JP6370535B2 - 高電圧での性能を改良した固体電解コンデンサ - Google Patents

高電圧での性能を改良した固体電解コンデンサ Download PDF

Info

Publication number
JP6370535B2
JP6370535B2 JP2013149331A JP2013149331A JP6370535B2 JP 6370535 B2 JP6370535 B2 JP 6370535B2 JP 2013149331 A JP2013149331 A JP 2013149331A JP 2013149331 A JP2013149331 A JP 2013149331A JP 6370535 B2 JP6370535 B2 JP 6370535B2
Authority
JP
Japan
Prior art keywords
particles
electrolytic capacitor
solid electrolytic
anode
prepolymerized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013149331A
Other languages
English (en)
Other versions
JP2014022749A5 (ja
JP2014022749A (ja
Inventor
ペトルジレック ヤン
ペトルジレック ヤン
ビラー マーティン
ビラー マーティン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Avx Components Corp
Original Assignee
AVX Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AVX Corp filed Critical AVX Corp
Publication of JP2014022749A publication Critical patent/JP2014022749A/ja
Publication of JP2014022749A5 publication Critical patent/JP2014022749A5/ja
Application granted granted Critical
Publication of JP6370535B2 publication Critical patent/JP6370535B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/15Solid electrolytic capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0036Formation of the solid electrolyte layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/0029Processes of manufacture
    • H01G9/0032Processes of manufacture formation of the dielectric layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/025Solid electrolytes
    • H01G9/028Organic semiconducting electrolytes, e.g. TCNQ
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/048Electrodes or formation of dielectric layers thereon characterised by their structure
    • H01G9/052Sintered electrodes
    • H01G9/0525Powder therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/07Dielectric layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Conductive Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

固体電解コンデンサ(例えば、タンタルコンデンサ)は、典型的には、金属リードワイヤの周囲に金属粉末(例えば、タンタル)をプレスし、プレス部を焼結し、焼結アノードを陽極酸化し、その後に固体電解質を付加することによって作られる。高速切り換え又は作動電流スパイク中に起こるような高電圧に遭遇することが予想される時に、コンデンサ設計においてある一定のタイプの材料のみを使用することが一般的に必要であった。例えば、従来の高電圧コンデンサのアノードは、典型的に、約10,000から約15,000μF*V/gの範囲の比電荷を有する薄片状粉から形成される。残念ながら、このような材料は、比較的低い表面積も有し、これは、達成することができるキャパシタンスを有意に制限する。
米国特許第6,322,912号明細書 米国特許第6,391,275号明細書 米国特許第6,416,730号明細書 米国特許第6,527,937号明細書 米国特許第6,576,099号明細書 米国特許第6,592,740号明細書 米国特許第6,639,787号明細書 米国特許第7,220,397号明細書 米国特許出願公開第2005/0019581号明細書 米国特許出願公開第2005/0103638号明細書 米国特許出願公開第2005/0013765号明細書 米国特許第4,960,471号明細書 米国特許第6,197,252号明細書 米国特許第6,987,663号明細書 米国特許第5,111,327号明細書 米国特許第6,635,729号明細書 米国特許公開第2007/0064376号明細書 米国特許第6,674,635号明細書 米国特許出願公開第2006/0038304号明細書
Bruanauer、Emmet、及びTeller、米国化学学会誌、Vol.60,1938,p.309 Pozdeev−Freeman他著「固体タンタルコンデンサの多孔質アノードの臨界酸素含有量」、材料科学学会誌:電気工学における材料9,(1998)309−311
従って、高電圧環境において改良された性能を有する固体電解コンデンサの必要性が現在存在する。
本発明の一実施形態により、焼結多孔質アノードと、アノード本体の上に重なる誘電体層と、誘電体層の上に重なる固体電解質とを含む固体電解コンデンサを開示する。アノードは、約30,000μF*V/gよりも大きい比電荷を有する微粉化粉末から形成され、粉末は、3次元形状を有する粒子を含有する。固体電解質は、複数の予備重合導電性ポリマー粒子を含む。コンデンサは、約60V又はそれよりも大きい絶縁破壊電圧を示す。
本発明の別の実施形態により、固体電解コンデンサを形成する方法を開示する。本方法は、約30,000μF*V/gよりも大きい比電荷を有し、かつ3次元形状を有する粒子を含有する微粉化粉末をペレットの形態にプレスする段階と、ペレットを焼結する段階と、焼結ペレットを陽極酸化してアノードの上に重なる誘電体層を形成する段階と、予備重合導電性ポリマー粒子の分散剤を誘電体層に付加する段階とを含む。
本発明の他の特徴及び態様を以下により詳細に示す。
当業者に向けられてその最良のモードを含む本発明の完全かつ実施可能な開示は、添付の図を参照する本明細書の残りの部分により詳細に示されている。
本明細書及び図面における参照文字の反復使用は、本発明の同じか又は類似の特徴又は要素を表すことを意図している。
本発明によって形成することができるコンデンサの一実施形態の概略図である。
本説明は、例示的な実施形態のみの説明であり、例示的な構成に具現化される本発明のより広い態様を限定するように考えられていないことは当業者によって理解されるものとする。
一般的に、本発明は、焼結多孔質アノードと、アノードの上に重なる誘電体層と、誘電体層の上に重なる固体電解質とを含有する固体電解コンデンサに関する。アノードは、グラム当たり約30,000マイクロファラッド*ボルト(「μF*V/g」)よりも大きい、一部の実施形態では約32,000から約80,000μF*V/g、一部の実施形態では約33,000から約60,000μF*V/g、及び一部の実施形態では約35,000から約45,000μF*V/gのような比較的高い比電荷を有する微粉化粉末(例えば、結節状又は角状)から形成される。当業技術で公知のように、比電荷は、使用する陽極酸化電圧をキャパシタンスに乗算し、次に、この積を陽極酸化電極本体の重量で割ることによって判断することができる。微粉化粉末はまた、結節状又は角状の形状のような3次元形状を有する1次粒子を含有する。このような粒子は、一般的に平坦ではなく、従って、比較的低い「アスペクト比」を有し、アスペクト比は、平均厚みで割った粒子の平均直径又は幅(「D/T」)である。例えば、粒子のアスペクト比は、約4又はそれ未満、一部の実施形態では約3又はそれ未満、及び一部の実施形態では約1から約2とすることができる。
3次元粒子を有するこのような高比電荷粉末の使用にも関わらず、本発明者は、それでも尚、アノード及び固体電解質の形成に関連する特徴の独特かつ制御された組合せを通じて高電圧を達成する機能を達成することができることを見出した。より具体的には、比較的高いプレス密度及び焼結温度を使用して、比較的サイズが大きい隣接する凝集粒子の間に「焼結ネック」を達成することができる。焼結ネックは、金属構造内の電気路の小さな断面区域である。典型的には、焼結ネックは、約200ナノメートル又はそれよりも大きく、一部の実施形態では約250ナノメートル又はそれよりも大きく、及び一部の実施形態では約300から約800ナノメートルのサイズを有する。ネックは、比較的大きいサイズであるので、ネックの近くの誘電体層は、高形成電圧で故障する可能性はあまり高くない。アノードに加えて、固体電解質を形成する方式も、得られるコンデンサが高電圧で作動するのを補助する。すなわち、固体電解質は、複数の予備重合導電性ポリマー粒子から形成される。このような粒子は、そうでなければ特に上述の高電圧で絶縁劣化をもたらす可能性がある高エネルギラジカル(例えば、Fe2+又はFe3+イオン)の使用を最小にすることができる。
従って、本発明の結果、得られるコンデンサは、約35ボルト又はそれよりも高く、一部の実施形態では約50ボルト又はそれよりも高く、及び一部の実施形態では約60ボルトから約200ボルトの定格電圧のような高電圧用途に使用することができる。このコンデンサは、例えば、約60ボルト又はそれよりも高く、一部の実施形態では約70ボルト又はそれよりも高く、一部の実施形態では約80ボルト又はそれよりも高く、及び一部の実施形態では約100ボルトから約300ボルトのような比較的高い「絶縁破壊電圧」(コンデンサが故障する電圧)を示す場合がある。同様に、このコンデンサはまた、高電圧用途において同じく一般的である比較的高いサージ電流に耐えることができる。ピークサージ電流は、例えば、約100アンペア又はそれよりも高く、一部の実施形態では約200アンペア又はそれよりも高く、及び一部の実施形態では約300アンペアから約800アンペアとすることができる。
本発明の様々な実施形態をここでより詳細に以下に説明する。
I.アノード
アノードを形成するために、バルブ金属組成物の微粉化粉末を使用する。バルブ金属組成物は、一般的に、タンタル、ニオビウム、アルミニウム、ハフニウム、チタン、これらの合金、これらの酸化物、及びこれらの窒化物などのようなバルブ金属(すなわち、酸化が可能な金属)又はバルブ金属ベース化合物を含有する。例えば、バルブ金属組成物は、1:1.0±1.0、一部の実施形態では1:1.0±0.3、一部の実施形態では1:1.0±0.1、及び一部の実施形態では1:1.0±0.05のニオビウム対酸素の原子比率を有するニオビウム酸化物のようなニオビウムの導電性酸化物を含有することができる。ニオビウム酸化物は、NbO0.7、NbO1.0、NbO1.1、及びNbO2とすることができる。このようなバルブ金属酸化物の例は、Fifeに付与された米国特許第6,322,912号明細書、Fife他に付与された米国特許第6,391,275号明細書、Fife他に付与された米国特許第6,416,730号明細書、Fifeに付与された米国特許第6,527,937号明細書、Kimmel他に付与された米国特許第6,576,099号明細書、Fife他に付与された米国特許第6,592,740号明細書、Kimmel他に付与された米国特許第6,639,787号明細書、及びKimmel他に付与された米国特許第7,220,397号明細書、並びにSchnitterに付与された米国特許出願公開第2005/0019581号明細書、Schnitter他に付与された米国特許出願公開第2005/0103638号明細書、及びThomas他に付与された米国特許出願公開第2005/0013765号明細書に説明されている。
粒子はまた、約0.5から約10.0m2/g、一部の実施形態では約0.7から約5.0m2/g、及び一部の実施形態では約1.0から約4.0m2/gの比表面積を有することができる。用語「比表面積」は、一般的に、吸着ガスとして窒素を使用したBruanauer、Emmet、及びTeller、米国化学学会誌、Vol.60,1938,p.309の物理ガス吸着(B.E.T.)法によって判断された表面積を意味する。試験は、米国ニューヨーク州ショセット所在のQUANTACHROME・コーポレーションから入手可能なMONOSORB(登録商標)比表面積アナライザで行うことができ、これは、吸着質で不活性な搬送ガス(例えば、ヘリウム)の流動混合物の熱伝導性の変化を感知することによって固体表面上に吸着された吸着質窒素ガスの量を測定するものである。バルク密度(スコット密度としても公知)はまた、典型的に、立方センチメートル当たり約0.1から約2グラム(g/cm3)、一部の実施形態では約0.2g/cm3から約1.5g/cm3、及び一部の実施形態では約0.4g/cm3から約1g/cm3である。「バルク密度」は、流量計漏斗及び密度カップを使用して判断することができる。より具体的には、サンプルは、サンプルが完全にカップの周囲を満たして溢れるまで漏斗を通してカップの中に注ぐことができ、その後にサンプルは、サンプルがカップの上部と同一平面にあるように、揺らさずにへらで平らにすることができる。平らにしたサンプルは、秤に移送し、0.1グラムまでの精度で計量して密度値を判断する。このような装置は、米国ニュージャージー州エリザベス所在のAlcan・アルミニウム・コーポレーションから市販されている。ある一定の実施形態において、粒子はまた、約20から約250マイクロメートル、一部の実施形態では約30から約150マイクロメートル、及び一部の実施形態では約40から約100マイクロメートルの平均サイズを有することができる。
様々な他の従来の処理も本発明に使用して粉末の特性を改良することができる。例えば、ある一定の実施形態において、粉末は、水性酸(例えば、リン酸)のようなドーパントの存在下で焼結遅延剤によってドープすることができる。加えるドーパントの量は、部分的に、粉末の表面積に依存するが、典型的には、約200百万分率(「ppm」)よりも多くない量で存在する。ドーパントは、あらゆる熱処理段階の前、段階中、及び/又はその後に加えることができる。粉末はまた、1つ又はそれよりも多くの脱酸素処理を受けて、延性を改良し、アノードの漏れ電流を低減することができる。例えば、粉末は、米国特許第4,960,471号明細書で上述したようにゲッタ材料(例えば、マグネシウム)に露出することができる。ゲッタ材料は、重量で約2%から約6%の量で存在することができる。脱酸素が起こる温度は、異なる場合があるが、典型的には、約700℃から約1600℃、一部の実施形態では約750℃から約1200℃、及び一部の実施形態では800℃から約1000℃に及んでいる。脱酸素処理の全時間は、約20分から約3時間に及ぶ場合がある。脱酸素はまた、好ましくは、不活性雰囲気(例えば、アルゴン)において起こる。脱酸素処理が終了すると、マグネシウム又は他のゲッタ材料は、典型的には蒸発し、炉の冷たい壁上に沈殿物を形成する。しかし、ゲッタ材料の除去を確実にするために、細かい凝集体及び/又は粗い凝集体は、硝酸、フッ化水素酸などのような1つ又はそれよりも多くの酸浸出段階を受ける場合がある。
アノードの構成を容易にするために、ある一定の付加的な成分を粉末に含めることができる。例えば、粉末は、任意的に結合剤及び/又は潤滑剤と混合し、粒子がプレスされてアノード本体を形成する時に十分に互いに接着することを保証することができる。好ましい結合剤は、例えば、ポリ(ビニルブチラール)、ポリ(酢酸ビニル)、ポリ(ビニルアルコール)、ポリ(ビニルピロリドン)、カルボキシメチルセルロース、メチルセルロース、エチルセルロース、ヒドロキシエチルセルロース、及びメチルヒドロキシエチルセルロースのようなセルロースポリマー、アタクチックポリプロピレン、ポリエチレン、ポリエチレングリコール(例えば、ダウ・ケミカル・コーポレーションからのCarbowax)、ポリスチレン、ポリ(ブタジエン/スチレン)、ポリアミド、ポリイミド、及びポリアクリルアミド、高分子量ポリエーテル、エチレンオキシド及びプロピレンオキシドのコポリマー、ポリテトラフルオロエチレン、ポリビニリデンフルオライド、及びフルオロオレフィンコポリマーのようなフルオロポリマー、ポリアクリル酸ナトリウム、ポリ(低級アルキルアクリレート)、ポリ(低級アルキルメタクリレート)及び低級アルキルアクリレート及びメタクリレートのコポリマーのようなアクリルポリマー、並びにステアリン及び他のせっけん脂肪酸、植物ろう、マイクロワックス(純粋パラフィン)などのような脂肪酸及びワックスを含むことができる。結合剤は、溶媒中に溶解し、分散させることができる。例示的な溶媒は、水、アルコールなどを含むことができる。利用する時に、結合剤及び/又は潤滑剤のパーセントは、全質量の重量で約0.1%から約8%まで変化させることができる。しかし、結合剤及び/又は潤滑剤は、必ずしも本発明において必要ではないことを理解すべきである。
得られる粉末は、次に、圧縮され、あらゆる従来の粉末プレスデバイスを使用してペレットを形成することができる。例えば、プレスモールドを使用することができ、これは、ダイ及び1つ又はそれよりも多くの複数のパンチを収容する単一ステーション圧縮プレスである。代替的に、アンビル型圧縮プレスモールドを使用することができ、これらは、ダイ及び単一下側パンチのみを使用する。単一ステーション圧縮プレスモールドは、単動式、複動式、浮ダイ、可動プラテン、対向ラム、ネジ、衝撃、ホットプレス、コイニング、又はサイジングのような様々な機能を有するカム、トグル/ナックル、及び偏心/クランクプレスのようないくつかの基本タイプで利用可能である。粉末は、アノードリードワイヤの周囲で圧縮することができる。ワイヤは、タンタル、ニオビウム、アルミニウム、ハフニウム、チタンなど、並びにこれらの導電性酸化物及び/又は窒化物のようなあらゆる導電材料から形成することができる。圧縮後、得られるアノード本体は、次に、正方形、矩形、円形、長円形、三角形、六角形、八角形、七角形、五角形などのようなあらゆる望ましい形状にダイスカットすることができる。アノード本体はまた、それが、1つ又はそれよりも多くの皺、溝、凹部、又は窪みを含み、表面対体積率を増加させて、ESRを最小にし、キャパシタンスの周波数応答を拡張するという点で「溝付き」形を有することができる。アノード本体は、次に、あらゆる結合剤/潤滑剤の全部ではないとしても殆どが除去される加熱段階を受ける場合がある。例えば、アノード本体は、典型的には、約150℃から約500℃の温度で作動するオーブンによって加熱される。代替的に、結合剤/潤滑剤はまた、Bishop他に付与された米国特許第6,197,252号明細書に説明するようにペレットを水溶液と接触させることによって除去することができる。
その後、ペレットを焼結し、多孔質の一体化した塊を形成する。上述したように、比較的高い焼結温度及びプレス密度の使用は、粒子と粒子の間に比較的大きな焼結「ネック」を達成するのを補助すると考えられ、粒子は、得られる誘電体の機能が改良されて高電圧に耐えることができる。この点に関して、焼結温度は、典型的には、約1300℃から約1800℃、一部の実施形態では約1350℃から約1600℃、及び一部の実施形態では約1400℃から1500℃に及んでいる。プレス密度は、同様に立方センチメートル当たり約4.5から約7.0グラム、一部の実施形態では約5.0から約6.5、及び一部の実施形態では立方センチメートル当たり約5.0から約6.0グラムに及ぶ場合がある。プレス密度は、粉末の量(焼結前)をプレスペレットの体積(焼結前)で割ることによって判断される。
得られる焼結アノードはまた、比較的低い炭素及び酸素含有量を有することができる。例えば、アノードは、約50ppmよりも多くない炭素、一部の実施形態では約10ppmよりも多くない炭素を有することができる。同様にアノードは、約2000から約10,000ppmの酸素、一部の実施形態では約2500から約6000ppmの酸素、及び一部の実施形態では約3000から約5000ppmの酸素を有することができる。酸素含有量は、「LECO酸素アナライザ」によって測定することができ、かつタンタル表面上に自然酸化物中の酸素及びタンタル粒子にバルク酸素を含む。バルク酸素含有量は、タンタルの結晶格子の周期によって制御され、それは、溶解限度が得られるまでタンタルの酸素含有量を増加させることによって直線的に増加する。この方法は、Pozdeev−Freeman他著「固体タンタルコンデンサの多孔質アノードの臨界酸素含有量」、材料科学学会誌:電気工学における材料9,(1998)309−311に説明されており、X線回折解析(XRDA)を使用してタンタルの結晶格子の周期を測定したものである。焼結タンタルアノードの酸素は、薄い自然表面酸化物に限定することができるが、タンタルの大部分は、実際には酸素がない。
上述したように、アノードリードも、それから縦方向に延びるアノード本体に接続することができる。アノードリードは、ワイヤ、シートなどの形態にすることができ、タンタル、ニオビウム、ニオビウム酸化物などのようなバルブ金属化合物から形成することができる。リードの接続は、リードを本体に溶接するか又はそれを形成中に(例えば、圧縮及び/又は焼結前に)アノード本体内に組み込むことなどによる公知の技術を使用して達成することができる。
II.誘電体
アノードはまた、誘電体で被覆される。誘電体は、誘電体層がアノードの上及び/又はアノード内に形成されるように、焼結アノードを陽極酸化する(「陽極処理する」)ことによって形成することができる。例えば、タンタル(Ta)アノードは、五酸化タンタル(Ta25)に陽極酸化することができる。典型的には、陽極酸化は、アノードを電解質の中に浸漬するなどによって溶液をアノードに最初に付加することによって実施される。水(例えば、脱イオン水)のような溶媒が一般的に使用される。イオン導電性を高めるために、化合物を使用することができ、これは、溶媒に溶解してイオンを形成することができる。このような化合物の例は、例えば、電解質に対して以下に説明するような酸を含む。例えば、酸(例えば、リン酸)は、陽極酸化溶液の約0.01重量パーセントから約5重量パーセント、一部の実施形態では約0.05重量パーセントから約0.8重量パーセント、及び一部の実施形態では約0.1重量パーセントから約0.5重量パーセントを構成することができる。必要に応じて、酸の混合物も使用することができる。
電流は、陽極酸化溶液を通過し、誘電体層を形成する。形成電圧の値は、誘電体層の厚みを管理する。例えば、電源は、必要な電圧に達するまで、最初に定電流モードで設定することができる。その後、電源は、定電位モードに切り換えて、望ましい誘電体厚みがアノードの表面にわたって形成されることを保証することができる。勿論、パルス又はステップ定電位法のような他の公知の方法も使用することができる。陽極酸化が起こる電圧は、典型的には、約4から250V、及び一部の実施形態では約9から約200V、及び一部の実施形態では約20から約150Vに及んでいる。酸化中に、陽極酸化溶液は、約30℃又はそれよりも高く、一部の実施形態では約40℃から約200℃、及び一部の実施形態では約50℃から約100℃のような高温に維持することができる。陽極酸化はまた、周囲温度又はそれ未満で行うことができる。得られる誘電体層は、アノードの表面上及びその孔隙内に形成することができる。
必須ではないが、ある一定の実施形態において、誘電体層は、それが、アノードの外面の上に重なる第1の部分とアノードの内面の上に重なる第2の部分とを保有するという点で、アノードにわたって異なる厚みを保有することができる。このような実施形態において、第1の部分は、その厚みが第2の部分の厚みよりも大きいように選択的に形成される。しかし、誘電体層の厚みは、特定の領域内で均一である必要なはいことを理解すべきである。外面に隣接する誘電体層のある一定の部分は、例えば、内面における層のある一定の部分よりも実際には薄くなる場合があり、逆も同じである。それでも尚、誘電体層は、外面にある層の少なくとも一部分が、内面にある少なくとも一部分よりも大きい厚みを有するように形成することができる。これらの厚みの実際の差は、特定の用途に応じて異なる場合があるが、第1の部分の厚み対第2の部分の厚みの比率は、典型的に、約1.2対約40、一部の実施形態では約1.5対約25、及び一部の実施形態では約2対約20である。
異なる厚みを有する誘電体層を形成するために、多段工程を一般的に使用する。工程の各段では、焼結アノードを陽極酸化(「陽極処理」)し、誘電体層(例えば、五酸化タンタル)を形成する。陽極酸化の第1の段中に、望ましい誘電体厚みが内側領域に対して達成されることを保証するために、約1から約90ボルト、一部の実施形態では約2から約50ボルト、及び一部の実施形態では約5から約20ボルトに及ぶ形成電圧のような比較的小さな形成電圧が典型的に使用される。その後、焼結本体は、次に工程の第2の段で陽極酸化され、誘電体の厚みを望ましいレベルまで増加させることができる。これは、一般的に、約50ボルトから約350ボルト、一部の実施形態では約60ボルトから約300ボルト、及び一部の実施形態では70から約200ボルトに及ぶ形成電圧などにおいて第1の段中に使用するよりも高い電圧で電解質において陽極酸化することによって達成される。第1及び/又は第2の段中に、電解質は、約15℃から約95℃、一部の実施形態では約20℃から約90℃、及び一部の実施形態では約25℃から約85℃の範囲の温度に保つことができる。
陽極酸化工程の第1及び第2の段中に使用する電解質は、同じである場合があり、又は異なる場合がある。しかし、典型的には、異なる溶液を使用して、誘電体層の外側部分においてより高い厚みの達成を更に容易にするのを補助することが望ましい。例えば、第2の段に使用する電解質は、第1の段に使用する電解質よりも低いイオン導電率を有し、かなりの量の酸化膜がアノードの内面上に形成されるのを阻止することを望ましいとすることができる。この点に関して、第1の段中に使用する電解質は、塩酸、硝酸、硫酸、リン酸、ポリリン酸、ホウ酸、ボロン酸などのような酸性化合物を含有することができる。このような電解質は、25℃の温度で判断された約0.1から約100mS/cm、一部の実施形態では約0.2から約20mS/cm、及び一部の実施形態では約1から約10mS/cmの導電率を有することができる。第2の段中に使用する電解質は、典型的には、ヒドロニウムイオン濃度がその中の電荷通過の結果として孔隙の中で増加するように弱酸の塩を含有する。イオン輸送又は拡散は、弱酸アニオンが電荷の均衡を保つ必要性に応じて孔隙の中に移動するようなものである。その結果、主な導電種(ヒドロニウムイオン)の濃度は、ヒドロニウムイオン、酸アニオン、及び非解離酸の間の平衡の確立において減少し、従って、より弱い導電種を形成する。導電種の濃度の減少により、電解質中に比較的高い電圧低下をもたらし、これは、内部の更に別の陽極酸化を妨げ、一方、より厚い酸化物層が、連続高導電性の領域においてより高い形成電圧の外側に構築される。好ましい弱酸塩は、例えば、ホウ酸、ボロン酸、酢酸、シュウ酸、乳酸、アジピン酸などのアンモニウム又はアルカリ金属塩(例えば、ナトリウム、カリウム、その他)を含むことができる。特に適切な塩は、四ホウ酸ナトリウム及び五ホウ酸アンモニウムを含む。このような電解質は、典型的には、25℃の温度で判断された約0.1から約2.0mS/cm、一部の実施形態では約0.5から10mS/cm、及び一部の実施形態では約1から約5mS/cmの導電率を有する。
必要に応じて、陽極酸化の各段は、1つ又はそれよりも多くのサイクルにわたって繰り返され、望ましい誘電体厚みを達成することができる。更に、アノードはまた、電解質を除去するために第1及び/又は第2の段後別の溶媒(例えば、水)で濯ぎ又は洗浄することができる。
III.固体電解質
固体電解質は、一般的にコンデンサに対してカソードとして機能する誘電体の上に重なる。固体電解質は、導電性ポリマーを含有し、導電性ポリマーは、典型的にはπ共役し、少なくとも約1μS/cmの導電率のような酸化又は還元後導電性を有する。このようなπ共役導電性ポリマーの例は、例えば、ポリ複素環式化合物(例えば、ポリピロール、ポリチオフェン、ポリアニリン、その他)、ポリアセチレン、ポリ−p−フェニレン、ポリフェノラートなどを含む。一実施形態において、例えば、ポリマーは、以下の一般構造を有するような置換ポリチオフェンである。
ここで、TはO又はSであり、Dは、任意的に置換されたC1からC5のアルキレン基(例えば、メチレン、エチレン、n−プロピレン、n−ブチレン、n−ペンチレン、その他)であり、R7は、直鎖又は分枝の任意的に置換されたC1からC18のアルキル基(例えば、メチル、エチル、n−又はイソ−プロピル、n−、イソ−、sec−又はtert−ブチル、n−ペンチル、1−メチルブチル、2−メチルブチル、3−メチルブチル、1−エチルプロピル、1,1−ジメチルプロピル、1,2−ジメチルプロピル、2,2−ジメチルプロピル、n−ヘキシル、n−ヘプチル、n−オクチル、2−エチルヘキシル、n−ノニル、n−デシル、n−ウンデシル、n−ドデシル、n−トリデシル、n−テトラデシル、n−ヘキサデシル、n−オクダデシル、その他)、任意的に置換されたC5からC12のシクロアルキル基(例えば、シクロペンチル、シクロヘキシル、シクロヘプチル、シクロオクチル、シクロノニル、シクロデシル、その他)、任意的に置換されたC6からC14のアリール基(例えば、フェニル、ナフチル、その他)、任意的に置換されたC7からC18のアラルキル基(例えば、ベンジル、o−、m−、p−トリル、2,3−、2,4−、2,5−、2−6、3−4−、3,5−キシリル、メシチル、その他)、任意的に置換されたC1からC4のヒドロキシアルキル基、又はヒドロキシル基であり、qは、0から8、一部の実施形態では0から2、及び一部の実施形態では0の整数であり、nは、2から5,000、一部の実施形態では4から2,000、及び一部の実施形態では5から1,000である。ラジカル「D」又は「R7」の置換基の例は、例えば、アルキル、シクロアルキル、アリール、アラルキル、アルコキシ、ハロゲン、エーテル、チオエーテル、ジスルフィド、スルホキシド、スルホン、スルホン酸塩、アミノ、アルデヒド、ケト、カルボン酸エステル、カルボン酸、炭酸塩、カルボン酸塩、シアノ、アルキルシラン及びアルコキシシラン基、カルボキシルアミド基などを含む。
特に適切なチオフェンポリマーは、「D」が、任意的に置換されたC2からC3のアルキレン基であるものである。例えば、ポリマーは、任意的に置換されたポリ(3,4−エチレンジオキシチオフェン)とすることができ、これは、以下の一般構造を有する。
上述したような導電性ポリマーを形成する方法は、当業技術で公知である。例えば、全ての目的のためにその全体が本明細書に引用により組み込まれているMerker他に付与された米国特許第6,987,663号明細書は、モノマー前駆体から置換したポリチオフェンを形成するための様々な技術を説明している。モノマー前駆体は、例えば、以下の構造を有する。
ここで、T、D、R7、及びqは、上で定義されている。特に適切なチオフェンモノマーは、「D」が、任意的に置換されたC2からC3のアルキレン基であるものである。例えば、任意的に置換された3,4−アルキレンジオキシチオフェンを使用することができ、これは以下の一般構造を有する。
ここで、R7及びqは、上で定義されている。1つの特定的な実施形態において、「q」は0である。3,4−エチレンジオキシチオフェンの1つの商業的に適切な例は、Clevios(登録商標)Mという名称で「H.C.Starck GmbH」から入手可能である。他の適切なモノマーも、Blohm他に付与された米国特許第5,111,327号明細書及びGroenendaal他に付与された米国特許第6,635,729号明細書に説明されており、当該特許は、全ての目的のためにこれらの全体が本明細書に引用により組み込まれている。これらのモノマーの誘導体も使用することができ、これらは、例えば、上記モノマーの二量体又は三量体である。より高分子の誘導体、すなわち、モノマーの四量体、五量体などは、本発明に使用するのに適している。誘導体は、同一又は異なるモノマーユニットで作り上げ、その物質だけで、及び互いに及び/又はモノマーと混合して使用することができる。これらの前駆体の酸化又は還元形態も使用することができる。
特定のタイプのポリマーに関係なく、固体電解質は、分散剤の形態で付加された複数の予備重合粒子を含む。分散剤を使用する1つの恩典は、分散剤が、イオン移動により高電界の下で絶縁破壊を引き起こす可能性がある原位置重合中に生成するイオン種(例えば、Fe2+又はFe3+)の存在を最小にすることができる点である。従って、原位置重合によるのではなくて分散剤として導電性ポリマーを付加することにより、得られるコンデンサは、比較的高い「絶縁破壊電圧」を示すことができる。アノードの良好な含浸を可能にするために、分散剤に使用する粒子は、典型的には、約1から約150ナノメートル、一部の実施形態では約2から約50ナノメートル、及び一部の実施形態では約5から約40ナノメートルの平均サイズ(例えば、直径)のような小さなサイズを有する。粒径は、超遠心分離機、レーザ回折、その他などによる公知の技術を使用して判断することができる。粒子の形状も異なる場合がある。1つの特定的な実施形態において、例えば、粒子は球状の形状である。しかし、プレート、ロッド、ディスク、バー、チューブ、不規則形状などのような他の形状も本発明によって考えられていることを理解すべきである。分散剤の粒子の濃度は、分散剤の望ましい粘性及び分散剤をコンデンサに付加することになる特定の方式に応じて異なる場合がある。しかし、典型的に、粒子は、分散剤の約0.1から約10重量パーセント、一部の実施形態では約0.4から約5重量パーセント、及び一部の実施形態では約0.5から約4重量パーセントを構成する。
分散剤はまた、一般的に粒子の安定性を高める対イオンを含有する。すなわち、導電性ポリマー(例えば、ポリチオフェン又はその誘導体)は、典型的には、中性又は正(カチオン)である主ポリマー鎖上に電荷を有する。ポリチオフェン誘導体は、例えば、典型的には、主ポリマー鎖に正電荷を担持する。一部の場合、ポリマーは、構造単位中に正及び負電荷を保有することができ、正電荷は、主鎖上に位置し、負電荷は、スルホン酸塩又はカリボキシレート基のようなラジカル「R」の置換基上に任意的に位置する。主鎖の正電荷は、部分的に又は全体的にラジカル「R」上に任意的に存在するアニオン基で飽和することができる。全体的に見ると、ポリチオフェンは、これらの場合には、カチオン、中性、又はアニオンにさえすることができる。それでも尚、これらは、ポリチオフェン主鎖が正電荷を有すると、カチオンポリチオフェンであると全て見なされる。
対イオンは、導電性ポリマーの電荷を相殺するモノマー又はポリマーアニオンとすることができる。ポリマーアニオンは、例えば、ポリマーカルボン酸(例えば、ポリアクリル酸、ポリメタクリル酸、ポリマーレイン酸、その他)、ポリマースルホン酸(例えば、ポリスチレンスルホン酸(「PSS」)、ポリビニルスルホン酸、その他)のようなアニオンとすることができる。酸はまた、アクリル酸エステル及びスチレンのような他の重合可能モノマーと、ビニルカルボン酸及びビニルスルホン酸のコポリマーのようなコポリマーとすることができる。同様に、好ましいモノマーアニオンは、例えば、C1からC20のアルカンスルホン酸(例えば、ドデカンスルホン酸)、脂肪族ペルフルオロスルホン酸(例えば、トリフルオロメタンスルホン酸、ペルフルオロブタンスルホン酸又はペルフルオロオクタンスルホン酸)、脂肪族C1からC20のカルボン酸(例えば、2−エチル−ヘキシルカルボン酸)、脂肪族ペルフルオロカルボン酸(例えば、トリフルオロ酢酸又はペルフルオロオクタン酸)、C1からC20のアルキル基によって任意的に置換された芳香族スルホン酸(例えば、ベンゼンスルホン酸、o−トルエンスルホン酸、p−トルエンスルホン酸、又はドデシルベンゼンスルホン酸)、シクロアルカンスルホン酸(例えば、カンファースルホン酸又はテトラフルオロホウ酸塩、ヘキサフルオロリン酸塩、過塩素酸塩、ヘキサフルオロアンチモン酸塩、ヘキサフルオロヒ酸塩又はヘキサクロロアンチモン酸塩)のようなアニオンを含む。特に適切な対イオンは、ポリマーカルボン酸又はスルホン酸(例えば、ポリスチレンスルホン酸(「PSS」))のようなポリマーアニオンである。このようなポリマーアニオンの分子量は、典型的には、約1,000から約2,000,000、及び一部の実施形態では約2,000から約500,000に及んでいる。
使用する時に、分散剤及び得られる層におけるこのような対イオン対導電性ポリマーの重量比は、典型的には約0.5:1から約50:1、一部の実施形態では約1:1から約30:1、及び一部の実施形態では約2:1から約20:1である。上述の重量比を意味する対応する導電性ポリマーの重量は、完全な変換が重合中に起こると仮定すると、共に使用するモノマーの加重した部分を意味する。
導電性ポリマー及び対イオンに加えて、分散剤はまた、1つ又はそれよりも多くの結合剤を含有し、ポリマー層の接着性を更に高め、また分散剤内で粒子の安定性を増大させることができる。結合剤は、ポリビニルアルコール、ポリビニルピロリドン、ポリ塩化ビニル、ポリ酢酸ビニル、ポリビニルブチラート、ポリアクリル酸エステル、ポリアクリル酸アミド、ポリメタクリル酸エステル、ポリメタクリル酸アミド、ポリアクリロニトリル、スチレン/アクリル酸エステル、酢酸ビニル/アクリル酸エステル及びエチレン/酢酸ビニルコポリマー、ポリブタジエン、ポリイソプレン、ポリスチレン、ポリエーテル、ポリエステル、ポリ炭酸塩、ポリウレタン、ポリアミド、ポリイミド、ポリスルホン、メラミンホルムアルデヒド樹脂、エポキシド樹脂、シリコーン樹脂又はセルロースのような性質が有機性のものとすることができる。架橋剤も使用して、結合剤の接着機能を高めることができる。このような架橋剤は、例えば、メラミン化合物、マスクドイソシアネート又は3−グリシドキシプロピルトリアルコキシシラン、テトラエトキシシラン及びテトラエトキシシラン加水分解物のような官能基シラン又はポリウレタン、ポリアクリレート又はポリオレフィンのような架橋可能ポリマーを含むことができる。
分散剤も使用して、固体電解質の形成及びそれをアノード部に付加する機能を促進することができる。好ましい分散剤は、脂肪族アルコール(例えば、メタノール、エタノール、i−プロパノール、及びブタノール)、脂肪族ケトン(例えば、アセトン及びメチルエチルケトン)、脂肪族カルボン酸エステル(例えば、酢酸エチル及び酢酸ブチル)、芳香族炭化水素(例えば、トルエン及びキシレン)、脂肪族炭化水素(例えば、ヘキサン、ヘプタン、及びシクロヘキサン)、塩素化炭化水素(例えば、ジクロロメタン及びジクロロエタン)、脂肪族ニトリル(例えば、アセトニトリル)、脂肪族スルホキシド及びスルホン(例えば、ジメチルスルホキシド及びスルホラン)、脂肪族カルボン酸アミド(例えば、メチルアセトアミド、ジメチルアセトアミド及びジメチルホルムアミド)、脂肪族及び芳香族脂肪族エーテル(例えば、ジエチルエーテル及びアニソール)、水、及び上述の溶媒のいずれかの混合物のような溶媒を含む。
上述のものに加えて、更に他の成分も分散剤において使用することができる。例えば、従来の充填剤を使用することができ、これらは、約10ナノメートルから約100ナノメートル、一部の実施形態では約50ナノメートルから約50マイクロメートル、及び一部の実施形態では約100ナノメートルから約30マイクロメートルのサイズを有する。このような充填剤の例は、炭酸カルシウム、ケイ酸塩、シリカ、硫酸カルシウム又は硫酸バリウム、水酸化アルミニウム、ガラス繊維又はバルブ、木粉、セルロース粉末カーボンブラック、導電性ポリマー、その他を含む。充填剤は、粉末形態で分散剤の中に導入することができるが、同じく繊維のような別の形態でも存在することができる。
イオン又は非イオン性界面活性剤のような表面活物質も分散剤において使用することができる。更に、有機官能シラン又はこれらの加水分解物、例えば、3−グリシドキシプロピルトリアルコキシシラン、3−アミノプロピル−トリエトキシシラン、3−メルカプトプロピル−トリメトキシシラン、3−メタクリルオキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、又はオクチルトリエトキシシランのような接着剤を使用することができる。分散剤はまた、エーテル基含有化合物(例えば、テトラヒドロフラン)、ラクトン基含有化合物(例えば、γ−ブチロラクトン又はγ−バレロラクトン)、アミド又はラクタム基含有化合物(例えば、カプロラクタム、N−メチルカプロラクタム、N,N−ジメチルアセトアミド、N−メチルアセトアミド、N,N−ジメチルホルムアミド(DMF)、N−メチルホルムアミド、N−メチルホルムアニリド、N−メチルピロリドン(NMP)、N−オクチルピロリドン、又はピロリドン)、スルホン及びスルホキシド(例えば、スルホラン(テトラメチレンスルホン)又はジメチルスルホキシド(DMSO))、糖又は糖誘導体(例えば、サッカロース、グルコース、フルクトース、又はラクトース)、糖アルコール(例えば、ソルビトール又はマンニトール)、フラン誘導体(例えば、2−フランカルボン酸又は3−フランカルボン酸)、アルコール(例えば、エチレングリコール、グリコール、ジ−又はトリエチレングリコール)のような導電性を増大させる添加剤を含有することができる。
ポリマー分散剤は、スピンコーティング、含浸、注入、滴下付加、射出、噴霧、ドクタブレーディング、ブラッシング、印刷(例えば、インクジェット、スクリーン、又はパッド印刷)、又は浸漬のような様々な公知の技術を使用して付加することができる。それは、使用する付加技術に応じて異なる場合があるが、分散剤の粘性は、典型的には、約0.1から約100,000mPas(100s-1の剪断速度で測定)、一部の実施形態では約1から約10,000mPas、一部の実施形態では約10から約1,500mPas、及び一部の実施形態では約100から約1000mPasである。付加された状態で、層は、乾燥させ及び/又は洗浄することができる。1つ又はそれよりも多くの付加的な層もこのようにして形成され、望ましい厚みを達成することができる。典型的には、この粒子分散剤によって形成された層の全体厚みは、約1から約50μm、及び一部の実施形態では約5から約20μmである。対イオン対導電性ポリマーの重量比は、同様に約0.5:1から約50:1、一部の実施形態では約1:1から約30:1、及び一部の実施形態では約2:1から約20:1である。
予備重合粒子に加えて、固体電解質は、任意的にヒドロキシ官能非イオン性ポリマーのような他の成分を含有することができる。用語「ヒドロキシ官能」は、一般的に、化合物が、少なくとも1つのヒドロキシ官能基を含み、又は溶媒の存在下でこのような官能基を保有することができることを意味する。理論によって束縛されることを意図しないが、ヒドロキシ官能非イオン性ポリマーは、ポリマー粒子と内部誘電体の表面との間の接触の程度を改善することができると考えられ、内部誘電体は、典型的に、より高い形成電圧の結果として性質上比較的滑らかである。これは、得られるコンデンサの絶縁破壊電圧及び湿式対乾式キャパシタンスを増加させる。更に、ある一定の分子量を有するヒドロキシ官能ポリマーの使用により、同じく高い電圧における化学的分解の可能性を最小にすることができると考えられる。例えば、ヒドロキシ官能ポリマーの分子量は、モル当たり約100から10,000グラム、一部の実施形態において、約200から2,000、一部の実施形態では約300から約1,200、及び一部の実施形態では約400から約800とすることができる。
様々なヒドロキシ官能非イオン性ポリマーのいずれも一般的にこの目的のために使用することができる。一実施形態において、例えば、ヒドロキシ官能ポリマーは、ポリアルキレンエーテルである。ポリアルキレンエーテルは、ポリアルキレングリコール(例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール、ポリエピクロロヒドリン、その他)、ポリオキセタン、ポリフェニレンエーテル、ポリエーテルケトンなどを含むことができる。ポリアルキレンエーテルは、典型的には、主に末端ヒドロキシ基を有する線形の非イオン性ポリマーである。特に適切なものは、ポリエチレングリコール、ポリプロピレングリコール及びポリテトラメチレングリコール(ポリテトラヒドロフラン)であり、これらは、エチレンオキシド、プロピレンオキシド、又はテトラヒドロフランの水の上への重付加によって生成される。ポリアルキレンエーテルは、ジオール又はポリオールから重縮合反応によって調製することができる。ジオール成分は、特に、例えば、ペンタン−1,5−ジオール、ヘキサン−1,6−ジオール、ネオペンチルグリコール、ビス−(ヒドロキシメチル)−シクロヘキサン、ビスフェノールA、ダイマージオール、水素化ダイマージオール、又は上述のジオールの均等混合物のような5から36炭素原子又は芳香族ジヒドロキシ化合物を含有する飽和又は不飽和、分岐又は非分岐脂肪族ジヒドロキシ化合物から選択することができる。更に、例えば、グリセロール、ジ−及びポリグリセロール、トリメチロールプロパン、ペンタエリスリトール又はソルビトールを含む多価アルコールも、重合反応に使用することができる。
上述したものに加えて、他のヒドロキシ官能非イオン性ポリマーも本発明に使用することができる。このようなポリマーの一部の例は、例えば、エトキシ化アルキルフェノール、エトキシ化又はプロポキシ化C6−C24脂肪アルコール、一般式CH3−(CH210-16-(O−C241-25−OH(例えば、オクタエチレングリコールモノドデシルエーテル及びペンタエチレングリコールモノドデシルエーテル)を有するポリオキシエチレングリコールアルキルエーテル、一般式CH3−(CH210-16-(O−C361-25−OHを有するポリオキプロピレングリコールアルキルエーテル、以下の一般式:C817−(C64)−(O−C241-25−OHを有するポリオキシエチレングリコールオクチルフェノールエーテル(例えば、Triton(登録商標)X−100)、以下の一般式:C919−(C64)−(O−C241-25−OHを有するポリオキシエチレングリコールアルキルフェノールエーテル(例えば、ノノキシノール−9)、ポリオキシエチレングリコールソルビタンアルキルエステル(例えば、ポリオキシエチレン(20)ソルビタンモノラウレート、ポリオキシエチレン(20)ソルビタンモノパルミテート、ポリオキシエチレン(20)ソルビタンモノステアレート、ポリオキシエチレン(20)ソルビタンモノオレアート、PEG−20メチルグルコースジステアレート、PEG−20メチルグルコースセスキステアレート、PEG−80ヒマシ油、及びPEG−20ヒマシ油、PEG−3ヒマシ油、PEG600ジオレアート、及びPEG400ジオレアート)及びポリオキシエチレングリコールアルキルエステル(例えば、ポリオキシエチレン−23グリコールラウレート及びポリオキシエチレン−20グリコールステアレート)のようなC8−C24脂肪酸のポリエチレングリコールエステル、C8−C24脂肪酸のポリオキシエチレングリコールエーテル(例えば、ポリオキシエチレン−10セチルエーテル、ポリオキシエチレン−10ステアリルエーテル、ポリオキシエチレン−20セチルエーテル、ポリオキシエチレン−10オレイルレーテル、ポリオキシエチレン−20オレイルエーテル、ポリオキシエチレン−20イソヘキサデシルエーテル、ポリオキシエチレン−15トリデシルエーテル、及びポリオキシエチレン−6トリデシルエーテル)、ポリエチレングリコール及びポリプロピレングリコールのブロックコポリマー(例えば、Poloxamer)など、並びにこれらの混合物を含む。
ヒドロキシ官能非イオン性ポリマーは、様々な異なる方法で固体電解質の中に組み込むことができる。ある一定の実施形態において、例えば、ヒドロキシ官能ポリマーは、上述の初期分散剤によって形成されたいずれの層の中にも簡単に組み込むことができる。このような実施形態において、分散剤のヒドロキシ官能ポリマーの濃度は、典型的には、約1重量パーセントから約50重量パーセント、一部の実施形態では約5重量パーセントから約40重量パーセント、及び一部の実施形態では約10重量パーセントから約30重量パーセントである。
しかし、他の実施形態において、ヒドロキシ官能ポリマーは、初期ポリマー分散剤がアノード本体に付加された後に付加することができる。このような実施形態において、ヒドロキシ官能ポリマーを付加するのに使用する技術は、異なる場合がある。例えば、ポリマーは、浸水、浸漬、注入、滴下、射出、噴霧、拡散、塗布又は印刷、例えば、インクジェット、スクリーン印刷、又はタンポン印刷のような様々な方法を使用して液体溶液の形態で付加することができる。水、アルコール、又はこれらの混合物のような当業者に公知の溶媒を溶液中に使用することができる。このような溶液中のヒドロキシ官能ポリマーの濃度は、典型的には、溶液の約5重量パーセントから約95重量パーセント、一部の実施形態では約10重量パーセントから約70重量パーセント、及び一部の実施形態では約15重量パーセントから約50重量パーセントに及んでいる。必要に応じて、このような溶液には、導電性ポリマーがほぼない場合がある。例えば、導電性ポリマーは、溶液の約2重量パーセント又はそれ未満、一部の実施形態では約1重量パーセント又はそれ未満、及び一部の実施形態では約0.5重量パーセント又はそれ未満を構成することができる。
しかし、代替的に、ヒドロキシ官能ポリマーと組み合わせて導電性ポリマーを使用することが望ましい場合がある。例えば、ある一定の実施形態において、導電性ポリマー粒子とヒドロキシ官能ポリマーとを含有する第2のポリマー分散剤は、第1のポリマー分散剤から形成された初期層がアノード本体に付加された後にアノードに付加される。第2のポリマー分散剤の導電粒子は、全体的に上述されているが、これらは、第1のポリマー分散剤に使用するものと同一である必要はない。例えば、第1及び第2のポリマー分散剤は、異なるサイズ及び/又は化学的成分の粒子を使用することができる。いずれにしても、第2のポリマー分散剤のヒドロキシ官能ポリマーの濃度は、典型的には、約1重量パーセントから約50重量パーセント、一部の実施形態では約5重量パーセントから約40重量パーセント、及び一部の実施形態では約10重量パーセントから約30重量パーセントである。同様に、ヒドロキシ官能ポリマーを第2の分散剤に使用するこれらの実施形態において、第1の分散剤は、このようなヒドロキシ官能非イオン性ポリマーがほぼないことが望ましい場合がある。例えば、ヒドロキシ官能ポリマーは、第1のポリマー分散剤の約2重量パーセント又はそれ未満、一部の実施形態では約1重量パーセント又はそれ未満、及び一部の実施形態では約0.5重量パーセント又はそれ未満を構成することができる。付加された状態で、第2のポリマー分散剤によって形成された層は、乾燥させ及び/又は洗浄することができる。1つ又はそれよりも多くの付加的な層もこのようにして形成され、望ましい厚みを達成することができる。典型的には、第2のポリマー分散剤によって形成された層の全体厚みは、約0.1から約5μm、及び一部の実施形態では約0.1から約3μm、及び一部の実施形態では約0.2から約1μmである。
IV.外部ポリマーコーティング
必須ではないが、外部ポリマーコーティングもアノード本体に付加され、固体電解質の上に重なることができる。外部ポリマーコーティングは、一般的に、上により詳細に説明されているように、予備重合導電粒子から形成された1つ又はそれよりも多くの層を含有する。外部コーティングは、コンデンサ本体の縁部領域の中に更に進入し、誘電体への接着を増大させ、より機械的に堅牢な部分をもたらすことができ、堅牢な部分は、等価直列抵抗及び漏れ電流を低減することができる。一般的に、アノード内に含浸するのではなくて縁部カバレージの程度を改善することを意図しているので、外部コーティングに使用する粒子は、典型的には、固体電解質のあらゆる任意的な分散剤に使用するものよりも大きいサイズを有する。例えば、外部ポリマーコーティングに使用する粒子の平均サイズ対固体電解質のあらゆる分散剤に使用する粒子の平均サイズの比率は、典型的には、約1.5から約30、一部の実施形態では約2から約20、及び一部の実施形態では約5から約15である。例えば、外部コーティングの分散剤に使用する粒子は、約50から約500ナノメートル、一部の実施形態では約80から約250ナノメートル、及び一部の実施形態では約100から約200ナノメートルの平均サイズを有することができる。
必要に応じて、架橋剤も外部ポリマーコーティングに使用され、固体電解質への接着の程度を高めることができる。典型的には、架橋剤は、外部コーティングに使用する分散剤の付加前に付加される。好ましい架橋剤は、例えば、Merker他に付与された米国特許公開第2007/0064376号明細書に説明されており、例えば、アミン(例えば、ジアミン、トリアミン、オリゴマーアミン、ポリアミン、その他)、Mg、Al、Ca、Fe、Cr、Mn、Ba、Ti、Co、Ni、Cu、Ru、Ce又はZnの塩又は化合物のような多価金属カチオン、ホスホニウム化合物、スルホニウム化合物、その他を含む。特に適切な例は、例えば、1,4−ジアミノシクロヘキサン、1,4−ビス(アミノメチル)シクロヘキサン、エチレンジアミン、1,6−ヘキサンジアミン、1,7−ヘプタンジアミン、1,8−オクタンジアミン、1,9−ノナンジアミン、1,10−デカンジアミン、1,12−ドデカンジアミン、N,N−ジメチルエチレンジアミン、N,N,N’,N’−テトラメチルエチレンジアミン、N,N,N’,N’−テトラメチル−1,4−ブタンジアミンなど、並びにこれらの混合物を含む。
架橋剤は、典型的には、25℃で判断される時のpHが1から10、一部の実施形態では2から7、一部の実施形態では3から6である溶液又は分散剤から付加される。酸性成分を使用して、望ましいpHレベルを達成するのを助けることができる。架橋剤に対する溶媒又は分散剤の例は、水又はアルコール、ケトン、カルボン酸エステルなどのような有機溶媒を含む。架橋剤は、スピンコーティング、含浸、注入、滴下付加、噴霧付加、蒸着、スパッタリング、昇華、ナイフコーティング、塗布又は印刷、例えば、インクジェット、スクリーン、又はパッド印刷のようなあらゆる公知の工程によってコンデンサ本体に付加することができる。付加された状態で、架橋剤は、ポリマー分散剤の付加前に乾燥させることができる。この工程は、次に、望ましい厚みが得られるまで繰り返すことができる。例えば、架橋剤及び分散層を含む外部ポリマーコーティング全体の全体厚みは、約1から約50μm、一部の実施形態では約2から約40μm、及び一部の実施形態では約5から約20μmに及ぶ場合がある。
V.コンデンサの他の構成要素
必要に応じて、コンデンサはまた、当業技術で公知のように他の層を収容することができる。例えば、比較的絶縁樹脂材料(天然又は合成)で作られるような保護コーティングを誘電体と固体電解質の間に任意的に形成することができる。このような材料は、約10Ω・cmよりも大きい、一部の実施形態では約100よりも大きい、一部の実施形態では約1,000Ω・cmよりも大きい、一部の実施形態では1×105Ω・cmよりも大きい、及び一部の実施形態では約1×1010Ω・cmよりも大きい比抵抗を有することができる。本発明に使用することができる一部の樹脂材料は、以下に限定されるものではないが、ポリウレタン、ポリスチレン、不飽和又は飽和脂肪酸のエステル(例えば、グリセリド)などを含む。例えば、好ましい脂肪酸のエステルは、以下に限定されるものではないが、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、エレオステアリン酸、オレイン酸、リノール酸、リノレン酸、アロイリチン酸、シェロリン酸などエステルを含む。脂肪酸のこれらのエステルは、比較的複雑な組合せに使用して「乾性油」を形成する時に特に有用であることが見出されており、乾性油は、得られる膜が急速に安定な層に重合することを可能にする。このような乾性油は、モノ−、ジ−、及び/又はトリ−グリセリドを含むことができ、これらは、エスエル化された1つ、2つ、及び3つのそれぞれ脂肪酸残基を有するグリセロール主鎖を有する。例えば、使用することができる一部の好ましい乾性油は、以下に限定されるものではないが、オリーブ油、亜麻仁油、ヒマシ油、キリ油、大豆油、及びセラックを含む。これら及び他の保護コーティング材料は、全ての目的のためにその全体が本明細書に引用により組み込まれているFife他に付与された米国特許第6,674,635号明細書により詳細に説明されている。
必要に応じて、その部分には、炭素層(例えば、グラファイト)及び銀層それぞれを付加することもできる。銀コーティングは、例えば、半田付け可能導体、接触層、及び/又はコンデンサのための電荷収集体として作用することができ、炭素コーティングは、固体電解質と銀コーティングの接触を制限することができる。このようなコーティングは、固体電解質の一部又は全てを覆うことができる。
コンデンサには、特に表面実施用途に使用する時に終端を設けることもできる。例えば、コンデンサは、コンデンサ要素のアノードリードに電気的に接続されるアノード終端と、コンデンサ要素のカソードに電気的に接続されるカソード終端とを収容することができる。導電性金属(例えば、銅、ニッケル、銀、ニッケル、亜鉛、スズ、パラジウム、鉛、銅、アルミニウム、モリブデン、チタン、鉄、ジルコニウム、マグネシウム、及びこれらの合金)のようなあらゆる導電材料を使用して終端を形成することができる。特に適切な導電性金属は、例えば、銅、銅合金(例えば、銅−ジルコニウム、銅−マグネシウム、銅−亜鉛、又は銅−鉄)、ニッケル、及びニッケル合金(例えば、ニッケル−鉄)を含む。終端の厚みは、一般的に、コンデンサの厚みを最小にするように選択される。例えば、終端の厚みは、約0.05から約1ミリメートル、一部の実施形態では約0.05から約0.5ミリメートル、及び約0.07から約0.2ミリメートルに及ぶ場合がある。一例示的導電材料は、Wieland(ドイツ)から入手可能な銅−鉄合金の金属板である。必要に応じて、終端の表面は、当業技術で公知のようにニッケル、銀、金、スズなどで電気メッキされ、最終部分が回路基板に装着可能であることを保証することができる。1つの特定的な実施形態において、終端の両面は、ニッケル及び銀フラッシュそれぞれでメッキされるが、装着面も、スズ半田層でメッキされる。
図1を参照して、電解コンデンサ30の一実施形態は、コンデンサ要素33と電気的接続状態のアノード終端62及びカソード終端72を含むように示されている。コンデンサ要素33は、上面37、下面39、前面36、及び後面38を有する。それはコンデンサ要素33の表面のいずれとも電気的接続状態にすることができるが、図示の実施形態のカソード端子72は、下面39及び後面38と電気的接触する。より具体的には、カソード終端72は、第2の構成要素74に実質的に垂直に位置決めされた第1の構成要素73を収容する。第1の構成要素73は、コンデンサ要素33の下面39と電気的接触状態及びそれとほぼ平行の状態にある。第2の構成要素74は、コンデンサ要素33の後面38に電気的接触状態及びそれにほぼ平行の状態にある。一体化されているように描かれているが、これらの部分は、代替的に、直接に又は付加的な導体要素(例えば、金属)を通じてのいずれかで互いに接続された個別の部分とすることができることを理解すべきである。
アノード終端62は、同様に、第2の構成要素64に実質的に垂直に位置決めされた第1の構成要素63を収容する。第1の構成要素63は、コンデンサ要素33の下面39と電気的接触状態及びそれとほぼ平行の状態にある。第2の構成要素64は、アノードリード16を担持する領域51を収容する。図示の実施形態において、領域51は、リードワイヤ16の表面接触及び機械的安定性を更に高めるために「U字形」を保有する。
終端は、当業技術で公知のあらゆる技術を使用してコンデンサ要素に接続することができる。一実施形態において、例えば、リードフレームを提供することができ、リードフレームは、カソード終端72及びアノード終端62を定める。電解コンデンサ要素33をリードフレームに取りつけるために、導電接着剤を最初にカソード終端72の表面に付加することができる。導電接着剤は、例えば、樹脂成分を含有する導電性金属粒子を含むことができる。金属粒子は、銀、銅、金、プラチナ、ニッケル、亜鉛、ビスマスなどとすることができる。樹脂組成物は、熱硬化性樹脂(例えば、エポキシ樹脂)、硬化剤(例えば、酸無水物)、及び結合剤(例えば、シラン結合剤)を含むことができる。好ましい導電接着剤は、全ての目的のためにその全体が本明細書に引用により組み込まれているOsako他に付与された米国特許出願公開第2006/0038304号明細書に説明されている。様々な技術のいずれを使用しても、導電接着剤をカソード終端72に付加することができる。印刷技術は、例えば、これらの実用的かつ費用低減の恩典により使用することができる。
一般的に、終端をコンデンサに取りつけるために様々な方法を使用することができる。一実施形態において、例えば、アノード終端62の第2の構成要素64及びカソード終端72の第2の構成要素74は、最初に図1に示す位置の方向に曲げられる。その後、コンデンサ要素33は、その下面39が接着剤と接触し、アノードリード16を上のU字形領域51が受け入れるようにカソード終端72の上に位置決めされる。必要に応じて、プラスチックパッド又はテープのような絶縁材料(図示せず)は、コンデンサ要素33の下面39とアノード終端62の第1の構成要素63の間に位置決めされ、アノード及びカソード終端を絶縁することができる。
アノードリード16は、次に、機械的溶接、レーザ溶接、導電接着剤などの当業技術で公知のあらゆる技術を使用して領域51に電気的に接続される。例えば、アノードリード16は、レーザを使用してアノード終端62に溶接することができる。レーザは、一般的に、誘導放出によってフォトンを放出することができるレーザ媒質とレーザ媒質の要素を励起するエネルギ源とを含む共振器を収容する。1つのタイプの好ましいレーザは、レーザ媒質がネオジム(Nd)でドープされたアルミニウム及びイットリウムガーネット(YAG)から構成されるものである。励起粒子は、ネオジムイオンNd3+である。エネルギ源は、連続エネルギをレーザ媒質に与え、連続レーザビーム又はエネルギ放電を噴出してパルスレーザビームを噴出することができる。アノードリード16をアノード終端62に電気的に接続すると、導電接着剤は、次に、硬化することができる。例えば、ヒートプレスを使用して熱及び圧力を印加し、電解コンデンサ要素33が接着剤によってカソード終端72に十分に接着されることを保証することができる。
コンデンサ要素が取りつけられた状態で、リードフレームは、樹脂ケーシング内に封入され、樹脂ケーシングは、次に、シリカ又はいずれかの他の公知の封入材料で充填することができる。ケースの幅及び長さは、意図する用途に応じて異なる場合がある。好ましいケーシングは、例えば、「A」、「B」、「C」、「D」、「E」、「F」、「G」、「H」、「J」、「K」、「L」、「M」、「N」、「P」、「R」、「S」、「T」、「V」、「W」、「Y」、「X」、又は「Z」(AVXコーポレーション)を含むことができる。使用するケースサイズに関係なく、コンデンサ要素は、アノード及びカソード終端の少なくとも一部分が回路基板上に装着するために露出されるように封入される。図1に示すように、例えば、コンデンサ要素33は、アノード終端62の一部分及びカソード終端72の一部分が露出されるようにケース28に封入される。
本発明の結果、コンデンサアセンブリは、上述したように優れた電気特性を示すことができる。例えば、コンデンサは、比較的高いキャパシタンスを示すことができる。乾式キャパシタンスは、湿式キャパシタンスに比較的類似するとすることができ、それによって雰囲気湿度の存在下でコンデンサのキャパシタンス損失及び/又は変動がごく僅かであることを可能にする。この性能特性は、「湿式対乾式コンデンサパーセント」で定量化され、これは、以下の方程式によって判断される。
湿式対乾式キャパシタンス=(乾式キャパシタンス/湿式キャパシタンス)×100
例えば、コンデンサは、約50%又はそれよりも大きい、一部の実施形態では約60%又はそれよりも大きい、一部の実施形態では約70%又はそれよりも大きい、及び一部の実施形態では約80%から100%の湿式対乾式キャパシタンス百分率を示すことができる。コンデンサはまた、100kHzの作動周波数で測定された約100ミリオームよりも小さく、一部の実施形態では75ミリオームよりも小さく、一部の実施形態では約0.01から約60ミリオーム、及び一部の実施形態では約0.05から約50ミリオームのような低等価直列抵抗(「ESR」)を維持することができる。一部の場合、このような改良されたキャパシタンス及びESR性能は、様々な異なる条件下で安定なままに留まることができる。例えば、コンデンサのキャパシタンス及び/又は等価直列抵抗は、約25℃又はそれ未満、一部の実施形態では約10℃又はそれ未満、一部の実施形態では約0℃又はそれ未満、及び一部の実施形態では約−7.5℃から約−25℃(例えば、−55℃)のような低温で、並びに約10Hzから約100kHzのような広範な周波数においてさえも上述の範囲とすることができる。
一般的に、絶縁体を通して1つの導体から隣接する導体に流れる電流を意味する漏れ電流も、比較的低レベルに維持することができる。例えば、本発明のコンデンサの正規化漏れ電流の数値は、一部の実施形態では約1μA/μF*Vよりも小さく、一部の実施形態では約0.5μA/μF*Vよりも小さく、及び一部の実施形態では0.1μA/μF*Vより小さく、ここでμAは、マイクロアンペアであり、μF*Vは、キャパシタンス及び定格電圧の積である。このような正規化漏れ電流値は、高温で実質的な時間量にわたって経過した後でも維持することができる。例えば、値は、約−55℃から約250℃、一部の実施形態では約0℃から約225℃、及び一部の実施形態では約10℃から約225℃に及ぶ温度で、約100時間又はそれよりも長く、一部の実施形態では約300時間から約3000時間、及び一部の実施形態では約400時間から約2500時間(例えば、500時間、600時間、700時間、800時間、900時間、1000時間、1100時間、1200時間、又は2000時間)にわたって維持することができる。
本発明は、以下の実施例を参照してより良く理解することができる。
試験手順
等価直列抵抗(ESR)
等価直列抵抗は、2.2ボルトDCバイアス及び0.5ボルトのピーク間正弦波信号を用いてKelvinリードを有する「Keithley 3330 Precision LCZ」メータを使用して測定することができる。作動周波数は、100kHzであり、温度は室温であった。
乾式及び湿式キャパシタンス
キャパシタンスは、2.2ボルトDCバイアス及び0.5ボルトのピーク間正弦波信号を用いてKelvinリードを有する「Keithley 3330 Precision LCZ」メータを使用して測定された。作動周波数は、120kHzであり、温度は室温であった。「乾式キャパシタンス」は、固体電解質、グラファイト、及び銀層の付加後の部分のキャパシタンスを意味するが、「湿式キャパシタンス」は、1mFタンタルカソードを基準にした17%硫酸で測定される誘電体の形成後の部分のキャパシタンスを意味する。
8,500μFV/gタンタル粉末を使用してアノードサンプルを形成した。各アノードサンプルは、1800℃で焼結されたタンタルワイヤに埋め込まれ、5.6g/cm3の密度までプレスされた。得られるペレットは、5.20×3.70×0.85mmのサイズを有した。ペレットは、85℃の温度で導電性8.6mSを有する水/リン酸電解質中で72.5Vまで陽極酸化され、誘電体層を形成した。ペレットは、30秒間30℃の温度で導電性2.0mSを有する水/ホウ酸/四ホウ酸二ナトリウム中で160Vまで更に陽極酸化され、外側に堆積したより薄い酸化物層を形成した。導電性ポリマーコーティングは、次に、固体含有量1.1%及び粘性20mPa.sを有する分散したポリ(3,4−エチレンジオキシチオフェン)(Clevious(登録商標)K,H.C.Starck)の中にアノードを浸漬することによって形成された。被覆時に、これらの部分は、20分間125℃で乾燥させた。この工程は、10回繰り返された。その後、これらの部分は、固体含有量2%及び粘性20mPa.sを有する分散したポリ(3,4−エチレンジオキシチオフェン)(Clevious(登録商標)K,H.C.Starck)の中に浸漬された。被覆時に、これらの部分は、20分間125℃で乾燥させた。この工程は、繰り返されなかった。その後、これらの部分は、固体含有量2%及び粘性160mPa.sを有する分散したポリ(3,4−エチレンジオキシチオフェン)(Clevious(登録商標)K,H.C.Starck)の中に浸漬された。被覆時に、これらの部分は、20分間125℃で乾燥させた。この工程は、8回繰り返された。これらの部分は、次に、グラファイト分散剤の中に浸漬され、乾燥させた。最終的に、これらの部分は、銀分散剤の中に浸漬され、乾燥させた。22μF/25Vコンデンサの複数の部分(200)は、このようにして作られた。
34,000μFV/gタンタル粉末を使用してアノードサンプルを形成した。各アノードサンプルは、1440℃で焼結されたタンタルワイヤに埋め込まれ、5.8g/cm3の密度までプレスされた。得られるペレットは、5.20×3.70×0.85mmのサイズを有した。ペレットは、85℃の温度で導電性8.6mSを有する水/リン酸電解質中で96.0Vまで陽極酸化され、誘電体層を形成した。ペレットは、30秒間30℃の温度で導電性2.0mSを有する水/ホウ酸/四ホウ酸二ナトリウム中で130Vまで更に陽極酸化され(2サイクル)、外側に堆積したより厚い酸化物層を形成した。導電性ポリマーコーティング、グラファイトコーティング、銀コーティングは、次に、実施例1に説明する同じ方式で形成された。33μF/25Vコンデンサの複数の部分(200)は、このようにして作られた。
コンデンサは、異なる導電性ポリマーコーティングを使用する以外は実施例2に説明する方式で形成された。導電性ポリマーコーティングは、固体含有量1.1%及び粘性20mPa.sを有する分散したポリ(3,4−エチレンジオキシチオフェン)(Clevious(登録商標)K,H.C.Starck)の中にアノードを浸漬することによって形成された。被覆時に、これらの部分は、20分間125℃で乾燥させた。この工程は、10回繰り返された。その後、これらの部分は、固体含有量2%及び粘性20mPa.s、並びに分子量600を有するポリ(エチレングリコール)(「Sigma Aldrich(登録商標)」)の付加的な20%固体含有量を有する分散したポリ(3,4−エチレンジオキシチオフェン)(Clevious(登録商標)K,H.C.Starck)の中に浸漬された。被覆時に、これらの部分は、20分間125℃で乾燥させた。この工程は、繰り返されなかった。その後、これらの部分は、固体含有量2%及び粘性160mPa.sを有する分散したポリ(3,4−エチレンジオキシチオフェン)(Clevious(登録商標)K,H.C.Starck)の中に浸漬された。被覆時に、これらの部分は、20分間125℃で乾燥させた。この工程は、8回繰り返された。これらの部分は、次に、グラファイト分散剤の中に浸漬され、乾燥させた。33μF/25Vコンデンサの複数の部分(200)は、このようにして作られた。
実施例1〜3の最終コンデンサは、次に、組み立て工程の前に電気性能に対して試験された。キャパシタンス、Df、及びESRの平均結果は、表1に以下のように示されている。湿式キャパシタンスは、実施例1に対して25.1μF、及び実施例2〜3に対して38.0μFであった。
(表1)
示すように、ポリエチレングリコールを有する部分(実施例3)は、実施例1及び2よりも高いキャパシタンスを達成した。
本発明のこれら及び他の修正及び変形は、本発明の精神及び範囲から逸脱することなく当業者によって実施することができる。更に、様々な実施形態の態様は、全体的又は部分的の両方で互換性がある場合があることを理解すべきである。更に、当業者は、以上の説明が単に例示に過ぎず、特許請求の範囲で更に説明される本発明を制限するように意図していないことを認めるであろう。
16 アノードリード
30 電解コンデンサ
33 コンデンサ要素
62 アノード終端
72 カソード終端

Claims (15)

  1. 固体電解コンデンサであって、
    約30,000μF*V/gよりも大きい比電荷を有する微粉化粉末から形成され、該粉末が3次元形状を有する粒子を含有し、該粒子は約4又はそれ未満のアスペクト比を有する焼結多孔質アノードと、
    前記アノード本体の上に重なる誘電体層と、
    前記誘電体層の上に重なり、複数の予備重合導電性ポリマー粒子及びヒドロキシ官能非イオン性コポリマーを含む固体電解質であって、該固体電解質は、前記誘電体層の上に重なる第1の層と該第1の層の上に重なる第2の層とを含有し、該第1の層は、前記複数の前記予備重合粒子を含有し、該第2の層は、前記ヒドロキシ官能非イオン性ポリマーを含有する、前記固体電解質と、
    前記固体電解質の上に重なる外部ポリマーコーティングと、
    を含み、
    約60V又はそれよりも大きい絶縁破壊電圧を示す、
    ことを特徴とする固体電解コンデンサ。
  2. 前記粒子は、結節状であることを特徴とする請求項1に記載の固体電解コンデンサ。
  3. 前記粉末は、約35,000から約45,000μF*V/gの比電荷を有することを特徴とする請求項1又は請求項2に記載の固体電解コンデンサ。
  4. 前記アノードは、約2500から約6000ppmの酸素を含有することを特徴とする請求項1から請求項3のいずれか1項に記載の固体電解コンデンサ。
  5. 前記予備重合粒子は、ポリ(3,4−エチレンジオキシチオフェン)のような置換ポリチオフェンから形成されることを特徴とする請求項1から請求項4のいずれか1項に記載の固体電解コンデンサ。
  6. 前記予備重合粒子は、ポリスチレンスルホン酸のようなモノマー又はポリマー対イオンを含有することを特徴とする請求項4に記載の固体電解コンデンサ。
  7. 前記予備重合粒子は、約2から約50ナノメートルの平均サイズを有することを特徴とする請求項1から請求項6のいずれか1項に記載の固体電解コンデンサ。
  8. 前記ヒドロキシ官能ポリマーは、ポリアルキレングリコールのようなポリアルキレンエーテルであることを特徴とする請求項1に記載の固体電解コンデンサ。
  9. 前記第2の層は、複数の予備重合導電性ポリマー粒子を含有することを特徴とする請求項1に記載の固体電解コンデンサ。
  10. 前記外部ポリマーコーティングは、複数の予備重合導電性ポリマー粒子を含有し、
    前記外部ポリマーコーティングの前記予備重合粒子は、前記固体電解質の該予備重合粒子よりも大きい平均サイズを有する、
    ことを特徴とする請求項1から請求項9のいずれか1項に記載の固体電解コンデンサ。
  11. 約80ボルト又はそれよりも高い絶縁破壊電圧及び/又は約50%又はそれよりも大きい湿式対乾式キャパシタンスを示すことを特徴とする請求項1から請求項10のいずれか1項に記載の固体電解コンデンサ。
  12. 請求項1から請求項11のいずれか1項に記載の固体電解コンデンサを形成する方法であって、
    約30,000μF*V/gよりも大きい比電荷を有し、かつ3次元形状を有する粒子を含有し、該粒子は約4又はそれ未満のアスペクト比を有する微粉化粉末をペレットの形態にプレスする段階と、
    前記ペレットを焼結する段階と、
    前記焼結ペレットを陽極酸化してアノードの上に重なる誘電体層を形成する段階と、
    予備重合導電性ポリマー粒子の分散剤及びヒドロキシ官能非イオン性コポリマーを含有する分散剤を前記誘電体層に付加する段階であって、該ヒドロキシ官能非イオン性コポリマーの層の上に外部ポリマーコーティングがさらに付加される、前記段階と、
    を含むことを特徴とする方法。
  13. 前記ペレットは、約1350℃から約1600℃の温度で焼結されることを特徴とする請求項12に記載の方法。
  14. プレス密度は、約5.0から約6.5g/cm3であることを特徴とする請求項12に記載の方法。
  15. ヒドロキシ官能化合物が、複数の前記予備重合導電性ポリマー粒子を含有する第2の分散剤の形態で付加されることを特徴とする請求項12に記載の方法。
JP2013149331A 2012-07-19 2013-07-18 高電圧での性能を改良した固体電解コンデンサ Active JP6370535B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261673437P 2012-07-19 2012-07-19
US61/673,437 2012-07-19

Publications (3)

Publication Number Publication Date
JP2014022749A JP2014022749A (ja) 2014-02-03
JP2014022749A5 JP2014022749A5 (ja) 2014-09-04
JP6370535B2 true JP6370535B2 (ja) 2018-08-08

Family

ID=49880065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013149331A Active JP6370535B2 (ja) 2012-07-19 2013-07-18 高電圧での性能を改良した固体電解コンデンサ

Country Status (4)

Country Link
US (2) US9548163B2 (ja)
JP (1) JP6370535B2 (ja)
CN (1) CN103578777B (ja)
DE (1) DE102013214126A1 (ja)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9087640B2 (en) * 2011-04-08 2015-07-21 Nec Tokin Corporation Conductive polymer suspension and method for producing the same, conductive organic material, and electrolytic capacitor and method for producing the same
US10879010B2 (en) 2012-02-27 2020-12-29 Kemet Electronics Corporation Electrolytic capacitor having a higher cap recovery and lower ESR
US10643796B2 (en) 2012-02-27 2020-05-05 Kemet Electronics Corporation Conductive polymer dispersion with enhanced coverage
DE102013213723A1 (de) 2012-07-19 2014-01-23 Avx Corporation Festelektrolytkondensator mit erhöhter Feucht-zu-Trocken-Kapazität
DE102013213720A1 (de) 2012-07-19 2014-01-23 Avx Corporation Temperaturstabiler Festelektrolytkondensator
CN103578768B (zh) 2012-07-19 2017-10-31 Avx公司 用在电解电容器固体电解质中的非离子表面活性剂
GB2512480B (en) 2013-03-13 2018-05-30 Avx Corp Solid electrolytic capacitor for use in extreme conditions
US10290430B2 (en) 2014-11-24 2019-05-14 Avx Corporation Wet Electrolytic Capacitor for an Implantable Medical Device
US10074487B2 (en) * 2015-05-18 2018-09-11 Avx Corporation Solid electrolytic capacitor having a high capacitance
US9972444B2 (en) * 2015-05-29 2018-05-15 Avx Corporation Solid electrolytic capacitor element for use in dry conditions
US9767963B2 (en) 2015-05-29 2017-09-19 Avx Corporation Solid electrolytic capacitor with an ultrahigh capacitance
US9672989B2 (en) 2015-05-29 2017-06-06 Avx Corporation Solid electrolytic capacitor assembly for use in a humid atmosphere
US9991055B2 (en) 2015-05-29 2018-06-05 Avx Corporation Solid electrolytic capacitor assembly for use at high temperatures
EP3391398B1 (en) * 2015-12-15 2023-11-15 Kemet Electronics Corporation Conductive polymer dispersion with enhanced coverage
WO2020033819A1 (en) 2018-08-10 2020-02-13 Avx Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
DE112019005962T5 (de) * 2018-11-29 2021-08-12 Avx Corporation Festelektrolytkondensator, der eine sequentiell aufgedampfte dielektrische Schicht enthält
WO2020123577A1 (en) * 2018-12-11 2020-06-18 Avx Corporation Solid electrolytic capacitor containing an intrinsically conductive polymer
CN114521278A (zh) 2019-09-18 2022-05-20 京瓷Avx元器件公司 用于高电压下使用的固体电解电容器
CN114424307A (zh) 2019-09-18 2022-04-29 京瓷Avx元器件公司 含有阻隔涂覆物的固体电解电容器
CN111009419B (zh) * 2019-09-26 2022-05-10 宇启材料科技南通有限公司 一种涂层电极箔及制作方法和电解电容器
KR20210066237A (ko) * 2019-11-28 2021-06-07 삼성전기주식회사 고체 전해 커패시터 및 이의 제조방법
JP2023506714A (ja) 2019-12-10 2023-02-20 キョーセラ・エイブイエックス・コンポーネンツ・コーポレーション プレコート及び固有導電性ポリマーを含む固体電解キャパシタ
KR20220113704A (ko) 2019-12-10 2022-08-16 교세라 에이브이엑스 컴포넌츠 코포레이션 안정성이 증가된 탄탈 커패시터
US11631548B2 (en) 2020-06-08 2023-04-18 KYOCERA AVX Components Corporation Solid electrolytic capacitor containing a moisture barrier
DE112021004996T5 (de) * 2020-09-23 2023-06-29 KYOCERA AVX Components Corporation Festelektrolytkondensator, der eine deoxidierte Anode enthält

Family Cites Families (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3440495A (en) 1966-11-07 1969-04-22 Mallory & Co Inc P R Hermetically sealed electrolytic capacitor
US3922773A (en) 1974-07-17 1975-12-02 Corning Glass Works Method of forming a hermetic enclosure
US4131520A (en) 1977-11-10 1978-12-26 Sprague Electric Company Two-stage anodization of capacitor electrodes
US4278513A (en) 1980-06-30 1981-07-14 Sprague Electric Company Two-stage differential anodization process
JPS58147023A (ja) 1982-02-25 1983-09-01 日本電気ホームエレクトロニクス株式会社 固体電解コンデンサの製造方法
US4479168A (en) 1983-12-19 1984-10-23 Sprague Electric Company Electrolytic capacitor with a hermetic seal
US4508563A (en) 1984-03-19 1985-04-02 Sprague Electric Company Reducing the oxygen content of tantalum
JPS6215877A (ja) 1985-07-12 1987-01-24 Sharp Corp 半導体レ−ザアレイ装置
DE3814730A1 (de) 1988-04-30 1989-11-09 Bayer Ag Feststoff-elektrolyte und diese enthaltende elektrolyt-kondensatoren
JPH02310301A (ja) 1989-05-24 1990-12-26 Showa Kiyabotsuto Suupaa Metal Kk タンタル粉末及びその製造法
JPH0364014A (ja) 1989-08-02 1991-03-19 Marcon Electron Co Ltd 固体電解コンデンサ及びその製造方法
US4960471A (en) 1989-09-26 1990-10-02 Cabot Corporation Controlling the oxygen content in tantalum material
JPH0453115A (ja) 1990-06-18 1992-02-20 Japan Carlit Co Ltd:The 固体電解コンデンサの製造方法
US5111327A (en) 1991-03-04 1992-05-05 General Electric Company Substituted 3,4-polymethylenedioxythiophenes, and polymers and electro responsive devices made therefrom
US5448447A (en) 1993-04-26 1995-09-05 Cabot Corporation Process for making an improved tantalum powder and high capacitance low leakage electrode made therefrom
JP2765462B2 (ja) 1993-07-27 1998-06-18 日本電気株式会社 固体電解コンデンサおよびその製造方法
JP3694038B2 (ja) 1993-09-09 2005-09-14 日東電工株式会社 固体電解コンデンサ
JPH07135126A (ja) 1993-11-10 1995-05-23 Nec Corp 固体電解コンデンサ及びその製造方法
JP3070408B2 (ja) 1993-12-28 2000-07-31 日本電気株式会社 固体電解コンデンサおよびその製造方法
JP3388639B2 (ja) * 1994-08-30 2003-03-24 ニチコン株式会社 コンデンサ素子の製造方法
JP2770746B2 (ja) 1994-09-02 1998-07-02 日本電気株式会社 固体電解コンデンサ及びその製造方法
JP3434041B2 (ja) 1994-09-28 2003-08-04 スタルクヴイテック株式会社 タンタル粉末及びそれを用いた電解コンデンサ
JP3068430B2 (ja) 1995-04-25 2000-07-24 富山日本電気株式会社 固体電解コンデンサ及びその製造方法
US5643432A (en) 1995-07-13 1997-07-01 Avx Corporation Selective anodization of capacitor anode body
US6165623A (en) 1996-11-07 2000-12-26 Cabot Corporation Niobium powders and niobium electrolytic capacitors
GB9700566D0 (en) 1997-01-13 1997-03-05 Avx Ltd Binder removal
US6308001B1 (en) 1998-12-22 2001-10-23 Alliedsignal Inc. Radiation curable fluorinated vinyl ethers derived from hexafluoropropene
US6322912B1 (en) 1998-09-16 2001-11-27 Cabot Corporation Electrolytic capacitor anode of valve metal oxide
US6391275B1 (en) 1998-09-16 2002-05-21 Cabot Corporation Methods to partially reduce a niobium metal oxide and oxygen reduced niobium oxides
US6416730B1 (en) 1998-09-16 2002-07-09 Cabot Corporation Methods to partially reduce a niobium metal oxide oxygen reduced niobium oxides
US6231993B1 (en) 1998-10-01 2001-05-15 Wilson Greatbatch Ltd. Anodized tantalum pellet for an electrolytic capacitor
US6261434B1 (en) 1999-10-19 2001-07-17 Kemet Electronics Corporation Differential anodization process for electrolytic capacitor anode bodies
JP3585791B2 (ja) 1999-11-04 2004-11-04 Necトーキン株式会社 固体電解コンデンサ用陽極体の製造方法及びその製造方法に用いられる連続焼結装置
DE10004725A1 (de) 2000-02-03 2001-08-09 Bayer Ag Verfahren zur Herstellung von wasserlöslichen pi-konjugierten Polymeren
US6576099B2 (en) 2000-03-23 2003-06-10 Cabot Corporation Oxygen reduced niobium oxides
US6958198B2 (en) 2000-07-17 2005-10-25 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrochemical apparatus
JP2002050550A (ja) 2000-07-31 2002-02-15 Dainippon Ink & Chem Inc タンタル金属粉末分散液、タンタル電解コンデンサ用陽極素子及びこれを用いたタンタル電解コンデンサ、並びにタンタル電解コンデンサ用陽極素子の製造方法。
JP2004513514A (ja) 2000-11-06 2004-04-30 キャボット コーポレイション 酸素を低減した改質バルブ金属酸化物
US7118690B2 (en) 2000-11-22 2006-10-10 H. C. Starck Gmbh Dispersible polymer powders
US6674635B1 (en) 2001-06-11 2004-01-06 Avx Corporation Protective coating for electrolytic capacitors
JP4831108B2 (ja) 2001-07-16 2011-12-07 パナソニック株式会社 固体電解コンデンサの製造方法
JP2003168633A (ja) 2001-11-30 2003-06-13 Sanyo Electric Co Ltd 固体電解コンデンサ及びその製造方法並びに導電性複合材料及びその製造方法
JP4248289B2 (ja) 2003-03-31 2009-04-02 三洋電機株式会社 固体電解コンデンサおよびその製造方法
RU2370838C9 (ru) 2003-04-02 2010-12-10 Х.К.Штарк ГмБХ Замедляющий окислительный агент для получения проводящих полимеров
US7917217B2 (en) 2003-05-07 2011-03-29 Medtronic, Inc. Wet tantalum reformation method and apparatus
US20040231119A1 (en) 2003-05-21 2004-11-25 Brenneman Keith R. Method of electrolytic deposition of an intrinsically conductive polymer upon a non-conductive substrate
WO2004110684A2 (en) 2003-06-10 2004-12-23 Cabot Corporation Tantalum powders and methods of producing same
US6798644B1 (en) 2003-07-10 2004-09-28 Kemet Electronics Corporation ESR of solid electrolytic capacitors using conductive polymer cathodes
ATE440373T1 (de) 2003-10-17 2009-09-15 Starck H C Gmbh Elektrolytkondensatoren mit polymerer aussenschicht
US6804109B1 (en) 2003-10-20 2004-10-12 Kemet Electronics Corporation Solid electrolyte capacitor having transition metal oxide underlayer and conductive polymer electrolyte
US7948069B2 (en) 2004-01-28 2011-05-24 International Rectifier Corporation Surface mountable hermetically sealed package
DE102004022110A1 (de) * 2004-05-05 2005-12-01 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
JP2006028214A (ja) 2004-07-12 2006-02-02 Nagase Chemtex Corp ポリ(3,4−ジアルコキシチオフェン)とポリ陰イオンとの複合体の水分散体の製造方法
DE102004049040B4 (de) 2004-10-08 2008-11-27 H.C. Starck Gmbh Verfahren zur Herstellung von Festelektrolytkondensatoren
JP4903421B2 (ja) 2005-02-23 2012-03-28 京セラ株式会社 セラミック容器およびこれを用いた電池または電気二重層キャパシタ
DE102005016727A1 (de) 2005-04-11 2006-10-26 H.C. Starck Gmbh Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zu ihrer Herstellung
DE102005033839A1 (de) 2005-07-20 2007-01-25 H.C. Starck Gmbh Elektrolytkondensatoren mit polymerer Außenschicht und Verfahren zur ihrer Herstellung
DE102005043829A1 (de) 2005-09-13 2007-04-05 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit hoher Nennspannung
DE102005043828A1 (de) 2005-09-13 2007-03-22 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
DE102005053646A1 (de) 2005-11-10 2007-05-16 Starck H C Gmbh Co Kg Polymerbeschichtungen mit verbesserter Lösungsmittelbeständigkeit
KR101327242B1 (ko) 2005-11-17 2013-11-12 헤레우스 프레셔스 메탈스 게엠베하 운트 코. 카게 폴리(3,4-디알콕시티오펜)과 폴리음이온의 복합체의수분산체의 제조방법
US20070171596A1 (en) 2006-01-20 2007-07-26 Chacko Antony P Electrode compositions containing carbon nanotubes for solid electrolyte capacitors
DE112007001100T5 (de) 2006-05-05 2009-05-14 Cabot Corp., Boston Tantalpulver mit glatter Oberfläche und Verfahren zur Herstellung desselben
US7563290B2 (en) 2006-07-06 2009-07-21 Kemet Electronics Corporation High voltage solid electrolytic capacitors using conductive polymer slurries
JPWO2008029502A1 (ja) 2006-08-29 2010-01-21 ユニチカ株式会社 電極形成用バインダー、そのバインダーを用いた電極形成用スラリー、そのスラリーを用いた電極、その電極を用いた二次電池、その電極を用いたキャパシタ
JP2008182056A (ja) 2007-01-25 2008-08-07 Nichicon Corp 固体電解コンデンサ
US7515396B2 (en) 2007-03-21 2009-04-07 Avx Corporation Solid electrolytic capacitor containing a conductive polymer
US7724502B2 (en) 2007-09-04 2010-05-25 Avx Corporation Laser-welded solid electrolytic capacitor
DE102007048212A1 (de) * 2007-10-08 2009-04-09 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit polymerer Zwischenschicht
US7760488B2 (en) * 2008-01-22 2010-07-20 Avx Corporation Sintered anode pellet treated with a surfactant for use in an electrolytic capacitor
US8094434B2 (en) 2008-04-01 2012-01-10 Avx Corporation Hermetically sealed capacitor assembly
DE102008023008A1 (de) 2008-05-09 2009-11-12 H.C. Starck Gmbh Neuartige Polythiophene-Polyanion-Komplexe in unpolaren organischen Lösungsmitteln
US20090279233A1 (en) 2008-05-12 2009-11-12 Yuri Freeman High volumetric efficiency anodes for electrolytic capacitors
DE102008032578A1 (de) 2008-07-11 2010-01-14 H.C. Starck Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren
US20100085685A1 (en) * 2008-10-06 2010-04-08 Avx Corporation Capacitor Anode Formed From a Powder Containing Coarse Agglomerates and Fine Agglomerates
JP5340708B2 (ja) * 2008-11-28 2013-11-13 三洋電機株式会社 固体電解コンデンサ
JP5289033B2 (ja) 2008-12-24 2013-09-11 三洋電機株式会社 固体電解コンデンサ
DE102009007594A1 (de) 2009-02-05 2010-08-12 H.C. Starck Clevios Gmbh Verfahren zur Herstellung von Elektrolytkondensatoren mit polymerer Außenschicht.
US8279853B1 (en) 2009-03-09 2012-10-02 Sprint Communications Company L.P. Socket-based internet protocol for wireless networks
JP5273726B2 (ja) * 2009-04-07 2013-08-28 Necトーキン株式会社 固体電解コンデンサおよびその製造方法
US8310815B2 (en) 2009-04-20 2012-11-13 Kemet Electronics Corporation High voltage and high efficiency polymer electrolytic capacitors
US8194395B2 (en) 2009-10-08 2012-06-05 Avx Corporation Hermetically sealed capacitor assembly
US8125768B2 (en) 2009-10-23 2012-02-28 Avx Corporation External coating for a solid electrolytic capacitor
JP2011134846A (ja) 2009-12-24 2011-07-07 Holy Stone Polytech Co Ltd 固体電解コンデンサ
JP5495311B2 (ja) 2010-01-21 2014-05-21 Necトーキン株式会社 固体電解コンデンサおよびその製造方法
CN102834881B (zh) 2010-03-31 2016-03-02 日本贵弥功株式会社 固体电解电容器
JP2011253878A (ja) * 2010-06-01 2011-12-15 Holy Stone Polytech Co Ltd 固体電解コンデンサ
JP5551529B2 (ja) 2010-07-05 2014-07-16 Necトーキン株式会社 固体電解コンデンサとその製造方法
US8279584B2 (en) 2010-08-12 2012-10-02 Avx Corporation Solid electrolytic capacitor assembly
JP2012043958A (ja) 2010-08-19 2012-03-01 Nec Tokin Corp 固体電解コンデンサおよびその製造方法
US8405985B1 (en) 2010-09-08 2013-03-26 Juniper Networks, Inc. Chassis system with front cooling intake
US8808403B2 (en) 2010-09-15 2014-08-19 Kemet Electronics Corporation Process for solid electrolytic capacitors using polymer slurries
DE102010047086A1 (de) 2010-10-01 2012-04-05 Heraeus Clevios Gmbh Schichtaufbauten mit verbesserten elektrischen Kenngrößen beinthaltend PEDOT/PSS sowie einen Stabilisator
DE102010047087A1 (de) 2010-10-01 2012-04-05 Heraeus Clevios Gmbh Verfahren zur Verbesserung der elektrischen Kenngrößen in Kondensatoren enthaltend PEDOT/PSS als Feststoffelektrolyt durch ein Polyalkylenglykol
US9508491B2 (en) 2010-10-01 2016-11-29 Heraeus Deutschland GmbH & Co. KG Method for improving electrical parameters in capacitors comprising PEDOT/PSS as a solid electrolyte through a polyalkylene glycol
DE102010048031A1 (de) 2010-10-12 2012-04-12 Heraeus Clevios Gmbh Polythiophene beinhaltende Dispersionen mit definiertem Sulfat-Gehalt
DE102010048032A1 (de) 2010-10-12 2012-04-12 Heraeus Clevios Gmbh Polythiophene beinhaltende Dispersionen mit definiertem Gehalt an Thiophen-Monomer
US8824122B2 (en) 2010-11-01 2014-09-02 Avx Corporation Solid electrolytic capacitor for use in high voltage and high temperature applications
US8355242B2 (en) 2010-11-12 2013-01-15 Avx Corporation Solid electrolytic capacitor element
US8848342B2 (en) 2010-11-29 2014-09-30 Avx Corporation Multi-layered conductive polymer coatings for use in high voltage solid electrolytic capacitors
EP2652491B1 (en) 2010-12-15 2017-11-29 Baxalta GmbH Eluate collection using conductivity gradient
JP2014063567A (ja) 2011-01-26 2014-04-10 Sony Corp 電池パック及び電力消費機器
KR101780103B1 (ko) 2011-01-27 2017-09-19 이데미쓰 고산 가부시키가이샤 폴리아닐린 복합체, 그의 제조 방법 및 조성물
WO2012112680A2 (en) 2011-02-15 2012-08-23 Kemet Electronics Corporation Process for producing electrolytic capacitors and capacitors made thereby
JP5995262B2 (ja) 2011-03-06 2016-09-21 ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー Pedot/pssを固体電解質として含有するコンデンサにおける電気パラメータをポリグリセロールによって改善するための方法
DE102011016493A1 (de) 2011-04-08 2012-10-11 Heraeus Precious Metals Gmbh & Co. Kg Verfahren zur Verbesserung der elektrischen Kenngrößen in Kondensatoren enthaltend PEDOT/PSS als Feststoffelektrolyt durch Additive
US8349030B1 (en) 2011-09-21 2013-01-08 Kemet Electronics Corporation Method for making anodes for high voltage electrolytic capacitors with high volumetric efficiency and stable D.C. leakage
WO2013044222A2 (en) 2011-09-23 2013-03-28 Board Of Governors For Higher Education, State Of Rhode Island And Providence Plantations Systems and methods for providing microfluidic devices
JP5769742B2 (ja) 2012-02-27 2015-08-26 ケメット エレクトロニクス コーポレーション 層間架橋を用いた固体電解コンデンサ
CN103578768B (zh) 2012-07-19 2017-10-31 Avx公司 用在电解电容器固体电解质中的非离子表面活性剂
DE102013213720A1 (de) 2012-07-19 2014-01-23 Avx Corporation Temperaturstabiler Festelektrolytkondensator
DE102013213723A1 (de) 2012-07-19 2014-01-23 Avx Corporation Festelektrolytkondensator mit erhöhter Feucht-zu-Trocken-Kapazität
US9343239B2 (en) 2013-05-17 2016-05-17 Kemet Electronics Corporation Solid electrolytic capacitor and improved method for manufacturing a solid electrolytic capacitor
CN105431918B (zh) 2013-07-24 2019-08-27 凯米特电子公司 用于电容器的具有双交联剂体系的导电聚合物组合物

Also Published As

Publication number Publication date
DE102013214126A1 (de) 2014-01-23
CN103578777A (zh) 2014-02-12
JP2014022749A (ja) 2014-02-03
US20140022704A1 (en) 2014-01-23
US20170148577A1 (en) 2017-05-25
CN103578777B (zh) 2018-07-31
US10121600B2 (en) 2018-11-06
US9548163B2 (en) 2017-01-17

Similar Documents

Publication Publication Date Title
JP6370535B2 (ja) 高電圧での性能を改良した固体電解コンデンサ
JP6630466B2 (ja) 湿式対乾式キャパシタンスを強化した固体電解コンデンサ
JP6641321B2 (ja) 超高電圧固体電解コンデンサ
JP6645723B2 (ja) 温度安定固体電解コンデンサ
JP6795913B2 (ja) 超高キャパシタンスを有する固体電解キャパシタ
JP6317552B2 (ja) 電解コンデンサの固体電解質用の非イオン性界面活性剤
KR102244972B1 (ko) 전도성 폴리머 입자들을 포함하는 고체 전해 커패시터
CN109716466B (zh) 具有改进的泄露电流的固体电解电容器
JP2022062241A (ja) 高湿度雰囲気中で用いるための固体電解キャパシタ
JP6948113B2 (ja) 乾燥条件下で使用するための固体電解キャパシタ素子
KR20180100582A (ko) 누설전류가 개선된 고체 전해 커패시터
JP7442500B2 (ja) 導電性ポリマー粒子から形成される固体電解キャパシタ
JP2017022367A (ja) 多湿雰囲気中で使用するための固体電解キャパシタアセンブリ
JP2020526916A (ja) 固体電解キャパシタアセンブリ
JP2022512163A (ja) 固有導電性ポリマーを含む固体電解キャパシタ
JP2017034232A (ja) 高温で使用するための固体電解キャパシタアセンブリ
JP2016219777A (ja) 高キャパシタンスを有する固体電解キャパシタ
JP7406569B2 (ja) 固体電解コンデンサ
KR20210031535A (ko) 고유 전도성 중합체를 포함하는 고체 전해 커패시터

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140723

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180320

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180611

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180711

R150 Certificate of patent or registration of utility model

Ref document number: 6370535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250