JPWO2012026557A1 - シール材 - Google Patents

シール材 Download PDF

Info

Publication number
JPWO2012026557A1
JPWO2012026557A1 JP2012530724A JP2012530724A JPWO2012026557A1 JP WO2012026557 A1 JPWO2012026557 A1 JP WO2012026557A1 JP 2012530724 A JP2012530724 A JP 2012530724A JP 2012530724 A JP2012530724 A JP 2012530724A JP WO2012026557 A1 JPWO2012026557 A1 JP WO2012026557A1
Authority
JP
Japan
Prior art keywords
fluororubber
crosslinking
vdf
sealing material
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012530724A
Other languages
English (en)
Other versions
JP5641049B2 (ja
Inventor
純平 寺田
純平 寺田
太田 大助
大助 太田
北市 雅紀
雅紀 北市
植田 豊
豊 植田
滋 守田
滋 守田
一良 川崎
一良 川崎
達也 森川
達也 森川
昌二 福岡
昌二 福岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Publication of JPWO2012026557A1 publication Critical patent/JPWO2012026557A1/ja
Application granted granted Critical
Publication of JP5641049B2 publication Critical patent/JP5641049B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • F16J15/102Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing characterised by material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/16Homopolymers or copolymers or vinylidene fluoride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/20Homopolymers or copolymers of hexafluoropropene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • C09K3/1006Materials in mouldable or extrudable form for sealing or packing joints or covers characterised by the chemical nature of one of its constituents
    • C09K3/1009Fluorinated polymers, e.g. PTFE

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Sealing Material Composition (AREA)
  • Gasket Seals (AREA)

Abstract

高温環境下でのシール性だけではなく、高温高圧縮下の耐割れ性にも優れたシール材を提供する。フッ素ゴム(A)及びカーボンブラック(B)を含むフッ素ゴム組成物を架橋して得られる架橋フッ素ゴム層を有し、架橋フッ素ゴム層が、動的粘弾性試験(測定温度:160℃、引張歪み:1%、初期加重:157cN、周波数:10Hz)において、損失弾性率E”が、600kPa以上6000kPa以下であるシール材。

Description

(関連出願への相互参照)
本願は、本明細書において全体にわたって参照として組み込まれた2010年8月25日出願の米国仮特許出願第61/377,034号の35U.S.C.§119(e)に基づく利益を請求する。
本発明は、センサー用シール材などのシール材に関する。
シール材の用途の一つである酸素濃度を検出するための酸素センサー(Oセンサー)は、たとえば、自動車の内燃機関からの排出ガス中における酸素濃度の検出に用いられる。自動車用酸素センサーは、通常、金属等で保護されているものの、高温の排気パイプ等に取り付けられ、酸化性物質を多く含む高温の排気ガス流にセンサー内部がさらされるので、耐熱性、耐薬品性等に優れていることが必要である。
自動車用酸素センサーは、排気ガスを浄化する触媒の下流に装着されるもの、触媒の劣化を検知するために必要なもの等、車体床下側に装着されることが多い。この場合、自動車用酸素センサーは、エンジンや路面からの振動衝撃、石はね、被水等の外部衝撃を受けるので、耐機械的衝撃性、耐熱衝撃性、防水性等を備えていることも要求される。
自動車用酸素センサーは、通常、筒状であり、酸素濃度の基準となる大気を酸素センサーの酸素濃度検出部に導入し、筒奥にある酸素濃度検出素子の電気出力を外部に取り出すために、数本のリード線を内蔵している。リード線は、自動車用酸素センサーの取り出し部分において、相互に接触せずに固定させるため、ブッシュと称されるシール材を貫通するように配置されている。
このシール材は、通常、円柱を基本形状とするものであり、使用に際し、数個の予め設けた円柱の高さ方向に延びる貫通孔にリード線を通し貫通させた後、径方向に圧力を加える加締めを行う。
このシール材は、加締めによりある程度圧縮され、リード線の固定を確実に行い、防水性、気密性等のシール性を発揮するように、弾性を有することが望ましく、また、設置場所から自動車用酸素センサー本体と同様に、耐熱性、耐衝撃性等の特性を有することも望まれる。したがって、シール材としては、従来、これらの特性を有するフッ素ゴムからなるフッ素ゴム組成物を架橋したシール材を用いることが多かった。
また、シール材としては、加締めにより応力歪みが残存すると割れを生じやすいので、優れたシール特性を示すように圧縮永久歪みが小さいことが望ましい。しかしながら、従来のフッ素ゴム組成物では、添加される架橋剤の増量によって架橋密度を上げることにより、シール材の圧縮永久歪みを小さくすることはできたが、シール材の高圧縮による耐割れ性は逆に悪化する問題があった。逆に架橋剤の減量によって架橋密度を下げることによりシール材の耐割れ性を改善することは可能だが、シール材の圧縮永久歪みは大きくなるため、架橋剤の量による調整では耐圧縮永久歪み性と耐割れ性の両方を満足させるよう高次元なバランスをとることは不可能であった。
これらの問題を解決する手法として、フッ素ゴムに添加する各種添加剤の配合比を規定したゴム組成物が開示されている(たとえば、特許文献1参照)。しかし、いずれも耐圧縮永久歪み性と耐割れ性を同時に満足させるには不充分であった。
更に、シール材としてビニリデンフルオライド、テトラフルオロエチレン及びヘキサフルオロプロピレンを含む単量体成分から得られる共重合体からなり、かつ質量平均分子量が40万〜70万である含フッ素エラストマーを含む組成物からなるシール材が提案されている(たとえば特許文献2参照)。しかし、シール材の耐圧縮永久歪み性が充分でなく、フッ素ゴムやフッ素ゴム組成物の加工性においては、ムーニー粘度が測定できないほど流動性に乏しいものであり、実質的に加工できないという問題があった。また、フッ素ゴムと架橋剤とからなり、ムーニー粘度(ML1+20、140℃)が70〜150であるゴム組成物が提案されている(たとえば特許文献3参照)。また、フッ素ゴムとサーマルブラックとを含むフッ素ゴム架橋成形品も提案されている(たとえば特許文献4参照)。しかし、依然としてシール材の耐圧縮永久歪み性が充分でなく、耐割れ性にも改善の余地があった。
更に、近年、エンジンや機器類の高性能化、環境保護の高意識化等に伴い、より高精度のセンサー制御が求められており、自動車用酸素センサーの装着位置は排気ガス流の上流側に移行しつつあるが、排気ガス流は上流側ほど高温である。
また、自動車のエンジンルーム内の密集化に伴い、室内の居住空間を拡大するため、エンジンの小型化が望まれている。エンジンの小型化は、自動車の軽量化や低燃費化にも寄与するので開発の要請は高いが、エンジン内部は高温化する。そのような高温部位に設置する酸素センサーもある。
したがって、従来、高温になるほど、高圧縮下での耐割れ性や耐圧縮永久歪み性は劣化する傾向にあったが、シール材に用いられるフッ素ゴムとしては、従来よりも高温の使用環境においても、これらの特性を損なわないことが求められるようになってきた。
特開平9−188793号公報 国際公開第2003/074625号パンフレット 国際公開第2006/040944号パンフレット 特開2001−192482号公報
フッ素ゴムは耐熱老化性や耐薬品性、耐油性には優れているが、高温高圧縮下の耐割れ性が充分ではなく、高温高圧縮下で使用するフッ素ゴムシール材の耐久性の改善が望まれている。
本発明は、高温環境下でのシール性だけではなく、高温高圧縮下の耐割れ性にも優れたシール材を提供することを目的とする。
本発明者らは、鋭意検討した結果、損失弾性率(E”)に着目し、特定の損失弾性率を有するフッ素ゴムシール材であれば、高温高圧縮下の耐割れ性に優れることを見出し、本発明に至った。
すなわち本発明は、フッ素ゴム(A)及びカーボンブラック(B)を含むフッ素ゴム組成物を架橋して得られる架橋フッ素ゴム層を有し、
架橋フッ素ゴム層が、動的粘弾性試験(測定温度:160℃、引張歪み:1%、初期加重:157cN、周波数:10Hz)において、損失弾性率E”が、600kPa以上6000kPa以下であるシール材に関する。
また、架橋フッ素ゴム層は、動的粘弾性試験(測定温度:160℃、引張歪み:1%、初期加重:157cN、周波数:10Hz)において、貯蔵弾性率E’が1500kPa以上20000kPa以下であることが好ましい。
かかる架橋フッ素ゴム層に上記範囲の損失弾性率E”、更に好ましくは上記範囲の貯蔵弾性率E’を与えるカーボンブラック(B)としては、窒素吸着比表面積(NSA)が20〜180m/gであって、ジブチルフタレート(DBP)吸油量が50〜180ml/100gであるカーボンブラックが、フッ素ゴムとカーボンゲルネットワーク補強構造を形成し、高温高圧縮下の耐割れ性の向上に寄与する点から好ましい。
フッ素ゴム(A)としては、フッ化ビニリデン系共重合体ゴム、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)系共重合体ゴム、又はテトラフルオロエチレン/プロピレン系共重合体ゴムが、耐熱性、耐圧縮永久歪み性が良好な点から好ましい。
前記フッ素ゴム組成物には、更に架橋剤(C)及び/又は架橋助剤(D)を配合することができる。
本発明において、シール材としては、高温高圧縮下での耐割れ性が特に要求されるセンサー用シール材が好適である。
本発明によれば、高温環境下でのシール性だけではなく、高温高圧縮下での耐割れ性にも優れたシール材を提供することができる。
本発明は、フッ素ゴム(A)及びカーボンブラック(B)を含むフッ素ゴム組成物を架橋して得られる架橋フッ素ゴム層を有し、架橋フッ素ゴム層が、動的粘弾性試験(測定モード:引張、チャック間距離:20mm、測定温度:160℃、引張歪み:1%、初期加重:157cN、周波数:10Hz)において、損失弾性率E”が、600kPa以上6000kPa以下であるシール材に関する。
以下、各要件について説明する。
本発明におけるフッ素ゴム(A)としては、たとえばテトラフルオロエチレン(TFE)、フッ化ビニリデン(VdF)及び式(1):
CF=CF−Rf (1)
(式中、Rfは−CF又は−ORf(Rfは炭素数1〜5のパーフルオロアルキル基))で表されるパーフルオロエチレン性不飽和化合物(たとえばヘキサフルオロプロピレン(HFP)、パーフルオロ(アルキルビニルエーテル)(PAVE)など)よりなる群から選ばれる少なくとも1種の単量体に由来する構造単位を含むことが好ましい。
別の観点からは、フッ素ゴムとしては、非パーフルオロフッ素ゴム又はパーフルオロフッ素ゴムが好ましい。
非パーフルオロフッ素ゴムとしては、フッ化ビニリデン(VdF)系フッ素ゴム、テトラフルオロエチレン(TFE)/プロピレン(Pr)系フッ素ゴム、テトラフルオロエチレン(TFE)/プロピレン(Pr)/ビニリデンフルオライド(VdF)系フッ素ゴム、エチレン/ヘキサフルオロプロピレン(HFP)系フッ素ゴム、エチレン(Et)/ヘキサフルオロプロピレン(HFP)/ビニリデンフルオライド(VdF)系フッ素ゴム、エチレン(Et)/ヘキサフルオロプロピレン(HFP)/テトラフルオロエチレン(TFE)系フッ素ゴム、フルオロシリコーン系フッ素ゴム、又はフルオロホスファゼン系フッ素ゴムなどがあげられ、これらをそれぞれ単独で、又は本発明の効果を損なわない範囲で任意に組み合わせて用いることができる。これらの中でも、VdF系フッ素ゴム、TFE/Pr系ゴム、及びTFE/Pr/VdF系ゴムからなる群より選択される少なくとも1種が、耐熱性、耐圧縮永久歪み性が良好な点からより好適である。
上記VdF系ゴムは、VdF繰り返し単位が、VdF繰り返し単位とその他の共単量体に由来する繰り返し単位との合計モル数の20モル%以上、90モル%以下が好ましく、40モル%以上、85モル%以下であることがより好ましい。更に好ましい下限は45モル%、特に好ましい下限は50モル%であり、更に好ましい上限は80モル%である。
そして、上記VdF系ゴムにおける共単量体としてはVdFと共重合可能であれば特に限定されず、たとえば、TFE、HFP、PAVE、クロロトリフルオロエチレン(CTFE)、トリフルオロエチレン、トリフルオロプロピレン、テトラフルオロプロピレン、ペンタフルオロプロピレン、トリフルオロブテン、テトラフルオロイソブテン、ヘキサフルオロイソブテン、フッ化ビニル、ヨウ素含有フッ素化ビニルエーテル、及び、一般式(2)
CH=CFRf (2)
(式中、Rfは炭素数1〜12の直鎖又は分岐したフルオロアルキル基)で表される含フッ素単量体(2)などのフッ素含有単量体;エチレン(Et)、プロピレン(Pr)、アルキルビニルエーテル等のフッ素非含有単量体、架橋性基(キュアサイト)を与える単量体、並びに反応性乳化剤などがあげられ、これらの単量体や化合物のなかから1種又は2種以上を組み合わせて用いることができる。
前記PAVEとしては、パーフルオロ(メチルビニルエーテル)(PMVE)、又は、パーフルオロ(プロピルビニルエーテル)(PPVE)がより好ましく、特にPMVEが好ましい。
また、前記PAVEとして、式:CF=CFOCFORf
(式中、Rfは炭素数1〜6の直鎖又は分岐状パーフルオロアルキル基、炭素数5〜6の環式パーフルオロアルキル基、1〜3個の酸素原子を含む炭素数2〜6の直鎖又は分岐状パーフルオロオキシアルキル基である)で表されるパーフルオロビニルエーテルを用いてもよく、CF=CFOCFOCF、CF=CFOCFOCFCF、又は、CF=CFOCFOCFCFOCF を用いることが好ましい。
上記式(2)で表される含フッ素単量体としては、Rfが直鎖のフルオロアルキル基である単量体が好ましく、Rfが直鎖のパーフルオロアルキル基である単量体がより好ましい。Rfの炭素数は1〜6であることが好ましい。上記式(2)で表される含フッ素単量体としては、CH=CFCF、CH=CFCFCF、CH=CFCFCFCF、CH=CFCFCFCFCFなどがあげられ、なかでも、CH=CFCFで示される2,3,3,3−テトラフルオロプロピレンが好ましい。
上記VdF系ゴムとしては、VdF/HFP共重合体、VdF/TFE/HFP共重合体、VdF/CTFE共重合体、VdF/CTFE/TFE共重合体、VdF/PAVE共重合体、VdF/TFE/PAVE共重合体、VdF/HFP/PAVE共重合体、VdF/HFP/TFE/PAVE共重合体、VdF/TFE/プロピレン(Pr)共重合体、及びVdF/エチレン(Et)/HFP共重合体、VdF/式(2)で表される含フッ素単量体の共重合体からなる群より選択される少なくとも1種の共重合体が好ましく、また、VdF以外の他の共単量体として、TFE、HFP、及び/又はPAVEを有するものであることがより好ましい。このなかでも、VdF/HFP共重合体、VdF/TFE/HFP共重合体、VdF/式(2)で表される含フッ素単量体の共重合体、VdF/PAVE共重合体、VdF/TFE/PAVE共重合体、VdF/HFP/PAVE共重合体、及びVdF/HFP/TFE/PAVE共重合からなる群より選択される少なくとも1種の共重合体が好ましく、VdF/HFP共重合体、VdF/TFE/HFP共重合体、VdF/式(2)で表される含フッ素単量体の共重合体、及びVdF/PAVE共重合体からなる群より選択される少なくとも1種の共重合体がより好ましく、VdF/HFP共重合体、VdF/式(2)で表される含フッ素単量体の共重合体、及びVdF/PAVE共重合体からなる群より選択される少なくとも1種の共重合体が特に好ましい。
VdF/HFP共重合体は、VdF/HFPの組成が、(45〜85)/(55〜15)(モル%)であることが好ましく、より好ましくは(50〜80)/(50〜20)(モル%)であり、更に好ましくは(60〜80)/(40〜20)(モル%)である。
VdF/TFE/HFP共重合体は、VdF/TFE/HFPの組成が(30〜80)/(4〜35)/(10〜35)(モル%)のものが好ましい。
VdF/PAVE共重合体としては、VdF/PAVEの組成が(65〜90)/(35〜10)(モル%)のものが好ましい。
VdF/TFE/PAVE共重合体としては、VdF/TFE/PAVEの組成が(40〜80)/(3〜40)/(15〜35)(モル%)のものが好ましい。
VdF/HFP/PAVE共重合体としては、VdF/HFP/PAVEの組成が(65〜90)/(3〜25)/(3〜25)(モル%)のものが好ましい。
VdF/HFP/TFE/PAVE共重合としては、VdF/HFP/TFE/PAVEの組成が(40〜90)/(0〜25)/(0〜40)/(3〜35)(モル%)のものが好ましく、(40〜80)/(3〜25)/(3〜40)/(3〜25)(モル%)のものがより好ましい。
VdF/式(2)で表される含フッ素単量体(2)系共重合体としては、VdF/含フッ素単量体(2)単位のモル%比が85/15〜20/80であり、VdF及び含フッ素単量体(2)以外の他の単量体単位が全単量体単位の0〜50モル%のものが好ましく、VdF/含フッ素単量体(2)単位のモル%比が80/20〜20/80であることがより好ましい。またVdF/含フッ素単量体(2)単位のモル%比が85/15〜50/50であり、VdF及び含フッ素単量体(2)以外他の単量体単位が全単量体単位の1〜50モル%であるものも好ましい。VdF及び含フッ素単量体(2)以外の他の単量体としては、TFE、HFP、PMVE、パーフルオロエチルビニルエーテル(PEVE)、PPVE、CTFE、トリフルオロエチレン、ヘキサフルオロイソブテン、フッ化ビニル、エチレン(Et)、プロピレン(Pr)、アルキルビニルエーテル、架橋性基を与える単量体、及び反応性乳化剤などの上記VdFの共単量体として例示した単量体が好ましく、なかでもPMVE、CTFE、HFP、TFEであることが好ましい。
TFE/プロピレン(Pr)系フッ素ゴムとは、TFE45〜70モル%、プロピレン(Pr)55〜30モル%からなる含フッ素共重合体をいう。これら2成分に加えて、特定の第3成分(たとえばPAVE)を0〜40モル%含んでいてもよい。
エチレン(Et)/HFP系フッ素ゴム(共重合体)としては、Et/HFPの組成が、(35〜80)/(65〜20)(モル%)であることが好ましく、(40〜75)/(60〜25)(モル%)がより好ましい。
Et/HFP/TFE系フッ素ゴム(共重合体)は、Et/HFP/TFEの組成が、(35〜75)/(25〜50)/(0〜15)(モル%)であることが好ましく、(45〜75)/(25〜45)/(0〜10)(モル%)がより好ましい。
パーフルオロフッ素ゴムとしては、TFE/PAVEからなるものなどが挙げられる。TFE/PAVEの組成は、(50〜90)/(50〜10)(モル%)であることが好ましく、より好ましくは、(50〜80)/(50〜20)(モル%)であり、更に好ましくは、(55〜75)/(45〜25)(モル%)である。
この場合のPAVEとしては、たとえばPMVE、PPVEなどがあげられ、これらをそれぞれ単独で、又は任意に組み合わせて用いることができる。
また、フッ素ゴムは数平均分子量5000〜500000のものが好ましく、10000〜500000のものが更に好ましく、特に20000〜500000のものが好ましい。
また、加工性の観点から、フッ素ゴム(A)は100℃におけるムーニー粘度が20〜200、更には30〜180の範囲にあることが好ましい。ムーニー粘度は、ASTM−D1646及びJIS K6300に準拠して測定する。
以上説明した非パーフルオロフッ素ゴム及びパーフルオロフッ素ゴムは、乳化重合、懸濁重合、溶液重合などの常法により製造することができる。特にヨウ素(臭素)移動重合として知られるヨウ素(臭素)化合物を使用した重合法によれば、分子量分布が狭いフッ素ゴムを製造できる。
また、たとえばフッ素ゴム組成物の粘度を低くしたい場合などでは、上記のフッ素ゴム(A)に他のフッ素ゴムをブレンドしてもよい。他のフッ素ゴムとしては、低分子量液状フッ素ゴム(数平均分子量1000以上)、数平均分子量が10000程度の低分子量フッ素ゴム、更には数平均分子量が100000〜200000程度のフッ素ゴムなどが挙げられる。
また、前記非パーフルオロフッ素ゴムやパーフルオロフッ素ゴムとして例示したものは主単量体の構成であり、架橋性基を与える単量体を共重合したものも好適に用いることができる。架橋性基を与える単量体としては、製造法や架橋系に応じて適切な架橋性基を導入できるものであればよく、たとえばヨウ素原子、臭素原子、炭素−炭素二重結合、シアノ基、カルボキシル基、水酸基、アミノ基、エステル基などを含む公知の重合性化合物、連鎖移動剤などが挙げられる。
好ましい架橋性基を与える単量体としては、
一般式(3):
CY =CYRf (3)
(式中、Y、Yはフッ素原子、水素原子又は−CH;Rfは1個以上のエーテル型酸素原子を有していてもよく、芳香環を有していてもよい、水素原子の一部又は全部がフッ素原子で置換された直鎖状又は分岐状の含フッ素アルキレン基;Xはヨウ素原子又は臭素原子)
で示される化合物が挙げられる。
具体的には、たとえば、一般式(4):
CY =CYRfCHR−X (4)
(式中、Y、Y、Xは前記同様であり、Rfは1個以上のエーテル型酸素原子を有していてもよく水素原子の一部又は全部がフッ素原子で置換された直鎖状又は分岐状の含フッ素アルキレン基、すなわち水素原子の一部又は全部がフッ素原子で置換された直鎖状又は分岐状の含フッ素アルキレン基、水素原子の一部又は全部がフッ素原子で置換された直鎖状又は分岐状の含フッ素オキシアルキレン基、又は水素原子の一部又は全部がフッ素原子で置換された直鎖状又は分岐状の含フッ素ポリオキシアルキレン基;Rは水素原子又はメチル基)
で示されるヨウ素含有モノマー、臭素含有モノマー、一般式(5)〜(22):
CY =CY(CF−X (5)
(式中、Yは、同一又は異なり、水素原子又はフッ素原子、nは1〜8の整数)
CF=CFCFRf−X (6)
(式中、
Figure 2012026557
であり、nは0〜5の整数)
CF=CFCF(OCF(CF)CF
(OCHCFCFOCHCF−X
(7)
(式中、mは0〜5の整数、nは0〜5の整数)
CF=CFCF(OCHCFCF
(OCF(CF)CFOCF(CF)−X (8)
(式中、mは0〜5の整数、nは0〜5の整数)
CF=CF(OCFCF(CF))O(CF−X (9)
(式中、mは0〜5の整数、nは1〜8の整数)
CF=CF(OCFCF(CF))−X (10)
(式中、mは1〜5の整数)
CF=CFOCF(CF(CF)OCFCF(−X)CF
(11)
(式中、nは1〜4の整数)
CF=CFO(CFOCF(CF)−X (12)
(式中、nは2〜5の整数)
CF=CFO(CF−(C)−X (13)
(式中、nは1〜6の整数)
CF=CF(OCFCF(CF))OCFCF(CF)−X
(14)
(式中、nは1〜2の整数)
CH=CFCFO(CF(CF)CFO)CF(CF)−X
(15)
(式中、nは0〜5の整数)、
CF=CFO(CFCF(CF)O)(CF−X (16)
(式中、mは0〜5の整数、nは1〜3の整数)
CH=CFCFOCF(CF)OCF(CF)−X (17)
CH=CFCFOCHCF−X (18)
CF=CFO(CFCF(CF)O)CFCF(CF)−X
(19)
(式中、mは0以上の整数)
CF=CFOCF(CF)CFO(CF−X (20)
(式中、nは1以上の整数)
CF=CFOCFOCFCF(CF)OCF−X (21)
CH=CH−(CF (22)
(式中、nは2〜8の整数)
(一般式(5)〜(22)中、Xは前記と同様)
で表されるヨウ素含有モノマー、臭素含有モノマーなどがあげられ、これらをそれぞれ単独で、又は任意に組合わせて用いることができる。
一般式(4)で示されるヨウ素含有モノマー又は臭素含有モノマーとしては、一般式(23):
Figure 2012026557
(式中、mは1〜5の整数であり、nは0〜3の整数)
で表されるヨウ素含有フッ素化ビニルエーテルが好ましくあげられ、より具体的には、
Figure 2012026557
などが挙げられるが、これらの中でも、ICHCFCFOCF=CFが好ましい。
一般式(5)で示されるヨウ素含有モノマー又は臭素含有モノマーとしてより具体的には、ICFCFCF=CH、I(CFCFCF=CHが好ましく挙げられる。
一般式(9)で示されるヨウ素含有モノマー又は臭素含有モノマーとしてより具体的には、I(CFCFOCF=CFが好ましく挙げられる。
一般式(22)で示されるヨウ素含有モノマー又は臭素含有モノマーとしてより具体的には、CH=CHCFCFI、I(CFCFCH=CHが好ましく挙げられる。
また、式:RC=CR−Z−CR=CR
(式中、R、R、R、R、R及びRは同じか又は異なり、いずれもH、又は炭素数1〜5のアルキル基;Zは、直鎖若しくは分岐状の、酸素原子を含んでいてもよい、好ましくは少なくとも部分的にフッ素化された炭素数1〜18のアルキレン基若しくはシクロアルキレン基、又は(パー)フルオロポリオキシアルキレン基)で示されるビスオレフィン化合物も架橋性基を与える単量体として好ましい。なお、本明細書において、「(パー)フルオロポリオキシアルキレン基」とは、「フルオロポリオキシアルキレン基又はパーフルオロポリオキシアルキレン基」を意味する。
Zは、好ましくは炭素数4〜12の(パー)フルオロアルキレン基であり、R、R、R、R、R及びRは好ましくは水素原子である。
Zが(パー)フルオロポリオキシアルキレン基である場合、式:
−(Q)−CFO−(CFCFO)−(CFO)−CF−(Q)
(式中、Qは炭素数1〜10のアルキレン基又は炭素数2〜10のオキシアルキレン基であり、pは0又は1であり、m及びnはm/n比が0.2〜5となり且つ該(パー)フルオロポリオキシアルキレン基の分子量が500〜10000、好ましくは1000〜4000の範囲となるような整数である。)で表される(パー)フルオロポリオキシアルキレン基であることが好ましい。この式において、Qは好ましくは、−CHOCH−及び−CHO(CHCHO)CH−(s=1〜3)の中から選ばれる。
好ましいビスオレフィンは、
CH=CH−(CF−CH=CH
CH=CH−(CF−CH=CH
式:CH=CH−Z−CH=CH
(式中、Zは−CHOCH−CFO−(CFCFO)−(CFO)−CF−CHOCH−(m/nは0.5))
などが挙げられる。
なかでも、CH=CH−(CF−CH=CHで示される3,3,4,4,5,5,6,6,7,7,8,8−ドデカフルオロ−1,9−デカジエンが好ましい。
本発明において、カーボンブラック(B)として、上記範囲の損失弾性率E”、更に好ましくは上記範囲の貯蔵弾性率E’を与えるカーボンブラックであれば特に制限されない。
そうしたカーボンブラック(B)としては、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、グラファイトなどがあげられ、具体的にはたとえば、SAF−HS(NSA:142m/g、DBP:130ml/100g)、SAF(NSA:142m/g、DBP:115ml/100g)、N234(NSA:126m/g、DBP:125ml/100g)、ISAF(NSA:119m/g、DBP:114ml/100g)、ISAF−LS(NSA:106m/g、DBP:75ml/100g)、ISAF−HS(NSA:99m/g、DBP:129ml/100g)、N339(NSA:93m/g、DBP:119ml/100g)、HAF−LS(NSA:84m/g、DBP:75ml/100g)、HAS−HS(NSA:82m/g、DBP:126ml/100g)、HAF(NSA:79m/g、DBP:101ml/100g)、N351(NSA:74m/g、DBP:127ml/100g)、LI−HAF(NSA:74m/g、DBP:101ml/100g)、MAF−HS(NSA:56m/g、DBP:158ml/100g)、MAF(NSA:49m/g、DBP:133ml/100g)、FEF−HS(NSA:42m/g、DBP:160ml/100g)、FEF(NSA:42m/g、DBP:115ml/100g)、SRF−HS(NSA:32m/g、DBP:140ml/100g)、SRF−HS(NSA:29m/g、DBP:152ml/100g)、GPF(NSA:27m/g、DBP:87ml/100g)、SRF(NSA:27m/g、DBP:68ml/100g)、SRF−LS(NSA:23m/g、DBP:51ml/100g)、などが挙げられる。これらのカーボンブラックは単独で使用してもよいし、また2種以上を併用してもよい。
たとえば、MTカーボン、FTカーボンなどのサーマルブラックを単独で使用すると、上記範囲の損失弾性率E”を満足することが困難である。従って、サーマルブラックを使用する場合、サーマルブラックとサーマルブラック以外のカーボンブラックとを併用することが好ましい。
なかでも、カーボンブラックの好ましいものとしては、窒素吸着比表面積(NSA)が20〜180m/gであって、ジブチルフタレート(DBP)吸油量が50〜180ml/100gであるカーボンブラックが挙げられる。
窒素吸着比表面積(NSA)が20m/gよりも小さくなると、ゴムに配合した場合の高温高圧縮下での耐割れ性が低下する傾向にあり、この観点から、窒素吸着比表面積(NSA)は20m/g以上が好ましく、25m/g以上がより好ましく、更には40m/g以上が特に好ましく、特には50m/g以上が最も好ましい。上限は、一般的に入手しやすい観点から180m/gが好ましい。
ジブチルフタレート(DBP)吸油量が50ml/100gよりも小さくなると、ゴムに配合した場合の高温高圧縮下での耐割れ性が低下する傾向にあり、この観点から、55ml/100g以上、更には60ml/100g以上、特には70ml/100g以上が好ましい。上限は一般的に入手しやすい観点から、175ml/100g、更には170ml/100gが好ましい。
カーボンブラック(B)の配合量は、フッ素ゴム(A)100質量部に対して5〜50質量部が好ましい。カーボンブラック(B)が多くなりすぎると架橋物の高温高圧縮下での耐割れ性が低下する傾向にあり、また、少なくなりすぎると高温高圧縮下での耐割れ性が低下する傾向にある。更に好ましい配合量は、物性バランスが良好な点から、フッ素ゴム(A)100質量部に対して6質量部以上が好ましく、特に10質量部以上がより好ましく、物性バランスが良好な点から49質量部以下が好ましく、特に45質量部以下がより好ましい。
本発明の架橋フッ素ゴム層を得るには、フッ素ゴム組成物として、例えば、ラバープロセスアナライザ(RPA)による未架橋ゴムでの動的粘弾性試験(測定温度:100℃、測定周波数:1Hz)における動的歪み1%時の剪断弾性率G’(1%)及び動的歪み100%時の剪断弾性率G’(100%)の差δG’(G’(1%)−G’(100%))が、150kPa以上3,000kPa以下であるものを好適に用いることができる。
差δG’は、ゴム組成物の補強性という性質を評価する指標として用い、ラバープロセスアナライザによる動的粘弾性試験で測定算出される。
差δG’が150kPa以上3,000kPa以下の範囲にあるフッ素ゴム組成物は、高温高圧縮下での耐割れ性などの点で有利である。
差δG’は、高温高圧縮下での耐割れ性などが良好な点から、好ましくは180kPa以上、更には200kPa以上であり、高温高圧縮下での耐割れ性などが良好な点から、2,800kPa以下、更には2,500kPa以下である。
差δG’が150kPa以上3,000kPa以下のフッ素ゴム組成物は、たとえば混練機やロール練り機などを用いて調製できる。
より具体的には、つぎの各方法が挙げられるが、これらの方法に限定されるものではない。
(1)密閉式混練機にフッ素ゴム(A)とカーボンブラック(B)、要すれば後述する有機アミン化合物及び/又は受酸剤を所定量投入し、ローターの平均剪断速度を50〜1000(1/秒)、好ましくは100〜1000(1/秒)、更に好ましくは200〜1000(1/秒)に調整して、混練温度の最高温度Tmが80〜220℃(好ましくは120〜200℃)となる条件で混練する方法(つまり、混練時の混練物の最高温度Tm80℃〜220℃とし、その温度で排出する条件にて混練することが好ましい。以下同様)。なお、密閉式混練機としては、加圧ニーダーやバンバリーミキサー、一軸混練機、二軸混練機などが挙げられる。
(2)ロール練り機にフッ素ゴム(A)とカーボンブラック(B)、要すれば後述する有機アミン化合物及び/又は受酸剤を所定量投入し、ローターの平均剪断速度を50(1/秒)以上、混練温度の最高温度Tmが80〜220℃(好ましくは120〜200℃)となる条件で混練する方法。
上記(1)、(2)の方法で得られるフッ素ゴム組成物は架橋剤(及び/又は架橋助剤(D))や架橋促進剤などを含んでいない。また、上記(1)、(2)の方法の混練を複数回行ってもよい。複数回行う場合、2回目以降の混練条件は、混練温度の最高温度Tmを140℃以下とする以外は上記(1)、(2)の方法と同じ条件でよい。
本発明で用いる架橋性のフッ素ゴム組成物の調製法の1つは、たとえば、上記(1)、(2)の方法で得られた、あるいは上記(1)、(2)の方法を複数回繰り返して得られたフッ素ゴム組成物に、更に架橋剤(C)(及び/又は架橋助剤(D))及び架橋促進剤を配合し混練する方法である。
架橋剤(C)(及び/又は架橋助剤(D))と架橋促進剤は同時に配合し混練してもよいし、まず架橋促進剤を配合混練し、ついで架橋剤(C)(及び/又は架橋助剤(D))を配合混練してもよい。架橋剤(C)(及び/又は架橋助剤(D))と架橋促進剤の混練条件は、混練温度の最高温度Tmが130℃以下であるほかは、上記(1)、(2)の方法と同じ条件でよい。
架橋性のフッ素ゴム組成物の別の調製法は、たとえばロール練り機にフッ素ゴム(A)とカーボンブラック(B)、架橋剤(C)(及び/又は架橋助剤(D))及び架橋促進剤を適切な順序で所定量投入し、ローターの平均剪断速度を50(1/秒)以上、混練温度の最高温度Tmが130℃以下の条件で混練する方法が挙げられる。
また、ポリオール架橋系の場合は、予めフッ素ゴム(A)と架橋剤(C)と架橋促進剤を混合し、均一分散体にしたものを使用してもよい。たとえば、フッ素ゴム(A)とポリオール系架橋剤と架橋促進剤をまず混練し、ついでカーボンブラックと後述する有機アミン化合物を配合して混練し、混練温度の最高温度Tmを80〜220℃とする。そして、最後に受酸剤を配合して混練し、混練温度の最高温度Tm130℃以下とする方法が挙げられる。なお混練するにあたっては、平均剪断速度50(1/秒)以上で混練する方法を採用するのがより好ましい。
上記差δG’の範囲は、架橋剤(C)及び/又は架橋助剤(D)、架橋促進剤を配合する前のフッ素ゴム組成物において満たされていることが好ましい。また、架橋剤(C)及び/又は架橋助剤(D)、架橋促進剤を配合したフッ素ゴム組成物でも、上記差δG’は上記の範囲に入っていることが好ましい。
上述した特定の損失弾性率E”や貯蔵弾性率E’を備えたフッ素ゴム層を得る観点からは、平均剪断速度は50(1/秒)以上が好ましい。平均剪断速度を50(1/秒)以上にすることで、高温高圧縮下での良好な耐割れ性を得ることができる。
平均剪断速度(1/秒)は、つぎの式により算出される。
平均剪断速度(1/秒)=(π×D×R)/(60(秒)×c)
(式中、
D:ローター径又はロール径(cm)
R:回転速度(rpm)
c:チップクリアランス(cm。ローターとケーシングとの間隙の距離、又はロール同士の間隙の距離)
架橋剤(C)及び/又は架橋助剤(D)、架橋促進剤は、架橋系、架橋するフッ素ゴム(A)の種類(たとえば共重合組成、架橋性基の有無や種類など)、得られるシール材の具体的用途や使用形態、そのほか混練条件などに応じて、適宜選択することができる。
本発明において、架橋助剤(D)は、後述するトリアジン架橋系において架橋反応を開始させる化合物、また、オキサゾール架橋系、チアゾール架橋系、イミダゾール架橋系において架橋反応を促進する化合物をいう。
架橋系としては、たとえば過酸化物架橋系、ポリオール架橋系、ポリアミン架橋系、オキサゾール架橋系、チアゾール架橋系、イミダゾール架橋系、トリアジン架橋系などが採用できる。
(過酸化物架橋系)
過酸化物架橋系により架橋する場合は、架橋点に炭素−炭素結合を有しているので、架橋点に炭素−酸素結合を有するポリオール架橋系及び炭素−窒素二重結合を有するポリアミン架橋系に比べて、耐薬品性及び耐スチーム性に優れているという特徴がある。
過酸化物架橋系の架橋剤としては、熱や酸化還元系の存在下で容易にパーオキシラジカルを発生し得る過酸化物であればよく、具体的には、たとえば1,1−ビス(t−ブチルパーオキシ)−3,5,5−トリメチルシクロヘキサン、2,5−ジメチルヘキサン−2,5−ジヒドロパーオキサイド、ジ−t−ブチルパーオキサイド、t−ブチルクミルパーオキサイド、ジクミルパーオキサイド、α,α−ビス(t−ブチルパーオキシ)−p−ジイソプロピルベンゼン、α,α−ビス(t−ブチルパーオキシ)−m−ジイソプロピルベンゼン、α,α−ビス(t−ブチルパーオキシ)−m−ジイソプロピルベンゼン、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)−ヘキシン−3、ベンゾイルパーオキサイド、t−ブチルパーオキシベンゼン、t−ブチルパーオキシベンゾエート、t−ブチルパーオキシマレイン酸、t−ブチルパーオキシイソプロピルカーボネートなどの有機過酸化物を挙げることができる。これらの中でも、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、又は、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)−ヘキシン−3が好ましい。
また、過酸化物架橋系では、通常、架橋促進剤を含むことが好ましい。過酸化物系架橋剤、特に有機過酸化物系架橋剤の架橋促進剤としては、たとえば、トリアリルシアヌレート、トリアリルイソシアヌレート(TAIC)、トリアクリルホルマール、トリアリルトリメリテート、N,N’−m−フェニレンビスマレイミド、ジプロパルギルテレフタレート、ジアリルフタレート、テトラアリルテレフタレートアミド、トリアリルホスフェート、ビスマレイミド、フッ素化トリアリルイソシアヌレート(1,3,5−トリス(2,3,3−トリフルオロ−2−プロペニル)−1,3,5−トリアジン−2,4,6−トリオン)、トリス(ジアリルアミン)−S−トリアジン、亜リン酸トリアリル、N,N−ジアリルアクリルアミド、1,6−ジビニルドデカフルオロヘキサン、ヘキサアリルホスホルアミド、N,N,N’,N’−テトラアリルフタルアミド、N,N,N’,N’−テトラアリルマロンアミド、トリビニルイソシアヌレート、2,4,6−トリビニルメチルトリシロキサン、トリ(5−ノルボルネン−2−メチレン)シアヌレート、トリアリルホスファイトなどが挙げられる。これらの中でも、架橋性、架橋物の物性の点から、トリアリルイソシアヌレート(TAIC)が好ましい。
過酸化物架橋系に好適なフッ素ゴム(A)としては、TFE単位、VdF単位又は式(1)の含フッ素単量体単位を少なくとも含むパーフルオロフッ素ゴム及び非パーフルオロフッ素ゴムのいずれもが使用できるが、特にVdF系ゴム、TFE/Pr系ゴムが好ましい。
また、架橋性の観点から、過酸化物架橋系に好適なフッ素ゴム(A)としては、架橋点としてヨウ素原子及び/又は臭素原子を含むフッ素ゴムが好ましい。ヨウ素原子及び/又は臭素原子の含有量としては、0.001〜10質量%、更には0.01〜5質量%、特には0.1〜3質量%が、物性のバランスが良好な点から好ましい。
過酸化物架橋剤の配合量としては、フッ素ゴム(A)100質量部に対して、0.01〜10質量部であることが好ましく、より好ましくは0.1〜9質量部、特に好ましくは0.2〜8質量部である。過酸化物架橋剤が、0.01質量部未満であると、フッ素ゴム(A)の架橋が充分に進行しない傾向があり、10質量部を超えると、物性のバランスが低下する傾向がある。
また、架橋促進剤の配合量は、通常、フッ素ゴム(A)100質量部に対して、0.01〜10質量部であり、好ましくは0.1〜9質量部である。架橋促進剤が、0.01質量部より少ないと、架橋時間が実用に耐えないほど長くなる傾向があり、10質量部を超えると、架橋時間が速くなり過ぎることに加え、物性バランスが低下する傾向がある。
(ポリオール架橋系)
ポリオール架橋系により架橋する場合は、架橋点に炭素−酸素結合を有しており、圧縮永久歪みが小さく、成形性に優れているという特徴がある点で好適である。
架橋剤(C)としてはポリオール架橋剤が好ましい。ポリオール架橋剤としては、従来、フッ素ゴムの架橋剤として知られている化合物を用いることができ、たとえば、ポリヒドロキシ化合物、特に、耐熱性に優れる点からポリヒドロキシ芳香族化合物が好適に用いられる。
上記ポリヒドロキシ芳香族化合物としては、特に限定されず、たとえば、2,2−ビス(4−ヒドロキシフェニル)プロパン(以下、ビスフェノールAという)、2,2−ビス(4−ヒドロキシフェニル)パーフルオロプロパン(以下、ビスフェノールAFという)、レゾルシン、1,3−ジヒドロキシベンゼン、1,7−ジヒドロキシナフタレン、2,7−ジヒドロキシナフタレン、1,6−ジヒドロキシナフタレン、4,4’−ジヒドロキシジフェニル、4,4’−ジヒドロキシスチルベン、2,6−ジヒドロキシアントラセン、ヒドロキノン、カテコール、2,2−ビス(4−ヒドロキシフェニル)ブタン(以下、ビスフェノールBという)、4,4−ビス(4−ヒドロキシフェニル)吉草酸、2,2−ビス(4−ヒドロキシフェニル)テトラフルオロジクロロプロパン、4,4’−ジヒドロキシジフェニルスルホン、4,4’−ジヒドロキシジフェニルケトン、トリ(4−ヒドロキシフェニル)メタン、3,3’,5,5’−テトラクロロビスフェノールA、3,3’,5,5’−テトラブロモビスフェノールAなどが挙げられる。これらのポリヒドロキシ芳香族化合物は、アルカリ金属塩、アルカリ土類金属塩などであってもよいが、酸を用いて共重合体を凝析する場合は、上記金属塩は用いないことが好ましい。
これらの中でも、得られる成形品などの圧縮永久歪みが小さく、成形性も優れているという点から、ポリヒドロキシ化合物が好ましく、耐熱性が優れることからポリヒドロキシ芳香族化合物がより好ましく、ビスフェノールAFが更に好ましい。
また、ポリオール架橋系では、通常、架橋促進剤を含むことが好ましい。架橋促進剤を用いると、フッ素ゴム主鎖の脱フッ酸反応における分子内二重結合の生成と、生成した二重結合へのポリヒドロキシ化合物の付加を促進することにより架橋反応を促進することができる。
ポリオール架橋系の架橋促進剤としては、一般にオニウム化合物が用いられる。オニウム化合物としては特に限定されず、たとえば、第4級アンモニウム塩等のアンモニウム化合物、第4級ホスホニウム塩等のホスホニウム化合物、オキソニウム化合物、スルホニウム化合物、環状アミン、1官能性アミン化合物などがあげられ、これらの中でも第4級アンモニウム塩、第4級ホスホニウム塩が好ましい。
第4級アンモニウム塩としては特に限定されず、たとえば、8−メチル−1,8−ジアザビシクロ[5,4,0]−7−ウンデセニウムクロリド、8−メチル−1,8−ジアザビシクロ[5,4,0]−7−ウンデセニウムアイオダイド、8−メチル−1,8−ジアザビシクロ[5,4,0]−7−ウンデセニウムハイドロキサイド、8−メチル−1,8−ジアザビシクロ[5,4,0]−7−ウンデセニウムメチルスルフェート、8−エチル−1,8−ジアザビシクロ[5,4,0]−7−ウンデセニウムブロミド、8−プロピル−1,8−ジアザビシクロ[5,4,0]−7−ウンデセニウムブロミド、8−ドデシル−1,8−ジアザビシクロ[5,4,0]−7−ウンデセニウムクロリド、8−ドデシル−1,8−ジアザビシクロ[5,4,0]−7−ウンデセニウムハイドロキサイド、8−エイコシル−1,8−ジアザビシクロ[5,4,0]−7−ウンデセニウムクロリド、8−テトラコシル−1,8−ジアザビシクロ[5,4,0]−7−ウンデセニウムクロリド、8−ベンジル−1,8−ジアザビシクロ[5,4,0]−7−ウンデセニウムクロリド(以下、DBU−Bとする)、8−ベンジル−1,8−ジアザビシクロ[5,4,0]−7−ウンデセニウムハイドロキサイド、8−フェネチル−1,8−ジアザビシクロ[5,4,0]−7−ウンデセニウムクロリド、8−(3−フェニルプロピル)−1,8−ジアザビシクロ[5,4,0]−7−ウンデセニウムクロリドなどが挙げられる。これらの中でも、架橋性、架橋物の物性の点から、DBU−Bが好ましい。
また、第4級ホスホニウム塩としては特に限定されず、たとえば、テトラブチルホスホニウムクロリド、ベンジルトリフェニルホスホニウムクロリド(以下、BTPPCとする)、ベンジルトリメチルホスホニウムクロリド、ベンジルトリブチルホスホニウムクロリド、トリブチルアリルホスホニウムクロリド、トリブチル−2−メトキシプロピルホスホニウムクロリド、ベンジルフェニル(ジメチルアミノ)ホスホニウムクロリドなどを挙げることができ、これらの中でも、架橋性、架橋物の物性の点から、ベンジルトリフェニルホスホニウムクロリド(BTPPC)が好ましい。
また、架橋促進剤として、第4級アンモニウム塩又は第4級ホスホニウム塩とビスフェノールAFの固溶体、特開平11−147891号公報に開示されている塩素フリー架橋促進剤を用いることもできる。
ポリオール架橋系に好適なフッ素ゴム(A)としては、TFE単位、VdF単位又は式(1)の含フッ素単量体単位を少なくとも含むパーフルオロフッ素ゴム及び非パーフルオロフッ素ゴムのいずれもが使用できるが、特にVdF系ゴム、及びTFE/Pr系ゴムからなる群より選択される少なくとも1種のゴムが好ましい。
ポリオール架橋剤の配合量としては、フッ素ゴム(A)100質量部に対して、0.01〜10質量部であることが好ましく、より好ましくは0.1〜7質量部である。ポリオール架橋剤が、0.01質量部未満であると、フッ素ゴム(A)の架橋が充分に進行しない傾向があり、10質量部を超えると、物性のバランスが低下する傾向がある。
また、架橋促進剤の配合量は、フッ素ゴム(A)100質量部に対して、0.01〜8質量部であることが好ましく、より好ましくは0.02〜5質量部である。架橋促進剤が、0.01質量部未満であると、フッ素ゴム(A)の架橋が充分に進行しない傾向があり、8質量部を超えると、物性のバランスが低下する傾向がある。
(ポリアミン架橋系)
ポリアミン架橋により架橋してなる場合は、架橋点に炭素−窒素二重結合を有しているものであり、動的機械特性に優れているという特徴がある。しかし、ポリオール架橋系又は過酸化物架橋系架橋剤を用いて架橋する場合に比べて、圧縮永久歪みが大きくなる傾向がある。
ポリアミン系架橋剤としては、たとえば、ヘキサメチレンジアミンカーバメート、N,N’−ジシンナミリデン−1,6−ヘキサメチレンジアミン、4,4’−ビス(アミノシクロヘキシル)メタンカルバメートなどのポリアミン化合物が挙げられる。これらの中でも、N,N’−ジシンナミリデン−1,6−ヘキサメチレンジアミンが好ましい。
ポリアミン架橋系に好適なフッ素ゴム(A)としては、TFE単位、VdF単位又は式(1)の含フッ素単量体単位を少なくとも含むパーフルオロフッ素ゴム及び非パーフルオロフッ素ゴムのいずれもが使用できるが、特にVdF系ゴム、TFE/Pr系ゴムが好ましい。
ポリアミン系架橋剤の配合量としては、フッ素ゴム(A)100質量部に対して、0.01〜10質量部であることが好ましく、より好ましくは0.2〜7質量部である。ポリアミン系架橋剤が、0.01質量部未満であると、フッ素ゴム(A)の架橋が充分に進行しない傾向があり、10質量部を超えると、物性のバランスが低下する傾向がある。
(オキサゾール架橋系、チアゾール架橋系、イミダゾール架橋系)
オキサゾール架橋系、チアゾール架橋系、イミダゾール架橋系は、圧縮永久歪みが小さく、耐熱性に優れた架橋系である。
オキサゾール架橋系、チアゾール架橋系、イミダゾール架橋系に用いる架橋剤としては、
式(24):
Figure 2012026557
(式中、Rは同じか又は異なり、−NH、−NHR、−OH又は−SHであり、Rはフッ素原子又は1価の有機基である)で示される架橋性反応基を少なくとも2個含む化合物、式(25):
Figure 2012026557
で示される化合物、式(26):
Figure 2012026557
(式中、Rfは炭素数1〜10のパーフルオロアルキレン基)で示される化合物、及び式(27):
Figure 2012026557
(式中、nは1〜10の整数)で示される化合物などが例示できる。
具体的な架橋剤としては、式(24)で示される架橋性反応基を2個有する一般式(28):
Figure 2012026557
(式中、Rは前記と同じ、Rは、−SO−、−O−、−CO−、炭素数1〜6のアルキレン基、炭素数1〜10のパーフルオロアルキレン基、単結合手、又は
Figure 2012026557
で示される基である)で示される化合物や、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン、2,2−ビス(3−アミノ−4−メルカプトフェニル)ヘキサフルオロプロパン、2,2−ビス(3,4−ジアミノフェニル)ヘキサフルオロプロパンなどのほか、
式(29):
Figure 2012026557
(式中、Rは同じか又は異なり、いずれも炭素数1〜10のアルキル基;フッ素原子を含有する炭素数1〜10のアルキル基;フェニル基;ベンジル基;フッ素原子及び/又は−CFで1〜5個の水素原子が置換されたフェニル基又はベンジル基である)で示される化合物が挙げられる。
これらの具体例としては、限定的ではないが、たとえば2,2−ビス(3,4−ジアミノフェニル)ヘキサフルオロプロパン、2,2−ビス[3−アミノ−4−(N−メチルアミノ)フェニル]ヘキサフルオロプロパン、2,2−ビス[3−アミノ−4−(N−エチルアミノ)フェニル]ヘキサフルオロプロパン、2,2−ビス[3−アミノ−4−(N−プロピルアミノ)フェニル]ヘキサフルオロプロパン、2,2−ビス[3−アミノ−4−(N−フェニルアミノ)フェニル]ヘキサフルオロプロパン、2,2−ビス[3−アミノ−4−(N−パーフルオロフェニルアミノ)フェニル]ヘキサフルオロプロパン、2,2−ビス[3−アミノ−4−(N−ベンジルアミノ)フェニル]ヘキサフルオロプロパンなどのビスアミノフェノール系硬化剤などが挙げられる。
上記の架橋剤の中でも、耐熱性が優れており、架橋反応性が特に良好である点から、2,2−ビス(3−アミノ−4−ヒドロキシフェニル)ヘキサフルオロプロパン(OH−AF)、2,2−ビス[3−アミノ−4−(N−フェニルアミノ)フェニル]ヘキサフルオロプロパン(Nph−AF)、2,2−ビス(3,4−ジアミノフェニル)ヘキサフルオロプロパン(TA−AF)が更に好ましい。
また、これらのオキサゾール架橋系、チアゾール架橋系、イミダゾール架橋系では、架橋速度が大きく改善される点から、架橋助剤(D)を併用してもよい。
オキサゾール架橋系、チアゾール架橋系、イミダゾール架橋系に併用する架橋助剤(D)としては、たとえば(D1)40〜330℃でアンモニアを発生させる化合物、又は(D2)無機窒化物粒子が例示できる。
(D1)40〜330℃でアンモニアを発生させる化合物(アンモニア発生化合物)
アンモニア発生化合物(D1)は、架橋反応温度(40〜330℃)で発生したアンモニアが架橋を引き起こすことにより硬化を生じさせるとともに、架橋剤により硬化も促進する。また微量の水と反応して、アンモニアを発生させるものもある。
アンモニア発生化合物(D1)としては、尿素又はその誘導体、若しくは、アンモニウム塩が好ましくあげられ、尿素又はアンモニウム塩がより好ましい。アンモニウム塩としては有機アンモニウム塩でも無機アンモニウム塩でもよい。
尿素の誘導体としては、尿素のほか、ビウレア、チオウレア、尿素塩酸塩、ビウレットなどの尿素誘導体も含まれる。
有機アンモニウム塩としては、特開平9−111081号公報、国際公開第00/09603号パンフレット、国際公開第98/23675号パンフレットに記載された化合物、たとえばパーフルオロヘキサン酸アンモニウム、パーフルオロオクタン酸アンモニウムなどのポリフルオロカルボン酸のアンモニウム塩;パーフルオロヘキサンスルホン酸アンモニウム、パーフルオロオクタンスルホン酸アンモニウムなどのポリフルオロスルホン酸のアンモニウム塩;パーフルオロヘキサンリン酸アンモニウム、パーフルオロオクタンリン酸アンモニウムなどのポリフルオロアルキル基含有リン酸、ホスホン酸のアンモニウム塩;安息香酸アンモニウム、アジピン酸アンモニウム、フタル酸アンモニウムなどの非フッ素系のカルボン酸又はスルホン酸のアンモニウム塩が例示できる。なかでも、分散性の観点からはフッ素系のカルボン酸、スルホン酸又はリン酸のアンモニウム塩が好ましく、一方、安価な点からは、非フッ素系のカルボン酸、スルホン酸又はリン酸のアンモニウム塩が好ましい。
無機アンモニウム塩としては、特開平9−111081号公報に記載された化合物、たとえば硫酸アンモニウム、炭酸アンモニウム、硝酸アンモニウム、リン酸アンモニウムなどが例示でき、なかでも架橋特性を考慮すると、リン酸アンモニウムが好ましい。
そのほか、アセトアルデヒドアンモニア、ヘキサメチレンテトラミン、ホルムアミジン、ホルムアミジン塩酸塩、ホルムアミジン酢酸塩、t−ブチルカルバメート、ベンジルカルバメート、HCFCFCH(CH)OCONH、フタルアミドなども使用できる。
これらのアンモニア発生化合物(D1)は、単独でも2種以上併用してもよい。
(D2)無機窒化物粒子
無機窒化物粒子(D2)としては、特に限定されるものではないが、窒化ケイ素(Si)、窒化リチウム、窒化チタン、窒化アルミニウム、窒化ホウ素、窒化バナジウム、窒化ジルコニウムなどが挙げられる。これらの中でも、ナノサイズの微粒子が供給可能であることから、窒化ケイ素粒子であることが好ましい。また、これらの窒化物粒子は2種以上混合使用してもよい。
無機窒化物粒子(D2)の粒径としては、特に限定されるものではないが、1000nm以下であることが好ましく、300nm以下であることがより好ましく、100nm以下であることが更に好ましい。下限値は特に限定されない。
また、これらの無機窒化物粒子(D2)は、アンモニア発生化合物(D1)を併用してもよい。
これらのオキサゾール架橋系、チアゾール架橋系、イミダゾール架橋系は、つぎの特定の架橋性基を有するVdF系ゴム、及び特定の架橋性基を有するTFE/Pr系ゴムが対象となる。
(特定の架橋性基を有するVdF系ゴム)
特定のVdF系ゴムは、VdFと、TFE、HFP及びフルオロ(ビニルエーテル)よりなる群から選ばれる少なくとも1種のフルオロオレフィンと、シアノ基、カルボキシル基又はアルコキシカルボニル基を含有する単量体との共重合体であるVdF系ゴムである。上記フルオロオレフィンは、パーフルオロオレフィンが好ましい。
ただし、VdFの共重合割合は20モル%を超えていることが、低温での脆弱性を改善するために重要である。
フルオロ(ビニルエーテル)としては、一般式(30):
CF=CFO(CFCFYO)−(CFCFCFO)−Rf
(30)
(式中Yは、フッ素原子又は−CFを表し、Rfは、炭素数1〜5のパーフルオロアルキル基を表す。pは、0〜5の整数を表し、qは、0〜5の整数を表す。)
又は、一般式(31):
CFX=CXOCFOR (31)
(式中、XはF又はH;Rは炭素数1〜6の直鎖状若しくは分岐状のフルオロアルキル基、炭素数5〜6の環状のフルオロアルキル基、又はフルオロオキシアルキル基。ただし、H、Cl、Br、Iから選択される1〜2個の原子を含んでもよい)
で表されるものを1種又は2種以上を組み合わせて用いることができる。
一般式(30)、一般式(31)で示されるものの中でも、PAVEが好ましく、パーフルオロ(メチルビニルエーテル)、パーフルオロ(プロピルビニルエーテル)がより好ましく、特にパーフルオロ(メチルビニルエーテル)が好ましい。
これらはそれぞれ単独で、又は任意に組み合わせて用いることができる。
VdFと特定のフルオロオレフィンとの共重合割合は、VdFが20モル%を超えていればよいが、なかでもVdF45〜85モル%と、特定のフルオロオレフィン55〜15モル%とからなるVdF系ゴムが好ましく、更にはVdF50〜80モル%と特定のフルオロオレフィン50〜20モル%とからなるVdF系ゴムが好ましい。
VdFと特定のフルオロオレフィンとの具体的な組合せとしては、具体的には、VdF/HFP共重合体、VdF/HFP/TFE共重合体、VdF/PAVE共重合体、VdF/TFE/PAVE共重合体、VdF/HFP/PAVE共重合体、VdF/HFP/TFE/PAVE共重合体が好ましい。
VdF/HFP共重合体は、VdF/HFPの組成が、45〜85/55〜15モル%であることが好ましく、より好ましくは、50〜80/50〜20モル%であり、更に好ましくは、60〜80/40〜20モル%である。
VdF/TFE/HFP共重合体は、VdF/TFE/HFPの組成が、40〜80/10〜35/10〜35モル%のものが好ましい。
VdF/PAVE共重合体としては、VdF/PAVEの組成が、65〜90/35〜10モル%のものが好ましい。
VdF/TFE/PAVE共重合体としては、VdF/TFE/PAVEの組成が、40〜80/3〜40/15〜35モル%のものが好ましい。
VdF/HFP/PAVE共重合体としては、VdF/HFP/PAVEの組成が、65〜90/3〜25/3〜25モル%のものが好ましい。
VdF/HFP/TFE/PAVE共重合としては、VdF/HFP/TFE/PAVEの組成が、40〜90/0〜25/0〜40/3〜35のものが好ましく、40〜80/3〜25/3〜40/3〜25モル%のものがより好ましい。
シアノ基、カルボキシル基又はアルコキシカルボニル基を含有する単量体は、良好な架橋特性及び耐熱性の観点から、VdFと特定のフルオロオレフィンの合計量に対して、0.1〜5モル%であることが好ましく、0.3〜3モル%であることがより好ましい。
シアノ基又はカルボキシル基、又はアルコキシカルボニル基を含有する単量体としては、たとえば、式(32)〜(35):
CY =CY(CF−X (32)
(式中、Yは水素原子又はフッ素原子、nは1〜8の整数である)
CF=CFCFRf−X (33)
(式中、Rfは−(OCF−、−(OCF(CF))
であり、nは0〜5の整数である)
CF=CF(OCFCF(CF))O(CF−X (34)
(式中、mは0〜5の整数、nは1〜8の整数である)
CF=CF(OCFCF(CF))−X (35)
(式中、mは1〜5の整数)
(式(32)〜(35)中、Xは、シアノ基(−CN基)、カルボキシル基(−COOH基)、又はアルコキシカルボニル基(−COOR基、Rは炭素数1〜10のフッ素原子を含んでいてもよいアルキル基))で表される単量体などがあげられ、これらをそれぞれ単独で、又は任意に組み合わせて用いることができる。
これらの特定の架橋性基を有するVdF系ゴムは、常法により製造することができる。
また、これらの架橋性基の導入方法としては、国際公開第00/05959号パンフレットに記載の方法も用いることができる。
また、特定の架橋性基を有するVdF系ゴムは、加工性が良好な点から、ムーニー粘度(ML1+10(121℃))が5〜140、更には5〜120、特に5〜100であるものが好ましい。
(特定の架橋性基を有するTFE/Pr系ゴム)
特定の架橋性基を有するTFE/Pr系ゴムは、TFE単位40〜70モル%とPr単位30〜60モル%とシアノ基、カルボキシル基又はアルコキシカルボニル基を有する単量体単位を有する非パーフルオロゴムである。
また、必要に応じてVdF単位0〜15モル%及び/又はPAVE単位0〜15モル%を含んでいてもよい。
TFE単位は40〜70モル%、好ましくは50〜65モル%であり、Prとこの範囲においてエラストマー性が得られる。
Pr単位は30〜60モル%、好ましくは35〜50モル%であり、TFEとこの範囲においてエラストマー性が得られる。
シアノ基、カルボキシル基又はアルコキシカルボニル基を有する単量体としては、特定の架橋性基を有するVdF系ゴムで説明した単量体が好ましいものも含めて、特定の架橋性基を有するTFE/Pr系ゴムにも使用できる。
任意の単位であるVdF単位又はPAVE単位は15モル%まで、更には10モル%までであり、これを超えると前者は耐アミン性、後者は高コストの点で好ましくない。
また特定の架橋性基を有するTFE/Pr系ゴムは、通常、ムーニー粘度(ML1+10(121℃))が5〜100である。ムーニー粘度が5を下回ると架橋性が低下して架橋ゴムとしての十分な物理特性が出なくなり、100を超えると流動性が低下し、成型加工性が悪くなる傾向にある。好ましいムーニー粘度(ML1+10(121℃))は、10〜80である。
特定の架橋性基を有するTFE/Pr系ゴムは、通常の乳化重合法でも製造できるが、TFEとPrの重合速度は比較的遅いため、たとえば2段重合法(シード重合法)で製造するときは、効率よく製造できる。
これらのオキサゾール系、チアゾール系、イミダゾール系架橋剤の添加量は、上記特定のフッ素ゴム100質量部に対して、0.1〜20質量部であることが好ましく、0.5〜10質量部であることがより好ましい。架橋剤が、0.1質量部未満であると、実用上充分な機械的強度、耐熱性、耐薬品性が得られない傾向があり、20質量部を超えると、架橋に長時間がかかるうえ、架橋物が硬くなり柔軟性がなくなる傾向がある。
これらのオキサゾール架橋系、チアゾール架橋系、イミダゾール架橋系で架橋助剤(D)を併用する場合、架橋助剤(D)の添加量は、通常、上記特定のフッ素ゴム100質量部に対して、0.01〜10質量部であり、0.02〜5質量部であることが好ましく、0.05〜3質量部であることがより好ましい。
(トリアジン架橋系)
トリアジン架橋系は、圧縮永久歪みが小さく、耐熱性に優れた架橋系である。トリアジン架橋系では、架橋反応を開始する架橋助剤(D)のみを用いる。
トリアジン架橋系に用いる架橋助剤(D)としては、たとえば上記オキサゾール架橋系、チアゾール架橋系及びイミダゾール架橋系において架橋剤と併用可能な架橋助剤である(D1)40〜330℃でアンモニアを発生させる化合物、又は(D2)無機窒化物粒子が例示できる。
トリアジン架橋系は、上記オキサゾール架橋系、チアゾール架橋系、イミダゾール架橋系が対象とする特定の架橋性基を有するフッ素ゴムのうち、架橋性基の少なくとも1つがシアノ基であるフッ素ゴムが好ましい。
アンモニア発生化合物(D1)の添加量は発生するアンモニアの量により適宜選択すればよいが、通常、上記シアノ基含有フッ素ゴム100質量部に対して、0.05〜10質量部であり、0.1〜5質量部であることが好ましく、0.2〜3質量部であることがより好ましい。アンモニア発生化合物が、少なすぎると架橋密度が低くなるため、実用上、充分な耐熱性、耐薬品性を発現しない傾向があり、多くなりすぎると、スコーチの懸念があり保存安定性が悪くなるという傾向がある。
無機窒化物粒子(D2)の添加量は、通常、上記シアノ基含有フッ素ゴム100質量部に対して、0.1〜20質量部であり、0.2〜5質量部であることが好ましく、0.2〜1質量部であることがより好ましい。無機窒化物粒子(D2)が、0.1質量部未満であると架橋密度が低くなるため、実用上、充分な耐熱性、耐薬品性を発現しない傾向があり、20質量部を超えると、スコーチの懸念があり保存安定性が悪くなるという傾向がある。
本発明においては、架橋系としてポリオール架橋系、過酸化物架橋系、オキサゾール架橋系、チアゾール架橋系、イミダゾール架橋系、又はトリアジン架橋系が好ましく、それぞれの架橋系に適した架橋剤(C)又は架橋助剤(D)を用いることが好ましい。なかでも、高温高圧縮下での耐割れ性、高温環境下でのシール性の点からポリオール架橋系、オキサゾール架橋系、チアゾール架橋系、イミダゾール架橋系、トリアジン架橋系が特に好ましい。
本発明のフッ素ゴム組成物には、必要に応じて通常のゴム配合物、たとえば充填材、加工助剤、可塑剤、着色剤、粘着付与剤、接着助剤、受酸剤、顔料、難燃剤、滑剤、光安定剤、耐候安定剤、帯電防止剤、紫外線吸収剤、酸化防止剤、離型剤、発泡剤、香料、オイル、柔軟化剤のほか、ポリエチレン、ポリプロピレン、ポリアミド、ポリエステル、ポリウレタンなどの他の重合体などを本発明の効果を損なわない範囲で配合してもよい。
充填材としては、酸化カルシウム、酸化マグネシウム、酸化チタン、酸化アルミニウムなどの金属酸化物;水酸化マグネシウム、水酸化アルミニウム、水酸化カルシウムなどの金属水酸化物;炭酸マグネシウム、炭酸アルミニウム、炭酸カルシウム、炭酸バリウムなどの炭酸塩;ケイ酸マグネシウム、ケイ酸カルシウム、ケイ酸ナトリウム、ケイ酸アルミニウムなどのケイ酸塩;硫酸アルミニウム、硫酸カルシウム、硫酸バリウムなどの硫酸塩;合成ハイドロタルサイト、二硫化モリブデン、硫化鉄、硫化銅などの金属硫化物;ケイ藻土、アスベスト、リトポン(硫化亜鉛/硫化バリウム)、グラファイト、フッ化カーボン、フッ化カルシウム、コークス、石英微粉末、亜鉛華、タルク、雲母粉末、ワラストナイト、炭素繊維、アラミド繊維、各種ウィスカー、ガラス繊維、有機補強剤、有機充填材、ポリテトラフルオロエチレン、マイカ、シリカ、セライト、クレーなどが例示できる。また、受酸剤として、酸化カルシウム、酸化マグネシウム、酸化鉛、酸化亜鉛、水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム、ハイドロタルサイトなどがあげられ、これらの単独又は2種以上を適宜配合してもよい。これらは、先述した混練方法で、どの工程で添加するかは任意であるが、密閉式混練機やロール練り機でフッ素ゴムとカーボンブラックを混練する際に添加するのが好ましい。
加工助剤としては、ステアリン酸、オレイン酸、パルミチン酸、ラウリン酸などの高級脂肪酸;ステアリン酸ナトリウム、ステアリン酸亜鉛などの高級脂肪酸塩;ステアリン酸アミド、オレイン酸アミドなどの高級脂肪酸アミド;オレイン酸エチルなどの高級脂肪酸エステル;カルナバワックス、セレシンワックスなどの石油系ワックス;エチレングリコール、グリセリン、ジエチレングリコールなどのポリグリコール;ワセリン、パラフィンなどの脂肪族炭化水素;シリコーン系オイル、シリコーン系ポリマー、低分子量ポリエチレン、フタル酸エステル類、リン酸エステル類、ロジン、(ハロゲン化)ジアルキルアミン、界面活性剤、スルホン化合物、フッ素系助剤、有機アミン化合物などが例示できる。
なかでも有機アミン化合物や受酸剤は、フッ素ゴム(A)とカーボンブラック(B)を密閉式混練機やロール練り機で混練する際に共存させることにより、補強性が向上する点から好ましい配合剤である。混練は、混練温度の最高温度Tmが80℃〜220℃となるように行うことが好ましい。
有機アミン化合物としては、RNHで示される1級アミン、RNHで示される2級アミン、RNで示される3級アミンが好ましく挙げられる。R、R、Rは同じか又は異なり、いずれも炭素数1〜50のアルキル基が好ましく、アルキル基は官能基としてベンゼン環を含んでいてもよいし、二重結合、共役二重結合を含んでいてもよい。尚、アルキル基は直鎖型であってもよいし、分岐型でもあってもよい。
1級アミンとしては、たとえばココナッツアミン、オクチルアミン、ラウリルアミン、ステアリルアミン、オレイルアミン、牛脂アミン、17−フェニル−ヘプタデシルアミン、オクタデカ−7,11−ジエニルアミン、オクタデカ−7,9−ジエニルアミン、オクタデック−9−エニルアミン、7−メチル−オクタデック−7−エニルアミンなどがあげられ、2級アミンとしては、たとえばジステアリルアミンなどが、3級アミンとしては、たとえばジメチルオクチルアミン、ジメチルデシルアミン、ジメチルラウリルアミン、ジメチルミリスチルアミン、ジメチルパルミチルアミン、ジメチルステアリルアミン、ジメチルベヘニルアミンなどが挙げられる。なかでも炭素数が20個程度のアミン、特に1級アミンが入手の容易性や補強性が増大する点から好ましい。
有機アミン化合物の配合量は、フッ素ゴム(A)100質量部に対して0.01〜5質量部が好ましい。有機アミン化合物が多くなりすぎると混練しにくくなる傾向にあり、また、少なくなりすぎると補強性が低下する傾向にある。更に好ましい配合量は、補強性の観点から、フッ素ゴム(A)100質量部に対して0.1質量部以上であり、補強性の観点と混練しやすさの観点から4質量部以下である。
受酸剤としては、先述したもののうち、たとえば、水酸化カルシウムなどの金属水酸化物;酸化マグネシウム、酸化亜鉛などの金属酸化物、ハイドロタルサイトなどが、補強性の観点から好ましく、特に酸化亜鉛が好ましい。
受酸剤の配合量は、フッ素ゴム(A)100質量部に対して0.01〜10質量部が好ましい。受酸剤が多くなりすぎると物性が低下する傾向にあり、また、少なくなりすぎると補強性が低下する傾向にある。更に好ましい配合量は、補強性の観点から、フッ素ゴム(A)100質量部に対して0.1質量部以上であり、物性の観点と混練しやすさの観点から8質量部以下が好ましく、5質量部以下がより好ましい。
粘着付与剤としては、たとえばクマロン樹脂、クマロン・インデン樹脂、クマロン・インデン・スチレン樹脂、ナフテン系油、フェノール樹脂、ロジン、ロジンエステル、水素添加ロジン誘導体、テルペン樹脂、変性テルペン樹脂、テルペン・フェノール系樹脂、水添テルペン樹脂、α−ピネン樹脂、アルキルフェノール・アセチレン系樹脂、アルキルフェノール・ホルムアルデヒド系樹脂、スチレン樹脂、C5系石油樹脂、C9系石油樹脂、脂環族系石油樹脂、C5/C9共重合系石油樹脂、キシレン−ホルムアルデヒド系樹脂、多官能メタクリレート、多官能アクリレート、金属酸化物(たとえば酸化マグネシウムなど)、金属水酸化物などが例示でき、配合量はフッ素ゴム(A)100質量部に対して1〜20質量部が好ましい。これら粘着付与剤は、単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
本発明のシール材は、本発明のフッ素ゴム組成物を架橋して得られる架橋フッ素ゴム層を有するものである。
本発明のフッ素ゴム組成物の架橋及び成形方法は、適宜選択すればよいが、一般のゴム用成形機を用いた方法を採用することができる。ゴム用成形機としては圧縮プレス、注入成形機、射出成形機などを用いることができ、ロールや混練機、押出機、予備成形機などを用いて所定の形状に予備成形したゴム組成物を、加熱することにより一次架橋を行う。上記一次架橋により成形されたシール材はエアオーブンを用いて二次架橋を行うことが望ましい。
得られた架橋フッ素ゴム層は、動的粘弾性試験(測定モード:引張、チャック間距離:20mm、測定温度:160℃、引張歪み:1%、初期加重:157cN、周波数:10Hz)において、損失弾性率E”が、600kPa以上6000kPaである。
損失弾性率E”が上記範囲であるとき、高温高圧縮下での耐割れ性に優れたものとなる。下限としては好ましくは620kPa、より好ましくは630kPaであり、上限としては好ましくは5900kPa、より好ましくは5800kPaである。
また、架橋フッ素ゴム層は、動的粘弾性試験(測定モード:引張、チャック間距離:20mm、測定温度:160℃、引張歪み:1%、初期加重:157cN、周波数:10Hz)において、貯蔵弾性率E’が1500kPa以上20000kPa以下であることが、高温高圧縮下での耐割れ性の向上の点から更に好ましい。下限としては、好ましくは1600kPa、より好ましくは1800kPaであり、上限としては、好ましくは19000kPa、より好ましくは18000kPaである。
本発明のシール材は、以下に示す分野で好適に用いることができる。
たとえば、自動車用エンジンのエンジン本体、主運動系、動弁系、滑剤・冷却系、燃料系、吸気・排気系;駆動系のトランスミッション系;シャーシのステアリング系;ブレーキ系;電装品の基本電装部品、制御系電装部品、装備電装部品などの、耐熱性・耐油性・燃料油耐性・エンジン冷却用不凍液耐性・耐スチーム性が要求されるガスケットや非接触型及び接触型のパッキン類(セルフシールパッキン、ピストンリング、割リング形パッキン、メカニカルシール、オイルシールなど)などのシール材などが挙げられる。
自動車用エンジンのエンジン本体に用いられるシール材としては、特に限定されないが、たとえば、シリンダーヘッドガスケット、シリンダーヘッドカバーガスケット、オイルパンパッキン、一般ガスケットなどのガスケット、Oリング、パッキン、タイミングベルトカバーガスケットなどのシール材などが挙げられる。
自動車用エンジンの主運動系に用いられるシール材としては、特に限定されるものではないが、たとえば、クランクシャフトシール、カムシャフトシールなどのシャフトシールなどが挙げられる。
自動車用エンジンの動弁系に用いられるシール材としては、特に限定されるものではないが、たとえば、エンジンバルブのバルブステムオイルシール、バタフライバルブのバルブシートなどが挙げられる。
自動車用エンジンの滑剤・冷却系に用いられるシール材としては、特に限定されるものではないが、たとえば、エンジンオイルクーラーのシールガスケットなどが挙げられる。
自動車用エンジン燃料系に用いられるシール材としては、特に限定されるものではないが、たとえば、燃料ポンプのオイルシール、燃料タンクのフィラーシール、タンクパッキンなど、燃料チューブのコネクターOリンクなど、燃料噴射装置のインジェクタークッションリング、インジェクターシールリング、インジェクターOリングなど、キャブレターのフランジガスケットなど、EGRのシール材などが挙げられる。
自動車用エンジンの吸気・排気系に用いられるシール材としては、特に限定されるものではないが、たとえば、マニホールドの吸気マニホールドパッキン、排気マニホールドパッキン、スロットルのスロットルボディパッキン、ターボチャージのタービンシャフトシールなどが挙げられる。
自動車用トランスミッション系に用いられるシール材としては、特に限定されるものではないが、たとえば、トランスミッション関連のベアリングシール、オイルシール、Oリング、パッキンなど、オートマチックトランスミッションのOリング、パッキン類などが挙げられる。
自動車用ブレーキ系に用いられるシール材としては、特に限定されるものではないが、たとえば、オイルシール、Oリング、パッキンなど、マスターシリンダーのピストンカップ(ゴムカップ)など、キャリパーシール、ブーツ類などが挙げられる。
自動車用装備電装品に用いられるシール材としては、特に限定されるものではないが、たとえば、カーエアコンのOリング、パッキンなどが挙げられる。
本発明のシール材は、特にセンサー用シール材(ブッシュ)に適し、更には酸素センサー用シール材、酸化窒素センサー用シール材、酸化硫黄センサー用シール材などに適する。Oリングは角リングであってもよい。
自動車分野以外の用途としては、特に限定されず、航空機分野、ロケット分野、船舶分野、油田掘削分野、プラント等の化学品分野、医薬品等の薬品分野、現像機等の写真分野、印刷機械等の印刷分野、塗装設備等の塗装分野、分析・理化学機分野、食品プラント機器分野、原子力プラント機器分野、鉄板加工設備等の鉄鋼分野、一般工業分野、電気分野、燃料電池分野、電子部品分野、現場施工型の成形などの分野で広く用いることができる。
たとえば、船舶、航空機などの輸送機関における耐油、耐薬品、耐熱、耐スチーム又は耐候用のパッキン、Oリング、その他のシール材;油田掘削における同様のパッキン、Oリング、シール材、たとえばパッカーシール材、LWD用シール材、MWD用シール材など;化学プラントにおける同様のパッキン、Oリング、シール材;食品プラント機器及び食品機器(家庭用品を含む)における同様のパッキン、Oリング、シール材;原子力プラント機器における同様のパッキン、Oリング、シール材;一般工業部品における同様のパッキン、Oリング、シール材などが挙げられる。
本発明のシール材は、以下に示すダイヤフラムとしても好適に用いることができる。
例えば、自動車エンジンの用途としては、耐熱性、耐酸化性、耐燃料性、低ガス透過性などが求められる、燃料系、排気系、ブレーキ系、駆動系、点火系などのダイヤフラムが挙げられる。
自動車エンジンの燃料系に用いられるダイヤフラムとしては、例えば燃料ポンプ用ダイヤフラム、キャブレター用ダイヤフラム、プレッシャレギュレータ用ダイヤフラム、パルセーションダンパー用ダイヤフラム、ORVR用ダイヤフラム、キャニスター用ダイヤフラム、オートフューエルコック用ダイヤフラムなどが挙げられる。
自動車エンジンの排気系に用いられるダイヤフラムとしては、例えばウェイストゲート用ダイヤフラム、アクチュエータ用ダイヤフラム、EGR用ダイヤフラムなどが挙げられる。
自動車エンジンのブレーキ系に用いられるダイヤフラムとしては、例えばエアーブレーキ用ダイヤフラムなどが挙げられる。
自動車エンジンの駆動系に用いられるダイヤフラムとしては、例えばオイルプレッシャー用ダイヤフラムなどが挙げられる。
自動車エンジンの点火系に用いられるダイヤフラムとしては、例えばディストリビューター用ダイヤフラムなどが挙げられる。
自動車エンジン以外の用途としては、耐熱性、耐油性、耐薬品性、耐スチーム性、低ガス透過性などが求められる、一般ポンプ用ダイヤフラム、バルブ用ダイヤフラム、フィルタープレス用ダイヤフラム、ブロワー用ダイヤフラム、空調用機器用ダイヤフラム、制御機器用ダイヤフラム、給水用ダイヤフラム、給湯用の熱水を送液するポンプなどに用いられるダイヤフラム、高温蒸気用ダイヤフラム、半導体装置用ダイヤフラム(例えば製造工程などで使用される薬液移送用ダイヤフラム)、食品加工処理装置用ダイヤフラム、液体貯蔵タンク用ダイヤフラム、圧力スイッチ用ダイヤフラム、石油探索・石油掘削用途で用いられるダイヤフラム(例えば石油掘削ピットなどの潤滑油供給用ダイヤフラム)、ガス瞬間湯沸かし器やガスメーター等のガス器具用ダイヤフラム、アキュムレーター用ダイヤフラム、サスペンションなどの空気ばね用ダイヤフラム、船舶用のスクリューフィダー用ダイヤフラム、医療用の人工心臓用ダイヤフラムなどが挙げられる。
つぎに本発明を実施例をあげて説明するが、本発明はかかる実施例のみに限定されるものではない。
本発明で採用した各種の物性の測定方法は、以下のとおりである。
(1)動的粘弾性試験1(損失弾性率E”及び貯蔵弾性率E’)
(測定装置)
アイティー計測制御(株)製の動的粘弾性測定装置 DVA−220
(測定条件)
試験片:幅3mm×厚さ2mmサイズの長方体の架橋済みゴム
測定モード:引張
チャック間距離:20mm
測定温度:160℃
初期加重:157cN
周波数:10Hz
にて、歪み分散を測定し、引張歪み1%の損失弾性率E”及び貯蔵弾性率E’を算出する。
(2)動的粘弾性試験2(剪断弾性率G’)
(測定装置)
アルファテクノロジーズ社製ラバープロセスアナライザ(型式:RPA2000)
(測定条件)
100℃、1Hzにて歪み分散を測定し、剪断弾性率G’を求める。このとき、動的歪みを1%、100%として各々G’を求め、δG’(G’(1%)−G’(100%))を算出する。
(3)耐割れ性試験
JIS−K6262に従い、圧縮永久ひずみ試験用大型試験片を用いて耐割れ性を測定する。試験装置は、JIS−K6262の5圧縮永久ひずみ試験で用いる圧縮装置で、試験片の圧縮率が55%となるスペーサを用いた。割れの無いものを○、割れの有るものを×とする。
(4)ムーニー粘度(ML1+10(100℃))
ムーニー粘度は、ASTM−D1646及びJIS K6300に準拠して測定した。測定温度は100℃である。
実施例及び比較例では、つぎのフッ素ゴム、カーボンブラック、架橋剤及び架橋促進剤を使用した。
(フッ素ゴム)
A:82Lのステンレススチール製のオートクレーブに純水44L、CH=CFCFOCF(CF)CFOCF(CF)COONHの50%水溶液を8.8g、F(CFCOONHの50%水溶液176gを仕込み、系内を窒素ガスで充分に置換した。230rpmで攪拌しながら80℃に昇温した後、初期槽内モノマー組成をVdF/HFP=50/50モル%、1.52MPaとなるようにモノマーを圧入した。ついでAPS1.0gを220mlの純水に溶解した重合開始剤溶液を窒素ガスで圧入し、反応を開始した。重合の進行に伴い内圧が1.42MPaに降下した時点で追加モノマーであるVdF/HFP=78/22モル%の混合モノマーを内圧が1.52MPaとなるまで圧入した。このとき、ジヨウ素化合物I(CFIの73gを圧入した。昇圧、降圧を繰り返しつつ、3時間ごとにAPSの1.0g/純水220ml水溶液を窒素ガスで圧入して、重合反応を継続した。混合モノマーを14000g追加した時点で、未反応モノマーを放出し、オートクレーブを冷却して、固形分濃度23.1質量%のフッ素ゴムのディスパージョンを得た。このフッ素ゴムをNMR分析により共重合組成を調べたところ、VdF/HFP=78/22(モル%)であり、ムーニー粘度(ML1+10(100℃))は55であった。このフッ素ゴムをフッ素ゴムAとする。
(カーボンブラック)
B1:HAF(NSA=79m/g、DBP吸油量=101ml/100g)。東海カーボン(株)製の「シースト3」(商品名)
B2:MT(NSA=8m/g、DBP吸油量=43ml/100g)。Cancarb社製の「ThermaxN990」(商品名)
(架橋剤)
ビスフェノールAF
(架橋促進剤)
DBU−B
水酸化カルシウム:近江化学工業株式会社製のCALDIC2000(商品名)
酸化マグネシウム:協和化学工業株式会社製のMA−150(商品名)
実施例1
混練機(モリヤマ製のDS3−7.5)により、フロントローター回転数:53rpm、バックローター回転数:47rpmの混練条件で、フッ素ゴムAの100質量部にカーボンブラックB1を15質量部を混練し、フッ素ゴムプレコンパウンドを調製した。なお、排出された混練物の最高温度は162℃であった。
続いて、8インチオープンロール(関西ロール(株)製)により、フロントロール回転数21rpm、バックロール回転数19rpm、ロール間隙0.1cmの混練条件で架橋剤と架橋促進剤(DBU−B)の固溶体(ビスフェノールAFとDBU−Bを質量比4:1で混合し150℃で1〜2時間で溶融させ冷却粉砕)1.5質量部、CALDIC2000 6質量部、MA−150 3質量部を30分間かけて混練し、フッ素ゴムフルコンパウンドを調製した。なお、排出された混練物の最高温度は71℃であった。
次に、得られたフッ素ゴムコンパウンドを用いて、動的粘弾性試験2を実施し、δG’を求めた。結果を表1に示す。
また、このフッ素ゴムコンパウンドを170℃で10分間プレス成型し、230℃で24時間オーブン加熱することにより、厚さ2mmのシート状試験片、圧縮永久ひずみ試験用大型試験片を作製した。得られた架橋フッ素ゴムに動的粘弾性試験1を実施し、損失弾性率E”及び貯蔵弾性率E’を求めた。結果を表1に示す。
圧縮装置をあらかじめ表1に記載した温度に予熱した。次に、得られた試験片を圧縮板の中央部に、スペーサを試験片の外側にそれぞれ挿入後、圧縮板がスペーサに密着するまで圧縮し、保持具を締め付けてその状態に固定した。
更にあらかじめ表1記載の試験温度に調節した高温槽に、ただちに圧縮装置を入れ、表1記載の時間加熱した。
加熱終了後、圧縮装置を高温槽から取り出し、試験片を圧縮装置から取り外し、試験片の割れの有無を目視で観察した。結果を表1に示す。
実施例2
8インチオープンロール(関西ロール(株)製)により、フロントロール回転数21rpm、バックロール回転数19rpm、ロール間隙0.1cmの条件で、フッ素ゴムAの100質量部に、表1に示す量のカーボンブラックB1を30分間かけて混練し、フッ素ゴムプレコンパウンドを調製した。なお、排出された混練物の最高温度は72℃であった。
続いて、8インチオープンロール(関西ロール(株)製)により、フロントロール回転数21rpm、バックロール回転数19rpm、ロール表面温度30℃の混練条件で架橋剤(C1)と架橋促進剤(DBU−B)の固溶体(ビスフェノールAFとDBU−Bを質量比4:1で混合し150℃で1〜2時間で溶融させ冷却粉砕)1.5質量部、CALDIC2000 6質量部、MA−150 3質量部を30分間かけて混練し、フッ素ゴムフルコンパウンドを調製した。なお、排出された混練物の最高温度は70℃であった。得られたフッ素ゴムフルコンパウンドを用いて、動的粘弾性試験2を実施し、δG’を求めた。
得られたフッ素ゴムフルコンパウンドを170℃で10分間プレス成型し、230℃で24時間オーブン加熱することにより、厚さ2mmのシート状試験片、圧縮永久ひずみ試験用大型試験片を作製した。得られた架橋フッ素ゴムに動的粘弾性試験1を実施し、損失弾性率E”及び貯蔵弾性率E’を求めた。結果を表1に示す。
圧縮装置をあらかじめ表1に記載した温度に予熱した。次に、得られた試験片を圧縮板の中央部に、スペーサを試験片の外側にそれぞれ挿入後、圧縮板がスペーサに密着するまで圧縮し、保持具を締め付けてその状態に固定した。
更にあらかじめ表1記載の試験温度に調節した高温槽に、ただちに圧縮装置を入れ、表1記載の時間加熱した。
加熱終了後、圧縮装置を高温槽から取り出し、試験片を圧縮装置から取り外し、試験片の割れの有無を目視で観察した。結果を表1に示す。
比較例1
実施例2において、カーボンブラックB1に代えてカーボンブラックB2を用いたほかは実施例2と同じ条件で行った。結果を表1に示す。
Figure 2012026557

Claims (7)

  1. フッ素ゴム(A)及びカーボンブラック(B)を含むフッ素ゴム組成物
    を架橋して得られる架橋フッ素ゴム層を有し、
    架橋フッ素ゴム層が、動的粘弾性試験(測定温度:160℃、引張歪み:1%、初期加重:157cN、周波数:10Hz)において、損失弾性率E”が、600kPa以上6000kPa以下であるシール材。
  2. 架橋フッ素ゴム層が、動的粘弾性試験(測定温度:160℃、引張歪み:1%、初期加重:157cN、周波数:10Hz)において、貯蔵弾性率E’が1500kPa以上20000kPa以下である請求項1記載のシール材。
  3. フッ素ゴム(A)100質量部に対してカーボンブラック(B)を5〜50質量部含む請求項1又は2記載のシール材。
  4. カーボンブラック(B)が、窒素吸着比表面積(NSA)が20〜180m/gであって、ジブチルフタレート(DBP)吸油量が50〜180ml/100gであるカーボンブラックである請求項1〜3のいずれか1項に記載のシール材。
  5. フッ素ゴム(A)が、フッ化ビニリデン系共重合体ゴム、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)系共重合体ゴム、又はテトラフルオロエチレン/プロピレン系共重合体ゴムである請求項1〜4のいずれか1項に記載のシール材。
  6. フッ素ゴム組成物が、架橋剤(C)及び/又は架橋助剤(D)を含む請求項1〜5のいずれか1項に記載のシール材。
  7. センサー用シール材である請求項1〜6のいずれか1項に記載のシール材。
JP2012530724A 2010-08-25 2011-08-25 シール材 Active JP5641049B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US37703410P 2010-08-25 2010-08-25
US61/377,034 2010-08-25
PCT/JP2011/069234 WO2012026557A1 (ja) 2010-08-25 2011-08-25 シール材

Publications (2)

Publication Number Publication Date
JPWO2012026557A1 true JPWO2012026557A1 (ja) 2013-10-28
JP5641049B2 JP5641049B2 (ja) 2014-12-17

Family

ID=45723548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012530724A Active JP5641049B2 (ja) 2010-08-25 2011-08-25 シール材

Country Status (5)

Country Link
US (1) US9068653B2 (ja)
EP (1) EP2610533A4 (ja)
JP (1) JP5641049B2 (ja)
CN (1) CN103080616B (ja)
WO (1) WO2012026557A1 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6132552B2 (ja) 2010-08-25 2017-05-24 ダイキン工業株式会社 ベルト材
WO2012026556A1 (ja) 2010-08-25 2012-03-01 ダイキン工業株式会社 複雑形状フッ素ゴム成形体
JP5720689B2 (ja) 2010-08-25 2015-05-20 ダイキン工業株式会社 フッ素ゴム組成物
WO2012026549A1 (ja) 2010-08-25 2012-03-01 ダイキン工業株式会社 ホース
CN103080217B (zh) 2010-08-25 2015-10-14 大金工业株式会社 氟橡胶组合物
JP5780826B2 (ja) * 2011-05-12 2015-09-16 ニチアス株式会社 パーフルオロエラストマー組成物
US9107737B2 (en) 2011-11-21 2015-08-18 Alan Schwartz Goggles with facial conforming eyepieces
US20150041473A1 (en) * 2012-03-13 2015-02-12 Daikin Industries, Ltd. Automotive filler cap
US10251770B2 (en) * 2014-01-03 2019-04-09 Hollister Incorporated Lubricated valve for ostomy pouch
CN110573569B (zh) * 2017-06-12 2022-03-25 Nok株式会社 氟橡胶组合物及氟橡胶密封材料
US11781002B2 (en) * 2017-11-02 2023-10-10 Daikin Industries, Ltd. Fluorine-containing elastomer composition for heat dissipation material and sheet thereof
DE102018220221A1 (de) * 2018-11-26 2020-05-28 Ebm-Papst St. Georgen Gmbh & Co. Kg Gehäuse für die Elektronik eines elektrischen Antriebs
EP3985077A4 (en) * 2019-06-14 2023-06-07 Daikin Industries, Ltd. COMPRESSED ELEMENT FOR ELECTROCHEMICAL DEVICE
WO2024110375A1 (en) * 2022-11-22 2024-05-30 Dupont Specialty Products Operations Sarl Perfluoroelastomer compounds
CN115926606A (zh) * 2022-12-07 2023-04-07 青岛爱尔家佳新材料股份有限公司 一种油箱防爆防渗漏涂层及其制备方法

Family Cites Families (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5946271B2 (ja) 1975-12-25 1984-11-12 ダイキン工業株式会社 フツソゴムソセイブツ
JPS5946985B2 (ja) 1979-12-19 1984-11-16 ダイキン工業株式会社 加硫可能なフツ素ゴム組成物
JPS5837041A (ja) 1981-08-28 1983-03-04 Daikin Ind Ltd フツ素ゴム組成物
US4543394A (en) 1983-08-15 1985-09-24 E. I. Du Pont De Nemours And Company Fluoroelastomer having improved compression set resistance
JPS6157641A (ja) 1984-07-09 1986-03-24 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− フツ素化熱可塑性エラストマ−組成物
EP0168020B1 (en) 1984-07-09 1989-10-18 E.I. Du Pont De Nemours And Company Fluorinated thermoplastic elastomer compositions
US4694045A (en) * 1985-12-11 1987-09-15 E. I. Du Pont De Nemours And Company Base resistant fluoroelastomers
JPS62252435A (ja) 1986-04-24 1987-11-04 Asahi Chem Ind Co Ltd フッ素樹脂発泡体及びそれを使用したシール部材
DE3677526D1 (de) 1985-11-12 1991-03-21 Asahi Chemical Ind Schaumfaehige fluor enthaltende polymerzusammensetzungen und die so erhaltenen fluorschaeume.
JPS63286340A (ja) 1987-05-19 1988-11-24 Central Glass Co Ltd 軟質系フッ素樹脂・ゴム積層体
US4925892A (en) 1988-04-27 1990-05-15 E. I. Du Pont De Nemours And Company Fluoroelastomer compositions containing a tetraalkylammonium halide and vulcanization accelerator
JP2509345B2 (ja) * 1989-10-05 1996-06-19 イー・アイ・デユポン・ドウ・ヌムール・アンド・カンパニー 高い引張強度を有するフッ素ゴム加硫組成物
JPH03217482A (ja) 1990-01-22 1991-09-25 Showa Electric Wire & Cable Co Ltd 防振ゴム組成物
JP2528224B2 (ja) 1991-09-27 1996-08-28 三井石油化学工業株式会社 耐熱防振ゴム用ゴム組成物
DE69322157T2 (de) 1992-04-03 1999-06-10 E.I. Du Pont De Nemours And Co., Wilmington, Del. Vulkanisierbare fluorelastomerzusammensetzung
JP3274706B2 (ja) 1992-06-18 2002-04-15 三井化学株式会社 耐熱防振ゴム用ゴム組成物
JP3134511B2 (ja) 1992-07-09 2001-02-13 ダイキン工業株式会社 新規なフッ素ゴム組成物
JPH07196881A (ja) 1993-12-02 1995-08-01 E I Du Pont De Nemours & Co 含フッ素系エラストマー加硫組成物
JP3307046B2 (ja) 1993-12-29 2002-07-24 ダイキン工業株式会社 フッ素ゴム組成物および成形品
JPH07233331A (ja) 1994-02-23 1995-09-05 Nippon Steel Chem Co Ltd カーボンブラック及びゴム組成物
JP2788212B2 (ja) 1994-11-11 1998-08-20 横浜ゴム株式会社 表面処理カーボンブラック及びそれを用いたゴム組成物
JP3329599B2 (ja) 1994-11-14 2002-09-30 株式会社ブリヂストン 防振ゴム組成物
JP3327016B2 (ja) 1994-12-06 2002-09-24 ダイキン工業株式会社 低温シール性に優れたフッ素ゴム共重合体及びその硬化用組成物
JP3223776B2 (ja) 1995-03-31 2001-10-29 日本メクトロン株式会社 含フッ素エラストマー組成物
IT1276980B1 (it) 1995-10-20 1997-11-03 Ausimont Spa Composizioni fluoroelastomeriche
IT1276979B1 (it) 1995-10-20 1997-11-03 Ausimont Spa Composizioni fluoroelastomeriche
JPH09188793A (ja) 1996-01-09 1997-07-22 Daikin Ind Ltd 耐熱性フッ素ゴム組成物
US5677389A (en) 1996-11-25 1997-10-14 E. I. Du Pont De Nemours Perfluoroelastomer composition having enhanced curing performance
JPH11240312A (ja) 1997-08-04 1999-09-07 Bridgestone Corp 空気入りタイヤ
US6232390B1 (en) 1997-10-31 2001-05-15 Nok Corporation Molding composition, molded composition and sealing device for sealing carbon dioxide
JP3924877B2 (ja) 1997-11-14 2007-06-06 ユニマテック株式会社 含フッ素エラストマー用加硫促進剤の製造法
JP3077689B2 (ja) 1998-03-31 2000-08-14 東海ゴム工業株式会社 耐熱ホース
GB9816638D0 (en) 1998-07-30 1998-09-30 Novartis Ag Organic compounds
JP2000053835A (ja) 1998-08-07 2000-02-22 Nippon Mektron Ltd 加硫性フッ素ゴム組成物
US6281296B1 (en) 1998-08-10 2001-08-28 Dupont Dow Elastomers L.L.C. Curable perfluoroelastomer composition
JP2000193152A (ja) 1998-12-24 2000-07-14 Toyoda Gosei Co Ltd 耐熱性ホース
JP2000240730A (ja) 1999-02-24 2000-09-05 Mitsuboshi Belting Ltd 歯付ベルト
JP3669874B2 (ja) 1999-08-10 2005-07-13 電気化学工業株式会社 自動車用防振ゴム組成物及び防振部材
DE60040168D1 (de) * 1999-11-04 2008-10-16 Daikin Ind Ltd Fluorelastomer-zusammensetzung zum vernetzen
JP2001150595A (ja) 1999-11-30 2001-06-05 Tokai Rubber Ind Ltd パッキン構造体
JP4258933B2 (ja) * 2000-01-13 2009-04-30 Nok株式会社 フッ素ゴム加硫成形品の製造法
JP4800508B2 (ja) 2001-06-28 2011-10-26 三菱電線工業株式会社 シール用ゴム組成物およびそれを用いた耐二酸化炭素用シール
JP2003083479A (ja) 2001-09-12 2003-03-19 Tokai Rubber Ind Ltd 耐熱ホースの製法およびそれにより得られた耐熱ホース
JPWO2003074625A1 (ja) 2002-03-05 2005-06-30 ダイキン工業株式会社 シール材
JP3997359B2 (ja) * 2002-06-10 2007-10-24 内山工業株式会社 フッ素ゴム加硫成形品及びその製造方法
US7098270B2 (en) 2002-09-10 2006-08-29 Freudenberg-Nok General Partnership Fluoroelastomer composition
JP2004210830A (ja) 2002-12-27 2004-07-29 Jsr Corp エラストマー組成物およびその製造方法
US20040142135A1 (en) 2003-01-21 2004-07-22 3M Innovative Properties Company Fuel management system comprising a fluoroelastomer layer having a hydrotalcite compound
JP4610856B2 (ja) 2003-02-06 2011-01-12 Nok株式会社 フッ素ゴム系シール材用組成物及びフッ素ゴム系シール材
JP3884726B2 (ja) 2003-06-11 2007-02-21 住友ゴム工業株式会社 導電性ベルト及びその製造方法
EP1642937A4 (en) 2003-07-09 2007-07-18 Yokohama Rubber Co Ltd RUBBER COMPOSITION AND TIRE MADE THEREFROM
JP2005067279A (ja) 2003-08-20 2005-03-17 Bridgestone Corp タイヤ
WO2005021637A1 (ja) 2003-09-01 2005-03-10 Zeon Corporation 共役ジエン系ゴム組成物、その製造方法およびゴム架橋物
JP2005239835A (ja) 2004-02-25 2005-09-08 Nippon Valqua Ind Ltd 架橋性フッ素ゴム組成物
JP2005315415A (ja) 2004-03-31 2005-11-10 Gates Unitta Asia Co 動力伝達ベルト
US7659347B2 (en) * 2004-04-28 2010-02-09 Daikin Industries, Ltd. Fluorine-containing elastomer composition and molded article comprising the same
ITMI20041252A1 (it) 2004-06-22 2004-09-22 Solvay Solexis Spa Composizioni perfluoroelastomeriche
JP2006022917A (ja) 2004-07-09 2006-01-26 Gates Unitta Asia Co 歯付きベルト
EP1865025B1 (en) 2004-07-28 2012-05-23 Daikin Industries, Ltd. Peroxide-curable fluoroelastomer composition
ITMI20041571A1 (it) 2004-07-30 2004-10-30 Solvay Solexis Spa Perfluoroelastomeri
WO2006040944A1 (ja) 2004-10-08 2006-04-20 Daikin Industries, Ltd. フッ素ゴム組成物
WO2006057333A1 (ja) 2004-11-26 2006-06-01 Daikin Industries, Ltd. 熱可塑性重合体組成物および熱可塑性重合体組成物の製造方法
JP5114826B2 (ja) 2005-02-04 2013-01-09 ダイキン工業株式会社 架橋性組成物およびそれからなる積層体
JP4683207B2 (ja) 2005-08-02 2011-05-18 ゲイツ・ユニッタ・アジア株式会社 伝動ベルト
JP4820623B2 (ja) 2005-11-02 2011-11-24 積水化成品工業株式会社 発泡性ポリ乳酸系樹脂の製造方法
JP2007269008A (ja) 2006-03-10 2007-10-18 Tokai Rubber Ind Ltd 耐熱エアーホース
JP5061510B2 (ja) 2006-06-13 2012-10-31 旭硝子株式会社 含フッ素弾性共重合体組成物および架橋ゴム
ITMI20061290A1 (it) 2006-07-03 2008-01-04 Solvay Solexis Spa Composizioni (per) fluoroelastometriche
ITMI20061292A1 (it) 2006-07-03 2008-01-04 Solvay Solexis Spa Composizioni (per) fluoroelastomeriche
ITMI20061291A1 (it) 2006-07-03 2008-01-04 Solvay Solexis Spa Composizioni (per) fluoroelastomeriche
JP2008127429A (ja) 2006-11-17 2008-06-05 Denki Kagaku Kogyo Kk 光硬化性樹脂組成物
JP5131198B2 (ja) 2006-12-26 2013-01-30 ダイキン工業株式会社 含フッ素エラストマーの製造方法および該製造方法により得られる含フッ素エラストマー
JP5168918B2 (ja) 2007-01-29 2013-03-27 ユニマテック株式会社 含フッ素エラストマーおよびその組成物
JP5261995B2 (ja) * 2007-06-26 2013-08-14 Nok株式会社 ゴム組成物
JP2009024046A (ja) 2007-07-17 2009-02-05 Bridgestone Corp 防振ゴム組成物及びそれを用いてなる防振ゴム
JP5118914B2 (ja) 2007-07-31 2013-01-16 東海ゴム工業株式会社 防振ゴム組成物およびその製法
KR101530726B1 (ko) 2007-09-14 2015-06-22 덴끼 가가꾸 고교 가부시키가이샤 클로로프렌 고무 조성물 및 그 용도
KR101530105B1 (ko) 2007-09-14 2015-06-18 쓰리엠 이노베이티브 프로퍼티즈 캄파니 초저점도 요오드 함유 무정형 플루오로중합체
JP4767239B2 (ja) 2007-10-25 2011-09-07 ゲイツ・ユニッタ・アジア株式会社 ベルトおよびベルト材料
JP5478820B2 (ja) 2007-12-04 2014-04-23 住友ゴム工業株式会社 防振ゴム
EP2264100B1 (en) 2008-03-27 2017-01-04 Daikin Industries, Ltd. Peroxide cross-linked fluorine-containing elastomer composition
JP2009298949A (ja) 2008-06-16 2009-12-24 Bridgestone Corp 耐熱防振ゴム組成物及び耐熱防振ゴム
JP2010100777A (ja) 2008-10-27 2010-05-06 Kokoku Intech Co Ltd 耐熱性アクリルゴム組成物
JP5311127B2 (ja) 2009-04-21 2013-10-09 ニチアス株式会社 ガスケット用素材
US20110152487A1 (en) 2009-12-17 2011-06-23 3M Innovative Properties Company Peroxide cured partially fluorinated elastomers
WO2012026559A1 (ja) 2010-08-25 2012-03-01 ダイキン工業株式会社 フッ素ゴム成形品
US20120202938A1 (en) 2010-08-25 2012-08-09 E. I. Du Pont De Nemours And Company Fluoroelastomer parts for oil and gas exploration and production
WO2012026549A1 (ja) 2010-08-25 2012-03-01 ダイキン工業株式会社 ホース
CN103080217B (zh) 2010-08-25 2015-10-14 大金工业株式会社 氟橡胶组合物
JP6120571B2 (ja) 2010-08-25 2017-04-26 ダイキン工業株式会社 フッ素ゴム成形品
WO2012026556A1 (ja) 2010-08-25 2012-03-01 ダイキン工業株式会社 複雑形状フッ素ゴム成形体
JP5686137B2 (ja) 2010-08-25 2015-03-18 ダイキン工業株式会社 フッ素ゴム組成物の製造方法
WO2012026558A1 (ja) 2010-08-25 2012-03-01 ダイキン工業株式会社 防振ゴム
JP5720689B2 (ja) 2010-08-25 2015-05-20 ダイキン工業株式会社 フッ素ゴム組成物
JP6132552B2 (ja) 2010-08-25 2017-05-24 ダイキン工業株式会社 ベルト材

Also Published As

Publication number Publication date
CN103080616A (zh) 2013-05-01
EP2610533A4 (en) 2017-12-13
US20120077925A1 (en) 2012-03-29
EP2610533A1 (en) 2013-07-03
WO2012026557A1 (ja) 2012-03-01
US9068653B2 (en) 2015-06-30
CN103080616B (zh) 2016-04-27
JP5641049B2 (ja) 2014-12-17

Similar Documents

Publication Publication Date Title
JP5641049B2 (ja) シール材
JP5686137B2 (ja) フッ素ゴム組成物の製造方法
JP6120572B2 (ja) フッ素ゴム成形品
JP6028835B2 (ja) ホース
JP5790655B2 (ja) フッ素ゴム組成物
JP5720689B2 (ja) フッ素ゴム組成物
JP6120571B2 (ja) フッ素ゴム成形品
EP2610303B1 (en) Fluoro rubber molding with complex shape
JP5939306B2 (ja) フッ素ゴム組成物
JP5776840B2 (ja) フッ素ゴム組成物、及び、その製造方法
JP5907276B2 (ja) フッ素ゴム組成物
JP2014521755A (ja) フッ素ゴム組成物、及び、その製造方法
US10000619B2 (en) Diaphragm
JP2013173930A (ja) 耐バイオディーゼル燃料部材

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141013

R151 Written notification of patent or utility model registration

Ref document number: 5641049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151