 전지에서는 충전을 실시하면, 예를 들면, 양극(12)으로부터 리튬 이온이 이탈하여, 세퍼레이터(15)에 함침된 전해질을 통해, 음극(14)의 표면에 리튬 금속이 되어 석출된다. 방전을 실시하면, 예를 들면, 음극(14)을 구성하는 리튬 금속의 일부가 리튬 이온이 되어 용출하며, 세퍼레이터(15)에 함침된 전해질을 통해 양극(12)에 흡장된다. 이에 의해, 당해 이차 전지에서는 높은 에너지 밀도가 수득된다. 또한, 여기서는, 전지 전압이 4.25V 이상이고, 또한 제1 실시양태에서 설명한 바와 같이, 불순물의 농도가 소정량 이하로 되기 때문에, 고전압 하에서도 리튬 복합 산화물로부터 금속의 용출이 억제된다. 따라서, 보다 높은 에너지 밀도가 수득된다.
이와 같이 본 실시양태에 의하면, 음극(14)의 용량이 리튬의 석출 및 용해에 의한 용량 성분으로 표시됨과 동시에, 전지 전압이 4.25V 이상이고, 또한 양극(12) 중의 탄산리튬 및 황산리튬의 총량, 또는 전해질 중의 양성자성 불순물의 농도 또는 수분량이 소정량 이하이기 때문에, 보다 높은 에너지 밀도가 수득된다.
제3 실시양태
본 발명의 제3 실시양태에 따르는 이차 전지는, 음극의 용량이 리튬의 흡장 및 이탈에 의한 용량 성분과 리튬의 석출 및 용해에 의한 용량 성분을 포함하며, 또한 이의 합에 의해 표시되는 것이다. 당해 이차 전지는, 음극의 구성이 다른 것을 제외하고는 제1 실시양태와 동일한 구성을 가지고 있으며, 동일하게 하여 제조할 수 있다. 따라서, 여기서는 도 1을 참조하여 동일한 부호를 사용하여 설명한다. 또한, 동일 부분에 관한 상세한 설명은 생략한다.
음극(14)은, 리튬을 흡장·이탈시킬 수 있는 음극 재료와, 필요에 따라 결착제를 포함하여 구성되어 있다. 리튬을 흡장·이탈시킬 수 있는 음극 재료는, 양극 활성 물질에 대하여 상대적으로 적고, 충전 도중에 음극(14)에 리튬 금속이 석출되도록 되어 있다. 구체적으로는, 개회로 전압이 과충전 전압보다도 낮은 상태에 있어서 리튬을 흡장·이탈시킬 수 있는 음극 재료의 표면에 리튬 금속이 석출되어 있으며, 음극(14)의 용량은, 상기한 바와 같이, 리튬의 흡장·이탈에 의한 용량 성분과 리튬의 석출·용해에 의한 용량 성분을 포함하며, 또한 이의 합으로 표시된다. 따라서, 당해 이차 전지에서는 리튬을 흡장·이탈시킬 수 있는 음극 재료와 리튬 금속 모두가 음극 활성 물질로서 기능하며, 리튬을 흡장·이탈시킬 수 있는 음극 재료는 리튬 금속이 석출할 때의 기재가 되고 있다. 따라서, 완전 충전 상태에 있어서 음극(14) 중의 리튬을 흡장·이탈시킬 수 있는 음극 재료를, 예를 들면, 7Li 핵자기공명분광법에 의해 측정하면, 리튬 이온에 귀속하는 피크와 리튬 금속에 귀속하는 피크가 수득된다.
또한, 과충전 전압이라는 것은 전지가 과충전 상태로 되었을 때의 개회로 전압을 가리키며, 예를 들면, 완전 충전시의 전지 전압보다도 높은 전지 전압을 가리킨다. 여기서, 충전시의 전지 전압이라고 하는 것은, 일본 축전지공업회(전지공업 회)가 규정한 지침의 하나인「리튬 이차 전지 안전성 평가기준 가이드라인」 (SBA G1101)에 기재되어 정의되고 있는「완전 충전」된 전지의 개회로 전압을 가리킨다. 또한, 바꾸어 말하면, 각 전지의 공칭 용량을 구할 때에 사용한 충전방법, 표준 충전방법 또는 추장 충전방법을 사용하여 충전한 후의 개회로 전압을 가리킨다.
당해 이차 전지는, 음극(14)에 리튬을 흡장·이탈시킬 수 있는 음극 재료를 사용한다는 점에서는 종래의 리튬 이온 이차 전지와 동일하며, 또한 음극(14)에 리튬 금속을 석출시킨다는 점에서는 종래의 리튬 이차 전지와 동일하지만, 리튬을 흡장·이탈시킬 수 있는 음극 재료에 리튬 금속을 석출시킴으로써 다음과 같은 이점이 생긴다.
첫번째로, 리튬을 흡장·이탈시킬 수 있는 음극 재료는 일반적으로 표면적이 크기 때문에, 리튬 금속을 균일하게 석출시킬 수 있다. 두번째로, 리튬을 흡장·이탈시킬 수 있는 음극 재료의 입자간 틈에도 리튬 금속이 석출되기 때문에 체적 변화가 적다. 세번째로, 리튬을 흡장·이탈시킬 수 있는 음극 재료에 의한 리튬의 흡장·이탈도 충방전 용량에 기여하기 때문에, 전지 용량이 큰 것에 비해 리튬 금속의 석출·용해량이 작다. 네번째로, 충전 초기에는 리튬을 흡장·이탈시킬 수 있는 음극 재료에 리튬이 흡장되기 때문에 급속 충전이 가능해진다.
이에 의해, 당해 이차 전지에서는, 리튬 이온 이차 전지보다도 높은 에너지 밀도를 수득할 수 있는 동시에, 리튬 이차 전지보다도 충방전 사이클 특성 및 급속 충전특성을 향상시킬 수 있다.
또한, 제1 실시양태와 마찬가지로, 충전시의 전지 전압이 4.25V 이상이고, 또한 양극(12) 중의 탄산리튬 및 황산리튬의 총량, 또는 전해질 중의 양성자성 불순물의 농도 또는 수분량이 소정량 이하이기 때문에, 고전압하에서도 리튬 복합 산화물로부터 금속의 용출이 억제되며, 더욱 높은 에너지 밀도가 수득된다.
당해 이차 전지에서는, 충전을 실시하면, 양극(12)으로부터 리튬 이온이 이탈하여, 세퍼레이터(15)에 함침된 전해질을 통해, 우선 음극(14)에 포함되는 리튬을 흡장·이탈시킬 수 있는 음극 재료에 흡장된다. 추가로 충전을 계속하면, 개회로 전압이 과충전 전압보다도 낮은 상태에서 리튬을 흡장·이탈시킬 수 있는 음극 재료의 표면에 리튬 금속이 석출되기 시작한다. 그 후, 충전을 종료할 때까지 음극(14)에는 리튬 금속이 계속 석출된다.
이어서, 방전을 실시하면, 우선, 음극(14)에 석출된 리튬 금속이 리튬 이온이 되어 용출되며, 세퍼레이터(15)에 함침된 전해질을 통해 양극(12)에 흡장된다. 추가로 방전을 계속하면, 음극(14) 중의 리튬을 흡장·이탈시킬 수 있는 음극 재료에 흡장된 리튬 이온이 이탈하여 전해질을 통해 양극(12)에 흡장된다.
이와 같이 본 실시양태에 의하면, 음극(14)의 용량이 리튬의 흡장·이탈에 의한 용량 성분과 리튬의 석출·용해에 의한 용량 성분을 포함하며, 또한 이의 합에 의해 표시되기 때문에, 리튬 이온 이차 전지보다도 높은 에너지 밀도를 수득할 수 있는 동시에, 리튬 이차 전지보다도 충방전 사이클 특성 및 급속 충전특성을 향상시킬 수 있다. 또한, 충전시의 전지 전압이 4.25V 이상이고, 또한 양극(12) 중의 탄산리튬 및 황산리튬의 총량, 또는 전해질 중의 양성자성 불순물의 농도 또는 수분량이 소정량 이하이기 때문에, 고전압하에서도 리튬 복합 산화물로부터 금속의 용출을 억제할 수 있어 더욱 높은 에너지 밀도를 수득할 수 있다.
추가로, 본 발명의 구체적인 실시예에 대해서 상세하게 설명한다. 또한, 이하의 실시예에서는, 음극의 용량이 리튬의 석출·용해에 의한 용량 성분으로 표시되는 리튬 이차 전지, 또는 음극의 용량이 리튬의 흡장·이탈에 의한 용량 성분과 리튬의 석출·용해에 의한 용량 성분을 포함하며, 또한 이의 합에 의해 표시되는 이차 전지, 또는 음극의 용량이 리튬의 흡장·이탈에 의한 용량 성분으로 표시되는 리튬 이온 이차 전지에 대해서, 도 1에 도시하는 코인형의 것을 제조하였다. 따라서, 여기서는 도 1을 참조하여 동일한 부호를 사용하여 설명한다.
실시예 1-1 내지 1-10
시험용 전지로서, 음극(14)의 용량이 리튬 금속의 석출·용해에 의한 용량 성분에 의해 표시되는 리튬 이차 전지를 제조하여, 양극(12)의 특성을 조사하였다.
우선, 탄산리튬(Li2CO3)과 탄산코발트(CoCO3)를 Li2CO3:CoCO3= O.5:1(mol비)의 비율로 혼합하여 공기중에서 900℃에서 5시간 동안 소성하여 LiCoO2를 수득하였다. 이어서, 수득된 LiCoO2를 수세하여 정제하고, 양극 활성 물질로 하였다. 정제한 양극 활성 물질에 관해서 미량화학분석을 실시한 결과, 탄산리튬 및 황산리튬의 총량은 양극 활성 물질에 대하여 실시예 1-1 내지 1-10으로 표 1 내지 표 3에 기재한 바와 같았다. 이어서, 당해 양극 활성 물질 91질량부, 전도제인 흑연 6질량부 및 결착제인 폴리비닐리덴 플루오라이드 3질량부를 용제인 N-메틸-2-피롤리돈 중에서 혼합하고, 건조시켜 다시 혼합함으로써 양극 합제를 조정하였다. 그 후, 당해 양극 합제를 그물코형의 알루미늄제 집전체와 함께 펠릿형으로 압축성형하여 양극(12)을 제조하였다.
또한, 에틸렌 카보네이트와 디메틸 카보네이트를 에틸렌 카보네이트:디메틸 카보네이트=1:1의 체적 비로 혼합한 용매에 LiPF6를 1.0mol/l의 함량으로 용해시키고, 정제하여 액상의 전해질을 제조하였다. 당해 전해질에 대해서, 미량화학분석을 실시한 결과, 양성자성 불순물의 농도 및 수분량은 전해질에 대한 질량비로 실시예 1-1 내지 1-10으로 표 1 내지 표 3에 기재한 바와 같았다. 또한, 양성자성 불순물의 농도는 양성자로 환산한 값이다.
양극(12) 및 전해질을 제조한 후, 외장컵(13)의 중앙부에 리튬박을 끼운 음극(14) 및 세퍼레이터(15)를 이러한 순서로 배치하고, 전해질을 주입하여, 양극(12)을 넣은 외장캔(11)을 가스켓(16)을 개재시켜 고정시키고, 이차 전지로 하였다.
수득된 실시예 1-1 내지 1-10의 이차 전지에 대해서, 정전류 정전압 충전을 실시하였다. 이 때, 정전류 충전은 0.5mA의 전류값으로, 표 1 내지 표 3에 기재한 상한 전압에 도달할 때까지 실시하며, 정전압 충전은 표 1 내지 표 3에 기재한 상한 전압에서 전류값이 0.01mA로 감쇠할 때까지 실시하였다. 이어서, 충전한 것을 해체하여 양극(12)을 취출하고, 이차 전지에 주입한 전해질과 동일한 조성의 보존용 전해질 20ml에 침지시킨 후 밀폐하였다. 계속해서, 60℃의 항온조 중에서 100 시간 동안 보존한 후, 양극(12)을 보존용 전해질로부터 취출하여 보존용 전해질의 착색을 관찰하였다. 그 결과를 표 1 내지 표 3에 기재한다. 또한, 표 1 내지 표 3에서는, 착색이 많이 보인 것에는 ×, 보이지 않은 것에는 0을 기재하였다.
또한, 상기의 조건으로 정전류 정전압 충전을 실시한 것을, 60℃의 항온조 중에서 100시간 동안 보존한 후, 0.5mA의 전류값으로 전지 전압이 3.0V에 도달할 때까지 방전하였다. 계속해서, 다시 상기의 조건으로 충방전을 1사이클 실시하여 방전 용량을 구하였다. 그 결과도 표 1 내지 표 3에 기재한다.
실시예 1-1 내지 1-10에 대한 비교예 1-1 내지 1-9로서, 불순물 함량이 표 1 내지 표 3에 기재한 바와 같은 양극 활성 물질 및 전해질을 사용한 것을 제외하고는 실시예 1-1 내지 1-10과 동일하게 하여 이차 전지를 제조하였다. 비교예 1-1 내지 1-9에 대해서도, 표 1 내지 표 3에 기재한 상한 전압으로 정전류 정전압 충전을 실시한 것을 제외하고는 실시예 1-1 내지 1-10과 동일하게 하여 보존용 전해질의 착색 및 보존후의 방전 용량을 조사하였다. 수득된 결과를 표 1 내지 표 3에 기재한다.
표 1 내지 표 3으로부터 알 수 있는 바와 같이, 상한 전압을 4.25V로 한 실시예 1-1 내지 1-5가 상한 전압을 4.20V로 한 비교예 1-1 내지 1-5보다도 방전 용량이 높았다. 또한, 상한 전압을 4.30V로 한 실시예 1-6 및 1-7이 상한 전압을 4.25V로 한 실시예 1-1 내지 1-5보다도 방전 용량이 높고, 상한 전압을 4.40V로 한 실시예 1-8 내지 1-10이 상한 전압을 4.30V로 한 실시예 1-6 및 1-7보다도 방전 용량이 높았다. 또한, 비교예 1-1은 실시예 1-1에, 비교예 1-2는 실시예 1-2에, 비 교예 1-3은 실시예 1-3에, 비교예 1-4는 실시예 1-4에 및 비교예 1-5는 실시예 1-5에 각각 대응하고 있다. 즉, 상한 전압을 높게 하면, 에너지 밀도를 향상시킬 수 있음을 알 수 있었다.
또한, 탄산리튬 및 황산리튬의 총량이 1.5질량%, 양성자성 불순물의 농도가 25ppm, 수분량이 30ppm인 비교예 1-6과 비교예 1-7을 비교하면, 비교예 1-6에서는 방전 용량이 7.0mAh인데 대하여, 비교예 1-7에서는 상한 전압이 4.25V로 높은 값임에도 불구하고, 방전 용량은 4.8mAh로 낮은 값이었다. 표 1로부터 알 수 있는 바와 같이, 비교예 1-7에서는 보존용 전해질에 착색이 보이는 점에서, 이것은 양극(12)으로부터 코발트가 용출된 것이 원인이라고 생각된다. 즉, 탄산리튬 및 황산리튬의 총량을 1.0질량% 이하, 양성자성 불순물의 농도를 20ppm 이하 또는 수분량을 20ppm 이하로 하면, 상한 전압을 4.25V로 높게 하더라도 양호한 화학적 안정성을 수득할 수 있으며, 우수한 보존 특성을 유지하면서 에너지 밀도를 향상시킬 수 있음을 알 수 있었다.
또한, 실시예 1-8 내지 1-10으로부터 알 수 있는 바와 같이, 불순물의 농도를 낮게 하면, 상한 전압을 올리더라도 우수한 보존 특성을 수득할 수 있어 에너지 밀도를 높게 할 수 있음을 알 수 있다.
또한, 여기서는 시험용 전지로서 리튬 이차 전지를 제조하여 양극(12)의 특성을 조사하였지만, 양극(12)의 특성은 음극(14)의 재료에 관계없이 수득할 수 있다고 생각된다. 즉, 리튬 이온 이차 전지, 및 음극(14)의 용량이 리튬의 흡장·이탈에 의한 용량 성분과 리튬의 석출·용해에 의한 용량 성분을 포함하며, 또한 이 의 합에 의해 표시되는 이차 전지에 있어서도 본 실시예와 동일한 효과가 수득된다고 생각된다.
실시예 2-1 내지 2-10
음극(14)의 용량이 리튬의 흡장·이탈에 의한 용량 성분에 의해 표시되는 리튬 이온 이차 전지를 제조하여 그 특성을 조사하였다. 이 때, 음극(14)에는 음극 활성 물질인 난흑연화 탄소 90질량부와 결착제인 폴리비닐리덴 플루오라이드 10질량부를 용제인 N-메틸-2-피롤리돈 중에서 혼합하여 건조시킴으로써 음극 합제를 조정한 후, 당해 음극 합제를 그물코형의 니켈제 집전체와 함께 압축성형한 것을 사용하였다. 양극 활성 물질의 양과 음극 활성 물질의 양의 비율은, 충전 도중에 음극(14)에 리튬 금속이 석출되지 않도록 조정하였다. 그 외에는, 실시예 1-1 내지 1-10과 동일하게 하였다. 사용한 양극 활성 물질 및 전해질의 불순물 함량은 표 4 내지 표 6에 기재된 바와 같았다.
또한, 난흑연화 탄소는 출발원료에 석유 피치를 사용하고, 여기에 산소를 포함하는 관능기를 10 내지 20% 도입하여 산소가교를 실시하며, 불활성 기체 기류 중에서 1000℃에서 소성함으로써 제조하였다. 수득된 난흑연화 탄소에 대해서 X선회절 측정을 실시한 결과, (002)면의 면간격은 0.376nm이고, 진비중은 1.58이었다. 당해 난흑연화 탄소를 분쇄하여 평균 입자 직경 10㎛의 분말형으로 하여 음극 활성 물질로 하였다.
실시예 2-1 내지 2-10에 대한 비교예 2-1 내지 2-9로서, 불순물 함량이 표 4 내지 표 6에 기재한 바와 같은 양극 활성 물질 및 전해질을 사용한 것을 제외하고는 실시예 2-1 내지 2-10과 동일하게 하여 이차 전지를 제조하였다.
실시예 2-1 내지 2-10 및 비교예 2-1 내지 2-9에 대해서도, 표 4 내지 표 6에 기재한 상한 전압으로 정전류 정전압 충전을 실시한 것을 제외하고는 실시예 1-1 내지 1-10과 동일하게 하여 보존용 전해질의 착색 및 보존 후의 방전 용량을 조사하였다. 수득된 결과를 표 4 내지 표 6에 기재한다.
표 4 내지 표 6으로부터 알 수 있는 바와 같이, 리튬 이온 이차 전지에 있어서도 리튬 이차 전지와 동일한 경향이 나타났다. 즉, 리튬 이온 이차 전지에 있어서도, 탄산리튬 및 황산리튬의 총량을 1.0질량% 이하, 양성자성 불순물의 농도를 20ppm 이하 또는 수분량을 20ppm 이하로 하면, 상한 전압을 4.25V로 높게 하더라도 양호한 화학적 안정성을 수득할 수 있으며, 우수한 보존 특성을 유지하면서 에너지 밀도를 향상시킬 수 있는 것이 확인되었다.
실시예 3-1 내지 3-10
음극 활성 물질로서 구리주석(Cu-Sn)계 합금을 사용하여, 실시예 2-1 내지 2-10과 동일하게 하여, 음극(14)의 용량이 리튬의 흡장·이탈에 의한 용량 성분에 의해 표시되는 리튬 이온 이차 전지를 제조하고, 그 특성을 조사하였다. 사용한 양극 활성 물질 및 전해질의 불순물 함량은 표 7 내지 표 9에 기재한 바와 같았다. 또한, 실시예 3-1 내지 3-10에 대한 비교예 3-1 내지 3-9로서, 불순물 함량이 표 7 내지 표 9에 기재한 바와 같은 양극 활성 물질 및 전해질을 사용한 것을 제외하고 는 실시예 3-1 내지 3-10과 동일하게 하여 이차 전지를 제조하였다.
실시예 3-1 내지 3-10 및 비교예 3-1 내지 3-9에 대해서도, 표 7 내지 표 9에 기재한 상한 전압으로 정전류 정전압 충전을 실시한 것을 제외하고는 실시예 1-1 내지 1-10과 동일하게 하여 보존용 전해질의 착색 및 보존후의 방전 용량을 조사하였다. 수득된 결과를 표 7 내지 표 9에 기재한다.
표 7 내지 표 9로부터 알 수 있는 바와 같이, 구리주석계 합금을 사용하더라도 탄산리튬 및 황산리튬의 총량을 1.0질량% 이하, 양성자성 불순물의 농도를 20ppm 이하 또는 수분량을 20ppm 이하로 하면, 상한 전압을 4.25V로 높게 하더라도 양호한 화학적 안정성을 수득할 수 있으며, 우수한 보존 특성을 유지하면서 에너지 밀도를 향상시킬 수 있는 것이 확인되었다.
실시예 4-1 내지 4-10
양극 활성 물질로서 LiNiO2를 사용하여 실시예 2-1 내지 2-10과 동일하게 하여 음극(14)의 용량이 리튬의 흡장·이탈에 의한 용량 성분에 의해 표시되는 리튬 이온 이차 전지를 제조하여 그 특성을 조사하였다. 또한, LiNiO2는 수산화리튬(LiOH·H2O)과 수산화니켈(Ni(OH)2)을, LiOH·H2O:Ni(OH)2=1:1(mol비)의 비율로 혼합하여, 산소 대기하에서 750℃에서 5시간 동안 소성함으로써 제조하였다. 사용한 양극 활성 물질 및 전해질의 불순물 함량은 표 10 내지 표 12에 기재한 바와 같았다.
실시예 4-1 내지 4-10에 대한 비교예 4-1 내지 4-9로서, 불순물 함량이 표 10 내지 표 12에 기재한 바와 같은 양극 활성 물질 및 전해질을 사용한 것을 제외하고는 실시예 4-1 내지 4-10과 동일하게 하여 이차 전지를 제조하였다.
실시예 4-1 내지 4-10 및 비교예 4-1 내지 4-9에 대해서도, 표 10 내지 표 12에 기재한 상한 전압으로 정전류 정전압 충전을 실시한 것을 제외하고는 실시예 1-1 내지 1-10과 동일하게 하여 보존용 전해질의 착색 및 보존후의 방전 용량을 조사하였다. 수득된 결과를 표 10 내지 표 12에 기재한다.
표 10 내지 표 12로부터 알 수 있는 바와 같이, 양극 활성 물질에 LiNiO2를 사용하더라도, LiCoO2를 사용한 경우와 마찬가지로, 탄산리튬 및 황산리튬의 총량을 1.0질량% 이하, 양성자성 불순물의 농도를 20ppm 이하 또는 수분량을 20ppm 이하로 하면, 상한 전압을 4.25V로 높게 하더라도 양호한 화학적 안정성을 수득할 수 있으며, 우수한 보존 특성을 유지하면서 에너지 밀도를 향상시킬 수 있는 것이 확인되었다.
실시예 5-1 내지 5-24
실시예 5-1 내지 5-24 및 이에 대한 비교예 5-1 내지 5-32로서, 표 13 내지 표 24에 기재한 리튬염을 사용한 것을 제외하고는 실시예 1-1과 동일하게 하여 이차 전지를 제조하였다. 실시예 5-1 내지 5-6 및 비교예 5-1 내지 5-8에서는 LiPF6과 LiBF4를 등몰 비로 혼합한 혼합물을 사용하고, 실시예 5-7 내지 5-12 및 비교예 5-9 내지 5-16에서는 LiPF6과 LiClO4를 등몰 비로 혼합한 혼합물을 사용하며, 실시예 5-13 내지 5-18 및 비교예 5-17 내지 5-24에서는 LiPF6과 LiN(CF3SO2)2를 등몰 비로 혼합한 혼합물을 사용하고, 실시예 5-19 내지 5-24 및 비교예 5-25 내지 5-32에서는 LiPF6과 LiN(C2F5SO2)2를 등몰 비로 혼합한 혼합물을 사용하였다. 또한, 사용한 양극 활성 물질 및 전해질의 불순물 함량은 표 13 내지 표 24에 기재한 바와 같았다. 실시예 5-1 내지 5-24 및 비교예 5-1 내지 5-32의 이차 전지에 대해서도, 표 13 내지 표 24에 기재한 상한 전압으로 정전류 정전압 충전을 실시한 것을 제외하고는 실시예 1-1과 동일하게 하여 보존용 전해질의 착색 및 보존후의 방전 용량을 조사하였다. 수득된 결과를 표 13 내지 표 24에 기재한다. 또한, 표 13 내지 표 24에서는 착색이 조금 관찰된 것에는 △를 기재하였다.
표 1 내지 표 3 및 표 13 내지 표 24로부터 리튬염의 종류에 관계없이, 탄산리튬 및 황산리튬의 총량을 1.0질량% 이하, 양성자성 불순물의 농도를 20ppm 이하 또는 수분량을 20ppm 이하로 하면, 상한 전압을 4.25V로 높게 하더라도 우수한 화학안정성을 수득할 수 있으며, 우수한 보존 특성을 유지하면서 에너지 밀도를 향상시킬 수 있음을 알 수 있었다.
또한, 리튬염의 종류에 관계없이, 탄산리튬 및 황산리튬의 총량, 양성자성 불순물의 농도 및 수분량 중의 2개 이상을 상기의 범위내로 하면, 충전시의 전지 전압을 4.30V, 또한 4.40V로 높게 하더라도 우수한 보존 특성을 수득할 수 있어 보다 높은 에너지 밀도가 수득됨을 알 수 있었다.
실시예 6-1 내지 6-355
실시예 6-1 내지 6-355 및 비교예 6-1 내지 6-119로서, 표 25 내지 표 95에 기재한 조성을 갖는 용매에 LiPF6를 0.6mol/kg 또는 1.0mol/kg의 함량으로 용해시켜 정제한 것을 사용하여, 음극(14)의 용량이 리튬의 흡장·이탈에 의한 용량 성분에 의해 표시되는 리튬 이온 이차 전지를 제조하였다. 또한, 표 25 내지 표 95에 있어서, DMC는 디메틸 카보네이트를, EC는 에틸렌 카보네이트를, PC는 프로필렌 카보네이트를, GBL은 γ-부티로락톤을, VEC는 비닐 에틸렌 카보네이트를 및 VC는 비닐렌 카보네이트를 각각 나타내며, 괄호 중의 숫자는 이들의 혼합비(체적%)를 나타내고 있다. LiPF6의 함량은 실시예 6-1 내지 6-10 및 실시예 6-41 내지 6-355에서는 1.0mol/kg으로 하고, 실시예 6-11 내지 6-40에서는 0.6mol/kg으로 하였다. 또한, 양극(12)에는 실시예 1-1과 동일하게 하여 제조한 LiCoO2 94질량%, 전도제인 탄소분 3질량% 및 결착제인 폴리비닐리덴 플루오라이드 3질량%을 혼합하여 조정한 양극 합제를 용제인 N-메틸-2-피롤리돈 중에 분산시켜 양극 합제 슬러리로 한 후, 당해 양극 합제 슬러리를 알루미늄으로 이루어진 양극 집전체의 편면에 균일하게 도포하고 건조시켜 양극 합제층을 형성하고, 원형으로 절단하여 제조한 것을 사용하였다. 또한, 음극(14)에는, 입상 인조 흑연 분말 90질량%와 결착제인 폴리비닐리덴 플루오라이드 10질량%을 혼합하여 조정한 음극 합제를 용제인 N-메틸-2-피롤리돈 중에 분산시켜 음극 합제 슬러리로 한 후, 당해 음극 합제 슬러리를 구리로 이루어진 음 극집전체의 편면에 균일하게 도포하고 건조시켜 음극 합제층을 형성하고, 원형으로 절단하여 제조한 것을 사용하였다. 양극(12) 및 음극(14)을 제조할 때에는, 실시예 6-1 내지 6-355에서 양극 합제층의 체적과 음극 합제층의 체적의 합계가 일정해지도록, 양극 합제층 및 음극 합제층의 각각의 두께를 적절하게 조정하였다. 사용한 양극 활성 물질 및 전해질의 불순물 함량은 표 25 내지 표 95에 기재한 바와 같았다.
실시예 6-1 내지 6-355 및 비교예 6-1 내지 6-119의 이차 전지에 대해서도, 표 25 내지 표 95에 기재한 상한 전압으로 정전류 정전압 충전을 실시한 것을 제외하고는 실시예 1-1과 동일하게 하여 보존후의 방전 용량을 조사하였다. 수득된 결과를 표 25 내지 표 95에 기재한다.
표 25 내지 표 95로부터, 용매의 조성에 관계없이, 탄산리튬 및 황산리튬의 총량을 1.0질량% 이하, 양성자성 불순물의 농도를 20ppm 이하 또는 수분량을 20ppm 이하로 하면, 상한 전압을 4.25V로 높게 하더라도 우수한 보존 특성을 유지하면서 에너지 밀도를 향상시킬 수 있음을 알 수 있었다.
또한, 용매의 조성에 관계없이, 탄산리튬 및 황산리튬의 총량, 양성자성 불순물의 농도 및 수분량 중의 2개 이상을 상기의 범위내로 하면, 충전시의 전지 전압을 4.30V, 추가로 4.40V로 높게 하더라도, 우수한 보존 특성을 수득할 수 있어 보다 높은 에너지 밀도가 수득되는 것을 알 수 있었다.
또한, 표 25, 표 26과 표 27 내지 표 95를 비교하면 알 수 있는 바와 같이, 용매에 쇄상 탄산 에스테르인 디메틸 카보네이트만을 포함하는 실시예 6-1 내지 6- 10보다도, 용매에 환상 탄산 에스테르인 에틸렌 카보네이트, 프로필렌 카보네이트, 비닐 에틸렌 카보네이트 및 비닐렌 카보네이트 중의 1종 이상을 포함하는 실시예 6-11 내지 6-355가 보존후의 방전 용량이 높았다. 즉, 용매에 환상 탄산 에스테르를 포함하면, 보다 우수한 화학적 안정성을 수득할 수 있어 보존 특성을 향상시킬 수 있음을 알 수 있었다.
또한, 표 33 내지 표 47과 표 48 내지 표 50을 비교하면 알 수 있는 바와 같이, 용매에 쇄상 탄산 에스테르인 디메틸 카보네이트를 80체적% 이하의 함량으로 포함하는 실시예 6-41 내지 6-115가 80체적%보다도 많은 함량으로 포함하는 실시예 6-116 내지 6-130보다도 보존후의 방전 용량이 높았다. 즉, 용매에 쇄상 탄산 에스테르를 80체적% 이하의 함량으로 포함하면, 보다 우수한 화학적 안정성을 수득할 수 있어 바람직한 것을 알 수 있었다.
또한, 표 33 내지 표 35, 표 51 내지 표 56 및 표 57 내지 표 59를 비교하면 알 수 있는 바와 같이, 보존후의 방전 용량은, 비닐 에틸렌 카보네이트를 10체적%의 함량으로 포함하는 실시예 6-161 내지 6-175보다도, 비닐 에틸렌 카보네이트를 포함하지 않는 실시예 6-41 내지 6-55가 크고, 또한 실시예 6-41 내지 6-55보다도 비닐 에틸렌 카보네이트를 10체적% 미만의 함량으로 포함하는 실시예 6-131 내지 6-160이 컸다. 즉, 용매에 비닐 에틸렌 카보네이트를 10체적% 미만의 함량으로 포함하면, 보다 우수한 화학적 안정성을 수득할 수 있어 보존 특성을 향상시킬 수 있음을 알 수 있었다.
또한, 표 33 내지 표 35, 표 60 내지 표 65 및 표 66 내지 표 68을 비교하면 알 수 있는 바와 같이, 보존후의 방전 용량은, 비닐렌 카보네이트를 10체적%의 함량으로 포함하는 실시예 6-206 내지 6-220보다도, 비닐렌 카보네이트를 포함하지 않는 실시예 6-41 내지 6-55가 크고, 또한 실시예 6-41 내지 6-55보다도 비닐렌 카보네이트를 10체적% 미만의 함량으로 포함하는 실시예 6-176 내지 6-205가 컸다. 즉, 용매에 비닐렌 카보네이트를 10체적% 미만의 함량으로 포함하더라도, 보다 우수한 화학적 안정성을 수득할 수 있어 보존 특성을 향상시킬 수 있음을 알 수 있었다.
또한, 표 33 내지 표 35 및 표 69 내지 표 74와 표 75 내지 표 77을 비교하면 알 수 있는 바와 같이, 용매에 γ-부티로락톤을 포함하지 않는 실시예 6-41 내지 6-55 및 γ-부티로락톤을 50체적% 미만의 함량으로 포함하는 실시예 6-221 내지 6-250이 γ-부티로락톤을 50체적% 이상의 함량으로 포함하는 실시예 6-251 내지 6-265보다도 보존후의 방전 용량이 높았다. 즉, 용매에 γ-부티로락톤을 50체적% 미만의 함량으로 포함하면, 우수한 보존 특성을 수득할 수 있어 바람직하다는 것을 알 수 있었다. 그러나, 표 69 내지 표 74와 표 78 내지 표 83과의 비교 및 표 69 내지 표 74와 표 87 내지 표 92와의 비교로부터 알 수 있는 바와 같이, 실시예 6-266 내지 6-295 및 실시예 6-311 내지 6-340은, 용매에 γ-부티로락톤을 50체적% 이상의 함량으로 포함하고 있음에도 불구하고, γ-부티로락톤을 포함하지 않는 실시예 6-41 내지 6-55보다도 보존후의 방전 용량이 높았다. 즉, 용매에 비닐 에틸렌 카보네이트 또는 비닐렌 카보네이트를 10체적% 미만의 함량으로 포함하는 용매에 γ-부티로락톤을 포함시키면, 보존 특성을 향상시킬 수 있음을 알 수 있었다. 또한, 이것은 비닐 에틸렌 카보네이트 또는 비닐렌 카보네이트의 작용에 의해, 음극(14)의 표면에서 γ-부티로락톤의 분해가 억제된 결과, 상대적으로 내산화성이 높은 γ-부티로락톤의 특징이 도출되었기 때문이라고 생각된다.
실시예 7-1
실시예 1-7과 동일하게 하여 리튬 이차 전지를 제조하였다. 표 96에 불순물 농도를 기재한다. 수득된 실시예 7-1의 이차 전지에 대해서 충방전 시험을 실시하여 방전 용량 유지율을 구하였다. 이 때, 충전은 정전류 정전압 충전으로 하고, 1.0mA의 정전류에서 전지 전압이 4.30V에 도달할 때까지 정전류 충전을 실시한 후, 4.30V의 정전압에서 전류값이 0.01mA로 감쇠할 때까지 정전압 충전을 실시하였다. 한편, 방전은 1.0mA의 전류값의 정전류 방전으로 하였다. 또한, 방전 용량 유지율은 2사이클째의 방전 용량에 대한 50사이클째의 방전 용량의 비율, 즉(50사이클째의 방전 용량/2사이클째의 방전 용량)×100으로서 산출하였다. 수득된 결과를 표 96에 기재한다.
또한, 본 실시예에 대한 비교예 7-1로서, 비교예 1-8과 동일하게 하여 리튬 이차 전지를 제조하였다. 표 96에 양극 활성 물질 및 전해질 중의 불순물 함량을 기재한다. 비교예 7-1의 이차 전지에 대해서도, 본 실시예와 동일하게 하여 충방전 시험을 실시하여 방전 용량 유지율을 구하였다. 수득된 결과를 표 96에 기재한다.
표 96으로부터 알 수 있는 바와 같이, 본 실시예에 의하면, 비교예 7-1보다 도 높은 방전 용량 유지율이 수득되었다. 즉, 탄산리튬 및 황산리튬의 총량, 양성자성 불순물의 농도 및 수분량을 제어함으로써 충방전 사이클 특성을 향상시킬 수 있음을 알 수 있었다.
실시예 7-2
음극(14)의 용량이 리튬의 흡장·이탈에 의한 용량 성분과 리튬의 석출·용해에 의한 용량 성분을 포함하며, 또한 이의 합에 의해 표시되는 이차 전지를 제조하였다. 이 때, 완전 충전시의 전지 전압을 4.30V로 하고, 충전 도중에 음극(14)에 리튬 금속이 석출하도록 양극 활성 물질의 양과 음극 활성 물질의 양의 비율을 조정한 것을 제외하고는 실시예 2-7과 동일하게 하였다. 표 97에 불순물의 농도를 기재한다.
또한, 본 실시예에 대한 비교예 7-2로서, 표 97에 기재한 불순물 함량을 갖는 양극 활성 물질 및 전해질을 사용한 것을 제외하고는 본 실시예와 동일하게 하여 이차 전지를 제조하였다. 실시예 7-2 및 비교예 7-2에 대해서도, 실시예 7-1과 동일하게 하여 충방전 시험을 실시하고, 방전 용량 유지율을 구하였다. 수득된 결과를 표 97에 기재한다. 또한, 표 97에 있어서, 상한 전압은 상기 실시양태에 있어서의 완전 충전시의 전지 전압을 의미한다.
표 97로부터 알 수 있는 바와 같이, 본 실시예에 의하면, 실시예 7-1과 동일하게, 대응하는 비교예 7-2보다도 높은 방전 용량 유지율이 수득되었다. 즉, 음극(14)의 용량이 리튬의 흡장·이탈에 의한 용량 성분과 리튬의 석출·용해에 의한 용량 성분을 포함하고, 또한 이의 합에 의해 표시되는 이차 전지에 있어서도 불순물의 농도를 제어함으로써 충방전 사이클 특성을 향상시킬 수 있음을 알 수 있었다.
실시예 7-3
실시예 2-7과 동일하게 하여 음극(14)의 용량이 리튬의 흡장·이탈에 의한 용량 성분에 의해 표시되는 리튬 이온 이차 전지를 제조하였다. 또한, 본 실시예에 대한 비교예 7-3으로서, 표 98에 기재한 불순물 함량을 갖는 양극 활성 물질 및 전해질을 사용한 것을 제외하고는 본 실시예와 동일하게 하여 이차 전지를 제조하였다. 실시예 7-3 및 비교예 7-3에 대해서도, 실시예 7-1과 동일하게 하여 충방전 시험을 실시하고, 방전 용량 유지율을 구하였다. 수득된 결과를 표 98에 기재한다.
표 98로부터 알 수 있는 바와 같이, 본 실시예에 의하면, 실시예 7-1과 동일하게 대응하는 비교예 7-3보다도 높은 방전 용량 유지율이 수득되었다. 즉, 리튬 이온 이차 전지에 있어서도, 불순물의 농도를 제어함으로써 충방전 사이클 특성을 향상시킬 수 있음을 알 수 있었다.
또한, 표 96, 표 97 및 표 98을 비교하면 알 수 있는 바와 같이, 실시예 7-2 및 7-3은 실시예 7-1보다도 비교예에 대한 특성의 향상이 현저하였다. 즉, 리튬 이차 전지보다도 음극(14)의 용량이 리튬의 흡장·이탈에 의한 용량 성분과 리튬의 석출·용해에 의한 용량 성분을 포함하며, 또한 이의 합에 의해 표시되는 이차 전지 및 리튬 이온 이차 전지에 있어서 큰 효과가 수득됨을 알 수 있었다.
또한, 음극(14)의 용량이 리튬의 흡장·이탈에 의한 용량 성분과 리튬의 석출·용해에 의한 용량 성분을 포함하며, 또한 이의 합에 의해 표시되는 이차 전지, 및 음극(14)의 용량이 리튬의 흡장·이탈에 의한 용량 성분에 의해 표시되는 리튬 이온 이차 전지에 대해서, 양극(12)과 음극(14)의 체적의 합을 갖추었을 때의 방전 용량을 비교한 결과, 음극(14)의 용량이 리튬의 흡장·이탈에 의한 용량 성분과 리튬의 석출·용해에 의한 용량 성분을 포함하며, 또한 이의 합에 의해 표시되는 이차 전지가 리튬 이온 이차 전지보다도 1사이클째의 방전 용량(초기 방전 용량)이 약 15% 이상 높고, 50사이클 후에도 높았다. 따라서, 음극(14)의 용량이 리튬의 흡장·이탈에 의한 용량 성분과 리튬의 석출·용해에 의한 용량 성분을 포함하며, 또한 이의 합에 의해 표시되는 이차 전지가 리튬 이온 이차 전지보다도 종합적으로 우수하다고 말할 수 있다.
실시예 8-1 내지 8-432
실시예 8-1 내지 8-432 및 이에 대한 비교예 8-1 내지 8-243으로서, 표 99 내지 표 206에 기재한 조성 및 불순물을 갖는 양극 활성 물질을 사용한 것을 제외하고는 실시예 2-1 내지 2-10과 동일하게 하여 음극(14)의 용량이 리튬의 흡장·이탈에 의한 용량 성분에 의해 표시되는 리튬 이온 이차 전지를 제조하였다. 이 때, 양극 활성 물질의 원료에는 양극 활성 물질의 구성원소를 포함하는 수산화물, 산화 물 또는 탄산염 등을 사용하며, 소성은 공기 대기하 또는 산소 대기하에서 700℃ 내지 1000℃에서 실시하였다. 또한, 전해질의 불순물 함량은 표 99 내지 표 206에 기재한 바와 같았다.
실시예 8-1 내지 8-432 및 비교예 8-1 내지 8-243의 이차 전지에 대해서, 실온에서 충방전 시험을 실시하여 10사이클째, 50사이클째 및 100사이클째의 방전 용량 유지율을 구하였다. 이 때, 충전은 정전류 정전압 충전으로 하여, 1mA의 정전류로 표 99 내지 표 206에 기재한 상한 전압까지 정전류 충전을 실시한 후, 그 전압값에서 전류값이 0.01mA으로 감쇠할 때까지 정전압 충전을 실시하였다. 한편, 방전은 정전류 방전으로 하고, 0.5mA의 정전류에서 개회로 전압이 2.5V가 될 때까지 실시하였다. 또한, 10사이클째, 50사이클째 및 100사이클째의 방전 용량 유지율은 초기용량에 대한 각 사이클째의 방전 용량의 비율, 즉 (각 사이클째의 방전 용량/초기 용량)×100으로서 산출하였다. 수득된 결과를 표 99 내지 표 206에 기재한다.
표 99 내지 표 206으로부터 알 수 있는 바와 같이, 방전 용량 유지율은, 상한 전압을 4.2V로 한 비교예에서는, 불순물 함량이 동일한 것끼리 비교한 경우, 거의 동등하였다. 이에 대하여, 상한 전압을 4.25V, 4.30V, 4.40V 또는 4.50V로 한 실시예 8-1 내지 8-432에서는, LiCoO2을 사용한 실시예 8-1 내지 8-16 및 LiNiO2을 사용한 실시예 8-17 내지 8-32와 비교하여, 리튬, 코발트 및 니켈 중의 하나 이상 이외에, 망간, 알루미늄, 마그네슘, 티탄, 크롬 및 철로 이루어진 그룹으로부터 선택된 1종 이상의 금속 원소를 포함하는 양극 활성 물질을 사용한 실시예 8-49 내지 8-432가 우수하였다.
즉, 리튬, 코발트 및 니켈 중의 하나 이상 이외에, 망간, 알루미늄, 마그네슘, 티탄, 크롬 및 철로 이루어진 그룹으로부터 선택된 1종 이상의 금속 원소를 포함하는 양극 활성 물질을 사용하면, 상한 전압을 4.25V 이상으로 해도 충방전 사이클 특성을 향상시킬 수 있음을 알 수 있었다.
또한, 표 99 내지 표 106과 표 107 내지 표 110의 비교 및 표 127 내지 표 130과 표 166 내지 표 169의 비교로부터 알 수 있는 바와 같이, 코발트 또는 니켈중의 하나밖에 포함하지 않는 실시예 8-1 내지 8-32 및 실시예 8-113 내지 8-128보다도, 모두를 포함하는 실시예 8-33 내지 8-48 및 실시예 8-273 내지 8-288이 방전 용량 유지율이 우수하였다. 즉, 리튬 복합 산화물에 코발트 및 니켈을 모두 포함한 것이 바람직하다는 것을 알 수 있었다.
또한, 표 147 내지 표 149와 표 150 내지 표 169의 비교로부터 알 수 있는 바와 같이, 코발트 또는 니켈 이외의 금속 원소로서 망간을 포함하는 실시예 8-193 내지 8-208이 다른 금속 원소를 포함하는 실시예 8-209 내지 8-288보다도 방전 용량 유지율이 우수하였다. 즉, 리튬 복합 산화물에 망간을 포함한 것이 바람직하다는 것을 알 수 있었다.
추가로, 표 147 내지 표 149와 표 186 내지 표 206의 비교로부터 알 수 있는 바와 같이, 코발트 또는 니켈 이외의 다른 금속 원소로서 망간을 포함하는 실시예 8-159 내지 8-208과, 망간 이외에, 알루미늄, 마그네슘, 티탄, 크롬 및 철로 이루어진 그룹으로부터 선택된 1종 이상을 포함하는 실시예 8-353 내지 8-432는 거의 동등한 방전 용량 유지율이 수득되었다. 또한, 실시예 8-159 내지 8-208보다도, 망간 이외에, 알루미늄 또는 마그네슘을 포함하는 실시예 8-321 내지 8-352가 상한 전압이 높은 경우에 있어서 방전 용량 유지율이 약간 우수하였다. 즉, 리튬 복합 산화물에, 망간, 알루미늄 및 마그네슘으로 이루어진 그룹으로부터 망간과 망간 이외의 1종 이상의 다른 금속 원소를 포함하면, 충방전 사이클 특성을 향상시킴과 동시에, 충방전 사이클 특성 이외의 전지 특성의 향상 및 비용 삭감을 도모할 수 있음을 알 수 있었다.
또한, 표 99 내지 표 206으로부터 알 수 있는 바와 같이, 불순물의 농도를 낮게 하면, 상한 전압을 높이더라도 우수한 충방전 사이클 특성을 수득할 수 있음을 알 수 있었다.
이상, 실시양태 및 실시예를 들어 본 발명을 설명하였지만, 본 발명은 상기 실시양태 및 실시예에 한정되는 것은 아니며, 여러 가지 변형이 가능하다. 예를 들면, 상기 실시예에서는 충전시의 전지 전압이 4.25V, 4.30V, 4.40V 또는 4.5OV인 경우에 대해서 구체적으로 설명하였지만, 불순물의 농도를 보다 낮게 하면, 충전시의 전지 전압을 4.50V보다도 높게 하더라도 우수한 보존 특성 및 충방전 사이클 특성을 수득할 수 있어 에너지 밀도를 보다 높게 할 수 있다.
또한, 상기 실시양태 및 실시예에서는 코인형의 이차 전지를 구체적으로 들어 설명하였지만, 본 발명은 원통형, 버튼형, 각형 또는 라미네이트 필름 등의 외장부재를 사용한 다른 형상을 갖는 이차 전지, 또는 권회 구조 등의 다른 구조를 갖는 이차 전지에 대해서도 동일하게 적용할 수 있다. 또한, 상기 실시양태에서는 이차 전지에 관해서 설명하였지만, 일차 전지 등의 다른 전지에 대해서도 동일하게 적용할 수 있다.
이상 설명한 바와 같이 본 발명의 전지에 의하면, 충전시의 전지 전압을 4.25V 이상으로 하고, 또한 양극 중의 탄산리튬 및 황산리튬의 총량을 양극 활성 물질에 대하여 1.0질량% 이하, 전해질 중의 양성자성 불순물의 농도를 전해질에 대한 질량비로 양성자로 환산하여 20ppm 이하 또는 전해질 중의 수분량을 전해질에 대한 질량비로 20ppm 이하로 하도록 하였기 때문에, 고전압하에서도 리튬 복합 산화물로부터 금속의 용출을 억제할 수 있어 높은 에너지 밀도를 수득할 수 있다.
특히, 본 발명의 한 양태에 따르는 전지에 의하면, 양극 중의 탄산리튬 및 황산리튬의 총량, 전해질 중의 양성자성 불순물의 농도 또는 전해질 중의 수분량 중의 2개 이상을 소정의 범위내로 하도록 하였기 때문에, 보다 높은 효과를 수득할 수 있다.
또한, 본 발명의 다른 양태에 따르는 전지에 의하면, 리튬 복합 산화물에, 리튬, 코발트 및 니켈 중의 하나 이상 이외에, 망간, 알루미늄, 마그네슘, 티탄, 크롬 및 철로 이루어진 그룹으로부터 선택된 1종 이상을 포함하도록 하였기 때문에, 리튬 복합 산화물의 결정구조를 안정적으로 하여 화학적 안정성을 향상시킬 수 있어 고전압하에서도 높은 전지 특성을 수득할 수 있다.
또한, 본 발명의 또 다른 양태에 따르는 전지에 의하면, 용매에 환상 탄산 에스테르를 포함하도록 하였기 때문에, 산화분해가 발생하기 어려워 보다 높은 전지 특성을 수득할 수 있다.
추가로, 본 발명의 또 다른 양태에 따르는 전지에 의하면, 용매에 환상 카복실산 에스테르를 50체적% 미만의 함량으로 포함하도록 하였기 때문에, 환상 카복실산 에스테르가 음극(14)에서 분해되는 것을 방지할 수 있어 높은 전지 특성을 수득할 수 있다.
또한, 본 발명의 또 다른 양태에 따르는 전지에 의하면, 용매에 비닐렌 카보네이트 또는 비닐 에틸렌 카보네이트를 10체적% 미만의 함량으로 포함하도록 하였기 때문에, 내부저항을 저하시키지 않고 높은 특성을 수득할 수 있으며, 또한 환상 카복실산 에스테르를 포함하도록 하면, 비닐렌 카보네이트 또는 비닐 에틸렌 카보네이트에 의해 상대적으로 내산화성이 높은 환상 카복실산 에스테르의 특징이 도출되기 때문에, 보다 높은 전지 특성을 수득할 수 있다.
추가로 또한, 본 발명의 또 다른 양태에 따르는 전지에 의하면, 용매에 쇄상 탄산 에스테르를 80체적% 이하의 함량으로 포함하도록 하였기 때문에, 용매의 점성을 낮게 할 수 있어 전지 특성을 향상시킬 수 있다.
이상의 설명에 근거하여, 본 발명의 여러 가지 형태나 변형예를 실시할 수 있는 것은 분명하다. 따라서, 이하의 청구의 범위의 균등한 범위에 있어서, 상기의 상세한 설명에서의 형태 이외의 형태로 본 발명을 실시하는 것이 가능하다.
Figure 112009073214886-pat00001
Figure 112009073214886-pat00002
Figure 112009073214886-pat00003
Figure 112009073214886-pat00004
Figure 112009073214886-pat00005
Figure 112009073214886-pat00006
Figure 112009073214886-pat00007
Figure 112009073214886-pat00008
Figure 112009073214886-pat00009
Figure 112009073214886-pat00010
Figure 112009073214886-pat00011
Figure 112009073214886-pat00012
Figure 112009073214886-pat00013
Figure 112009073214886-pat00014
Figure 112009073214886-pat00015
Figure 112009073214886-pat00016
Figure 112009073214886-pat00017
Figure 112009073214886-pat00018
Figure 112009073214886-pat00019
Figure 112009073214886-pat00020
Figure 112009073214886-pat00021
Figure 112009073214886-pat00022
Figure 112009073214886-pat00023
Figure 112009073214886-pat00024
Figure 112009073214886-pat00025
Figure 112009073214886-pat00026
Figure 112009073214886-pat00027
Figure 112009073214886-pat00028
Figure 112009073214886-pat00029
Figure 112009073214886-pat00030
Figure 112009073214886-pat00031
Figure 112009073214886-pat00032
Figure 112009073214886-pat00033
Figure 112009073214886-pat00034
Figure 112009073214886-pat00035
Figure 112009073214886-pat00036
Figure 112009073214886-pat00037
Figure 112009073214886-pat00038
Figure 112009073214886-pat00039
Figure 112009073214886-pat00040
Figure 112009073214886-pat00041
Figure 112009073214886-pat00042
Figure 112009073214886-pat00043
Figure 112009073214886-pat00044
Figure 112009073214886-pat00045
Figure 112009073214886-pat00046
Figure 112009073214886-pat00047
Figure 112009073214886-pat00048
Figure 112009073214886-pat00049
Figure 112009073214886-pat00050
Figure 112009073214886-pat00051
Figure 112009073214886-pat00052
Figure 112009073214886-pat00053
Figure 112009073214886-pat00054
Figure 112009073214886-pat00055
Figure 112009073214886-pat00056
Figure 112009073214886-pat00057
Figure 112009073214886-pat00058
Figure 112009073214886-pat00059
Figure 112009073214886-pat00060
Figure 112009073214886-pat00061
Figure 112009073214886-pat00062
Figure 112009073214886-pat00063
Figure 112009073214886-pat00064
Figure 112009073214886-pat00065
Figure 112009073214886-pat00066
Figure 112009073214886-pat00067
Figure 112009073214886-pat00068
Figure 112009073214886-pat00069
Figure 112009073214886-pat00070
Figure 112009073214886-pat00071
Figure 112009073214886-pat00072
Figure 112009073214886-pat00073
Figure 112009073214886-pat00074
Figure 112009073214886-pat00075
Figure 112009073214886-pat00076
Figure 112009073214886-pat00077
Figure 112009073214886-pat00078
Figure 112009073214886-pat00079
Figure 112009073214886-pat00080
Figure 112009073214886-pat00081
Figure 112009073214886-pat00082
Figure 112009073214886-pat00083
Figure 112009073214886-pat00084
Figure 112009073214886-pat00085
Figure 112009073214886-pat00086
Figure 112009073214886-pat00087
Figure 112009073214886-pat00088
Figure 112009073214886-pat00089
Figure 112009073214886-pat00090
Figure 112009073214886-pat00091
Figure 112009073214886-pat00092
Figure 112009073214886-pat00093
Figure 112009073214886-pat00094
Figure 112009073214886-pat00095
Figure 112009073214886-pat00096
Figure 112009073214886-pat00097
Figure 112009073214886-pat00098
Figure 112009073214886-pat00099
Figure 112009073214886-pat00100
Figure 112009073214886-pat00101
Figure 112009073214886-pat00102
Figure 112009073214886-pat00103
Figure 112009073214886-pat00104
Figure 112009073214886-pat00105
Figure 112009073214886-pat00106
Figure 112009073214886-pat00107
Figure 112009073214886-pat00108
Figure 112009073214886-pat00109
Figure 112009073214886-pat00110
Figure 112009073214886-pat00111
Figure 112009073214886-pat00112
Figure 112009073214886-pat00113
Figure 112009073214886-pat00114
Figure 112009073214886-pat00115
Figure 112009073214886-pat00116
Figure 112009073214886-pat00117
Figure 112009073214886-pat00118
Figure 112009073214886-pat00119
Figure 112009073214886-pat00120
Figure 112009073214886-pat00121
Figure 112009073214886-pat00122
Figure 112009073214886-pat00123
Figure 112009073214886-pat00124
Figure 112009073214886-pat00125
Figure 112009073214886-pat00126
Figure 112009073214886-pat00127
Figure 112009073214886-pat00128
Figure 112009073214886-pat00129
Figure 112009073214886-pat00130
Figure 112009073214886-pat00131
Figure 112009073214886-pat00132
Figure 112009073214886-pat00133
Figure 112009073214886-pat00134
Figure 112009073214886-pat00135
Figure 112009073214886-pat00136
Figure 112009073214886-pat00137
Figure 112009073214886-pat00138
Figure 112009073214886-pat00139
Figure 112009073214886-pat00140
Figure 112009073214886-pat00141
Figure 112009073214886-pat00142
Figure 112009073214886-pat00143
Figure 112009073214886-pat00144
Figure 112009073214886-pat00145
Figure 112009073214886-pat00146
Figure 112009073214886-pat00147
Figure 112009073214886-pat00148
Figure 112009073214886-pat00149
Figure 112009073214886-pat00150
Figure 112009073214886-pat00151
Figure 112009073214886-pat00152
Figure 112009073214886-pat00153
Figure 112009073214886-pat00154
Figure 112009073214886-pat00155
Figure 112009073214886-pat00156
Figure 112009073214886-pat00157
Figure 112009073214886-pat00158
Figure 112009073214886-pat00159
Figure 112009073214886-pat00160
Figure 112009073214886-pat00161
Figure 112009073214886-pat00162
Figure 112009073214886-pat00163
Figure 112009073214886-pat00164
Figure 112009073214886-pat00165
Figure 112009073214886-pat00166
Figure 112009073214886-pat00167
Figure 112009073214886-pat00168
Figure 112009073214886-pat00169
Figure 112009073214886-pat00170
Figure 112009073214886-pat00171
Figure 112009073214886-pat00172
Figure 112009073214886-pat00173
Figure 112009073214886-pat00174
Figure 112009073214886-pat00175
Figure 112009073214886-pat00176
Figure 112009073214886-pat00177
Figure 112009073214886-pat00178
Figure 112009073214886-pat00179
Figure 112009073214886-pat00180
Figure 112009073214886-pat00181
Figure 112009073214886-pat00182
Figure 112009073214886-pat00183
Figure 112009073214886-pat00184
Figure 112009073214886-pat00185
Figure 112009073214886-pat00186
Figure 112009073214886-pat00187
Figure 112009073214886-pat00188
Figure 112009073214886-pat00189
Figure 112009073214886-pat00190
Figure 112009073214886-pat00191
Figure 112009073214886-pat00192
Figure 112009073214886-pat00193
Figure 112009073214886-pat00194
Figure 112009073214886-pat00195
Figure 112009073214886-pat00196
Figure 112009073214886-pat00197
Figure 112009073214886-pat00198
Figure 112009073214886-pat00199
Figure 112009073214886-pat00200
Figure 112009073214886-pat00201
Figure 112009073214886-pat00202
Figure 112009073214886-pat00203
Figure 112009073214886-pat00204
Figure 112009073214886-pat00205
Figure 112009073214886-pat00206
도 1은, 본 발명의 제1 실시양태에 따르는 이차 전지의 구성을 나타내는 단면도이다.

Claims (1)

  1. 양극 및 음극과 함께 전해질을 구비한 전지로서,
    상기 양극은 양극 활성 물질로서 리튬(Li)과, 코발트(Co) 및 니켈(Ni) 중의 하나 이상과, 산소(O)를 포함하는 리튬 복합 산화물을 함유하고,
    상기 음극은 음극 활성 물질로서 리튬을 흡장 및 이탈시킬 수 있는 음극 재료 및 리튬 금속으로 이루어진 그룹으로부터 선택된 1종 이상을 함유하며,
    충전시의 전지 전압은 4.25V 이상이고,
    상기 양극 중의 탄산리튬 및 황산리튬의 총량은 상기 양극 활성 물질에 대하여 1.0질량% 이하이며,
    상기 전해질 중의 양성자성 불순물의 농도는, 전해질에 대한 질량비로, 양성자(H+)로 환산하여 20ppm 이하이고,
    상기 전해질 중의 수분량은 전해질에 대한 질량비로 20ppm 이하이며,
    상기 전해질은 용매 및 리튬염을 포함하고, 상기 용매는 환상 탄산 에스테르를 포함하며,
    상기 용매 중의 환상 탄산 에스테르의 함량은 20체적% 이상, 100체적% 이하임을 특징으로 하는, 전지.
KR1020097024824A 2001-08-24 2002-08-23 전지 KR100998860B1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001254547 2001-08-24
JPJP-P-2001-254547 2001-08-24

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020047002675A Division KR100946947B1 (ko) 2001-08-24 2002-08-23 전지

Publications (2)

Publication Number Publication Date
KR20100004115A KR20100004115A (ko) 2010-01-12
KR100998860B1 true KR100998860B1 (ko) 2010-12-08

Family

ID=19082693

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020047002675A KR100946947B1 (ko) 2001-08-24 2002-08-23 전지
KR1020097024824A KR100998860B1 (ko) 2001-08-24 2002-08-23 전지

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020047002675A KR100946947B1 (ko) 2001-08-24 2002-08-23 전지

Country Status (6)

Country Link
US (1) US7510803B2 (ko)
EP (2) EP1443584A4 (ko)
JP (1) JP4963777B2 (ko)
KR (2) KR100946947B1 (ko)
CN (3) CN100446336C (ko)
WO (1) WO2003019713A1 (ko)

Families Citing this family (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4583727B2 (ja) * 2002-05-30 2010-11-17 パナソニック株式会社 非水電解質二次電池の充電方法
JP4604460B2 (ja) 2003-05-16 2011-01-05 パナソニック株式会社 非水電解質二次電池および電池充放電システム
JP4737952B2 (ja) * 2003-07-24 2011-08-03 三洋電機株式会社 非水電解液二次電池
JP4497899B2 (ja) * 2003-11-19 2010-07-07 三洋電機株式会社 リチウム二次電池
JP4811697B2 (ja) * 2003-12-26 2011-11-09 株式会社Gsユアサ リチウム二次電池及びその初期活性化方法
CA2555521C (en) 2004-02-06 2014-08-05 A123 Systems, Inc. Lithium secondary cell with high charge and discharge rate capability
US8617745B2 (en) * 2004-02-06 2013-12-31 A123 Systems Llc Lithium secondary cell with high charge and discharge rate capability and low impedance growth
WO2005099022A1 (ja) * 2004-04-07 2005-10-20 Matsushita Electric Industrial Co., Ltd. 非水電解質二次電池
US20060008706A1 (en) * 2004-07-09 2006-01-12 Takitaro Yamaguchi Rechargeable lithium battery
JP5392960B2 (ja) * 2004-07-09 2014-01-22 三星エスディアイ株式会社 リチウム二次電池
US20060115718A1 (en) * 2004-11-30 2006-06-01 Delphi Technologies, Inc. Lithium ion polymer multi-cell and method of making
JP4986009B2 (ja) 2005-04-04 2012-07-25 ソニー株式会社 二次電池
US9054374B2 (en) 2005-05-17 2015-06-09 Sony Corporation Cathode active material, method of manufacturing the same and battery
JP4867208B2 (ja) * 2005-06-15 2012-02-01 三菱化学株式会社 リチウム二次電池
EP1892789B1 (en) 2005-06-15 2018-02-28 Mitsubishi Chemical Corporation Lithium secondary battery
JP5002918B2 (ja) * 2005-07-01 2012-08-15 ソニー株式会社 二次電池
JP5260821B2 (ja) * 2005-07-11 2013-08-14 パナソニック株式会社 リチウムイオン二次電池
JP4626568B2 (ja) * 2005-07-29 2011-02-09 ソニー株式会社 リチウムイオン二次電池
JP4941696B2 (ja) * 2005-08-09 2012-05-30 ソニー株式会社 リチウムイオン二次電池
JP2007048711A (ja) * 2005-08-12 2007-02-22 Sony Corp 正極活物質およびその製造方法、並びに電池
CN102544496A (zh) * 2005-09-09 2012-07-04 A123系统公司 具有高充电和放电倍率能力和低阻抗增长的锂二次电池
JP4951913B2 (ja) * 2005-09-27 2012-06-13 ソニー株式会社 リチウムイオン二次電池
JP2007134274A (ja) * 2005-11-14 2007-05-31 Sumitomo Osaka Cement Co Ltd 電極材料及び電極並びにリチウムイオン電池
JP2007157459A (ja) * 2005-12-02 2007-06-21 Sony Corp 非水電解質電池
JP2007188776A (ja) * 2006-01-13 2007-07-26 Sony Corp 非水電解質電池
JP2007188777A (ja) 2006-01-13 2007-07-26 Sony Corp セパレータおよび非水電解質電池
US8017263B2 (en) * 2006-01-24 2011-09-13 Sony Corporation Separator and battery
JP5103945B2 (ja) 2006-03-31 2012-12-19 ソニー株式会社 非水電解質二次電池
JP4306697B2 (ja) 2006-06-16 2009-08-05 ソニー株式会社 二次電池
JP2008066020A (ja) * 2006-09-05 2008-03-21 Sony Corp 非水電解質二次電池
JP5298419B2 (ja) * 2006-10-16 2013-09-25 ソニー株式会社 二次電池
CA2566906A1 (en) * 2006-10-30 2008-04-30 Nathalie Ravet Carbon-coated lifepo4 storage and handling
JP2008198432A (ja) 2007-02-09 2008-08-28 Sony Corp 電池
JP4735579B2 (ja) * 2007-03-26 2011-07-27 ソニー株式会社 非水電解質電池
JP4748136B2 (ja) * 2007-10-03 2011-08-17 ソニー株式会社 耐熱絶縁層付きセパレータ及び非水電解質二次電池
JP5079461B2 (ja) * 2007-11-14 2012-11-21 ソニー株式会社 リチウムイオン二次電池用正極、その製造方法及びリチウムイオン二次電池
JP4760816B2 (ja) * 2007-11-14 2011-08-31 ソニー株式会社 リチウムイオン二次電池用正極及びリチウムイオン二次電池
CN101980956A (zh) * 2008-03-31 2011-02-23 户田工业株式会社 磷酸铁锂颗粒粉末的制造方法、橄榄石型结构的磷酸铁锂颗粒粉末、使用该磷酸铁锂颗粒粉末的正极材料片和非水溶剂类二次电池
US8394299B2 (en) * 2008-04-03 2013-03-12 Lg Chem, Ltd. Precursor for the preparation of a lithium composite transition metal oxide
US8187752B2 (en) 2008-04-16 2012-05-29 Envia Systems, Inc. High energy lithium ion secondary batteries
KR101553582B1 (ko) * 2008-12-05 2015-09-16 삼성에스디아이 주식회사 양극 활물질, 이를 포함하는 양극 및 리튬 전지
JP5625917B2 (ja) * 2009-02-12 2014-11-19 ダイキン工業株式会社 リチウム二次電池の電極合剤用スラリー、該スラリーを用いた電極およびリチウム二次電池
CN102301517A (zh) * 2009-02-23 2011-12-28 日本电气硝子株式会社 锂离子电池用玻璃膜
JP2010198922A (ja) * 2009-02-25 2010-09-09 Sony Corp 二次電池
US10056644B2 (en) * 2009-07-24 2018-08-21 Zenlabs Energy, Inc. Lithium ion batteries with long cycling performance
US8993177B2 (en) 2009-12-04 2015-03-31 Envia Systems, Inc. Lithium ion battery with high voltage electrolytes and additives
US8586247B2 (en) * 2009-12-11 2013-11-19 Samsung Sdi Co., Ltd. Positive electrode active material comprising an agglomeration of at least two primary particles for lithium battery and lithium battery using the same
CN106099191B (zh) * 2010-03-02 2020-05-08 株式会社村田制作所 非水电解质和非水电解质电池
JP5533321B2 (ja) * 2010-03-02 2014-06-25 ソニー株式会社 非水電解質および非水電解質電池
US8765306B2 (en) 2010-03-26 2014-07-01 Envia Systems, Inc. High voltage battery formation protocols and control of charging and discharging for desirable long term cycling performance
US9083062B2 (en) 2010-08-02 2015-07-14 Envia Systems, Inc. Battery packs for vehicles and high capacity pouch secondary batteries for incorporation into compact battery packs
US9166222B2 (en) 2010-11-02 2015-10-20 Envia Systems, Inc. Lithium ion batteries with supplemental lithium
JP2012221824A (ja) 2011-04-12 2012-11-12 Sony Corp リチウムイオン二次電池、電子機器、電動工具、電動車両および電力貯蔵システム
JP5894388B2 (ja) * 2011-07-26 2016-03-30 住友金属鉱山株式会社 非水電解質二次電池用正極活物質、その製造方法及びそれを用いた非水電解質二次電池
US9159990B2 (en) 2011-08-19 2015-10-13 Envia Systems, Inc. High capacity lithium ion battery formation protocol and corresponding batteries
US9780358B2 (en) 2012-05-04 2017-10-03 Zenlabs Energy, Inc. Battery designs with high capacity anode materials and cathode materials
US10553871B2 (en) 2012-05-04 2020-02-04 Zenlabs Energy, Inc. Battery cell engineering and design to reach high energy
US11476494B2 (en) 2013-08-16 2022-10-18 Zenlabs Energy, Inc. Lithium ion batteries with high capacity anode active material and good cycling for consumer electronics
JP5825374B2 (ja) * 2014-02-07 2015-12-02 ソニー株式会社 セパレータおよび非水電解質電池
JP6064926B2 (ja) * 2014-02-07 2017-01-25 ソニー株式会社 セパレータおよび電池
WO2015153485A1 (en) 2014-04-01 2015-10-08 The Research Foundation For The State University Of New York Electrode materials for group ii cation-based batteries
US11094925B2 (en) 2017-12-22 2021-08-17 Zenlabs Energy, Inc. Electrodes with silicon oxide active materials for lithium ion cells achieving high capacity, high energy density and long cycle life performance
JP7292574B2 (ja) * 2018-12-25 2023-06-19 住友金属鉱山株式会社 リチウムイオン二次電池用正極活物質とその製造方法、およびリチウムイオン二次電池
US11362333B2 (en) 2019-01-23 2022-06-14 Ut-Battelle, Llc Cobalt-free layered oxide cathodes
US11973178B2 (en) 2019-06-26 2024-04-30 Ionblox, Inc. Lithium ion cells with high performance electrolyte and silicon oxide active materials achieving very long cycle life performance
JP2023518984A (ja) * 2020-03-27 2023-05-09 ボード オブ リージェンツ,ザ ユニバーシティ オブ テキサス システム リチウム電池のための低コバルト及びコバルトを含まない高エネルギー正極材料

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5264201A (en) * 1990-07-23 1993-11-23 Her Majesty The Queen In Right Of The Province Of British Columbia Lithiated nickel dioxide and secondary cells prepared therefrom
US5180574A (en) * 1990-07-23 1993-01-19 Moli Energy (1990) Limited Hydrides of lithiated nickel dioxide and secondary cells prepared therefrom
US5427875A (en) * 1991-04-26 1995-06-27 Sony Corporation Non-aqueous electrolyte secondary cell
JP3010781B2 (ja) * 1991-04-26 2000-02-21 ソニー株式会社 非水電解質二次電池
JPH06111820A (ja) * 1992-09-25 1994-04-22 Sanyo Electric Co Ltd 非水系電池
JPH07325345A (ja) 1994-05-31 1995-12-12 Pentel Kk オーバーヘッドプロジェクターの駆動装置
JPH07326345A (ja) * 1994-05-31 1995-12-12 Mitsubishi Cable Ind Ltd リチウム二次電池用負極とその製造方法、およびその負極を用いてなるリチウム二次電池
JP4066465B2 (ja) * 1996-10-15 2008-03-26 宇部興産株式会社 非水電解質二次電池
JP4061668B2 (ja) 1997-04-21 2008-03-19 宇部興産株式会社 リチウムイオン非水電解質二次電池
JPH11102727A (ja) * 1997-09-29 1999-04-13 Hitachi Ltd ゲル電解質二次電池
CN1283315A (zh) * 1997-12-26 2001-02-07 东燃珍宝石油株式会社 锂电池用电解液及其制造方法
JP3336998B2 (ja) * 1998-08-28 2002-10-21 株式会社豊田中央研究所 非水電解液二次電池
JP4010701B2 (ja) * 1999-04-02 2007-11-21 三井化学株式会社 非水電解液および非水電解液二次電池
JP4657403B2 (ja) * 1999-07-02 2011-03-23 パナソニック株式会社 非水電解質二次電池
JP2001126763A (ja) 1999-10-22 2001-05-11 Sony Corp 非水電解液二次電池
AUPQ389599A0 (en) * 1999-11-05 1999-12-02 Ilion Technology Corporation Polyelectrolyte gel
JP2001273898A (ja) * 2000-01-20 2001-10-05 Japan Storage Battery Co Ltd 非水電解質二次電池用正極活物質およびその製造方法並びにそれを使用した非水電解質二次電池
CN1307373A (zh) * 2000-01-25 2001-08-08 徐冬梅 高能锂离子充电电池阴极材料
JP3422369B2 (ja) * 2000-06-16 2003-06-30 三洋ジ−エスソフトエナジー株式会社 非水電解質二次電池
US7026074B2 (en) * 2002-02-15 2006-04-11 The University Of Chicago Lithium ion battery with improved safety

Also Published As

Publication number Publication date
KR100946947B1 (ko) 2010-03-15
CN100448095C (zh) 2008-12-31
JPWO2003019713A1 (ja) 2004-12-16
US20040234853A1 (en) 2004-11-25
EP2469627A1 (en) 2012-06-27
CN1557036A (zh) 2004-12-22
EP1443584A1 (en) 2004-08-04
EP1443584A4 (en) 2010-01-06
CN1770542A (zh) 2006-05-10
EP2469627B1 (en) 2018-10-10
JP4963777B2 (ja) 2012-06-27
CN1770543A (zh) 2006-05-10
KR20040032960A (ko) 2004-04-17
CN100446336C (zh) 2008-12-24
CN1314159C (zh) 2007-05-02
US7510803B2 (en) 2009-03-31
WO2003019713A1 (fr) 2003-03-06
KR20100004115A (ko) 2010-01-12

Similar Documents

Publication Publication Date Title
KR100998860B1 (ko) 전지
KR100811580B1 (ko) 양극 활성 물질, 비수성 전해질 2차 전지 및 이의 제조방법
EP1936731B1 (en) Rechargeable lithium battery
EP1180809B1 (en) Non-aqueous electrolyte secondary cell
US6511776B1 (en) Polymer electrolyte battery and polymer electrolyte
JP4853608B2 (ja) リチウム二次電池
KR101802342B1 (ko) 유기전해액 및 이를 채용한 리튬전지
US9054378B2 (en) Positive plate material and cell comprising it
EP2999033B1 (en) Rechargeable lithium battery
US6613480B1 (en) Electrolyte for rechargeable lithium battery and rechargeable lithium battery using same
WO2007007636A1 (ja) 非水電解液二次電池
KR20090092220A (ko) 비수전해질 이차 전지
EP2284934B1 (en) Electrode assembly and lithium secondary battery including the same
JP2008159419A (ja) 非水電解液二次電池
US20040185345A1 (en) Positive electrode active material for secondary cell, positive electrode for secondary cell using same, and secondary cell
JP2007335170A (ja) 非水電解液および非水電解液電池
JPH07272756A (ja) 非水電解液二次電池
CN101288198A (zh) 高分子电解质和使用其的电池
JP2005008461A (ja) 複合酸化物の製造方法、複合酸化物および電池
JP2005079057A (ja) 電池
KR101602419B1 (ko) 양극활물질, 이를 포함하는 양극 및 상기 양극을 채용한 리튬전지
US7563538B2 (en) Nonaqueous electrolyte secondary battery
US20090081556A1 (en) Non-aqueous electrolyte secondary battery
EP3982460A1 (en) Manufacturing method of lithium secondary battery
US8338031B2 (en) Cathode and lithium battery including the same

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131122

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141125

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20151120

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20161118

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20171124

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20181126

Year of fee payment: 9