JP7456042B2 - semiconductor equipment - Google Patents

semiconductor equipment Download PDF

Info

Publication number
JP7456042B2
JP7456042B2 JP2023061361A JP2023061361A JP7456042B2 JP 7456042 B2 JP7456042 B2 JP 7456042B2 JP 2023061361 A JP2023061361 A JP 2023061361A JP 2023061361 A JP2023061361 A JP 2023061361A JP 7456042 B2 JP7456042 B2 JP 7456042B2
Authority
JP
Japan
Prior art keywords
oxide semiconductor
film
semiconductor layer
transistor
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2023061361A
Other languages
Japanese (ja)
Other versions
JP2023093542A (en
Inventor
舜平 山崎
聡始 篠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2023093542A publication Critical patent/JP2023093542A/en
Application granted granted Critical
Publication of JP7456042B2 publication Critical patent/JP7456042B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1229Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with different crystal properties within a device or between different devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • H01L29/045Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes by their particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • H01L29/78693Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1216Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being capacitors

Description

半導体装置及び半導体装置の作製方法に関する。 The present invention relates to a semiconductor device and a method for manufacturing a semiconductor device.

なお、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装置
全般を指し、電気光学装置、半導体回路および電子機器は全て半導体装置である。
Note that in this specification, a semiconductor device refers to any device that can function by utilizing semiconductor characteristics, and an electro-optical device, a semiconductor circuit, and an electronic device are all semiconductor devices.

絶縁表面を有する基板上に形成された半導体薄膜を用いてトランジスタ(薄膜トランジス
タ(TFT)ともいう)を構成する技術が注目されている。該トランジスタは集積回路(
IC)や画像表示装置(表示装置)のような電子デバイスに広く応用されている。トラン
ジスタに適用可能な半導体薄膜としてシリコン系半導体材料が広く知られているが、その
他の材料として酸化物半導体が注目されている。
2. Description of the Related Art A technique for constructing a transistor (also referred to as a thin film transistor (TFT)) using a semiconductor thin film formed on a substrate having an insulating surface is attracting attention. The transistor is an integrated circuit (
It is widely applied to electronic devices such as IC) and image display devices (display devices). Although silicon-based semiconductor materials are widely known as semiconductor thin films applicable to transistors, oxide semiconductors are attracting attention as other materials.

例えば、トランジスタの活性層として、インジウム(In)、ガリウム(Ga)、及び亜
鉛(Zn)を含む非晶質酸化物を用いたトランジスタが開示されている(特許文献1参照
)。
For example, a transistor using an amorphous oxide containing indium (In), gallium (Ga), and zinc (Zn) as an active layer of the transistor has been disclosed (see Patent Document 1).

特開2006-165528号公報Japanese Patent Application Publication No. 2006-165528

トランジスタのオン特性(例えば、オン電流や電界効果移動度)が向上すると、半導体装
置において入力信号に対する高速応答、高速駆動が可能になり、より高性能な半導体装置
が実現できる。一方、半導体装置の低消費電力化には、トランジスタのオフ電流が十分低
いことが求められる。このように、トランジスタに求められる電気特性は用途や目的に合
わせて様々であり、該電気特性をより精度よく制御することは有益である。
When the on-characteristics (for example, on-state current and field-effect mobility) of a transistor are improved, a semiconductor device can respond quickly to an input signal and drive at high speed, making it possible to realize a semiconductor device with higher performance. On the other hand, in order to reduce the power consumption of a semiconductor device, it is required that the off-state current of a transistor be sufficiently low. As described above, the electrical characteristics required of a transistor vary depending on the use and purpose, and it is beneficial to control the electrical characteristics with more precision.

酸化物半導体をチャネル形成領域に用いたトランジスタの電気特性のしきい値電圧をプラ
スにすることができ、所謂ノーマリーオフのスイッチング素子を実現するトランジスタ構
造およびその作製方法を課題の一つとする。
One of the subjects to be solved is a transistor structure and a method for manufacturing the same, which can achieve a so-called normally-off switching element by making the threshold voltage of the electrical characteristics of a transistor using an oxide semiconductor in the channel formation region positive.

トランジスタは、ゲート電圧が0Vにできるだけ近い正のしきい値電圧でチャネルが形成
されることが望ましい。トランジスタのしきい値電圧値がマイナスであると、ゲート電圧
が0Vでもソース電極とドレイン電極の間に電流が流れる、所謂ノーマリーオンとなりや
すい。LSIやCPUやメモリにおいては、回路を構成するトランジスタの電気特性が重
要であり、この電気特性が半導体装置の消費電力を左右する。特に、トランジスタの電気
特性のうち、しきい値電圧(Vth)が重要である。電界効果移動度が高くとも、しきい
値電圧値がマイナスであると、回路として制御することが困難である。負の電圧状態でも
チャネルが形成されてドレイン電流が流れるトランジスタは、半導体装置の集積回路に用
いるトランジスタとしては不向きである。
It is desirable that the channel of the transistor be formed with a gate voltage as close to 0V as possible, a positive threshold voltage. If the threshold voltage value of the transistor is negative, even if the gate voltage is 0V, a current flows between the source electrode and the drain electrode, which is likely to cause a so-called normally-on state. In LSIs, CPUs, and memories, the electrical characteristics of transistors forming the circuit are important, and these electrical characteristics influence the power consumption of the semiconductor device. In particular, among the electrical characteristics of a transistor, the threshold voltage (Vth) is important. Even if the field effect mobility is high, if the threshold voltage value is negative, it is difficult to control it as a circuit. A transistor in which a channel is formed and a drain current flows even under a negative voltage state is not suitable as a transistor for use in an integrated circuit of a semiconductor device.

また、材料や作製条件によっては、作製されたトランジスタがノーマリーオフとならない
場合であっても、ノーマリーオフの特性に近づけることが重要であり、しきい値電圧値が
マイナスである、所謂ノーマリーオンであっても、トランジスタのしきい値をゼロに近づ
ける構成およびその作製方法を提供することも課題の一つとする。
In addition, even if the fabricated transistor does not become normally-off depending on the material and manufacturing conditions, it is important to make it close to normally-off characteristics, and the so-called normal-off transistor with a negative threshold voltage value is important. One of the challenges is to provide a structure and a method for manufacturing the same that can bring the threshold voltage of a transistor close to zero even if it is a marion.

また、より高性能な半導体装置を実現するため、トランジスタのオン特性(例えば、オン
電流や電界効果移動度)を向上させて、半導体装置の高速応答、高速駆動を実現する構成
およびその作製方法を提供することも課題の一つとする。
In addition, in order to realize higher-performance semiconductor devices, we are developing structures and fabrication methods that improve the on-characteristics (for example, on-current and field-effect mobility) of transistors to achieve high-speed response and high-speed driving of semiconductor devices. One of the challenges is to provide such information.

上記のように、用途に合わせて要求される電気的特性を備えた酸化物半導体層を用いたト
ランジスタ、及び該トランジスタを有する半導体装置を提供することを課題の一とする。
As described above, one object of the present invention is to provide a transistor using an oxide semiconductor layer that has electrical characteristics required depending on the intended use, and a semiconductor device including the transistor.

上記課題のうち、少なくともいずれか一を解決することを課題とする。 The object is to solve at least one of the above problems.

少なくともゲート電極層、ゲート絶縁膜、及び半導体層が順に積層されたボトムゲート構
造のトランジスタにおいて、該半導体層としてエネルギーギャップの異なる少なくとも2
層の酸化物半導体層を含む酸化物半導体積層を用いる。
In a transistor with a bottom gate structure in which at least a gate electrode layer, a gate insulating film, and a semiconductor layer are laminated in this order, at least two semiconductor layers having different energy gaps may be used.
An oxide semiconductor stack including two oxide semiconductor layers is used.

酸化物半導体積層を第1の酸化物半導体層及び第2の酸化物半導体層の積層構造とする場
合、第1の酸化物半導体層及び第2の酸化物半導体層は、それぞれの有するエネルギーギ
ャップが異なればよく、その積層順は限定されず、ゲート絶縁膜と接する方をエネルギー
ギャップが大きい層としてもよいし、エネルギーギャップが小さい層としてもよい。
When the oxide semiconductor stack has a stacked structure of a first oxide semiconductor layer and a second oxide semiconductor layer, the first oxide semiconductor layer and the second oxide semiconductor layer each have an energy gap of The stacking order is not limited as long as they are different, and the layer in contact with the gate insulating film may be a layer with a larger energy gap or a layer with a smaller energy gap.

具体的には、酸化物半導体積層において、一方の酸化物半導体層のエネルギーギャップを
3eV以上とし、他方の酸化物半導体層のエネルギーギャップを3eV未満とする。なお
、本明細書において、「エネルギーギャップ」という用語は、「バンドギャップ」や、「
禁制帯幅」と同じ意味で用いている。
Specifically, in the oxide semiconductor stack, one oxide semiconductor layer has an energy gap of 3 eV or more, and the other oxide semiconductor layer has an energy gap of less than 3 eV. In addition, in this specification, the term "energy gap" refers to "band gap" or "
It is used interchangeably with "forbidden band width."

酸化物半導体積層を3層以上の積層構造とする場合、すべての酸化物半導体層同士が異な
るエネルギーギャップを有する構造であってもよいし、ほぼ同じエネルギーギャップを有
する酸化物半導体層を複数酸化物半導体積層中に用いてもよい。
When the oxide semiconductor stack has a stacked structure of three or more layers, all the oxide semiconductor layers may have different energy gaps, or multiple oxide semiconductor layers may have substantially the same energy gaps. It may also be used during semiconductor stacking.

例えば、酸化物半導体積層を第1の酸化物半導体層、第2の酸化物半導体層、及び第3の
酸化物半導体層の積層構造において、第2の酸化物半導体層のエネルギーギャップを第1
の酸化物半導体層及び第3の酸化物半導体層のエネルギーギャップより小さくする。また
は、第2の酸化物半導体層の電子親和力を、第1の酸化物半導体層及び第3の酸化物半導
体層の電子親和力よりも大きくする。この場合、第1の酸化物半導体層及び第3の酸化物
半導体層のエネルギーギャップと電子親和力とは同等とすることができる。エネルギーギ
ャップの小さい第2の酸化物半導体層を、エネルギーギャップの大きい第1の酸化物半導
体層及び第3の酸化物半導体層により挟む構造とすることによって、よりトランジスタの
オフ電流(リーク電流)を低減する効果が得られる。ここで、電子親和力とは真空準位と
酸化物半導体の伝導帯とのエネルギー差を表す。
For example, when the oxide semiconductor stack has a stacked structure of a first oxide semiconductor layer, a second oxide semiconductor layer, and a third oxide semiconductor layer, the energy gap of the second oxide semiconductor layer is
The energy gap is made smaller than the energy gap between the oxide semiconductor layer and the third oxide semiconductor layer. Alternatively, the electron affinity of the second oxide semiconductor layer is made larger than the electron affinity of the first oxide semiconductor layer and the third oxide semiconductor layer. In this case, the first oxide semiconductor layer and the third oxide semiconductor layer can have the same energy gap and electron affinity. By forming a structure in which the second oxide semiconductor layer with a small energy gap is sandwiched between the first oxide semiconductor layer and the third oxide semiconductor layer with a large energy gap, the off-state current (leakage current) of the transistor can be further reduced. The effect of reducing this can be obtained. Here, the electron affinity represents the energy difference between the vacuum level and the conduction band of the oxide semiconductor.

酸化物半導体層を用いたトランジスタにおいて、該酸化物半導体層のエネルギーギャップ
は、トランジスタの電気特性に影響を与える。例えば、酸化物半導体層を用いたトランジ
スタにおいて、酸化物半導体層のエネルギーギャップが小さいと、オン特性(例えば、オ
ン電流や電界効果移動度)が向上し、一方、酸化物半導体層のエネルギーギャップが大き
いと、オフ電流が低減できる。
In a transistor using an oxide semiconductor layer, the energy gap of the oxide semiconductor layer affects the electrical characteristics of the transistor. For example, in a transistor using an oxide semiconductor layer, when the energy gap of the oxide semiconductor layer is small, the on-characteristics (for example, on-state current and field effect mobility) are improved; If it is large, the off-state current can be reduced.

単層の酸化物半導体層では該酸化物半導体層のエネルギーギャップの大きさで、トランジ
スタの電気特性はほぼ決定してしまうため、所望の電気的特性をトランジスタに付与する
ことは難しい。
In the case of a single-layer oxide semiconductor layer, the electrical characteristics of the transistor are almost determined by the size of the energy gap of the oxide semiconductor layer, so it is difficult to impart desired electrical characteristics to the transistor.

異なるエネルギーギャップを有する複数の酸化物半導体層を用いた酸化物半導体積層を用
いることによって、トランジスタの電気特性をより精度よく制御することができ、所望の
電気特性をトランジスタに付与することが可能となる。
By using an oxide semiconductor stack that includes multiple oxide semiconductor layers with different energy gaps, it is possible to control the electrical characteristics of a transistor with more precision, and it is possible to impart desired electrical characteristics to the transistor. Become.

従って、高機能、高信頼性、又は低消費電力など、種々の目的に応じた半導体装置を提供
することができる。
Therefore, it is possible to provide semiconductor devices suitable for various purposes such as high functionality, high reliability, and low power consumption.

本明細書で開示する発明の構成の一形態は、ゲート電極層上にゲート絶縁膜と、ゲート電
極層と重なるゲート絶縁膜上にエネルギーギャップが異なる第1の酸化物半導体層及び第
2の酸化物半導体層を含む酸化物半導体積層と、酸化物半導体積層上にソース電極層及び
ドレイン電極層とを有する半導体装置である。
One embodiment of the structure of the invention disclosed in this specification includes a gate insulating film over the gate electrode layer, a first oxide semiconductor layer and a second oxide semiconductor layer having different energy gaps over the gate insulating film overlapping the gate electrode layer. This semiconductor device includes an oxide semiconductor stack including a semiconductor layer, and a source electrode layer and a drain electrode layer on the oxide semiconductor stack.

本明細書で開示する発明の構成の一形態は、ゲート電極層上にゲート絶縁膜と、ゲート電
極層と重なるゲート絶縁膜上に第1の酸化物半導体層、第2の酸化物半導体層、及び第3
の酸化物半導体層を順に含む酸化物半導体積層と、酸化物半導体積層上にソース電極層及
びドレイン電極層とを有し、第2の酸化物半導体層は、第1の酸化物半導体層及び第3の
酸化物半導体層のエネルギーギャップより小さいエネルギーギャップを有する半導体装置
である。
One embodiment of the structure of the invention disclosed in this specification includes a gate insulating film over the gate electrode layer, a first oxide semiconductor layer, a second oxide semiconductor layer over the gate insulating film overlapping with the gate electrode layer, and third
an oxide semiconductor stack including, in order, oxide semiconductor layers, and a source electrode layer and a drain electrode layer on the oxide semiconductor stack, and the second oxide semiconductor layer includes the first oxide semiconductor layer and the drain electrode layer. This is a semiconductor device having an energy gap smaller than that of the oxide semiconductor layer No. 3.

本明細書で開示する発明の構成の一形態は、ゲート電極層上にゲート絶縁膜と、ゲート絶
縁膜上にソース電極層及びドレイン電極層と、ゲート絶縁膜、ソース電極層、及びドレイ
ン電極層上にゲート電極層と重なって、エネルギーギャップが異なる第1の酸化物半導体
層及び第2の酸化物半導体層を含む酸化物半導体積層とを有する半導体装置である。
One embodiment of the structure of the invention disclosed in this specification includes a gate insulating film on a gate electrode layer, a source electrode layer and a drain electrode layer on the gate insulating film, and a gate insulating film, a source electrode layer, and a drain electrode layer. The semiconductor device includes an oxide semiconductor stack layer overlapping a gate electrode layer and including a first oxide semiconductor layer and a second oxide semiconductor layer having different energy gaps.

本明細書で開示する発明の構成の一形態は、ゲート電極層上にゲート絶縁膜と、ゲート絶
縁膜上にソース電極層及びドレイン電極層と、ゲート電極層と重なるゲート絶縁膜、ソー
ス電極層、及びドレイン電極層上に第1の酸化物半導体層、第2の酸化物半導体層、及び
第3の酸化物半導体層を順に含む酸化物半導体積層とを有し、第2の酸化物半導体層は、
第1の酸化物半導体層及び第3の酸化物半導体層のエネルギーギャップより小さいエネル
ギーギャップを有する半導体装置である。
One embodiment of the structure of the invention disclosed in this specification includes a gate insulating film on a gate electrode layer, a source electrode layer and a drain electrode layer on the gate insulating film, a gate insulating film overlapping with the gate electrode layer, and a source electrode layer. , and an oxide semiconductor stack including, in order, a first oxide semiconductor layer, a second oxide semiconductor layer, and a third oxide semiconductor layer on the drain electrode layer, and a second oxide semiconductor layer. teeth,
The semiconductor device has an energy gap smaller than an energy gap between the first oxide semiconductor layer and the third oxide semiconductor layer.

酸化物半導体積層において、上層の酸化物半導体層が下層の酸化物半導体層の上面及び側
面を覆う構造としてもよい。例えば上記構成において、第2の酸化物半導体層により第1
の酸化物半導体層の上面及び側面を覆う構造、又は第3の酸化物半導体層により第2の酸
化物半導体層の上面、及び第2の酸化物半導体層(若しくは第1の酸化物半導体層及び第
2の酸化物半導体層)の側面を覆う構造とすることができる。
In the oxide semiconductor stack, the upper oxide semiconductor layer may cover the top and side surfaces of the lower oxide semiconductor layer. For example, in the above structure, the second oxide semiconductor layer
a structure that covers the top surface and side surfaces of the oxide semiconductor layer, or a third oxide semiconductor layer that covers the top surface of the second oxide semiconductor layer and the second oxide semiconductor layer (or the first oxide semiconductor layer and The structure can be such that the side surface of the second oxide semiconductor layer (second oxide semiconductor layer) is covered.

また、酸化物半導体積層において、ソース電極層またはドレイン電極層と重畳しない領域
は、ソース電極層またはドレイン電極層と重畳する領域よりも高い酸素濃度を有する構成
としてもよい。
Further, in the oxide semiconductor stack, a region that does not overlap with the source electrode layer or the drain electrode layer may have a higher oxygen concentration than a region that overlaps with the source electrode layer or the drain electrode layer.

また、酸化物半導体積層において、ゲート電極層と重畳しない領域は、ドーパントを含む
構成とし、低抵抗領域を有してもよい。
Further, in the oxide semiconductor stack, a region that does not overlap with the gate electrode layer may contain a dopant and may have a low resistance region.

本明細書で開示する発明の構成の一形態は、ゲート電極層上にゲート絶縁膜を形成し、ゲ
ート電極層と重なるゲート絶縁膜上にエネルギーギャップが異なる第1の酸化物半導体層
及び第2の酸化物半導体層を含む酸化物半導体積層を形成し、酸化物半導体積層上にソー
ス電極層及びドレイン電極層を形成する半導体装置の作製方法である。
In one embodiment of the structure of the invention disclosed in this specification, a gate insulating film is formed over the gate electrode layer, and a first oxide semiconductor layer and a second oxide semiconductor layer having different energy gaps are formed on the gate insulating film overlapping with the gate electrode layer. This is a method for manufacturing a semiconductor device, in which an oxide semiconductor stack including oxide semiconductor layers is formed, and a source electrode layer and a drain electrode layer are formed on the oxide semiconductor stack.

本明細書で開示する発明の構成の一形態は、ゲート電極層上にゲート絶縁膜を形成し、ゲ
ート電極層と重なるゲート絶縁膜上に第1の酸化物半導体層を形成し、第1の酸化物半導
体層上に第1の酸化物半導体層よりエネルギーギャップが小さい第2の酸化物半導体層を
形成し、第2の酸化物半導体層よりエネルギーギャップが大きい第3の酸化物半導体層を
成膜して酸化物半導体積層を形成し、酸化物半導体積層上にソース電極層及びドレイン電
極層を形成する半導体装置の作製方法である。
In one embodiment of the structure of the invention disclosed in this specification, a gate insulating film is formed over the gate electrode layer, a first oxide semiconductor layer is formed over the gate insulating film overlapping with the gate electrode layer, and a first oxide semiconductor layer is formed over the gate insulating film overlapping the gate electrode layer. A second oxide semiconductor layer having a smaller energy gap than the first oxide semiconductor layer is formed on the oxide semiconductor layer, and a third oxide semiconductor layer has a larger energy gap than the second oxide semiconductor layer. This is a method for manufacturing a semiconductor device in which an oxide semiconductor stack is formed as a film, and a source electrode layer and a drain electrode layer are formed on the oxide semiconductor stack.

本明細書で開示する発明の構成の一形態は、ゲート電極層上にゲート絶縁膜を形成し、ゲ
ート絶縁膜上にソース電極層及びドレイン電極層を形成し、ゲート電極層と重なるゲート
絶縁膜、ソース電極層、及びドレイン電極層上にエネルギーギャップが異なる第1の酸化
物半導体層及び第2の酸化物半導体層を含む酸化物半導体積層を形成する半導体装置の作
製方法である。
In one embodiment of the structure of the invention disclosed in this specification, a gate insulating film is formed on the gate electrode layer, a source electrode layer and a drain electrode layer are formed on the gate insulating film, and the gate insulating film overlaps with the gate electrode layer. , a method for manufacturing a semiconductor device in which an oxide semiconductor stack including a first oxide semiconductor layer and a second oxide semiconductor layer with different energy gaps is formed on a source electrode layer and a drain electrode layer.

本明細書で開示する発明の構成の一形態は、ゲート電極層上にゲート絶縁膜を形成し、ゲ
ート絶縁膜上にソース電極層及びドレイン電極層を形成し、ゲート電極層と重なるゲート
絶縁膜、ソース電極層、及びドレイン電極層上に第1の酸化物半導体層を形成し、第1の
酸化物半導体層上に第1の酸化物半導体層よりエネルギーギャップが小さい第2の酸化物
半導体層を形成し、第2の酸化物半導体層よりエネルギーギャップが大きい第3の酸化物
半導体層を成膜して酸化物半導体積層を形成する半導体装置の作製方法である。
In one embodiment of the structure of the invention disclosed in this specification, a gate insulating film is formed on the gate electrode layer, a source electrode layer and a drain electrode layer are formed on the gate insulating film, and the gate insulating film overlaps with the gate electrode layer. , a first oxide semiconductor layer is formed on the source electrode layer and the drain electrode layer, and a second oxide semiconductor layer having a smaller energy gap than the first oxide semiconductor layer is formed on the first oxide semiconductor layer. This is a method for manufacturing a semiconductor device in which a third oxide semiconductor layer having a larger energy gap than a second oxide semiconductor layer is formed to form an oxide semiconductor stack.

また、酸化物半導体積層に選択的にドーパントを導入し、酸化物半導体積層においてチャ
ネル形成領域を挟んでチャネル形成領域より抵抗が低く、ドーパントを含む低抵抗領域を
形成してもよい。ドーパントは、酸化物半導体積層の導電率を変化させる不純物である。
ドーパントの導入方法としては、イオン注入法、イオンドーピング法、プラズマイマージ
ョンイオンインプランテーション法などを用いることができる。
Alternatively, a dopant may be selectively introduced into the oxide semiconductor stack to form a low resistance region containing the dopant and having a lower resistance than the channel formation region across the channel formation region in the oxide semiconductor stack. A dopant is an impurity that changes the conductivity of the oxide semiconductor stack.
As a method for introducing the dopant, an ion implantation method, an ion doping method, a plasma immersion ion implantation method, etc. can be used.

チャネル長方向にチャネル形成領域を挟んで低抵抗領域を含む酸化物半導体積層を有する
ことにより、該トランジスタはオン特性(例えば、オン電流及び電界効果移動度)が高く
、高速動作、高速応答が可能となる。
By having an oxide semiconductor stack including low resistance regions sandwiching a channel formation region in the channel length direction, the transistor has high on characteristics (for example, on current and field effect mobility), and is capable of high-speed operation and high-speed response. becomes.

また、酸化物半導体層に水素若しくは水を放出させる加熱処理(脱水化又は脱水素化処理
)を行ってもよい。脱水化又は脱水素化処理は、混合領域を形成する加熱処理と兼ねるこ
とができる。また、酸化物半導体層として結晶性酸化物半導体層を用いる場合、混合領域
を形成する加熱処理を、結晶化のための加熱処理と兼ねることができる。
Alternatively, heat treatment (dehydration or dehydrogenation treatment) may be performed to release hydrogen or water from the oxide semiconductor layer. The dehydration or dehydrogenation treatment can also serve as the heat treatment that forms the mixed region. Further, when a crystalline oxide semiconductor layer is used as the oxide semiconductor layer, heat treatment for forming a mixed region can also serve as heat treatment for crystallization.

また、脱水化又は脱水素化処理によって、酸化物半導体を構成する主成分材料である酸素
が同時に脱離して減少してしまうおそれがある。酸化物半導体膜において、酸素が脱離し
た箇所では酸素欠損が存在し、該酸素欠損に起因してトランジスタの電気的特性変動を招
くドナー準位が生じてしまう。
Further, due to the dehydration or dehydrogenation treatment, there is a possibility that oxygen, which is the main component material constituting the oxide semiconductor, is simultaneously desorbed and reduced. In the oxide semiconductor film, oxygen vacancies exist at locations where oxygen is released, and the oxygen vacancies generate donor levels that cause changes in the electrical characteristics of the transistor.

よって、脱水化又は脱水素化処理を行った酸化物半導体層に、酸素を供給することが好ま
しい。酸化物半導体層へ酸素を供給することにより、膜中の酸素欠損を補填することがで
きる。
Therefore, it is preferable to supply oxygen to the oxide semiconductor layer that has been subjected to dehydration or dehydrogenation treatment. By supplying oxygen to the oxide semiconductor layer, oxygen vacancies in the film can be compensated for.

例えば、酸素の供給源となる酸素を多く(過剰に)含む酸化物絶縁膜を酸化物半導体層と
接して設けることによって、該酸化物絶縁膜から酸化物半導体層へ酸素を供給することが
できる。上記構成において、脱水化又は脱水素化処理として加熱処理を行った酸化物半導
体層及び酸化物絶縁膜を少なくとも一部が接した状態で加熱処理を行うことによって酸化
物半導体層への酸素の供給を行ってもよい。
For example, by providing an oxide insulating film containing a large amount (excessive amount) of oxygen, which serves as an oxygen supply source, in contact with an oxide semiconductor layer, oxygen can be supplied from the oxide insulating film to the oxide semiconductor layer. . In the above structure, oxygen is supplied to the oxide semiconductor layer by performing heat treatment with the oxide semiconductor layer and the oxide insulating film, which have been heat treated as dehydration or dehydrogenation treatment, at least partially in contact with each other. You may do so.

また、脱水化又は脱水素化処理を行った酸化物半導体層に、酸素(少なくとも、酸素ラジ
カル、酸素原子、酸素イオン、のいずれかを含む)を導入して膜中に酸素を供給してもよ
い。酸素の導入方法としては、イオン注入法、イオンドーピング法、プラズマイマージョ
ンイオンインプランテーション法、プラズマ処理などを用いることができる。
Alternatively, oxygen (containing at least oxygen radicals, oxygen atoms, or oxygen ions) may be introduced into the oxide semiconductor layer that has been subjected to dehydration or dehydrogenation treatment to supply oxygen into the film. good. As a method for introducing oxygen, an ion implantation method, an ion doping method, a plasma immersion ion implantation method, a plasma treatment, etc. can be used.

さらに、好ましくはトランジスタに設けられる酸化物半導体層は、酸化物半導体が結晶状
態における化学量論的組成比に対し、酸素の含有量が過剰な領域が含まれている膜とする
とよい。この場合、酸素の含有量は、酸化物半導体の化学量論的組成比における含有量を
超える程度とする。あるいは、酸素の含有量は、単結晶の場合の酸素の量を超える程度と
する。酸化物半導体の格子間に酸素が存在する場合もある。
Furthermore, preferably, the oxide semiconductor layer provided in the transistor includes a region in which the oxygen content is in excess of the stoichiometric composition ratio when the oxide semiconductor is in a crystalline state. In this case, the content of oxygen is set to a level exceeding the content in the stoichiometric composition ratio of the oxide semiconductor. Alternatively, the oxygen content is set to an extent that exceeds the amount of oxygen in the case of a single crystal. Oxygen may exist between the lattices of the oxide semiconductor.

水素若しくは水を酸化物半導体から除去し、不純物が極力含まれないように高純度化し、
酸素を供給して酸素欠損を補填することによりI型(真性)の酸化物半導体、又はI型(
真性)に限りなく近い酸化物半導体とすることができる。そうすることにより、酸化物半
導体のフェルミ準位(Ef)を真性フェルミ準位(Ei)と同じレベルにまですることが
できる。よって、該酸化物半導体層をトランジスタに用いることで、酸素欠損に起因する
トランジスタのしきい値電圧Vthのばらつき、しきい値電圧のシフトΔVthを低減す
ることができる。
Hydrogen or water is removed from the oxide semiconductor to make it highly purified so that it contains as few impurities as possible,
By supplying oxygen to compensate for oxygen vacancies, type I (intrinsic) oxide semiconductors or type I (
The oxide semiconductor can be made into an oxide semiconductor that is extremely close to (intrinsic). By doing so, the Fermi level (Ef) of the oxide semiconductor can be brought to the same level as the intrinsic Fermi level (Ei). Therefore, by using the oxide semiconductor layer in a transistor, variations in the threshold voltage Vth of the transistor and shift ΔVth in the threshold voltage caused by oxygen vacancies can be reduced.

本発明の一形態は、トランジスタ若しくはトランジスタを含んで構成される回路を有する
半導体装置に関する。例えば、酸化物半導体でチャネル形成領域が形成される、トランジ
スタ若しくはトランジスタを含んで構成される回路を有する半導体装置に関する。例えば
、LSIや、CPUや、電源回路に搭載されるパワーデバイスや、メモリ、サイリスタ、
コンバータ、イメージセンサなどを含む半導体集積回路、液晶表示パネルに代表される電
気光学装置や発光素子を有する発光表示装置を部品として搭載した電子機器に関する。
One embodiment of the present invention relates to a semiconductor device having a transistor or a circuit including a transistor. For example, the present invention relates to a semiconductor device including a transistor or a circuit including a transistor in which a channel formation region is formed using an oxide semiconductor. For example, LSIs, CPUs, power devices installed in power supply circuits, memories, thyristors,
The present invention relates to electronic equipment equipped with semiconductor integrated circuits including converters, image sensors, etc., electro-optical devices such as liquid crystal display panels, and light-emitting display devices having light-emitting elements as components.

異なるエネルギーギャップを有する複数の酸化物半導体層を用いた酸化物半導体積層を用
いることによって、トランジスタの電気特性をより精度よく制御することができ、所望の
電気特性をトランジスタに付与することが可能となる。
By using an oxide semiconductor stack that includes multiple oxide semiconductor layers with different energy gaps, it is possible to control the electrical characteristics of a transistor with more precision, and it is possible to impart desired electrical characteristics to the transistor. Become.

従って、高機能、高信頼性、又は低消費電力など、種々の目的に応じた半導体装置を提供
することができる。
Therefore, it is possible to provide semiconductor devices suitable for various purposes such as high functionality, high reliability, and low power consumption.

半導体装置の一形態を説明する図。FIG. 1 is a diagram illustrating one form of a semiconductor device. 半導体装置及び半導体装置の作製方法の一形態を説明する図。FIG. 1 is a diagram illustrating one form of a semiconductor device and a method for manufacturing the semiconductor device. 半導体装置の一形態を説明する図。FIG. 1 is a diagram illustrating one form of a semiconductor device. 半導体装置の一形態を説明する図。FIG. 1 is a diagram illustrating one form of a semiconductor device. 半導体装置及び半導体装置の作製方法の一形態を説明する図。FIG. 1 is a diagram illustrating one form of a semiconductor device and a method for manufacturing the semiconductor device. 半導体装置及び半導体装置の作製方法の一形態を説明する図。FIG. 1 is a diagram illustrating one form of a semiconductor device and a method for manufacturing the semiconductor device. 半導体装置の一形態を説明する図。FIG. 1 is a diagram illustrating one form of a semiconductor device. 半導体装置の一形態を説明する図。FIG. 1 is a diagram illustrating one form of a semiconductor device. 半導体装置の一形態を説明する図。FIG. 1 is a diagram illustrating one form of a semiconductor device. 半導体装置の一形態を説明する図。FIG. 1 is a diagram illustrating one form of a semiconductor device. 半導体装置の一形態を説明する図。FIG. 1 is a diagram illustrating one form of a semiconductor device. 半導体装置の一形態を説明する図。FIG. 1 is a diagram illustrating one form of a semiconductor device. 半導体装置の一形態を説明する図。FIG. 1 is a diagram illustrating one form of a semiconductor device. 半導体装置の一形態を説明する図。FIG. 1 is a diagram illustrating one form of a semiconductor device. 半導体装置の一形態を説明する図。FIG. 1 is a diagram illustrating one form of a semiconductor device. 電子機器を示す図。A diagram showing an electronic device. 実施例1における試料のTEM写真図およびその模式図。1 is a TEM photograph of the sample in Example 1 and its schematic diagram. 実施例1における試料のTEM写真図およびその模式図。1 is a TEM photograph of the sample in Example 1 and its schematic diagram. イオン化ポテンシャルを示す図。A diagram showing ionization potential. エネルギーバンド図を示す図。A diagram showing an energy band diagram. イオン化ポテンシャルを示す図。A diagram showing ionization potential. エネルギーバンド図を示す図。A diagram showing an energy band diagram. トランジスタのオフ電流値を示す図。FIG. 3 is a diagram showing off-state current values of transistors. トランジスタの電界効果移動度を示す図。FIG. 3 is a diagram showing field effect mobility of a transistor. トランジスタのオフ電流値を示す図。FIG. 3 is a diagram showing off-state current values of transistors. トランジスタの電界効果移動度を示す図。FIG. 3 is a diagram showing field effect mobility of a transistor.

以下では、本明細書に開示する発明の実施の形態について図面を用いて詳細に説明する。
ただし、本明細書に開示する発明は以下の説明に限定されず、その形態および詳細を様々
に変更し得ることは、当業者であれば容易に理解される。また、本明細書に開示する発明
は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、第1、第
2として付される序数詞は便宜上用いるものであり、工程順又は積層順を示すものではな
い。また、本明細書において発明を特定するための事項として固有の名称を示すものでは
ない。
Below, embodiments of the invention disclosed in this specification will be described in detail using the drawings.
However, those skilled in the art will easily understand that the invention disclosed in this specification is not limited to the following description, and that its form and details can be changed in various ways. Further, the invention disclosed in this specification is not to be interpreted as being limited to the contents described in the embodiments shown below. Note that the ordinal numbers added as first and second are used for convenience and do not indicate the order of steps or the order of lamination. Furthermore, this specification does not indicate a specific name as a matter for specifying the invention.

(実施の形態1)
本実施の形態では、半導体装置及び半導体装置の作製方法の一形態を、図1及び図3を用
いて説明する。本実施の形態では、半導体装置の一例として酸化物半導体膜を有するトラ
ンジスタを示す。
(Embodiment 1)
In this embodiment, one embodiment of a semiconductor device and a method for manufacturing the semiconductor device will be described with reference to FIGS. 1 and 3. In this embodiment, a transistor including an oxide semiconductor film is shown as an example of a semiconductor device.

トランジスタはチャネル形成領域が1つ形成されるシングルゲート構造でも、2つ形成さ
れるダブルゲート構造もしくは3つ形成されるトリプルゲート構造であってもよい。また
、チャネル形成領域の上下にゲート絶縁膜を介して配置された2つのゲート電極層を有す
る、デュアルゲート型でもよい。
The transistor may have a single gate structure in which one channel formation region is formed, a double gate structure in which two channel formation regions are formed, or a triple gate structure in which three channel formation regions are formed. Alternatively, a dual gate type may be used in which two gate electrode layers are placed above and below the channel forming region with a gate insulating film interposed therebetween.

図1(A)(B)に示すトランジスタ440a、トランジスタ440bは、ボトムゲート
構造を有する逆スタガ型のトランジスタの例である。
A transistor 440a and a transistor 440b illustrated in FIGS. 1A and 1B are examples of inverted staggered transistors having a bottom gate structure.

図1(A)(B)に示すように、トランジスタ440a、トランジスタ440bは、絶縁
表面を有する基板400上に順に設けられた、ゲート電極層401、ゲート絶縁膜402
、エネルギーギャップの異なる第1の酸化物半導体層101及び第2の酸化物半導体層1
02を含む酸化物半導体積層403、ソース電極層405a、ドレイン電極層405bを
有する。トランジスタ440a、トランジスタ440b上には、絶縁膜407が形成され
ている。
As shown in FIGS. 1A and 1B, a transistor 440a and a transistor 440b include a gate electrode layer 401 and a gate insulating film 402, which are provided in this order over a substrate 400 having an insulating surface.
, a first oxide semiconductor layer 101 and a second oxide semiconductor layer 1 with different energy gaps.
02, a source electrode layer 405a, and a drain electrode layer 405b. An insulating film 407 is formed over the transistor 440a and the transistor 440b.

なお、図1において、第1の酸化物半導体層101と第2の酸化物半導体層102の界面
を点線で図示しているが、これは酸化物半導体積層403を模式的に示したものである。
材料や成膜条件や加熱処理によっては、第1の酸化物半導体層101と第2の酸化物半導
体層102との界面が不明確になる場合もある。不明確になる場合、異なる複数の酸化物
半導体層の混合領域又は混合層とよぶことのできる箇所が形成されることもある。これは
本明細書の他の図面においても同様である。
Note that in FIG. 1, the interface between the first oxide semiconductor layer 101 and the second oxide semiconductor layer 102 is illustrated by a dotted line, which schematically shows the oxide semiconductor stack 403. .
Depending on the material, film formation conditions, and heat treatment, the interface between the first oxide semiconductor layer 101 and the second oxide semiconductor layer 102 may become unclear. In cases where it is unclear, a portion that can be called a mixed region or mixed layer of a plurality of different oxide semiconductor layers may be formed. This also applies to other drawings in this specification.

例えば、第1の酸化物半導体層101及び第2の酸化物半導体層102の間に混合領域1
05を有するトランジスタ449を図3(C)に示す。
For example, a mixed region 1 is formed between the first oxide semiconductor layer 101 and the second oxide semiconductor layer 102.
A transistor 449 having a voltage of 0.05 is shown in FIG. 3C.

トランジスタ449の酸化物半導体積層403において、第1の酸化物半導体層101及
び第2の酸化物半導体層102の界面は不明確であり、第1の酸化物半導体層101及び
第2の酸化物半導体層102の間に混合領域105を有する。なお、界面が不明確とは、
例えば高分解能透過電子顕微鏡を用いた酸化物半導体積層403の断面観察(TEM像)
において、積層する酸化物半導体層の間に明確で連続的な線状の界面が確認できない場合
を指す。
In the oxide semiconductor stack 403 of the transistor 449, the interface between the first oxide semiconductor layer 101 and the second oxide semiconductor layer 102 is unclear; A mixed region 105 is present between the layers 102 . Note that the interface is unclear.
For example, cross-sectional observation of the oxide semiconductor stack 403 using a high-resolution transmission electron microscope (TEM image)
Refers to a case where a clear and continuous linear interface cannot be observed between stacked oxide semiconductor layers.

混合領域105は、積層する第1の酸化物半導体層101及び第2の酸化物半導体層10
2に含まれる元素が混合する領域であり、第1の酸化物半導体層101及び第2の酸化物
半導体層102とは少なくとも構成する元素の組成が異なる。例えば、酸化物半導体積層
403をインジウム、スズ、及び亜鉛を含む第1の酸化物半導体層及びインジウム、ガリ
ウム、及び亜鉛を含む第2の酸化物半導体層の積層構造とする場合、第1の酸化物半導体
層と第2の酸化物半導体層との間に、インジウム、スズ、ガリウム、及び亜鉛を含む混合
領域105を形成することができる。また、第1の酸化物半導体層101と第2の酸化物
半導体層102と含まれる元素は同じでも、その組成(組成比)が異なる混合領域105
を形成することができる。よって、混合領域105の有するエネルギーギャップも、第1
の酸化物半導体層101及び第2の酸化物半導体層102のエネルギーギャップとは異な
り、混合領域105のエネルギーギャップは、第1の酸化物半導体層101のエネルギー
ギャップ及び第2の酸化物半導体層102のエネルギーギャップの間の値となる。
The mixed region 105 includes the first oxide semiconductor layer 101 and the second oxide semiconductor layer 10 stacked together.
The first oxide semiconductor layer 101 and the second oxide semiconductor layer 102 have different compositions of at least the constituent elements. For example, when the oxide semiconductor stack 403 has a stacked structure of a first oxide semiconductor layer containing indium, tin, and zinc and a second oxide semiconductor layer containing indium, gallium, and zinc, the first oxide semiconductor layer 403 A mixed region 105 containing indium, tin, gallium, and zinc can be formed between the oxide semiconductor layer and the second oxide semiconductor layer. In addition, the first oxide semiconductor layer 101 and the second oxide semiconductor layer 102 contain the same element but have a different composition (composition ratio) in the mixed region 105.
can be formed. Therefore, the energy gap of the mixed region 105 is also the same as that of the first
The energy gap of the mixed region 105 is different from the energy gap of the first oxide semiconductor layer 101 and the second oxide semiconductor layer 102 . The value is between the energy gap of .

従って、混合領域105を設けることで、酸化物半導体積層403はエネルギーバンド図
において連続接合となり、積層する第1の酸化物半導体層101及び第2の酸化物半導体
層102の界面における散乱を抑制することができる。界面散乱を抑制することができる
ため、混合領域105が設けられた酸化物半導体積層403を用いたトランジスタ449
は、電界効果移動度を向上させることができる。
Therefore, by providing the mixed region 105, the oxide semiconductor stack 403 becomes a continuous junction in the energy band diagram, and scattering at the interface between the stacked first oxide semiconductor layer 101 and second oxide semiconductor layer 102 is suppressed. be able to. Since interface scattering can be suppressed, a transistor 449 using an oxide semiconductor stack 403 provided with a mixed region 105
can improve field effect mobility.

混合領域105を設けることでエネルギーバンド図において、第1の酸化物半導体層10
1と第2の酸化物半導体層102との間に勾配を形成できる。該勾配は、複数段の階段状
であってもよい。
By providing the mixed region 105, in the energy band diagram, the first oxide semiconductor layer 10
A gradient can be formed between the oxide semiconductor layer 1 and the second oxide semiconductor layer 102. The slope may be stepped.

なお、第1の酸化物半導体層101、混合領域105、及び第2の酸化物半導体層102
の界面を点線で図示しているが、これは酸化物半導体積層403において界面が不明確(
不明瞭)であることを模式的に示したものである。
Note that the first oxide semiconductor layer 101, the mixed region 105, and the second oxide semiconductor layer 102
The interface is shown by a dotted line, but this is because the interface is unclear in the oxide semiconductor stack 403 (
This diagram schematically shows that

混合領域105は、複数の酸化物半導体層を含む酸化物半導体積層403に加熱処理を行
うことによって形成することができる。加熱処理は、積層する酸化物半導体層中の元素が
熱により拡散できる温度とし、かつ積層する酸化物半導体層が酸化物半導体積層全領域に
おいて、組成(組成比)が均一な混合領域とならない条件で行う。
The mixed region 105 can be formed by performing heat treatment on the oxide semiconductor stack 403 including a plurality of oxide semiconductor layers. The heat treatment is performed at a temperature that allows elements in the oxide semiconductor layers to be stacked to diffuse through heat, and under conditions that the oxide semiconductor layers to be stacked do not form a mixed region with a uniform composition (composition ratio) in the entire oxide semiconductor stack area. Do it with

酸化物半導体積層403において、第1の酸化物半導体層101及び第2の酸化物半導体
層102は、それぞれの有するエネルギーギャップが異なればよく、その積層順は限定さ
れない。
In the oxide semiconductor stack 403, the first oxide semiconductor layer 101 and the second oxide semiconductor layer 102 only need to have different energy gaps, and the stacking order thereof is not limited.

具体的には、酸化物半導体積層403において、一方の酸化物半導体層のエネルギーギャ
ップを3eV以上とし、他方の酸化物半導体層のエネルギーギャップを3eV未満とする
Specifically, in the oxide semiconductor stack 403, one oxide semiconductor layer has an energy gap of 3 eV or more, and the other oxide semiconductor layer has an energy gap of less than 3 eV.

図1(A)に示すトランジスタ440aは、第1の酸化物半導体層101より第2の酸化
物半導体層102の方が、該エネルギーギャップが大きい例である。本実施の形態では、
トランジスタ440aにおける第1の酸化物半導体層101としてIn-Sn-Zn系酸
化物膜(エネルギーギャップ2.6eV~2.9eV、代表的には2.8eV)、第2の
酸化物半導体層102としてはIn-Ga-Zn系酸化物膜(エネルギーギャップ3.0
eV~3.4eV、代表的には3.2eV)を用いる。
In the transistor 440a illustrated in FIG. 1A, the energy gap is larger in the second oxide semiconductor layer 102 than in the first oxide semiconductor layer 101. In this embodiment,
In the transistor 440a, an In-Sn-Zn-based oxide film (energy gap of 2.6 eV to 2.9 eV, typically 2.8 eV) is used as the first oxide semiconductor layer 101, and an In-Sn-Zn-based oxide film is used as the second oxide semiconductor layer 102. is an In-Ga-Zn-based oxide film (energy gap 3.0
eV to 3.4 eV, typically 3.2 eV).

一方、図1(B)に示すトランジスタ440bは、第1の酸化物半導体層101より第2
の酸化物半導体層102の方が、該エネルギーギャップが小さい例である。本実施の形態
では、トランジスタ440bにおける第1の酸化物半導体層101としてIn-Ga-Z
n系酸化物膜(エネルギーギャップ3.2eV)、第2の酸化物半導体層102としては
In-Sn-Zn系酸化物膜(エネルギーギャップ2.8eV)を用いる。
On the other hand, in the transistor 440b illustrated in FIG. 1B, the second oxide semiconductor layer 101 is
The oxide semiconductor layer 102 is an example in which the energy gap is smaller. In this embodiment, In-Ga-Z is used as the first oxide semiconductor layer 101 in the transistor 440b.
An In-Sn-Zn-based oxide film (energy gap of 2.8 eV) is used as the n-based oxide film (energy gap of 3.2 eV) and the second oxide semiconductor layer 102.

このように、酸化物半導体積層403において、第1の酸化物半導体層101及び第2の
酸化物半導体層102は、ゲート絶縁膜402と接する方をエネルギーギャップが大きい
層としてもよいし、エネルギーギャップが小さい層としてもよい。
In this way, in the oxide semiconductor stack 403, the first oxide semiconductor layer 101 and the second oxide semiconductor layer 102 may have a layer with a larger energy gap in contact with the gate insulating film 402, or a layer with a larger energy gap. may be a small layer.

図4(A)に酸化物半導体積層403として第1の酸化物半導体層101、第2の酸化物
半導体層102、及び第3の酸化物半導体層103の3層構造の積層を用いたトランジス
タ480を示す。
FIG. 4A shows a transistor 480 in which the oxide semiconductor stack 403 has a three-layer structure of a first oxide semiconductor layer 101, a second oxide semiconductor layer 102, and a third oxide semiconductor layer 103. shows.

トランジスタ480は、絶縁表面を有する基板400上に順に設けられた、ゲート電極層
401、ゲート絶縁膜402、第1の酸化物半導体層101、第2の酸化物半導体層10
2、及び第3の酸化物半導体層103を含む酸化物半導体積層403、ソース電極層40
5a、ドレイン電極層405bを有する。トランジスタ480上には、絶縁膜407が形
成されている。
The transistor 480 includes a gate electrode layer 401, a gate insulating film 402, a first oxide semiconductor layer 101, and a second oxide semiconductor layer 10, which are provided in this order over a substrate 400 having an insulating surface.
oxide semiconductor stack 403 including the second and third oxide semiconductor layers 103 and the source electrode layer 40
5a and a drain electrode layer 405b. An insulating film 407 is formed over the transistor 480.

トランジスタ480の酸化物半導体積層403において、第1の酸化物半導体層101、
第2の酸化物半導体層102、及び第3の酸化物半導体層103のエネルギーギャップは
全て同じではなく、少なくとも2種類の異なる値のエネルギーギャップを含む。
In the oxide semiconductor stack 403 of the transistor 480, the first oxide semiconductor layer 101,
The energy gaps of the second oxide semiconductor layer 102 and the third oxide semiconductor layer 103 are not all the same, and include energy gaps of at least two different values.

酸化物半導体積層403を3層以上の積層構造とする場合、すべての酸化物半導体層同士
が異なるエネルギーギャップを有する構造であってもよいし、ほぼ同じエネルギーギャッ
プを有する酸化物半導体層を複数酸化物半導体積層403中に用いてもよい。
When the oxide semiconductor stack 403 has a stacked structure of three or more layers, all the oxide semiconductor layers may have a different energy gap, or a plurality of oxide semiconductor layers having approximately the same energy gap may be oxidized. It may also be used in the physical semiconductor stack 403.

また、半導体装置の他の一形態として図9(A)にトランジスタ410を示す。トランジ
スタ410は、チャネル保護型(チャネルストップ型ともいう)と呼ばれるボトムゲート
構造の一つであり逆スタガ型トランジスタともいう。
Further, as another form of a semiconductor device, a transistor 410 is shown in FIG. The transistor 410 has a bottom gate structure called a channel protection type (also called a channel stop type), and is also called an inverted staggered transistor.

図9(A)に示すように、トランジスタ410は、絶縁表面を有する基板400上に順に
設けられた、ゲート電極層401、ゲート絶縁膜402、エネルギーギャップの異なる第
1の酸化物半導体層101及び第2の酸化物半導体層102を含む酸化物半導体積層40
3、絶縁膜427、ソース電極層405a、ドレイン電極層405bを有する。トランジ
スタ410上には、絶縁膜409が形成されている。
As shown in FIG. 9A, the transistor 410 includes a gate electrode layer 401, a gate insulating film 402, a first oxide semiconductor layer 101 having a different energy gap, and a gate electrode layer 401, a gate insulating film 402, a first oxide semiconductor layer 101 having a different energy gap, and a gate electrode layer 401, a gate insulating film 402, a first oxide semiconductor layer 101 having a different energy gap, and Oxide semiconductor stack 40 including second oxide semiconductor layer 102
3. It has an insulating film 427, a source electrode layer 405a, and a drain electrode layer 405b. An insulating film 409 is formed over the transistor 410.

絶縁膜427は、ゲート電極層401と重畳する酸化物半導体積層403上に設けられて
おり、チャネル保護膜として機能する。
The insulating film 427 is provided on the oxide semiconductor stack 403 overlapping with the gate electrode layer 401, and functions as a channel protective film.

絶縁膜427は絶縁膜407と同様な材料及び方法で形成すればよく、代表的には酸化シ
リコン膜、酸化窒化シリコン膜、酸化アルミニウム膜、酸化窒化アルミニウム膜、酸化ハ
フニウム膜、又は酸化ガリウム膜、窒化シリコン膜、窒化アルミニウム膜、窒化酸化シリ
コン膜、窒化酸化アルミニウム膜、酸化アルミニウム膜などの無機絶縁膜の単層又は積層
を用いることができる。
The insulating film 427 may be formed using a material and method similar to that of the insulating film 407, and typically, a single layer or a stack of inorganic insulating films such as a silicon oxide film, a silicon oxynitride film, an aluminum oxide film, an aluminum oxynitride film, a hafnium oxide film, a gallium oxide film, a silicon nitride film, an aluminum nitride film, a silicon nitride oxide film, an aluminum nitride oxide film, or an aluminum oxide film can be used.

酸化物半導体積層403と接する絶縁膜427(絶縁膜427が積層構造であった場合、
酸化物半導体積層403と接する膜)を、酸素を多く含む状態とすると、酸化物半導体積
層403へ酸素を供給する供給源として好適に機能させることができる。
The insulating film 427 in contact with the oxide semiconductor stack 403 (if the insulating film 427 has a stacked structure,
When the film in contact with the oxide semiconductor stack 403 contains a large amount of oxygen, it can suitably function as a source for supplying oxygen to the oxide semiconductor stack 403.

なお、絶縁膜409は絶縁膜407と同様な材料及び方法を用いて形成することができる
Note that the insulating film 409 can be formed using the same material and method as the insulating film 407.

また、半導体装置の他の一形態として図10(A)にボトムゲート構造のトランジスタ4
30を示す。
Further, as another form of the semiconductor device, a transistor 4 having a bottom gate structure is shown in FIG. 10(A).
30 is shown.

図10(A)に示すように、トランジスタ430は、絶縁表面を有する基板400上に順
に設けられたゲート電極層401、ゲート絶縁膜402、ソース電極層405a、ドレイ
ン電極層405b、エネルギーギャップの異なる第1の酸化物半導体層101及び第2の
酸化物半導体層102を含む酸化物半導体積層403を有する。トランジスタ430上に
は、絶縁膜407が形成されている。
As shown in FIG. 10A, the transistor 430 includes a gate electrode layer 401, a gate insulating film 402, a source electrode layer 405a, a drain electrode layer 405b, which are provided in this order over a substrate 400 having an insulating surface, and have different energy gaps. An oxide semiconductor stack 403 including a first oxide semiconductor layer 101 and a second oxide semiconductor layer 102 is included. An insulating film 407 is formed over the transistor 430.

トランジスタ430は、ソース電極層405a及びドレイン電極層405b上にエネルギ
ーギャップの異なる第1の酸化物半導体層101及び第2の酸化物半導体層102を含む
酸化物半導体積層403が設けられる構造である。
The transistor 430 has a structure in which an oxide semiconductor stack 403 including a first oxide semiconductor layer 101 and a second oxide semiconductor layer 102 with different energy gaps is provided over a source electrode layer 405a and a drain electrode layer 405b.

酸化物半導体積層403(第1の酸化物半導体層101、第2の酸化物半導体層102、
第3の酸化物半導体層103)に用いる酸化物半導体としては、少なくともインジウム(
In)あるいは亜鉛(Zn)を含むことが好ましい。特にInとZnを含むことが好まし
い。また、該酸化物を用いたトランジスタの電気特性のばらつきを減らすためのスタビラ
イザーとして、それらに加えてガリウム(Ga)を有することが好ましい。また、スタビ
ライザーとしてスズ(Sn)を有することが好ましい。また、スタビライザーとしてハフ
ニウム(Hf)を有することが好ましい。また、スタビライザーとしてアルミニウム(A
l)を有することが好ましい。また、スタビライザーとしてジルコニウム(Zr)を有す
ることが好ましい。
Oxide semiconductor stack 403 (first oxide semiconductor layer 101, second oxide semiconductor layer 102,
The oxide semiconductor used for the third oxide semiconductor layer 103) includes at least indium (
In) or zinc (Zn) is preferably included. In particular, it is preferable to contain In and Zn. Further, it is preferable to include gallium (Ga) in addition to these as a stabilizer for reducing variations in electrical characteristics of a transistor using the oxide. Moreover, it is preferable to have tin (Sn) as a stabilizer. Moreover, it is preferable to have hafnium (Hf) as a stabilizer. In addition, aluminum (A
It is preferable to have l). Moreover, it is preferable to have zirconium (Zr) as a stabilizer.

また、他のスタビライザーとして、ランタノイドである、ランタン(La)、セリウム(
Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム
(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホル
ミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ル
テチウム(Lu)のいずれか一種あるいは複数種を有してもよい。
Other stabilizers include lanthanoids such as lanthanum (La) and cerium (
Ce), praseodymium (Pr), neodymium (Nd), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium ( Tm), ytterbium (Yb), and lutetium (Lu).

例えば、酸化物半導体として、酸化インジウム、酸化スズ、酸化亜鉛、二元系金属の酸化
物であるIn-Zn系酸化物、Sn-Zn系酸化物、Al-Zn系酸化物、Zn-Mg系
酸化物、Sn-Mg系酸化物、In-Mg系酸化物、In-Ga系酸化物、三元系金属の
酸化物であるIn-Ga-Zn系酸化物、In-Al-Zn系酸化物、In-Sn-Zn
系酸化物、Sn-Ga-Zn系酸化物、Al-Ga-Zn系酸化物、Sn-Al-Zn系
酸化物、In-Hf-Zn系酸化物、In-La-Zn系酸化物、In-Ce-Zn系酸
化物、In-Pr-Zn系酸化物、In-Nd-Zn系酸化物、In-Sm-Zn系酸化
物、In-Eu-Zn系酸化物、In-Gd-Zn系酸化物、In-Tb-Zn系酸化物
、In-Dy-Zn系酸化物、In-Ho-Zn系酸化物、In-Er-Zn系酸化物、
In-Tm-Zn系酸化物、In-Yb-Zn系酸化物、In-Lu-Zn系酸化物、四
元系金属の酸化物であるIn-Sn-Ga-Zn系酸化物、In-Hf-Ga-Zn系酸
化物、In-Al-Ga-Zn系酸化物、In-Sn-Al-Zn系酸化物、In-Sn
-Hf-Zn系酸化物、In-Hf-Al-Zn系酸化物を用いることができる。
For example, oxide semiconductors include indium oxide, tin oxide, zinc oxide, binary metal oxides such as In-Zn oxide, Sn-Zn oxide, Al-Zn oxide, and Zn-Mg oxide. oxides, Sn-Mg-based oxides, In-Mg-based oxides, In-Ga-based oxides, In-Ga-Zn-based oxides that are ternary metal oxides, In-Al-Zn-based oxides , In-Sn-Zn
oxide, Sn-Ga-Zn-based oxide, Al-Ga-Zn-based oxide, Sn-Al-Zn-based oxide, In-Hf-Zn-based oxide, In-La-Zn-based oxide, In -Ce-Zn based oxide, In-Pr-Zn based oxide, In-Nd-Zn based oxide, In-Sm-Zn based oxide, In-Eu-Zn based oxide, In-Gd-Zn based oxide oxide, In-Tb-Zn-based oxide, In-Dy-Zn-based oxide, In-Ho-Zn-based oxide, In-Er-Zn-based oxide,
In-Tm-Zn oxide, In-Yb-Zn oxide, In-Lu-Zn oxide, In-Sn-Ga-Zn oxide which is a quaternary metal oxide, In-Hf -Ga-Zn oxide, In-Al-Ga-Zn oxide, In-Sn-Al-Zn oxide, In-Sn
-Hf-Zn based oxide and In-Hf-Al-Zn based oxide can be used.

なお、ここで、例えば、In-Ga-Zn系酸化物とは、InとGaとZnを主成分とし
て有する酸化物という意味であり、InとGaとZnの比率は問わない。また、InとG
aとZn以外の金属元素が入っていてもよい。
Note that, for example, an In-Ga-Zn-based oxide herein means an oxide containing In, Ga, and Zn as main components, and the ratio of In, Ga, and Zn does not matter. Also, In and G
Metal elements other than a and Zn may also be contained.

また、酸化物半導体として、InMO(ZnO)(m>0、且つ、mは整数でない)
で表記される材料を用いてもよい。なお、Mは、Ga、Fe、Mn及びCoから選ばれた
一の金属元素または複数の金属元素を示す。また、酸化物半導体として、InSnO
(ZnO)(n>0、且つ、nは整数)で表記される材料を用いてもよい。
In addition, as an oxide semiconductor, InMO 3 (ZnO) m (m>0 and m is not an integer)
You may also use materials described in . Note that M represents one or more metal elements selected from Ga, Fe, Mn, and Co. In addition, as an oxide semiconductor, In 2 SnO 5
A material expressed as (ZnO) n (n>0, and n is an integer) may be used.

例えば、In:Ga:Zn=1:1:1(=1/3:1/3:1/3)あるいはIn:G
a:Zn=2:2:1(=2/5:2/5:1/5)の原子比のIn-Ga-Zn系酸化
物やその組成の近傍の酸化物を用いることができる。あるいは、In:Sn:Zn=1:
1:1(=1/3:1/3:1/3)、In:Sn:Zn=2:1:3(=1/3:1/
6:1/2)あるいはIn:Sn:Zn=2:1:5(=1/4:1/8:5/8)の原
子比のIn-Sn-Zn系酸化物やその組成の近傍の酸化物を用いるとよい。
For example, In:Ga:Zn=1:1:1 (=1/3:1/3:1/3) or In:G
An In--Ga--Zn based oxide having an atomic ratio of a:Zn=2:2:1 (=2/5:2/5:1/5) or an oxide having a composition close to that can be used. Or In:Sn:Zn=1:
1:1 (=1/3:1/3:1/3), In:Sn:Zn=2:1:3 (=1/3:1/
6:1/2) or In-Sn-Zn oxide with an atomic ratio of In:Sn:Zn=2:1:5 (=1/4:1/8:5/8) or a composition close to that. It is better to use oxides.

しかし、これらに限られず、必要とする半導体特性(移動度、しきい値、ばらつき等)に
応じて適切な組成のものを用いればよい。また、必要とする半導体特性を得るために、キ
ャリア濃度や不純物濃度、欠陥密度、金属元素と酸素の原子数比、原子間結合距離、密度
等を適切なものとすることが好ましい。
However, the material is not limited to these, and a material with an appropriate composition may be used depending on the required semiconductor characteristics (mobility, threshold value, variation, etc.). Further, in order to obtain the required semiconductor characteristics, it is preferable to set the carrier concentration, impurity concentration, defect density, atomic ratio of metal element to oxygen, interatomic bond distance, density, etc. to appropriate values.

例えば、In-Sn-Zn系酸化物では比較的容易に高い移動度が得られる。しかしなが
ら、In-Ga-Zn系酸化物でも、バルク内欠陥密度を低くすることにより移動度を上
げることができる。
For example, high mobility can be obtained relatively easily with In--Sn--Zn based oxides. However, even with In--Ga--Zn based oxides, the mobility can be increased by lowering the defect density in the bulk.

なお、例えば、In、Ga、Znの原子数比がIn:Ga:Zn=a:b:c(a+b+
c=1)である酸化物の組成が、原子数比がIn:Ga:Zn=A:B:C(A+B+C
=1)の酸化物の組成のrだけ近傍であるとは、a、b、cが、(a-A)+(b-B
+(c-C)≦rを満たすことをいう。rとしては、例えば、0.05とすれば
よい。他の酸化物でも同様である。
Note that, for example, the atomic ratio of In, Ga, and Zn is In:Ga:Zn=a:b:c(a+b+
c=1), the atomic ratio of the oxide is In:Ga:Zn=A:B:C (A+B+C
=1) is close to the oxide composition by r, which means that a, b, and c are (a-A) 2 + (b-B
) 2 + (c−C) 2 ≦r 2 is satisfied. For example, r may be set to 0.05. The same applies to other oxides.

酸化物半導体は単結晶でも、非単結晶でもよい。後者の場合、アモルファスでも、多結晶
でもよい。また、アモルファス中に結晶性を有する部分を含む構造でも、非アモルファス
でもよい。
The oxide semiconductor may be single crystal or non-single crystal. In the latter case, it may be amorphous or polycrystalline. Further, the structure may be amorphous and include a crystalline portion, or may be non-amorphous.

アモルファス状態の酸化物半導体は、比較的容易に平坦な表面を得ることができるため、
これを用いてトランジスタを作製した際の界面散乱を低減でき、比較的容易に、比較的高
い移動度を得ることができる。
Oxide semiconductors in an amorphous state can have a flat surface relatively easily, so
When a transistor is manufactured using this, interface scattering can be reduced, and relatively high mobility can be obtained relatively easily.

また、結晶性を有する酸化物半導体では、よりバルク内欠陥を低減することができ、表面
の平坦性を高めればアモルファス状態の酸化物半導体以上の移動度を得ることができる。
表面の平坦性を高めるためには、平坦な表面上に酸化物半導体を形成することが好ましく
、具体的には、平均面粗さ(Ra)が1nm以下、好ましくは0.3nm以下、より好ま
しくは0.1nm以下の表面上に形成するとよい。
In addition, in an oxide semiconductor having crystallinity, defects in the bulk can be further reduced, and if the surface flatness is improved, mobility higher than that of an amorphous oxide semiconductor can be obtained.
In order to improve surface flatness, it is preferable to form an oxide semiconductor on a flat surface, and specifically, the average surface roughness (Ra) is 1 nm or less, preferably 0.3 nm or less, more preferably is preferably formed on the surface with a thickness of 0.1 nm or less.

なお、Raは、JIS B0601:2001(ISO4287:1997)で定義され
ている算術平均粗さを曲面に対して適用できるよう三次元に拡張したものであり、「基準
面から指定面までの偏差の絶対値を平均した値」で表現でき、以下の式にて定義される。
Note that Ra is a three-dimensional extension of the arithmetic mean roughness defined in JIS B0601:2001 (ISO4287:1997) so that it can be applied to curved surfaces. It can be expressed as a value that is the average of absolute values, and is defined by the following formula.

ここで、指定面とは、粗さ計測の対象となる面であり、座標((x,y,f(x
)),(x,y,f(x,y)),(x,y,f(x,y)),(
,y,f(x,y))の4点で表される四角形の領域とし、指定面をxy平面
に投影した長方形の面積をS、指定面の平均高さをZとする。Raは原子間力顕微鏡
(AFM:Atomic Force Microscope)にて測定可能である。
Here, the designated surface is the surface to be measured for roughness, and the coordinates ((x 1 , y 1 , f(x 1 ,
y 1 )), (x 1 , y 2 , f(x 1 , y 2 )), (x 2 , y 1 , f(x 2 , y 1 )), (
Let the area of the rectangle represented by the four points x 2 , y 2 , f (x 2 , y 2 )) be S 0 and the average height of the designated surface Z Set to 0 . Ra can be measured with an atomic force microscope (AFM).

酸化物半導体積層403(第1の酸化物半導体層101、第2の酸化物半導体層102、
第3の酸化物半導体層103)として、結晶を含み、結晶性を有する酸化物半導体層(結
晶性酸化物半導体層)を用いることができる。結晶性酸化物半導体層における結晶状態は
、結晶軸の方向が無秩序な状態でも、一定の配向性を有する状態であってもよい。
Oxide semiconductor stack 403 (first oxide semiconductor layer 101, second oxide semiconductor layer 102,
As the third oxide semiconductor layer 103), an oxide semiconductor layer containing crystal and having crystallinity (crystalline oxide semiconductor layer) can be used. The crystalline state of the crystalline oxide semiconductor layer may be a state in which the directions of crystal axes are disordered or a state in which the crystal axes have a certain orientation.

例えば、結晶性酸化物半導体層として、表面に概略垂直なc軸を有している結晶を含む酸
化物半導体層を用いることができる。
For example, as the crystalline oxide semiconductor layer, an oxide semiconductor layer including a crystal having a c-axis substantially perpendicular to the surface can be used.

表面に概略垂直なc軸を有している結晶を含む酸化物半導体層は、単結晶構造ではなく、
非晶質構造でもない構造であり、c軸配向を有した結晶性酸化物半導体(C Axis
Aligned Crystalline Oxide Semiconductor;
CAAC-OSともいう)膜である。
An oxide semiconductor layer containing a crystal having a c-axis approximately perpendicular to the surface does not have a single crystal structure,
It has a structure that is not an amorphous structure, and is a crystalline oxide semiconductor with c-axis orientation (C Axis
Aligned Crystalline Oxide Semiconductor;
It is also called CAAC-OS) membrane.

CAAC-OS膜は、完全な単結晶ではなく、完全な非晶質でもない。CAAC-OS膜
は、非晶質相に結晶部および非晶質部を有する結晶-非晶質混相構造の酸化物半導体膜で
ある。なお、当該結晶部は、一辺が100nm未満の立方体内に収まる大きさであること
が多い。また、透過型電子顕微鏡(TEM:Transmission Electro
n Microscope)による観察像では、CAAC-OS膜に含まれる非晶質部と
結晶部との境界は明確ではない。また、TEMによってCAAC-OS膜には粒界(グレ
インバウンダリーともいう。)は確認できない。そのため、CAAC-OS膜は、粒界に
起因する電子移動度の低下が抑制される。
The CAAC-OS film is neither completely single crystal nor completely amorphous. The CAAC-OS film is an oxide semiconductor film with a crystal-amorphous mixed phase structure in which an amorphous phase includes a crystalline portion and an amorphous portion. Note that the crystal part is often sized to fit within a cube with one side of less than 100 nm. In addition, a transmission electron microscope (TEM)
In an image observed using a microscope (n Microscope), the boundary between the amorphous portion and the crystalline portion included in the CAAC-OS film is not clear. Further, grain boundaries (also referred to as grain boundaries) cannot be confirmed in the CAAC-OS film by TEM. Therefore, in the CAAC-OS film, reduction in electron mobility caused by grain boundaries is suppressed.

CAAC-OS膜に含まれる結晶部は、c軸がCAAC-OS膜の被形成面の法線ベクト
ルまたは表面の法線ベクトルに平行な方向に揃い、かつab面に垂直な方向から見て三角
形状または六角形状の原子配列を有し、c軸に垂直な方向から見て金属原子が層状または
金属原子と酸素原子とが層状に配列している。なお、異なる結晶部間で、それぞれa軸お
よびb軸の向きが異なっていてもよい。本明細書において、単に垂直と記載する場合、8
5°以上95°以下の範囲も含まれることとする。また、単に平行と記載する場合、-5
°以上5°以下の範囲も含まれることとする。
The crystal parts included in the CAAC-OS film have a c-axis aligned in a direction parallel to the normal vector of the surface on which the CAAC-OS film is formed or a normal vector to the surface, and have a triangular shape when viewed from the direction perpendicular to the a-b plane. It has a hexagonal atomic arrangement, and metal atoms are arranged in a layer or metal atoms and oxygen atoms are arranged in a layer when viewed from the direction perpendicular to the c-axis. Note that the directions of the a-axis and the b-axis may be different between different crystal parts. In this specification, when simply described as vertical, 8
The range of 5° or more and 95° or less is also included. Also, when simply stating parallel, -5
The range of 5 degrees or more is also included.

なお、CAAC-OS膜において、結晶部の分布が一様でなくてもよい。例えば、CAA
C-OS膜の形成過程において、酸化物半導体膜の表面側から結晶成長させる場合、被形
成面の近傍に対し表面の近傍では結晶部の占める割合が高くなることがある。また、CA
AC-OS膜へ不純物を添加することにより、当該不純物添加領域において結晶部が非晶
質化することもある。
Note that in the CAAC-OS film, the distribution of crystal parts does not have to be uniform. For example, CAA
In the process of forming a C-OS film, when crystals are grown from the surface side of the oxide semiconductor film, the proportion of crystal parts near the surface may be higher than near the surface on which the film is formed. Also, CA
By adding impurities to the AC-OS film, the crystalline portions may become amorphous in the impurity-added region.

CAAC-OS膜に含まれる結晶部のc軸は、CAAC-OS膜の被形成面の法線ベクト
ルまたは表面の法線ベクトルに平行な方向に揃うため、CAAC-OS膜の形状(被形成
面の断面形状または表面の断面形状)によっては互いに異なる方向を向くことがある。な
お、結晶部のc軸の方向は、CAAC-OS膜が形成されたときの被形成面の法線ベクト
ルまたは表面の法線ベクトルに平行な方向となる。結晶部は、成膜することにより、また
は成膜後に加熱処理などの結晶化処理を行うことにより形成される。
The c-axis of the crystal part included in the CAAC-OS film is aligned in a direction parallel to the normal vector of the formation surface of the CAAC-OS film or the normal vector of the surface. They may face different directions depending on the cross-sectional shape of the surface or the cross-sectional shape of the surface. Note that the direction of the c-axis of the crystal part is parallel to the normal vector of the surface on which the CAAC-OS film is formed or the normal vector of the surface. The crystal portion is formed by forming a film or by performing a crystallization process such as heat treatment after forming a film.

CAAC-OS膜を用いたトランジスタは、可視光や紫外光の照射による電気特性の変動
を低減することが可能である。よって、当該トランジスタは、信頼性が高い。
A transistor using a CAAC-OS film can reduce fluctuations in electrical characteristics caused by irradiation with visible light or ultraviolet light. Therefore, the transistor has high reliability.

c軸配向を有した結晶性酸化物半導体層を得る方法としては、3つ挙げられる。1つ目は
、成膜温度を200℃以上500℃以下として酸化物半導体層の成膜を行い、表面に概略
垂直にc軸配向させる方法である。2つ目は、膜厚を薄く成膜した後、200℃以上70
0℃以下の加熱処理を行い、表面に概略垂直にc軸配向させる方法である。3つ目は、一
層目の膜厚を薄く成膜した後、200℃以上700℃以下の加熱処理を行い、2層目の成
膜を行い、表面に概略垂直にc軸配向させる方法である。
There are three methods for obtaining a crystalline oxide semiconductor layer with c-axis orientation. The first method is to form an oxide semiconductor layer at a film formation temperature of 200° C. or more and 500° C. or less, and align the c-axis approximately perpendicular to the surface. Second, after forming a thin film, the temperature is
This is a method of performing a heat treatment at 0° C. or lower to align the c-axis approximately perpendicular to the surface. The third method is to form a thin first layer, then perform heat treatment at 200°C or more and 700°C or less, form a second layer, and align the c-axis approximately perpendicular to the surface. .

第1の酸化物半導体層101、第2の酸化物半導体層102、第3の酸化物半導体層10
3の膜厚は、1nm以上10nm以下(好ましくは5nm以上30nm以下)とし、スパ
ッタリング法、MBE(Molecular Beam Epitaxy)法、CVD法
、パルスレーザ堆積法、ALD(Atomic Layer Deposition)法
等を適宜用いることができる。また、第1の酸化物半導体層101、第2の酸化物半導体
層102、第3の酸化物半導体層103は、スパッタリングターゲット表面に対し、概略
垂直に複数の基板表面がセットされた状態で成膜を行うスパッタ装置を用いて成膜しても
よい。
First oxide semiconductor layer 101, second oxide semiconductor layer 102, third oxide semiconductor layer 10
The film thickness of No. 3 is 1 nm or more and 10 nm or less (preferably 5 nm or more and 30 nm or less), and a sputtering method, MBE (Molecular Beam Epitaxy) method, CVD method, pulsed laser deposition method, ALD (Atomic Layer Deposition) method, etc. is used as appropriate. be able to. Further, the first oxide semiconductor layer 101, the second oxide semiconductor layer 102, and the third oxide semiconductor layer 103 are formed with the surfaces of the plurality of substrates set approximately perpendicular to the surface of the sputtering target. A film may be formed using a sputtering device that performs film formation.

酸化物半導体層を用いたトランジスタにおいて、該酸化物半導体層のエネルギーギャップ
は、トランジスタの電気特性に影響を与える。例えば、酸化物半導体層を用いたトランジ
スタにおいて、酸化物半導体層のエネルギーギャップが小さいと、オン特性(例えば、オ
ン電流や電界効果移動度)が向上し、一方、酸化物半導体層のエネルギーギャップが大き
いと、オフ電流が低減できる。
In a transistor using an oxide semiconductor layer, the energy gap of the oxide semiconductor layer affects the electrical characteristics of the transistor. For example, in a transistor using an oxide semiconductor layer, when the energy gap of the oxide semiconductor layer is small, the on-characteristics (for example, on-state current and field effect mobility) are improved; If it is large, the off-state current can be reduced.

異なるエネルギーギャップを有する複数の酸化物半導体層を用いた酸化物半導体積層40
3を用いることによって、トランジスタ440a、トランジスタ440b、トランジスタ
480の電気特性をより精度よく制御することができ、所望の電気特性をトランジスタ4
40a、トランジスタ440b、トランジスタ480に付与することが可能となる。
Oxide semiconductor stack 40 using multiple oxide semiconductor layers having different energy gaps
By using transistor 4, the electrical characteristics of transistor 440a, transistor 440b, and transistor 480 can be controlled more precisely, and desired electrical characteristics can be controlled by transistor 4.
40a, transistor 440b, and transistor 480.

例えば、図4(A)に示すトランジスタ480の酸化物半導体積層403において、第2
の酸化物半導体層102のエネルギーギャップを第1の酸化物半導体層101及び第3の
酸化物半導体層103のエネルギーギャップより小さくする。この場合、第1の酸化物半
導体層101及び第3の酸化物半導体層103のエネルギーギャップはほぼ同じとするこ
とができる。
For example, in the oxide semiconductor stack 403 of the transistor 480 illustrated in FIG.
The energy gap of the oxide semiconductor layer 102 is made smaller than the energy gap of the first oxide semiconductor layer 101 and the third oxide semiconductor layer 103. In this case, the first oxide semiconductor layer 101 and the third oxide semiconductor layer 103 can have almost the same energy gap.

図4(C)に、図4(A)における膜厚方向(E1-E2間)のエネルギーバンド図を示
す。トランジスタ480では、図4(C)に示すエネルギーバンド図となるように、第1
の酸化物半導体層101、第2の酸化物半導体層102、及び第3の酸化物半導体層10
3の材料を選択することが好ましい。ただし、伝導帯に埋め込みチャネルが形成されれば
十分な効果が得られるため、必ずしも図4(C)のように伝導帯と価電子帯の両方に凹部
を有するエネルギーバンド図に限定しなくともよく、例えば伝導帯のみに凹部を有するエ
ネルギーバンド図が得られる構成としてもよい。
FIG. 4(C) shows an energy band diagram in the film thickness direction (between E1 and E2) in FIG. 4(A). In the transistor 480, the first
oxide semiconductor layer 101, second oxide semiconductor layer 102, and third oxide semiconductor layer 10
It is preferable to select material No. 3. However, since a sufficient effect can be obtained if a buried channel is formed in the conduction band, it is not necessarily necessary to limit the energy band diagram to an energy band diagram having concavities in both the conduction band and the valence band as shown in FIG. 4(C). For example, a configuration may be adopted in which an energy band diagram having recesses only in the conduction band can be obtained.

例えば、トランジスタ480における第1の酸化物半導体層101としてIn-Ga-Z
n系酸化物膜(エネルギーギャップ3.2eV)、第2の酸化物半導体層102としては
In-Sn-Zn系酸化物膜(エネルギーギャップ2.8eV)、第3の酸化物半導体層
103としてIn-Ga-Zn系酸化物膜(エネルギーギャップ3.2eV)を用いる。
For example, as the first oxide semiconductor layer 101 in the transistor 480, In-Ga-Z
An n-based oxide film (energy gap 3.2 eV), an In-Sn-Zn-based oxide film (energy gap 2.8 eV) as the second oxide semiconductor layer 102, and an In-Sn-Zn oxide film (energy gap 2.8 eV) as the third oxide semiconductor layer 103. - A Ga-Zn based oxide film (energy gap 3.2 eV) is used.

また、トランジスタ480におけるような3層積層の酸化物半導体積層403としては、
第1の酸化物半導体層101としてIn-Ga-Zn系酸化物膜、第2の酸化物半導体層
102としてはIn-Zn系酸化物膜、第3の酸化物半導体層103としてIn-Ga-
Zn系酸化物膜の積層、第1の酸化物半導体層101としてGa-Zn系酸化物膜、第2
の酸化物半導体層102としてはIn-Sn-Zn系酸化物膜、第3の酸化物半導体層1
03としてGa-Zn系酸化物膜の積層、第1の酸化物半導体層101としてGa-Zn
系酸化物膜、第2の酸化物半導体層102としてはIn-Zn系酸化物膜、第3の酸化物
半導体層103としてGa-Zn系酸化物膜の積層、第1の酸化物半導体層101として
In-Ga系酸化物膜、第2の酸化物半導体層102としてはIn-Ga-Zn系酸化物
膜、第3の酸化物半導体層103としてIn-Ga系酸化物膜の積層、又は第1の酸化物
半導体層101としてIn-Ga-Zn系酸化物膜、第2の酸化物半導体層102として
は酸化インジウム(In系酸化物)膜、第3の酸化物半導体層103としてIn-Ga-
Zn系酸化物膜の積層などを用いることができる。
Further, as the oxide semiconductor stack 403 of three layers like the transistor 480,
The first oxide semiconductor layer 101 is an In-Ga-Zn-based oxide film, the second oxide semiconductor layer 102 is an In-Zn-based oxide film, and the third oxide semiconductor layer 103 is an In-Ga-Zn-based oxide film.
A stack of Zn-based oxide films, a Ga--Zn-based oxide film as the first oxide semiconductor layer 101, a second
The oxide semiconductor layer 102 is an In-Sn-Zn-based oxide film, the third oxide semiconductor layer 1
03 is a stack of Ga--Zn based oxide films, and the first oxide semiconductor layer 101 is a Ga--Zn layer.
oxide film, an In--Zn-based oxide film as the second oxide semiconductor layer 102, a stack of a Ga--Zn-based oxide film as the third oxide semiconductor layer 103, and the first oxide semiconductor layer 101. The second oxide semiconductor layer 102 is an In-Ga-Zn oxide film, the third oxide semiconductor layer 103 is an In-Ga-based oxide film, or the third oxide semiconductor layer 103 is an In-Ga-based oxide film. The first oxide semiconductor layer 101 is an In-Ga-Zn based oxide film, the second oxide semiconductor layer 102 is an indium oxide (In-based oxide) film, and the third oxide semiconductor layer 103 is an In-Ga-Zn based oxide film. -
A stack of Zn-based oxide films or the like can be used.

エネルギーギャップの小さい第2の酸化物半導体層102を、エネルギーギャップの大き
い第1の酸化物半導体層101及び第3の酸化物半導体層103により挟む構造とするこ
とによって、よりトランジスタ480のオフ電流(リーク電流)を低減する効果が得られ
る。
By forming a structure in which the second oxide semiconductor layer 102 with a small energy gap is sandwiched between the first oxide semiconductor layer 101 and the third oxide semiconductor layer 103 with a large energy gap, the off-state current ( This has the effect of reducing leakage current).

図2(A)乃至(E)にトランジスタ440aを用いて、作製方法の一例を示す。 FIGS. 2A to 2E illustrate an example of a manufacturing method using a transistor 440a.

まず、絶縁表面を有する基板400上に導電膜を形成した後、第1のフォトリソグラフィ
工程によりゲート電極層401を形成する。なお、レジストマスクをインクジェット法で
形成してもよい。レジストマスクをインクジェット法で形成するとフォトマスクを使用し
ないため、製造コストを低減できる。
First, a conductive film is formed on a substrate 400 having an insulating surface, and then a gate electrode layer 401 is formed by a first photolithography process. Note that the resist mask may be formed by an inkjet method. When a resist mask is formed by an inkjet method, a photomask is not used, so manufacturing costs can be reduced.

絶縁表面を有する基板400に使用することができる基板に大きな制限はないが、少なく
とも、後の熱処理に耐えうる程度の耐熱性を有していることが必要となる。例えば、バリ
ウムホウケイ酸ガラスやアルミノホウケイ酸ガラスなどのガラス基板、セラミック基板、
石英基板、サファイア基板などを用いることができる。また、シリコンや炭化シリコンな
どの単結晶半導体基板、多結晶半導体基板、シリコンゲルマニウムなどの化合物半導体基
板、SOI基板などを適用することもでき、これらの基板上に半導体素子が設けられたも
のを、基板400として用いてもよい。
Although there are no major restrictions on the substrate that can be used as the substrate 400 having an insulating surface, it is necessary that the substrate has at least enough heat resistance to withstand subsequent heat treatment. For example, glass substrates such as barium borosilicate glass and alumino borosilicate glass, ceramic substrates,
A quartz substrate, a sapphire substrate, etc. can be used. In addition, single crystal semiconductor substrates such as silicon or silicon carbide, polycrystalline semiconductor substrates, compound semiconductor substrates such as silicon germanium, SOI substrates, etc. can also be applied, and semiconductor elements are provided on these substrates. It may also be used as the substrate 400.

また、基板400として、可撓性基板を用いて半導体装置を作製してもよい。可撓性を有
する半導体装置を作製するには、可撓性基板上に酸化物半導体積層403を含むトランジ
スタ440aを直接作製してもよいし、他の作製基板に酸化物半導体積層403を含むト
ランジスタ440aを作製し、その後可撓性基板に剥離、転置してもよい。なお、作製基
板から可撓性基板に剥離、転置するために、作製基板と酸化物半導体膜を含むトランジス
タ440aとの間に剥離層を設けるとよい。
Further, a semiconductor device may be manufactured using a flexible substrate as the substrate 400. To manufacture a flexible semiconductor device, the transistor 440a including the oxide semiconductor stack 403 may be directly fabricated on a flexible substrate, or the transistor 440a including the oxide semiconductor stack 403 may be fabricated on another manufacturing substrate. 440a may be produced and then peeled off and transferred to a flexible substrate. Note that in order to peel and transfer from the manufacturing substrate to a flexible substrate, a separation layer is preferably provided between the manufacturing substrate and the transistor 440a including an oxide semiconductor film.

下地膜となる絶縁膜を基板400とゲート電極層401との間に設けてもよい。下地膜は
、基板400からの不純物元素の拡散を防止する機能があり、窒化シリコン膜、酸化シリ
コン膜、窒化酸化シリコン膜、又は酸化窒化シリコン膜から選ばれた一又は複数の膜によ
る積層構造により形成することができる。また、下地膜として、酸化アルミニウム、酸化
窒化アルミニウム、酸化ハフニウム、酸化ガリウム、又はこれらの混合材料を用いて形成
することができる。下地膜はプラズマCVD法又はスパッタリング法等により形成すれば
よい。
An insulating film serving as a base film may be provided between the substrate 400 and the gate electrode layer 401. The base film has a function of preventing diffusion of impurity elements from the substrate 400, and has a stacked structure of one or more films selected from a silicon nitride film, a silicon oxide film, a silicon nitride oxide film, or a silicon oxynitride film. can be formed. Further, the base film can be formed using aluminum oxide, aluminum oxynitride, hafnium oxide, gallium oxide, or a mixed material thereof. The base film may be formed by a plasma CVD method, a sputtering method, or the like.

また、ゲート電極層401の材料は、プラズマCVD法又はスパッタリング法等により、
モリブデン、チタン、タンタル、タングステン、アルミニウム、銅、ネオジム、スカンジ
ウム等の金属材料又はこれらを主成分とする合金材料を用いて、単層で又は積層して形成
することができる。また、ゲート電極層401としてリン等の不純物元素をドーピングし
た多結晶シリコン膜に代表される半導体膜、ニッケルシリサイドなどのシリサイド膜を用
いてもよい。ゲート電極層401は、単層構造としてもよいし、積層構造としてもよい。
Further, the material of the gate electrode layer 401 is prepared by plasma CVD method, sputtering method, etc.
It can be formed in a single layer or in a stacked manner using metal materials such as molybdenum, titanium, tantalum, tungsten, aluminum, copper, neodymium, scandium, etc., or alloy materials containing these as main components. Further, as the gate electrode layer 401, a semiconductor film typified by a polycrystalline silicon film doped with an impurity element such as phosphorus, or a silicide film such as nickel silicide may be used. The gate electrode layer 401 may have a single layer structure or a laminated structure.

また、ゲート電極層401の材料は、インジウム錫酸化物、酸化タングステンを含むイン
ジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジ
ウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素
を添加したインジウム錫酸化物などの導電性材料を適用することもできる。また、上記導
電性材料と、上記金属材料の積層構造とすることもできる。
Further, the material of the gate electrode layer 401 is indium tin oxide, indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium Conductive materials such as zinc oxide and indium tin oxide added with silicon oxide can also be applied. Further, a laminated structure of the conductive material described above and the metal material described above may be used.

また、ゲート電極層401を積層構造とし、その一層として、In-Sn系、In-Sn
-Zn系、In-Al-Zn系、Sn-Ga-Zn系、Al-Ga-Zn系、Sn-Al
-Zn系、In-Zn系、Sn-Zn系、Al-Zn系、In系、Sn系、Zn系の金属
酸化物を用いてもよい。
Further, the gate electrode layer 401 has a laminated structure, and one layer of the gate electrode layer 401 is In-Sn based, In-Sn
-Zn series, In-Al-Zn series, Sn-Ga-Zn series, Al-Ga-Zn series, Sn-Al
- Zn-based, In--Zn-based, Sn--Zn-based, Al--Zn-based, In-based, Sn-based, and Zn-based metal oxides may be used.

また、ゲート絶縁膜402と接するゲート電極層401の一層として、窒素を含む金属酸
化物、具体的には、窒素を含むIn-Ga-Zn-O膜や、窒素を含むIn-Sn-O膜
や、窒素を含むIn-Ga-O膜や、窒素を含むIn-Zn-O膜や、窒素を含むSn-
O膜や、窒素を含むIn-O膜や、金属窒化膜(InN、SnNなど)を用いることがで
きる。これらの膜は5eV(電子ボルト)、好ましくは5.5eV(電子ボルト)以上の
仕事関数を有し、ゲート電極層として用いた場合、トランジスタの電気特性のしきい値電
圧をプラスにすることができ、所謂ノーマリーオフのスイッチング素子を実現できる。
Further, as one layer of the gate electrode layer 401 in contact with the gate insulating film 402, a metal oxide containing nitrogen, specifically, an In-Ga-Zn-O film containing nitrogen or an In-Sn-O film containing nitrogen is used. , In-Ga-O film containing nitrogen, In-Zn-O film containing nitrogen, Sn-
An O film, an In--O film containing nitrogen, or a metal nitride film (InN, SnN, etc.) can be used. These films have a work function of 5 eV (electron volt), preferably 5.5 eV (electron volt) or more, and when used as a gate electrode layer, they can increase the threshold voltage of the electrical characteristics of the transistor. Therefore, a so-called normally-off switching element can be realized.

例えば、ゲート電極層401を積層構造とし、その一層として特に仕事関数の大きな材料
であるインジウム、ガリウム、及び亜鉛を含む酸窒化物膜を用いることが好ましい。イン
ジウム、ガリウム、及び亜鉛を含む酸窒化物膜は、アルゴン及び窒素の混合ガス雰囲気下
で成膜することにより得られる。
For example, it is preferable that the gate electrode layer 401 has a stacked structure, and that one layer thereof is an oxynitride film containing indium, gallium, and zinc, which are materials with a particularly large work function. An oxynitride film containing indium, gallium, and zinc is obtained by forming the film in a mixed gas atmosphere of argon and nitrogen.

例えば、ゲート電極層401として基板400側から銅膜と、タングステン膜と、インジ
ウム、ガリウム、及び亜鉛を含む酸窒化物膜との積層構造、タングステン膜と、窒化タン
グステン膜と、銅膜と、チタン膜との積層構造などを用いることができる。
For example, as the gate electrode layer 401, from the substrate 400 side, a stacked structure of a copper film, a tungsten film, an oxynitride film containing indium, gallium, and zinc, a tungsten film, a tungsten nitride film, a copper film, and a titanium film are stacked. A laminated structure with a film, etc. can be used.

次いで、ゲート電極層401上にゲート絶縁膜402を形成する(図2(A)参照)。ゲ
ート絶縁膜402は、作製するトランジスタのサイズやゲート絶縁膜402の段差被覆性
を考慮して形成することが好ましい。
Next, a gate insulating film 402 is formed over the gate electrode layer 401 (see FIG. 2A). The gate insulating film 402 is preferably formed in consideration of the size of the transistor to be manufactured and the step coverage of the gate insulating film 402.

ゲート絶縁膜402の膜厚は、1nm以上20nm以下とし、スパッタリング法、MBE
法、CVD法、パルスレーザ堆積法、ALD法等を適宜用いることができる。また、ゲー
ト絶縁膜402は、スパッタリングターゲット表面に対し、概略垂直に複数の基板表面が
セットされた状態で成膜を行うスパッタ装置を用いて成膜してもよい。
The thickness of the gate insulating film 402 is 1 nm or more and 20 nm or less, and is formed by sputtering, MBE, etc.
method, CVD method, pulsed laser deposition method, ALD method, etc. can be used as appropriate. Further, the gate insulating film 402 may be formed using a sputtering apparatus that performs film formation in a state where the surfaces of a plurality of substrates are set approximately perpendicular to the surface of a sputtering target.

ゲート絶縁膜402の材料としては、酸化シリコン膜、酸化ガリウム膜、酸化アルミニウ
ム膜、窒化シリコン膜、酸化窒化シリコン膜、酸化窒化アルミニウム膜、または窒化酸化
シリコン膜を用いて形成することができる。
The gate insulating film 402 can be formed using a silicon oxide film, a gallium oxide film, an aluminum oxide film, a silicon nitride film, a silicon oxynitride film, an aluminum oxynitride film, or a silicon nitride oxide film.

また、ゲート絶縁膜402の材料として酸化ハフニウム、酸化イットリウム、ハフニウム
シリケート(HfSix>0、y>0))、窒素が添加されたハフニウムシリケー
ト(HfSiO(x>0、y>0))、ハフニウムアルミネート(HfAl
(x>0、y>0))、酸化ランタンなどのhigh-k材料を用いることでゲートリー
ク電流を低減できる。
In addition, as materials for the gate insulating film 402, hafnium oxide, yttrium oxide, hafnium silicate (HfSi x O y x > 0, y > 0)), hafnium silicate added with nitrogen ( HfSiO >0)), hafnium aluminate (HfAl x O y
(x>0, y>0)), gate leakage current can be reduced by using a high-k material such as lanthanum oxide.

ゲート絶縁膜402は単層でも積層でもよいが、酸化物半導体積層403に接する膜とし
ては、酸化物絶縁膜が好ましい。本実施の形態では、ゲート絶縁膜402として酸化シリ
コン膜を用いる。
Although the gate insulating film 402 may be a single layer or a stacked layer, an oxide insulating film is preferable as the film in contact with the oxide semiconductor stack 403. In this embodiment, a silicon oxide film is used as the gate insulating film 402.

また、ゲート絶縁膜402を積層とする場合、例えば、ゲート電極層401上に酸化シリ
コン膜、In-Hf-Zn系酸化物膜、酸化物半導体積層403を順に積層してもよいし
、ゲート電極層401上に酸化シリコン膜、In:Zr:Zn=1:1:1の原子比のI
n-Zr-Zn系酸化物膜、酸化物半導体積層403を順に積層してもよいし、ゲート電
極層401上に酸化シリコン膜、In:Gd:Zn=1:1:1の原子比のIn-Gd-
Zn系酸化物膜、酸化物半導体積層403を順に積層してもよい。
Further, when the gate insulating film 402 is a stacked layer, for example, a silicon oxide film, an In-Hf-Zn-based oxide film, and an oxide semiconductor stack 403 may be stacked in this order on the gate electrode layer 401, or A silicon oxide film is formed on the layer 401 with an atomic ratio of In:Zr:Zn=1:1:1.
An n-Zr-Zn based oxide film and an oxide semiconductor stack 403 may be stacked in this order, or a silicon oxide film and an In layer with an atomic ratio of In:Gd:Zn=1:1:1 may be stacked on the gate electrode layer 401. -Gd-
The Zn-based oxide film and the oxide semiconductor stack 403 may be stacked in this order.

次に、ゲート絶縁膜402上に第1の酸化物半導体膜191及び第2の酸化物半導体膜1
92からなる酸化物半導体膜の積層493を形成する(図2(B)参照)。
Next, a first oxide semiconductor film 191 and a second oxide semiconductor film 1 are formed over the gate insulating film 402.
A stacked layer 493 of oxide semiconductor films made of 92 layers is formed (see FIG. 2B).

ゲート絶縁膜402は、酸化物半導体膜の積層493(酸化物半導体積層403)と接す
るため、膜中(バルク中)に少なくとも化学量論比を超える量の酸素が存在することが好
ましい。例えば、ゲート絶縁膜402として、酸化シリコン膜を用いる場合には、SiO
2+α(ただし、α>0)とする。このようなゲート絶縁膜402を用いることで、酸化
物半導体膜の積層493(酸化物半導体積層403)に酸素を供給することができ、特性
を良好にすることができる。酸化物半導体膜の積層493(酸化物半導体積層403)へ
酸素を供給することにより、膜中の酸素欠損を補填することができる。
Since the gate insulating film 402 is in contact with the oxide semiconductor film stack 493 (oxide semiconductor stack 403), it is preferable that at least an amount of oxygen exceeding the stoichiometric ratio exists in the film (in the bulk). For example, when using a silicon oxide film as the gate insulating film 402, SiO
2+α (however, α>0). By using such a gate insulating film 402, oxygen can be supplied to the oxide semiconductor film stack 493 (oxide semiconductor stack 403), and the characteristics can be improved. By supplying oxygen to the oxide semiconductor film stack 493 (oxide semiconductor stack 403), oxygen vacancies in the film can be compensated for.

例えば、酸素の供給源となる酸素を多く(過剰に)含むゲート絶縁膜402を酸化物半導
体膜の積層493(酸化物半導体積層403)と接して設けることによって、該ゲート絶
縁膜402から酸化物半導体膜の積層493(酸化物半導体積層403)へ酸素を供給す
ることができる。酸化物半導体膜の積層493(酸化物半導体積層403)及びゲート絶
縁膜402を少なくとも一部が接した状態で加熱処理を行うことによって酸化物半導体膜
の積層493(酸化物半導体積層403)への酸素の供給を行ってもよい。
For example, by providing the gate insulating film 402 containing a large amount (excessively) of oxygen, which serves as an oxygen supply source, in contact with the oxide semiconductor film stack 493 (oxide semiconductor stack 403), the oxide is removed from the gate insulating film 402. Oxygen can be supplied to the semiconductor film stack 493 (oxide semiconductor stack 403). By performing heat treatment with the oxide semiconductor film stack 493 (oxide semiconductor stack 403) and the gate insulating film 402 at least partially in contact with each other, the oxide semiconductor film stack 493 (oxide semiconductor stack 403) is heated. Oxygen may be supplied.

酸化物半導体膜の積層493(第1の酸化物半導体膜191及び第2の酸化物半導体膜1
92)の形成工程において、酸化物半導体膜の積層493(第1の酸化物半導体膜191
及び第2の酸化物半導体膜192)に水素、又は水がなるべく含まれないようにするため
に、酸化物半導体膜の積層493(第1の酸化物半導体膜191及び第2の酸化物半導体
膜192)の成膜の前処理として、スパッタリング装置の予備加熱室でゲート絶縁膜40
2が形成された基板を予備加熱し、基板及びゲート絶縁膜402に吸着した水素、水など
の不純物を脱離し排気することが好ましい。なお、予備加熱室に設ける排気手段はクライ
オポンプが好ましい。
Layered layer 493 of oxide semiconductor films (first oxide semiconductor film 191 and second oxide semiconductor film 1
92), the oxide semiconductor film stack 493 (first oxide semiconductor film 191
In order to prevent the oxide semiconductor film stack 493 (first oxide semiconductor film 191 and second oxide semiconductor film 192) from containing hydrogen or water as much as possible, 192), the gate insulating film 40 is deposited in the preheating chamber of the sputtering device.
It is preferable to preheat the substrate on which 2 is formed to remove and exhaust impurities such as hydrogen and water adsorbed on the substrate and the gate insulating film 402. Note that the evacuation means provided in the preheating chamber is preferably a cryopump.

ゲート絶縁膜402において酸化物半導体膜の積層493(酸化物半導体積層403)が
接して形成される領域に、平坦化処理を行ってもよい。平坦化処理としては、特に限定さ
れないが、研磨処理(例えば、化学的機械研磨(Chemical Mechanica
l Polishing:CMP)法)、ドライエッチング処理、プラズマ処理を用いる
ことができる。
Planarization treatment may be performed on a region of the gate insulating film 402 in which the stacked layer 493 of oxide semiconductor films (the stacked oxide semiconductor layer 403) is formed in contact with the stacked layer 493 of the oxide semiconductor film. The planarization process is not particularly limited, but may include a polishing process (for example, chemical mechanical polishing).
1 Polishing (CMP) method), dry etching treatment, and plasma treatment can be used.

プラズマ処理としては、例えば、アルゴンガスを導入してプラズマを発生させる逆スパッ
タリングを行うことができる。逆スパッタリングとは、アルゴン雰囲気下で基板側にRF
電源を用いて電圧を印加して基板近傍にプラズマを形成して表面を改質する方法である。
なお、アルゴン雰囲気に代えて窒素、ヘリウム、酸素などを用いてもよい。逆スパッタリ
ングを行うと、ゲート絶縁膜402の表面に付着している粉状物質(パーティクル、ごみ
ともいう)を除去することができる。
As the plasma treatment, for example, reverse sputtering can be performed in which argon gas is introduced to generate plasma. Reverse sputtering refers to RF sputtering on the substrate side under an argon atmosphere.
This is a method of applying voltage using a power source to form plasma near the substrate to modify the surface.
Note that nitrogen, helium, oxygen, or the like may be used instead of the argon atmosphere. By performing reverse sputtering, powdery substances (also referred to as particles or dust) attached to the surface of the gate insulating film 402 can be removed.

平坦化処理として、研磨処理、ドライエッチング処理、プラズマ処理は複数回行ってもよ
く、それらを組み合わせて行ってもよい。また、組み合わせて行う場合、工程順も特に限
定されず、ゲート絶縁膜402表面の凹凸状態に合わせて適宜設定すればよい。
As the planarization treatment, polishing treatment, dry etching treatment, and plasma treatment may be performed multiple times, or they may be performed in combination. Further, when performing the steps in combination, the order of the steps is not particularly limited, and may be set as appropriate depending on the unevenness of the surface of the gate insulating film 402.

なお、第1の酸化物半導体膜191及び第2の酸化物半導体膜192は、成膜時に酸素が
多く含まれるような条件(例えば、酸素100%の雰囲気下でスパッタリング法により成
膜を行うなど)で成膜して、酸素を多く含む(好ましくは酸化物半導体が結晶状態におけ
る化学量論的組成比に対し、酸素の含有量が過剰な領域が含まれている)膜とすることが
好ましい。
Note that the first oxide semiconductor film 191 and the second oxide semiconductor film 192 are formed under conditions that contain a large amount of oxygen (for example, the films are formed by a sputtering method in an atmosphere containing 100% oxygen). ) to form a film containing a large amount of oxygen (preferably containing a region where the oxygen content is excessive relative to the stoichiometric composition ratio when the oxide semiconductor is in a crystalline state). .

なお、本実施の形態において、第1の酸化物半導体膜191を、スパッタリング法で作製
するためのターゲットとしては、例えば、組成比として、In:Sn:Znが原子数比で
、1:2:2、2:1:3、1:1:1、または20:45:35などとなる酸化物ター
ゲットを用いて、In-Sn-Zn-O膜を成膜する。
Note that in this embodiment, the target for manufacturing the first oxide semiconductor film 191 by a sputtering method has, for example, a composition ratio of In:Sn:Zn in an atomic ratio of 1:2: An In--Sn--Zn--O film is formed using an oxide target having a ratio of 2, 2:1:3, 1:1:1, or 20:45:35.

なお、本実施の形態において、第2の酸化物半導体膜192を、スパッタリング法で作製
するためのターゲットとしては、例えば、組成比として、In:Ga:Zn
O=1:1:2[mol比]の酸化物ターゲットを用い、In-Ga-Zn系酸化物膜を
成膜する。また、このターゲットの材料及び組成に限定されず、例えば、In:G
:ZnO=1:1:1[mol比]の金属酸化物ターゲットを用いてもよい。
Note that in this embodiment, the target for manufacturing the second oxide semiconductor film 192 by a sputtering method has a composition ratio of In 2 O 3 :Ga 2 O 3 :Zn, for example.
An In--Ga--Zn based oxide film is formed using an oxide target with a molar ratio of O=1:1:2. Moreover, the material and composition of this target are not limited, for example, In 2 O 3 :G
A metal oxide target with a 2 O 3 :ZnO=1:1:1 [molar ratio] may be used.

また、金属酸化物ターゲットの充填率は90%以上100%以下、好ましくは95%以上
99.9%以下である。充填率の高い金属酸化物ターゲットを用いることにより、成膜し
た酸化物半導体膜は緻密な膜とすることができる。
Further, the filling rate of the metal oxide target is 90% or more and 100% or less, preferably 95% or more and 99.9% or less. By using a metal oxide target with a high filling rate, the formed oxide semiconductor film can be dense.

第1の酸化物半導体膜191及び第2の酸化物半導体膜192を、成膜する際に用いるス
パッタリングガスは水素、水、水酸基又は水素化物などの不純物が除去された高純度ガス
を用いることが好ましい。
The sputtering gas used to form the first oxide semiconductor film 191 and the second oxide semiconductor film 192 can be a high-purity gas from which impurities such as hydrogen, water, hydroxyl groups, or hydrides have been removed. preferable.

減圧状態に保持された成膜室内に基板を保持する。そして、成膜室内の残留水分を除去し
つつ水素及び水が除去されたスパッタガスを導入し、上記ターゲットを用いて基板400
上に酸化物半導体膜の積層493(第1の酸化物半導体膜191及び第2の酸化物半導体
膜192)を成膜する。成膜室内の残留水分を除去するためには、吸着型の真空ポンプ、
例えば、クライオポンプ、イオンポンプ、チタンサブリメーションポンプを用いることが
好ましい。また、排気手段としては、ターボ分子ポンプにコールドトラップを加えたもの
であってもよい。クライオポンプを用いて排気した成膜室は、例えば、水素原子、水(H
O)など水素原子を含む化合物(より好ましくは炭素原子を含む化合物も)等が排気さ
れるため、当該成膜室で成膜した酸化物半導体膜の積層493(第1の酸化物半導体膜1
91及び第2の酸化物半導体膜192)に含まれる不純物の濃度を低減できる。
A substrate is held in a film forming chamber maintained at reduced pressure. Then, while removing residual moisture in the film forming chamber, a sputtering gas from which hydrogen and water have been removed is introduced, and the target is used to form a substrate 400.
A stack 493 of oxide semiconductor films (a first oxide semiconductor film 191 and a second oxide semiconductor film 192) is formed thereover. In order to remove residual moisture in the film forming chamber, an adsorption type vacuum pump,
For example, it is preferable to use a cryopump, an ion pump, or a titanium sublimation pump. Further, the exhaust means may be a turbo molecular pump with a cold trap added. For example, the film forming chamber evacuated using a cryopump is filled with hydrogen atoms, water (H
Since compounds containing hydrogen atoms (more preferably compounds containing carbon atoms) such as 2 O) are exhausted, the oxide semiconductor film stack 493 (first oxide semiconductor film 1
91 and the second oxide semiconductor film 192) can be reduced.

また、ゲート絶縁膜402と酸化物半導体膜の積層493(第1の酸化物半導体膜191
及び第2の酸化物半導体膜192)とを大気に解放せずに連続的に形成することが好まし
い。ゲート絶縁膜402と酸化物半導体膜の積層493(第1の酸化物半導体膜191及
び第2の酸化物半導体膜192)とを大気に曝露せずに連続して形成すると、ゲート絶縁
膜402表面に水素や水などの不純物が吸着することを防止することができる。
In addition, a stack 493 of the gate insulating film 402 and the oxide semiconductor film (the first oxide semiconductor film 191
It is preferable to successively form the gate insulating film 402 and the stack of oxide semiconductor films 493 (the first oxide semiconductor film 191 and the second oxide semiconductor film 192) without exposure to the air. When the gate insulating film 402 and the stack of oxide semiconductor films 493 (the first oxide semiconductor film 191 and the second oxide semiconductor film 192) are formed in succession without exposure to the air, impurities such as hydrogen and water can be prevented from being adsorbed onto a surface of the gate insulating film 402.

CAAC-OS膜は、例えば、多結晶である酸化物半導体スパッタリング用ターゲットを
用い、スパッタリング法によって成膜する。当該スパッタリング用ターゲットにイオンが
衝突すると、スパッタリング用ターゲットに含まれる結晶領域がa-b面から劈開し、a
-b面に平行な面を有する平板状またはペレット状のスパッタリング粒子として剥離する
ことがある。この場合、当該平板状のスパッタリング粒子が、結晶状態を維持したまま基
板に到達することで、CAAC-OS膜を成膜することができる。
The CAAC-OS film is formed by a sputtering method using, for example, a polycrystalline oxide semiconductor sputtering target. When ions collide with the sputtering target, the crystal region included in the sputtering target cleaves from the a-b plane, resulting in a
- It may be exfoliated as sputtered particles in the form of a flat plate or pellet having a plane parallel to the b plane. In this case, the planar sputtered particles reach the substrate while maintaining their crystalline state, thereby making it possible to form a CAAC-OS film.

また、CAAC-OS膜を成膜するために、以下の条件を適用することが好ましい。 Further, in order to form a CAAC-OS film, it is preferable to apply the following conditions.

成膜時の不純物混入を低減することで、不純物によって結晶状態が崩れることを抑制でき
る。例えば、成膜室内に存在する不純物濃度(水素、水、二酸化炭素および窒素など)を
低減すればよい。また、成膜ガス中の不純物濃度を低減すればよい。具体的には、露点が
-80℃以下、好ましくは-100℃以下である成膜ガスを用いる。
By reducing the amount of impurities mixed in during film formation, it is possible to prevent the crystal state from being disrupted by the impurities. For example, the concentration of impurities (hydrogen, water, carbon dioxide, nitrogen, etc.) present in the film forming chamber may be reduced. Further, the concentration of impurities in the film forming gas may be reduced. Specifically, a film forming gas having a dew point of -80°C or lower, preferably -100°C or lower is used.

また、成膜時の基板加熱温度を高めることで、基板到達後にスパッタリング粒子のマイグ
レーションが起こる。具体的には、基板加熱温度を100℃以上740℃以下、好ましく
は200℃以上500℃以下として成膜する。成膜時の基板加熱温度を高めることで、平
板状のスパッタリング粒子が基板に到達した場合、基板上でマイグレーションが起こり、
スパッタリング粒子の平らな面が基板に付着する。
Furthermore, by increasing the substrate heating temperature during film formation, migration of sputtered particles occurs after reaching the substrate. Specifically, the film is formed at a substrate heating temperature of 100° C. or more and 740° C. or less, preferably 200° C. or more and 500° C. or less. By increasing the substrate heating temperature during film formation, when flat sputtered particles reach the substrate, migration occurs on the substrate.
The flat side of the sputtered particles adheres to the substrate.

また、成膜ガス中の酸素割合を高め、電力を最適化することで成膜時のプラズマダメージ
を軽減すると好ましい。成膜ガス中の酸素割合は、30体積%以上、好ましくは100体
積%とする。
Further, it is preferable to reduce plasma damage during film formation by increasing the proportion of oxygen in the film formation gas and optimizing the electric power. The proportion of oxygen in the film forming gas is 30% by volume or more, preferably 100% by volume.

スパッタリング用ターゲットの一例として、In-Ga-Zn-O化合物ターゲットにつ
いて以下に示す。
As an example of a sputtering target, an In-Ga-Zn-O compound target is shown below.

InO粉末、GaO粉末およびZnO粉末を所定のmol数比で混合し、加圧処理
後、1000℃以上1500℃以下の温度で加熱処理をすることで多結晶であるIn-G
a-Zn-O化合物ターゲットとする。なお、X、YおよびZは任意の正数である。ここ
で、所定のmol数比は、例えば、InO粉末、GaO粉末およびZnO粉末が、
2:2:1、8:4:3、3:1:1、1:1:1、4:2:3または3:1:2である
。なお、粉末の種類、およびその混合するmol数比は、作製するスパッタリング用ター
ゲットによって適宜変更すればよい。
Polycrystalline In - G is obtained by mixing InO
a-Zn-O compound target. Note that X, Y, and Z are arbitrary positive numbers. Here, the predetermined molar ratio is, for example, InO X powder, GaO Y powder, and ZnO Z powder,
2:2:1, 8:4:3, 3:1:1, 1:1:1, 4:2:3 or 3:1:2. Note that the type of powder and the molar ratio of the powders to be mixed may be changed as appropriate depending on the sputtering target to be produced.

酸化物半導体膜の積層493(第1の酸化物半導体膜191及び第2の酸化物半導体膜1
92)をフォトリソグラフィ工程により島状の酸化物半導体積層403(第1の酸化物半
導体層101及び第2の酸化物半導体層102)に加工する(図2(C)参照)。
Layered layer 493 of oxide semiconductor films (first oxide semiconductor film 191 and second oxide semiconductor film 1
92) is processed into an island-shaped oxide semiconductor stack 403 (first oxide semiconductor layer 101 and second oxide semiconductor layer 102) by a photolithography process (see FIG. 2C).

また、島状の酸化物半導体積層403を形成するためのレジストマスクをインクジェット
法で形成してもよい。レジストマスクをインクジェット法で形成するとフォトマスクを使
用しないため、製造コストを低減できる。
Further, a resist mask for forming the island-shaped oxide semiconductor stack 403 may be formed by an inkjet method. When a resist mask is formed by an inkjet method, a photomask is not used, so manufacturing costs can be reduced.

なお、酸化物半導体膜のエッチングは、ドライエッチングでもウェットエッチングでもよ
く、両方を用いてもよい。例えば、酸化物半導体膜のウェットエッチングに用いるエッチ
ング液としては、燐酸と酢酸と硝酸を混ぜた溶液などを用いることができる。また、IT
O07N(関東化学社製)を用いてもよい。
Note that the oxide semiconductor film may be etched by dry etching or wet etching, or both may be used. For example, as an etching solution used for wet etching the oxide semiconductor film, a solution containing phosphoric acid, acetic acid, and nitric acid can be used. Also, IT
O07N (manufactured by Kanto Kagaku Co., Ltd.) may be used.

本実施の形態では、第1の酸化物半導体膜191及び第2の酸化物半導体膜192を同じ
マスクによりエッチング加工して形成するため、第1の酸化物半導体層101及び第2の
酸化物半導体層102は側面の端部が一致した同形状の酸化物半導体層となる。酸化物半
導体積層403において、第1の酸化物半導体層101及び第2の酸化物半導体層102
の側面(端部)は露出している。
In this embodiment, the first oxide semiconductor film 191 and the second oxide semiconductor film 192 are formed by etching using the same mask; The layer 102 is an oxide semiconductor layer having the same shape with side edges that coincide with each other. In the oxide semiconductor stack 403, the first oxide semiconductor layer 101 and the second oxide semiconductor layer 102
The sides (ends) of are exposed.

なお、開示する発明の一形態において、酸化物半導体積層は、本実施の形態で示すように
島状に加工してもよいし、形状を加工せず、膜状のまままでもよい。
Note that in one embodiment of the disclosed invention, the oxide semiconductor stack may be processed into an island shape as shown in this embodiment, or may remain in a film shape without being processed.

また、ゲート絶縁膜402にコンタクトホールを形成する場合、その工程は第1の酸化物
半導体膜191及び第2の酸化物半導体膜192の加工時に同時に行うことができる。
Further, when forming a contact hole in the gate insulating film 402, this step can be performed simultaneously when the first oxide semiconductor film 191 and the second oxide semiconductor film 192 are processed.

なお、図3(C)のトランジスタ449のように、酸化物半導体積層403に加熱処理を
行い、第1の酸化物半導体層101及び第2の酸化物半導体層102の間に混合領域10
5を形成してもよい。加熱処理は、第1の酸化物半導体層101及び第2の酸化物半導体
層102中の元素が熱により拡散できる温度とし、かつ第1の酸化物半導体層101及び
第2の酸化物半導体層102が酸化物半導体積層403全領域において、組成が均一な混
合領域とならない条件で行えばよい。
Note that, as in the transistor 449 in FIG. 3C, heat treatment is performed on the oxide semiconductor stack 403 to form a mixed region 10 between the first oxide semiconductor layer 101 and the second oxide semiconductor layer 102.
5 may be formed. The heat treatment is performed at a temperature at which the elements in the first oxide semiconductor layer 101 and the second oxide semiconductor layer 102 can be diffused by heat, and This may be performed under conditions that do not result in a mixed region with a uniform composition in the entire region of the oxide semiconductor stack 403.

加熱処理は減圧下、窒素雰囲気下、酸素雰囲気下、又は大気(超乾燥エア)下、希ガス雰
囲気下などで行うことができる。また、加熱処理は条件(温度、雰囲気、時間など)を変
えて複数回行ってもよい。例えば、該加熱処理として、温度を650℃とし、窒素雰囲気
下で1時間加熱した後、酸素雰囲気下で1時間加熱すればよい。
The heat treatment can be performed under reduced pressure, under a nitrogen atmosphere, under an oxygen atmosphere, under the atmosphere (ultra-dry air), under a rare gas atmosphere, or the like. Further, the heat treatment may be performed multiple times under different conditions (temperature, atmosphere, time, etc.). For example, the heat treatment may be performed at a temperature of 650° C., heated in a nitrogen atmosphere for 1 hour, and then heated in an oxygen atmosphere for 1 hour.

混合領域105を形成するための加熱処理を行う工程は、第1の酸化物半導体膜191及
び第2の酸化物半導体膜192を形成した後であれば特に限定されず、膜状の第1の酸化
物半導体膜191及び第2の酸化物半導体膜192に行ってもよいし、本実施の形態のよ
うに島状の第1の酸化物半導体層101及び第2の酸化物半導体層102に行ってもよい
。また、加熱処理はトランジスタの作製工程中で行う他の加熱処理(例えば、脱水化また
は脱水素化するための加熱処理、又は結晶化のための加熱処理など)と兼ねてもよい。
The step of performing heat treatment for forming the mixed region 105 is not particularly limited as long as it is performed after the first oxide semiconductor film 191 and the second oxide semiconductor film 192 are formed. It may be applied to the oxide semiconductor film 191 and the second oxide semiconductor film 192, or it may be applied to the island-shaped first oxide semiconductor layer 101 and the second oxide semiconductor layer 102 as in this embodiment. It's okay. Further, the heat treatment may also serve as another heat treatment (for example, heat treatment for dehydration or dehydrogenation, heat treatment for crystallization, etc.) performed during the manufacturing process of the transistor.

また、酸化物半導体積層403(酸化物半導体膜の積層493)に、過剰な水素(水や水
酸基を含む)を除去(脱水化または脱水素化)するための加熱処理を行ってもよい。加熱
処理の温度は、300℃以上700℃以下、または基板の歪み点未満とする。加熱処理は
減圧下又は窒素雰囲気下などで行うことができる。例えば、加熱処理装置の一つである電
気炉に基板を導入し、酸化物半導体積層403(酸化物半導体膜の積層493)に対して
窒素雰囲気下450℃において1時間の加熱処理を行う。
Further, the oxide semiconductor stack 403 (the oxide semiconductor film stack 493) may be subjected to heat treatment to remove excess hydrogen (including water and hydroxyl groups) (dehydration or dehydrogenation). The temperature of the heat treatment is 300° C. or higher and 700° C. or lower, or lower than the strain point of the substrate. The heat treatment can be performed under reduced pressure or under a nitrogen atmosphere. For example, the substrate is introduced into an electric furnace that is one of the heat treatment apparatuses, and the oxide semiconductor stack 403 (oxide semiconductor film stack 493) is heat treated at 450° C. for one hour in a nitrogen atmosphere.

なお、加熱処理装置は電気炉に限られず、抵抗発熱体などの発熱体からの熱伝導または熱
輻射によって、被処理物を加熱する装置を用いてもよい。例えば、GRTA(Gas R
apid Thermal Anneal)装置、LRTA(Lamp Rapid T
hermal Anneal)装置等のRTA(Rapid Thermal Anne
al)装置を用いることができる。LRTA装置は、ハロゲンランプ、メタルハライドラ
ンプ、キセノンアークランプ、カーボンアークランプ、高圧ナトリウムランプ、高圧水銀
ランプなどのランプから発する光(電磁波)の輻射により、被処理物を加熱する装置であ
る。GRTA装置は、高温のガスを用いて加熱処理を行う装置である。高温のガスには、
アルゴンなどの希ガス、または窒素のような、加熱処理によって被処理物と反応しない不
活性気体が用いられる。
Note that the heat treatment apparatus is not limited to an electric furnace, and may be an apparatus that heats the object to be processed by heat conduction or heat radiation from a heating element such as a resistance heating element. For example, GRTA (Gas R
apid Thermal Anneal) device, LRTA (Lamp Rapid T
RTA (Rapid Thermal Anneal) equipment, etc.
al) equipment can be used. An LRTA device is a device that heats a workpiece by radiation of light (electromagnetic waves) emitted from a lamp such as a halogen lamp, a metal halide lamp, a xenon arc lamp, a carbon arc lamp, a high pressure sodium lamp, or a high pressure mercury lamp. The GRTA device is a device that performs heat treatment using high-temperature gas. For hot gas,
A rare gas such as argon or an inert gas such as nitrogen that does not react with the object to be treated during heat treatment is used.

例えば、加熱処理として、650℃~700℃の高温に加熱した不活性ガス中に基板を入
れ、数分間加熱した後、基板を不活性ガス中から出すGRTAを行ってもよい。
For example, as the heat treatment, GRTA may be performed by placing the substrate in an inert gas heated to a high temperature of 650° C. to 700° C., heating it for several minutes, and then removing the substrate from the inert gas.

なお、加熱処理においては、窒素、またはヘリウム、ネオン、アルゴン等の希ガスに、水
、水素などが含まれないことが好ましい。または、熱処理装置に導入する窒素、またはヘ
リウム、ネオン、アルゴン等の希ガスの純度を、6N(99.9999%)以上好ましく
は7N(99.99999%)以上(即ち不純物濃度を1ppm以下、好ましくは0.1
ppm以下)とすることが好ましい。
Note that in the heat treatment, it is preferable that water, hydrogen, etc. be not included in nitrogen or a rare gas such as helium, neon, or argon. Alternatively, the purity of nitrogen or a rare gas such as helium, neon, or argon to be introduced into the heat treatment equipment is set to 6N (99.9999%) or more, preferably 7N (99.99999%) or more (that is, the impurity concentration is 1 ppm or less, preferably is 0.1
ppm or less).

また、加熱処理で酸化物半導体積層403(酸化物半導体膜の積層493)を加熱した後
、同じ炉に高純度の酸素ガス、高純度の一酸化二窒素ガス、又は超乾燥エア(CRDS(
キャビティリングダウンレーザー分光法)方式の露点計を用いて測定した場合の水分量が
20ppm(露点換算で-55℃)以下、好ましくは1ppm以下、より好ましくは10
ppb以下の空気)を導入してもよい。酸素ガスまたは一酸化二窒素ガスに、水、水素な
どが含まれないことが好ましい。または、熱処理装置に導入する酸素ガスまたは一酸化二
窒素ガスの純度を、6N以上好ましくは7N以上(即ち、酸素ガスまたは一酸化二窒素ガ
ス中の不純物濃度を1ppm以下、好ましくは0.1ppm以下)とすることが好ましい
。酸素ガス又は一酸化二窒素ガスの作用により、脱水化または脱水素化処理による不純物
の排除工程によって同時に減少してしまった酸化物半導体を構成する主成分材料である酸
素を供給することによって、酸化物半導体積層403(酸化物半導体膜の積層493)を
高純度化及びI型(真性)化することができる。
In addition, after heating the oxide semiconductor stack 403 (oxide semiconductor film stack 493) by heat treatment, high-purity oxygen gas, high-purity dinitrogen monoxide gas, or ultra-dry air (CRDS) is added to the same furnace.
The moisture content when measured using a dew point meter using a cavity ring-down laser spectroscopy method is 20 ppm or less (-55°C dew point equivalent), preferably 1 ppm or less, more preferably 10 ppm or less.
(ppb or less air) may be introduced. It is preferable that the oxygen gas or dinitrogen monoxide gas does not contain water, hydrogen, or the like. Alternatively, the purity of the oxygen gas or dinitrogen monoxide gas introduced into the heat treatment apparatus is set to 6N or higher, preferably 7N or higher (that is, the impurity concentration in the oxygen gas or dinitrogen monoxide gas is set to 1 ppm or lower, preferably 0.1 ppm or lower). ) is preferable. Through the action of oxygen gas or dinitrogen monoxide gas, oxidation can be achieved by supplying oxygen, which is the main component of the oxide semiconductor, which has been simultaneously reduced in the process of removing impurities through dehydration or dehydrogenation. The physical semiconductor stack 403 (the stack 493 of oxide semiconductor films) can be highly purified and made to be I-type (intrinsic).

なお、脱水化又は脱水素化のための加熱処理は、酸化物半導体膜の積層493(第1の酸
化物半導体膜191及び第2の酸化物半導体膜192)の形成後、絶縁膜407の形成前
であれば、トランジスタ440aの作製工程においてどのタイミングで行ってもよい。例
えば、酸化物半導体膜の積層493(第1の酸化物半導体膜191及び第2の酸化物半導
体膜192)の形成後、又は島状の酸化物半導体積層403(第1の酸化物半導体層10
1及び第2の酸化物半導体層102)形成後に行うことができる。
Note that the heat treatment for dehydration or dehydrogenation is performed after the formation of the stacked oxide semiconductor film 493 (the first oxide semiconductor film 191 and the second oxide semiconductor film 192), and then the formation of the insulating film 407. As long as it is before, it may be performed at any timing in the manufacturing process of the transistor 440a. For example, after the formation of the oxide semiconductor film stack 493 (the first oxide semiconductor film 191 and the second oxide semiconductor film 192), or after the formation of the island-shaped oxide semiconductor stack 403 (the first oxide semiconductor layer 10
This can be performed after the first and second oxide semiconductor layers 102) are formed.

また、脱水化又は脱水素化のための加熱処理は、複数回行ってもよく、他の加熱処理と兼
ねてもよい。例えば、第1の酸化物半導体膜191形成後と、第2の酸化物半導体膜19
2形成後に2回加熱処理を行ってもよい。
Further, the heat treatment for dehydration or dehydrogenation may be performed multiple times, or may be combined with other heat treatments. For example, after the first oxide semiconductor film 191 is formed and after the second oxide semiconductor film 19
The heat treatment may be performed twice after the second formation.

脱水化又は脱水素化のための加熱処理を、酸化物半導体積層403(第1の酸化物半導体
層101及び第2の酸化物半導体層102)として島状に加工される前、酸化物半導体膜
の積層493(第1の酸化物半導体膜191及び第2の酸化物半導体膜192)がゲート
絶縁膜402を覆った状態で行うと、ゲート絶縁膜402に含まれる酸素が加熱処理によ
って放出されるのを防止することができるため好ましい。
Heat treatment for dehydration or dehydrogenation is applied to the oxide semiconductor film before it is processed into an island shape as the oxide semiconductor stack 403 (the first oxide semiconductor layer 101 and the second oxide semiconductor layer 102). When the stacking layer 493 (first oxide semiconductor film 191 and second oxide semiconductor film 192) covers the gate insulating film 402, oxygen contained in the gate insulating film 402 is released by heat treatment. This is preferable because it can prevent this.

次いでゲート絶縁膜402、酸化物半導体積層403上に、ソース電極層及びドレイン電
極層(これと同じ層で形成される配線を含む)となる導電膜を形成する。該導電膜は後の
加熱処理に耐えられる材料を用いる。ソース電極層、及びドレイン電極層に用いる導電膜
としては、例えば、Al、Cr、Cu、Ta、Ti、Mo、Wから選ばれた元素を含む金
属膜、または上述した元素を成分とする金属窒化物膜(窒化チタン膜、窒化モリブデン膜
、窒化タングステン膜)等を用いることができる。また、Al、Cuなどの金属膜の下側
又は上側の一方または双方にTi、Mo、Wなどの高融点金属膜またはそれらの金属窒化
物膜(窒化チタン膜、窒化モリブデン膜、窒化タングステン膜)を積層させた構成として
も良い。また、ソース電極層、及びドレイン電極層に用いる導電膜としては、導電性の金
属酸化物で形成しても良い。導電性の金属酸化物としては酸化インジウム(In
、酸化スズ(SnO)、酸化亜鉛(ZnO)、酸化インジウム酸化スズ(In
SnO)、酸化インジウム酸化亜鉛(In―ZnO)またはこれらの金属酸化物
材料に酸化シリコンを含ませたものを用いることができる。
Next, over the gate insulating film 402 and the oxide semiconductor stack 403, a conductive film that will become a source electrode layer and a drain electrode layer (including wiring formed of the same layer) is formed. The conductive film is made of a material that can withstand subsequent heat treatment. As the conductive film used for the source electrode layer and the drain electrode layer, for example, a metal film containing an element selected from Al, Cr, Cu, Ta, Ti, Mo, and W, or a metal nitride film containing the above-mentioned elements as a component. A material film (a titanium nitride film, a molybdenum nitride film, a tungsten nitride film), etc. can be used. In addition, a high melting point metal film such as Ti, Mo, W, etc. or a metal nitride film thereof (titanium nitride film, molybdenum nitride film, tungsten nitride film) may be formed on one or both of the lower and upper sides of the metal film such as Al and Cu. It is also possible to have a structure in which these are laminated. Further, the conductive film used for the source electrode layer and the drain electrode layer may be formed of a conductive metal oxide. Indium oxide (In 2 O 3 ) as a conductive metal oxide
, tin oxide (SnO 2 ), zinc oxide (ZnO), indium oxide tin oxide (In 2 O 3 -
SnO 2 ), indium oxide, zinc oxide (In 2 O 3 --ZnO), or a metal oxide material containing silicon oxide can be used.

フォトリソグラフィ工程により導電膜上にレジストマスクを形成し、選択的にエッチング
を行ってソース電極層405a、ドレイン電極層405bを形成した後、レジストマスク
を除去する。
A resist mask is formed on the conductive film by a photolithography process, selectively etched to form a source electrode layer 405a and a drain electrode layer 405b, and then the resist mask is removed.

酸化物半導体積層403において、第1の酸化物半導体層101及び第2の酸化物半導体
層102の側面(端部)は露出しているため、ソース電極層405a、ドレイン電極層4
05bは、第1の酸化物半導体層101及び第2の酸化物半導体層102の側面の一部に
接するように形成される。
In the oxide semiconductor stack 403, the side surfaces (ends) of the first oxide semiconductor layer 101 and the second oxide semiconductor layer 102 are exposed, so that the source electrode layer 405a and the drain electrode layer 4
05b is formed so as to be in contact with part of the side surfaces of the first oxide semiconductor layer 101 and the second oxide semiconductor layer 102.

また、フォトリソグラフィ工程で用いるフォトマスク数及び工程数を削減するため、透過
した光が複数の強度となる露光マスクである多階調マスクによって形成されたレジストマ
スクを用いてエッチング工程を行ってもよい。多階調マスクを用いて形成したレジストマ
スクは複数の膜厚を有する形状となり、エッチングを行うことでさらに形状を変形するこ
とができるため、異なるパターンに加工する複数のエッチング工程に用いることができる
。よって、一枚の多階調マスクによって、少なくとも二種類以上の異なるパターンに対応
するレジストマスクを形成することができる。よって露光マスク数を削減することができ
、対応するフォトリソグラフィ工程も削減できるため、工程の簡略化が可能となる。
In addition, in order to reduce the number of photomasks and steps used in the photolithography process, the etching process may be performed using a resist mask formed by a multi-tone mask, which is an exposure mask in which the transmitted light has multiple intensities. good. A resist mask formed using a multi-tone mask has a shape with multiple film thicknesses, and the shape can be further modified by etching, so it can be used in multiple etching processes to process different patterns. . Therefore, resist masks corresponding to at least two or more different patterns can be formed using one multi-tone mask. Therefore, the number of exposure masks can be reduced, and the corresponding photolithography process can also be reduced, making it possible to simplify the process.

なお、導電膜のエッチングの際に、酸化物半導体積層403がエッチングされ、分断する
ことのないようエッチング条件を最適化することが望まれる。しかしながら、導電膜のみ
をエッチングし、酸化物半導体積層403を全くエッチングしないという条件を得ること
は難しく、導電膜のエッチングの際に酸化物半導体積層403は一部のみがエッチングさ
れ、溝部(凹部)を有する酸化物半導体積層403となることもある。
Note that during etching of the conductive film, it is desirable to optimize the etching conditions so that the oxide semiconductor stack 403 is not etched and divided. However, it is difficult to obtain a condition in which only the conductive film is etched and the oxide semiconductor stack 403 is not etched at all. When etching the conductive film, only a part of the oxide semiconductor stack 403 is etched, resulting in a groove (concave part). In some cases, the oxide semiconductor stack 403 has the following.

本実施の形態では、導電膜としてTi膜を用い、酸化物半導体積層403にはIn-Ga
-Zn系酸化物半導体を用いたので、エッチング液としてアンモニア過水(アンモニア、
水、過酸化水素水の混合液)を用いる。
In this embodiment, a Ti film is used as the conductive film, and the oxide semiconductor stack 403 is made of In-Ga.
- Since a Zn-based oxide semiconductor was used, ammonia peroxide (ammonia,
A mixture of water and hydrogen peroxide) is used.

以上の工程で、本実施の形態のトランジスタ440aが作製される(図2(D)参照)。
異なるエネルギーギャップを有する複数の酸化物半導体層(第1の酸化物半導体層101
及び第2の酸化物半導体層102)を用いた酸化物半導体積層403を用いることによっ
て、トランジスタ440a、440bの電気特性をより精度よく制御することができ、所
望の電気特性をトランジスタ440a、440bに付与することが可能となる。
Through the above steps, the transistor 440a of this embodiment is manufactured (see FIG. 2D).
A plurality of oxide semiconductor layers having different energy gaps (first oxide semiconductor layer 101
By using the oxide semiconductor stack 403 including the second oxide semiconductor layer 102), the electrical characteristics of the transistors 440a and 440b can be controlled with higher accuracy, and desired electrical characteristics can be imparted to the transistors 440a and 440b. It becomes possible to grant.

次いで、酸化物半導体積層403の一部に接する絶縁膜407を形成する(図2(E)参
照)。
Next, an insulating film 407 is formed in contact with part of the oxide semiconductor stack 403 (see FIG. 2E).

絶縁膜407は、プラズマCVD法、スパッタリング法、又は蒸着法等により成膜するこ
とができる。絶縁膜407は、代表的には酸化シリコン膜、酸化窒化シリコン膜、酸化窒
化アルミニウム膜、又は酸化ガリウム膜などの無機絶縁膜などを用いることができる。
The insulating film 407 can be formed by a plasma CVD method, a sputtering method, a vapor deposition method, or the like. As the insulating film 407, typically, an inorganic insulating film such as a silicon oxide film, a silicon oxynitride film, an aluminum oxynitride film, or a gallium oxide film can be used.

また、絶縁膜407として、酸化アルミニウム膜、酸化ハフニウム膜、酸化マグネシウム
膜、酸化ジルコニウム膜、酸化ランタン膜、酸化バリウム膜)、又は金属窒化物膜(例え
ば、窒化アルミニウム膜)も用いることができる。
Further, as the insulating film 407, an aluminum oxide film, a hafnium oxide film, a magnesium oxide film, a zirconium oxide film, a lanthanum oxide film, a barium oxide film), or a metal nitride film (for example, an aluminum nitride film) can also be used.

絶縁膜407は、単層でも積層でもよく、例えば酸化シリコン膜及び酸化アルミニウム膜
の積層を用いることができる。
The insulating film 407 may be a single layer or a laminated layer, and for example, a laminated layer of a silicon oxide film and an aluminum oxide film can be used.

酸化物半導体積層403上に設けられる絶縁膜407として用いることのできる酸化アル
ミニウム膜は、水素、水などの不純物、及び酸素の両方に対して膜を通過させない遮断効
果(ブロック効果)が高い。
An aluminum oxide film that can be used as the insulating film 407 provided over the oxide semiconductor stack 403 has a high blocking effect of preventing both impurities such as hydrogen and water from passing through the film, as well as oxygen.

従って、酸化アルミニウム膜は、作製工程中及び作製後において、変動要因となる水素、
水などの不純物の酸化物半導体積層403への混入、及び酸化物半導体を構成する主成分
材料である酸素の酸化物半導体積層403からの放出を防止する保護膜として機能する。
Therefore, during and after the fabrication process, the aluminum oxide film is exposed to hydrogen and
It functions as a protective film that prevents impurities such as water from entering the oxide semiconductor stack 403 and prevents oxygen, which is a main component of the oxide semiconductor, from being released from the oxide semiconductor stack 403.

絶縁膜407は、スパッタリング法など、絶縁膜407に水、水素等の不純物を混入させ
ない方法を適宜用いて形成することが好ましい。また、絶縁膜407において、酸化物半
導体積層403に接する絶縁膜は、酸素を過剰に含む膜とすると、酸化物半導体積層40
3への酸素の供給源となるために好ましい。
The insulating film 407 is preferably formed using an appropriate method such as a sputtering method that prevents impurities such as water and hydrogen from being mixed into the insulating film 407. Further, in the insulating film 407, if the insulating film in contact with the oxide semiconductor stack 403 is a film containing excess oxygen, the oxide semiconductor stack 403
This is preferable because it serves as a source of oxygen to 3.

本実施の形態では、絶縁膜407として膜厚100nmの酸化シリコン膜を、スパッタリ
ング法を用いて成膜する。酸化シリコン膜のスパッタリング法による成膜は、希ガス(代
表的にはアルゴン)雰囲気下、酸素雰囲気下、または希ガスと酸素の混合雰囲気下におい
て行うことができる。
In this embodiment, a silicon oxide film with a thickness of 100 nm is formed as the insulating film 407 using a sputtering method. The silicon oxide film can be formed by sputtering in a rare gas (typically argon) atmosphere, an oxygen atmosphere, or a mixed atmosphere of rare gas and oxygen.

また、絶縁膜407を積層とする場合、例えば、酸化物半導体積層403上にIn-Hf
-Zn系酸化物膜、酸化シリコン膜を順に積層してもよいし、酸化物半導体積層403上
にIn:Zr:Zn=1:1:1の原子比のIn-Zr-Zn系酸化物膜、酸化シリコン
膜を順に積層してもよいし、酸化物半導体積層403上にIn:Gd:Zn=1:1:1
の原子比のIn-Gd-Zn系酸化物膜、酸化シリコン膜を順に積層してもよい。
Further, when the insulating film 407 is formed into a stacked layer, for example, In--Hf
- A Zn-based oxide film and a silicon oxide film may be stacked in this order, or an In-Zr-Zn-based oxide film with an atomic ratio of In:Zr:Zn=1:1:1 may be stacked on the oxide semiconductor stack 403. , silicon oxide films may be stacked in order, or In:Gd:Zn=1:1:1 may be stacked on the oxide semiconductor stack 403.
An In--Gd--Zn-based oxide film and a silicon oxide film having an atomic ratio of 100% may be laminated in this order.

酸化物半導体膜の成膜時と同様に、絶縁膜407の成膜室内の残留水分を除去するために
は、吸着型の真空ポンプ(クライオポンプなど)を用いることが好ましい。クライオポン
プを用いて排気した成膜室で成膜した絶縁膜407に含まれる不純物の濃度を低減できる
。また、絶縁膜407の成膜室内の残留水分を除去するための排気手段としては、ターボ
分子ポンプにコールドトラップを加えたものであってもよい。
As in the case of forming the oxide semiconductor film, in order to remove residual moisture in the film formation chamber for the insulating film 407, it is preferable to use an adsorption-type vacuum pump (such as a cryopump). The concentration of impurities contained in the insulating film 407 formed in a film forming chamber evacuated using a cryopump can be reduced. Further, as an exhaust means for removing residual moisture in the film forming chamber of the insulating film 407, a turbo molecular pump with a cold trap added thereto may be used.

絶縁膜407を、成膜する際に用いるスパッタガスとしては、水素、水、水酸基又は水素
化物などの不純物が除去された高純度ガスを用いることが好ましい。
As the sputtering gas used to form the insulating film 407, it is preferable to use a high-purity gas from which impurities such as hydrogen, water, hydroxyl groups, or hydrides are removed.

また、図3(A)(B)に示すように、トランジスタ440c、440d上に層間絶縁膜
として、トランジスタ起因の表面凹凸を低減するために平坦化絶縁膜416を形成しても
よい。平坦化絶縁膜416としては、ポリイミド、アクリル樹脂、ベンゾシクロブテン系
樹脂、等の有機材料を用いることができる。また上記有機材料の他に、低誘電率材料(l
ow-k材料)等を用いることができる。なお、これらの材料で形成される絶縁膜を複数
積層させることで、平坦化絶縁膜416を形成してもよい。
Further, as shown in FIGS. 3A and 3B, a planarizing insulating film 416 may be formed as an interlayer insulating film over the transistors 440c and 440d in order to reduce surface unevenness caused by the transistors. As the planarization insulating film 416, an organic material such as polyimide, acrylic resin, benzocyclobutene resin, or the like can be used. In addition to the above organic materials, low dielectric constant materials (l
OW-K material), etc. can be used. Note that the planarization insulating film 416 may be formed by stacking a plurality of insulating films made of these materials.

また、絶縁膜407、及び平坦化絶縁膜416にソース電極層405a、ドレイン電極層
405bに達する開口を形成し、開口にソース電極層405a、ドレイン電極層405b
と電気的に接続する配線層を形成してもよい。配線層を用いて他のトランジスタと接続さ
せ、様々な回路を構成することができる。
Further, openings reaching the source electrode layer 405a and the drain electrode layer 405b are formed in the insulating film 407 and the planarizing insulating film 416, and the source electrode layer 405a and the drain electrode layer 405b are formed in the openings.
A wiring layer may be formed to be electrically connected to. Various circuits can be configured by connecting it to other transistors using a wiring layer.

ソース電極層405a、ドレイン電極層405bはソース電極層405a、ドレイン電極
層405bに達する開口を形成する際のエッチング工程により、一部オーバーエッチング
され、除去されることがある。ソース電極層及びドレイン電極層を積層構造とし、開口形
成時のエッチングストッパーとしても機能する導電膜をソース電極層及びドレイン電極層
として設けることができる。
The source electrode layer 405a and the drain electrode layer 405b may be partially over-etched and removed during the etching process when forming openings that reach the source electrode layer 405a and the drain electrode layer 405b. The source electrode layer and the drain electrode layer can have a laminated structure, and a conductive film that also functions as an etching stopper during opening formation can be provided as the source electrode layer and the drain electrode layer.

図3(A)で示すように、トランジスタ440cはソース電極層及びドレイン電極層を積
層構造とする例であり、ソース電極層としてソース電極層404a及びソース電極層40
5a、ドレイン電極層としてドレイン電極層404b及びドレイン電極層405bが積層
されている。トランジスタ440cのように、平坦化絶縁膜416、絶縁膜407、及び
ソース電極層405a、ドレイン電極層405bにソース電極層404a、ドレイン電極
層404bに達する開口を形成し、開口にソース電極層404a、ドレイン電極層404
bと電気的に接続する配線層465a、配線層465bを形成してもよい。
As shown in FIG. 3A, the transistor 440c is an example in which a source electrode layer and a drain electrode layer have a stacked structure, and the source electrode layer 404a and the source electrode layer 40 serve as the source electrode layer.
5a, a drain electrode layer 404b and a drain electrode layer 405b are laminated as drain electrode layers. Like the transistor 440c, openings reaching the source electrode layer 404a and drain electrode layer 404b are formed in the planarizing insulating film 416, the insulating film 407, the source electrode layer 405a, and the drain electrode layer 405b, and the source electrode layer 404a and the drain electrode layer 404b are formed in the opening. Drain electrode layer 404
A wiring layer 465a and a wiring layer 465b electrically connected to the wiring layer 465b may be formed.

トランジスタ440cにおいて、ソース電極層404a、ドレイン電極層404bは開口
形成時においてエッチングストッパーとしても機能する。ソース電極層404a、ドレイ
ン電極層404bとしてはタングステン膜や窒化タンタル膜など、ソース電極層405a
、ドレイン電極層405bとしては銅膜やアルミニウム膜などをそれぞれ用いることがで
きる。
In the transistor 440c, the source electrode layer 404a and the drain electrode layer 404b also function as an etching stopper when forming an opening. The source electrode layer 404a and the drain electrode layer 404b are made of a tungsten film, a tantalum nitride film, etc.
, a copper film, an aluminum film, or the like can be used as the drain electrode layer 405b.

また、図3(B)のトランジスタ440dで示すように、ソース電極層405a、ドレイ
ン電極層405bを酸化物半導体積層403上のみに設け、酸化物半導体積層403の側
面に接しない構成としてもよい。トランジスタ440dで示す構成は、多階調マスクによ
って形成されたレジストマスクを用いてエッチング工程を行うことでも作製することがで
きる。このような構成とすることで、トランジスタ440dのソース電極層405aおよ
びドレイン電極層405bのリーク電流(寄生チャネル)をさらに低減することができる
Alternatively, as shown in a transistor 440d in FIG. 3B, the source electrode layer 405a and the drain electrode layer 405b may be provided only over the oxide semiconductor stack 403 and not in contact with the side surfaces of the oxide semiconductor stack 403. The structure shown by the transistor 440d can also be manufactured by performing an etching process using a resist mask formed by a multi-tone mask. With this structure, leakage current (parasitic channel) of the source electrode layer 405a and drain electrode layer 405b of the transistor 440d can be further reduced.

配線層465a、配線層465bはゲート電極層401、ソース電極層405a、ドレイ
ン電極層405bと同様の材料及び方法を用いて形成することができる。例えば、配線層
465a、配線層465bとして窒化タンタル膜と銅膜との積層、又は窒化タンタル膜と
タングステン膜との積層などを用いることができる。
The wiring layer 465a and the wiring layer 465b can be formed using the same material and method as the gate electrode layer 401, the source electrode layer 405a, and the drain electrode layer 405b. For example, a stack of a tantalum nitride film and a copper film, a stack of a tantalum nitride film and a tungsten film, or the like can be used as the wiring layer 465a and the wiring layer 465b.

高純度化され、酸素欠損が補填された酸化物半導体積層403は、水素、水などの不純物
が十分に除去されており、酸化物半導体積層403中の水素濃度は5×1019atom
s/cm以下、好ましくは5×1018atoms/cm以下である。なお、酸化物
半導体積層403中の水素濃度は、二次イオン質量分析法(SIMS:Secondar
y Ion Mass Spectrometry)で測定されるものである。
In the oxide semiconductor stack 403 that has been highly purified and has oxygen vacancies filled, impurities such as hydrogen and water have been sufficiently removed, and the hydrogen concentration in the oxide semiconductor stack 403 is 5×10 19 atoms.
s/cm 3 or less, preferably 5×10 18 atoms/cm 3 or less. Note that the hydrogen concentration in the oxide semiconductor stack 403 is determined by secondary ion mass spectrometry (SIMS).
y ion mass spectrometry).

本実施の形態を用いて作製した、高純度化し、酸素欠損を補填する酸素を過剰に含む酸化
物半導体積層403を用いたトランジスタ440aは、オフ状態における電流値(オフ電
流値)を、チャネル幅1μm当たり室温にて100zA/μm(1zA(ゼプトアンペア
)は1×10-21A)以下、好ましくは10zA/μm以下、より好ましくは1zA/
μm以下、さらに好ましくは100yA/μm以下レベルにまで低くすることができる。
In the transistor 440a, which is manufactured using this embodiment and includes a highly purified oxide semiconductor stack 403 containing excess oxygen to compensate for oxygen vacancies, the current value in the off state (off current value) is 100zA/μm (1zA (zeptoampere) is 1×10 -21 A) or less, preferably 10zA/μm or less, more preferably 1zA/μm at room temperature per μm.
It can be lowered to a level of 100 yA/μm or less, more preferably 100 yA/μm or less.

以上のように、高機能、高信頼性、又は低消費電力など、種々の目的に応じた半導体装置
を提供することができる。
As described above, it is possible to provide semiconductor devices suitable for various purposes such as high functionality, high reliability, and low power consumption.

(実施の形態2)
本実施の形態では、半導体装置及び半導体装置の作製方法の他の一形態を、図7、図8及
び図11を用いて説明する。上記実施の形態と同一部分又は同様な機能を有する部分、及
び工程は、上記実施の形態と同様に行うことができ、繰り返しの説明は省略する。また同
じ箇所の詳細な説明は省略する。
(Embodiment 2)
In this embodiment, another embodiment of a semiconductor device and a method for manufacturing the semiconductor device will be described with reference to FIGS. 7, 8, and 11. The same parts or parts and steps having similar functions as those in the above embodiment can be performed in the same manner as in the above embodiment, and repeated explanations will be omitted. Further, detailed explanations of the same parts will be omitted.

本実施の形態では酸化物半導体積層において、上層の酸化物半導体層が下層の酸化物半導
体層の側面を覆う構造とする例を示す。
In this embodiment, an example of a structure in which an upper oxide semiconductor layer covers a side surface of a lower oxide semiconductor layer in an oxide semiconductor stack is shown.

図7(A)乃至(C)に示すトランジスタ340は、ボトムゲート構造を有する逆スタガ
型のトランジスタの一例である。図7(A)は平面図であり、図7(A)中の一点鎖線X
-Yで切断した断面が図7(B)に相当し、図7(A)中の一点鎖線V-Wで切断した断
面が図7(C)に相当する。
The transistor 340 illustrated in FIGS. 7A to 7C is an example of an inverted staggered transistor having a bottom gate structure. FIG. 7(A) is a plan view, and the dashed-dot line X in FIG. 7(A)
The cross section taken along the line -Y corresponds to FIG. 7(B), and the cross section taken along the dashed line VW in FIG. 7(A) corresponds to FIG. 7(C).

チャネル長方向の断面図である図7(B)に示すように、トランジスタ340は、絶縁表
面を有する基板400上に順に設けられた、ゲート電極層401、ゲート絶縁膜402、
エネルギーギャップの異なる第1の酸化物半導体層101及び第2の酸化物半導体層10
2を含む酸化物半導体積層403、ソース電極層405a、ドレイン電極層405bを有
する。なお、トランジスタ340上には、絶縁膜407が形成されている。
As shown in FIG. 7B, which is a cross-sectional view in the channel length direction, the transistor 340 includes a gate electrode layer 401, a gate insulating film 402, and a gate insulating film 402, which are sequentially provided on a substrate 400 having an insulating surface.
First oxide semiconductor layer 101 and second oxide semiconductor layer 10 with different energy gaps
2, a source electrode layer 405a, and a drain electrode layer 405b. Note that an insulating film 407 is formed over the transistor 340.

第1の酸化物半導体層101は、ゲート絶縁膜402上に接して形成され、第2の酸化物
半導体層102は、第1の酸化物半導体層101の上面及び側面を覆って形成され、第2
の酸化物半導体層102の周縁部は、ゲート絶縁膜402と接する構造としている。第1
の酸化物半導体層101がソース電極層405aまたはドレイン電極層405bと接して
いない構造とすることで、トランジスタ340のソース電極層405aおよびドレイン電
極層405bのリーク電流(寄生チャネル)の発生を低減している。
The first oxide semiconductor layer 101 is formed in contact with the gate insulating film 402, and the second oxide semiconductor layer 102 is formed to cover the top and side surfaces of the first oxide semiconductor layer 101. 2
The peripheral portion of the oxide semiconductor layer 102 is in contact with the gate insulating film 402. 1st
The structure in which the oxide semiconductor layer 101 is not in contact with the source electrode layer 405a or the drain electrode layer 405b reduces the occurrence of leakage current (parasitic channel) in the source electrode layer 405a and the drain electrode layer 405b of the transistor 340. ing.

図7(C)は、チャネル幅方向の断面図であり、図7(B)と同様に第1の酸化物半導体
層101の端部(側面)が第2の酸化物半導体層102の端部で覆われ、第1の酸化物半
導体層101が絶縁膜407と接していない構造としている。
FIG. 7(C) is a cross-sectional view in the channel width direction, and similarly to FIG. 7(B), the end (side surface) of the first oxide semiconductor layer 101 is the end of the second oxide semiconductor layer 102. The structure is such that the first oxide semiconductor layer 101 is not in contact with the insulating film 407.

第1の酸化物半導体層101及び第2の酸化物半導体層102はエネルギーギャップが異
なる。本実施の形態では、第1の酸化物半導体層101及び第2の酸化物半導体層102
は組成が異なり、第2の酸化物半導体層102のエネルギーギャップが第1の酸化物半導
体層101よりエネルギーギャップが大きい例である。
The first oxide semiconductor layer 101 and the second oxide semiconductor layer 102 have different energy gaps. In this embodiment, the first oxide semiconductor layer 101 and the second oxide semiconductor layer 102
This is an example in which the compositions are different and the energy gap of the second oxide semiconductor layer 102 is larger than that of the first oxide semiconductor layer 101.

図8(A)乃至(C)に酸化物半導体積層403として第1の酸化物半導体層101、第
2の酸化物半導体層102、及び第3の酸化物半導体層103の3層構造の積層を用いた
トランジスタ380aを示す。
8A to 8C show a three-layer stacked structure of a first oxide semiconductor layer 101, a second oxide semiconductor layer 102, and a third oxide semiconductor layer 103 as an oxide semiconductor stack 403. A transistor 380a used is shown.

図8(A)乃至(C)に示すトランジスタ380aは、ボトムゲート構造を有する逆スタ
ガ型のトランジスタの一例である。図8(A)は平面図であり、図8(A)中の一点鎖線
X-Yで切断した断面が図8(B)に相当し、図8(A)中の一点鎖線V-Wで切断した
断面が図8(C)に相当する。
A transistor 380a illustrated in FIGS. 8A to 8C is an example of an inverted staggered transistor having a bottom gate structure. FIG. 8(A) is a plan view, and the cross section cut along the dashed-dotted line XY in FIG. 8(A) corresponds to FIG. 8(B), and the cross-section cut along the dashed-dotted line The cut cross section corresponds to FIG. 8(C).

チャネル長方向の断面図である図8(B)に示すように、トランジスタ380aは、絶縁
表面を有する基板400上に順に設けられた、ゲート電極層401、ゲート絶縁膜402
、第1の酸化物半導体層101、第2の酸化物半導体層102、及び第3の酸化物半導体
層103を含む酸化物半導体積層403、ソース電極層405a、ドレイン電極層405
bを有する。トランジスタ380a上には、絶縁膜407が形成されている。
As shown in FIG. 8B, which is a cross-sectional view in the channel length direction, the transistor 380a includes a gate electrode layer 401 and a gate insulating film 402, which are sequentially provided on a substrate 400 having an insulating surface.
, an oxide semiconductor stack 403 including a first oxide semiconductor layer 101, a second oxide semiconductor layer 102, and a third oxide semiconductor layer 103, a source electrode layer 405a, and a drain electrode layer 405.
It has b. An insulating film 407 is formed over the transistor 380a.

第1の酸化物半導体層101は、ゲート絶縁膜402上に接して形成され、第1の酸化物
半導体層101上に第2の酸化物半導体層102が積層される。第3の酸化物半導体層1
03は、第1の酸化物半導体層101の側面並びに第2の酸化物半導体層102の上面及
び側面を覆って形成され、第3の酸化物半導体層103の周縁部は、ゲート絶縁膜402
と接する構造としている。第1の酸化物半導体層101及び第2の酸化物半導体層102
をソース電極層405aまたはドレイン電極層405bと接していない構造とすることで
、トランジスタ380aのソース電極層405aおよびドレイン電極層405bのリーク
電流(寄生チャネル)の発生を低減している。
The first oxide semiconductor layer 101 is formed in contact with the gate insulating film 402, and the second oxide semiconductor layer 102 is stacked over the first oxide semiconductor layer 101. Third oxide semiconductor layer 1
03 is formed to cover the side surfaces of the first oxide semiconductor layer 101 and the top and side surfaces of the second oxide semiconductor layer 102, and the peripheral portion of the third oxide semiconductor layer 103 is formed by the gate insulating film 402.
The structure is in contact with the First oxide semiconductor layer 101 and second oxide semiconductor layer 102
By having a structure in which the transistor 380a is not in contact with the source electrode layer 405a or the drain electrode layer 405b, generation of leakage current (parasitic channel) in the source electrode layer 405a and the drain electrode layer 405b of the transistor 380a is reduced.

図8(C)は、チャネル幅方向の断面図であり、図8(B)と同様に第1の酸化物半導体
層101及び第2の酸化物半導体層102の端部(側面)が第3の酸化物半導体層103
の端部で覆われ、第1の酸化物半導体層101及び第2の酸化物半導体層102が絶縁膜
407と接していない構造としている。
FIG. 8C is a cross-sectional view in the channel width direction, and similarly to FIG. 8B, the ends (side surfaces) of the first oxide semiconductor layer 101 and the second oxide semiconductor layer 102 are oxide semiconductor layer 103 of
The structure is such that the first oxide semiconductor layer 101 and the second oxide semiconductor layer 102 are not in contact with the insulating film 407 .

第1の酸化物半導体層101及び第2の酸化物半導体層102はエネルギーギャップが異
なる。本実施の形態では第2の酸化物半導体層102のエネルギーギャップが第1の酸化
物半導体層101よりエネルギーギャップが小さい例である。
The first oxide semiconductor layer 101 and the second oxide semiconductor layer 102 have different energy gaps. This embodiment is an example in which the energy gap of the second oxide semiconductor layer 102 is smaller than that of the first oxide semiconductor layer 101.

また、第2の酸化物半導体層102及び第3の酸化物半導体層103はエネルギーギャッ
プが異なる。本実施の形態では第3の酸化物半導体層103のエネルギーギャップが第2
の酸化物半導体層102よりエネルギーギャップが大きい例である。
Further, the second oxide semiconductor layer 102 and the third oxide semiconductor layer 103 have different energy gaps. In this embodiment, the energy gap of the third oxide semiconductor layer 103 is the second
This is an example in which the energy gap is larger than that of the oxide semiconductor layer 102.

なお、本実施の形態においては、第3の酸化物半導体層103のエネルギーギャップは、
第1の酸化物半導体層101のエネルギーギャップとほぼ同じである。
Note that in this embodiment, the energy gap of the third oxide semiconductor layer 103 is
This is approximately the same as the energy gap of the first oxide semiconductor layer 101.

例えば、トランジスタ380aにおける第1の酸化物半導体層101としてIn-Ga-
Zn系酸化物膜(エネルギーギャップ3.2eV)、第2の酸化物半導体層102として
はIn-Sn-Zn系酸化物膜(エネルギーギャップ2.8eV)、第3の酸化物半導体
層103としてIn-Ga-Zn系酸化物膜(エネルギーギャップ3.2eV)を用いる
For example, as the first oxide semiconductor layer 101 in the transistor 380a, In-Ga-
A Zn-based oxide film (energy gap 3.2 eV), an In-Sn-Zn-based oxide film (energy gap 2.8 eV) as the second oxide semiconductor layer 102, and an In-Sn-based oxide film (energy gap 2.8 eV) as the third oxide semiconductor layer 103. - A Ga-Zn based oxide film (energy gap 3.2 eV) is used.

また、トランジスタ380aのような3層積層の酸化物半導体積層403としては、第1
の酸化物半導体層101としてIn-Ga-Zn系酸化物膜、第2の酸化物半導体層10
2としてはIn-Zn系酸化物膜、第3の酸化物半導体層103としてIn-Ga-Zn
系酸化物膜の積層、第1の酸化物半導体層101としてGa-Zn系酸化物膜、第2の酸
化物半導体層102としてはIn-Sn-Zn系酸化物膜、第3の酸化物半導体層103
としてGa-Zn系酸化物膜の積層、第1の酸化物半導体層101としてGa-Zn系酸
化物膜、第2の酸化物半導体層102としてはIn-Zn系酸化物膜、第3の酸化物半導
体層103としてGa-Zn系酸化物膜の積層、第1の酸化物半導体層101としてIn
-Ga系酸化物膜、第2の酸化物半導体層102としてはIn-Ga-Zn系酸化物膜、
第3の酸化物半導体層103としてIn-Ga系酸化物膜の積層、又は第1の酸化物半導
体層101としてIn-Ga-Zn系酸化物膜、第2の酸化物半導体層102としては酸
化インジウム(In系酸化物)膜、第3の酸化物半導体層103としてIn-Ga-Zn
系酸化物膜の積層などを用いることができる。
Further, as the three-layer oxide semiconductor stack 403 like the transistor 380a, the first
An In-Ga-Zn-based oxide film is used as the oxide semiconductor layer 101 of the second oxide semiconductor layer 10.
2 is an In-Zn based oxide film, and the third oxide semiconductor layer 103 is an In-Ga-Zn film.
a Ga-Zn-based oxide film as the first oxide semiconductor layer 101, an In-Sn-Zn-based oxide film as the second oxide semiconductor layer 102, and a third oxide semiconductor. layer 103
The first oxide semiconductor layer 101 is a Ga-Zn oxide film, the second oxide semiconductor layer 102 is an In-Zn oxide film, and the third oxide semiconductor layer 102 is an In-Zn oxide film. The semiconductor layer 103 is a stack of Ga--Zn oxide films, and the first oxide semiconductor layer 101 is In
-Ga-based oxide film, In--Ga--Zn-based oxide film as the second oxide semiconductor layer 102,
The third oxide semiconductor layer 103 is a stack of In-Ga-based oxide films, the first oxide semiconductor layer 101 is an In-Ga-Zn-based oxide film, and the second oxide semiconductor layer 102 is an oxide film. Indium (In-based oxide) film, In-Ga-Zn as the third oxide semiconductor layer 103
A stack of oxide films or the like can be used.

また、第2の酸化物半導体層102の周囲を第1の酸化物半導体層101と第3の酸化物
半導体層103で覆うことで、第2の酸化物半導体層102の酸素欠損の増加を抑え、ト
ランジスタ380aのしきい値電圧をゼロに近づける構成とすることができる。さらには
、第2の酸化物半導体層102が埋め込みチャネルとなることでチャネル形成領域を絶縁
膜界面から遠ざけることができ、これによりキャリアの界面散乱が低減され、高い電界効
果移動度を実現することができる。
Furthermore, by covering the second oxide semiconductor layer 102 with the first oxide semiconductor layer 101 and the third oxide semiconductor layer 103, an increase in oxygen vacancies in the second oxide semiconductor layer 102 is suppressed. , the threshold voltage of the transistor 380a can be made close to zero. Furthermore, since the second oxide semiconductor layer 102 serves as a buried channel, the channel formation region can be moved away from the insulating film interface, thereby reducing interfacial scattering of carriers and achieving high field effect mobility. I can do it.

図11(A)に示すトランジスタ380bは、第1の酸化物半導体層101及び第2の酸
化物半導体層102を島状に加工する際に、同じマスクを用いて(或いは、加工によって
作製した島状の第1の酸化物半導体層101及び第2の酸化物半導体層102をマスクと
して)ゲート絶縁膜402の一部をエッチングして薄くした構成である。トランジスタ3
80bにおいてゲート絶縁膜402は、島状の第1の酸化物半導体層101及び第2の酸
化物半導体層102と重畳する領域は、その他の領域(重畳しない領域)と比較して厚い
膜厚を有している。第1の酸化物半導体層101及び第2の酸化物半導体層102の島状
への加工の際に、ゲート絶縁膜402の一部までエッチングすることによって第1の酸化
物半導体層101の残渣などのエッチング残りを除去し、リーク電流の発生を低減するこ
とができる。
The transistor 380b illustrated in FIG. 11A uses the same mask when processing the first oxide semiconductor layer 101 and the second oxide semiconductor layer 102 into an island shape (or an island formed by processing). In this structure, a part of the gate insulating film 402 is etched and made thin using the first oxide semiconductor layer 101 and the second oxide semiconductor layer 102 as masks. transistor 3
In 80b, the gate insulating film 402 is thicker in a region overlapping with the island-shaped first oxide semiconductor layer 101 and second oxide semiconductor layer 102 than in other regions (regions that do not overlap). have. When processing the first oxide semiconductor layer 101 and the second oxide semiconductor layer 102 into island shapes, by etching up to part of the gate insulating film 402, residues of the first oxide semiconductor layer 101, etc. It is possible to remove etching residue and reduce the occurrence of leakage current.

また、図11(B)に示すトランジスタ380cは、3回のフォトリソグラフィ工程によ
り、酸化物半導体積層403を形成した構成である。トランジスタ380cに含まれる酸
化物半導体積層403は、第1の酸化物半導体膜を成膜後、第1のマスクを用いて島状の
第1の酸化物半導体層101を形成し、島状の第1の酸化物半導体層101上に第2の酸
化物半導体膜を成膜後、第2のマスクを用いて島状の第2の酸化物半導体層102を形成
し、島状の第1の酸化物半導体層101及び第2の酸化物半導体層102上に第3の酸化
物半導体膜を成膜後、第3のマスクを用いて島状の第3の酸化物半導体層103に加工す
ることで、形成される。
Further, a transistor 380c illustrated in FIG. 11B has a structure in which an oxide semiconductor stack 403 is formed through three photolithography steps. The oxide semiconductor stack 403 included in the transistor 380c is formed by forming an island-shaped first oxide semiconductor layer 101 using a first mask after forming a first oxide semiconductor film, and forming an island-shaped first oxide semiconductor layer 101 using a first mask. After forming a second oxide semiconductor film over the first oxide semiconductor layer 101, an island-shaped second oxide semiconductor layer 102 is formed using a second mask, and the island-shaped first oxide semiconductor layer 102 is formed using a second mask. A third oxide semiconductor film is formed over the semiconductor layer 101 and the second oxide semiconductor layer 102, and then processed into an island-shaped third oxide semiconductor layer 103 using a third mask. ,It is formed.

なお、トランジスタ380cは、第1の酸化物半導体層101の端面が、第2の酸化物半
導体層102の側面から突出した構造であり、第3の酸化物半導体層103が第1の酸化
物半導体層101の上面の一部と接する構成とした例である。
Note that the transistor 380c has a structure in which the end surface of the first oxide semiconductor layer 101 protrudes from the side surface of the second oxide semiconductor layer 102, and the third oxide semiconductor layer 103 is formed on the side surface of the first oxide semiconductor layer 102. This is an example of a structure in which it is in contact with a part of the upper surface of the layer 101.

また、半導体装置の他の一形態として図9(B)にボトムゲート構造を有するチャネル保
護型のトランジスタ418を示す。
Further, as another form of a semiconductor device, FIG. 9B shows a channel protection type transistor 418 having a bottom gate structure.

チャネル長方向の断面図である図9(B)に示すように、トランジスタ418は、絶縁表
面を有する基板400上に順に設けられた、ゲート電極層401、ゲート絶縁膜402、
第1の酸化物半導体層101、第2の酸化物半導体層102、及び第3の酸化物半導体層
103を含む酸化物半導体積層403、チャネル保護膜として機能する絶縁膜427、ソ
ース電極層405a、ドレイン電極層405bを有する。トランジスタ418上には、絶
縁膜409が形成されている。
As shown in FIG. 9B, which is a cross-sectional view in the channel length direction, the transistor 418 includes a gate electrode layer 401, a gate insulating film 402, and a gate insulating film 402, which are provided in this order over a substrate 400 having an insulating surface.
An oxide semiconductor stack 403 including a first oxide semiconductor layer 101, a second oxide semiconductor layer 102, and a third oxide semiconductor layer 103, an insulating film 427 functioning as a channel protection film, a source electrode layer 405a, It has a drain electrode layer 405b. An insulating film 409 is formed over the transistor 418.

第1の酸化物半導体層101は、ゲート絶縁膜402上に接して形成され、第1の酸化物
半導体層101上に第2の酸化物半導体層102が積層される。第3の酸化物半導体層1
03は、第1の酸化物半導体層101の側面並びに第2の酸化物半導体層102の上面及
び側面を覆って形成され、第3の酸化物半導体層103の周縁部は、ゲート絶縁膜402
と接する構造としている。第1の酸化物半導体層101及び第2の酸化物半導体層102
をソース電極層405aまたはドレイン電極層405bと接していない構造とすることで
、トランジスタ418のソース電極層405aおよびドレイン電極層405bのリーク電
流(寄生チャネル)の発生を低減している。
The first oxide semiconductor layer 101 is formed in contact with the gate insulating film 402, and the second oxide semiconductor layer 102 is stacked over the first oxide semiconductor layer 101. Third oxide semiconductor layer 1
03 is formed to cover the side surfaces of the first oxide semiconductor layer 101 and the top and side surfaces of the second oxide semiconductor layer 102, and the peripheral portion of the third oxide semiconductor layer 103 is formed by the gate insulating film 402.
The structure is in contact with the First oxide semiconductor layer 101 and second oxide semiconductor layer 102
By having a structure in which the transistor 418 is not in contact with the source electrode layer 405a or the drain electrode layer 405b, generation of leakage current (parasitic channel) in the source electrode layer 405a and the drain electrode layer 405b of the transistor 418 is reduced.

また、半導体装置の他の一形態として図10(B)にボトムゲート構造のトランジスタ4
38を示す。
Further, as another form of the semiconductor device, a bottom gate structure transistor 4 is shown in FIG. 10(B).
38 is shown.

図10(B)に示すように、トランジスタ438は、絶縁表面を有する基板400上に順
に設けられたゲート電極層401、ゲート絶縁膜402、ソース電極層405a、ドレイ
ン電極層405b、第1の酸化物半導体層101、第2の酸化物半導体層102、及び第
3の酸化物半導体層103を含む酸化物半導体積層403を有する。トランジスタ438
上には、絶縁膜407が形成されている。
As shown in FIG. 10B, the transistor 438 includes a gate electrode layer 401, a gate insulating film 402, a source electrode layer 405a, a drain electrode layer 405b, and a first oxide layer that are provided in this order over the substrate 400 having an insulating surface. The oxide semiconductor stack 403 includes an oxide semiconductor layer 101, a second oxide semiconductor layer 102, and a third oxide semiconductor layer 103. transistor 438
An insulating film 407 is formed thereon.

トランジスタ438は、ソース電極層405a及びドレイン電極層405b上に第1の酸
化物半導体層101、第2の酸化物半導体層102、及び第3の酸化物半導体層103を
含む酸化物半導体積層403が設けられる構造である。第1の酸化物半導体層101、第
2の酸化物半導体層102、及び第3の酸化物半導体層103のうち少なくとも一は該エ
ネルギーギャップが異なる。
The transistor 438 includes an oxide semiconductor stack 403 including the first oxide semiconductor layer 101, the second oxide semiconductor layer 102, and the third oxide semiconductor layer 103 over the source electrode layer 405a and the drain electrode layer 405b. It is a structure provided. At least one of the first oxide semiconductor layer 101, the second oxide semiconductor layer 102, and the third oxide semiconductor layer 103 has a different energy gap.

トランジスタ438において、第1の酸化物半導体層101は、ソース電極層405a及
びドレイン電極層405b上に接して形成され、第1の酸化物半導体層101上に第2の
酸化物半導体層102が積層される。第3の酸化物半導体層103は、第1の酸化物半導
体層101の側面並びに第2の酸化物半導体層102の上面及び側面を覆って形成され、
第3の酸化物半導体層103の周縁部は、ソース電極層405a及びドレイン電極層40
5bと接する構造としている。
In the transistor 438, the first oxide semiconductor layer 101 is formed in contact with the source electrode layer 405a and the drain electrode layer 405b, and the second oxide semiconductor layer 102 is stacked over the first oxide semiconductor layer 101. be done. The third oxide semiconductor layer 103 is formed to cover the side surfaces of the first oxide semiconductor layer 101 and the top and side surfaces of the second oxide semiconductor layer 102,
The periphery of the third oxide semiconductor layer 103 includes the source electrode layer 405a and the drain electrode layer 40.
5b.

このように、積層する酸化物半導体層の形状は、酸化物半導体層ごとに異なる形状として
もよく、酸化物半導体積層は種々の形状及び構造を選択することができる。
In this way, the shapes of the stacked oxide semiconductor layers may be different for each oxide semiconductor layer, and various shapes and structures can be selected for the stacked oxide semiconductor layers.

以上のように、高機能、高信頼性、又は低消費電力など、種々の目的に応じた半導体装置
を提供することができる。
As described above, it is possible to provide semiconductor devices suitable for various purposes such as high functionality, high reliability, and low power consumption.

本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。 This embodiment can be implemented in combination with other embodiments as appropriate.

(実施の形態3)
本実施の形態では、半導体装置及び半導体装置の作製方法の他の一形態を、図5を用いて
説明する。上記実施の形態と同一部分又は同様な機能を有する部分、及び工程は、上記実
施の形態と同様に行うことができ、繰り返しの説明は省略する。また同じ箇所の詳細な説
明は省略する。
(Embodiment 3)
In this embodiment, another embodiment of a semiconductor device and a method for manufacturing the semiconductor device will be described with reference to FIGS. The same parts or parts and steps having similar functions as those in the above embodiment can be performed in the same manner as in the above embodiment, and repeated explanations will be omitted. Further, detailed explanations of the same parts will be omitted.

本実施の形態では、開示する発明に係る半導体装置の作製方法において、脱水化又は脱水
素化処理を行った酸化物半導体積層に、酸素(少なくとも、酸素ラジカル、酸素原子、酸
素イオン、のいずれかを含む)を導入して膜中に酸素を供給する例を示す。
In this embodiment, in the method for manufacturing a semiconductor device according to the disclosed invention, oxygen (at least one of oxygen radicals, oxygen atoms, and oxygen ions) is added to an oxide semiconductor stack that has been subjected to dehydration or dehydrogenation treatment. An example of supplying oxygen into the film by introducing oxygen (including

脱水化又は脱水素化処理によって、酸化物半導体を構成する主成分材料である酸素が同時
に脱離して減少してしまうおそれがある。酸化物半導体積層において、酸素が脱離した箇
所では酸素欠損が存在し、該酸素欠損に起因してトランジスタの電気特性変動を招くドナ
ー準位が生じてしまう。
Due to the dehydration or dehydrogenation treatment, oxygen, which is the main component of the oxide semiconductor, may be simultaneously desorbed and reduced. In the oxide semiconductor stack, oxygen vacancies exist at locations where oxygen is desorbed, and the oxygen vacancies generate donor levels that cause changes in the electrical characteristics of the transistor.

よって、脱水化又は脱水素化処理を行った酸化物半導体積層に、酸素を供給することが好
ましい。酸化物半導体積層へ酸素を供給することにより、膜中の酸素欠損を補填すること
ができる。該酸化物半導体積層をトランジスタに用いることで、酸素欠損に起因するトラ
ンジスタのしきい値電圧Vthのばらつき、しきい値電圧のシフトΔVthを低減するこ
とができる。また、しきい値電圧をプラスシフトさせ、トランジスタをノーマリーオフ化
することもできる。
Therefore, it is preferable to supply oxygen to the oxide semiconductor stack that has been subjected to dehydration or dehydrogenation treatment. By supplying oxygen to the oxide semiconductor stack, oxygen vacancies in the film can be compensated for. By using the oxide semiconductor stack in a transistor, variations in the threshold voltage Vth of the transistor due to oxygen vacancies and a shift ΔVth in the threshold voltage can be reduced. Furthermore, the threshold voltage can be shifted positively to make the transistor normally off.

図5(A)は、図2(C)と対応しており、絶縁表面を有する基板400上に、ゲート電
極層401、ゲート絶縁膜402、エネルギーギャップの異なる第1の酸化物半導体層1
01及び第2の酸化物半導体層102を含む酸化物半導体積層403が形成されている。
5A corresponds to FIG. 2C, in which a gate electrode layer 401, a gate insulating film 402, and a first oxide semiconductor layer 1 having a different energy gap are formed over a substrate 400 having an insulating surface.
An oxide semiconductor stack 403 including oxide semiconductor layer 01 and second oxide semiconductor layer 102 is formed.

次に、酸化物半導体積層403に酸素431(少なくとも、酸素ラジカル、酸素原子、酸
素イオン、のいずれかを含む)を導入して、第1の酸化物半導体層101及び第2の酸化
物半導体層102を含む酸化物半導体積層403に、酸素過剰領域111、112を形成
し、酸素の供給を行う(図5(B)参照)。
Next, oxygen 431 (containing at least one of oxygen radicals, oxygen atoms, and oxygen ions) is introduced into the oxide semiconductor stack 403 to form the first oxide semiconductor layer 101 and the second oxide semiconductor layer. Oxygen-excess regions 111 and 112 are formed in the oxide semiconductor stack 403 including the oxide semiconductor layer 102, and oxygen is supplied thereto (see FIG. 5B).

なお、酸素過剰領域111、112は、酸化物半導体が結晶状態における化学量論的組成
比に対し、酸素の含有量が過剰な領域が、少なくとも一部含まれている領域とする。酸素
過剰領域111、112に供給された酸素431によって、第1の酸化物半導体層101
及び第2の酸化物半導体層102を含む酸化物半導体積層403中に存在する酸素欠損を
補填することができる。
Note that the oxygen-excess regions 111 and 112 are regions in which at least part of the oxide semiconductor contains an excess amount of oxygen relative to the stoichiometric composition ratio when the oxide semiconductor is in a crystalline state. The oxygen 431 supplied to the oxygen-excess regions 111 and 112 causes the first oxide semiconductor layer 101 to
In addition, oxygen vacancies present in the oxide semiconductor stack 403 including the second oxide semiconductor layer 102 can be compensated for.

ゲート絶縁膜402、酸素過剰領域111、112を有する酸化物半導体積層403上に
ソース電極層405a、ドレイン電極層405bを形成し、トランジスタ443aを作製
する(図5(C)参照)。
A source electrode layer 405a and a drain electrode layer 405b are formed over the oxide semiconductor stack 403 including the gate insulating film 402 and the oxygen-excess regions 111 and 112, and a transistor 443a is manufactured (see FIG. 5C).

なお、酸素431の導入工程は、ソース電極層405a、ドレイン電極層405bの形成
後に行うこともできる。図5(D)にソース電極層405a、ドレイン電極層405bの
形成後、酸化物半導体層101及び第2の酸化物半導体層102を含む酸化物半導体積層
403に酸素を導入して作製する例としてトランジスタ443bを示す。
Note that the step of introducing oxygen 431 can also be performed after forming the source electrode layer 405a and the drain electrode layer 405b. FIG. 5D shows an example in which oxygen is introduced into the oxide semiconductor stack 403 including the oxide semiconductor layer 101 and the second oxide semiconductor layer 102 after the source electrode layer 405a and the drain electrode layer 405b are formed. A transistor 443b is shown.

図5(D)に示すように、酸素431はソース電極層405a、ドレイン電極層405b
がマスクとなり、酸化物半導体層101及び第2の酸化物半導体層102を含む酸化物半
導体積層403のチャネル形成領域に選択的に導入される。トランジスタ443bの酸化
物半導体積層403において、ソース電極層405aまたはドレイン電極層405bと重
畳しない領域は、ソース電極層405aまたはドレイン電極層405bと重畳する領域よ
りも高い酸素濃度を有する構成となる。
As shown in FIG. 5(D), oxygen 431 is present in the source electrode layer 405a and the drain electrode layer 405b.
serves as a mask and is selectively introduced into the channel formation region of the oxide semiconductor stack 403 including the oxide semiconductor layer 101 and the second oxide semiconductor layer 102. In the oxide semiconductor stack 403 of the transistor 443b, a region that does not overlap with the source electrode layer 405a or the drain electrode layer 405b has a higher oxygen concentration than a region that overlaps with the source electrode layer 405a or the drain electrode layer 405b.

また、半導体装置の他の一形態として図4(B)に酸化物半導体積層403に酸素を導入
したボトムゲート構造を有するトランジスタ483を示す。図4(A)に酸化物半導体積
層403として第1の酸化物半導体層101、第2の酸化物半導体層102、及び第3の
酸化物半導体層103の3層構造の積層を用いたトランジスタ480を示す。
Further, as another form of a semiconductor device, FIG. 4B shows a transistor 483 having a bottom gate structure in which oxygen is introduced into the oxide semiconductor stack 403. FIG. 4A shows a transistor 480 in which the oxide semiconductor stack 403 has a three-layer structure of a first oxide semiconductor layer 101, a second oxide semiconductor layer 102, and a third oxide semiconductor layer 103. shows.

トランジスタ483は、絶縁表面を有する基板400上に順に設けられた、ゲート電極層
401、ゲート絶縁膜402、酸素過剰領域111を有する第1の酸化物半導体層101
、酸素過剰領域112を含む第2の酸化物半導体層102、及び酸素過剰領域113を含
む第3の酸化物半導体層103を含む酸化物半導体積層403、ソース電極層405a、
ドレイン電極層405bを有する。トランジスタ483上には、絶縁膜407が形成され
ている。
The transistor 483 includes a first oxide semiconductor layer 101 including a gate electrode layer 401, a gate insulating film 402, and an oxygen-excess region 111, which are provided in this order over a substrate 400 having an insulating surface.
, an oxide semiconductor stack 403 including a second oxide semiconductor layer 102 including an oxygen-excess region 112 and a third oxide semiconductor layer 103 including an oxygen-excess region 113, a source electrode layer 405a,
It has a drain electrode layer 405b. An insulating film 407 is formed over the transistor 483.

トランジスタ483の酸化物半導体積層403において、第1の酸化物半導体層101、
第2の酸化物半導体層102、及び第3の酸化物半導体層103のエネルギーギャップは
全て同じではなく、少なくとも2種類の異なる値のエネルギーギャップを含む。
In the oxide semiconductor stack 403 of the transistor 483, the first oxide semiconductor layer 101,
The energy gaps of the second oxide semiconductor layer 102 and the third oxide semiconductor layer 103 are not all the same, and include energy gaps of at least two different values.

トランジスタ483は、酸化物半導体積層403全体に酸素が導入された例であり、第1
の酸化物半導体層101、第2の酸化物半導体層102、第3の酸化物半導体層103に
おいて、それぞれ該全体に酸素過剰領域111、酸素過剰領域112、又は酸素過剰領域
113が設けられている。
The transistor 483 is an example in which oxygen is introduced throughout the oxide semiconductor stack 403, and the first
An oxygen-excess region 111, an oxygen-excess region 112, or an oxygen-excess region 113 is provided throughout the oxide semiconductor layer 101, the second oxide semiconductor layer 102, and the third oxide semiconductor layer 103, respectively. .

また、半導体装置の他の一形態として図9(C)に酸化物半導体積層403に酸素を導入
したボトムゲート構造を有するチャネル保護型のトランジスタ413を示す。
Further, as another form of a semiconductor device, FIG. 9C shows a channel protection transistor 413 having a bottom gate structure in which oxygen is introduced into the oxide semiconductor stack 403.

トランジスタ413は、絶縁表面を有する基板400上に順に設けられた、ゲート電極層
401、ゲート絶縁膜402、酸素過剰領域111を含む第1の酸化物半導体層101、
酸素過剰領域112を含む第2の酸化物半導体層102、及び酸素過剰領域113を含む
第3の酸化物半導体層103を含む酸化物半導体積層403、チャネル保護膜として機能
する絶縁膜427、ソース電極層405a、ドレイン電極層405bを有する。トランジ
スタ413上には、絶縁膜409が形成されている。
The transistor 413 includes a first oxide semiconductor layer 101 including a gate electrode layer 401, a gate insulating film 402, and an oxygen-excess region 111, which are provided in this order over a substrate 400 having an insulating surface.
An oxide semiconductor stack 403 including a second oxide semiconductor layer 102 including an oxygen-excess region 112 and a third oxide semiconductor layer 103 including an oxygen-excess region 113, an insulating film 427 functioning as a channel protective film, and a source electrode. It has a layer 405a and a drain electrode layer 405b. An insulating film 409 is formed over the transistor 413.

第1の酸化物半導体層101、第2の酸化物半導体層102、及び第3の酸化物半導体層
103のうち少なくとも一は、他の酸化物半導体層とエネルギーギャップが異なる。トラ
ンジスタ413においては、第2の酸化物半導体層102のエネルギーギャップが第1の
酸化物半導体層101及び第3の酸化物半導体層103より小さい例である。
At least one of the first oxide semiconductor layer 101, the second oxide semiconductor layer 102, and the third oxide semiconductor layer 103 has a different energy gap from the other oxide semiconductor layers. In the transistor 413, the energy gap of the second oxide semiconductor layer 102 is smaller than that of the first oxide semiconductor layer 101 and the third oxide semiconductor layer 103.

トランジスタ413は、酸化物半導体積層403全体に酸素が導入された例であり、第1
の酸化物半導体層101、第2の酸化物半導体層102、第3の酸化物半導体層103に
おいて、それぞれ該全体に酸素過剰領域111、酸素過剰領域112、又は酸素過剰領域
113が設けられている。
The transistor 413 is an example in which oxygen is introduced throughout the oxide semiconductor stack 403, and the first
An oxygen-excess region 111, an oxygen-excess region 112, or an oxygen-excess region 113 is provided throughout the oxide semiconductor layer 101, the second oxide semiconductor layer 102, and the third oxide semiconductor layer 103, respectively. .

また、トランジスタ413において、第1の酸化物半導体層101は、ゲート絶縁膜40
2上に接して形成され、第1の酸化物半導体層101上に第2の酸化物半導体層102が
積層される。第3の酸化物半導体層103は、第1の酸化物半導体層101の側面並びに
第2の酸化物半導体層102の上面及び側面を覆って形成され、第3の酸化物半導体層1
03の周縁部は、ゲート絶縁膜402と接する構造としている。第1の酸化物半導体層1
01及び第2の酸化物半導体層102をソース電極層405aまたはドレイン電極層40
5bと接していない構造とすることで、トランジスタ413のソース電極層405aおよ
びドレイン電極層405bのリーク電流(寄生チャネル)の発生を低減している。
Further, in the transistor 413, the first oxide semiconductor layer 101 is formed by the gate insulating film 40.
2, and the second oxide semiconductor layer 102 is stacked over the first oxide semiconductor layer 101. The third oxide semiconductor layer 103 is formed to cover the side surface of the first oxide semiconductor layer 101 and the top surface and side surface of the second oxide semiconductor layer 102.
The peripheral portion of 03 has a structure in which it is in contact with the gate insulating film 402. First oxide semiconductor layer 1
01 and the second oxide semiconductor layer 102 as the source electrode layer 405a or the drain electrode layer 40
5b, the occurrence of leakage current (parasitic channel) in the source electrode layer 405a and drain electrode layer 405b of the transistor 413 is reduced.

また、半導体装置の他の一形態として図10(C)に酸化物半導体積層403に酸素を導
入したボトムゲート構造のトランジスタ433を示す。
Further, as another form of a semiconductor device, FIG. 10C shows a bottom-gate transistor 433 in which oxygen is introduced into the oxide semiconductor stack 403.

図10(C)に示すように、トランジスタ433は、絶縁表面を有する基板400上に順
に設けられたゲート電極層401、ゲート絶縁膜402、ソース電極層405a、ドレイ
ン電極層405b、酸素過剰領域111を含む第1の酸化物半導体層101、酸素過剰領
域112を含む第2の酸化物半導体層102、及び酸素過剰領域113を含む第3の酸化
物半導体層103を含む酸化物半導体積層403を有する。トランジスタ433上には、
絶縁膜407が形成されている。
As shown in FIG. 10C, the transistor 433 includes a gate electrode layer 401, a gate insulating film 402, a source electrode layer 405a, a drain electrode layer 405b, and an oxygen-excess region 111, which are provided in this order over the substrate 400 having an insulating surface. an oxide semiconductor stack 403 including a first oxide semiconductor layer 101 including an oxygen-excess region 112, a second oxide semiconductor layer 102 including an oxygen-excess region 112, and a third oxide semiconductor layer 103 including an oxygen-excess region 113. . On the transistor 433,
An insulating film 407 is formed.

トランジスタ433は、ソース電極層405a及びドレイン電極層405b上に第1の酸
化物半導体層101、第2の酸化物半導体層102、及び第3の酸化物半導体層を含む酸
化物半導体積層403が設けられる構造である。第1の酸化物半導体層101、第2の酸
化物半導体層102、及び第3の酸化物半導体層103のうち少なくとも一はエネルギー
ギャップが他の酸化物半導体層と異なり、トランジスタ433は第2の酸化物半導体層1
02のエネルギーギャップが第1の酸化物半導体層101及び第3の酸化物半導体層10
3より小さい例である。
In the transistor 433, an oxide semiconductor stack 403 including a first oxide semiconductor layer 101, a second oxide semiconductor layer 102, and a third oxide semiconductor layer is provided over a source electrode layer 405a and a drain electrode layer 405b. It is a structure that can be used. At least one of the first oxide semiconductor layer 101, the second oxide semiconductor layer 102, and the third oxide semiconductor layer 103 has a different energy gap from the other oxide semiconductor layers, and the transistor 433 has a different energy gap from the other oxide semiconductor layers. Oxide semiconductor layer 1
02 energy gap between the first oxide semiconductor layer 101 and the third oxide semiconductor layer 10
This is an example of a value smaller than 3.

トランジスタ433は、酸化物半導体積層403全体に酸素が導入された例であり、第1
の酸化物半導体層101、第2の酸化物半導体層102、第3の酸化物半導体層103に
おいて、それぞれ該全体に酸素過剰領域111、酸素過剰領域112、又は酸素過剰領域
113が設けられている。
The transistor 433 is an example in which oxygen is introduced throughout the oxide semiconductor stack 403, and the first
An oxygen-excess region 111, an oxygen-excess region 112, or an oxygen-excess region 113 is provided throughout the oxide semiconductor layer 101, the second oxide semiconductor layer 102, and the third oxide semiconductor layer 103, respectively. .

トランジスタ433において、酸素の導入は、露出された酸化物半導体積層403に直接
行ってもよいし、絶縁膜407を通過させて行ってもよい。
In the transistor 433, oxygen may be introduced directly into the exposed oxide semiconductor stack 403, or may be introduced through the insulating film 407.

なお、実施の形態2で示した上層の酸化物半導体層が下層の酸化物半導体層の側面を覆う
構造とするトランジスタ340とトランジスタ380aにおいて、酸化物半導体積層40
3に酸素を導入して酸素過剰領域を設ける例を図7(D)、図8(D)に示す。
Note that in the transistor 340 and the transistor 380a described in Embodiment 2, in which the upper oxide semiconductor layer covers the side surfaces of the lower oxide semiconductor layer, the oxide semiconductor stack 40
7(D) and FIG. 8(D) show an example in which oxygen is introduced into No. 3 to provide an oxygen-excess region.

図7(D)におけるトランジスタ343は、絶縁表面を有する基板400上に順に設けら
れた、ゲート電極層401、ゲート絶縁膜402、エネルギーギャップの異なる第1の酸
化物半導体層101及び第2の酸化物半導体層102を含む酸化物半導体積層403、ソ
ース電極層405a、ドレイン電極層405bを有する。トランジスタ343上には、絶
縁膜407が形成されている。トランジスタ343において、酸化物半導体積層403は
、酸素過剰領域111を含む第1の酸化物半導体層101、及び酸素過剰領域112を含
む第2の酸化物半導体層102を有する。
In the transistor 343 in FIG. 7D, a gate electrode layer 401, a gate insulating film 402, a first oxide semiconductor layer 101 having a different energy gap, and a second oxide semiconductor layer are sequentially provided over a substrate 400 having an insulating surface. An oxide semiconductor stack 403 including a semiconductor layer 102, a source electrode layer 405a, and a drain electrode layer 405b are included. An insulating film 407 is formed over the transistor 343. In the transistor 343, the oxide semiconductor stack 403 includes the first oxide semiconductor layer 101 including the oxygen-excess region 111 and the second oxide semiconductor layer 102 including the oxygen-excess region 112.

図8(D)におけるトランジスタ383は、絶縁表面を有する基板400上に順に設けら
れた、ゲート電極層401、ゲート絶縁膜402、エネルギーギャップの異なる第1の酸
化物半導体層101、第2の酸化物半導体層102、及び第3の酸化物半導体層103を
含む酸化物半導体積層403、ソース電極層405a、ドレイン電極層405bを有する
。トランジスタ383上には、絶縁膜407が形成されている。トランジスタ383にお
いて、酸化物半導体積層403は、酸素過剰領域111を含む第1の酸化物半導体層10
1、酸素過剰領域112を含む第2の酸化物半導体層102、及び酸素過剰領域113を
含む第3の酸化物半導体層103を有する。
In the transistor 383 in FIG. 8D, a gate electrode layer 401, a gate insulating film 402, a first oxide semiconductor layer 101 having a different energy gap, and a second oxide semiconductor layer are provided in this order over a substrate 400 having an insulating surface. The oxide semiconductor stack 403 includes an oxide semiconductor layer 102, a third oxide semiconductor layer 103, a source electrode layer 405a, and a drain electrode layer 405b. An insulating film 407 is formed over the transistor 383. In the transistor 383, the oxide semiconductor stack 403 includes the first oxide semiconductor layer 10 including the oxygen-excess region 111.
1, a second oxide semiconductor layer 102 including an oxygen-excess region 112, and a third oxide semiconductor layer 103 including an oxygen-excess region 113.

なお、トランジスタ343及びトランジスタ383に示すような、下層の酸化物半導体層
よりエネルギーギャップの大きい酸化物半導体層を上層に積層する酸化物半導体積層にお
いて、上層の酸化物半導体層が下層の酸化物半導体層の側面を覆う構造とすることで、ト
ランジスタのソース電極層およびドレイン電極層のリーク電流(寄生チャネル)の発生を
低減することができる。
Note that in an oxide semiconductor stack in which an oxide semiconductor layer with a larger energy gap than a lower oxide semiconductor layer is stacked as an upper layer, as shown in the transistor 343 and the transistor 383, the upper oxide semiconductor layer is stacked over the lower oxide semiconductor layer. By forming a structure in which the side surfaces of the layer are covered, generation of leakage current (parasitic channel) in the source electrode layer and drain electrode layer of the transistor can be reduced.

脱水化又は脱水素化処理を行った酸化物半導体積層403に、酸素を導入して膜中に酸素
を供給することによって、酸化物半導体積層403を高純度化、及びI型(真性)化する
ことができる。高純度化し、I型(真性)化した酸化物半導体積層403を有するトラン
ジスタ443a、トランジスタ443b、トランジスタ413、トランジスタ433、ト
ランジスタ343、トランジスタ383は、電気特性変動が抑制されており、電気的に安
定である。
By introducing oxygen into the oxide semiconductor stack 403 that has been subjected to dehydration or dehydrogenation treatment and supplying oxygen into the film, the oxide semiconductor stack 403 is made highly purified and I-type (intrinsic). be able to. The transistors 443a, 443b, transistor 413, transistor 433, transistor 343, and transistor 383, which include the highly purified I-type (intrinsic) oxide semiconductor stack 403, have suppressed variations in electrical characteristics and are electrically stable. It is.

酸素の導入方法としては、イオン注入法、イオンドーピング法、プラズマイマージョンイ
オンインプランテーション法、プラズマ処理などを用いることができる。
As a method for introducing oxygen, an ion implantation method, an ion doping method, a plasma immersion ion implantation method, a plasma treatment, etc. can be used.

酸素の導入工程は、酸化物半導体積層403に酸素導入する場合、酸化物半導体積層40
3に直接導入してもよいし、絶縁膜407などの他の膜を通過して酸化物半導体積層40
3へ導入してもよい。酸素を他の膜を通過して導入する場合は、イオン注入法、イオンド
ーピング法、プラズマイマージョンイオンインプランテーション法などを用いればよいが
、酸素を露出された酸化物半導体積層403へ直接導入する場合は、プラズマ処理なども
用いることができる。
In the step of introducing oxygen, when introducing oxygen into the oxide semiconductor stack 403, the oxide semiconductor stack 40
3, or may be introduced directly into the oxide semiconductor stack 40 by passing through another film such as the insulating film 407.
3 may be introduced. When oxygen is introduced through another film, an ion implantation method, an ion doping method, a plasma immersion ion implantation method, or the like may be used; however, when oxygen is introduced directly into the exposed oxide semiconductor stack 403 Alternatively, plasma treatment or the like can also be used.

酸化物半導体積層403への酸素の導入は、脱水化又は脱水素化処理を行った後であれば
よく、特に限定されない。また、上記脱水化又は脱水素化処理を行った酸化物半導体積層
403への酸素の導入は複数回行ってもよい。
The introduction of oxygen into the oxide semiconductor stack 403 is not particularly limited as long as it is performed after dehydration or dehydrogenation treatment. Further, oxygen may be introduced multiple times into the oxide semiconductor stack 403 that has been subjected to the dehydration or dehydrogenation treatment.

例えば、実施の形態1において、酸化物半導体積層403への酸素の導入は、露出した酸
化物半導体膜の積層493、又は酸化物半導体積層403に対して、ソース電極層405
a、ドレイン電極層405b形成後、ゲート絶縁膜402形成後、ゲート電極層401形
成後、絶縁膜407形成後に行うことができる。
For example, in Embodiment 1, when oxygen is introduced into the oxide semiconductor stack 403, the source electrode layer 405 is introduced into the exposed oxide semiconductor film stack 493 or the oxide semiconductor stack 403.
a. It can be performed after forming the drain electrode layer 405b, after forming the gate insulating film 402, after forming the gate electrode layer 401, and after forming the insulating film 407.

また、酸化物半導体積層403中の酸素過剰領域111、112において、酸素の導入工
程によって導入された酸素濃度を1×1018atoms/cm以上5×1021at
oms/cm以下とするのが好ましい。
Further, in the oxygen-excess regions 111 and 112 in the oxide semiconductor stack 403, the oxygen concentration introduced in the oxygen introduction step is set to 1×10 18 atoms/cm 3 or more and 5×10 21 at
It is preferable to set it to oms/ cm3 or less.

なお、酸化物半導体において、酸素は主たる成分材料の一つである。このため、酸化物半
導体積層403中の酸素濃度を、SIMSなどの方法を用いて、正確に見積もることは難
しい。つまり、酸化物半導体積層403に酸素が意図的に添加されたか否かを判別するこ
とは困難であるといえる。
Note that oxygen is one of the main component materials in the oxide semiconductor. Therefore, it is difficult to accurately estimate the oxygen concentration in the oxide semiconductor stack 403 using a method such as SIMS. In other words, it can be said that it is difficult to determine whether oxygen was intentionally added to the oxide semiconductor stack 403.

ところで、酸素には17Oや18Oといった同位体が存在し、自然界におけるこれらの存
在比率はそれぞれ酸素原子全体の0.037%、0.204%程度であることが知られて
いる。つまり、酸化物半導体積層403中にこれらの同位体を意図的に添加した場合、こ
れら同位体の濃度は、SIMSなどの方法によって見積もることができ、これらの濃度を
測定することで、酸化物半導体積層403中の酸素濃度をより正確に見積もることが可能
な場合がある。よって、これらの濃度を測定することで、酸化物半導体積層403に意図
的に酸素が添加されたか否かを判別しても良い。
By the way, it is known that oxygen has isotopes such as 17 O and 18 O, and the abundance ratio of these in nature is about 0.037% and 0.204% of the total oxygen atoms, respectively. In other words, when these isotopes are intentionally added to the oxide semiconductor stack 403, the concentrations of these isotopes can be estimated by a method such as SIMS, and by measuring these concentrations, the oxide semiconductor stack 403 It may be possible to estimate the oxygen concentration in the stack 403 more accurately. Therefore, by measuring these concentrations, it may be determined whether oxygen has been intentionally added to the oxide semiconductor stack 403.

また、酸化物半導体膜へ酸素を導入した後、加熱処理を行うことが好ましい。 Further, heat treatment is preferably performed after introducing oxygen into the oxide semiconductor film.

本実施の形態のトランジスタ443a、トランジスタ443bのように、酸素を直接酸化
物半導体積層403へ導入する場合は、酸化物半導体積層403と接するゲート絶縁膜4
02、絶縁膜407を、必ずしも酸素を多くに含む膜とする必要はない。導入した酸素が
再度酸化物半導体積層403から脱離しないように、また、水素、水など不純物が酸化物
半導体積層403へ再度混入しないように、酸素、水素、水などの不純物に対して遮断効
果(ブロック効果)が高い膜を絶縁膜407として設けることが好ましい。例えば、水素
、水などの不純物、及び酸素の両方に対して遮断効果(ブロック効果)が高い酸化アルミ
ニウム膜などを用いるとよい。
When oxygen is directly introduced into the oxide semiconductor stack 403 as in the transistors 443a and 443b of this embodiment, the gate insulating film 4 in contact with the oxide semiconductor stack 403
02. The insulating film 407 does not necessarily need to be a film containing a large amount of oxygen. A blocking effect is provided for impurities such as oxygen, hydrogen, and water so that the introduced oxygen does not desorb from the oxide semiconductor stack 403 again and impurities such as hydrogen and water do not enter the oxide semiconductor stack 403 again. It is preferable to provide a film with high (blocking effect) as the insulating film 407. For example, it is preferable to use an aluminum oxide film, which has a high blocking effect against both impurities such as hydrogen and water, and oxygen.

もちろん、酸化物半導体膜と接するゲート絶縁膜402、絶縁膜407を、酸素を多く含
む膜とし、さらに酸素を直接酸化物半導体積層403に導入し、複数の酸素供給方法を行
ってもよい。
Of course, the gate insulating film 402 and the insulating film 407 in contact with the oxide semiconductor film may be films containing a large amount of oxygen, oxygen may be directly introduced into the oxide semiconductor stack 403, and a plurality of oxygen supply methods may be performed.

また、本実施の形態では酸化物半導体積層403への酸素導入を例として説明するが、酸
素の導入は酸化物半導体積層403と接するゲート絶縁膜402、絶縁膜407などに行
ってもよい。酸化物半導体積層403と接するゲート絶縁膜402、絶縁膜407に酸素
を導入し、酸素過剰とすることによって、酸化物半導体積層403への酸素の供給を行う
ことができる。
Further, in this embodiment, introduction of oxygen into the oxide semiconductor stack 403 will be described as an example; however, oxygen may also be introduced into the gate insulating film 402, the insulating film 407, and the like that are in contact with the oxide semiconductor stack 403. Oxygen can be supplied to the oxide semiconductor stack 403 by introducing oxygen into the gate insulating film 402 and the insulating film 407 that are in contact with the oxide semiconductor stack 403 to make the oxygen excessive.

以上のように、安定した電気特性を有する酸化物半導体積層を用いた半導体装置を提供す
ることができる。よって、信頼性の高い半導体装置を提供することができる。
As described above, a semiconductor device using an oxide semiconductor stack having stable electrical characteristics can be provided. Therefore, a highly reliable semiconductor device can be provided.

本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。 This embodiment can be implemented in combination with other embodiments as appropriate.

(実施の形態4)
本実施の形態では、半導体装置及び半導体装置の作製方法の他の一形態を、図6を用いて
説明する。上記実施の形態と同一部分又は同様な機能を有する部分、及び工程は、上記実
施の形態と同様に行うことができ、繰り返しの説明は省略する。また同じ箇所の詳細な説
明は省略する。
(Embodiment 4)
In this embodiment mode, another embodiment of a semiconductor device and a method for manufacturing the semiconductor device will be described with reference to FIGS. The same parts or parts and steps having similar functions as those in the above embodiment can be performed in the same manner as in the above embodiment, and repeated explanations will be omitted. Further, detailed explanations of the same parts will be omitted.

本実施の形態では、開示する発明に係る半導体装置の作製方法において、酸化物半導体積
層に低抵抗領域を形成する例である。低抵抗領域は、酸化物半導体積層へ導電率を変化さ
せる不純物(ドーパントともいう)を導入して形成することができる。
This embodiment is an example in which a low resistance region is formed in an oxide semiconductor stack in a method for manufacturing a semiconductor device according to the disclosed invention. The low resistance region can be formed by introducing an impurity (also referred to as a dopant) that changes the conductivity into the oxide semiconductor stack.

本実施の形態では、ボトムゲート構造を有するチャネル保護型のトランジスタ420の例
を示す。図6(A)乃至(C)にトランジスタ420の作製方法の一例を示す。
In this embodiment, an example of a channel protection type transistor 420 having a bottom gate structure is shown. FIGS. 6A to 6C illustrate an example of a method for manufacturing the transistor 420.

まず、絶縁表面を有する基板400上にゲート電極層401を形成し、ゲート電極層40
1上にゲート絶縁膜402を形成する。
First, a gate electrode layer 401 is formed on a substrate 400 having an insulating surface.
1, a gate insulating film 402 is formed on top of the gate insulating film 402.

そしてゲート絶縁膜402上にエネルギーギャップの異なる第1の酸化物半導体層101
及び第2の酸化物半導体層102を含む酸化物半導体積層403を形成する。
A first oxide semiconductor layer 101 having a different energy gap is formed on the gate insulating film 402.
Then, an oxide semiconductor stack 403 including the second oxide semiconductor layer 102 is formed.

なお、酸化物半導体積層403には実施の形態2で示したように酸素を導入し、酸素過剰
領域を含む酸化物半導体積層403としてもよい。また、酸化物半導体積層403が3層
構造でもよく、上層の酸化物半導体層が下層の酸化物半導体層の側面を覆う構造であって
もよい。
Note that oxygen may be introduced into the oxide semiconductor stack 403 as described in Embodiment 2, so that the oxide semiconductor stack 403 may include an oxygen-excess region. Further, the oxide semiconductor stack 403 may have a three-layer structure, and the upper oxide semiconductor layer may cover the side surface of the lower oxide semiconductor layer.

ゲート電極層401と重畳する酸化物半導体積層403上にチャネル保護膜として機能す
る絶縁膜427を形成する(図6(A)参照)。
An insulating film 427 functioning as a channel protective film is formed over the oxide semiconductor stack 403 that overlaps with the gate electrode layer 401 (see FIG. 6A).

次に、絶縁膜427をマスクとして、酸化物半導体積層403に、ドーパント421を選
択的に導入し、低抵抗領域121a、121b、122a、122bを形成する(図6(
B)参照)。
Next, using the insulating film 427 as a mask, a dopant 421 is selectively introduced into the oxide semiconductor stack 403 to form low resistance regions 121a, 121b, 122a, and 122b (FIG. 6).
See B).

本実施の形態では、チャネル保護膜として機能する絶縁膜427をドーパント421導入
工程におけるマスクとして用いるが、別途レジストマスクを形成して、ドーパント421
を選択的に導入してもよい。また、チャネル保護膜を設けないトランジスタ440a、ト
ランジスタ430などの場合は、別途レジストマスクを形成してドーパントを選択的に導
入すればよい。
In this embodiment, the insulating film 427 that functions as a channel protective film is used as a mask in the step of introducing the dopant 421, but a resist mask is formed separately and the dopant 421 is
may be introduced selectively. Further, in the case of the transistor 440a, the transistor 430, etc. in which a channel protective film is not provided, a resist mask may be formed separately and a dopant may be selectively introduced.

ドーパント421の導入条件によっては、第1の酸化物半導体層101のみ、第2の酸化
物半導体層102のみにドーパント421が導入され、低抵抗領域が形成される場合、第
1の酸化物半導体層101及び第2の酸化物半導体層102においてドーパントの濃度分
布が存在する場合がある。
Depending on the conditions for introducing the dopant 421, if the dopant 421 is introduced only into the first oxide semiconductor layer 101 or only into the second oxide semiconductor layer 102 to form a low resistance region, the first oxide semiconductor layer There may be a dopant concentration distribution in the oxide semiconductor layer 101 and the second oxide semiconductor layer 102.

ドーパント421は、酸化物半導体積層403の導電率を変化させる不純物である。ドー
パント421としては、15族元素(代表的にはリン(P)、砒素(As)、およびアン
チモン(Sb))、ホウ素(B)、アルミニウム(Al)、窒素(N)、アルゴン(Ar
)、ヘリウム(He)、ネオン(Ne)、インジウム(In)、フッ素(F)、塩素(C
l)、チタン(Ti)、及び亜鉛(Zn)のいずれかから選択される一以上を用いること
ができる。
The dopant 421 is an impurity that changes the conductivity of the oxide semiconductor stack 403. Dopants 421 include Group 15 elements (typically phosphorus (P), arsenic (As), and antimony (Sb)), boron (B), aluminum (Al), nitrogen (N), and argon (Ar).
), helium (He), neon (Ne), indium (In), fluorine (F), chlorine (C
1), titanium (Ti), and zinc (Zn).

ドーパント421は、注入法により、酸化物半導体積層403に導入する。ドーパント4
21の導入方法としては、イオン注入法、イオンドーピング法、プラズマイマージョンイ
オンインプランテーション法などを用いることができる。その際には、ドーパント421
の単体のイオンあるいはフッ化物、塩化物のイオンを用いると好ましい。
The dopant 421 is introduced into the oxide semiconductor stack 403 by an injection method. dopant 4
As a method for introducing 21, an ion implantation method, an ion doping method, a plasma immersion ion implantation method, etc. can be used. In that case, dopant 421
It is preferable to use a single ion of , or an ion of fluoride or chloride.

ドーパント421の導入工程は、加速電圧、ドーズ量などの注入条件、またマスクとなる
絶縁膜427の膜厚を適宜設定して制御すればよい。本実施の形態では、ドーパント42
1としてホウ素を用いて、イオン注入法でホウ素イオンの注入を行う。なお、ドーパント
421のドーズ量は1×1013ions/cm以上5×1016ions/cm
下とすればよい。
The step of introducing the dopant 421 may be controlled by appropriately setting implantation conditions such as accelerating voltage and dose amount, and the thickness of the insulating film 427 serving as a mask. In this embodiment, the dopant 42
Using boron as No. 1, boron ions are implanted by an ion implantation method. Note that the dose amount of the dopant 421 may be 1×10 13 ions/cm 2 or more and 5×10 16 ions/cm 2 or less.

低抵抗領域におけるドーパント421の濃度は、5×1018atoms/cm以上1
×1022atoms/cm以下であることが好ましい。
The concentration of the dopant 421 in the low resistance region is 5×10 18 atoms/cm 3 or more 1
It is preferable that it is not more than ×10 22 atoms/cm 3 .

ドーパント421を導入する際に、基板400を加熱しながら行ってもよい。 The dopant 421 may be introduced while the substrate 400 is being heated.

なお、酸化物半導体積層403にドーパント421を導入する処理は、複数回行ってもよ
く、ドーパントの種類も複数種用いてもよい。
Note that the process of introducing the dopant 421 into the oxide semiconductor stack 403 may be performed multiple times, and multiple types of dopants may be used.

また、ドーパント421の導入処理後、加熱処理を行ってもよい。加熱条件としては、温
度300℃以上700℃以下、好ましくは300℃以上450℃以下で1時間、酸素雰囲
気下で行うことが好ましい。また、窒素雰囲気下、減圧下、大気(超乾燥エア)下で加熱
処理を行ってもよい。
Furthermore, after the dopant 421 introduction treatment, heat treatment may be performed. The heating conditions are preferably 300°C or higher and 700°C or lower, preferably 300°C or higher and 450°C or lower for 1 hour in an oxygen atmosphere. Further, the heat treatment may be performed in a nitrogen atmosphere, under reduced pressure, or in the atmosphere (ultra-dry air).

酸化物半導体積層403を結晶性酸化物半導体膜とした場合、ドーパント421の導入に
より、一部非晶質化する場合がある。この場合、ドーパント421の導入後に加熱処理を
行うことによって、酸化物半導体積層403の結晶性を回復することができる。
When the oxide semiconductor stack 403 is a crystalline oxide semiconductor film, part of the film may become amorphous due to the introduction of the dopant 421. In this case, by performing heat treatment after introducing the dopant 421, the crystallinity of the oxide semiconductor stack 403 can be recovered.

よって酸化物半導体積層403において、チャネル形成領域121cを挟んで低抵抗領域
121a、121bが設けられた第1の酸化物半導体層101と、チャネル形成領域12
2cを挟んで低抵抗領域122a、122bが設けられた第2の酸化物半導体層102と
が形成される。
Therefore, in the oxide semiconductor stack 403, the first oxide semiconductor layer 101 in which the low resistance regions 121a and 121b are provided with the channel formation region 121c sandwiched therebetween, and the channel formation region 12
A second oxide semiconductor layer 102 is formed in which low resistance regions 122a and 122b are provided with 2c sandwiched therebetween.

次に、低抵抗領域121a、121b、122a、122bと接してソース電極層405
a、ドレイン電極層405bを形成する。
Next, the source electrode layer 405 is in contact with the low resistance regions 121a, 121b, 122a, and 122b.
a. Form a drain electrode layer 405b.

以上の工程で、本実施の形態のトランジスタ420が作製される(図6(C)参照)。 Through the above steps, the transistor 420 of this embodiment is manufactured (see FIG. 6C).

チャネル長方向にチャネル形成領域121cを挟んで低抵抗領域121a、121bが設
けられた第1の酸化物半導体層101と、チャネル形成領域122cを挟んで低抵抗領域
122a、122bが設けられた第2の酸化物半導体層102とを含む酸化物半導体積層
403を有することにより、トランジスタ420はオン特性(例えば、オン電流及び電界
効果移動度)が高く、高速動作、高速応答が可能となる。
A first oxide semiconductor layer 101 in which low resistance regions 121a and 121b are provided with a channel formation region 121c in between, and a second oxide semiconductor layer 101 in which low resistance regions 122a and 122b are provided in the channel length direction with a channel formation region 122c in between. By including the oxide semiconductor stack 403 including the oxide semiconductor layer 102, the transistor 420 has high on-characteristics (for example, on-state current and field-effect mobility), and is capable of high-speed operation and high-speed response.

トランジスタ420において、低抵抗領域121a、121b、122a、122bはソ
ース領域、又はドレイン領域として機能させることができる。低抵抗領域121a、12
1b、122a、122bを設けることによって、低抵抗領域121a、121b、12
2a、122bの間に形成されるチャネル形成領域121c、122cに加わる電界を緩
和させることができる。また、低抵抗領域121a、121b、122a、122bにお
いて酸化物半導体積層403とソース電極層405a及びドレイン電極層405bとを電
気的に接続させることによって、酸化物半導体積層403とソース電極層405a及びド
レイン電極層405bとの接触抵抗を低減することができる。従って、トランジスタの電
気特性を向上させることができる。
In the transistor 420, the low resistance regions 121a, 121b, 122a, and 122b can function as a source region or a drain region. Low resistance regions 121a, 12
1b, 122a, 122b, the low resistance regions 121a, 121b, 12
The electric field applied to the channel forming regions 121c and 122c formed between 2a and 122b can be relaxed. Further, by electrically connecting the oxide semiconductor stack 403, the source electrode layer 405a, and the drain electrode layer 405b in the low resistance regions 121a, 121b, 122a, and 122b, the oxide semiconductor stack 403, the source electrode layer 405a, and the drain Contact resistance with the electrode layer 405b can be reduced. Therefore, the electrical characteristics of the transistor can be improved.

本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。 This embodiment can be implemented in combination with other embodiments as appropriate.

(実施の形態5)
実施の形態1乃至4のいずれかで一例を示したトランジスタを用いて表示機能を有する半
導体装置(表示装置ともいう)を作製することができる。また、トランジスタを含む駆動
回路の一部または全体を、画素部と同じ基板上に一体形成し、システムオンパネルを形成
することができる。
(Embodiment 5)
A semiconductor device having a display function (also referred to as a display device) can be manufactured using the transistor shown as an example in any of Embodiments 1 to 4. Further, part or all of a drive circuit including a transistor can be integrally formed over the same substrate as a pixel portion, so that a system on panel can be formed.

図12(A)において、第1の基板4001上に設けられた画素部4002を囲むように
して、シール材4005が設けられ、第2の基板4006によって封止されている。図1
2(A)においては、第1の基板4001上のシール材4005によって囲まれている領
域とは異なる領域に、別途用意された基板上に単結晶半導体膜又は多結晶半導体膜で形成
された走査線駆動回路4004、信号線駆動回路4003が実装されている。また別途形
成された信号線駆動回路4003と、走査線駆動回路4004または画素部4002に与
えられる各種信号及び電位は、FPC(Flexible printed circu
it)4018a、4018bから供給されている。
In FIG. 12A, a sealant 4005 is provided to surround a pixel portion 4002 provided over a first substrate 4001, and is sealed by a second substrate 4006. Figure 1
In 2(A), a scanning film formed of a single crystal semiconductor film or a polycrystalline semiconductor film on a separately prepared substrate is formed in a region different from the region surrounded by the sealant 4005 on the first substrate 4001. A line drive circuit 4004 and a signal line drive circuit 4003 are mounted. In addition, various signals and potentials applied to a separately formed signal line drive circuit 4003, scanning line drive circuit 4004, or pixel portion 4002 are transferred to an FPC (Flexible printed circuit).
it) 4018a, 4018b.

図12(B)(C)において、第1の基板4001上に設けられた画素部4002と、走
査線駆動回路4004とを囲むようにして、シール材4005が設けられている。また画
素部4002と、走査線駆動回路4004の上に第2の基板4006が設けられている。
よって画素部4002と、走査線駆動回路4004とは、第1の基板4001とシール材
4005と第2の基板4006とによって、表示素子と共に封止されている。図12(B
)(C)においては、第1の基板4001上のシール材4005によって囲まれている領
域とは異なる領域に、別途用意された基板上に単結晶半導体膜又は多結晶半導体膜で形成
された信号線駆動回路4003が実装されている。図12(B)(C)においては、別途
形成された信号線駆動回路4003と、走査線駆動回路4004または画素部4002に
与えられる各種信号及び電位は、FPC4018から供給されている。
In FIGS. 12B and 12C, a sealing material 4005 is provided to surround a pixel portion 4002 provided over a first substrate 4001 and a scanning line driver circuit 4004. Further, a second substrate 4006 is provided over the pixel portion 4002 and the scanning line driver circuit 4004.
Therefore, the pixel portion 4002 and the scanning line driver circuit 4004 are sealed together with the display element by the first substrate 4001, the sealant 4005, and the second substrate 4006. Figure 12 (B
) In (C), a signal formed with a single crystal semiconductor film or a polycrystalline semiconductor film on a separately prepared substrate is placed in a region different from the region surrounded by the sealant 4005 on the first substrate 4001. A line drive circuit 4003 is mounted. In FIGS. 12B and 12C, various signals and potentials are supplied to a separately formed signal line driver circuit 4003, a scanning line driver circuit 4004, or a pixel portion 4002 from an FPC 4018.

また図12(B)(C)においては、信号線駆動回路4003を別途形成し、第1の基板
4001に実装している例を示しているが、この構成に限定されない。走査線駆動回路を
別途形成して実装してもよいし、信号線駆動回路の一部または走査線駆動回路の一部のみ
を別途形成して実装してもよい。
Further, although FIGS. 12B and 12C show an example in which the signal line driver circuit 4003 is separately formed and mounted on the first substrate 4001, the structure is not limited to this. The scanning line drive circuit may be separately formed and mounted, or only a part of the signal line drive circuit or a part of the scan line drive circuit may be separately formed and mounted.

なお、別途形成した駆動回路の接続方法は、特に限定されるものではなく、COG(Ch
ip On Glass)方法、ワイヤボンディング方法、或いはTAB(Tape A
utomated Bonding)方法などを用いることができる。図12(A)は、
COG方法により信号線駆動回路4003、走査線駆動回路4004を実装する例であり
、図12(B)は、COG方法により信号線駆動回路4003を実装する例であり、図1
2(C)は、TAB方法により信号線駆動回路4003を実装する例である。
Note that the method of connecting the separately formed drive circuit is not particularly limited, and COG (Ch
ip on glass) method, wire bonding method, or TAB (Tape A
Automated Bonding method, etc. can be used. FIG. 12(A) is
This is an example in which a signal line driver circuit 4003 and a scanning line driver circuit 4004 are implemented using the COG method, and FIG. 12B is an example in which the signal line driver circuit 4003 is implemented using the COG method.
2(C) is an example in which the signal line driver circuit 4003 is mounted using the TAB method.

また、表示装置は、表示素子が封止された状態にあるパネルと、該パネルにコントローラ
を含むIC等を実装した状態にあるモジュールとを含む。
Further, the display device includes a panel in which a display element is sealed, and a module in which an IC including a controller is mounted on the panel.

なお、本明細書中における表示装置とは、画像表示デバイス、表示デバイス、もしくは光
源(照明装置含む)を指す。また、コネクター、例えばFPCもしくはTABテープもし
くはTCPが取り付けられたモジュール、TABテープやTCPの先にプリント配線板が
設けられたモジュール、または表示素子にCOG方式によりIC(集積回路)が直接実装
されたモジュールも全て表示装置に含むものとする。
Note that the display device in this specification refers to an image display device, a display device, or a light source (including a lighting device). In addition, connectors such as modules with FPC, TAB tape or TCP attached, modules with a printed wiring board provided at the end of TAB tape or TCP, or ICs (integrated circuits) directly mounted on display elements using the COG method. All modules are also included in the display device.

また第1の基板上に設けられた画素部及び走査線駆動回路は、トランジスタを複数有して
おり、実施の形態1乃至4のいずれかで一例を示したトランジスタを適用することができ
る。
Further, the pixel portion and the scanning line driver circuit provided over the first substrate include a plurality of transistors, and the transistors exemplified in any of Embodiments 1 to 4 can be used.

表示装置に設けられる表示素子としては液晶素子(液晶表示素子ともいう)、発光素子(
発光表示素子ともいう)、を用いることができる。発光素子は、電流または電圧によって
輝度が制御される素子をその範疇に含んでおり、具体的には無機EL(Electro
Luminescence)、有機EL等が含まれる。また、電子インクなど、電気的作
用によりコントラストが変化する表示媒体も適用することができる。
Display elements provided in display devices include liquid crystal elements (also referred to as liquid crystal display elements) and light emitting elements (
(also referred to as a light emitting display element) can be used. Light emitting elements include elements whose brightness is controlled by current or voltage, and specifically include inorganic EL (Electro
Luminescence), organic EL, etc. Furthermore, display media whose contrast changes due to electrical action, such as electronic ink, can also be used.

半導体装置の一形態について、図12及び図13を用いて説明する。図13は、図12(
B)のM-Nにおける断面図に相当する。
One form of a semiconductor device will be described with reference to FIGS. 12 and 13. Figure 13 is different from Figure 12 (
This corresponds to the cross-sectional view taken along MN in B).

図13で示すように、半導体装置は接続端子電極4015及び端子電極4016を有して
おり、接続端子電極4015及び端子電極4016はFPC4018が有する端子と異方
性導電膜4019を介して、電気的に接続されている。
As shown in FIG. 13, the semiconductor device has a connection terminal electrode 4015 and a terminal electrode 4016. It is connected to the.

接続端子電極4015は、第1の電極層4030と同じ導電膜から形成され、端子電極4
016は、トランジスタ4010、4011のソース電極層及びドレイン電極層と同じ導
電膜で形成されている。
The connection terminal electrode 4015 is formed from the same conductive film as the first electrode layer 4030, and is
016 is formed of the same conductive film as the source electrode layer and drain electrode layer of the transistors 4010 and 4011.

また第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004は、
トランジスタを複数有しており、図13では、画素部4002に含まれるトランジスタ4
010と、走査線駆動回路4004に含まれるトランジスタ4011とを例示している。
図13(A)では、トランジスタ4010、4011上には絶縁膜4020が設けられ、
図13(B)ではさらに、絶縁膜4021が設けられている。なお、絶縁膜4023は下
地膜として機能する絶縁膜である。
Furthermore, the pixel portion 4002 provided on the first substrate 4001 and the scanning line drive circuit 4004 are
It has a plurality of transistors, and in FIG. 13, transistor 4 included in the pixel portion 4002
010 and a transistor 4011 included in the scanning line driver circuit 4004 are illustrated.
In FIG. 13A, an insulating film 4020 is provided over the transistors 4010 and 4011,
In FIG. 13B, an insulating film 4021 is further provided. Note that the insulating film 4023 is an insulating film that functions as a base film.

トランジスタ4010、トランジスタ4011としては、実施の形態1乃至4のいずれか
で示したトランジスタを適用することができる。本実施の形態では、実施の形態1で示し
たトランジスタ440aと同様な構造を有するトランジスタを適用する例を示す。
As the transistors 4010 and 4011, the transistors described in any of Embodiments 1 to 4 can be used. In this embodiment, an example is shown in which a transistor having the same structure as the transistor 440a described in Embodiment 1 is used.

トランジスタ4010及びトランジスタ4011は、エネルギーギャップの異なる少なく
とも2層の酸化物半導体層を含む酸化物半導体積層を有するトランジスタである。異なる
エネルギーギャップを有する複数の酸化物半導体層を用いた酸化物半導体積層を用いるこ
とによって、トランジスタの電気特性をより精度よく制御することができ、所望の電気特
性をトランジスタ4010及びトランジスタ4011に付与することが可能となる。
The transistor 4010 and the transistor 4011 are transistors each having an oxide semiconductor stack including at least two oxide semiconductor layers with different energy gaps. By using an oxide semiconductor stack including a plurality of oxide semiconductor layers having different energy gaps, the electrical characteristics of the transistor can be controlled with more precision, and desired electrical characteristics can be imparted to the transistors 4010 and 4011. becomes possible.

よって、図12及び図13で示す本実施の形態の半導体装置として、高機能、高信頼性、
又は低消費電力など、種々の目的に応じた半導体装置を提供することができる。
Therefore, the semiconductor device of this embodiment shown in FIGS. 12 and 13 has high functionality, high reliability,
Alternatively, semiconductor devices suitable for various purposes such as low power consumption can be provided.

画素部4002に設けられたトランジスタ4010は表示素子と電気的に接続し、表示パ
ネルを構成する。表示素子は表示を行うことができれば特に限定されず、様々な表示素子
を用いることができる。
A transistor 4010 provided in the pixel portion 4002 is electrically connected to a display element to form a display panel. The display element is not particularly limited as long as it can perform display, and various display elements can be used.

図13(A)に表示素子として液晶素子を用いた液晶表示装置の例を示す。図13(A)
において、表示素子である液晶素子4013は、第1の電極層4030、第2の電極層4
031、及び液晶層4008を含む。なお、液晶層4008を挟持するように配向膜とし
て機能する絶縁膜4032、4033が設けられている。第2の電極層4031は第2の
基板4006側に設けられ、第1の電極層4030と第2の電極層4031とは液晶層4
008を介して積層する構成となっている。
FIG. 13A shows an example of a liquid crystal display device using a liquid crystal element as a display element. Figure 13(A)
, a liquid crystal element 4013 which is a display element has a first electrode layer 4030 and a second electrode layer 4.
031 and a liquid crystal layer 4008. Note that insulating films 4032 and 4033 functioning as alignment films are provided to sandwich the liquid crystal layer 4008. The second electrode layer 4031 is provided on the second substrate 4006 side, and the first electrode layer 4030 and the second electrode layer 4031 are connected to the liquid crystal layer 4.
The structure is such that they are laminated via 008.

また4035は絶縁膜を選択的にエッチングすることで得られる柱状のスペーサであり、
液晶層4008の膜厚(セルギャップ)を制御するために設けられている。なお球状のス
ペーサを用いていてもよい。
Further, 4035 is a columnar spacer obtained by selectively etching the insulating film,
It is provided to control the film thickness (cell gap) of the liquid crystal layer 4008. Note that a spherical spacer may be used.

表示素子として、液晶素子を用いる場合、サーモトロピック液晶、低分子液晶、高分子液
晶、高分子分散型液晶、強誘電性液晶、反強誘電性液晶等を用いることができる。これら
の液晶材料(液晶組成物)は、条件により、コレステリック相、スメクチック相、キュー
ビック相、カイラルネマチック相、等方相等を示す。
When using a liquid crystal element as a display element, thermotropic liquid crystal, low molecular liquid crystal, polymer liquid crystal, polymer dispersed liquid crystal, ferroelectric liquid crystal, antiferroelectric liquid crystal, etc. can be used. These liquid crystal materials (liquid crystal compositions) exhibit a cholesteric phase, a smectic phase, a cubic phase, a chiral nematic phase, an isotropic phase, etc. depending on the conditions.

また、液晶層4008に、配向膜を用いないブルー相を発現する液晶組成物を用いてもよ
い。ブルー相は液晶相の一つであり、コレステリック液晶を昇温していくと、コレステリ
ック相から等方相へ転移する直前に発現する相である。ブルー相は、液晶及びカイラル剤
を混合させた液晶組成物を用いて発現させることができる。また、ブルー相が発現する温
度範囲を広げるために、ブルー相を発現する液晶組成物に重合性モノマー及び重合開始剤
などを添加し、高分子安定化させる処理を行って液晶層を形成することもできる。ブルー
相を発現する液晶組成物は、応答速度が短く、光学的等方性であるため配向処理が不要で
あり、視野角依存性が小さい。また配向膜を設けなくてもよいのでラビング処理も不要と
なるため、ラビング処理によって引き起こされる静電破壊を防止することができ、作製工
程中の液晶表示装置の不良や破損を軽減することができる。よって液晶表示装置の生産性
を向上させることが可能となる。酸化物半導体膜を用いるトランジスタは、静電気の影響
によりトランジスタの電気的な特性が著しく変動して設計範囲を逸脱する恐れがある。よ
って酸化物半導体膜を用いるトランジスタを有する液晶表示装置にブルー相を発現する液
晶組成物を用いることはより効果的である。
Further, a liquid crystal composition that exhibits a blue phase without using an alignment film may be used for the liquid crystal layer 4008. The blue phase is one of the liquid crystal phases, and is a phase that appears just before the cholesteric phase transitions to the isotropic phase when the cholesteric liquid crystal is heated. A blue phase can be developed using a liquid crystal composition in which a liquid crystal and a chiral agent are mixed. In addition, in order to widen the temperature range in which a blue phase appears, a liquid crystal layer is formed by adding polymerizable monomers, polymerization initiators, etc. to a liquid crystal composition that shows a blue phase, and performing polymer stabilization treatment. You can also do it. A liquid crystal composition that exhibits a blue phase has a short response speed, is optically isotropic, requires no alignment treatment, and has low viewing angle dependence. Furthermore, since there is no need to provide an alignment film, there is no need for a rubbing process, so it is possible to prevent electrostatic damage caused by the rubbing process, and reduce defects and damage to the liquid crystal display device during the manufacturing process. . Therefore, it becomes possible to improve the productivity of the liquid crystal display device. In a transistor using an oxide semiconductor film, the electrical characteristics of the transistor may vary significantly due to the influence of static electricity, and there is a possibility that the transistor may deviate from a design range. Therefore, it is more effective to use a liquid crystal composition that exhibits a blue phase in a liquid crystal display device having a transistor using an oxide semiconductor film.

また、液晶材料の固有抵抗は、1×10Ω・cm以上であり、好ましくは1×1011
Ω・cm以上であり、さらに好ましくは1×1012Ω・cm以上である。なお、本明細
書における固有抵抗の値は、20℃で測定した値とする。
Further, the specific resistance of the liquid crystal material is 1×10 9 Ω·cm or more, preferably 1×10 11
It is at least Ω·cm, more preferably at least 1×10 12 Ω·cm. Note that the value of specific resistance in this specification is a value measured at 20°C.

液晶表示装置に設けられる保持容量の大きさは、画素部に配置されるトランジスタのリー
ク電流等を考慮して、所定の期間の間電荷を保持できるように設定される。保持容量の大
きさは、トランジスタのオフ電流等を考慮して設定すればよい。本明細書に開示する酸化
物半導体膜を有するトランジスタを用いることにより、各画素における液晶容量に対して
1/3以下、好ましくは1/5以下の容量の大きさを有する保持容量を設ければ充分であ
る。
The size of the storage capacitor provided in the liquid crystal display device is set so as to be able to hold charge for a predetermined period of time, taking into account leakage current of transistors arranged in the pixel portion. The size of the storage capacitor may be set in consideration of the off-state current of the transistor and the like. By using a transistor including an oxide semiconductor film disclosed in this specification, a storage capacitor having a capacitance of 1/3 or less, preferably 1/5 or less of the liquid crystal capacitance in each pixel is provided. That's enough.

本明細書に開示する酸化物半導体膜を用いたトランジスタは、オフ状態における電流値(
オフ電流値)を低く制御することができる。よって、画像信号等の電気信号の保持時間を
長くすることができ、電源オン状態では書き込み間隔も長く設定できる。よって、リフレ
ッシュ動作の頻度を少なくすることができるため、消費電力を抑制する効果を奏する。
A transistor using an oxide semiconductor film disclosed in this specification has a current value (
(off-state current value) can be controlled low. Therefore, the holding time of electrical signals such as image signals can be increased, and the writing interval can also be set longer in the power-on state. Therefore, the frequency of refresh operations can be reduced, which has the effect of suppressing power consumption.

また、本明細書に開示する酸化物半導体膜を用いたトランジスタは、電界効果移動度を高
く制御することができるため、高速駆動が可能である。例えば、このような高速駆動が可
能なトランジスタを液晶表示装置に用いることで、画素部のスイッチングトランジスタと
、駆動回路部に使用するドライバートランジスタを同一基板上に形成することができる。
すなわち、別途駆動回路として、シリコンウェハ等により形成された半導体装置を用いる
必要がないため、半導体装置の部品点数を削減することができる。また、画素部において
も、高速駆動が可能なトランジスタを用いることで、高画質な画像を提供することができ
る。よって、半導体装置として高信頼化も達成できる。
Further, the transistor including the oxide semiconductor film disclosed in this specification can control field-effect mobility to a high degree, and therefore can be driven at high speed. For example, by using such a transistor capable of high-speed driving in a liquid crystal display device, a switching transistor in a pixel portion and a driver transistor used in a drive circuit portion can be formed on the same substrate.
That is, since there is no need to use a semiconductor device formed from a silicon wafer or the like as a separate drive circuit, the number of components of the semiconductor device can be reduced. Furthermore, by using transistors that can be driven at high speed in the pixel portion, it is possible to provide high-quality images. Therefore, it is possible to achieve high reliability as a semiconductor device.

液晶表示装置には、TN(Twisted Nematic)モード、IPS(In-P
lane-Switching)モード、FFS(Fringe Field Swit
ching)モード、ASM(Axially Symmetric aligned
Micro-cell)モード、OCB(Optical Compensated B
irefringence)モード、FLC(Ferroelectric Liqui
d Crystal)モード、AFLC(AntiFerroelectric Liq
uid Crystal)モードなどを用いることができる。
The liquid crystal display device has TN (Twisted Nematic) mode, IPS (In-P
lane-Switching) mode, FFS (Fringe Field Switching) mode,
ching) mode, ASM (Axially Symmetrically aligned)
Micro-cell) mode, OCB (Optical Compensated B)
FLC (Ferroelectric Liqui) mode,
d Crystal) mode, AFLC (AntiFerroelectric Liq)
uid Crystal) mode, etc. can be used.

また、ノーマリーブラック型の液晶表示装置、例えば垂直配向(VA)モードを採用した
透過型の液晶表示装置としてもよい。垂直配向モードとしては、いくつか挙げられるが、
例えば、MVA(Multi-Domain Vertical Alignment)
モード、PVA(Patterned Vertical Alignment)モード
、ASV(Advanced Super View)モードなどを用いることができる
。また、VA型の液晶表示装置にも適用することができる。VA型の液晶表示装置とは、
液晶表示パネルの液晶分子の配列を制御する方式の一種である。VA型の液晶表示装置は
、電圧が印加されていないときにパネル面に対して液晶分子が垂直方向を向く方式である
。また、画素(ピクセル)をいくつかの領域(サブピクセル)に分け、それぞれ別の方向
に分子を倒すよう工夫されているマルチドメイン化あるいはマルチドメイン設計といわれ
る方法を用いることができる。
Further, it may be a normally black type liquid crystal display device, for example, a transmissive type liquid crystal display device employing a vertical alignment (VA) mode. There are several vertical alignment modes, but
For example, MVA (Multi-Domain Vertical Alignment)
mode, PVA (Patterned Vertical Alignment) mode, ASV (Advanced Super View) mode, etc. can be used. Further, it can also be applied to a VA type liquid crystal display device. What is a VA type liquid crystal display device?
This is a type of method for controlling the arrangement of liquid crystal molecules in a liquid crystal display panel. A VA type liquid crystal display device is a type in which liquid crystal molecules are oriented perpendicularly to the panel surface when no voltage is applied. Furthermore, a method called multi-domain design or multi-domain design, in which a pixel is divided into several regions (sub-pixels) and molecules are tilted in different directions, can be used.

また、表示装置において、ブラックマトリクス(遮光層)、偏光部材、位相差部材、反射
防止部材などの光学部材(光学基板)などは適宜設ける。例えば、偏光基板及び位相差基
板による円偏光を用いてもよい。また、光源としてバックライト、サイドライトなどを用
いてもよい。
Further, in the display device, optical members (optical substrates) such as a black matrix (light shielding layer), a polarizing member, a retardation member, an antireflection member, and the like are provided as appropriate. For example, circularly polarized light using a polarizing substrate and a retardation substrate may be used. Further, a backlight, a sidelight, or the like may be used as a light source.

また、画素部における表示方式は、プログレッシブ方式やインターレース方式等を用いる
ことができる。また、カラー表示する際に画素で制御する色要素としては、RGB(Rは
赤、Gは緑、Bは青を表す)の三色に限定されない。例えば、RGBW(Wは白を表す)
、又はRGBに、イエロー、シアン、マゼンタ等を一色以上追加したものがある。なお、
色要素のドット毎にその表示領域の大きさが異なっていてもよい。ただし、開示する発明
はカラー表示の表示装置に限定されるものではなく、モノクロ表示の表示装置に適用する
こともできる。
Further, as a display method in the pixel portion, a progressive method, an interlace method, or the like can be used. Furthermore, the color elements controlled by pixels during color display are not limited to the three colors of RGB (R represents red, G represents green, and B represents blue). For example, RGBW (W represents white)
, or one or more colors such as yellow, cyan, magenta, etc. are added to RGB. In addition,
The size of the display area may be different for each color element dot. However, the disclosed invention is not limited to color display devices, but can also be applied to monochrome display devices.

また、表示装置に含まれる表示素子として、エレクトロルミネッセンスを利用する発光素
子を適用することができる。エレクトロルミネッセンスを利用する発光素子は、発光材料
が有機化合物であるか、無機化合物であるかによって区別され、一般的に、前者は有機E
L素子、後者は無機EL素子と呼ばれている。
Furthermore, a light emitting element that utilizes electroluminescence can be used as a display element included in the display device. Light-emitting elements that utilize electroluminescence are distinguished depending on whether the light-emitting material is an organic compound or an inorganic compound, and the former is generally an organic compound.
The latter is called an inorganic EL element.

有機EL素子は、発光素子に電圧を印加することにより、一対の電極から電子および正孔
がそれぞれ発光性の有機化合物を含む層に注入され、電流が流れる。そして、それらキャ
リア(電子および正孔)が再結合することにより、発光性の有機化合物が励起状態を形成
し、その励起状態が基底状態に戻る際に発光する。このようなメカニズムから、このよう
な発光素子は、電流励起型の発光素子と呼ばれる。
In an organic EL element, by applying a voltage to a light emitting element, electrons and holes are respectively injected from a pair of electrodes into a layer containing a luminescent organic compound, and a current flows. When these carriers (electrons and holes) recombine, the luminescent organic compound forms an excited state, and emits light when the excited state returns to the ground state. Due to this mechanism, such a light emitting element is called a current excitation type light emitting element.

無機EL素子は、その素子構成により、分散型無機EL素子と薄膜型無機EL素子とに分
類される。分散型無機EL素子は、発光材料の粒子をバインダ中に分散させた発光層を有
するものであり、発光メカニズムはドナー準位とアクセプター準位を利用するドナー-ア
クセプター再結合型発光である。薄膜型無機EL素子は、発光層を誘電体層で挟み込み、
さらにそれを電極で挟んだ構造であり、発光メカニズムは金属イオンの内殻電子遷移を利
用する局在型発光である。なお、ここでは、発光素子として有機EL素子を用いて説明す
る。
Inorganic EL devices are classified into dispersed type inorganic EL devices and thin film type inorganic EL devices depending on their device configurations. A dispersion type inorganic EL device has a light emitting layer in which particles of a light emitting material are dispersed in a binder, and the light emission mechanism is donor-acceptor recombination type light emission that utilizes a donor level and an acceptor level. Thin-film inorganic EL devices sandwich a light-emitting layer between dielectric layers,
Furthermore, it has a structure in which it is sandwiched between electrodes, and the luminescence mechanism is localized luminescence that utilizes the inner-shell electronic transition of metal ions. Note that an explanation will be given here using an organic EL element as a light emitting element.

発光素子は発光を取り出すために少なくとも一対の電極の一方が透光性であればよい。そ
して、基板上にトランジスタ及び発光素子を形成し、基板とは逆側の面から発光を取り出
す上面射出や、基板側の面から発光を取り出す下面射出や、基板側及び基板とは反対側の
面から発光を取り出す両面射出構造の発光素子があり、どの射出構造の発光素子も適用す
ることができる。
The light-emitting element may have at least one of a pair of electrodes that is translucent in order to extract light emission. Then, a transistor and a light emitting element are formed on a substrate, and there is a top emission method in which light emission is extracted from the surface opposite to the substrate, a bottom emission method in which light emission is extracted from the surface on the substrate side, and a surface emission method such as the substrate side and the surface opposite to the substrate. There is a light emitting element with a double-sided emission structure that extracts light from the surface, and any light emitting element with any emission structure can be applied.

図13(B)に表示素子として発光素子を用いた発光装置の例を示す。表示素子である発
光素子4513は、画素部4002に設けられたトランジスタ4010と電気的に接続し
ている。なお発光素子4513の構成は、第1の電極層4030、電界発光層4511、
第2の電極層4031の積層構造であるが、示した構成に限定されない。発光素子451
3から取り出す光の方向などに合わせて、発光素子4513の構成は適宜変えることがで
きる。
FIG. 13B shows an example of a light-emitting device using a light-emitting element as a display element. A light emitting element 4513 that is a display element is electrically connected to a transistor 4010 provided in the pixel portion 4002. Note that the structure of the light emitting element 4513 includes a first electrode layer 4030, an electroluminescent layer 4511,
Although the second electrode layer 4031 has a stacked structure, it is not limited to the illustrated structure. Light emitting element 451
The configuration of the light emitting element 4513 can be changed as appropriate depending on the direction of light extracted from the light emitting element 4513.

隔壁4510は、有機絶縁材料、又は無機絶縁材料を用いて形成する。特に感光性の樹脂
材料を用い、第1の電極層4030上に開口部を形成し、その開口部の側壁が連続した曲
率を持って形成される傾斜面となるように形成することが好ましい。
The partition wall 4510 is formed using an organic insulating material or an inorganic insulating material. In particular, it is preferable to use a photosensitive resin material to form an opening on the first electrode layer 4030 so that the sidewall of the opening becomes an inclined surface with a continuous curvature.

電界発光層4511は、単数の層で構成されていても、複数の層が積層されるように構成
されていてもどちらでもよい。
The electroluminescent layer 4511 may be composed of a single layer or may be composed of a plurality of stacked layers.

発光素子4513に酸素、水素、水、二酸化炭素等が侵入しないように、第2の電極層4
031及び隔壁4510上に保護膜を形成してもよい。保護膜としては、窒化シリコン膜
、窒化酸化シリコン膜、DLC膜等を形成することができる。また、第1の基板4001
、第2の基板4006、及びシール材4005によって封止された空間には充填材451
4が設けられ密封されている。このように外気に曝されないように気密性が高く、脱ガス
の少ない保護フィルム(貼り合わせフィルム、紫外線硬化樹脂フィルム等)やカバー材で
パッケージング(封入)することが好ましい。
The second electrode layer 4 is formed to prevent oxygen, hydrogen, water, carbon dioxide, etc. from entering the light emitting element 4513.
A protective film may be formed on the partition wall 4510 and the partition wall 4510. As the protective film, a silicon nitride film, a silicon nitride oxide film, a DLC film, or the like can be formed. In addition, the first substrate 4001
A filler 451 is placed in the space sealed by the second substrate 4006 and the sealant 4005.
4 is provided and sealed. In order to avoid exposure to the outside air, it is preferable to package (seal) with a protective film (laminated film, ultraviolet curable resin film, etc.) or cover material that has high airtightness and less outgassing.

充填材4514としては窒素やアルゴンなどの不活性な気体の他に、紫外線硬化樹脂また
は熱硬化樹脂を用いることができ、PVC(ポリビニルクロライド)、アクリル樹脂、ポ
リイミド、エポキシ樹脂、シリコーン樹脂、PVB(ポリビニルブチラル)またはEVA
(エチレンビニルアセテート)を用いることができる。例えば充填材として窒素を用いれ
ばよい。
As the filler 4514, in addition to inert gases such as nitrogen and argon, ultraviolet curing resins or thermosetting resins can be used, such as PVC (polyvinyl chloride), acrylic resin, polyimide, epoxy resin, silicone resin, PVB ( polyvinyl butyral) or EVA
(ethylene vinyl acetate) can be used. For example, nitrogen may be used as the filler.

また、必要であれば、発光素子の射出面に偏光板、又は円偏光板(楕円偏光板を含む)、
位相差板(λ/4板、λ/2板)、カラーフィルタなどの光学フィルムを適宜設けてもよ
い。また、偏光板又は円偏光板に反射防止膜を設けてもよい。例えば、表面の凹凸により
反射光を拡散し、映り込みを低減できるアンチグレア処理を施すことができる。
In addition, if necessary, a polarizing plate or a circularly polarizing plate (including an elliptically polarizing plate),
Optical films such as a retardation plate (λ/4 plate, λ/2 plate) and a color filter may be provided as appropriate. Further, an antireflection film may be provided on the polarizing plate or the circularly polarizing plate. For example, it is possible to perform anti-glare treatment that can diffuse reflected light using surface irregularities and reduce reflections.

また、表示装置として、電子インクを駆動させる電子ペーパーを提供することも可能であ
る。電子ペーパーは、電気泳動表示装置(電気泳動ディスプレイ)も呼ばれており、紙と
同じ読みやすさ、他の表示装置に比べ低消費電力、薄くて軽い形状とすることが可能とい
う利点を有している。
Furthermore, it is also possible to provide electronic paper that drives electronic ink as a display device. Electronic paper, also called an electrophoretic display, has the advantages of being as easy to read as paper, consuming less power than other display devices, and being thin and lightweight. ing.

電気泳動表示装置は、様々な形態が考えられ得るが、プラスの電荷を有する第1の粒子と
、マイナスの電荷を有する第2の粒子とを含むマイクロカプセルが溶媒または溶質に複数
分散されたものであり、マイクロカプセルに電界を印加することによって、マイクロカプ
セル中の粒子を互いに反対方向に移動させて一方側に集合した粒子の色のみを表示するも
のである。なお、第1の粒子または第2の粒子は染料を含み、電界がない場合において移
動しないものである。また、第1の粒子の色と第2の粒子の色は異なるもの(無色を含む
)とする。
The electrophoretic display device may have various forms, but it is one in which a plurality of microcapsules containing first particles with a positive charge and second particles with a negative charge are dispersed in a solvent or a solute. By applying an electric field to the microcapsule, the particles in the microcapsule are moved in opposite directions, and only the color of the particles gathered on one side is displayed. Note that the first particles or the second particles contain a dye and do not move in the absence of an electric field. Further, the color of the first particles and the color of the second particles are different (including colorless).

このように、電気泳動表示装置は、誘電定数の高い物質が高い電界領域に移動する、いわ
ゆる誘電泳動的効果を利用したディスプレイである。
In this way, an electrophoretic display device is a display that utilizes the so-called dielectrophoretic effect, in which a substance with a high dielectric constant moves to a high electric field region.

上記マイクロカプセルを溶媒中に分散させたものが電子インクと呼ばれるものであり、こ
の電子インクはガラス、プラスチック、布、紙などの表面に印刷することができる。また
、カラーフィルタや色素を有する粒子を用いることによってカラー表示も可能である。
The above microcapsules dispersed in a solvent are called electronic ink, and this electronic ink can be printed on the surface of glass, plastic, cloth, paper, etc. Furthermore, color display is also possible by using color filters or particles containing pigments.

なお、マイクロカプセル中の第1の粒子および第2の粒子は、導電体材料、絶縁体材料、
半導体材料、磁性材料、液晶材料、強誘電性材料、エレクトロルミネセント材料、エレク
トロクロミック材料、磁気泳動材料から選ばれた一種の材料、またはこれらの複合材料を
用いればよい。
Note that the first particles and the second particles in the microcapsules are made of a conductor material, an insulator material,
A material selected from semiconductor materials, magnetic materials, liquid crystal materials, ferroelectric materials, electroluminescent materials, electrochromic materials, and magnetophoretic materials, or a composite material thereof may be used.

また、電子ペーパーとして、ツイストボール表示方式を用いる表示装置も適用することが
できる。ツイストボール表示方式とは、白と黒に塗り分けられた球形粒子を表示素子に用
いる電極層である第1の電極層及び第2の電極層の間に配置し、第1の電極層及び第2の
電極層に電位差を生じさせての球形粒子の向きを制御することにより、表示を行う方法で
ある。
Furthermore, a display device using a twist ball display method can also be applied as the electronic paper. In the twist ball display method, spherical particles painted in white and black are arranged between a first electrode layer and a second electrode layer, which are the electrode layers used in the display element. This is a method of displaying by controlling the orientation of spherical particles by creating a potential difference between two electrode layers.

なお、図12及び図13において、第1の基板4001、第2の基板4006としては、
ガラス基板の他、可撓性を有する基板も用いることができ、例えば透光性を有するプラス
チック基板などを用いることができる。プラスチックとしては、FRP(Fibergl
ass-Reinforced Plastics)板、PVF(ポリビニルフルオライ
ド)フィルム、ポリエステルフィルムまたはアクリル樹脂フィルムを用いることができる
。また、透光性が必要でなければ、アルミニウムやステンレスなどの金属基板(金属フィ
ルム)を用いてもよい。例えば、アルミニウムホイルをPVFフィルムやポリエステルフ
ィルムで挟んだ構造のシートを用いることもできる。
Note that in FIGS. 12 and 13, the first substrate 4001 and the second substrate 4006 are as follows.
In addition to the glass substrate, a flexible substrate can also be used, such as a translucent plastic substrate. As a plastic, FRP (Fiberglass
Ass-Reinforced Plastics) board, PVF (polyvinyl fluoride) film, polyester film, or acrylic resin film can be used. Further, if translucency is not required, a metal substrate (metal film) such as aluminum or stainless steel may be used. For example, a sheet having a structure in which aluminum foil is sandwiched between PVF films or polyester films can also be used.

本実施の形態では、絶縁膜4020として酸化アルミニウム膜を用いる。 In this embodiment, an aluminum oxide film is used as the insulating film 4020.

酸化物半導体膜上に絶縁膜4020として設けられた酸化アルミニウム膜は、水素、水な
どの不純物、及び酸素の両方に対して膜を透過させない遮断効果(ブロック効果)が高い
The aluminum oxide film provided as the insulating film 4020 over the oxide semiconductor film has a high blocking effect of not allowing both impurities such as hydrogen and water to pass through the film, as well as oxygen.

従って、酸化アルミニウム膜は、作製工程中及び作製後において、変動要因となる水素、
水などの不純物の酸化物半導体膜への混入、及び酸化物半導体を構成する主成分材料であ
る酸素の酸化物半導体膜からの放出を防止する保護膜として機能する。
Therefore, during and after the fabrication process, the aluminum oxide film is exposed to hydrogen and
It functions as a protective film that prevents impurities such as water from entering the oxide semiconductor film and preventing oxygen, which is the main component of the oxide semiconductor, from being released from the oxide semiconductor film.

また、平坦化絶縁膜として機能する絶縁膜4021は、アクリル樹脂、ポリイミド、ベン
ゾシクロブテン系樹脂、ポリアミド、エポキシ等の、耐熱性を有する有機材料を用いるこ
とができる。また上記有機材料の他に、低誘電率材料(low-k材料)、シロキサン系
樹脂、PSG(リンガラス)、BPSG(リンボロンガラス)等を用いることができる。
なお、これらの材料で形成される絶縁膜を複数積層させることで、絶縁膜を形成してもよ
い。
Further, for the insulating film 4021 that functions as a planarizing insulating film, a heat-resistant organic material such as acrylic resin, polyimide, benzocyclobutene-based resin, polyamide, or epoxy can be used. In addition to the above organic materials, low dielectric constant materials (low-k materials), siloxane resins, PSG (phosphorus glass), BPSG (phosphorus boron glass), etc. can be used.
Note that the insulating film may be formed by stacking a plurality of insulating films made of these materials.

絶縁膜4021の形成法は、特に限定されず、その材料に応じて、スパッタリング法、S
OG法、スピンコート、ディップ、スプレー塗布、液滴吐出法(インクジェット法等)、
印刷法(スクリーン印刷、オフセット印刷等)、ドクターナイフ、ロールコーター、カー
テンコーター、ナイフコーター等を用いることができる。
The method for forming the insulating film 4021 is not particularly limited, and may be sputtering, S
OG method, spin coating, dip, spray coating, droplet discharge method (inkjet method, etc.),
Printing methods (screen printing, offset printing, etc.), doctor knife, roll coater, curtain coater, knife coater, etc. can be used.

表示装置は光源又は表示素子からの光を透過させて表示を行う。よって光が透過する画素
部に設けられる基板、絶縁膜、導電膜などの薄膜はすべて可視光の波長領域の光に対して
透光性とする。
A display device performs display by transmitting light from a light source or a display element. Therefore, thin films such as a substrate, an insulating film, and a conductive film provided in a pixel portion through which light passes are all transparent to light in the visible wavelength range.

表示素子に電圧を印加する第1の電極層及び第2の電極層(画素電極層、共通電極層、対
向電極層などともいう)においては、取り出す光の方向、電極層が設けられる場所、及び
電極層のパターン構造によって透光性、反射性を選択すればよい。
In the first electrode layer and second electrode layer (also referred to as pixel electrode layer, common electrode layer, counter electrode layer, etc.) that apply voltage to the display element, the direction of the light to be extracted, the location where the electrode layer is provided, Translucency and reflectivity may be selected depending on the pattern structure of the electrode layer.

第1の電極層4030、第2の電極層4031は、酸化タングステンを含むインジウム酸
化物、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化
物、酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物、インジウム亜鉛酸化物
、酸化ケイ素を添加したインジウム錫酸化物、グラフェンなどの透光性を有する導電性材
料を用いることができる。
The first electrode layer 4030 and the second electrode layer 4031 are made of indium oxide containing tungsten oxide, indium zinc oxide containing tungsten oxide, indium oxide containing titanium oxide, indium tin oxide containing titanium oxide, indium A light-transmitting conductive material such as tin oxide, indium zinc oxide, indium tin oxide added with silicon oxide, and graphene can be used.

また、第1の電極層4030、第2の電極層4031はタングステン(W)、モリブデン
(Mo)、ジルコニウム(Zr)、ハフニウム(Hf)、バナジウム(V)、ニオブ(N
b)、タンタル(Ta)、クロム(Cr)、コバルト(Co)、ニッケル(Ni)、チタ
ン(Ti)、白金(Pt)、アルミニウム(Al)、銅(Cu)、銀(Ag)等の金属、
又はその合金、若しくはその金属窒化物から一つ、又は複数種を用いて形成することがで
きる。
Further, the first electrode layer 4030 and the second electrode layer 4031 are made of tungsten (W), molybdenum (Mo), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (N
b) Metals such as tantalum (Ta), chromium (Cr), cobalt (Co), nickel (Ni), titanium (Ti), platinum (Pt), aluminum (Al), copper (Cu), silver (Ag), etc. ,
It can be formed using one or more of their alloys, or metal nitrides thereof.

また、第1の電極層4030、第2の電極層4031として、導電性高分子(導電性ポリ
マーともいう)を含む導電性組成物を用いて形成することができる。導電性高分子として
は、いわゆるπ電子共役系導電性高分子が用いることができる。例えば、ポリアニリンま
たはその誘導体、ポリピロールまたはその誘導体、ポリチオフェンまたはその誘導体、若
しくはアニリン、ピロールおよびチオフェンの2種以上からなる共重合体若しくはその誘
導体などがあげられる。
Further, the first electrode layer 4030 and the second electrode layer 4031 can be formed using a conductive composition containing a conductive polymer (also referred to as a conductive polymer). As the conductive polymer, a so-called π-electron conjugated conductive polymer can be used. Examples include polyaniline or a derivative thereof, polypyrrole or a derivative thereof, polythiophene or a derivative thereof, or a copolymer of two or more of aniline, pyrrole and thiophene or a derivative thereof.

また、トランジスタは静電気などにより破壊されやすいため、駆動回路保護用の保護回路
を設けることが好ましい。保護回路は、非線形素子を用いて構成することが好ましい。
Furthermore, since transistors are easily destroyed by static electricity or the like, it is preferable to provide a protection circuit for protecting the drive circuit. Preferably, the protection circuit is configured using a nonlinear element.

以上のように実施の形態1乃至4のいずれかで示したトランジスタを適用することで、様
々な機能を有する半導体装置を提供することができる。
As described above, by using the transistor described in any of Embodiments 1 to 4, semiconductor devices having various functions can be provided.

(実施の形態6)
実施の形態1乃至4のいずれかで一例を示したトランジスタを用いて、対象物の情報を読
み取るイメージセンサ機能を有する半導体装置を作製することができる。
(Embodiment 6)
A semiconductor device having an image sensor function that reads information on a target can be manufactured using the transistor described as an example in any of Embodiments 1 to 4.

図14(A)に、イメージセンサ機能を有する半導体装置の一例を示す。図14(A)は
フォトセンサの等価回路であり、図14(B)はフォトセンサの一部を示す断面図である
FIG. 14A shows an example of a semiconductor device having an image sensor function. FIG. 14(A) is an equivalent circuit of the photosensor, and FIG. 14(B) is a cross-sectional view showing a part of the photosensor.

フォトダイオード602は、一方の電極がフォトダイオードリセット信号線658に、他
方の電極がトランジスタ640のゲートに電気的に接続されている。トランジスタ640
は、ソース又はドレインの一方がフォトセンサ基準信号線672に、ソース又はドレイン
の他方がトランジスタ656のソース又はドレインの一方に電気的に接続されている。ト
ランジスタ656は、ゲートがゲート信号線659に、ソース又はドレインの他方がフォ
トセンサ出力信号線671に電気的に接続されている。
The photodiode 602 has one electrode electrically connected to the photodiode reset signal line 658 and the other electrode electrically connected to the gate of the transistor 640. transistor 640
One of the source and drain is electrically connected to the photosensor reference signal line 672, and the other source and drain is electrically connected to one of the source and drain of the transistor 656. The transistor 656 has its gate electrically connected to the gate signal line 659 and the other of its source and drain to the photosensor output signal line 671.

なお、本明細書における回路図において、酸化物半導体膜を用いるトランジスタと明確に
判明できるように、酸化物半導体膜を用いるトランジスタの記号には「OS」と記載して
いる。図14(A)において、トランジスタ640、トランジスタ656は実施の形態1
乃至4に示したトランジスタが適用でき、酸化物半導体膜を用いるトランジスタである。
本実施の形態では、実施の形態1で示したトランジスタ440aと同様な構造を有するト
ランジスタを適用する例を示す。
Note that in the circuit diagrams in this specification, the symbol for a transistor using an oxide semiconductor film is written as "OS" so that it can be clearly identified as a transistor using an oxide semiconductor film. In FIG. 14A, the transistor 640 and the transistor 656 are the same as those in Embodiment 1.
The transistors shown in 4 to 4 can be applied, and are transistors using an oxide semiconductor film.
In this embodiment, an example is shown in which a transistor having the same structure as the transistor 440a described in Embodiment 1 is used.

図14(B)は、フォトセンサにおけるフォトダイオード602及びトランジスタ640
に示す断面図であり、絶縁表面を有する基板601(TFT基板)上に、センサとして機
能するフォトダイオード602及びトランジスタ640が設けられている。フォトダイオ
ード602、トランジスタ640の上には接着層608を用いて基板613が設けられて
いる。
FIG. 14B shows a photodiode 602 and a transistor 640 in a photosensor.
2, a photodiode 602 and a transistor 640 functioning as a sensor are provided on a substrate 601 (TFT substrate) having an insulating surface. A substrate 613 is provided on the photodiode 602 and the transistor 640 using an adhesive layer 608.

トランジスタ640上には絶縁膜631、絶縁膜632、層間絶縁膜633、層間絶縁膜
634が設けられている。フォトダイオード602は、層間絶縁膜633上に設けられ、
層間絶縁膜633上に形成した電極層641と、層間絶縁膜634上に設けられた電極層
642との間に、層間絶縁膜633側から順に第1半導体膜606a、第2半導体膜60
6b、及び第3半導体膜606cを積層した構造を有している。
An insulating film 631, an insulating film 632, an interlayer insulating film 633, and an interlayer insulating film 634 are provided over the transistor 640. The photodiode 602 is provided on the interlayer insulating film 633,
Between the electrode layer 641 formed on the interlayer insulating film 633 and the electrode layer 642 provided on the interlayer insulating film 634, a first semiconductor film 606a and a second semiconductor film 60 are arranged in order from the interlayer insulating film 633 side.
6b and a third semiconductor film 606c are stacked.

電極層641は、層間絶縁膜634に形成された導電層643と電気的に接続し、電極層
642は電極層641を介して導電層645と電気的に接続している。導電層645は、
トランジスタ640のゲート電極層と電気的に接続しており、フォトダイオード602は
トランジスタ640と電気的に接続している。
The electrode layer 641 is electrically connected to a conductive layer 643 formed on the interlayer insulating film 634, and the electrode layer 642 is electrically connected to the conductive layer 645 via the electrode layer 641. The conductive layer 645 is
It is electrically connected to the gate electrode layer of the transistor 640, and the photodiode 602 is electrically connected to the transistor 640.

ここでは、第1半導体膜606aとしてp型の導電型を有する半導体膜と、第2半導体膜
606bとして高抵抗な半導体膜(I型半導体膜)、第3半導体膜606cとしてn型の
導電型を有する半導体膜を積層するpin型のフォトダイオードを例示している。
Here, a semiconductor film having a p-type conductivity type is used as the first semiconductor film 606a, a high-resistance semiconductor film (I-type semiconductor film) is used as the second semiconductor film 606b, and an n-type conductivity type is used as the third semiconductor film 606c. This example illustrates a pin-type photodiode in which semiconductor films having the same structure are stacked.

第1半導体膜606aはp型半導体膜であり、p型を付与する不純物元素を含むアモルフ
ァスシリコン膜により形成することができる。第1半導体膜606aの形成には13族の
不純物元素(例えばボロン(B))を含む半導体材料ガスを用いて、プラズマCVD法に
より形成する。半導体材料ガスとしてはシラン(SiH)を用いればよい。または、S
、SiHCl、SiHCl、SiCl、SiF等を用いてもよい。ま
た、不純物元素を含まないアモルファスシリコン膜を形成した後に、拡散法やイオン注入
法を用いて該アモルファスシリコン膜に不純物元素を導入してもよい。イオン注入法等に
より不純物元素を導入した後に加熱等を行うことで、不純物元素を拡散させるとよい。こ
の場合にアモルファスシリコン膜を形成する方法としては、LPCVD法、気相成長法、
又はスパッタリング法等を用いればよい。第1半導体膜606aの膜厚は10nm以上5
0nm以下となるよう形成することが好ましい。
The first semiconductor film 606a is a p-type semiconductor film, and can be formed of an amorphous silicon film containing an impurity element that imparts p-type conductivity. The first semiconductor film 606a is formed by a plasma CVD method using a semiconductor material gas containing a Group 13 impurity element (for example, boron (B)). Silane (SiH 4 ) may be used as the semiconductor material gas. Or S
i2H6 , SiH2Cl2 , SiHCl3 , SiCl4 , SiF4 , etc. may be used. Further, after forming an amorphous silicon film that does not contain an impurity element, an impurity element may be introduced into the amorphous silicon film using a diffusion method or an ion implantation method. It is preferable to diffuse the impurity element by introducing the impurity element by ion implantation or the like and then performing heating or the like. In this case, methods for forming the amorphous silicon film include LPCVD method, vapor phase growth method,
Alternatively, a sputtering method or the like may be used. The thickness of the first semiconductor film 606a is 10 nm or more5
It is preferable to form the layer to have a thickness of 0 nm or less.

第2半導体膜606bは、I型半導体膜(真性半導体膜)であり、アモルファスシリコン
膜により形成する。第2半導体膜606bの形成には、半導体材料ガスを用いて、アモル
ファスシリコン膜をプラズマCVD法により形成する。半導体材料ガスとしては、シラン
(SiH)を用いればよい。または、Si、SiHCl、SiHCl、S
iCl、SiF等を用いてもよい。第2半導体膜606bの形成は、LPCVD法、
気相成長法、スパッタリング法等により行ってもよい。第2半導体膜606bの膜厚は2
00nm以上1000nm以下となるように形成することが好ましい。
The second semiconductor film 606b is an I-type semiconductor film (intrinsic semiconductor film) and is formed from an amorphous silicon film. To form the second semiconductor film 606b, an amorphous silicon film is formed by plasma CVD using a semiconductor material gas. Silane (SiH 4 ) may be used as the semiconductor material gas. Or Si 2 H 6 , SiH 2 Cl 2 , SiHCl 3 , S
iCl 4 , SiF 4 , etc. may also be used. The second semiconductor film 606b is formed using the LPCVD method.
It may be performed by a vapor phase growth method, a sputtering method, or the like. The thickness of the second semiconductor film 606b is 2
It is preferable to form the layer to have a thickness of 00 nm or more and 1000 nm or less.

第3半導体膜606cは、n型半導体膜であり、n型を付与する不純物元素を含むアモル
ファスシリコン膜により形成する。第3半導体膜606cの形成には、15族の不純物元
素(例えばリン(P))を含む半導体材料ガスを用いて、プラズマCVD法により形成す
る。半導体材料ガスとしてはシラン(SiH)を用いればよい。または、Si
SiHCl、SiHCl、SiCl、SiF等を用いてもよい。また、不純物
元素を含まないアモルファスシリコン膜を形成した後に、拡散法やイオン注入法を用いて
該アモルファスシリコン膜に不純物元素を導入してもよい。イオン注入法等により不純物
元素を導入した後に加熱等を行うことで、不純物元素を拡散させるとよい。この場合にア
モルファスシリコン膜を形成する方法としては、LPCVD法、気相成長法、又はスパッ
タリング法等を用いればよい。第3半導体膜606cの膜厚は20nm以上200nm以
下となるよう形成することが好ましい。
The third semiconductor film 606c is an n-type semiconductor film, and is formed of an amorphous silicon film containing an impurity element that imparts n-type conductivity. The third semiconductor film 606c is formed by a plasma CVD method using a semiconductor material gas containing a Group 15 impurity element (for example, phosphorus (P)). Silane (SiH 4 ) may be used as the semiconductor material gas. Or Si2H6 ,
SiH 2 Cl 2 , SiHCl 3 , SiCl 4 , SiF 4 or the like may also be used. Further, after forming an amorphous silicon film that does not contain an impurity element, an impurity element may be introduced into the amorphous silicon film using a diffusion method or an ion implantation method. It is preferable to diffuse the impurity element by introducing the impurity element by ion implantation or the like and then performing heating or the like. In this case, as a method for forming the amorphous silicon film, an LPCVD method, a vapor phase growth method, a sputtering method, or the like may be used. The third semiconductor film 606c is preferably formed to have a thickness of 20 nm or more and 200 nm or less.

また、第1半導体膜606a、第2半導体膜606b、及び第3半導体膜606cは、ア
モルファス半導体ではなく、多結晶半導体を用いて形成してもよいし、微結晶(セミアモ
ルファス(Semi Amorphous Semiconductor:SAS))半
導体を用いて形成してもよい。
Further, the first semiconductor film 606a, the second semiconductor film 606b, and the third semiconductor film 606c may be formed using a polycrystalline semiconductor instead of an amorphous semiconductor, or may be formed using a microcrystalline (semi-amorphous semiconductor). It may be formed using a SAS)) semiconductor.

微結晶半導体は、ギブスの自由エネルギーを考慮すれば非晶質と単結晶の中間的な準安定
状態に属するものである。すなわち、自由エネルギー的に安定な第3の状態を有する半導
体であって、短距離秩序を持ち格子歪みを有する。柱状または針状結晶が基板表面に対し
て法線方向に成長している。微結晶半導体の代表例である微結晶シリコンは、そのラマン
スペクトルが単結晶シリコンを示す520cm-1よりも低波数側に、シフトしている。
即ち、単結晶シリコンを示す520cm-1とアモルファスシリコンを示す480cm
の間に微結晶シリコンのラマンスペクトルのピークがある。また、未結合手(ダングリ
ングボンド)を終端するため水素またはハロゲンを少なくとも1原子%またはそれ以上含
ませている。さらに、ヘリウム、アルゴン、クリプトン、ネオンなどの希ガス元素を含ま
せて格子歪みをさらに助長させることで、安定性が増し良好な微結晶半導体膜が得られる
Microcrystalline semiconductors belong to a metastable state intermediate between amorphous and single crystal, considering Gibbs free energy. That is, it is a semiconductor having a third state that is stable in terms of free energy, has short-range order, and has lattice strain. Columnar or acicular crystals grow in the normal direction to the substrate surface. Microcrystalline silicon, which is a typical example of microcrystalline semiconductors, has a Raman spectrum shifted to a lower wave number than 520 cm −1 , which is the wavelength of single crystal silicon.
That is, 520 cm -1 indicating single crystal silicon and 480 cm -1 indicating amorphous silicon .
There is a peak in the Raman spectrum of microcrystalline silicon between 1 and 1 . Further, in order to terminate dangling bonds, at least 1 atomic % or more of hydrogen or halogen is contained. Furthermore, by incorporating a rare gas element such as helium, argon, krypton, or neon to further promote lattice distortion, a good microcrystalline semiconductor film with increased stability can be obtained.

この微結晶半導体膜は、周波数が数十MHz~数百MHzの高周波プラズマCVD法、ま
たは周波数が1GHz以上のマイクロ波プラズマCVD装置により形成することができる
。代表的には、SiH、Si、SiHCl、SiHCl、SiCl、S
iFなどの珪素を含む化合物を水素で希釈して形成することができる。また、珪素を含
む化合物(例えば水素化珪素)及び水素に加え、ヘリウム、アルゴン、クリプトン、ネオ
ンから選ばれた一種または複数種の希ガス元素で希釈して微結晶半導体膜を形成すること
ができる。これらのときの珪素を含む化合物(例えば水素化珪素)に対して水素の流量比
を5倍以上200倍以下、好ましくは50倍以上150倍以下、更に好ましくは100倍
とする。さらには、シリコンを含む気体中に、CH、C等の炭化物気体、GeH
、GeF等のゲルマニウム化気体、F等を混入させてもよい。
This microcrystalline semiconductor film can be formed by a high-frequency plasma CVD method with a frequency of several tens of MHz to several hundred MHz, or a microwave plasma CVD device with a frequency of 1 GHz or more. Typically, SiH 4 , Si 2 H 6 , SiH 2 Cl 2 , SiHCl 3 , SiCl 4 , S
It can be formed by diluting a silicon-containing compound such as iF4 with hydrogen. Further, in addition to a compound containing silicon (for example, silicon hydride) and hydrogen, a microcrystalline semiconductor film can be formed by diluting it with one or more rare gas elements selected from helium, argon, krypton, and neon. . In these cases, the flow rate ratio of hydrogen to the silicon-containing compound (for example, silicon hydride) is set to 5 times or more and 200 times or less, preferably 50 times or more and 150 times or less, and more preferably 100 times. Furthermore, carbide gases such as CH 4 and C 2 H 6 , GeH
4 , germanizing gas such as GeF4 , F2, etc. may be mixed.

また、光電効果で発生した正孔の移動度は電子の移動度に比べて小さいため、pin型の
フォトダイオードはp型の半導体膜側を受光面とする方がよい特性を示す。ここでは、p
in型のフォトダイオードが形成されている基板601の面からフォトダイオード602
が受ける光を電気信号に変換する例を示す。また、受光面とした半導体膜側とは逆の導電
型を有する半導体膜側からの光は外乱光となるため、電極層は遮光性を有する導電膜を用
いるとよい。また、n型の半導体膜側を受光面として用いることもできる。
Furthermore, since the mobility of holes generated by the photoelectric effect is smaller than the mobility of electrons, a pin-type photodiode exhibits better characteristics when the light-receiving surface is on the p-type semiconductor film side. Here, p
The photodiode 602 is viewed from the surface of the substrate 601 on which the in-type photodiode is formed.
Here is an example of converting the light received by the device into an electrical signal. Furthermore, since light from the semiconductor film side having a conductivity type opposite to that of the semiconductor film side serving as the light-receiving surface becomes disturbance light, it is preferable to use a conductive film having a light-shielding property as the electrode layer. Further, the n-type semiconductor film side can also be used as a light-receiving surface.

絶縁膜632、層間絶縁膜633、層間絶縁膜634としては、絶縁性材料を用いて、そ
の材料に応じて、スパッタリング法、プラズマCVD法、SOG法、スピンコート、ディ
ップ、スプレー塗布、液滴吐出法(インクジェット法等)、印刷法(スクリーン印刷、オ
フセット印刷等)、ドクターナイフ、ロールコーター、カーテンコーター、ナイフコータ
ー等を用いて形成することができる。
As the insulating film 632, interlayer insulating film 633, and interlayer insulating film 634, an insulating material is used, and depending on the material, sputtering method, plasma CVD method, SOG method, spin coating, dipping, spray coating, or droplet discharge is used. It can be formed using a method (inkjet method, etc.), a printing method (screen printing, offset printing, etc.), a doctor knife, a roll coater, a curtain coater, a knife coater, etc.

本実施の形態では、絶縁膜631として酸化アルミニウム膜を用いる。絶縁膜631はス
パッタリング法やプラズマCVD法によって形成することができる。
In this embodiment, an aluminum oxide film is used as the insulating film 631. The insulating film 631 can be formed by a sputtering method or a plasma CVD method.

酸化物半導体膜上に絶縁膜631として設けられた酸化アルミニウム膜は、水素、水など
の不純物、及び酸素の両方に対して膜を透過させない遮断効果(ブロック効果)が高い。
The aluminum oxide film provided as the insulating film 631 over the oxide semiconductor film has a high blocking effect of not allowing both impurities such as hydrogen and water to pass through the film, as well as oxygen.

従って、酸化アルミニウム膜は、作製工程中及び作製後において、変動要因となる水素、
水などの不純物の酸化物半導体膜への混入、及び酸化物半導体を構成する主成分材料であ
る酸素の酸化物半導体膜からの放出を防止する保護膜として機能する。
Therefore, during and after the fabrication process, the aluminum oxide film is exposed to hydrogen and
It functions as a protective film that prevents impurities such as water from entering the oxide semiconductor film and preventing oxygen, which is the main component of the oxide semiconductor, from being released from the oxide semiconductor film.

絶縁膜632としては、無機絶縁材料としては、酸化シリコン層、酸化窒化シリコン層、
酸化アルミニウム層、又は酸化窒化アルミニウム層などの酸化物絶縁膜、窒化シリコン層
、窒化酸化シリコン層、窒化アルミニウム層、又は窒化酸化アルミニウム層などの窒化物
絶縁膜の単層、又は積層を用いることができる。
As the insulating film 632, inorganic insulating materials include a silicon oxide layer, a silicon oxynitride layer,
A single layer or a stack of nitride insulating films such as an aluminum oxide layer, an oxide insulating film such as an aluminum oxynitride layer, a silicon nitride layer, a silicon nitride oxide layer, an aluminum nitride layer, or an aluminum nitride oxide layer can be used. can.

層間絶縁膜633、634としては、表面凹凸を低減するため平坦化絶縁膜として機能す
る絶縁膜が好ましい。層間絶縁膜633、634としては、例えばポリイミド、アクリル
樹脂、ベンゾシクロブテン系樹脂、ポリアミド、エポキシ樹脂等の、耐熱性を有する有機
絶縁材料を用いることができる。また上記有機絶縁材料の他に、低誘電率材料(low-
k材料)、シロキサン系樹脂、PSG(リンガラス)、BPSG(リンボロンガラス)等
の単層、又は積層を用いることができる。
The interlayer insulating films 633 and 634 are preferably insulating films that function as a flattening insulating film to reduce surface unevenness. As the interlayer insulating films 633 and 634, heat-resistant organic insulating materials such as polyimide, acrylic resin, benzocyclobutene resin, polyamide, and epoxy resin can be used. In addition to the above organic insulating materials, low dielectric constant materials (low-
A single layer or a laminated layer of siloxane resin, PSG (phosphorus glass), BPSG (phosphorus boron glass), etc. can be used.

フォトダイオード602に入射する光を検出することによって、被検出物の情報を読み取
ることができる。なお、被検出物の情報を読み取る際にバックライトなどの光源を用いる
ことができる。
By detecting the light incident on the photodiode 602, information on the object to be detected can be read. Note that a light source such as a backlight can be used when reading information on the object to be detected.

以上のように、半導体層として異なるエネルギーギャップを有する複数の酸化物半導体層
を含む酸化物半導体積層を用いることによって、トランジスタの電気特性をより精度よく
制御することができ、所望の電気特性をトランジスタに付与することが可能となる。よっ
て、該トランジスタを用いることで、高機能、高信頼性、又は低消費電力など、種々の目
的に応じた半導体装置を提供することができる。
As described above, by using an oxide semiconductor stack including a plurality of oxide semiconductor layers having different energy gaps as a semiconductor layer, it is possible to control the electrical characteristics of a transistor with higher precision, and to adjust the desired electrical characteristics to a transistor. It becomes possible to grant Therefore, by using the transistor, it is possible to provide semiconductor devices that meet various purposes, such as high functionality, high reliability, and low power consumption.

本実施の形態は、他の実施の形態に記載した構成と適宜組み合わせて実施することが可能
である。
This embodiment mode can be implemented in appropriate combination with the structures described in other embodiment modes.

(実施の形態7)
実施の形態1乃至4のいずれかで一例を示したトランジスタは、複数のトランジスタを積
層する集積回路を有する半導体装置に好適に用いることができる。本実施の形態では、半
導体装置の一例として、記憶媒体(メモリ素子)の例を示す。
(Embodiment 7)
The transistor shown as an example in any of Embodiments 1 to 4 can be suitably used in a semiconductor device having an integrated circuit in which a plurality of transistors are stacked. In this embodiment, an example of a storage medium (memory element) is shown as an example of a semiconductor device.

実施の形態では、単結晶半導体基板に作製された第1のトランジスタであるトランジスタ
140と絶縁膜を介してトランジスタ140の上方に半導体膜を用いて作製された第2の
トランジスタであるトランジスタ162を含む半導体装置を作製する。実施の形態1乃至
3のいずれかで一例を示したトランジスタは、トランジスタ162に好適に用いることが
できる。本実施の形態では、トランジスタ162として実施の形態1で示したトランジス
タ440aと同様な構造を有するトランジスタを用いる例を示す。
The embodiment mode includes a transistor 140 that is a first transistor manufactured over a single crystal semiconductor substrate, and a transistor 162 that is a second transistor manufactured using a semiconductor film above the transistor 140 with an insulating film interposed therebetween. Fabricate a semiconductor device. The transistor described as an example in any of Embodiments 1 to 3 can be suitably used for the transistor 162. In this embodiment, an example is shown in which a transistor having a structure similar to the transistor 440a described in Embodiment 1 is used as the transistor 162.

積層するトランジスタ140、トランジスタ162の半導体材料、及び構造は、同一でも
よいし異なっていてもよい。本実施の形態は、記憶媒体(メモリ素子)の回路に好適な材
料及び構造のトランジスタをそれぞれ用いる例である。
The semiconductor materials and structures of the stacked transistor 140 and transistor 162 may be the same or different. This embodiment is an example in which transistors having materials and structures suitable for the circuit of a storage medium (memory element) are used.

図15は、半導体装置の構成の一例である。図15(A)には、半導体装置の断面を、図
15(B)には、半導体装置の平面を、それぞれ示す。ここで、図15(A)は、図15
(B)のC1-C2およびD1-D2における断面に相当する。また、図15(C)には
、上記半導体装置をメモリ素子として用いる場合の回路図の一例を示す。図15(A)お
よび図15(B)に示される半導体装置は、下部に第1の半導体材料を用いたトランジス
タ140を有し、上部に第2の半導体材料を用いたトランジスタ162を有する。本実施
の形態では、第1の半導体材料を酸化物半導体以外の半導体材料とし、第2の半導体材料
を酸化物半導体とする。酸化物半導体以外の半導体材料としては、例えば、シリコン、ゲ
ルマニウム、シリコンゲルマニウム、炭化シリコン、またはガリウムヒ素等の化合物半導
体材料などを用いることができ、単結晶半導体を用いるのが好ましい。他に、有機半導体
材料などを用いてもよい。このような半導体材料を用いたトランジスタは、高速動作が容
易である。一方で、酸化物半導体を用いたトランジスタは、その特性により長時間の電荷
保持を可能とする。
FIG. 15 shows an example of the configuration of a semiconductor device. FIG. 15A shows a cross section of the semiconductor device, and FIG. 15B shows a plane view of the semiconductor device. Here, FIG. 15(A)
This corresponds to the cross sections along C1-C2 and D1-D2 in (B). Further, FIG. 15C shows an example of a circuit diagram when the above semiconductor device is used as a memory element. The semiconductor device illustrated in FIGS. 15A and 15B includes a transistor 140 using a first semiconductor material in a lower portion, and a transistor 162 using a second semiconductor material in an upper portion. In this embodiment, the first semiconductor material is a semiconductor material other than an oxide semiconductor, and the second semiconductor material is an oxide semiconductor. As a semiconductor material other than an oxide semiconductor, for example, a compound semiconductor material such as silicon, germanium, silicon germanium, silicon carbide, or gallium arsenide can be used, and it is preferable to use a single crystal semiconductor. Other organic semiconductor materials may also be used. A transistor using such a semiconductor material can easily operate at high speed. On the other hand, transistors using oxide semiconductors can retain charge for a long time due to their characteristics.

図15における半導体装置を図15(A)乃至(C)を用いて説明する。 The semiconductor device in FIG. 15 will be explained using FIGS. 15(A) to 15(C).

トランジスタ140は、半導体材料(例えば、シリコンなど)を含む基板185に設けら
れたチャネル形成領域116と、チャネル形成領域116を挟むように設けられた不純物
領域120と、不純物領域120に接する金属化合物領域124と、チャネル形成領域1
16上に設けられたゲート絶縁膜108と、ゲート絶縁膜108上に設けられたゲート電
極110とを有する。
The transistor 140 includes a channel formation region 116 provided in a substrate 185 containing a semiconductor material (for example, silicon, etc.), an impurity region 120 provided to sandwich the channel formation region 116, and a metal compound region in contact with the impurity region 120. 124 and channel forming region 1
16, and a gate electrode 110 provided on the gate insulating film 108.

半導体材料を含む基板185は、シリコンや炭化シリコンなどの単結晶半導体基板、多結
晶半導体基板、シリコンゲルマニウムなどの化合物半導体基板、SOI基板などを適用す
ることができる。なお、一般に「SOI基板」は、絶縁表面上にシリコン半導体膜が設け
られた構成の基板をいうが、本明細書等においては、絶縁表面上にシリコン以外の材料か
らなる半導体膜が設けられた構成の基板も含む。つまり、「SOI基板」が有する半導体
膜は、シリコン半導体膜に限定されない。また、SOI基板には、ガラス基板などの絶縁
基板上に絶縁膜を介して半導体膜が設けられた構成のものが含まれるものとする。
As the substrate 185 containing a semiconductor material, a single crystal semiconductor substrate such as silicon or silicon carbide, a polycrystalline semiconductor substrate, a compound semiconductor substrate such as silicon germanium, an SOI substrate, or the like can be applied. Note that "SOI substrate" generally refers to a substrate having a structure in which a silicon semiconductor film is provided on an insulating surface, but in this specification etc., "SOI substrate" refers to a substrate having a structure in which a silicon semiconductor film is provided on an insulating surface. Also includes the substrate of the structure. In other words, the semiconductor film included in the "SOI substrate" is not limited to a silicon semiconductor film. Furthermore, SOI substrates include those having a structure in which a semiconductor film is provided on an insulating substrate such as a glass substrate with an insulating film interposed therebetween.

SOI基板の作製方法としては、鏡面研磨ウェハーに酸素イオンを注入した後、高温加熱
することにより、表面から一定の深さに酸化層を形成させるとともに、表面層に生じた欠
陥を消滅させて作る方法、水素イオン照射により形成された微小ボイドの熱処理による成
長を利用して半導体基板を劈開する方法や、絶縁表面上に結晶成長により単結晶半導体膜
を形成する方法等を用いることができる。
The method for manufacturing SOI substrates is to implant oxygen ions into a mirror-polished wafer and then heat it to a high temperature to form an oxide layer at a certain depth from the surface and eliminate defects that occur in the surface layer. For example, a method in which a semiconductor substrate is cleaved using the growth of microvoids formed by hydrogen ion irradiation through heat treatment, a method in which a single crystal semiconductor film is formed on an insulating surface by crystal growth, etc. can be used.

例えば、単結晶半導体基板の一つの面からイオンを添加して、単結晶半導体基板の一つの
面から一定の深さに脆弱化層を形成し、単結晶半導体基板の一つの面上、又は素子基板上
のどちらか一方に絶縁膜を形成する。単結晶半導体基板と素子基板を、絶縁膜を挟んで重
ね合わせた状態で、脆弱化層に亀裂を生じさせ、単結晶半導体基板を脆弱化層で分離する
熱処理を行い、単結晶半導体基板より半導体膜として単結晶半導体膜を素子基板上に形成
する。上記方法を用いて作製されたSOI基板も好適に用いることができる。
For example, ions are added from one surface of a single crystal semiconductor substrate to form a weakened layer at a certain depth from one surface of the single crystal semiconductor substrate, and a weakened layer is formed on one surface of the single crystal semiconductor substrate or an element. An insulating film is formed on either side of the substrate. With a single crystal semiconductor substrate and an element substrate stacked on top of each other with an insulating film in between, heat treatment is performed to create cracks in the weakened layer and separate the single crystal semiconductor substrate at the weakened layer. A single crystal semiconductor film is formed as a film on an element substrate. An SOI substrate produced using the above method can also be suitably used.

基板185上にはトランジスタ140を囲むように素子分離絶縁層106が設けられてい
る。なお、高集積化を実現するためには、図15に示すようにトランジスタ140がサイ
ドウォールとなる側壁絶縁層を有しない構成とすることが望ましい。一方で、トランジス
タ140の特性を重視する場合には、ゲート電極110の側面にサイドウォールとなる側
壁絶縁層を設け、不純物濃度が異なる領域を含む不純物領域120を設けてもよい。
An element isolation insulating layer 106 is provided on the substrate 185 so as to surround the transistor 140. Note that in order to achieve high integration, it is preferable that the transistor 140 have a structure in which the transistor 140 does not have a sidewall insulating layer serving as a sidewall, as shown in FIG. On the other hand, if the characteristics of the transistor 140 are important, a sidewall insulating layer serving as a sidewall may be provided on the side surface of the gate electrode 110, and an impurity region 120 including regions with different impurity concentrations may be provided.

単結晶半導体基板を用いたトランジスタ140は、高速動作が可能である。このため、当
該トランジスタを読み出し用のトランジスタとして用いることで、情報の読み出しを高速
に行うことができる。トランジスタ140を覆うように絶縁膜を2層形成する。トランジ
スタ162および容量素子164の形成前の処理として、該絶縁膜2層にCMP処理を施
して、平坦化した絶縁膜128、絶縁膜130を形成し、同時にゲート電極110の上面
を露出させる。
The transistor 140 using a single crystal semiconductor substrate can operate at high speed. Therefore, by using the transistor as a read transistor, information can be read at high speed. Two layers of insulating films are formed to cover the transistor 140. As a process before forming the transistor 162 and the capacitor 164, the two layers of the insulating film are subjected to CMP processing to form the planarized insulating film 128 and the insulating film 130, and at the same time expose the upper surface of the gate electrode 110.

絶縁膜128、絶縁膜130は、代表的には酸化シリコン膜、酸化窒化シリコン膜、酸化
アルミニウム膜、酸化窒化アルミニウム膜、窒化シリコン膜、窒化アルミニウム膜、窒化
酸化シリコン膜、窒化酸化アルミニウム膜などの無機絶縁膜を用いることができる。絶縁
膜128、絶縁膜130は、プラズマCVD法又はスパッタリング法等を用いて形成する
ことができる。
The insulating film 128 and the insulating film 130 are typically made of silicon oxide film, silicon oxynitride film, aluminum oxide film, aluminum oxynitride film, silicon nitride film, aluminum nitride film, silicon nitride oxide film, aluminum nitride oxide film, etc. An inorganic insulating film can be used. The insulating film 128 and the insulating film 130 can be formed using a plasma CVD method, a sputtering method, or the like.

また、ポリイミド、アクリル樹脂、ベンゾシクロブテン系樹脂、等の有機材料を用いるこ
とができる。また上記有機材料の他に、低誘電率材料(low-k材料)等を用いること
ができる。有機材料を用いる場合、スピンコート法、印刷法などの湿式法によって絶縁膜
128、絶縁膜130を形成してもよい。
Further, organic materials such as polyimide, acrylic resin, benzocyclobutene resin, etc. can be used. In addition to the above organic materials, low dielectric constant materials (low-k materials) and the like can be used. When using an organic material, the insulating film 128 and the insulating film 130 may be formed by a wet method such as a spin coating method or a printing method.

なお、絶縁膜130において、半導体膜と接する膜は酸化シリコン膜を用いる。 Note that in the insulating film 130, a silicon oxide film is used as a film in contact with the semiconductor film.

本実施の形態では、絶縁膜128としてスパッタリング法により膜厚50nmの酸化窒化
シリコン膜を形成し、絶縁膜130としてスパッタリング法により膜厚550nmの酸化
シリコン膜を形成する。
In this embodiment, a silicon oxynitride film with a thickness of 50 nm is formed as the insulating film 128 by a sputtering method, and a silicon oxide film with a thickness of 550 nm is formed as the insulating film 130 with a sputtering method.

CMP処理により十分に平坦化した絶縁膜130上にゲート電極層148を形成する。ゲ
ート電極層148は、導電層を形成した後に、当該導電層を選択的にエッチングすること
によって形成することができる。
A gate electrode layer 148 is formed on the insulating film 130 which has been sufficiently planarized by CMP processing. The gate electrode layer 148 can be formed by forming a conductive layer and then selectively etching the conductive layer.

ゲート電極層148上にゲート絶縁膜146を形成する。 A gate insulating film 146 is formed on the gate electrode layer 148.

ゲート絶縁膜146として、プラズマCVD法又はスパッタリング法等を用いて、酸化シ
リコン膜、窒化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、酸化アルミニウ
ム膜、窒化アルミニウム膜、酸化窒化アルミニウム膜、窒化酸化アルミニウム膜、酸化ハ
フニウム膜、又は酸化ガリウム膜を形成することができる。
As the gate insulating film 146, a silicon oxide film, a silicon nitride film, a silicon oxynitride film, a silicon nitride oxide film, an aluminum oxide film, an aluminum nitride film, an aluminum oxynitride film, a nitride oxide film are formed using a plasma CVD method or a sputtering method. An aluminum film, a hafnium oxide film, or a gallium oxide film can be formed.

ゲート絶縁膜146上にエネルギーギャップの異なる酸化物半導体膜を積層する。本実施
の形態では、酸化物半導体膜の積層としてスパッタリング法により、ゲート絶縁膜146
上にIn-Sn-Zn系酸化物及びIn-Ga-Zn系酸化物層を順に積層する。
Oxide semiconductor films having different energy gaps are stacked over the gate insulating film 146. In this embodiment, the gate insulating film 146 is formed by a sputtering method as a stack of oxide semiconductor films.
An In--Sn--Zn-based oxide layer and an In--Ga--Zn based oxide layer are sequentially laminated thereon.

次に酸化物半導体膜の積層を選択的にエッチングして島状の酸化物半導体積層144を形
成する。
Next, the oxide semiconductor film stack is selectively etched to form an island-shaped oxide semiconductor stack 144.

酸化物半導体積層144上にソース電極またはドレイン電極142a、ソース電極または
ドレイン電極142bを形成する。
A source or drain electrode 142a and a source or drain electrode 142b are formed on the oxide semiconductor stack 144.

ゲート電極層148、ソース電極またはドレイン電極142a、ソース電極またはドレイ
ン電極142bに用いることのできる導電層は、スパッタリング法をはじめとするPVD
法や、プラズマCVD法などのCVD法を用いて形成することができる。また、導電層の
材料としては、Al、Cr、Cu、Ta、Ti、Mo、Wから選ばれた元素や、上述した
元素を成分とする合金等を用いることができる。Mn、Mg、Zr、Be、Nd、Scの
いずれか、またはこれらを複数組み合わせた材料を用いてもよい。
The conductive layer that can be used for the gate electrode layer 148, the source or drain electrode 142a, and the source or drain electrode 142b can be formed using a PVD method such as a sputtering method.
It can be formed using a CVD method such as a method or a plasma CVD method. Further, as a material for the conductive layer, an element selected from Al, Cr, Cu, Ta, Ti, Mo, and W, an alloy containing the above-mentioned elements, or the like can be used. Any one of Mn, Mg, Zr, Be, Nd, and Sc, or a combination of two or more of these may be used.

導電層は、単層構造であってもよいし、2層以上の積層構造としてもよい。例えば、チタ
ン膜や窒化チタン膜の単層構造、シリコンを含むアルミニウム膜の単層構造、アルミニウ
ム膜上にチタン膜が積層された2層構造、窒化チタン膜上にチタン膜が積層された2層構
造、チタン膜とアルミニウム膜とチタン膜とが積層された3層構造などが挙げられる。な
お、導電層を、チタン膜や窒化チタン膜の単層構造とする場合には、テーパー形状を有す
るソース電極またはドレイン電極142a、およびソース電極またはドレイン電極142
bへの加工が容易であるというメリットがある。
The conductive layer may have a single layer structure or a laminated structure of two or more layers. For example, a single-layer structure of a titanium film or a titanium nitride film, a single-layer structure of an aluminum film containing silicon, a two-layer structure in which a titanium film is laminated on an aluminum film, and a two-layer structure in which a titanium film is laminated on a titanium nitride film. Examples of the structure include a three-layer structure in which a titanium film, an aluminum film, and a titanium film are stacked. Note that when the conductive layer has a single-layer structure of a titanium film or a titanium nitride film, the source electrode or drain electrode 142a having a tapered shape and the source electrode or drain electrode 142 have a tapered shape.
It has the advantage of being easy to process into b.

次に、ゲート電極層148、ゲート絶縁膜146、酸化物半導体積層144上に、絶縁膜
150を形成する。本実施の形態では、絶縁膜150として酸化アルミニウム膜を形成す
る。
Next, an insulating film 150 is formed over the gate electrode layer 148, the gate insulating film 146, and the oxide semiconductor stack 144. In this embodiment, an aluminum oxide film is formed as the insulating film 150.

酸化物半導体積層144上に絶縁膜150として設けられた酸化アルミニウム膜は、水素
、水などの不純物、及び酸素の両方に対して膜を通過させない遮断効果(ブロック効果)
が高い。
The aluminum oxide film provided as the insulating film 150 on the oxide semiconductor stack 144 has a blocking effect (blocking effect) that prevents both impurities such as hydrogen and water, and oxygen from passing through the film.
is high.

従って、酸化アルミニウム膜は、作製工程中及び作製後において、変動要因となる水素、
水などの不純物の酸化物半導体積層144への混入、及び酸化物半導体を構成する主成分
材料である酸素の酸化物半導体積層144からの放出を防止する保護膜として機能する。
Therefore, during and after the fabrication process, the aluminum oxide film is exposed to hydrogen and
It functions as a protective film that prevents impurities such as water from entering the oxide semiconductor stack 144 and prevents oxygen, which is a main component of the oxide semiconductor, from being released from the oxide semiconductor stack 144.

また、絶縁膜150上に積層して別途絶縁膜を形成してもよい。 Further, a separate insulating film may be formed by stacking on the insulating film 150.

絶縁膜としては、プラズマCVD法又はスパッタリング法等を用いて、酸化シリコン膜、
窒化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化アルミニウム膜、酸化
アルミニウム膜、酸化窒化アルミニウム膜、窒化酸化アルミニウム膜、酸化ハフニウム膜
、又は酸化ガリウム膜を用いることができる。
As the insulating film, silicon oxide film,
A silicon nitride film, a silicon oxynitride film, a silicon nitride oxide film, an aluminum nitride film, an aluminum oxide film, an aluminum oxynitride film, an aluminum nitride oxide film, a hafnium oxide film, or a gallium oxide film can be used.

絶縁膜150上において、ソース電極またはドレイン電極142aと重畳する領域に電極
層153を形成する。
An electrode layer 153 is formed on the insulating film 150 in a region overlapping with the source or drain electrode 142a.

次にトランジスタ162、及び電極層153上に、絶縁膜152を形成する。絶縁膜15
2は、スパッタリング法やCVD法などを用いて形成することができる。また、酸化シリ
コン、酸化窒化シリコン、窒化シリコン、酸化ハフニウム、酸化アルミニウム等の無機絶
縁材料を含む材料を用いて形成することができる。また、ポリイミド、アクリル、ベンゾ
シクロブテン系樹脂、等の有機材料を用いることができ、上記有機材料には塗布法、印刷
法、インクジェット法などの湿式法を用いることができる。
Next, an insulating film 152 is formed over the transistor 162 and the electrode layer 153. Insulating film 15
2 can be formed using a sputtering method, a CVD method, or the like. Further, it can be formed using a material containing an inorganic insulating material such as silicon oxide, silicon oxynitride, silicon nitride, hafnium oxide, or aluminum oxide. Furthermore, organic materials such as polyimide, acrylic, and benzocyclobutene resins can be used, and wet methods such as coating methods, printing methods, and inkjet methods can be used for the organic materials.

次に、ゲート絶縁膜146、絶縁膜150、及び絶縁膜152に、ソース電極またはドレ
イン電極142bにまで達する開口を形成する。当該開口の形成は、マスクなどを用いた
選択的なエッチングにより行われる。
Next, openings reaching the source electrode or drain electrode 142b are formed in the gate insulating film 146, the insulating film 150, and the insulating film 152. The opening is formed by selective etching using a mask or the like.

その後、上記開口にソース電極またはドレイン電極142bに接する配線156を形成す
る。なお、図15にはソース電極またはドレイン電極142bと配線156との接続箇所
は図示していない。
Thereafter, a wiring 156 in contact with the source or drain electrode 142b is formed in the opening. Note that FIG. 15 does not show a connection location between the source electrode or drain electrode 142b and the wiring 156.

配線156は、スパッタリング法をはじめとするPVD法や、プラズマCVD法などのC
VD法を用いて導電層を形成した後、当該導電層をエッチング加工することによって形成
される。また、導電層の材料としては、Al、Cr、Cu、Ta、Ti、Mo、Wから選
ばれた元素や、上述した元素を成分とする合金等を用いることができる。Mn、Mg、Z
r、Be、Nd、Scのいずれか、またはこれらを複数組み合わせた材料を用いてもよい
。詳細は、ソース電極またはドレイン電極142aなどと同様である。
The wiring 156 can be formed using a PVD method such as a sputtering method, or a carbon dioxide method such as a plasma CVD method.
It is formed by forming a conductive layer using a VD method and then etching the conductive layer. Further, as a material for the conductive layer, an element selected from Al, Cr, Cu, Ta, Ti, Mo, and W, an alloy containing the above-mentioned elements, or the like can be used. Mn, Mg, Z
Any one of r, Be, Nd, and Sc, or a combination of these materials may be used. The details are the same as those of the source electrode or drain electrode 142a.

以上の工程でトランジスタ162及び容量素子164が形成される。本実施の形態では、
トランジスタ162は、エネルギーギャップの異なる少なくとも2層の酸化物半導体層を
含む酸化物半導体積層144を有するトランジスタである。半導体層として異なるエネル
ギーギャップを有する複数の酸化物半導体層を用いた酸化物半導体積層144を用いるこ
とによって、トランジスタ162の電気特性をより精度よく制御することができ、所望の
電気特性をトランジスタ162に付与することが可能となる。また、本実施の形態におい
ては、酸化物半導体積層144を高純度化し、酸素欠損を補填する酸素を過剰に含む酸化
物半導体積層とする。よって、トランジスタ162は、オフ電流を低減され、電気特性変
動が抑制されており、電気的に安定である。容量素子164は、ソース電極またはドレイ
ン電極142a、絶縁膜150および電極層153、で構成される。
Through the above steps, the transistor 162 and the capacitor 164 are formed. In this embodiment,
The transistor 162 is a transistor including an oxide semiconductor stack 144 including at least two oxide semiconductor layers with different energy gaps. By using the oxide semiconductor stack 144 including a plurality of oxide semiconductor layers having different energy gaps as semiconductor layers, the electrical characteristics of the transistor 162 can be controlled with more precision, and desired electrical characteristics can be imparted to the transistor 162. It becomes possible to grant. Further, in this embodiment, the oxide semiconductor stack 144 is highly purified to be an oxide semiconductor stack containing excess oxygen to compensate for oxygen vacancies. Therefore, the transistor 162 has a reduced off-state current, suppresses variations in electrical characteristics, and is electrically stable. The capacitive element 164 includes a source or drain electrode 142a, an insulating film 150, and an electrode layer 153.

容量が不要の場合は、容量素子164を設けない構成とすることも可能である。 If a capacitance is not required, a configuration in which the capacitive element 164 is not provided is also possible.

図15(C)には、上記半導体装置をメモリ素子として用いる場合の回路図の一例を示す
。図15(C)において、トランジスタ162のソース電極またはドレイン電極の一方と
、容量素子164の電極の一方と、トランジスタ140のゲート電極と、は電気的に接続
されている。また、第1の配線(1st Line:ソース線とも呼ぶ)とトランジスタ
140のソース電極とは、電気的に接続され、第2の配線(2nd Line:ビット線
とも呼ぶ)とトランジスタ140のドレイン電極とは、電気的に接続されている。また、
第3の配線(3rd Line:第1の信号線とも呼ぶ)とトランジスタ162のソース
電極またはドレイン電極の他方とは、電気的に接続され、第4の配線(4th Line
:第2の信号線とも呼ぶ)と、トランジスタ162のゲート電極とは、電気的に接続され
ている。そして、第5の配線(5th Line:ワード線とも呼ぶ)と、容量素子16
4の電極の他方は電気的に接続されている。
FIG. 15C shows an example of a circuit diagram when the above semiconductor device is used as a memory element. In FIG. 15C, one of the source electrode and the drain electrode of the transistor 162, one of the electrodes of the capacitor 164, and the gate electrode of the transistor 140 are electrically connected. Further, a first line (also called a source line) and the source electrode of the transistor 140 are electrically connected, and a second line (also called a bit line) and a drain electrode of the transistor 140 are electrically connected. are electrically connected. Also,
The third wiring (3rd Line: also referred to as a first signal line) and the other of the source electrode or drain electrode of the transistor 162 are electrically connected, and the fourth wiring (4th Line)
: also referred to as a second signal line) and the gate electrode of the transistor 162 are electrically connected. Then, a fifth line (also called a word line) and a capacitive element 16
The other electrode of No. 4 is electrically connected.

酸化物半導体を用いたトランジスタ162は、オフ電流が極めて小さいという特徴を有し
ているため、トランジスタ162をオフ状態とすることで、トランジスタ162のソース
電極またはドレイン電極の一方と、容量素子164の電極の一方と、トランジスタ140
のゲート電極とが電気的に接続されたノード(以下、ノードFG)の電位を極めて長時間
にわたって保持することが可能である。そして、容量素子164を有することにより、ノ
ードFGに与えられた電荷の保持が容易になり、また、保持された情報の読み出しが容易
になる。
The transistor 162 using an oxide semiconductor has an extremely small off-state current, so by turning off the transistor 162, one of the source electrode or the drain electrode of the transistor 162 and the capacitor 164 are connected. one of the electrodes and the transistor 140
It is possible to maintain the potential of a node electrically connected to the gate electrode (hereinafter referred to as node FG) for an extremely long time. By having the capacitive element 164, it becomes easy to hold the charge applied to the node FG, and it becomes easy to read out the held information.

半導体装置に情報を記憶させる場合(書き込み)は、まず、第4の配線の電位を、トラン
ジスタ162がオン状態となる電位にして、トランジスタ162をオン状態とする。これ
により、第3の配線の電位が、ノードFGに供給され、ノードFGに所定量の電荷が蓄積
される。ここでは、異なる二つの電位レベルを与える電荷(以下、ロー(Low)レベル
電荷、ハイ(High)レベル電荷という)のいずれかが与えられるものとする。その後
、第4の配線の電位を、トランジスタ162がオフ状態となる電位にして、トランジスタ
162をオフ状態とすることにより、ノードFGが浮遊状態となるため、ノードFGには
所定の電荷が保持されたままの状態となる。以上のように、ノードFGに所定量の電荷を
蓄積及び保持させることで、メモリセルに情報を記憶させることができる。
When storing information in the semiconductor device (writing), first, the potential of the fourth wiring is set to a potential at which the transistor 162 is turned on, and the transistor 162 is turned on. As a result, the potential of the third wiring is supplied to the node FG, and a predetermined amount of charge is accumulated in the node FG. Here, it is assumed that either of charges giving two different potential levels (hereinafter referred to as a low level charge or a high level charge) is provided. After that, the potential of the fourth wiring is set to a potential at which the transistor 162 is turned off, and the transistor 162 is turned off, so that the node FG becomes a floating state, so that a predetermined charge is held in the node FG. The state remains as it is. As described above, by accumulating and holding a predetermined amount of charge in the node FG, information can be stored in the memory cell.

トランジスタ162のオフ電流は極めて小さく制御されているため、ノードFGに供給さ
れた電荷は長時間にわたって保持される。したがって、リフレッシュ動作が不要となるか
、または、リフレッシュ動作の頻度を極めて低くすることが可能となり、消費電力を十分
に低減することができる。また、電力の供給がない場合であっても、長期にわたって記憶
内容を保持することが可能である。
Since the off-state current of transistor 162 is controlled to be extremely small, the charge supplied to node FG is retained for a long time. Therefore, refresh operations are not required or the frequency of refresh operations can be made extremely low, and power consumption can be sufficiently reduced. Furthermore, even when there is no power supply, it is possible to retain stored contents for a long period of time.

記憶された情報を読み出す場合(読み出し)は、第1の配線に所定の電位(定電位)を与
えた状態で、第5の配線に適切な電位(読み出し電位)を与えると、ノードFGに保持さ
れた電荷量に応じて、トランジスタ140は異なる状態をとる。一般に、トランジスタ1
40をnチャネル型とすると、ノードFGにHighレベル電荷が保持されている場合の
トランジスタ140の見かけのしきい値Vth_Hは、ノードFGにLowレベル電荷が
保持されている場合のトランジスタ140の見かけのしきい値Vth_Lより低くなるた
めである。ここで、見かけのしきい値とは、トランジスタ140を「オン状態」とするた
めに必要な第5の配線の電位をいうものとする。したがって、第5の配線の電位をVth
_HとVth_Lの間の電位Vとすることにより、ノードFGに保持された電荷を判別
できる。例えば、書き込みにおいて、Highレベル電荷が与えられていた場合には、第
5の配線の電位がV(>Vth_H)となれば、トランジスタ140は「オン状態」と
なる。Lowレベル電荷が与えられていた場合には、第5の配線の電位がV(<Vth
_L)となっても、トランジスタ140は「オフ状態」のままである。このため、第5の
配線の電位を制御して、トランジスタ140のオン状態またはオフ状態を読み出す(第2
の配線の電位を読み出す)ことで、記憶された情報を読み出すことができる。
When reading out stored information (reading), when a predetermined potential (constant potential) is applied to the first wiring and an appropriate potential (read potential) is applied to the fifth wiring, the data is held at the node FG. Depending on the amount of charge applied, transistor 140 assumes different states. Generally, transistor 1
40 is an n-channel type, the apparent threshold value V th_H of the transistor 140 when a high level charge is held at the node FG is the apparent threshold value V th_H of the transistor 140 when a low level charge is held at the node FG. This is because it becomes lower than the threshold value V th_L . Here, the apparent threshold value refers to the potential of the fifth wiring necessary to turn on the transistor 140. Therefore, the potential of the fifth wiring is V th
By setting the potential V 0 between _H and V th_L , the charge held in the node FG can be determined. For example, when a high-level charge is applied during writing, the transistor 140 becomes "on" when the potential of the fifth wiring becomes V 0 (>V th_H ). When a low level charge is applied, the potential of the fifth wiring becomes V 0 (<V th
_L ), the transistor 140 remains in the "off state". Therefore, the potential of the fifth wiring is controlled to read out the on state or off state of the transistor 140 (second
The stored information can be read out by reading out the potential of the wiring.

また、記憶させた情報を書き換える場合においては、上記の書き込みによって所定量の電
荷を保持したノードFGに、新たな電位を供給することで、ノードFGに新たな情報に係
る電荷を保持させる。具体的には、第4の配線の電位を、トランジスタ162がオン状態
となる電位にして、トランジスタ162をオン状態とする。これにより、第3の配線の電
位(新たな情報に係る電位)が、ノードFGに供給され、ノードFGに所定量の電荷が蓄
積される。その後、第4の配線の電位をトランジスタ162がオフ状態となる電位にして
、トランジスタ162をオフ状態とすることにより、ノードFGには、新たな情報に係る
電荷が保持された状態となる。すなわち、ノードFGに第1の書き込みによって所定量の
電荷が保持された状態で、第1の書き込みと同様の動作(第2の書き込み)を行うことで
、記憶させた情報を上書きすることが可能である。
Furthermore, when rewriting the stored information, a new potential is supplied to the node FG that has held a predetermined amount of charge due to the above writing, thereby causing the node FG to hold the charge related to the new information. Specifically, the potential of the fourth wiring is set to a potential at which the transistor 162 is turned on, and the transistor 162 is turned on. As a result, the potential of the third wiring (potential related to new information) is supplied to the node FG, and a predetermined amount of charge is accumulated in the node FG. Thereafter, by setting the potential of the fourth wiring to a potential at which the transistor 162 is turned off, the transistor 162 is turned off, so that the node FG retains charges related to new information. That is, by performing the same operation as the first write (second write) with a predetermined amount of charge held in the node FG by the first write, it is possible to overwrite the stored information. It is.

本実施の形態で示すトランジスタ162は、エネルギーギャップの異なる少なくとも2層
の酸化物半導体層を含む酸化物半導体積層を有し、オフ電流が十分に低くなるよう制御さ
れたトランジスタである。このようなトランジスタを用いることで、極めて長期にわたり
記憶内容を保持することが可能な半導体装置が得られる。
The transistor 162 described in this embodiment is a transistor that has an oxide semiconductor stack including at least two oxide semiconductor layers with different energy gaps, and whose off-state current is controlled to be sufficiently low. By using such a transistor, a semiconductor device that can retain memory contents for an extremely long period of time can be obtained.

以上のように、異なるエネルギーギャップを有する複数の酸化物半導体層を含む酸化物半
導体積層を用いることによって、トランジスタの電気特性をより精度よく制御することが
でき、所望の電気特性をトランジスタに付与することが可能となる。よって、高機能、高
信頼性、又は低消費電力など、種々の目的に応じた半導体装置を提供することができる。
As described above, by using an oxide semiconductor stack including a plurality of oxide semiconductor layers having different energy gaps, the electrical characteristics of a transistor can be controlled with more precision, and desired electrical characteristics can be imparted to the transistor. becomes possible. Therefore, it is possible to provide semiconductor devices suitable for various purposes such as high functionality, high reliability, and low power consumption.

以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適
宜組み合わせて用いることができる。
As described above, the structure, method, etc. shown in this embodiment can be used in appropriate combination with the structure, method, etc. shown in other embodiments.

(実施の形態8)
本明細書に開示する半導体装置は、さまざまな電子機器(遊技機も含む)に適用すること
ができる。電子機器としては、例えば、テレビジョン装置(テレビ、またはテレビジョン
受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメ
ラ等のカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう
)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機など
が挙げられる。上記実施の形態で説明した半導体装置を具備する電子機器の例について説
明する。上記実施の形態で説明した半導体装置を具備することによって、高機能、高信頼
性、又は低消費電力など、種々の目的に応じた品質を付与された電子機器を提供すること
ができる。
(Embodiment 8)
The semiconductor device disclosed in this specification can be applied to various electronic devices (including gaming machines). Examples of electronic devices include television devices (also called televisions or television receivers), computer monitors, cameras such as digital cameras and digital video cameras, digital photo frames, and mobile phones (mobile phones, mobile phones, etc.). (also referred to as devices), portable game machines, personal digital assistants, audio playback devices, and large game machines such as pachinko machines. An example of an electronic device including the semiconductor device described in the above embodiment will be described. By including the semiconductor device described in the above embodiments, it is possible to provide electronic equipment that is provided with qualities suitable for various purposes, such as high functionality, high reliability, and low power consumption.

図16(A)は、表示部を有するテーブル9000を示している。テーブル9000は、
筐体9001に表示部9003が組み込まれている。本発明の一態様を用いて作製される
半導体装置は、表示部9003に用いることが可能であり、表示部9003により映像を
表示することが可能である。なお、4本の脚部9002により筐体9001を支持した構
成を示している。また、電力供給のための電源コード9005を筐体9001に有してい
る。
FIG. 16(A) shows a table 9000 having a display section. Table 9000 is
A display portion 9003 is incorporated into the housing 9001. A semiconductor device manufactured using one embodiment of the present invention can be used for the display portion 9003, and images can be displayed using the display portion 9003. Note that a configuration in which the housing 9001 is supported by four legs 9002 is shown. The housing 9001 also includes a power cord 9005 for power supply.

表示部9003は、タッチ入力機能を有しており、テーブル9000の表示部9003に
表示された表示ボタン9004を指などで触れることで、画面操作や、情報を入力するこ
とができ、また他の家電製品との通信を可能とする、または制御を可能とすることで、画
面操作により他の家電製品をコントロールする制御装置としてもよい。例えば、実施の形
態6に示したイメージセンサ機能を有する半導体装置を用いれば、表示部9003にタッ
チ入力機能を持たせることができる。
The display section 9003 has a touch input function, and by touching a display button 9004 displayed on the display section 9003 of the table 9000 with your finger, you can operate the screen, input information, and perform other operations. It may also be a control device that controls other home appliances through screen operations by enabling communication with or control of home appliances. For example, if the semiconductor device having the image sensor function described in Embodiment Mode 6 is used, the display portion 9003 can have a touch input function.

また、筐体9001に設けられたヒンジによって、表示部9003の画面を床に対して垂
直に立てることもでき、テレビジョン装置としても利用できる。狭い部屋においては、大
きな画面のテレビジョン装置は設置すると自由な空間が狭くなってしまうが、テーブルに
表示部が内蔵されていれば、部屋の空間を有効に利用することができる。
Furthermore, the screen of the display portion 9003 can be stood perpendicular to the floor by means of a hinge provided in the housing 9001, allowing the device to be used as a television device. In a small room, installing a large-screen television device will reduce free space, but if the table has a built-in display unit, the space in the room can be used effectively.

図16(B)は、テレビジョン装置9100を示している。テレビジョン装置9100は
、筐体9101に表示部9103が組み込まれている。本発明の一態様を用いて作製され
る半導体装置は、表示部9103に用いることが可能であり、表示部9103により映像
を表示することが可能である。なお、ここではスタンド9105により筐体9101を支
持した構成を示している。
FIG. 16(B) shows a television device 9100. A television device 9100 includes a display portion 9103 built into a housing 9101. A semiconductor device manufactured using one embodiment of the present invention can be used for the display portion 9103, and images can be displayed using the display portion 9103. Note that a configuration in which the housing 9101 is supported by a stand 9105 is shown here.

テレビジョン装置9100の操作は、筐体9101が備える操作スイッチや、別体のリモ
コン操作機9110により行うことができる。リモコン操作機9110が備える操作キー
9109により、チャンネルや音量の操作を行うことができ、表示部9103に表示され
る映像を操作することができる。また、リモコン操作機9110に、当該リモコン操作機
9110から出力する情報を表示する表示部9107を設ける構成としてもよい。
The television device 9100 can be operated using an operation switch included in the housing 9101 or a separate remote controller 9110. Using operation keys 9109 provided on the remote control device 9110, the channel and volume can be controlled, and the video displayed on the display section 9103 can be controlled. Further, the remote control device 9110 may be provided with a display section 9107 that displays information output from the remote control device 9110.

図16(B)に示すテレビジョン装置9100は、受信機やモデムなどを備えている。テ
レビジョン装置9100は、受信機により一般のテレビ放送の受信を行うことができ、さ
らにモデムを介して有線または無線による通信ネットワークに接続することにより、一方
向(送信者から受信者)または双方向(送信者と受信者間、あるいは受信者間同士など)
の情報通信を行うことも可能である。
A television device 9100 shown in FIG. 16(B) includes a receiver, a modem, and the like. The television device 9100 can receive general television broadcasts using a receiver, and can also receive one-way (sender to receiver) or two-way communication by connecting to a wired or wireless communication network via a modem. (between sender and receiver, or between receivers, etc.)
It is also possible to perform information communication.

実施の形態1乃至7のいずれかで示した半導体装置を表示部9103に適用することによ
り、より高性能及び高信頼性なテレビジョン装置とすることができる。
By applying the semiconductor device described in any of Embodiments 1 to 7 to the display portion 9103, a television device with higher performance and higher reliability can be obtained.

図16(C)はコンピュータであり、本体9201、筐体9202、表示部9203、キ
ーボード9204、外部接続ポート9205、ポインティングデバイス9206等を含む
。コンピュータは、本発明の一態様を用いて作製される半導体装置をその表示部9203
に用いることにより作製される。
FIG. 16C shows a computer, which includes a main body 9201, a housing 9202, a display portion 9203, a keyboard 9204, an external connection port 9205, a pointing device 9206, and the like. A computer displays a semiconductor device manufactured using one embodiment of the present invention in its display portion 9203.
It is produced by using it.

実施の形態1乃至7のいずれかで示した半導体装置を表示部9203に適用することによ
り、より高性能及び高信頼性なコンピュータとすることができる。
By applying the semiconductor device described in any of Embodiments 1 to 7 to the display portion 9203, a computer with higher performance and higher reliability can be obtained.

図16(D)は、携帯電話機の一例を示している。携帯電話機9500は、筐体9501
に組み込まれた表示部9502の他、操作ボタン9503、外部接続ポート9504、ス
ピーカ9505、マイク9506、操作ボタン9507などを備えている。実施の形態1
乃至7のいずれかで示した半導体装置を表示部9502に適用することにより、より高性
能及び高信頼性な携帯電話機とすることができる。
FIG. 16(D) shows an example of a mobile phone. The mobile phone 9500 has a housing 9501
In addition to a display portion 9502 built into the , the device is equipped with operation buttons 9503, external connection ports 9504, speakers 9505, microphones 9506, operation buttons 9507, and the like. Embodiment 1
By applying the semiconductor device shown in any one of 7 to 7 to the display portion 9502, a mobile phone with higher performance and higher reliability can be obtained.

図16(D)に示す携帯電話機9500は、表示部9502を指などで触れることで、情
報を入力する、電話を掛ける、またはメールを作成するなどの操作を行うことができる。
In the mobile phone 9500 shown in FIG. 16D, operations such as inputting information, making a call, or composing an email can be performed by touching the display portion 9502 with a finger or the like.

表示部9502の画面は、主として3つのモードがある。第1は、画像の表示を主とする
表示モードであり、第2は、文字等の情報の入力を主とする入力モードである。第3は表
示モードと入力モードの2つのモードが混合したものである。
The screen of the display section 9502 mainly has three modes. The first is a display mode that mainly displays images, and the second is an input mode that mainly inputs information such as characters. The third mode is a mixture of two modes: display mode and input mode.

例えば、電話を掛ける、またはメールを作成する場合は、表示部9502を文字の入力を
主とする入力モードとし、画面に表示させた文字の入力操作を行えばよい。この場合、表
示部9502の画面のほとんどにキーボードまたは番号ボタンを表示させることが好まし
い。
For example, when making a phone call or composing an e-mail, the display unit 9502 may be set to an input mode mainly for inputting characters, and the user may input the characters displayed on the screen. In this case, it is preferable to display a keyboard or number buttons on most of the screen of the display section 9502.

また、携帯電話機9500内部に、ジャイロ、加速度センサ等の傾きを検出するセンサを
有する検出装置を設けることで、携帯電話機9500の向き(縦向きか横向きか)を判断
して、表示部9502の画面表示を自動的に切り替えるようにすることができる。
Furthermore, by providing a detection device having a sensor for detecting inclination such as a gyro or an acceleration sensor inside the mobile phone 9500, the orientation of the mobile phone 9500 (vertical or horizontal) can be determined and the screen of the display unit 9502 can be displayed. The display can be changed automatically.

また、画面モードの切り替えは、表示部9502を触れる、または筐体9501の操作ボ
タン9503の操作により行われる。また、表示部9502に表示される画像の種類によ
って切り替えるようにすることもできる。例えば、表示部に表示する画像信号が動画のデ
ータであれば表示モード、テキストデータであれば入力モードに切り替える。
Further, switching of the screen mode is performed by touching the display portion 9502 or operating an operation button 9503 on the housing 9501. Further, it is also possible to switch depending on the type of image displayed on the display section 9502. For example, if the image signal to be displayed on the display section is video data, the mode is switched to display mode, and if it is text data, the mode is switched to input mode.

また、入力モードにおいて、表示部9502の光センサで検出される信号を検知し、表示
部9502のタッチ操作による入力が一定期間ない場合には、画面のモードを入力モード
から表示モードに切り替えるように制御してもよい。
In addition, in the input mode, a signal detected by the optical sensor of the display section 9502 is detected, and if there is no input by touch operation on the display section 9502 for a certain period of time, the screen mode is switched from the input mode to the display mode. May be controlled.

また、表示部9502は、イメージセンサとして機能させることもできる。例えば、表示
部9502に掌や指を触れ、掌紋、指紋等を撮像することで、本人認証を行うことができ
る。また、表示部に近赤外光を発光するバックライトまたは近赤外光を発光するセンシン
グ用光源を用いれば、指静脈、掌静脈などを撮像することもできる。
Further, the display portion 9502 can also function as an image sensor. For example, by touching the display portion 9502 with a palm or fingers and capturing an image of a palm print, fingerprint, or the like, personal authentication can be performed. Furthermore, if a backlight that emits near-infrared light or a sensing light source that emits near-infrared light is used in the display section, it is also possible to image finger veins, palm veins, and the like.

以上、本実施の形態に示す構成、方法などは、他の実施の形態に示す構成、方法などと適
宜組み合わせて用いることができる。
As described above, the structure, method, etc. shown in this embodiment can be used in appropriate combination with the structure, method, etc. shown in other embodiments.

本実施例では、第1の酸化物半導体層上に、第1の酸化物半導体層のエネルギーギャップ
よりも小さい第2の酸化物半導体層を形成し、さらに第2の酸化物半導体層上に第3の酸
化物半導体層を形成したサンプル(試料1A、試料1B、試料2A、及び試料2B)を作
製し、試料1A、試料1B、試料2A、及び試料2Bの断面構造を観察した。また、試料
1A及び試料2Aのイオン化ポテンシャの測定を行い、その結果に基づきエネルギーバン
ド図を計算した。本明細書において、イオン化ポテンシャルの値は、バンドギャップと電
子親和力を加算した値であり、バンドギャップの値は、材料の単膜のエリプソで測定して
得られる値を用いる。
In this example, a second oxide semiconductor layer smaller than the energy gap of the first oxide semiconductor layer is formed over the first oxide semiconductor layer, and a second oxide semiconductor layer is further formed over the second oxide semiconductor layer. Samples (sample 1A, sample 1B, sample 2A, and sample 2B) in which the oxide semiconductor layer No. 3 was formed were prepared, and the cross-sectional structures of sample 1A, sample 1B, sample 2A, and sample 2B were observed. In addition, the ionization potentials of Sample 1A and Sample 2A were measured, and energy band diagrams were calculated based on the results. In this specification, the value of the ionization potential is the sum of the band gap and the electron affinity, and the value of the band gap is the value obtained by measuring a single film of the material with an ellipsometry.

試料1Aとして、基板1000である石英基板上に第1の酸化物半導体層1001として
膜厚5nmのIn-Ga-Zn系酸化物膜、第2の酸化物半導体層1002として膜厚5
nmのIn-Sn-Zn系酸化物膜、第3の酸化物半導体層1003として膜厚5nmの
In-Ga-Zn系酸化物膜を積層成膜した。それぞれの成膜条件は、スパッタリング法
を用いて基板温度300℃、酸素雰囲気(酸素100%)下で成膜を行った。ターゲット
は、In:Ga:Zn=1:1:1[原子数比]の酸化物ターゲットを用い、In-Ga
-Zn系酸化物膜を成膜する。また、In-Sn-Zn系酸化物膜は、In:Sn:Zn
=2:1:3[原子数比]の酸化物ターゲットを用いる。
As sample 1A, an In-Ga-Zn-based oxide film with a thickness of 5 nm was formed as a first oxide semiconductor layer 1001 on a quartz substrate serving as a substrate 1000, and an In-Ga-Zn-based oxide film with a thickness of 5 nm was formed as a second oxide semiconductor layer 1002.
An In--Sn--Zn-based oxide film with a thickness of 5 nm and an In--Ga--Zn-based oxide film with a thickness of 5 nm were stacked as the third oxide semiconductor layer 1003. Each film was formed using a sputtering method at a substrate temperature of 300° C. and in an oxygen atmosphere (oxygen 100%). The target is an oxide target with In:Ga:Zn=1:1:1 [atomic ratio].
- Deposit a Zn-based oxide film. In addition, the In-Sn-Zn based oxide film is In:Sn:Zn
An oxide target with an atomic ratio of =2:1:3 is used.

試料1Bは、試料1Aと同様に成膜した酸化物半導体積層に加熱処理を行い、混合領域を
有する酸化物半導体積層を作製し、試料1Bとした。加熱処理は、温度650℃、窒素雰
囲気下で1時間行った後、温度650℃、酸素雰囲気下で1時間行った。
Sample 1B was obtained by subjecting an oxide semiconductor stack formed in the same manner as sample 1A to heat treatment to produce an oxide semiconductor stack having a mixed region. The heat treatment was performed at a temperature of 650° C. in a nitrogen atmosphere for 1 hour, and then at a temperature of 650° C. in an oxygen atmosphere for 1 hour.

試料2Aとして、基板1000である石英基板上に第1の酸化物半導体層1001として
膜厚5nmのIn-Ga-Zn系酸化物膜、第2の酸化物半導体層1002として膜厚5
nmのIn-Zn系酸化物膜、第3の酸化物半導体層1003として膜厚5nmのIn-
Ga-Zn系酸化物膜を積層成膜した。それぞれの成膜条件は、スパッタリング法を用い
て基板温度300℃、酸素雰囲気(酸素100%)下で成膜を行った。ターゲットは、I
n:Ga:Zn=1:1:1[原子数比]の酸化物ターゲットを用い、In-Ga-Zn
系酸化物膜を成膜する。また、In-Zn系酸化物膜は、In:Zn=2:1[原子数比
]の酸化物ターゲットを用いる。
As sample 2A, an In-Ga-Zn-based oxide film with a thickness of 5 nm was formed as a first oxide semiconductor layer 1001 on a quartz substrate serving as a substrate 1000, and an In-Ga-Zn-based oxide film with a thickness of 5 nm was formed as a second oxide semiconductor layer 1002.
nm thick In-Zn-based oxide film, and a 5 nm thick In-Zn-based oxide film as the third oxide semiconductor layer 1003.
Ga—Zn-based oxide films were deposited in layers. Each film was formed using a sputtering method at a substrate temperature of 300° C. and in an oxygen atmosphere (oxygen 100%). The target is I
Using an oxide target with n:Ga:Zn=1:1:1 [atomic ratio], In-Ga-Zn
A system oxide film is formed. Further, for the In--Zn-based oxide film, an oxide target with In:Zn=2:1 [atomic ratio] is used.

試料2Bは、試料2Aと同様に成膜した酸化物半導体積層に加熱処理を行い、混合領域を
有する酸化物半導体積層を作製し、試料2Bとした。加熱処理は、温度650℃、窒素雰
囲気下で1時間行った後、温度650℃、酸素雰囲気下で1時間行った。
Sample 2B was obtained by subjecting an oxide semiconductor stack formed in the same manner as sample 2A to heat treatment to produce an oxide semiconductor stack having a mixed region. The heat treatment was performed at a temperature of 650° C. in a nitrogen atmosphere for 1 hour, and then at a temperature of 650° C. in an oxygen atmosphere for 1 hour.

試料1A、試料1B、試料2A、及び試料2Bにおいて、端面を切り出し、高分解能透過
電子顕微鏡(日立ハイテクノロジー製「H9000-NAR」:TEM)で加速電圧を3
00kVとし、試料1A、試料1B、試料2A、及び試料2Bの断面観察を行った。図1
7(B)に試料1A、図17(C)に試料1B、図18(B)に試料2A、図18(C)
に試料2BのTEM像を示す。なお、試料1A及び試料2Aの模式図を図17(A)及び
図18(A)に示す。図17(A)及び図18(A)において、積層する酸化物半導体層
の界面を点線で図示しているが、模式的に示したものである。
The end faces of Sample 1A, Sample 1B, Sample 2A, and Sample 2B were cut out, and an acceleration voltage of 3
00 kV, and the cross sections of Sample 1A, Sample 1B, Sample 2A, and Sample 2B were observed. Figure 1
Sample 1A in Figure 7(B), Sample 1B in Figure 17(C), Sample 2A in Figure 18(B), Figure 18(C)
shows a TEM image of sample 2B. Note that schematic diagrams of sample 1A and sample 2A are shown in FIG. 17(A) and FIG. 18(A). In FIGS. 17A and 18A, the interface between stacked oxide semiconductor layers is illustrated by a dotted line, but the interface is schematically illustrated.

図17(B)(C)に示す試料1A及び試料1BのTEM像は、基板1000上に第1の
酸化物半導体層1001である膜厚5nmの第1のIn-Ga-Zn系酸化物膜、第2の
酸化物半導体層1002である膜厚5nmのIn-Sn-Zn系酸化物膜、第3の酸化物
半導体層1003である膜厚5nmの第2のIn-Ga-Zn系酸化物膜を積層成膜した
酸化物半導体積層である。図17(B)の試料1AのTEM像は、積層する酸化物半導体
層間に界面が確認できる。一方、酸化物半導体積層を形成後、加熱処理を行った試料1B
のTEM像は、図17(C)に示すように積層する酸化物半導体層の間は明確な界面は確
認できず、混合領域となっている。
The TEM images of Sample 1A and Sample 1B shown in FIG. , a 5-nm-thick In-Sn-Zn-based oxide film as the second oxide semiconductor layer 1002, and a 5-nm-thick second In-Ga-Zn-based oxide film as the third oxide semiconductor layer 1003. This is an oxide semiconductor stack formed by stacking films. In the TEM image of sample 1A in FIG. 17(B), an interface can be seen between the stacked oxide semiconductor layers. On the other hand, sample 1B was subjected to heat treatment after forming the oxide semiconductor stack.
As shown in FIG. 17C, in the TEM image of FIG. 17C, no clear interface can be seen between the laminated oxide semiconductor layers, resulting in a mixed region.

図18(B)(C)に示す試料2A及び試料2BのTEM像は、基板1000上に第1の
酸化物半導体層1001である膜厚5nmの第1のIn-Ga-Zn系酸化物膜、第2の
酸化物半導体層1002である膜厚5nmのIn-Zn系酸化物膜、第3の酸化物半導体
層1003である膜厚5nmの第2のIn-Ga-Zn系酸化物膜を積層成膜した酸化物
半導体積層である。図18(B)の試料2AのTEM像は、積層する酸化物半導体層間に
界面が確認できる。一方、酸化物半導体積層を形成後、加熱処理を行った試料2BのTE
M像は、図18(C)に示すように積層する酸化物半導体層の間は明確な界面は確認でき
ず、混合領域となっている。
The TEM images of Sample 2A and Sample 2B shown in FIG. , the second oxide semiconductor layer 1002 is an In-Zn-based oxide film with a thickness of 5 nm, and the third oxide semiconductor layer 1003 is a second In-Ga-Zn-based oxide film with a thickness of 5 nm. This is a stacked oxide semiconductor stack. In the TEM image of sample 2A in FIG. 18(B), an interface can be seen between the stacked oxide semiconductor layers. On the other hand, the TE of sample 2B was subjected to heat treatment after forming the oxide semiconductor stack.
In the M image, as shown in FIG. 18C, no clear interface can be seen between the laminated oxide semiconductor layers, which is a mixed region.

なお、図17(B)(C)及び図18(B)(C)に示すように、試料1A、試料1B、
試料2A、及び試料2Bは、第1の酸化物半導体層1001である第1のIn-Ga-Z
n系酸化物膜、第2の酸化物半導体層1002であるIn-Sn-Zn系酸化物膜及びI
n-Zn系酸化物膜、並びに第3の酸化物半導体層1003である第2のIn-Ga-Z
n系酸化物膜は、結晶を含んでおり、c軸配向を有した結晶性酸化物半導体(CAAC-
OS)膜であることが確認できる。また、第1の酸化物半導体層1001である第1のI
n-Ga-Zn系酸化物膜は非晶質構造も含んでいる。
In addition, as shown in FIGS. 17(B)(C) and 18(B)(C), sample 1A, sample 1B,
Sample 2A and Sample 2B are the first In-Ga-Z which is the first oxide semiconductor layer 1001.
An n-based oxide film, an In-Sn-Zn-based oxide film serving as the second oxide semiconductor layer 1002, and an I
n-Zn-based oxide film and second In-Ga-Z which is the third oxide semiconductor layer 1003
The n-based oxide film contains crystals and is a crystalline oxide semiconductor with c-axis orientation (CAAC-
It can be confirmed that it is an OS) film. Further, the first I, which is the first oxide semiconductor layer 1001,
The n-Ga-Zn-based oxide film also includes an amorphous structure.

なお、酸化物半導体積層において、それぞれの酸化物半導体層の結晶状態は特に限定され
ず、すべて結晶構造を有している酸化物半導体層でもよいし、すべて非晶質構造であって
もよいし、結晶構造を有する酸化物半導体層と非晶質構造である酸化物半導体層とが混在
してもよい。
Note that in the oxide semiconductor stack, the crystal state of each oxide semiconductor layer is not particularly limited; all the oxide semiconductor layers may have a crystal structure, or all the oxide semiconductor layers may have an amorphous structure. An oxide semiconductor layer having a crystalline structure and an oxide semiconductor layer having an amorphous structure may coexist.

また、基板を単結晶シリコン基板として、同じ成膜条件で積層成膜して得られた試料1A
及び試料2Aの表面からスパッタリングしながら紫外線光電子分光分析(UPS:Ult
raviolet Photoelectron Spctroscopy)によるイオ
ン化ポテンシャルを測定した結果を図19及び図21に示す。
In addition, sample 1A was obtained by laminating films under the same film forming conditions using a single crystal silicon substrate as the substrate.
and ultraviolet photoelectron spectroscopy (UPS: Ult) while sputtering from the surface of sample 2A.
19 and 21 show the results of measuring the ionization potential using Raviolet Photoelectron Spectroscopy).

図19及び図21において、横軸はサンプル表面からのスパッタリング時間を表し、縦軸
はイオン化ポテンシャルを表している。なお、In-Ga-Zn系酸化物膜とIn-Sn
-Zn系酸化物膜のスパッタレート、In-Ga-Zn系酸化物膜とIn-Zn系酸化物
膜のスパッタレートは等しいと仮定して試料の境界を表示している。
In FIGS. 19 and 21, the horizontal axis represents sputtering time from the sample surface, and the vertical axis represents ionization potential. Note that the In-Ga-Zn-based oxide film and the In-Sn
- The boundaries of the samples are displayed on the assumption that the sputtering rate of the Zn-based oxide film and the sputtering rates of the In--Ga--Zn-based oxide film and the In--Zn-based oxide film are equal.

図19から、In-Ga-Zn系酸化物膜に挟まれたIn-Sn-Zn系酸化物膜でイオ
ン化ポテンシャルが低下することがわかる。なお、イオン化ポテンシャルは真空準位から
価電子帯までのエネルギー差を表す。
From FIG. 19, it can be seen that the ionization potential decreases in the In--Sn--Zn-based oxide film sandwiched between the In--Ga--Zn-based oxide films. Note that the ionization potential represents the energy difference from the vacuum level to the valence band.

イオン化ポテンシャルの値からエリプソで測定したバンドギャップを引くことで伝導帯の
エネルギーを算出し、この積層膜のバンド構造を作成した。ただし、In-Ga-Zn系
酸化物膜とIn-Sn-Zn系酸化物膜のバンドギャップはそれぞれ3.2eV、2.8
eVとした。その結果が図20になる。図20には、図4(C)に示したエネルギーバン
ド図のように埋め込みチャネルが形成されていることがわかる。
The conduction band energy was calculated by subtracting the band gap measured by ellipsometry from the ionization potential value, and the band structure of this laminated film was created. However, the band gaps of the In-Ga-Zn-based oxide film and the In-Sn-Zn-based oxide film are 3.2 eV and 2.8 eV, respectively.
It was set as eV. The result is shown in FIG. It can be seen from FIG. 20 that a buried channel is formed as shown in the energy band diagram shown in FIG. 4(C).

図21から、In-Ga-Zn系酸化物膜に挟まれたIn-Zn系酸化物膜でイオン化ポ
テンシャルが低下することがわかる。なお、イオン化ポテンシャルは真空準位から価電子
帯までのエネルギー差を表す。
It can be seen from FIG. 21 that the ionization potential decreases in the In--Zn-based oxide film sandwiched between the In--Ga--Zn-based oxide films. Note that the ionization potential represents the energy difference from the vacuum level to the valence band.

イオン化ポテンシャルの値からエリプソで測定したバンドギャップを引くことで伝導帯の
エネルギーを算出し、この積層膜のバンド構造を作成した。ただし、In-Ga-Zn系
酸化物膜とIn-Zn系酸化物膜のバンドギャップはそれぞれ3.2eV、2.6eVと
した。その結果が図22になる。図22には、図4(C)に示したエネルギーバンド図の
ように埋め込みチャネルが形成されていることがわかる。
The conduction band energy was calculated by subtracting the band gap measured by ellipsometry from the ionization potential value, and the band structure of this laminated film was created. However, the band gaps of the In--Ga--Zn-based oxide film and the In--Zn-based oxide film were set to 3.2 eV and 2.6 eV, respectively. The result is shown in FIG. It can be seen from FIG. 22 that a buried channel is formed as shown in the energy band diagram shown in FIG. 4(C).

本実施例において、第1の酸化物半導体層及び第3の酸化物半導体層としてIn-Ga-
Zn系酸化物膜を用い、第1の酸化物半導体層及び第3の酸化物半導体層よりも小さいイ
オン化ポテンシャルを有し、且つ、小さいエネルギーギャップを有する第2の酸化物半導
体層としてIn-Sn-Zn系酸化物膜、又はIn-Zn系酸化物膜を用いた積層は、図
20、図22、又は図4(C)に示すエネルギーバンド図で表すことができることを確認
した。第1の酸化物半導体層、第2の酸化物半導体層、及び第3の酸化物半導体層の材料
の組み合わせは、特に限定されず、図20、図22、又は図4(C)に示すエネルギーバ
ンド図となるように、実施者が用いる材料のエネルギーギャップを考慮して適宜材料を選
択し、組み合わせればよい。
In this example, the first oxide semiconductor layer and the third oxide semiconductor layer are made of In-Ga-
A Zn-based oxide film is used as the second oxide semiconductor layer, which has a smaller ionization potential than the first oxide semiconductor layer and the third oxide semiconductor layer, and has a small energy gap. It was confirmed that a stack using a -Zn-based oxide film or an In-Zn-based oxide film can be represented by the energy band diagram shown in FIG. 20, FIG. 22, or FIG. 4(C). The combination of materials for the first oxide semiconductor layer, the second oxide semiconductor layer, and the third oxide semiconductor layer is not particularly limited, and the energy levels shown in FIG. 20, FIG. 22, or FIG. The practitioner may select and combine materials as appropriate in consideration of the energy gap of the materials used so as to form a band diagram.

本実施例では、実施の形態1においてトランジスタ440a、440b、430として示
した、第1の酸化物半導体層と第2の酸化物半導体層の積層よりなる酸化物半導体積層を
有するトランジスタ(実施例トランジスタ1乃至4、及び比較例トランジスタ1乃至4)
の特性について計算を行った。
In this example, a transistor (example transistor) having an oxide semiconductor stack formed of a stack of a first oxide semiconductor layer and a second oxide semiconductor layer, which is illustrated as transistors 440a, 440b, and 430 in Embodiment 1, 1 to 4, and comparative example transistors 1 to 4)
We calculated the characteristics of

本実施例の計算には、シノプシス社製シミュレーションソフトTCAD(Technol
ogy Computer-Aided Design)を用いた。
The calculations in this example were performed using the simulation software TCAD (Technol) manufactured by Synopsys.
ogy Computer-Aided Design).

実施例トランジスタ1、実施例トランジスタ2、比較例トランジスタ1、及び比較例トラ
ンジスタ2として、実施の形態1においてトランジスタ440a、440bで示したよう
な、ゲート電極層上に設けられた膜厚100nmのゲート絶縁膜上に、第1の酸化物半導
体層及び第2の酸化物半導体層が順に積層された酸化物半導体積層と、酸化物半導体積層
上に設けられたソース電極層及びドレイン電極層とを有するボトムゲート構造(チャネル
エッチ型)のトランジスタを用いた。
As Example Transistor 1, Example Transistor 2, Comparative Example Transistor 1, and Comparative Example Transistor 2, gates with a thickness of 100 nm were provided on the gate electrode layer as shown in transistors 440a and 440b in Embodiment 1. An oxide semiconductor stack in which a first oxide semiconductor layer and a second oxide semiconductor layer are sequentially stacked on an insulating film, and a source electrode layer and a drain electrode layer provided on the oxide semiconductor stack. A transistor with a bottom gate structure (channel etch type) was used.

実施例トランジスタ3、実施例トランジスタ4、比較例トランジスタ3、及び比較例トラ
ンジスタ4として、実施の形態1においてトランジスタ430で示したような、ゲート電
極層上に設けられた膜厚100nmのゲート絶縁膜上に、ソース電極層及びドレイン電極
層と、該ソース電極層及びドレイン電極層上に第1の酸化物半導体層及び第2の酸化物半
導体層が順に積層された酸化物半導体積層と、を有するボトムゲート構造のトランジスタ
を用いた。
As Example Transistor 3, Example Transistor 4, Comparative Example Transistor 3, and Comparative Example Transistor 4, a gate insulating film with a thickness of 100 nm provided on the gate electrode layer as shown in transistor 430 in Embodiment 1 was used. a source electrode layer and a drain electrode layer; and an oxide semiconductor stack in which a first oxide semiconductor layer and a second oxide semiconductor layer are sequentially stacked on the source electrode layer and the drain electrode layer. A transistor with a bottom gate structure was used.

実施例トランジスタ1乃至4、及び比較例トランジスタ1乃至4において、また、チャネ
ル長(L)及びチャネル幅(W)を共に10μmとして、ドレイン電圧(Vd)を1Vと
して計算した。
In Example Transistors 1 to 4 and Comparative Example Transistors 1 to 4, calculations were made assuming that the channel length (L) and channel width (W) were both 10 μm, and the drain voltage (Vd) was 1V.

また、実施例トランジスタ1乃至4に含まれる酸化物半導体積層の構成は、エネルギーギ
ャップの異なる第1の酸化物半導体層及び第2の酸化物半導体層を有し、第1の酸化物半
導体層として膜厚5nmのIn-Sn-Zn系酸化物膜、第2の酸化物半導体層として膜
厚5nmのIn-Ga-Zn系酸化物膜を有する実施例トランジスタ1及び実施例トラン
ジスタ3と、第1の酸化物半導体層として膜厚5nmのIn-Ga-Zn系酸化物膜、第
2の酸化物半導体層として膜厚5nmのIn-Sn-Zn系酸化物膜を有する実施例トラ
ンジスタ2及び実施例トランジスタ4とした。
Further, the structure of the oxide semiconductor stack included in Example Transistors 1 to 4 includes a first oxide semiconductor layer and a second oxide semiconductor layer with different energy gaps, and the first oxide semiconductor layer is Example transistor 1 and example transistor 3 each have an In-Sn-Zn-based oxide film with a film thickness of 5 nm, an In-Ga-Zn-based oxide film with a film thickness of 5 nm as the second oxide semiconductor layer, and the first Example transistor 2 and example having an In-Ga-Zn-based oxide film with a film thickness of 5 nm as the oxide semiconductor layer, and an In-Sn-Zn-based oxide film with a film thickness of 5 nm as the second oxide semiconductor layer. It was set as transistor 4.

一方、比較例となる比較例トランジスタ1乃至4に含まれる酸化物半導体積層の構成は、
エネルギーギャップの同じ第1の酸化物半導体層及び第2の酸化物半導体層を有し、第1
の酸化物半導体層として膜厚5nmのIn-Ga-Zn系酸化物膜、第2の酸化物半導体
層として膜厚5nmのIn-Ga-Zn系酸化物膜を有する(すなわち、酸化物半導体積
層がIn-Ga-Zn系酸化物膜の単層でなる)比較例トランジスタ1及び比較例トラン
ジスタ3と、第1の酸化物半導体層として膜厚5nmのIn-Sn-Zn系酸化物膜、第
2の酸化物半導体層として膜厚5nmのIn-Sn-Zn系酸化物膜を有する(すなわち
、酸化物半導体層がITGO膜の単層でなる)比較例トランジスタ2及び比較例トランジ
スタ4とした。
On the other hand, the configuration of the oxide semiconductor stack included in Comparative Example Transistors 1 to 4, which are comparative examples, is as follows:
a first oxide semiconductor layer and a second oxide semiconductor layer having the same energy gap;
The second oxide semiconductor layer has an In-Ga-Zn oxide film with a thickness of 5 nm, and the second oxide semiconductor layer has an In-Ga-Zn oxide film with a thickness of 5 nm. Comparative Example Transistor 1 and Comparative Example Transistor 3 (consisting of a single layer of an In-Ga-Zn-based oxide film), and a 5-nm-thick In-Sn-Zn-based oxide film as the first oxide semiconductor layer; Comparative Example Transistor 2 and Comparative Example Transistor 4 each had an In-Sn-Zn-based oxide film with a film thickness of 5 nm as the oxide semiconductor layer of Comparative Example Transistor 2 (that is, the oxide semiconductor layer was a single layer of an ITGO film).

実施例トランジスタ1乃至4、及び比較例トランジスタ1乃至4に含まれるIn-Ga-
Zn系酸化物膜は、バンドギャップを3.15eV、キャリアライフタイムを1nsec
、バルク移動度を10cm/Vs、電子親和力を4.6eVとして計算し、In-Sn
-Zn系酸化物膜は、バンドギャップを2.8eV、キャリアライフタイムを1nsec
、バルク移動度を35cm/Vs、電子親和力を4.6eVとして計算した。
In-Ga- contained in Example transistors 1 to 4 and Comparative example transistors 1 to 4
The Zn-based oxide film has a band gap of 3.15 eV and a carrier lifetime of 1 nsec.
, the bulk mobility is 10 cm 2 /Vs, the electron affinity is 4.6 eV, and In-Sn
-Zn-based oxide film has a band gap of 2.8 eV and a carrier lifetime of 1 nsec.
, the bulk mobility was calculated as 35 cm 2 /Vs, and the electron affinity was calculated as 4.6 eV.

計算によって得られた実施例トランジスタ1、実施例トランジスタ2、比較例トランジス
タ1、及び比較例トランジスタ2のオフ電流値を図23(A)(B)に、実施例トランジ
スタ3、実施例トランジスタ4、比較例トランジスタ3、及び比較例トランジスタ4のオ
フ電流値を図25(A)(B)にそれぞれ示す。なお、図23(B)及び図25(B)は
、図23(A)又は図25(A)においてドレイン電流が1.0×10-35A乃至1.
0×10-25Aの範囲を拡大して示したグラフである。図23(A)(B)及び図25
(A)(B)において、縦軸はドレイン電流(A)、横軸は、ゲート電圧(V)を示す。
The off-state current values of Example Transistor 1, Example Transistor 2, Comparative Example Transistor 1, and Comparative Example Transistor 2 obtained by calculation are shown in FIGS. 23A and 23B. Off-state current values of Comparative Example Transistor 3 and Comparative Example Transistor 4 are shown in FIGS. 25A and 25B, respectively. Note that FIGS. 23(B) and 25(B) show cases where the drain current is 1.0×10 −35 A to 1.0×10 −35 A in FIG. 23(A) or FIG. 25(A).
This is a graph showing an enlarged range of 0×10 −25 A. Figure 23(A)(B) and Figure 25
In (A) and (B), the vertical axis shows the drain current (A), and the horizontal axis shows the gate voltage (V).

また、計算によって得られた実施例トランジスタ1、実施例トランジスタ2、比較例トラ
ンジスタ1、及び比較例トランジスタ2の電界効果移動度を図24に、実施例トランジス
タ3、実施例トランジスタ4、比較例トランジスタ3、及び比較例トランジスタ4の電界
効果移動度を図26にそれぞれ示す。図24及び図26において、縦軸は電界効果移動度
(cm/Vs)、横軸はゲート電圧(V)を示す。
Further, the field effect mobilities of Example Transistor 1, Example Transistor 2, Comparative Example Transistor 1, and Comparative Example Transistor 2 obtained by calculation are shown in FIG. FIG. 26 shows the field effect mobilities of transistor No. 3 and comparative example transistor 4, respectively. In FIGS. 24 and 26, the vertical axis represents field effect mobility (cm 2 /Vs), and the horizontal axis represents gate voltage (V).

同じ構造のトランジスタである実施例トランジスタ1、実施例トランジスタ2、比較例ト
ランジスタ1、及び比較例トランジスタ2において、図23(A)(B)に示すようにオ
フ電流値が異なり、図24に示すように電界効果移動度も異なる値を示した。
Examples transistor 1, example transistor 2, comparative example transistor 1, and comparative example transistor 2, which are transistors with the same structure, have different off-state current values as shown in FIGS. 23(A) and 23(B), and as shown in FIG. 24. The field effect mobilities also showed different values.

同様に、同じ構造のトランジスタである実施例トランジスタ3、実施例トランジスタ4、
比較例トランジスタ3、及び比較例トランジスタ4において、図25(A)(B)に示す
ようにオフ電流値が異なり、図26に示すように電界効果移動度も異なる値を示した。
Similarly, example transistor 3, example transistor 4, which are transistors with the same structure,
Comparative Example Transistor 3 and Comparative Example Transistor 4 had different off-state current values as shown in FIGS. 25A and 25B, and different field effect mobilities as shown in FIG. 26.

特に本実施例では、図24及び図26で示す電界効果移動度において、酸化物半導体積層
に用いる酸化物半導体材料及び該積層順によって、該値の違いは顕著であった。
In particular, in this example, the field effect mobilities shown in FIGS. 24 and 26 significantly differed depending on the oxide semiconductor material used in the oxide semiconductor stack and the stack order.

以上の結果より、同じ構造のトランジスタでありながら、バンドギャップが異なる酸化物
半導体層を積層させることによって、トランジスタの電気特性を(本実施例においては電
界効果移動度及びオフ電流特性)を様々に変更できることが示された。
From the above results, the electrical characteristics (field effect mobility and off-current characteristics in this example) of the transistor can be varied by stacking oxide semiconductor layers with different bandgaps even though they have the same structure. It has been shown that it can be changed.

したがって酸化物半導体積層を用いることによって、トランジスタの電気特性をより精度
よく制御することができ、所望の電気特性をトランジスタに付与することが可能となる。
Therefore, by using an oxide semiconductor stack, the electrical characteristics of the transistor can be controlled with more precision, and desired electrical characteristics can be imparted to the transistor.

101 酸化物半導体層
102 酸化物半導体層
103 酸化物半導体層
105 混合領域
106 素子分離絶縁層
108 ゲート絶縁膜
110 ゲート電極
111 酸素過剰領域
112 酸素過剰領域
113 酸素過剰領域
116 チャネル形成領域
120 不純物領域
121a 低抵抗領域
121b 低抵抗領域
121c チャネル形成領域
122a 低抵抗領域
122b 低抵抗領域
122c チャネル形成領域
124 金属化合物領域
128 絶縁膜
130 絶縁膜
140 トランジスタ
142a ドレイン電極
142b ドレイン電極
144 酸化物半導体積層
146 ゲート絶縁膜
148 ゲート電極層
150 絶縁膜
152 絶縁膜
153 電極層
156 配線
162 トランジスタ
164 容量素子
185 基板
191 酸化物半導体膜
192 酸化物半導体膜
340 トランジスタ
343 トランジスタ
380a トランジスタ
380b トランジスタ
380c トランジスタ
383 トランジスタ
400 基板
401 ゲート電極層
402 ゲート絶縁膜
403 酸化物半導体積層
404a ソース電極層
404b ドレイン電極層
405a ソース電極層
405b ドレイン電極層
407 絶縁膜
409 絶縁膜
410 トランジスタ
413 トランジスタ
416 平坦化絶縁膜
418 トランジスタ
420 トランジスタ
421 ドーパント
427 絶縁膜
430 トランジスタ
431 酸素
433 トランジスタ
438 トランジスタ
440a トランジスタ
440b トランジスタ
440c トランジスタ
440d トランジスタ
443a トランジスタ
443b トランジスタ
449 トランジスタ
465a 配線層
465b 配線層
480 トランジスタ
483 トランジスタ
493 積層
601 基板
602 フォトダイオード
606a 半導体膜
606b 半導体膜
606c 半導体膜
608 接着層
613 基板
631 絶縁膜
632 絶縁膜
633 層間絶縁膜
634 層間絶縁膜
640 トランジスタ
641 電極層
642 電極層
643 導電層
645 導電層
656 トランジスタ
658 フォトダイオードリセット信号線
659 ゲート信号線
671 フォトセンサ出力信号線
672 フォトセンサ基準信号線
1000 基板
1001 酸化物半導体層
1002 酸化物半導体層
1003 酸化物半導体層
4001 基板
4002 画素部
4003 信号線駆動回路
4004 走査線駆動回路
4005 シール材
4006 基板
4008 液晶層
4010 トランジスタ
4011 トランジスタ
4013 液晶素子
4015 接続端子電極
4016 端子電極
4018 FPC
4019 異方性導電膜
4020 絶縁膜
4021 絶縁膜
4023 絶縁膜
4030 電極層
4031 電極層
4032 絶縁膜
4033 絶縁膜
4510 隔壁
4511 電界発光層
4513 発光素子
4514 充填材
9000 テーブル
9001 筐体
9002 脚部
9003 表示部
9004 表示ボタン
9005 電源コード
9100 テレビジョン装置
9101 筐体
9103 表示部
9105 スタンド
9107 表示部
9109 操作キー
9110 リモコン操作機
9201 本体
9202 筐体
9203 表示部
9204 キーボード
9205 外部接続ポート
9206 ポインティングデバイス
9500 携帯電話機
9501 筐体
9502 表示部
9503 操作ボタン
9504 外部接続ポート
9505 スピーカ
9506 マイク
9507 操作ボタン
101 Oxide semiconductor layer 102 Oxide semiconductor layer 103 Oxide semiconductor layer 105 Mixed region 106 Element isolation insulating layer 108 Gate insulating film 110 Gate electrode 111 Oxygen excess region 112 Oxygen excess region 113 Oxygen excess region 116 Channel formation region 120 Impurity region 121a Low resistance region 121b Low resistance region 121c Channel formation region 122a Low resistance region 122b Low resistance region 122c Channel formation region 124 Metal compound region 128 Insulating film 130 Insulating film 140 Transistor 142a Drain electrode 142b Drain electrode 144 Oxide semiconductor stack 146 Gate insulating film 148 Gate electrode layer 150 Insulating film 152 Insulating film 153 Electrode layer 156 Wiring 162 Transistor 164 Capacitor 185 Substrate 191 Oxide semiconductor film 192 Oxide semiconductor film 340 Transistor 343 Transistor 380a Transistor 380b Transistor 380c Transistor 383 Transistor 400 Substrate 401 Gate electrode layer 402 Gate insulating film 403 Oxide semiconductor stack 404a Source electrode layer 404b Drain electrode layer 405a Source electrode layer 405b Drain electrode layer 407 Insulating film 409 Insulating film 410 Transistor 413 Transistor 416 Planarizing insulating film 418 Transistor 420 Transistor 421 Dopant 427 Insulating film 430 Transistor 431 Oxygen 433 Transistor 438 Transistor 440a Transistor 440b Transistor 440c Transistor 440d Transistor 443a Transistor 443b Transistor 449 Transistor 465a Wiring layer 465b Wiring layer 480 Transistor 483 Transistor 493 Laminated layer 601 Substrate 602 Photodiode 606a Semiconductor film 606b Semiconductor film 606c Semiconductor film 60 8 Adhesive layer 613 Substrate 631 Insulating film 632 Insulating film 633 Interlayer insulating film 634 Interlayer insulating film 640 Transistor 641 Electrode layer 642 Electrode layer 643 Conductive layer 645 Conductive layer 656 Transistor 658 Photodiode reset signal line 659 Gate signal line 671 Photo sensor output signal line 672 Photo Sensor reference signal line 1000 Substrate 1001 Oxide semiconductor layer 1002 Oxide semiconductor layer 1003 Oxide semiconductor layer 4001 Substrate 4002 Pixel portion 4003 Signal line drive circuit 4004 Scanning line drive circuit 4005 Sealing material 4006 Substrate 4008 Liquid crystal layer 4010 Transistor 4011 Transistor 4013 Liquid crystal Element 4015 Connection terminal electrode 4016 Terminal electrode 4018 FPC
4019 Anisotropic conductive film 4020 Insulating film 4021 Insulating film 4023 Insulating film 4030 Electrode layer 4031 Electrode layer 4032 Insulating film 4033 Insulating film 4510 Partition 4511 Electroluminescent layer 4513 Light emitting element 4514 Filling material 9000 Table 9001 Housing 9002 Legs 9003 Display section 9004 Display button 9005 Power cord 9100 Television device 9101 Housing 9103 Display portion 9105 Stand 9107 Display portion 9109 Operation keys 9110 Remote control unit 9201 Main unit 9202 Housing 9203 Display portion 9204 Keyboard 9205 External connection port 9206 Pointing device 9500 Mobile phone 9501 box Body 9502 Display section 9503 Operation button 9504 External connection port 9505 Speaker 9506 Microphone 9507 Operation button

Claims (4)

トランジスタのゲート絶縁層として機能する領域を有する第1の絶縁膜と、
前記第1の絶縁膜と接する領域を有する第1の酸化物半導体層と、
前記第1の酸化物半導体層と接する領域を有し、且つ前記第1の酸化物半導体層を介して前記第1の絶縁膜と重なる領域を有する第2の酸化物半導体層と、
前記第2の酸化物半導体層と接する領域を有する酸化物絶縁膜と、を有する半導体装置であって、
前記第1の酸化物半導体層は、Inと、Snと、Znとを有し、
前記第2の酸化物半導体層は、Inと、Gaと、Znとを有し、
前記第1の酸化物半導体層におけるSnに対するInの原子数比は、前記第2の酸化物半導体層におけるGaに対するInの原子数比より大きい、半導体装置。
a first insulating film having a region functioning as a gate insulating layer of a transistor;
a first oxide semiconductor layer having a region in contact with the first insulating film;
a second oxide semiconductor layer having a region in contact with the first oxide semiconductor layer and overlapping with the first insulating film via the first oxide semiconductor layer;
A semiconductor device comprising: an oxide insulating film having a region in contact with the second oxide semiconductor layer,
The first oxide semiconductor layer includes In, Sn, and Zn,
The second oxide semiconductor layer includes In, Ga, and Zn,
In the semiconductor device, the atomic ratio of In to Sn in the first oxide semiconductor layer is larger than the atomic ratio of In to Ga in the second oxide semiconductor layer.
トランジスタのゲート絶縁層として機能する領域を有する第1の絶縁膜と、
前記第1の絶縁膜と接する領域を有する第1の酸化物半導体層と、
前記第1の酸化物半導体層と接する領域を有し、且つ前記第1の酸化物半導体層を介して前記第1の絶縁膜と重なる領域を有する第2の酸化物半導体層と、
前記第2の酸化物半導体層と接する領域を有する酸化物絶縁膜と、を有する半導体装置であって、
前記第1の酸化物半導体層は、Inと、Snと、Znとを有し、
前記第2の酸化物半導体層は、Inと、Gaと、Znとを有し、
前記第1の酸化物半導体層におけるSnに対するInの原子数比は、前記第2の酸化物半導体層におけるGaに対するInの原子数比より大きく、
前記第1の酸化物半導体層におけるInに対するZnの原子数比と、前記第2の酸化物半導体層におけるInに対するZnの原子数比と、は異なる、半導体装置。
a first insulating film having a region functioning as a gate insulating layer of a transistor;
a first oxide semiconductor layer having a region in contact with the first insulating film;
a second oxide semiconductor layer having a region in contact with the first oxide semiconductor layer and overlapping with the first insulating film via the first oxide semiconductor layer;
A semiconductor device comprising: an oxide insulating film having a region in contact with the second oxide semiconductor layer,
The first oxide semiconductor layer includes In, Sn, and Zn,
The second oxide semiconductor layer includes In, Ga, and Zn,
The atomic ratio of In to Sn in the first oxide semiconductor layer is greater than the atomic ratio of In to Ga in the second oxide semiconductor layer,
A semiconductor device, wherein the atomic ratio of Zn to In in the first oxide semiconductor layer is different from the atomic ratio of Zn to In in the second oxide semiconductor layer.
請求項1又は2において、
前記第2の酸化物半導体層は、c軸に配向した結晶部を有する、半導体装置。
In claim 1 or 2,
In the semiconductor device, the second oxide semiconductor layer has a crystal part oriented along the c-axis.
請求項1乃至3のいずれか一において、
前記第1の酸化物半導体層は、前記第2の酸化物半導体層とは異なる結晶性を有する、半導体装置。
In any one of claims 1 to 3,
A semiconductor device, wherein the first oxide semiconductor layer has crystallinity different from that of the second oxide semiconductor layer.
JP2023061361A 2011-07-08 2023-04-05 semiconductor equipment Active JP7456042B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011152099 2011-07-08
JP2011152099 2011-07-08
JP2021203153A JP7258996B2 (en) 2011-07-08 2021-12-15 semiconductor equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2021203153A Division JP7258996B2 (en) 2011-07-08 2021-12-15 semiconductor equipment

Publications (2)

Publication Number Publication Date
JP2023093542A JP2023093542A (en) 2023-07-04
JP7456042B2 true JP7456042B2 (en) 2024-03-26

Family

ID=47438121

Family Applications (10)

Application Number Title Priority Date Filing Date
JP2012151178A Active JP6148829B2 (en) 2011-07-08 2012-07-05 Semiconductor device
JP2015109649A Active JP6010660B2 (en) 2011-07-08 2015-05-29 Semiconductor device
JP2016181157A Active JP6420285B2 (en) 2011-07-08 2016-09-16 Semiconductor device
JP2017012911A Withdrawn JP2017085168A (en) 2011-07-08 2017-01-27 Semiconductor device
JP2017100552A Active JP6457016B2 (en) 2011-07-08 2017-05-22 Semiconductor device
JP2018192303A Active JP6646123B2 (en) 2011-07-08 2018-10-11 Semiconductor device
JP2019024077A Withdrawn JP2019087759A (en) 2011-07-08 2019-02-14 Semiconductor device
JP2020105109A Active JP6995936B2 (en) 2011-07-08 2020-06-18 Semiconductor device
JP2021203153A Active JP7258996B2 (en) 2011-07-08 2021-12-15 semiconductor equipment
JP2023061361A Active JP7456042B2 (en) 2011-07-08 2023-04-05 semiconductor equipment

Family Applications Before (9)

Application Number Title Priority Date Filing Date
JP2012151178A Active JP6148829B2 (en) 2011-07-08 2012-07-05 Semiconductor device
JP2015109649A Active JP6010660B2 (en) 2011-07-08 2015-05-29 Semiconductor device
JP2016181157A Active JP6420285B2 (en) 2011-07-08 2016-09-16 Semiconductor device
JP2017012911A Withdrawn JP2017085168A (en) 2011-07-08 2017-01-27 Semiconductor device
JP2017100552A Active JP6457016B2 (en) 2011-07-08 2017-05-22 Semiconductor device
JP2018192303A Active JP6646123B2 (en) 2011-07-08 2018-10-11 Semiconductor device
JP2019024077A Withdrawn JP2019087759A (en) 2011-07-08 2019-02-14 Semiconductor device
JP2020105109A Active JP6995936B2 (en) 2011-07-08 2020-06-18 Semiconductor device
JP2021203153A Active JP7258996B2 (en) 2011-07-08 2021-12-15 semiconductor equipment

Country Status (4)

Country Link
US (9) US8952377B2 (en)
JP (10) JP6148829B2 (en)
KR (5) KR20130006344A (en)
CN (2) CN102867854B (en)

Families Citing this family (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9214474B2 (en) 2011-07-08 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
TWI642193B (en) 2012-01-26 2018-11-21 半導體能源研究所股份有限公司 Semiconductor device and method for manufacturing the same
JP6175740B2 (en) * 2012-03-30 2017-08-09 株式会社Joled THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, DISPLAY DEVICE AND ELECTRONIC DEVICE
KR102278505B1 (en) * 2013-09-10 2021-07-16 삼성디스플레이 주식회사 Thin film transistor, thin film trnasistor array panel and manufacturing method of thin film transistor
KR20230004930A (en) 2012-04-13 2023-01-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP6076612B2 (en) * 2012-04-17 2017-02-08 株式会社半導体エネルギー研究所 Semiconductor device
US9362313B2 (en) 2012-05-09 2016-06-07 Kobe Steel, Ltd. Thin film transistor and display device
KR20210109658A (en) 2012-05-10 2021-09-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2013179922A1 (en) 2012-05-31 2013-12-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR102113160B1 (en) * 2012-06-15 2020-05-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
US9059219B2 (en) 2012-06-27 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US8865551B2 (en) * 2012-06-28 2014-10-21 International Business Machines Corporation Reducing the inversion oxide thickness of a high-k stack fabricated on high mobility semiconductor material
JP6134598B2 (en) 2012-08-02 2017-05-24 株式会社半導体エネルギー研究所 Semiconductor device
SG10201700805WA (en) 2012-08-03 2017-02-27 Semiconductor Energy Lab Co Ltd Oxide semiconductor stacked film and semiconductor device
US9929276B2 (en) 2012-08-10 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9245958B2 (en) 2012-08-10 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR101483026B1 (en) * 2012-08-31 2015-01-15 엘지디스플레이 주식회사 Substrate inculding oxide thin-film transistor and method for fabbicating the same, dirving circuit for liquid crystal display device using thereof
KR102102589B1 (en) 2012-10-17 2020-04-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Programmable logic device
KR102220279B1 (en) * 2012-10-19 2021-02-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for forming multilayer film including oxide semiconductor film and method for manufacturing semiconductor device
JP6300489B2 (en) 2012-10-24 2018-03-28 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
US9569992B2 (en) 2012-11-15 2017-02-14 Semiconductor Energy Laboratory Co., Ltd. Method for driving information processing device, program, and information processing device
TWI620323B (en) 2012-11-16 2018-04-01 半導體能源研究所股份有限公司 Semiconductor device
US9246011B2 (en) * 2012-11-30 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP2014135478A (en) 2012-12-03 2014-07-24 Semiconductor Energy Lab Co Ltd Semiconductor device and manufacturing method of the same
DE112013006219T5 (en) 2012-12-25 2015-09-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and its manufacturing method
KR102370239B1 (en) 2012-12-28 2022-03-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
JP6329762B2 (en) 2012-12-28 2018-05-23 株式会社半導体エネルギー研究所 Semiconductor device
US9231111B2 (en) 2013-02-13 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6141777B2 (en) * 2013-02-28 2017-06-07 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP6193786B2 (en) * 2013-03-14 2017-09-06 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method thereof
US10566455B2 (en) * 2013-03-28 2020-02-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR102196949B1 (en) * 2013-03-29 2020-12-30 엘지디스플레이 주식회사 Thin film transistor, method for manufacturing the same and display device comprising the same
US10304859B2 (en) * 2013-04-12 2019-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide film on an oxide semiconductor film
DE102014208859B4 (en) 2013-05-20 2021-03-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102376226B1 (en) * 2013-05-20 2022-03-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
TWI520348B (en) * 2013-06-24 2016-02-01 緯創資通股份有限公司 Thin film transistor structure, manufacturing method thereof, and thin film transistor light emitting element structure
US20150008428A1 (en) * 2013-07-08 2015-01-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
KR102225594B1 (en) * 2013-09-12 2021-03-09 삼성디스플레이 주식회사 Thin film transistor and manufacturing method thereof
TWI646690B (en) 2013-09-13 2019-01-01 半導體能源研究所股份有限公司 Semiconductor device and manufacturing method thereof
JP6386323B2 (en) * 2013-10-04 2018-09-05 株式会社半導体エネルギー研究所 Semiconductor device
KR102270823B1 (en) * 2013-10-22 2021-06-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method of the same
JP2015109424A (en) * 2013-10-22 2015-06-11 株式会社半導体エネルギー研究所 Semiconductor device, method for manufacturing semiconductor device and etchant used for semiconductor device
WO2015083034A1 (en) * 2013-12-02 2015-06-11 Semiconductor Energy Laboratory Co., Ltd. Display device
US9991392B2 (en) * 2013-12-03 2018-06-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US9349751B2 (en) 2013-12-12 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI642186B (en) * 2013-12-18 2018-11-21 日商半導體能源研究所股份有限公司 Semiconductor device
TWI721409B (en) 2013-12-19 2021-03-11 日商半導體能源研究所股份有限公司 Semiconductor device
JP6444714B2 (en) * 2013-12-20 2018-12-26 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
CN103730346B (en) 2013-12-24 2016-08-31 京东方科技集团股份有限公司 A kind of thin film transistor (TFT) and preparation method thereof, array base palte, display device
WO2015097596A1 (en) * 2013-12-26 2015-07-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20150187958A1 (en) * 2013-12-26 2015-07-02 Intermolecular Inc. IGZO Devices with Reduced Electrode Contact Resistivity and Methods for Forming the Same
JP2015188062A (en) 2014-02-07 2015-10-29 株式会社半導体エネルギー研究所 semiconductor device
CN111524967A (en) * 2014-02-21 2020-08-11 株式会社半导体能源研究所 Semiconductor film, transistor, semiconductor device, display device, and electronic apparatus
JP6537341B2 (en) 2014-05-07 2019-07-03 株式会社半導体エネルギー研究所 Semiconductor device
TWI663726B (en) 2014-05-30 2019-06-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, module, and electronic device
JP6446204B2 (en) * 2014-08-27 2018-12-26 株式会社ジャパンディスプレイ Display device
WO2016084688A1 (en) * 2014-11-28 2016-06-02 シャープ株式会社 Semiconductor device, and manufacturing method for same
CN105845545A (en) * 2015-01-14 2016-08-10 南京瀚宇彩欣科技有限责任公司 Semiconductor device and manufacturing method thereof
KR20160114511A (en) 2015-03-24 2016-10-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
US9842938B2 (en) * 2015-03-24 2017-12-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device including semiconductor device
US10096715B2 (en) 2015-03-26 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, and electronic device
US9806200B2 (en) 2015-03-27 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US20160308067A1 (en) * 2015-04-17 2016-10-20 Ishiang Shih Metal oxynitride transistor devices
CN104916703B (en) * 2015-05-07 2018-07-31 京东方科技集团股份有限公司 A kind of oxide thin film transistor, array substrate and display device
CN114695562A (en) 2015-05-22 2022-07-01 株式会社半导体能源研究所 Semiconductor device and display device including the same
TWI578546B (en) * 2015-05-28 2017-04-11 鴻海精密工業股份有限公司 Method of manufacturing thin film transistor
US10297694B2 (en) 2015-10-14 2019-05-21 Sharp Kabushiki Kaisha Semiconductor device and method for manufacturing same
US10714633B2 (en) 2015-12-15 2020-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
JP2017123427A (en) * 2016-01-08 2017-07-13 株式会社ジャパンディスプレイ Thin film transistor
WO2017153882A1 (en) 2016-03-11 2017-09-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and display device including the semiconductor device
CN115241045A (en) 2016-03-22 2022-10-25 株式会社半导体能源研究所 Semiconductor device and display device including the same
US10388738B2 (en) * 2016-04-01 2019-08-20 Semiconductor Energy Laboratory Co., Ltd. Composite oxide semiconductor and method for manufacturing the same
CN109075209B (en) 2016-05-20 2022-05-27 株式会社半导体能源研究所 Semiconductor device or display device including the same
US10043659B2 (en) 2016-05-20 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device or display device including the same
WO2017208119A1 (en) 2016-06-03 2017-12-07 Semiconductor Energy Laboratory Co., Ltd. Metal oxide and field-effect transistor
CN105895534B (en) * 2016-06-15 2018-10-19 武汉华星光电技术有限公司 The preparation method of thin film transistor (TFT)
KR102330605B1 (en) * 2016-06-22 2021-11-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2018002764A1 (en) * 2016-06-27 2018-01-04 株式会社半導体エネルギー研究所 Method for fabricating metal oxide using sputtering device
US20170373195A1 (en) * 2016-06-27 2017-12-28 Semiconductor Energy Laboratory Co., Ltd. Transistor and semiconductor device
US20170373194A1 (en) * 2016-06-27 2017-12-28 Semiconductor Energy Laboratory Co., Ltd. Transistor
TWI737665B (en) 2016-07-01 2021-09-01 日商半導體能源硏究所股份有限公司 Semiconductor device and method for manufacturing semiconductor device
TWI720097B (en) 2016-07-11 2021-03-01 日商半導體能源硏究所股份有限公司 Sputtering target and method for manufacturing the same
TWI771281B (en) * 2016-07-11 2022-07-21 日商半導體能源硏究所股份有限公司 Metal oxide and semiconductor device including the metal oxide
TWI737664B (en) 2016-07-11 2021-09-01 日商半導體能源硏究所股份有限公司 Metal oxide and semiconductor device
KR20180011713A (en) * 2016-07-25 2018-02-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
US10741696B2 (en) 2016-09-27 2020-08-11 Sharp Kabushiki Kaisha Semiconductor device and method for manufacturing same
US9806191B1 (en) * 2016-10-11 2017-10-31 United Microelectronics Corp. Vertical channel oxide semiconductor field effect transistor and method for fabricating the same
CN108122759B (en) * 2016-11-30 2021-01-26 京东方科技集团股份有限公司 Thin film transistor, manufacturing method thereof, array substrate and display device
JP7060367B2 (en) * 2017-02-21 2022-04-26 日本放送協会 Thin film device
US11545581B2 (en) * 2019-08-02 2023-01-03 South China University Of Technology Metal oxide (MO) semiconductor and thin-film transistor and application thereof
CN107146816B (en) * 2017-04-10 2020-05-15 华南理工大学 Oxide semiconductor film and thin film transistor prepared from same
TWI667796B (en) 2017-05-31 2019-08-01 南韓商Lg顯示器股份有限公司 Thin film transistor, gate driver including the same, and display device including the gate driver
KR102625630B1 (en) * 2017-06-05 2024-01-15 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor devices and methods of manufacturing semiconductor devices
CN109148592B (en) 2017-06-27 2022-03-11 乐金显示有限公司 Thin film transistor including oxide semiconductor layer, method of manufacturing the same, and display device including the same
KR102034767B1 (en) * 2017-11-07 2019-10-21 순천대학교 산학협력단 Method for manufacturing oxide thin film transistor and oxide thin film transistor
US11545580B2 (en) * 2017-11-15 2023-01-03 South China University Of Technology Metal oxide (MO semiconductor and thin-film transistor and application thereof
CN107978560B (en) * 2017-11-21 2019-12-03 深圳市华星光电半导体显示技术有限公司 Carry on the back channel etch type TFT substrate and preparation method thereof
CN109918973B (en) * 2017-12-13 2021-07-02 上海耕岩智能科技有限公司 Physiological characteristic detection and identification method and optical detection device
JP7228564B2 (en) 2018-03-12 2023-02-24 株式会社半導体エネルギー研究所 metal oxide
CN108878264B (en) * 2018-06-29 2020-12-25 云南大学 Preparation method of metal oxide laminated field effect material
WO2020150895A1 (en) * 2019-01-22 2020-07-30 深圳市柔宇科技有限公司 Array substrate and oled display device
WO2020177056A1 (en) * 2019-03-04 2020-09-10 京东方科技集团股份有限公司 Thin film transistor and manufacture method therefor
CN109785797B (en) * 2019-03-14 2020-11-17 电子科技大学 AMOLED pixel circuit
US20210280719A1 (en) * 2019-06-04 2021-09-09 Applied Materials, Inc. High mobility semiconductor channel based thin-film transistors and manufacturing methods
CN110458036B (en) * 2019-07-17 2022-04-05 武汉华星光电技术有限公司 Fingerprint identification module, preparation method thereof and related device
CN110718467B (en) * 2019-09-24 2021-12-03 Tcl华星光电技术有限公司 Manufacturing method of TFT array substrate
US20220416059A1 (en) * 2019-10-11 2022-12-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
WO2022080382A1 (en) 2020-10-15 2022-04-21 住友電工オプティフロンティア株式会社 Housing case for fusion splicer and fusion splicer set
TWI813217B (en) * 2021-12-09 2023-08-21 友達光電股份有限公司 Semiconductor device and manufacturing method thereof
CN115249617B (en) * 2022-09-22 2023-02-10 广州粤芯半导体技术有限公司 Semiconductor device and method for manufacturing the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243928A (en) 2007-03-26 2008-10-09 Idemitsu Kosan Co Ltd Amorphous oxide semiconductor thin-film, its forming method, manufacturing process of thin-film transistor, field effect transistor, light-emitting device, display and sputtering target
WO2009034953A1 (en) 2007-09-10 2009-03-19 Idemitsu Kosan Co., Ltd. Thin film transistor
WO2010023889A1 (en) 2008-08-27 2010-03-04 出光興産株式会社 Field-effect transistor, method for manufacturing same, and sputtering target
JP2010226101A (en) 2009-02-27 2010-10-07 Semiconductor Energy Lab Co Ltd Semiconductor device, and method of manufacturing the same
JP2011049539A (en) 2009-07-31 2011-03-10 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same
JP2011124360A (en) 2009-12-10 2011-06-23 Fujifilm Corp Thin-film transistor and method for manufacturing the same, and device including the same
JP2011135066A (en) 2009-11-28 2011-07-07 Semiconductor Energy Lab Co Ltd Stacked oxide material, semiconductor device, and method for manufacturing the semiconductor device

Family Cites Families (178)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60160173A (en) 1984-01-30 1985-08-21 Sharp Corp Thin film transistor
JPS60198861A (en) 1984-03-23 1985-10-08 Fujitsu Ltd Thin film transistor
JPH0244256B2 (en) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho INGAZN2O5DESHIMESARERUROTSUHOSHOKEINOSOJOKOZOOJUSURUKAGOBUTSUOYOBISONOSEIZOHO
JPH0244258B2 (en) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho INGAZN3O6DESHIMESARERUROTSUHOSHOKEINOSOJOKOZOOJUSURUKAGOBUTSUOYOBISONOSEIZOHO
JPH0244260B2 (en) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho INGAZN5O8DESHIMESARERUROTSUHOSHOKEINOSOJOKOZOOJUSURUKAGOBUTSUOYOBISONOSEIZOHO
JPS63210023A (en) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater Compound having laminar structure of hexagonal crystal system expressed by ingazn4o7 and its production
JPH0244262B2 (en) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho INGAZN6O9DESHIMESARERUROTSUHOSHOKEINOSOJOKOZOOJUSURUKAGOBUTSUOYOBISONOSEIZOHO
JPH0244263B2 (en) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho INGAZN7O10DESHIMESARERUROTSUHOSHOKEINOSOJOKOZOOJUSURUKAGOBUTSUOYOBISONOSEIZOHO
JPH05251705A (en) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd Thin-film transistor
JP3479375B2 (en) 1995-03-27 2003-12-15 科学技術振興事業団 Metal oxide semiconductor device in which a pn junction is formed with a thin film transistor made of a metal oxide semiconductor such as cuprous oxide, and methods for manufacturing the same
DE69635107D1 (en) 1995-08-03 2005-09-29 Koninkl Philips Electronics Nv SEMICONDUCTOR ARRANGEMENT WITH A TRANSPARENT CIRCUIT ELEMENT
JP3625598B2 (en) 1995-12-30 2005-03-02 三星電子株式会社 Manufacturing method of liquid crystal display device
JPH1012889A (en) 1996-06-18 1998-01-16 Semiconductor Energy Lab Co Ltd Semiconductor thin film and semiconductor device
JP4170454B2 (en) 1998-07-24 2008-10-22 Hoya株式会社 Article having transparent conductive oxide thin film and method for producing the same
JP2000150861A (en) 1998-11-16 2000-05-30 Tdk Corp Oxide thin film
JP3276930B2 (en) 1998-11-17 2002-04-22 科学技術振興事業団 Transistor and semiconductor device
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4089858B2 (en) 2000-09-01 2008-05-28 国立大学法人東北大学 Semiconductor device
KR20020038482A (en) 2000-11-15 2002-05-23 모리시타 요이찌 Thin film transistor array, method for producing the same, and display panel using the same
JP3997731B2 (en) 2001-03-19 2007-10-24 富士ゼロックス株式会社 Method for forming a crystalline semiconductor thin film on a substrate
JP2002289859A (en) 2001-03-23 2002-10-04 Minolta Co Ltd Thin-film transistor
JP4090716B2 (en) 2001-09-10 2008-05-28 雅司 川崎 Thin film transistor and matrix display device
JP3925839B2 (en) 2001-09-10 2007-06-06 シャープ株式会社 Semiconductor memory device and test method thereof
WO2003040441A1 (en) 2001-11-05 2003-05-15 Japan Science And Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (en) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 Transparent thin film field effect transistor using homologous thin film as active layer
JP4083486B2 (en) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 Method for producing LnCuO (S, Se, Te) single crystal thin film
CN1445821A (en) 2002-03-15 2003-10-01 三洋电机株式会社 Forming method of ZnO film and ZnO semiconductor layer, semiconductor element and manufacturing method thereof
JP3933591B2 (en) 2002-03-26 2007-06-20 淳二 城戸 Organic electroluminescent device
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (en) 2002-06-13 2004-01-22 Murata Mfg Co Ltd Manufacturing method of semiconductor device and its manufacturing method
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (en) 2003-03-06 2008-10-15 シャープ株式会社 Semiconductor device and manufacturing method thereof
JP2004273732A (en) 2003-03-07 2004-09-30 Sharp Corp Active matrix substrate and its producing process
JP4108633B2 (en) 2003-06-20 2008-06-25 シャープ株式会社 THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND ELECTRONIC DEVICE
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
KR101078509B1 (en) 2004-03-12 2011-10-31 도꾸리쯔교세이호징 가가꾸 기쥬쯔 신꼬 기꼬 Method of manufacturing thin film transistor
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (en) 2004-09-02 2006-04-13 Casio Comput Co Ltd Thin-film transistor and its manufacturing method
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
KR100953596B1 (en) 2004-11-10 2010-04-21 캐논 가부시끼가이샤 Light-emitting device
JP5138163B2 (en) 2004-11-10 2013-02-06 キヤノン株式会社 Field effect transistor
JP5126729B2 (en) 2004-11-10 2013-01-23 キヤノン株式会社 Image display device
EP1815530B1 (en) 2004-11-10 2021-02-17 Canon Kabushiki Kaisha Field effect transistor employing an amorphous oxide
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
WO2006051993A2 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Amorphous oxide and field effect transistor
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
US7608531B2 (en) 2005-01-28 2009-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device, and method of manufacturing semiconductor device
TWI412138B (en) 2005-01-28 2013-10-11 Semiconductor Energy Lab Semiconductor device, electronic device, and method of manufacturing semiconductor device
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
US7544967B2 (en) 2005-03-28 2009-06-09 Massachusetts Institute Of Technology Low voltage flexible organic/transparent transistor for selective gas sensing, photodetecting and CMOS device applications
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (en) 2005-06-10 2006-12-21 Casio Comput Co Ltd Thin film transistor
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (en) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 Organic Light Emitting Display and Fabrication Method for the same
JP2007059128A (en) 2005-08-23 2007-03-08 Canon Inc Organic electroluminescent display device and manufacturing method thereof
JP5116225B2 (en) 2005-09-06 2013-01-09 キヤノン株式会社 Manufacturing method of oxide semiconductor device
JP4280736B2 (en) 2005-09-06 2009-06-17 キヤノン株式会社 Semiconductor element
JP4981283B2 (en) 2005-09-06 2012-07-18 キヤノン株式会社 Thin film transistor using amorphous oxide layer
JP2007073705A (en) 2005-09-06 2007-03-22 Canon Inc Oxide-semiconductor channel film transistor and its method of manufacturing same
JP4850457B2 (en) 2005-09-06 2012-01-11 キヤノン株式会社 Thin film transistor and thin film diode
JP5078246B2 (en) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 Semiconductor device and manufacturing method of semiconductor device
EP1998374A3 (en) 2005-09-29 2012-01-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method thereof
JP5037808B2 (en) 2005-10-20 2012-10-03 キヤノン株式会社 Field effect transistor using amorphous oxide, and display device using the transistor
KR101397571B1 (en) 2005-11-15 2014-05-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
JP5250929B2 (en) 2005-11-30 2013-07-31 凸版印刷株式会社 Transistor and manufacturing method thereof
CN101336485B (en) * 2005-12-02 2012-09-26 出光兴产株式会社 TFT substrate and method for manufacturing TFT substrate
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (en) 2006-01-21 2012-07-18 三星電子株式会社 ZnO film and method of manufacturing TFT using the same
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
JP5015470B2 (en) 2006-02-15 2012-08-29 財団法人高知県産業振興センター Thin film transistor and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (en) 2006-04-11 2007-10-17 삼성전자주식회사 Zno thin film transistor
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
WO2007142167A1 (en) 2006-06-02 2007-12-13 Kochi Industrial Promotion Center Semiconductor device including an oxide semiconductor thin film layer of zinc oxide and manufacturing method thereof
JP5028033B2 (en) 2006-06-13 2012-09-19 キヤノン株式会社 Oxide semiconductor film dry etching method
JP4609797B2 (en) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 Thin film device and manufacturing method thereof
KR100787455B1 (en) 2006-08-09 2007-12-26 삼성에스디아이 주식회사 Method of manufacturing transparent thin film transistor
JP4999400B2 (en) 2006-08-09 2012-08-15 キヤノン株式会社 Oxide semiconductor film dry etching method
JP4332545B2 (en) 2006-09-15 2009-09-16 キヤノン株式会社 Field effect transistor and manufacturing method thereof
JP5164357B2 (en) 2006-09-27 2013-03-21 キヤノン株式会社 Semiconductor device and manufacturing method of semiconductor device
JP4274219B2 (en) 2006-09-27 2009-06-03 セイコーエプソン株式会社 Electronic devices, organic electroluminescence devices, organic thin film semiconductor devices
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140984A (en) * 2006-12-01 2008-06-19 Sharp Corp Semiconductor device, method of manufacturing the same, and display device
JP2008140684A (en) 2006-12-04 2008-06-19 Toppan Printing Co Ltd Color el display, and its manufacturing method
KR101303578B1 (en) 2007-01-05 2013-09-09 삼성전자주식회사 Etching method of thin film
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR100858088B1 (en) 2007-02-28 2008-09-10 삼성전자주식회사 Thin Film Transistor and method of manufacturing the same
KR100851215B1 (en) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 Thin film transistor and organic light-emitting dislplay device having the thin film transistor
JP4727684B2 (en) 2007-03-27 2011-07-20 富士フイルム株式会社 Thin film field effect transistor and display device using the same
JP2008276212A (en) 2007-04-05 2008-11-13 Fujifilm Corp Organic electroluminescent display device
JP5197058B2 (en) 2007-04-09 2013-05-15 キヤノン株式会社 Light emitting device and manufacturing method thereof
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (en) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 Thin film transistor substrate and manufacturing method thereof
KR20080094300A (en) 2007-04-19 2008-10-23 삼성전자주식회사 Thin film transistor and method of manufacturing the same and flat panel display comprising the same
KR101334181B1 (en) 2007-04-20 2013-11-28 삼성전자주식회사 Thin Film Transistor having selectively crystallized channel layer and method of manufacturing the same
US8274078B2 (en) 2007-04-25 2012-09-25 Canon Kabushiki Kaisha Metal oxynitride semiconductor containing zinc
KR101345376B1 (en) 2007-05-29 2013-12-24 삼성전자주식회사 Fabrication method of ZnO family Thin film transistor
JPWO2009028453A1 (en) * 2007-08-31 2010-12-02 コニカミノルタホールディングス株式会社 Thin film transistor
JP5489446B2 (en) * 2007-11-15 2014-05-14 富士フイルム株式会社 Thin film field effect transistor and display device using the same
JP5213422B2 (en) 2007-12-04 2013-06-19 キヤノン株式会社 Oxide semiconductor element having insulating layer and display device using the same
JP5215158B2 (en) 2007-12-17 2013-06-19 富士フイルム株式会社 Inorganic crystalline alignment film, method for manufacturing the same, and semiconductor device
US7812348B2 (en) * 2008-02-29 2010-10-12 Semiconductor Energy Laboratory Co., Ltd. Thin-film transistor and display device
JP4555358B2 (en) 2008-03-24 2010-09-29 富士フイルム株式会社 Thin film field effect transistor and display device
KR100941850B1 (en) 2008-04-03 2010-02-11 삼성모바일디스플레이주식회사 Thin film transistor, method of manufacturing the thin film transistor and flat panel display device having the thin film transistor
JP5325446B2 (en) 2008-04-16 2013-10-23 株式会社日立製作所 Semiconductor device and manufacturing method thereof
JP5430248B2 (en) * 2008-06-24 2014-02-26 富士フイルム株式会社 Thin film field effect transistor and display device
KR100963026B1 (en) 2008-06-30 2010-06-10 삼성모바일디스플레이주식회사 Thin film transistor, method of manufacturing the thin film transistor and flat panel display device having the thin film transistor
KR100963027B1 (en) 2008-06-30 2010-06-10 삼성모바일디스플레이주식회사 Thin film transistor, method of manufacturing the thin film transistor and flat panel display device having the thin film transistor
KR100963104B1 (en) 2008-07-08 2010-06-14 삼성모바일디스플레이주식회사 Thin film transistor, method of manufacturing the thin film transistor and flat panel display device having the thin film transistor
JP5250322B2 (en) 2008-07-10 2013-07-31 富士フイルム株式会社 Metal oxide film, method for manufacturing the same, and semiconductor device
KR101603775B1 (en) * 2008-07-14 2016-03-18 삼성전자주식회사 Channel layer and transistor comprising the same
EP2146379B1 (en) * 2008-07-14 2015-01-28 Samsung Electronics Co., Ltd. Transistor comprising ZnO based channel layer
TWI622175B (en) 2008-07-31 2018-04-21 半導體能源研究所股份有限公司 Semiconductor device
JP2010040552A (en) * 2008-07-31 2010-02-18 Idemitsu Kosan Co Ltd Thin film transistor and manufacturing method thereof
JP5345456B2 (en) 2008-08-14 2013-11-20 富士フイルム株式会社 Thin film field effect transistor
JP5345359B2 (en) 2008-09-18 2013-11-20 富士フイルム株式会社 Thin film field effect transistor and display device using the same
JP4623179B2 (en) 2008-09-18 2011-02-02 ソニー株式会社 Thin film transistor and manufacturing method thereof
JP5451280B2 (en) 2008-10-09 2014-03-26 キヤノン株式会社 Wurtzite crystal growth substrate, manufacturing method thereof, and semiconductor device
JP5538797B2 (en) 2008-12-12 2014-07-02 キヤノン株式会社 Field effect transistor and display device
TWI476915B (en) 2008-12-25 2015-03-11 Semiconductor Energy Lab Semiconductor device and manufacturing method thereof
TWI474408B (en) 2008-12-26 2015-02-21 Semiconductor Energy Lab Semiconductor device and manufacturing method thereof
KR101034686B1 (en) 2009-01-12 2011-05-16 삼성모바일디스플레이주식회사 Organic light emitting display device and method of manufacturing the same
KR101648927B1 (en) 2009-01-16 2016-08-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
JP5371467B2 (en) * 2009-02-12 2013-12-18 富士フイルム株式会社 FIELD EFFECT TRANSISTOR AND METHOD FOR MANUFACTURING FIELD EFFECT TRANSISTOR
JP5328414B2 (en) * 2009-02-25 2013-10-30 富士フイルム株式会社 Top gate type field effect transistor, method of manufacturing the same, and display device including the same
JP5504008B2 (en) * 2009-03-06 2014-05-28 株式会社半導体エネルギー研究所 Semiconductor device
TWI476917B (en) * 2009-04-16 2015-03-11 Semiconductor Energy Lab Semiconductor device and manufacturing method thereof
JP5322787B2 (en) 2009-06-11 2013-10-23 富士フイルム株式会社 THIN FILM TRANSISTOR AND MANUFACTURING METHOD THEREOF, ELECTRO-OPTICAL DEVICE, AND SENSOR
WO2011034012A1 (en) 2009-09-16 2011-03-24 Semiconductor Energy Laboratory Co., Ltd. Logic circuit, light emitting device, semiconductor device, and electronic device
EP3540772A1 (en) 2009-09-16 2019-09-18 Semiconductor Energy Laboratory Co., Ltd. Transistor and display device
KR101810383B1 (en) * 2009-09-24 2017-12-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Oxide semiconductor film and semiconductor device
JP2011077450A (en) * 2009-10-01 2011-04-14 Fujifilm Corp Thin film transistor and method of manufacturing thin film transistor
CN105185837B (en) 2009-10-08 2018-08-03 株式会社半导体能源研究所 Semiconductor devices, display device and electronic apparatus
WO2011043176A1 (en) * 2009-10-08 2011-04-14 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor layer and semiconductor device
KR101832698B1 (en) 2009-10-14 2018-02-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
KR101829074B1 (en) 2009-10-29 2018-02-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011055620A1 (en) 2009-11-06 2011-05-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN105206676B (en) 2009-11-06 2019-12-10 株式会社半导体能源研究所 Semiconductor device and method for manufacturing the same
KR102138547B1 (en) * 2009-11-13 2020-07-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
US20120280227A1 (en) 2009-11-27 2012-11-08 Hironori Wakana Oxide semiconductor device and method of manufacturing the same
WO2011065210A1 (en) 2009-11-28 2011-06-03 Semiconductor Energy Laboratory Co., Ltd. Stacked oxide material, semiconductor device, and method for manufacturing the semiconductor device
KR102089200B1 (en) 2009-11-28 2020-03-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
KR101520024B1 (en) 2009-11-28 2015-05-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and method for manufacturing the same
KR102462239B1 (en) * 2009-12-04 2022-11-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device
WO2011068066A1 (en) 2009-12-04 2011-06-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
WO2011070900A1 (en) * 2009-12-08 2011-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
CN102903758B (en) * 2009-12-28 2015-06-03 株式会社半导体能源研究所 Semiconductor device
JP2011138934A (en) 2009-12-28 2011-07-14 Sony Corp Thin film transistor, display device, and electronic equipment
KR101603246B1 (en) 2009-12-31 2016-03-15 엘지디스플레이 주식회사 Thin film transistor
KR101701208B1 (en) * 2010-01-15 2017-02-02 삼성디스플레이 주식회사 Display substrate
KR20130009978A (en) * 2010-02-26 2013-01-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor element and deposition apparatus
WO2011122364A1 (en) * 2010-04-02 2011-10-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5606787B2 (en) 2010-05-18 2014-10-15 富士フイルム株式会社 Thin film transistor manufacturing method, thin film transistor, image sensor, X-ray sensor, and X-ray digital imaging apparatus
JP5626978B2 (en) 2010-09-08 2014-11-19 富士フイルム株式会社 THIN FILM TRANSISTOR, MANUFACTURING METHOD THEREOF, AND APPARATUS HAVING THE THIN FILM TRANSISTOR
US8912536B2 (en) * 2010-11-19 2014-12-16 Samsung Electronics Co., Ltd. Transistors, methods of manufacturing the same and electronic devices including transistors
JP2012160679A (en) 2011-02-03 2012-08-23 Sony Corp Thin-film transistor, display device, and electronic apparatus
JP5615744B2 (en) * 2011-03-14 2014-10-29 富士フイルム株式会社 FIELD EFFECT TRANSISTOR, DISPLAY DEVICE, SENSOR, AND METHOD FOR MANUFACTURING FIELD EFFECT TRANSISTOR
US9166055B2 (en) 2011-06-17 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR20130007426A (en) 2011-06-17 2013-01-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device and manufacturing method thereof
KR102546888B1 (en) 2011-06-17 2023-06-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Liquid crystal display device
US9214474B2 (en) 2011-07-08 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US8748886B2 (en) 2011-07-08 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008243928A (en) 2007-03-26 2008-10-09 Idemitsu Kosan Co Ltd Amorphous oxide semiconductor thin-film, its forming method, manufacturing process of thin-film transistor, field effect transistor, light-emitting device, display and sputtering target
WO2009034953A1 (en) 2007-09-10 2009-03-19 Idemitsu Kosan Co., Ltd. Thin film transistor
WO2010023889A1 (en) 2008-08-27 2010-03-04 出光興産株式会社 Field-effect transistor, method for manufacturing same, and sputtering target
JP2010226101A (en) 2009-02-27 2010-10-07 Semiconductor Energy Lab Co Ltd Semiconductor device, and method of manufacturing the same
JP2011049539A (en) 2009-07-31 2011-03-10 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing the same
JP2011135066A (en) 2009-11-28 2011-07-07 Semiconductor Energy Lab Co Ltd Stacked oxide material, semiconductor device, and method for manufacturing the semiconductor device
JP2011124360A (en) 2009-12-10 2011-06-23 Fujifilm Corp Thin-film transistor and method for manufacturing the same, and device including the same

Also Published As

Publication number Publication date
US20180366588A1 (en) 2018-12-20
JP2017157856A (en) 2017-09-07
KR20190054040A (en) 2019-05-21
US20160071983A1 (en) 2016-03-10
JP2015195384A (en) 2015-11-05
JP6420285B2 (en) 2018-11-07
JP6995936B2 (en) 2022-01-17
US11011652B2 (en) 2021-05-18
US20130009219A1 (en) 2013-01-10
US20230275159A1 (en) 2023-08-31
JP7258996B2 (en) 2023-04-17
US20200243689A1 (en) 2020-07-30
US10043918B2 (en) 2018-08-07
US20170069765A1 (en) 2017-03-09
US11588058B2 (en) 2023-02-21
JP2017034266A (en) 2017-02-09
KR20210061988A (en) 2021-05-28
CN106960880A (en) 2017-07-18
JP2023093542A (en) 2023-07-04
KR20220121762A (en) 2022-09-01
KR20130006344A (en) 2013-01-16
KR102437211B1 (en) 2022-08-29
JP2022050414A (en) 2022-03-30
JP2013038399A (en) 2013-02-21
CN102867854A (en) 2013-01-09
US20170309753A1 (en) 2017-10-26
CN102867854B (en) 2017-03-01
KR102256797B1 (en) 2021-05-27
JP2019036744A (en) 2019-03-07
US20150115263A1 (en) 2015-04-30
JP2020174183A (en) 2020-10-22
JP2019087759A (en) 2019-06-06
US8952377B2 (en) 2015-02-10
JP6148829B2 (en) 2017-06-14
JP6457016B2 (en) 2019-01-23
JP6010660B2 (en) 2016-10-19
JP6646123B2 (en) 2020-02-14
JP2017085168A (en) 2017-05-18
US9196745B2 (en) 2015-11-24
US20210313473A1 (en) 2021-10-07
US10658522B2 (en) 2020-05-19
KR20200101892A (en) 2020-08-28
US9530897B2 (en) 2016-12-27

Similar Documents

Publication Publication Date Title
JP7456042B2 (en) semiconductor equipment
JP6457573B2 (en) Semiconductor device
JP2023026459A (en) Semiconductor device
JP6049966B2 (en) Method for manufacturing semiconductor device
JP6154596B2 (en) Method for manufacturing semiconductor device
JP5839592B2 (en) Method for manufacturing semiconductor device
JP6141002B2 (en) Method for manufacturing semiconductor device
JP6226518B2 (en) Semiconductor device
JP6045285B2 (en) Method for manufacturing semiconductor device
JP2019186581A (en) Semiconductor device manufacturing method
JP7467576B2 (en) Light-emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240313

R150 Certificate of patent or registration of utility model

Ref document number: 7456042

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150