JP2015135961A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2015135961A
JP2015135961A JP2014255831A JP2014255831A JP2015135961A JP 2015135961 A JP2015135961 A JP 2015135961A JP 2014255831 A JP2014255831 A JP 2014255831A JP 2014255831 A JP2014255831 A JP 2014255831A JP 2015135961 A JP2015135961 A JP 2015135961A
Authority
JP
Japan
Prior art keywords
semiconductor
insulator
conductor
oxide semiconductor
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2014255831A
Other languages
English (en)
Other versions
JP2015135961A5 (ja
Inventor
山崎 舜平
Shunpei Yamazaki
舜平 山崎
下村 明久
Akihisa Shimomura
明久 下村
裕平 佐藤
Yuhei Sato
裕平 佐藤
靖正 山根
Yasumasa Yamane
靖正 山根
山元 良高
Yoshitaka Yamamoto
良高 山元
英臣 須澤
Hideomi Suzawa
英臣 須澤
哲弘 田中
Tetsuhiro Tanaka
哲弘 田中
岡崎 豊
Yutaka Okazaki
豊 岡崎
直樹 奥野
Naoki Okuno
直樹 奥野
貴久 石山
Takahisa Ishiyama
貴久 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2014255831A priority Critical patent/JP2015135961A/ja
Publication of JP2015135961A publication Critical patent/JP2015135961A/ja
Publication of JP2015135961A5 publication Critical patent/JP2015135961A5/ja
Priority to JP2020068533A priority patent/JP6950032B2/ja
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41733Source or drain electrodes for field effect devices for thin film transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Abstract

【課題】導通時の電流値が大きいトランジスタを提供する。
【解決手段】過剰酸素を含む第1の絶縁体と、第1の絶縁体上の第1の酸化物半導体と、第1の酸化物半導体上の第2の酸化物半導体と、第2の酸化物半導体上に間隔を開けて配置された第1の導電体および第2の導電体と、第1の酸化物半導体の側面、第2の酸化物半導体の上面および側面、第1の導電体の上面、ならびに第2の導電体の上面と接する第3の酸化物半導体と、第3の酸化物半導体上の第2の絶縁体と、第2の絶縁体および第3の酸化物半導体を介して、第2の酸化物半導体の上面および側面と面する第3の導電体と、を有し、第1の酸化物半導体は第3の酸化物半導体よりも酸素透過性が高い半導体装置である。
【選択図】図1

Description

本発明は、物、方法、または、製造方法に関する。または、本発明は、プロセス、マシン、マニュファクチャ、または組成物(コンポジション・オブ・マター)に関する。特に、本発明は、例えば、半導体、半導体装置、表示装置、発光装置、照明装置、蓄電装置、記憶装置、プロセッサに関する。または、半導体、半導体装置、表示装置、発光装置、照明装置、蓄電装置、記憶装置、プロセッサの製造方法に関する。または、半導体装置、表示装置、発光装置、照明装置、蓄電装置、記憶装置、プロセッサの駆動方法に関する。
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置全般を指す。表示装置、発光装置、照明装置、電気光学装置、半導体回路および電子機器は、半導体装置を有する場合がある。
絶縁表面を有する基板上の半導体を用いて、トランジスタを構成する技術が注目されている。当該トランジスタは集積回路や表示装置のような半導体装置に広く応用されている。トランジスタに適用可能な半導体としてシリコン層が知られている。
トランジスタの半導体に用いられるシリコン層は、用途によって非晶質シリコン層と多結晶シリコン層とが使い分けられている。例えば、大型の表示装置を構成するトランジスタに適用する場合、大面積基板への成膜技術が確立されている非晶質シリコン層が好適である。一方、駆動回路を一体形成した高機能の表示装置を構成するトランジスタに適用する場合、高い電界効果移動度を有するトランジスタを作製可能な多結晶シリコン層が好適である。多結晶シリコン層は、非晶質シリコン層に対し高温での熱処理、またはレーザ光処理を行うことで形成する方法が知られる。
また、近年は、酸化物半導体が注目されている。酸化物半導体は、スパッタリング法などを用いて成膜できるため、大型の表示装置を構成するトランジスタの半導体に用いることができる。また、酸化物半導体を用いたトランジスタは、高い電界効果移動度を有するため、駆動回路を一体形成した高機能の表示装置を実現できる。また、非晶質シリコン層を用いたトランジスタの生産設備の一部を改良して利用することが可能であるため、設備投資を抑えられるメリットもある。
酸化物半導体を用いたトランジスタに安定した電気特性を与える方法として、酸化物半導体と接する絶縁体への酸素ドーピング技術が開示されている(特許文献1参照。)。特許文献1に開示された技術を用いることで、酸化物半導体中の酸素欠損を低減することができる。その結果、酸化物半導体を用いたトランジスタの電気特性のばらつきを低減し、信頼性を向上させることができる。
ところで、酸化物半導体膜を用いたトランジスタは、非導通状態において極めてリーク電流が小さいことが知られている。例えば、酸化物半導体膜を用いたトランジスタのリーク特性を応用した低消費電力のCPUなどが開示されている(特許文献2参照。)。
また、半導体膜からなる活性層で井戸型ポテンシャルを構成することにより、高い電界効果移動度を有するトランジスタが得られることが開示されている(特許文献3参照。)。
特開2011−243974号公報 特開2012−257187号公報 特開2012−59860号公報
導通時の電流(オン電流)が大きいトランジスタを提供することを課題の一とする。または、非導通時の電流が小さいトランジスタを提供することを課題の一とする。または、電気特性の安定したトランジスタを提供することを課題の一とする。または、当該トランジスタを有する半導体装置を提供することを課題の一とする。または、丈夫な半導体装置を提供することを課題の一とする。または、新規な半導体装置を提供することを課題の一とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
(1)
本発明の一態様は、過剰酸素を含む第1の絶縁体と、第1の絶縁体上の第1の酸化物半導体と、第1の酸化物半導体上の第2の酸化物半導体と、第2の酸化物半導体上に間隔を開けて配置された第1の導電体および第2の導電体と、第2の酸化物半導体上、第1の導電体上および第2の導電体上の第2の絶縁体と、第2の絶縁体を介して、第2の酸化物半導体と面する第3の導電体と、を有し、第1の酸化物半導体は酸素を透過する性質を有する半導体装置である。
(2)
または、本発明の一態様は、過剰酸素を含む第1の絶縁体と、第1の絶縁体上の第1の酸化物半導体と、第1の酸化物半導体上の第2の酸化物半導体と、第2の酸化物半導体上に間隔を開けて配置された第1の導電体および第2の導電体と、第1の酸化物半導体の側面、第2の酸化物半導体の上面および側面、第1の導電体の上面、ならびに第2の導電体の上面と接する第3の酸化物半導体と、第3の酸化物半導体上の第2の絶縁体と、第2の絶縁体および第3の酸化物半導体を介して、第2の酸化物半導体の上面および側面と面する第3の導電体と、を有し、第1の酸化物半導体は第3の酸化物半導体よりも酸素透過性が高い半導体装置である。
(3)
または、本発明の一態様は、過剰酸素を含む第1の絶縁体と、第1の絶縁体上の第1の酸化物半導体と、第1の酸化物半導体上の第2の酸化物半導体と、第2の酸化物半導体上に間隔を開けて配置された第1の導電体および第2の導電体と、第1の酸化物半導体の側面、第2の酸化物半導体の上面および側面、第1の導電体の上面、ならびに第2の導電体の上面と接する第3の酸化物半導体と、第3の酸化物半導体上の第2の絶縁体と、第2の絶縁体および第3の酸化物半導体を介して、第2の酸化物半導体の上面および側面と面する第3の導電体と、を有し、第1の酸化物半導体は第3の酸化物半導体よりも密度が低い半導体装置である。
(4)
または、本発明の一態様は、過剰酸素を含む第1の絶縁体と、第1の絶縁体上の第1の酸化物半導体と、第1の酸化物半導体上の第2の酸化物半導体と、第2の酸化物半導体上に間隔を開けて配置された第1の導電体および第2の導電体と、第1の酸化物半導体の側面、第2の酸化物半導体の上面および側面、第1の導電体の上面、ならびに第2の導電体の上面と接する第3の酸化物半導体と、第3の酸化物半導体上の第2の絶縁体と、第2の絶縁体および第3の酸化物半導体を介して、第2の酸化物半導体の上面および側面と面する第3の導電体と、を有し、第1の酸化物半導体は第3の酸化物半導体よりも結晶性が低い半導体装置である。
(5)
または、本発明の一態様は、(1)乃至(4)のいずれか一において、少なくとも、第1の絶縁体、第1の酸化物半導体、第2の酸化物半導体を覆う第3の絶縁体を有し、第3の絶縁体が酸素をブロックする機能を有する半導体装置である。
(6)
または、本発明の一態様は、(1)乃至(4)のいずれか一において、少なくとも、第1の絶縁体、第1の酸化物半導体、第2の酸化物半導体を覆う第3の絶縁体を有し、第3の絶縁体が水素をブロックする機能を有する半導体装置である。
(7)
または、本発明の一態様は、(1)乃至(6)のいずれか一において、第1の酸化物半導体は第2の酸化物半導体よりも電子親和力が小さい半導体装置である。
(8)
または、本発明の一態様は、(2)乃至(7)のいずれか一において、第3の酸化物半導体は第2の酸化物半導体よりも電子親和力が小さい半導体装置である。
(9)
または、本発明の一態様は、(1)乃至(8)のいずれか一において、第1の酸化物半導体は第2の酸化物半導体よりもエネルギーギャップが大きい半導体装置である。
(10)
または、本発明の一態様は、(2)乃至(9)のいずれか一において、第3の酸化物半導体は第2の酸化物半導体よりもエネルギーギャップが大きい半導体装置である。
(11)
または、本発明の一態様は、(1)乃至(10)のいずれか一において、第1の絶縁体は、酸化シリコン層または酸化窒化シリコン層である半導体装置である。
(12)
または、本発明の一態様は、(2)乃至(11)のいずれか一において、第3の酸化物半導体は、酸素をブロックする機能を有する半導体装置である。
(13)
または、本発明の一態様は、(1)乃至(12)のいずれか一において、第2の絶縁体は、二次イオン質量分析法における水素濃度が1×1019atoms/cm未満である領域を有する半導体装置である。
(14)
または、本発明の一態様は、(2)乃至(13)のいずれか一において、第3の酸化物半導体、第2の絶縁体および第3の導電体は、上面から見た端部の形状が同様である半導体装置である。
(15)
または、本発明の一態様は、(1)乃至(14)のいずれか一において、第2の酸化物半導体が過剰酸素を含む半導体装置である。
(16)
または、本発明の一態様は、(1)乃至(15)のいずれか一において、第3の絶縁体上に第4の絶縁体を有し、第4の絶縁体は、第2の酸化物半導体の有する領域よりも、二次イオン質量分析法における水素濃度が高い領域を有する半導体装置である。
なお、本発明の一態様に係る半導体装置において、酸化物半導体を他の半導体に置き換えても構わない。
導通時の電流が大きいトランジスタを提供することができる。または、非導通時の電流が小さいトランジスタを提供することができる。または、電気特性の安定したトランジスタを提供することができる。または、当該トランジスタを有する半導体装置を提供することができる。または、丈夫な半導体装置を提供することができる。または、新規な半導体装置を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタの断面を示す斜視図。 本発明の一態様に係るトランジスタの一部のバンド図および導通時の電流の経路を説明する図。 本発明の一態様に係るトランジスタの導通時の電子の流れを説明する図。 本発明の一態様に係るトランジスタを示す断面図。 本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタの作製方法を示す断面図。 本発明の一態様に係るトランジスタの作製方法を示す断面図。 本発明の一態様に係るトランジスタの作製方法を示す断面図。 本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタを示す断面図。 本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタを示す断面図。 本発明の一態様に係る半導体装置の断面図。 本発明の一態様に係る半導体装置の回路図。 本発明の一態様に係る記憶装置の回路図。 本発明の一態様に係るRFタグのブロック図。 本発明の一態様に係るRFタグの使用例を示す図。 本発明の一態様に係るCPUを示すブロック図。 本発明の一態様に係る記憶素子の回路図。 本発明の一態様に係る表示装置の上面図および回路図。 本発明の一態様に係る表示モジュールを説明する図。 本発明の一態様に係る電子機器を示す図。 CAAC−OSの断面におけるCs補正高分解能TEM像、およびCAAC−OSの断面模式図。 CAAC−OSの平面におけるCs補正高分解能TEM像。 CAAC−OSおよび単結晶酸化物半導体のXRDによる構造解析を説明する図。 In−Ga−Zn酸化物中の酸素の移動経路を説明する図。 成膜時の基板温度と上面の粗さとの関係を示す図。 成膜時の酸素ガス割合と上面の荒さとの関係を示す図。 成膜時の基板温度および酸素ガス割合とXRDスペクトルの関係を示す図。 成膜時の酸素ガス割合とCAAC化率との関係を示す図。 成膜時の基板温度および酸素ガス割合とXRDスペクトルの関係を示す図。 成膜時の基板温度および成膜時の酸素ガス割合とCAACに起因したXRD強度との関係を示す図。 成膜時の基板温度および成膜時の酸素ガス割合と膜密度との関係を示す図。 膜密度とCAACに起因したXRD強度との関係を示す図。 18Oの拡散を示すSIMSによる分析結果を示す図。 18Oの拡散を示すSIMSによる分析結果を示す図。 18Oの拡散長をSIMSの分析結果から解析する方法を説明する図。 膜密度と拡散長との関係を示す図。 トランジスタの電気特性を示す図。 トランジスタの電気特性を示す図。 トランジスタの電気特性を示す図。 トランジスタの電気特性を示す図。 トランジスタの電気特性を示す図。 CAAC−OSの電子回折パターンを示す図。 In−Ga−Zn酸化物の電子照射による結晶部の変化を示す図。
本発明の実施の形態について、図面を用いて詳細に説明する。ただし、本発明は以下の説明に限定されず、その形態および詳細を様々に変更し得ることは、当業者であれば容易に理解される。また、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。なお、図面を用いて発明の構成を説明するにあたり、同じものを指す符号は異なる図面間でも共通して用いる。なお、同様のものを指す際にはハッチパターンを同じくし、特に符号を付さない場合がある。
なお、図において、大きさ、膜(層)の厚さ、または領域は、明瞭化のために誇張されている場合がある。
また、電圧は、ある電位と、基準の電位(例えば接地電位(GND)またはソース電位)との電位差のことを示す場合が多い。よって、電圧を電位と言い換えることが可能である。
なお、第1、第2として付される序数詞は便宜的に用いるものであり、工程順または積層順を示すものではない。そのため、例えば、「第1の」を「第2の」または「第3の」などと適宜置き換えて説明することができる。また、本明細書等に記載されている序数詞と、本発明の一態様を特定するために用いられる序数詞は一致しない場合がある。
なお、「半導体」と表記した場合でも、例えば、導電性が十分低い場合は「絶縁体」としての特性を有する場合がある。また、「半導体」と「絶縁体」は境界が曖昧であり、厳密に区別できない場合がある。したがって、本明細書に記載の「半導体」は、「絶縁体」と言い換えることができる場合がある。同様に、本明細書に記載の「絶縁体」は、「半導体」と言い換えることができる場合がある。
また、「半導体」と表記した場合でも、例えば、導電性が十分高い場合は「導電体」としての特性を有する場合がある。また、「半導体」と「導電体」は境界が曖昧であり、厳密に区別できない場合がある。したがって、本明細書に記載の「半導体」は、「導電体」と言い換えることができる場合がある。同様に、本明細書に記載の「導電体」は、「半導体」と言い換えることができる場合がある。
なお、半導体の不純物とは、例えば、半導体を構成する主成分以外をいう。例えば、濃度が0.1原子%未満の元素は不純物である。不純物が含まれることにより、例えば、半導体にDOS(Density of State)が形成されることや、キャリア移動度が低下することや、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導体である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族元素、第14族元素、第15族元素、主成分以外の遷移金属などがあり、特に、例えば、水素(水にも含まれる)、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、窒素などがある。酸化物半導体の場合、例えば水素などの不純物の混入によって酸素欠損を形成する場合がある。また、半導体がシリコンである場合、半導体の特性を変化させる不純物としては、例えば、酸素、水素を除く第1族元素、第2族元素、第13族元素、第15族元素などがある。
なお、以下に示す実施の形態では、半導体が酸化物半導体である場合について説明するが、これに限定されるものではない。例えば、半導体として、多結晶構造、単結晶構造などのシリコン、ゲルマニウム、などを用いてもよい。または、歪みシリコンなどの歪みを有する半導体を用いてもよい。または、半導体として高電子移動度トランジスタ(HEMT:High Electron Mobility Transistor)に適用可能なヒ化ガリウム、ヒ化アルミニウムガリウム、ヒ化インジウムガリウム、窒化ガリウム、リン化インジウム、シリコンゲルマニウムなどを用いてもよい。これらの半導体を用いることで、高速動作をすることに適したトランジスタとすることができる。
なお、本明細書において、Aが濃度Bの領域を有する、と記載する場合、例えば、Aのある領域における深さ方向全体の濃度がBである場合、Aのある領域における深さ方向の濃度の平均値がBである場合、Aのある領域における深さ方向の濃度の中央値がBである場合、Aのある領域における深さ方向の濃度の最大値がBである場合、Aのある領域における深さ方向の濃度の最小値がBである場合、Aのある領域における深さ方向の濃度の収束値がBである場合、測定上Aそのものの確からしい値の得られる領域における濃度がBである場合などを含む。
また、本明細書において、Aが大きさB、長さB、厚さB、幅Bまたは距離Bの領域を有する、と記載する場合、例えば、Aのある領域における全体の大きさ、長さ、厚さ、幅、または距離がBである場合、Aのある領域における大きさ、長さ、厚さ、幅、または距離の平均値がBである場合、Aのある領域における大きさ、長さ、厚さ、幅、または距離の中央値がBである場合、Aのある領域における大きさ、長さ、厚さ、幅、または距離の最大値がBである場合、Aのある領域における大きさ、長さ、厚さ、幅、または距離の最小値がBである場合、Aのある領域における大きさ、長さ、厚さ、幅、または距離の収束値がBである場合、測定上Aそのものの確からしい値の得られる領域での大きさ、長さ、厚さ、幅、または距離がBである場合などを含む。
<トランジスタの構造>
以下では、本発明の一態様に係るトランジスタの構造について説明する。
<トランジスタ構造1>
図1(A)および図1(B)は、本発明の一態様のトランジスタの上面図および断面図である。図1(A)は上面図であり、図1(B)は、図1(A)に示す一点鎖線A1−A2、および一点鎖線A3−A4に対応する断面図である。なお、図1(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
また、図2は、図1に示すトランジスタのA1−A2断面を示す斜視図である。図2では、図の明瞭化のために一部の要素を省いて図示している。
図1(A)および図1(B)に示すトランジスタは、基板400上の導電体413と、基板400上および導電体413上の凸部を有する絶縁体402と、絶縁体402の凸部上の半導体406aと、半導体406a上の半導体406bと、半導体406bの上面および側面と接し、間隔を開けて配置された導電体416aおよび導電体416bと、半導体406b上、導電体416a上および導電体416b上の半導体406cと、半導体406c上の絶縁体412と、絶縁体412上の導電体404と、導電体416a上、導電体416b上および導電体404上の絶縁体408と、絶縁体408上の絶縁体418と、を有する。
なお、半導体406cは、A3−A4断面において、少なくとも半導体406bの上面および側面と接する。また、導電体404は、A3−A4断面において、半導体406cおよび絶縁体412を介して半導体406bの上面および側面と面する。また、導電体413は、絶縁体402を介して半導体406bの下面と面する。また、絶縁体402が凸部を有さなくても構わない。また、半導体406cを有さなくても構わない。また、絶縁体408を有さなくても構わない。また、絶縁体418を有さなくても構わない。
なお、半導体406bは、トランジスタのチャネル形成領域としての機能を有する。また、導電体404は、トランジスタの第1のゲート電極(フロントゲート電極ともいう。)としての機能を有する。また、導電体413は、トランジスタの第2のゲート電極(バックゲート電極ともいう。)としての機能を有する。また、導電体416aおよび導電体416bは、トランジスタのソース電極およびドレイン電極としての機能を有する。また、絶縁体408は、バリア層としての機能を有する。絶縁体408は、例えば、酸素または/および水素をブロックする機能を有する。または、絶縁体408は、例えば、半導体406aまたは/および半導体406cよりも、酸素または/および水素をブロックする能力が高い。
なお、絶縁体402は過剰酸素を含む絶縁体である。
例えば、過剰酸素を含む絶縁体は、加熱処理によって酸素を放出する機能を有する絶縁体である。例えば、過剰酸素を含む酸化シリコン層は、加熱処理などによって酸素を放出することができる酸化シリコン層である。したがって、絶縁体402は膜中を酸素が移動可能な絶縁体である。即ち、絶縁体402は酸素透過性を有する絶縁体とすればよい。例えば、絶縁体402は、半導体406aよりも酸素透過性の高い絶縁体とすればよい。
過剰酸素を含む絶縁体は、半導体406b中の酸素欠損を低減させる機能を有する場合がある。半導体406b中で酸素欠損は、DOSを形成し、正孔トラップなどとなる。また、酸素欠損のサイトに水素が入ることによって、キャリアである電子を生成することがある。したがって、半導体406b中の酸素欠損を低減することで、トランジスタに安定した電気特性を付与することができる。
ここで、加熱処理によって酸素を放出する絶縁体は、昇温脱離ガス分光法(TDS:Thermal Desorption Spectroscopy)分析にて、100℃以上700℃以下または100℃以上500℃以下の表面温度の範囲で1×1018atoms/cm以上、1×1019atoms/cm以上または1×1020atoms/cm以上の酸素(酸素原子数換算)を放出することもある。
ここで、TDS分析を用いた酸素の放出量の測定方法について、以下に説明する。
測定試料をTDS分析したときの気体の全放出量は、放出ガスのイオン強度の積分値に比例する。そして標準試料との比較により、気体の全放出量を計算することができる。
例えば、標準試料である所定の密度の水素を含むシリコン基板のTDS分析結果、および測定試料のTDS分析結果から、測定試料の酸素分子の放出量(NO2)は、下に示す式で求めることができる。ここで、TDS分析で得られる質量電荷比32で検出されるガスの全てが酸素分子由来と仮定する。CHOHの質量電荷比は32であるが、存在する可能性が低いものとしてここでは考慮しない。また、酸素原子の同位体である質量数17の酸素原子および質量数18の酸素原子を含む酸素分子についても、自然界における存在比率が極微量であるため考慮しない。
O2=NH2/SH2×SO2×α
H2は、標準試料から脱離した水素分子を密度で換算した値である。SH2は、標準試料をTDS分析したときのイオン強度の積分値である。ここで、標準試料の基準値を、NH2/SH2とする。SO2は、測定試料をTDS分析したときのイオン強度の積分値である。αは、TDS分析におけるイオン強度に影響する係数である。上に示す式の詳細に関しては、特開平6−275697公報を参照する。なお、上記酸素の放出量は、電子科学株式会社製の昇温脱離分析装置EMD−WA1000S/Wを用い、標準試料として1×1016atoms/cmの水素原子を含むシリコン基板を用いて測定した。
また、TDS分析において、酸素の一部は酸素原子として検出される。酸素分子と酸素原子の比率は、酸素分子のイオン化率から算出することができる。なお、上述のαは酸素分子のイオン化率を含むため、酸素分子の放出量を評価することで、酸素原子の放出量についても見積もることができる。
なお、NO2は酸素分子の放出量である。酸素原子に換算したときの放出量は、酸素分子の放出量の2倍となる。
または、加熱処理によって酸素を放出する絶縁体は、過酸化ラジカルを含むこともある。具体的には、過酸化ラジカルに起因するスピン密度が、5×1017spins/cm以上であることをいう。なお、過酸化ラジカルを含む絶縁体は、ESRにて、g値が2.01近傍に非対称の信号を有することもある。
または、過剰酸素を含む絶縁体は、酸素が過剰な酸化シリコン(SiO(X>2))であってもよい。酸素が過剰な酸化シリコン(SiO(X>2))は、シリコン原子数の2倍より多い酸素原子を単位体積当たりに含むものである。単位体積当たりのシリコン原子数および酸素原子数は、ラザフォード後方散乱法(RBS:Rutherford Backscattering Spectrometry)により測定した値である。
図1(B)に示すように、半導体406bの側面は、導電体416aおよび導電体416bと接する。また、導電体404の電界によって、半導体406bを電気的に取り囲むことができる(導電体から生じる電界によって、半導体を電気的に取り囲むトランジスタの構造を、surrounded channel(s−channel)構造とよぶ。)。そのため、半導体406bの全体(バルク)にチャネルが形成される場合がある。s−channel構造では、トランジスタのソース−ドレイン間に大電流を流すことができ、導通時の電流を高くすることができる。
高いオン電流が得られるため、s−channel構造は、微細化されたトランジスタに適した構造といえる。トランジスタを微細化できるため、該トランジスタを有する半導体装置は、集積度の高い、高密度化された半導体装置とすることが可能となる。例えば、トランジスタは、チャネル長が好ましくは40nm以下、さらに好ましくは30nm以下、より好ましくは20nm以下の領域を有し、かつ、トランジスタは、チャネル幅が好ましくは40nm以下、さらに好ましくは30nm以下、より好ましくは20nm以下の領域を有する。
なお、チャネル長とは、例えば、トランジスタの上面図において、半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが重なる領域、またはチャネルが形成される領域における、ソース(ソース領域またはソース電極)とドレイン(ドレイン領域またはドレイン電極)との間の距離をいう。なお、一つのトランジスタにおいて、チャネル長が全ての領域で同じ値をとるとは限らない。即ち、一つのトランジスタのチャネル長は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル長は、チャネルの形成される領域における、いずれか一の値、最大値、最小値または平均値とする。
チャネル幅とは、例えば、上面図において半導体(またはトランジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが重なる領域、またはチャネルが形成される領域における、ソースとドレインとが向かい合っている部分の長さをいう。なお、一つのトランジスタにおいて、チャネル幅がすべての領域で同じ値をとるとは限らない。即ち、一つのトランジスタのチャネル幅は、一つの値に定まらない場合がある。そのため、本明細書では、チャネル幅は、チャネルの形成される領域における、いずれか一の値、最大値、最小値または平均値とする。
なお、トランジスタの構造によっては、実際にチャネルの形成される領域におけるチャネル幅(以下、実効的なチャネル幅と呼ぶ。)と、トランジスタの上面図において示されるチャネル幅(以下、見かけ上のチャネル幅と呼ぶ。)と、が異なる場合がある。例えば、立体的な構造を有するトランジスタでは、実効的なチャネル幅が、トランジスタの上面図において示される見かけ上のチャネル幅よりも大きくなり、その影響が無視できなくなる場合がある。例えば、微細かつ立体的な構造を有するトランジスタでは、半導体の上面に形成されるチャネル領域の割合に対して、半導体の側面に形成されるチャネル領域の割合が大きくなる場合がある。その場合は、上面図において示される見かけ上のチャネル幅よりも、実際にチャネルの形成される実効的なチャネル幅の方が大きくなる。
ところで、立体的な構造を有するトランジスタにおいては、実効的なチャネル幅の、実測による見積もりが困難となる場合がある。例えば、設計値から実効的なチャネル幅を見積もるためには、半導体の形状が既知という仮定が必要である。したがって、半導体の形状が正確にわからない場合には、実効的なチャネル幅を正確に測定することは困難である。
そこで、本明細書では、トランジスタの上面図において、半導体とゲート電極とが重なる領域における、ソースとドレインとが向かい合っている部分の長さである見かけ上のチャネル幅を、「囲い込みチャネル幅(SCW:Surrounded Channel Width)」と呼ぶ場合がある。また、本明細書では、単にチャネル幅と記載した場合には、囲い込みチャネル幅または見かけ上のチャネル幅を指す場合がある。または、本明細書では、単にチャネル幅と記載した場合には、実効的なチャネル幅を指す場合がある。なお、チャネル長、チャネル幅、実効的なチャネル幅、見かけ上のチャネル幅、囲い込みチャネル幅などは、断面TEM像などを取得して、その画像を解析することなどによって、値を決定することができる。
なお、トランジスタの電界効果移動度や、チャネル幅当たりの電流値などを計算して求める場合、囲い込みチャネル幅を用いて計算する場合がある。その場合には、実効的なチャネル幅を用いて計算する場合とは異なる値をとる場合がある。
また、導電体413に、ソース電極よりも低い電圧または高い電圧を印加し、トランジスタのしきい値電圧をプラス方向またはマイナス方向へ変動させてもよい。例えば、トランジスタのしきい値電圧をプラス方向に変動させることで、ゲート電圧が0Vであってもトランジスタが非導通状態(オフ状態)となる、ノーマリーオフが実現できる場合がある。なお、導電体413に印加する電圧は、可変であってもよいし、固定であってもよい。導電体413に印加する電圧を可変にする場合、電圧を制御する回路を導電体413と電気的に接続してもよい。
以下では、半導体406a、半導体406b、半導体406cなどに適用可能な酸化物半導体の構造について説明する。なお、本明細書において、結晶が三方晶または菱面体晶である場合、六方晶系として表す。また、本明細書において、「平行」とは、二つの直線が−10°以上10°以下の角度で配置されている状態をいう。したがって、−5°以上5°以下の場合も含まれる。また、「略平行」とは、二つの直線が−30°以上30°以下の角度で配置されている状態をいう。また、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態をいう。したがって、85°以上95°以下の場合も含まれる。また、「略垂直」とは、二つの直線が60°以上120°以下の角度で配置されている状態をいう。
<酸化物半導体の構造について>
以下では、酸化物半導体の構造について説明する。
酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体とに分けられる。非単結晶酸化物半導体としては、CAAC−OS(C Axis Aligned Crystalline Oxide Semiconductor)、多結晶酸化物半導体、微結晶酸化物半導体、非晶質酸化物半導体などがある。
また別の観点では、酸化物半導体は、非晶質酸化物半導体と、それ以外の結晶性酸化物半導体とに分けられる。結晶性酸化物半導体としては、単結晶酸化物半導体、CAAC−OS、多結晶酸化物半導体、微結晶酸化物半導体などがある。
<CAAC−OS>
まずは、CAAC−OSについて説明する。なお、CAAC−OSを、CANC(C−Axis Aligned nanocrystals)を有する酸化物半導体と呼ぶこともできる。
CAAC−OSは、c軸配向した複数の結晶部(ペレットともいう。)を有する酸化物半導体の一つである。
透過型電子顕微鏡(TEM:Transmission Electron Microscope)によって、CAAC−OSの明視野像と回折パターンとの複合解析像(高分解能TEM像ともいう。)を観察すると、複数のペレットを確認することができる。一方、高分解能TEM像ではペレット同士の境界、即ち結晶粒界(グレインバウンダリーともいう。)を明確に確認することができない。そのため、CAAC−OSは、結晶粒界に起因する電子移動度の低下が起こりにくいといえる。
以下では、TEMによって観察したCAAC−OSについて説明する。図31(A)に、試料面と略平行な方向から観察したCAAC−OSの断面の高分解能TEM像を示す。高分解能TEM像の観察には、球面収差補正(Spherical Aberration Corrector)機能を用いた。球面収差補正機能を用いた高分解能TEM像を、特にCs補正高分解能TEM像と呼ぶ。Cs補正高分解能TEM像の取得は、例えば、日本電子株式会社製原子分解能分析電子顕微鏡JEM−ARM200Fなどによって行うことができる。
図31(A)の領域(1)を拡大したCs補正高分解能TEM像を図31(B)に示す。図31(B)より、ペレットにおいて、金属原子が層状に配列していることを確認できる。金属原子の各層の配列は、CAAC−OSの膜を形成する面(被形成面ともいう。)または上面の凹凸を反映しており、CAAC−OSの被形成面または上面と平行となる。
図31(B)に示すように、CAAC−OSは特徴的な原子配列を有する。図31(C)は、特徴的な原子配列を、補助線で示したものである。図31(B)および図31(C)より、ペレット一つの大きさは1nm以上3nm以下程度であり、ペレットとペレットとの傾きにより生じる隙間の大きさは0.8nm程度であることがわかる。したがって、ペレットを、ナノ結晶(nc:nanocrystal)と呼ぶこともできる。
ここで、Cs補正高分解能TEM像をもとに、基板5120上のCAAC−OSのペレット5100の配置を模式的に示すと、レンガまたはブロックが積み重なったような構造となる(図31(D)参照。)。図31(C)で観察されたペレットとペレットとの間で傾きが生じている箇所は、図31(D)に示す領域5161に相当する。
また、図32(A)に、試料面と略垂直な方向から観察したCAAC−OSの平面のCs補正高分解能TEM像を示す。図32(A)の領域(1)、領域(2)および領域(3)を拡大したCs補正高分解能TEM像を、それぞれ図32(B)、図32(C)および図32(D)に示す。図32(B)、図32(C)および図32(D)より、ペレットは、金属原子が三角形状、四角形状または六角形状に配列していることを確認できる。しかしながら、異なるペレット間で、金属原子の配列に規則性は見られない。
次に、X線回折(XRD:X−Ray Diffraction)によって解析したCAAC−OSについて説明する。例えば、InGaZnOの結晶を有するCAAC−OSに対し、out−of−plane法による構造解析を行うと、図33(A)に示すように回折角(2θ)が31°近傍にピークが現れる場合がある。このピークは、InGaZnOの結晶の(009)面に帰属されることから、CAAC−OSの結晶がc軸配向性を有し、c軸が被形成面または上面に略垂直な方向を向いていることが確認できる。
なお、CAAC−OSのout−of−plane法による構造解析では、2θが31°近傍のピークの他に、2θが36°近傍にもピークが現れる場合がある。2θが36°近傍のピークは、CAAC−OS中の一部に、c軸配向性を有さない結晶が含まれることを示している。より好ましいCAAC−OSは、out−of−plane法による構造解析では、2θが31°近傍にピークを示し、2θが36°近傍にピークを示さない。
一方、CAAC−OSに対し、c軸に略垂直な方向からX線を入射させるin−plane法による構造解析を行うと、2θが56°近傍にピークが現れる。このピークは、InGaZnOの結晶の(110)面に帰属される。CAAC−OSの場合は、2θを56°近傍に固定し、試料面の法線ベクトルを軸(φ軸)として試料を回転させながら分析(φスキャン)を行っても、図33(B)に示すように明瞭なピークは現れない。これに対し、InGaZnOの単結晶酸化物半導体であれば、2θを56°近傍に固定してφスキャンした場合、図33(C)に示すように(110)面と等価な結晶面に帰属されるピークが6本観察される。したがって、XRDを用いた構造解析から、CAAC−OSは、a軸およびb軸の配向が不規則であることが確認できる。
次に、電子回折によって解析したCAAC−OSについて説明する。例えば、InGaZnOの結晶を有するCAAC−OSに対し、試料面に平行にプローブ径が300nmの電子線を入射させると、図52(A)に示すような回折パターン(制限視野透過電子回折パターンともいう。)が現れる場合がある。この回折パターンには、InGaZnOの結晶の(009)面に起因するスポットが含まれる。したがって、電子回折によっても、CAAC−OSに含まれるペレットがc軸配向性を有し、c軸が被形成面または上面に略垂直な方向を向いていることがわかる。一方、同じ試料に対し、試料面に垂直にプローブ径が300nmの電子線を入射させたときの回折パターンを図52(B)に示す。図52(B)より、リング状の回折パターンが確認される。したがって、電子回折によっても、CAAC−OSに含まれるペレットのa軸およびb軸は配向性を有さないことがわかる。なお、図52(B)における第1リングは、InGaZnOの結晶の(010)面および(100)面などに起因すると考えられる。また、図52(B)における第2リングは(110)面などに起因すると考えられる。
また、CAAC−OSは、欠陥準位密度の低い酸化物半導体である。酸化物半導体の欠陥としては、例えば、不純物に起因する欠陥や、酸素欠損などがある。したがって、CAAC−OSは、不純物濃度の低い酸化物半導体ということもできる。また、CAAC−OSは、酸素欠損の少ない酸化物半導体ということもできる。
酸化物半導体に含まれる不純物は、キャリアトラップとなる場合や、キャリア発生源となる場合がある。また、酸化物半導体中の酸素欠損は、キャリアトラップとなる場合や、水素を捕獲することによってキャリア発生源となる場合がある。
なお、不純物は、酸化物半導体の主成分以外の元素で、水素、炭素、シリコン、遷移金属元素などがある。例えば、シリコンなどの、酸化物半導体を構成する金属元素よりも酸素との結合力の強い元素は、酸化物半導体から酸素を奪うことで酸化物半導体の原子配列を乱し、結晶性を低下させる要因となる。また、鉄やニッケルなどの重金属、アルゴン、二酸化炭素などは、原子半径(または分子半径)が大きいため、酸化物半導体の原子配列を乱し、結晶性を低下させる要因となる。
また、欠陥準位密度の低い(酸素欠損が少ない)酸化物半導体は、キャリア密度を低くすることができる。そのような酸化物半導体を、高純度真性または実質的に高純度真性な酸化物半導体と呼ぶ。CAAC−OSは、不純物濃度が低く、欠陥準位密度が低い。即ち、高純度真性または実質的に高純度真性な酸化物半導体となりやすい。したがって、CAAC−OSを用いたトランジスタは、しきい値電圧がマイナスとなる電気特性(ノーマリーオンともいう。)になることが少ない。また、高純度真性または実質的に高純度真性な酸化物半導体は、キャリアトラップが少ない。酸化物半導体のキャリアトラップに捕獲された電荷は、放出するまでに要する時間が長く、あたかも固定電荷のように振る舞うことがある。そのため、不純物濃度が高く、欠陥準位密度が高い酸化物半導体を用いたトランジスタは、電気特性が不安定となる場合がある。一方、CAAC−OSを用いたトランジスタは、電気特性の変動が小さく、信頼性の高いトランジスタとなる。
不純物および酸素欠損の少ないCAAC−OSは、キャリア密度の低い酸化物半導体である。具体的には、キャリア密度を8×1011/cm未満、好ましくは1×1011/cm未満、さらに好ましくは1×1010/cm未満であり、1×10−9/cm以上とすることができる。そのような酸化物半導体を、高純度真性または実質的に高純度真性な酸化物半導体と呼ぶ。CAAC−OSは、不純物濃度が低く、欠陥準位密度が低い。即ち、安定な特性を有する酸化物半導体であるといえる。
また、CAAC−OSは欠陥準位密度が低いため、光の照射などによって生成されたキャリアが、欠陥準位に捕獲されることが少ない。したがって、CAAC−OSを用いたトランジスタは、可視光や紫外光の照射による電気特性の変動が小さい。
<微結晶酸化物半導体>
次に、微結晶酸化物半導体について説明する。
微結晶酸化物半導体は、高分解能TEM像において、結晶部を確認することのできる領域と、明確な結晶部を確認することのできない領域と、を有する。微結晶酸化物半導体に含まれる結晶部は、1nm以上100nm以下、または1nm以上10nm以下の大きさであることが多い。特に、1nm以上10nm以下、または1nm以上3nm以下の微結晶であるナノ結晶を有する酸化物半導体を、nc−OS(nanocrystalline Oxide Semiconductor)と呼ぶ。nc−OSは、例えば、高分解能TEM像では、結晶粒界を明確に確認できない場合がある。なお、ナノ結晶は、CAAC−OSにおけるペレットと起源を同じくする可能性がある。そのため、以下ではnc−OSの結晶部をペレットと呼ぶ場合がある。
nc−OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3nm以下の領域)において原子配列に周期性を有する。また、nc−OSは、異なるペレット間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。したがって、nc−OSは、分析方法によっては、非晶質酸化物半導体と区別が付かない場合がある。例えば、nc−OSに対し、ペレットよりも大きい径のX線を用いるXRD装置を用いて構造解析を行うと、out−of−plane法による解析では、結晶面を示すピークが検出されない。また、nc−OSに対し、ペレットよりも大きいプローブ径(例えば50nm以上)の電子線を用いる電子回折(制限視野電子回折ともいう。)を行うと、ハローパターンのような回折パターンが観測される。一方、nc−OSに対し、ペレットの大きさと近いかペレットより小さいプローブ径の電子線を用いるナノビーム電子回折を行うと、スポットが観測される。また、nc−OSに対しナノビーム電子回折を行うと、円を描くように(リング状に)輝度の高い領域が観測される場合がある。さらに、リング状の領域内に複数のスポットが観測される場合がある。
このように、ペレット(ナノ結晶)間では結晶方位が規則性を有さないことから、nc−OSを、RANC(Random Aligned nanocrystals)を有する酸化物半導体、またはNANC(Non−Aligned nanocrystals)を有する酸化物半導体と呼ぶこともできる。
nc−OSは、非晶質酸化物半導体よりも規則性の高い酸化物半導体である。そのため、nc−OSは、非晶質酸化物半導体よりも欠陥準位密度が低くなる。ただし、nc−OSは、異なるペレット間で結晶方位に規則性が見られない。そのため、nc−OSは、CAAC−OSと比べて欠陥準位密度が高くなる。
<非晶質酸化物半導体>
次に、非晶質酸化物半導体について説明する。
非晶質酸化物半導体は、膜中における原子配列が不規則であり、結晶部を有さない酸化物半導体である。石英のような無定形状態を有する酸化物半導体が一例である。
非晶質酸化物半導体は、高分解能TEM像において結晶部を確認することができない。
非晶質酸化物半導体に対し、XRD装置を用いた構造解析を行うと、out−of−plane法による解析では、結晶面を示すピークが検出されない。また、非晶質酸化物半導体に対し、電子回折を行うと、ハローパターンが観測される。また、非晶質酸化物半導体に対し、ナノビーム電子回折を行うと、スポットが観測されず、ハローパターンのみが観測される。
非晶質構造については、様々な見解が示されている。例えば、原子配列に全く秩序性を有さない構造を完全な非晶質構造(completely amorphous structure)と呼ぶ場合がある。また、最近接原子間距離または第2近接原子間距離まで秩序性を有し、かつ長距離秩序性を有さない構造を非晶質構造と呼ぶ場合もある。したがって、最も厳格な定義によれば、僅かでも原子配列に秩序性を有する酸化物半導体を非晶質酸化物半導体と呼ぶことはできない。また、少なくとも、長距離秩序性を有する酸化物半導体を非晶質酸化物半導体と呼ぶことはできない。よって、結晶部を有することから、例えば、CAAC−OSおよびnc−OSを、非晶質酸化物半導体または完全な非晶質酸化物半導体と呼ぶことはできない。
<非晶質ライク酸化物半導体>
なお、酸化物半導体は、nc−OSと非晶質酸化物半導体との間の構造を有する場合がある。そのような構造を有する酸化物半導体を、特に非晶質ライク酸化物半導体(a−like OS:amorphous−like Oxide Semiconductor)と呼ぶ。
a−like OSは、高分解能TEM像において鬆(ボイドともいう。)が観察される場合がある。また、高分解能TEM像において、明確に結晶部を確認することのできる領域と、結晶部を確認することのできない領域と、を有する。
鬆を有するため、a−like OSは、不安定な構造である。以下では、a−like OSが、CAAC−OSおよびnc−OSと比べて不安定な構造であることを示すため、電子照射による構造の変化を示す。
電子照射を行う試料として、a−like OS(試料Aと表記する。)、nc−OS(試料Bと表記する。)およびCAAC−OS(試料Cと表記する。)を準備する。いずれの試料もIn−Ga−Zn酸化物である。
まず、各試料の高分解能断面TEM像を取得する。高分解能断面TEM像により、各試料は、いずれも結晶部を有することがわかる。
なお、どの部分を一つの結晶部と見なすかの判定は、以下のように行えばよい。例えば、InGaZnOの結晶の単位格子は、In−O層を3層有し、またGa−Zn−O層を6層有する、計9層がc軸方向に層状に重なった構造を有することが知られている。これらの近接する層同士の間隔は、(009)面の格子面間隔(d値ともいう。)と同程度であり、結晶構造解析からその値は0.29nmと求められている。したがって、格子縞の間隔が0.28nm以上0.30nm以下である箇所を、InGaZnOの結晶部と見なすことができる。なお、格子縞は、InGaZnOの結晶のa−b面に対応する。
図53は、各試料の結晶部(22箇所から45箇所)の平均の大きさを調査した例である。ただし、上述した格子縞の長さを結晶部の大きさとしている。図53より、a−like OSは、電子の累積照射量に応じて結晶部が大きくなっていくことがわかる。具体的には、図53中に(1)で示すように、TEMによる観察初期においては1.2nm程度の大きさだった結晶部(初期核ともいう。)が、累積照射量が4.2×10/nmにおいては2.6nm程度の大きさまで成長していることがわかる。一方、nc−OSおよびCAAC−OSは、電子照射開始時から電子の累積照射量が4.2×10/nmまでの範囲で、結晶部の大きさに変化が見られないことがわかる。具体的には、図53中の(2)および(3)で示すように、電子の累積照射量によらず、nc−OSおよびCAAC−OSの結晶部の大きさは、それぞれ1.4nm程度および2.1nm程度であることがわかる。
このように、a−like OSは、電子照射によって結晶部の成長が見られる場合がある。一方、nc−OSおよびCAAC−OSは、電子照射による結晶部の成長がほとんど見られないことがわかる。即ち、a−like OSは、nc−OSおよびCAAC−OSと比べて、不安定な構造であることがわかる。
また、鬆を有するため、a−like OSは、nc−OSおよびCAAC−OSと比べて密度の低い構造である。具体的には、a−like OSの密度は、同じ組成の単結晶の密度の78.6%以上92.3%未満となる。また、nc−OSの密度およびCAAC−OSの密度は、同じ組成の単結晶の密度の92.3%以上100%未満となる。単結晶の密度の78%未満となる酸化物半導体は、成膜すること自体が困難である。
例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、菱面体晶構造を有する単結晶InGaZnOの密度は6.357g/cmとなる。よって、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、a−like OSの密度は5.0g/cm以上5.9g/cm未満となる。また、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、nc−OSの密度およびCAAC−OSの密度は5.9g/cm以上6.3g/cm未満となる。
なお、同じ組成の単結晶が存在しない場合がある。その場合、任意の割合で組成の異なる単結晶を組み合わせることにより、所望の組成における単結晶に相当する密度を見積もることができる。所望の組成の単結晶に相当する密度は、組成の異なる単結晶を組み合わせる割合に対して、加重平均を用いて見積もればよい。ただし、密度は、可能な限り少ない種類の単結晶を組み合わせて見積もることが好ましい。
以上のように、酸化物半導体は、様々な構造をとり、それぞれが様々な特性を有する。なお、酸化物半導体は、例えば、非晶質酸化物半導体、a−like OS、微結晶酸化物半導体、CAAC−OSのうち、二種以上を有する積層膜であってもよい。
以上が、半導体406a、半導体406b、半導体406cなどに適用可能な酸化物半導体の構造である。
次に、半導体406a、半導体406b、半導体406cなどに適用可能な半導体の、その他の要素について説明する。
半導体406bは、例えば、インジウムを含む酸化物半導体である。半導体406bは、例えば、インジウムを含むと、キャリア移動度(電子移動度)が高くなる。また、半導体406bは、元素Mを含むと好ましい。元素Mは、好ましくは、アルミニウム、ガリウム、イットリウムまたはスズなどとする。そのほかの元素Mに適用可能な元素としては、ホウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、イットリウム、ジルコニウム、モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステンなどがある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。元素Mは、例えば、酸素との結合エネルギーが高い元素である。例えば、酸素との結合エネルギーがインジウムよりも高い元素である。または、元素Mは、例えば、酸化物半導体のエネルギーギャップを大きくする機能を有する元素である。また、半導体406bは、亜鉛を含むと好ましい。酸化物半導体は、亜鉛を含むと結晶化しやすくなる場合がある。
ただし、半導体406bは、インジウムを含む酸化物半導体に限定されない。半導体406bは、例えば、亜鉛スズ酸化物、ガリウムスズ酸化物などの、インジウムを含まず、亜鉛を含む酸化物半導体、ガリウムを含む酸化物半導体、スズを含む酸化物半導体などであっても構わない。
半導体406bは、例えば、エネルギーギャップが大きい酸化物を用いる。半導体406bのエネルギーギャップは、例えば、2.5eV以上4.2eV以下、好ましくは2.8eV以上3.8eV以下、さらに好ましくは3eV以上3.5eV以下とする。
例えば、半導体406aおよび半導体406cは、半導体406bを構成する酸素以外の元素一種以上、または二種以上から構成される酸化物半導体である。半導体406bを構成する酸素以外の元素一種以上、または二種以上から半導体406aおよび半導体406cが構成されるため、半導体406aと半導体406bとの界面、および半導体406bと半導体406cとの界面において、界面準位が形成されにくい。
半導体406a、半導体406bおよび半導体406cは、少なくともインジウムを含むと好ましい。なお、半導体406aがIn−M−Zn酸化物のとき、InおよびMの和を100atomic%としたとき、好ましくはInが50atomic%未満、Mが50atomic%より高く、さらに好ましくはInが25atomic%未満、Mが75atomic%より高くする。また、半導体406bがIn−M−Zn酸化物のとき、InおよびMの和を100atomic%としたとき、好ましくはInが25atomic%より高く、Mが75atomic%未満、さらに好ましくはInが34atomic%より高く、Mが66atomic%未満とする。また、半導体406cがIn−M−Zn酸化物のとき、InおよびMの和を100atomic%としたとき、好ましくはInが50atomic%未満、Mが50atomic%より高く、さらに好ましくはInが25atomic%未満、Mが75atomic%より高くする。なお、半導体406cは、半導体406aと同種の酸化物を用いても構わない。
半導体406bは、半導体406aおよび半導体406cよりも電子親和力の大きい酸化物を用いる。例えば、半導体406bとして、半導体406aおよび半導体406cよりも電子親和力の0.07eV以上1.3eV以下、好ましくは0.1eV以上0.7eV以下、さらに好ましくは0.15eV以上0.4eV以下大きい酸化物を用いる。なお、電子親和力は、真空準位と伝導帯下端のエネルギーとの差である。
なお、インジウムガリウム酸化物は、小さい電子親和力と、高い酸素ブロック性を有する。そのため、半導体406cがインジウムガリウム酸化物を含むと好ましい。ガリウム原子割合[Ga/(In+Ga)]は、例えば、70%以上、好ましくは80%以上、さらに好ましくは90%以上とする。
このとき、ゲート電圧を印加すると、半導体406a、半導体406b、半導体406cのうち、電子親和力の大きい半導体406bにチャネルが形成される。
図2に示す一点鎖線E1−E2に対応するバンド図を図3(A)に示す。図3(A)には、真空準位(vacuum levelと表記。)、各層の伝導帯下端のエネルギー(Ecと表記。)および価電子帯上端のエネルギー(Evと表記。)を示す。
ここで、半導体406aと半導体406bとの間には、半導体406aと半導体406bとの混合領域を有する場合がある。また、半導体406bと半導体406cとの間には、半導体406bと半導体406cとの混合領域を有する場合がある。混合領域は、界面準位密度が低くなる。そのため、半導体406a、半導体406bおよび半導体406cの積層体は、それぞれの界面近傍において、エネルギーが連続的に変化する(連続接合ともいう。)バンド図となる。
このとき、電子は、半導体406a中および半導体406c中ではなく、半導体406b中を主として移動する(図3(B)参照。)。上述したように、半導体406aおよび半導体406bの界面における界面準位密度、半導体406bと半導体406cとの界面における界面準位密度を低くすることによって、半導体406b中で電子の移動が阻害されることが少なく、トランジスタのオン電流を高くすることができる。
トランジスタのオン電流は、電子の移動を阻害する要因を低減するほど、高くすることができる。例えば、電子の移動を阻害する要因のない場合、図4(A)に示すように効率よく電子が移動すると推定される。電子の移動の阻害は、例えば、図4(B)に示すように物理的な凹凸が大きい場合にも起こる。
したがって、トランジスタのオン電流を高くするためには、例えば、半導体406bの上面または下面(被形成面、ここでは半導体406a)の、1μm×1μmの範囲における二乗平均平方根(RMS:Root Mean Square)粗さが1nm未満、好ましくは0.6nm未満、さらに好ましくは0.5nm未満、より好ましくは0.4nm未満とすればよい。また、1μm×1μmの範囲における平均面粗さ(Raともいう。)が1nm未満、好ましくは0.6nm未満、さらに好ましくは0.5nm未満、より好ましくは0.4nm未満とすればよい。また、1μm×1μmの範囲における最大高低差(P−Vともいう。)が10nm未満、好ましくは9nm未満、さらに好ましくは8nm未満、より好ましくは7nm未満とすればよい。RMS粗さ、RaおよびP−Vは、エスアイアイ・ナノテクノロジー株式会社製走査型プローブ顕微鏡システムSPA−500などを用いて測定することができる。
または、例えば、図4(C)に示すようにチャネルの形成される領域中の欠陥準位密度が高い場合にも、電子の移動は阻害される。
例えば、半導体406bが酸素欠損(Voとも表記。)を有する場合、酸素欠損のサイトに水素が入り込むことでドナー準位を形成することがある。以下では酸素欠損のサイトに水素が入り込んだ状態をVoHと表記する場合がある。VoHは電子を散乱するため、トランジスタのオン電流を低下させる要因となる。なお、酸素欠損のサイトは、水素が入るよりも酸素が入る方が安定する。したがって、半導体406b中の酸素欠損を低減することで、トランジスタのオン電流を高くすることができる場合がある。
半導体406bの酸素欠損を低減するために、例えば、絶縁体402に含まれる過剰酸素を、半導体406aを介して半導体406bまで移動させる方法などがある。この場合、半導体406aは、酸素透過性を有する層(酸素を通過または透過させる層)であることが好ましい。
酸素は、加熱処理などによって絶縁体402から放出され、半導体406a中に取り込まれる。なお、酸素は、半導体406a中の原子間に遊離して存在する場合や、酸素などと結合して存在する場合がある。半導体406aは、密度が低いほど、即ち原子間に間隙が多いほど酸素透過性が高くなる。例えば、また、半導体406aが層状の結晶構造を有し、層を横切るような酸素の移動は起こりにくい場合、半導体406aは適度に結晶性の低い層であると好ましい。
以下では、半導体406aがIn−Ga−Zn酸化物である場合の結晶性と、酸素透過性との関係を説明する。
In−Ga−Zn酸化物の結晶における、過剰酸素(酸素)の移動に係るエネルギー障壁について計算により求める。計算には、密度汎関数理論に基づく平面波基底第一原理計算ソフトVASP(Vienna ab−initio simulation package)を用いる。なお、汎関数としてはGGA−PBEを用いる。また、平面波のカットオフエネルギーを400eVとする。また、PAW(Projector Augmented Wave)法により内殻電子の効果を取り入れる。
ここでは、図34に示すIn−Ga−Zn酸化物の結晶において、過剰酸素(酸素)の移動経路1、移動経路2、移動経路3および移動経路4の移動しやすさを計算する。
なお、移動経路1は、三つのインジウム原子および一つの亜鉛原子と結合した酸素に結合した過剰酸素(酸素)が、隣接する三つのインジウム原子および一つの亜鉛原子と結合した酸素に結合するまでの経路である。また、移動経路2は、三つのインジウム原子および一つのガリウム原子と結合した酸素に結合した過剰酸素(酸素)が、インジウムおよび酸素を含む層を横切って、隣接する三つのインジウム原子および一つの亜鉛原子と結合した酸素に結合するまでの経路である。また、移動経路3は、二つのガリウム原子および一つの亜鉛原子と結合した酸素に結合した過剰酸素(酸素)が、隣接する二つの亜鉛原子および一つのガリウム原子と結合した酸素に結合するまでの経路である。また、移動経路4は、二つのガリウム原子および一つの亜鉛原子と結合した酸素に結合した過剰酸素(酸素)が、ガリウム、亜鉛および酸素を含む層を横切って、隣接する三つのインジウム原子および一つのガリウム原子と結合した酸素に結合するまでの経路である。
単位時間当たりに拡散のエネルギー障壁Eを越える頻度を拡散頻度Rとすると、Rは下に示す式で表すことができる。
R=ν・exp[−E/(kT)]
なお、νは拡散原子の熱振動の振動数、kはボルツマン定数、Tは絶対温度である。νにデバイ振動数として1013[1/sec]を与えた場合の、350℃および450℃における拡散頻度Rは表1のようになる。
表1に示すように、インジウムおよび酸素を含む層を横切る移動経路2において、他の移動経路よりも高いエネルギー障壁を有することがわかる。これは、In−Ga−Zn酸化物の結晶は、c軸方向における過剰酸素(酸素)の移動が起こりにくいことを示している。即ち、CAAC−OSなどのように、c軸配向性を有し、被形成面または上面に概略垂直な方向を向いている構造を有する場合、被形成面または上面に概略垂直な方向における過剰酸素(酸素)の移動が起こりにくい。
以上に示したように、絶縁体402から放出された過剰酸素(酸素)を半導体406bまで到達させるためには、半導体406aが過剰酸素(酸素)を透過する程度の結晶性を有するとよいことがわかる。例えば、半導体406aがCAAC−OSである場合、層全体がCAAC化してしまうと、過剰酸素(酸素)を透過することができないため、一部に隙間を有する構造とすると好ましい。例えば、半導体406aのCAAC化率を、100%未満、好ましくは98%未満、さらに好ましくは95%未満、より好ましくは90%未満とすればよい。ただし、半導体406aと半導体406bとの界面準位密度を低減させるためには、半導体406aのCAAC化率を、10%以上、好ましくは20%以上、さらに好ましくは50%以上、より好ましくは70%以上とすればよい。
なお、トランジスタがs−channel構造を有する場合、半導体406bの全体にチャネルが形成される。したがって、半導体406bが厚いほどチャネル領域は大きくなる。即ち、半導体406bが厚いほど、トランジスタのオン電流を高くすることができる。例えば、20nm以上、好ましくは40nm以上、さらに好ましくは60nm以上、より好ましくは100nm以上の厚さの領域を有する半導体406bとすればよい。ただし、半導体装置の生産性が低下する場合があるため、例えば、300nm以下、好ましくは200nm以下、さらに好ましくは150nm以下の厚さの領域を有する半導体406bとすればよい。
また、トランジスタのオン電流を高くするためには、半導体406cの厚さは小さいほど好ましい。例えば、10nm未満、好ましくは5nm以下、さらに好ましくは3nm以下の領域を有する半導体406cとすればよい。一方、半導体406cは、チャネルの形成される半導体406bへ、隣接する絶縁体を構成する酸素以外の元素(水素、シリコンなど)が入り込まないようブロックする機能を有する。そのため、半導体406cは、ある程度の厚さを有することが好ましい。例えば、0.3nm以上、好ましくは1nm以上、さらに好ましくは2nm以上の厚さの領域を有する半導体406cとすればよい。また、半導体406cは、絶縁体402などから放出される酸素の外方拡散を抑制するために、酸素をブロックする性質を有すると好ましい。
また、信頼性を高くするためには、半導体406aは厚く、半導体406cは薄いことが好ましい。例えば、10nm以上、好ましくは20nm以上、さらに好ましくは40nm以上、より好ましくは60nm以上の厚さの領域を有する半導体406aとすればよい。半導体406aの厚さを、厚くすることで、隣接する絶縁体と半導体406aとの界面からチャネルの形成される半導体406bまでの距離を離すことができる。ただし、半導体装置の生産性が低下する場合があるため、例えば、200nm以下、好ましくは120nm以下、さらに好ましくは80nm以下の厚さの領域を有する半導体406aとすればよい。
例えば、半導体406bと半導体406aとの間に、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)において、1×1019atoms/cm未満、好ましくは5×1018atoms/cm未満、さらに好ましくは2×1018atoms/cm未満のシリコン濃度となる領域を有する。また、半導体406bと半導体406cとの間に、SIMSにおいて、1×1019atoms/cm未満、好ましくは5×1018atoms/cm未満、さらに好ましくは2×1018atoms/cm未満のシリコン濃度となる領域を有する。
また、半導体406bの水素濃度を低減するために、半導体406aおよび半導体406cの水素濃度を低減すると好ましい。半導体406aおよび半導体406cは、SIMSにおいて、2×1020atoms/cm以下、好ましくは5×1019atoms/cm以下、より好ましくは1×1019atoms/cm以下、さらに好ましくは5×1018atoms/cm以下の水素濃度となる領域を有する。また、半導体406bの窒素濃度を低減するために、半導体406aおよび半導体406cの窒素濃度を低減すると好ましい。半導体406aおよび半導体406cは、SIMSにおいて、5×1019atoms/cm未満、好ましくは5×1018atoms/cm以下、より好ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atoms/cm以下の窒素濃度となる領域を有する。
上述の3層構造は一例である。例えば、半導体406aまたは半導体406cのない2層構造としても構わない。または、半導体406aの上もしくは下、または半導体406c上もしくは下に、半導体406a、半導体406bおよび半導体406cとして例示した半導体のいずれか一を有する4層構造としても構わない。または、半導体406aの上、半導体406aの下、半導体406cの上、半導体406cの下のいずれか二箇所以上に、半導体406a、半導体406bおよび半導体406cとして例示した半導体のいずれか一を有するn層構造(nは5以上の整数)としても構わない。
導電体416a(または/および導電体416b)の、少なくとも一部(または全部)は、半導体406bなどの半導体の、表面、側面、上面、または/および下面の少なくとも一部(または全部)に設けられている。
または、導電体416a(または/および導電体416b)の、少なくとも一部(または全部)は、半導体406bなどの半導体の、表面、側面、上面、または/および、下面の少なくとも一部(または全部)と、接している。または、導電体416a(または/および導電体416b)の、少なくとも一部(または全部)は、半導体406bなどの半導体の少なくとも一部(または全部)と、接している。
または、導電体416a(または/および導電体416b)の、少なくとも一部(または全部)は、半導体406bなどの半導体の、表面、側面、上面、または/および、下面の少なくとも一部(または全部)と、電気的に接続されている。または、導電体416a(または/および導電体416b)の、少なくとも一部(または全部)は、半導体406bなどの半導体の少なくとも一部(または全部)と、電気的に接続されている。
または、導電体416a(または/および導電体416b)の、少なくとも一部(または全部)は、半導体406bなどの半導体の、表面、側面、上面、または/および下面の少なくとも一部(または全部)に、近接して配置されている。または、導電体416a(または/および導電体416b)の、少なくとも一部(または全部)は、半導体406bなどの半導体の少なくとも一部(または全部)に、近接して配置されている。
または、導電体416a(または/および導電体416b)の、少なくとも一部(または全部)は、半導体406bなどの半導体の、表面、側面、上面、または/および下面の少なくとも一部(または全部)の横側に配置されている。または、導電体416a(または/および導電体416b)の、少なくとも一部(または全部)は、半導体406bなどの半導体の少なくとも一部(または全部)の横側に配置されている。
または、導電体416a(または/および導電体416b)の、少なくとも一部(または全部)は、半導体406bなどの半導体の、表面、側面、上面、または/および下面の少なくとも一部(または全部)の斜め上側に配置されている。または、導電体416a(または/および導電体416b)の、少なくとも一部(または全部)は、半導体406bなどの半導体の少なくとも一部(または全部)の斜め上側に配置されている。
または、導電体416a(または/および導電体416b)の、少なくとも一部(または全部)は、半導体406bなどの半導体の、表面、側面、上面、または/および下面の少なくとも一部(または全部)の上側に配置されている。または、導電体416a(または/および導電体416b)の、少なくとも一部(または全部)は、半導体406bなどの半導体の少なくとも一部(または全部)の上側に配置されている。
基板400としては、例えば、絶縁体基板、半導体基板または導電体基板を用いればよい。絶縁体基板としては、例えば、ガラス基板、石英基板、サファイア基板、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)、樹脂基板などがある。また、半導体基板としては、例えば、シリコン、ゲルマニウムなどの単体半導体基板、または炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜鉛、酸化ガリウムなどの化合物半導体基板などがある。さらには、前述の半導体基板内部に絶縁体領域を有する半導体基板、例えばSOI(Silicon On Insulator)基板などがある。導電体基板としては、黒鉛基板、金属基板、合金基板、導電性樹脂基板などがある。または、金属の窒化物を有する基板、金属の酸化物を有する基板などがある。さらには、絶縁体基板に導電体または半導体が設けられた基板、半導体基板に導電体または絶縁体が設けられた基板、導電体基板に半導体または絶縁体が設けられた基板などがある。または、これらの基板に素子が設けられたものを用いてもよい。基板に設けられる素子としては、容量素子、抵抗素子、スイッチ素子、発光素子、記憶素子などがある。
また、基板400として、可とう性基板を用いてもよい。なお、可とう性基板上にトランジスタを設ける方法としては、非可とう性の基板上にトランジスタを作製した後、トランジスタを剥離し、可とう性基板である基板400に転置する方法もある。その場合には、非可とう性基板とトランジスタとの間に剥離層を設けるとよい。なお、基板400として、繊維を編みこんだシート、フィルムまたは箔などを用いてもよい。また、基板400が伸縮性を有してもよい。また、基板400は、折り曲げや引っ張りをやめた際に、元の形状に戻る性質を有してもよい。または、元の形状に戻らない性質を有してもよい。基板400は、例えば、5μm以上700μm以下、好ましくは10μm以上500μm以下、さらに好ましくは15μm以上300μm以下の厚さとなる領域を有する。基板400を薄くすると、半導体装置を軽量化することができる。また、基板400を薄くすることで、ガラスなどを用いた場合にも伸縮性を有する場合や、折り曲げや引っ張りをやめた際に、元の形状に戻る性質を有する場合がある。そのため、落下などによって基板400上の半導体装置に加わる衝撃などを緩和することができる。即ち、丈夫な半導体装置を提供することができる。
可とう性基板である基板400としては、例えば、金属、合金、樹脂もしくはガラス、またはそれらの繊維などを用いることができる。可とう性基板である基板400は、線膨張率が低いほど環境による変形が抑制されて好ましい。可とう性基板である基板400としては、例えば、線膨張率が1×10−3/K以下、5×10−5/K以下、または1×10−5/K以下である材質を用いればよい。樹脂としては、例えば、ポリエステル、ポリオレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネート、アクリルなどがある。特に、アラミドは、線膨張率が低いため、可とう性基板である基板400として好適である。
導電体413としては、例えば、ホウ素、窒素、酸素、フッ素、シリコン、リン、アルミニウム、チタン、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、モリブデン、ルテニウム、銀、インジウム、スズ、タンタルおよびタングステンを一種以上含む導電体を、単層で、または積層で用いればよい。または、前述の元素を含む合金や化合物であってもよく、アルミニウムを含む導電体、銅およびチタンを含む導電体、銅およびマンガンを含む導電体、インジウム、スズおよび酸素を含む導電体、チタンおよび窒素を含む導電体などを用いてもよい。
絶縁体402としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。なお、絶縁体402が、窒化酸化シリコン、窒化シリコンなどの窒素を含む絶縁体を含んでも構わない。
絶縁体402は、基板400からの不純物の拡散を防止する役割を有してもよい。また、半導体406bが酸化物半導体である場合、絶縁体402は、半導体406bに酸素を供給する役割を担うことができる。
導電体416aおよび導電体416bとしては、例えば、ホウ素、窒素、酸素、フッ素、シリコン、リン、アルミニウム、チタン、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、モリブデン、ルテニウム、銀、インジウム、スズ、タンタルおよびタングステンを一種以上含む導電体を、単層で、または積層で用いればよい。または前述の元素を含む合金や化合物であってもよく、アルミニウムを含む導電体、銅およびチタンを含む導電体、銅およびマンガンを含む導電体、インジウム、スズおよび酸素を含む導電体、チタンおよび窒素を含む導電体などを用いてもよい。
絶縁体412としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。
導電体404としては、例えば、ホウ素、窒素、酸素、フッ素、シリコン、リン、アルミニウム、チタン、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、モリブデン、ルテニウム、銀、インジウム、スズ、タンタルおよびタングステンを一種以上含む導電体を、単層で、または積層で用いればよい。または前述の元素を含む合金や化合物であってもよく、アルミニウムを含む導電体、銅およびチタンを含む導電体、銅およびマンガンを含む導電体、インジウム、スズおよび酸素を含む導電体、チタンおよび窒素を含む導電体などを用いてもよい。
絶縁体408としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。絶縁体408は、好ましくは酸化アルミニウム、窒化酸化シリコン、窒化シリコン、酸化ガリウム、酸化イットリウム、酸化ジルコニウム、酸化ランタン、酸化ネオジム、酸化ハフニウムまたは酸化タンタルを含む絶縁体を、単層で、または積層で用いればよい。
絶縁体418としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。絶縁体418は、好ましくは酸化シリコンまたは酸化窒化シリコンを含む絶縁体を、単層で、または積層で用いればよい。
なお、図1では、トランジスタの第1のゲート電極である導電体404と第2のゲート電極である導電体413とが、電気的に接続しない例を示したが、本発明の一態様に係るトランジスタの構造はこれに限定されない。例えば、図5(A)に示すように、導電体404と導電体413とが接する構造であっても構わない。このような構成とすることで、導電体404と導電体413とに同じ電位が供給されるため、トランジスタのスイッチング特性を向上させることができる。または、図5(B)に示すように、導電体413を有さない構造であっても構わない。
また、図6(A)は、トランジスタの上面図の一例である。図6(A)の一点鎖線B1−B2および一点鎖線B3−B4に対応する断面図の一例を図6(B)に示す。なお、図6(A)では、理解を容易にするため、絶縁体などの一部を省略して示す。
また、図7(A)は、トランジスタの上面図の一例である。図7(A)の一点鎖線C1−C2および一点鎖線C3−C4に対応する断面図の一例を図7(B)に示す。なお、図7(A)では、理解を容易にするため、絶縁体などの一部を省略して示す。
また、図8(A)は、トランジスタの上面図の一例である。図8(A)の一点鎖線D1−D2および一点鎖線D3−D4に対応する断面図の一例を図8(B)に示す。なお、図8(A)では、理解を容易にするため、絶縁体などの一部を省略して示す。
なお、図1では、半導体406cおよび絶縁体412と、導電体404とが上面図である図1(A)において同様の形状を有する、言い換えると断面図である図1(B)においていずれかの端部が突出しない(迫り出さない)形状を有する例を示したが、本発明の一態様に係るトランジスタの構造はこれに限定されない。例えば、図6(A)の上面図、および図6(B)の断面図に示すように、トランジスタ内で半導体406cおよび絶縁体412が全面に設けられていても構わない。または、図7(A)の上面図に示すように、半導体406cがトランジスタのチャネル形成領域から、その周辺の領域を覆うように設けられ、かつ絶縁体412が半導体406cを覆うようにトランジスタ内の全面に設けられていても構わない。なお、図7(B)の断面図では、半導体406cが導電体404よりも端部が突出する(迫り出す)領域を有する形状となる。または、図8(A)の上面図に示すように、半導体406cおよび絶縁体412がトランジスタのチャネル形成領域から、その周辺の領域を覆うように設けられても構わない。なお、図8(B)の断面図では、半導体406cおよび絶縁体412が導電体404よりも端部が突出する(迫り出す)領域を有する形状となる。
トランジスタが、図6、図7または図8に示す構造を有することで、半導体406cの表面、絶縁体412の表面などを介したリーク電流を低減することができる場合がある。即ち、トランジスタのオフ電流を、より小さくすることができる。また、絶縁体412および半導体406cのエッチング時に、導電体404をマスクとしなくてもよいため、導電体404がプラズマに曝されることがない。したがって、アンテナ効果によるトランジスタの静電破壊が生じにくく、半導体装置を歩留まり高く生産することができる。また、半導体装置の設計の自由度が高くなるため、複雑な構造を有するLSI(Large Scale Integration)やVLSI(Very Large Scale Integration)などの集積回路に好適である。
また、図9(A)は、トランジスタの上面図の一例である。図9(A)の一点鎖線F1−F2および一点鎖線F3−F4に対応する断面図の一例を図9(B)に示す。なお、図9(A)では、理解を容易にするため、絶縁体などの一部を省略して示す。
図1などではソース電極およびドレイン電極として機能する導電体416aおよび導電体416bと、ゲート電極として機能する導電体404とが重なる領域を有する構造を示したが、本発明の一態様に係るトランジスタの構造はこれに限定されない。例えば、図9に示すように、導電体416aおよび導電体416bと、導電体404とが重なる領域を有さない構造であっても構わない。このような構造とすることで、寄生容量の小さいトランジスタとすることができる。そのため、スイッチング特性が良好で、ノイズの小さいトランジスタとなる。
なお、導電体416aおよび導電体416bと、導電体404とが重ならないことにより、導電体416aと導電体416bとの間の抵抗が高くなる場合がある。その場合、トランジスタのオン電流が小さくなることがあるため、該抵抗をなるべく低くすることが好ましい。例えば、導電体416a(導電体416b)と、導電体404との距離を小さくすればよい。例えば、導電体416a(導電体416b)と、導電体404との距離を0μm以上1μm以下、好ましくは0μm以上0.5μm以下、さらに好ましくは0μm以上0.2μm以下、より好ましくは0μm以上0.1μm以下とすればよい。
または、導電体416a(導電体416b)と導電体404との間にある半導体406bまたは/および半導体406aに低抵抗領域423a(低抵抗領域423b)を設ければよい。なお、低抵抗領域423aおよび低抵抗領域423bは、例えば、半導体406bまたは/および半導体406aのほかの領域よりもキャリア密度の高い領域を有する。または、低抵抗領域423aおよび低抵抗領域423bは、半導体406bまたは/および半導体406aのほかの領域よりも不純物濃度の高い領域を有する。または、低抵抗領域423aおよび低抵抗領域423bは、半導体406bまたは/および半導体406aのほかの領域よりもキャリア移動度の高い領域を有する。低抵抗領域423aおよび低抵抗領域423bは、例えば、導電体404、導電体416a、導電体416bなどをマスクとし、半導体406bまたは/および半導体406aに不純物を添加することで形成すればよい。
なお、導電体416a(導電体416b)と、導電体404との距離を小さくし、かつ導電体416a(導電体416b)と導電体404との間にある半導体406bまたは/および半導体406aに低抵抗領域423a(低抵抗領域423b)を設けても構わない。
また、図10(A)は、トランジスタの上面図の一例である。図10(A)の一点鎖線G1−G2および一点鎖線G3−G4に対応する断面図の一例を図10(B)に示す。なお、図10(A)では、理解を容易にするため、絶縁体などの一部を省略して示す。
図1などではソース電極およびドレイン電極として機能する導電体416aおよび導電体416bが、半導体406bの上面および側面、絶縁体402の上面などと接する例を示したが、本発明の一態様に係るトランジスタの構造はこれに限定されない。例えば、図10に示すように、導電体416aおよび導電体416bが半導体406bの上面のみと接する構造であっても構わない。
また、図10(B)に示すように、絶縁体418上に絶縁体428を有してもよい。絶縁体428は、上面が平坦な絶縁体であると好ましい。なお、絶縁体428は、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。なお、絶縁体428が、窒化酸化シリコン、窒化シリコンなどの窒素を含む絶縁体を含んでも構わない。絶縁体428の上面を平坦化するために、化学機械研磨(CMP:Chemical Mechanical Polishing)法などによって平坦化処理を行ってもよい。
または、絶縁体428は、樹脂を用いてもよい。例えば、ポリイミド、ポリアミド、アクリル、シリコーンなどを含む樹脂を用いればよい。樹脂を用いることで、絶縁体428の上面を平坦化処理しなくてもよい場合がある。また、樹脂は短い時間で厚い膜を成膜することができるため、生産性を高めることができる。
また、図10(A)および図10(B)に示すように、絶縁体428上に導電体424aおよび導電体424bを有してもよい。導電体424aおよび導電体424bは、例えば、配線としての機能を有する。また、絶縁体428が開口部を有し、該開口部を介して導電体416aと導電体424aとが電気的に接続しても構わない。また、絶縁体428が別の開口部を有し、該開口部を介して導電体416bと導電体424bとが電気的に接続しても構わない。このとき、それぞれの開口部内に導電体426a、導電体426bを有しても構わない。
導電体424aおよび導電体424bとしては、例えば、ホウ素、窒素、酸素、フッ素、シリコン、リン、アルミニウム、チタン、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、モリブデン、ルテニウム、銀、インジウム、スズ、タンタルおよびタングステンを一種以上含む導電体を、単層で、または積層で用いればよい。または前述の元素を含む合金や化合物であってもよく、アルミニウムを含む導電体、銅およびチタンを含む導電体、銅およびマンガンを含む導電体、インジウム、スズおよび酸素を含む導電体、チタンおよび窒素を含む導電体などを用いてもよい。
図10に示すトランジスタは、導電体416aおよび導電体416bは、半導体406bの側面と接しない。したがって、第1のゲート電極として機能する導電体404から半導体406bの側面に向けて印加される電界が、導電体416aおよび導電体416bによって遮蔽されにくい構造である。また、導電体416aおよび導電体416bは、絶縁体402の上面と接しない。そのため、絶縁体402から放出される過剰酸素(酸素)が導電体416aおよび導電体416bを酸化させるために消費されない。したがって、絶縁体402から放出される過剰酸素(酸素)を、半導体406bの酸素欠損を低減するために効率的に利用することのできる構造である。即ち、図10に示す構造のトランジスタは、高いオン電流、高い電界効果移動度、低いサブスレッショルドスイング値、高い信頼性などを有する優れた電気特性のトランジスタである。
また、図11(A)は、トランジスタの上面図の一例である。図11(A)の一点鎖線H1−H2および一点鎖線H3−H4に対応する断面図の一例を図11(B)に示す。なお、図11(A)では、理解を容易にするため、絶縁体などの一部を省略して示す。
トランジスタは、図11に示すように、導電体416aおよび導電体416bを有さず、導電体426aおよび導電体426bと、半導体406bとが接する構造であっても構わない。この場合、半導体406bまたは/および半導体406aの、少なくとも導電体426aおよび導電体426bと接する領域に低抵抗領域423a(低抵抗領域423b)を設けると好ましい。低抵抗領域423aおよび低抵抗領域423bは、例えば、導電体404などをマスクとし、半導体406bまたは/および半導体406aに不純物を添加することで形成すればよい。なお、導電体426aおよび導電体426bが、半導体406bの孔(貫通しているもの)または窪み(貫通していないもの)に設けられていても構わない。導電体426aおよび導電体426bが、半導体406bの孔または窪みに設けられることで、導電体426aおよび導電体426bと、半導体406bとの接触面積が大きくなるため、接触抵抗の影響を小さくすることができる。即ち、トランジスタのオン電流を大きくすることができる。
<トランジスタ構造1の作製方法>
次に、図1に示すトランジスタの作製方法について説明する。
まず、基板400を準備する。
次に、導電体413となる導電体を成膜する。導電体413となる導電体は、スパッタリング法、化学気相成長(CVD:Chemical Vapor Deposition)法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)法またはパルスレーザ堆積(PLD:Pulsed Laser Deposition)法、原子層堆積法(ALD:Atomic Layer Deposition)法などを用いて成膜すればよい。
なお、CVD法は、プラズマを利用するプラズマCVD(PECVD:Plasma Enhanced CVD)法、熱を利用する熱CVD(TCVD:Thermal CVD)法などに分類できる。さらに用いる原料ガスによって金属CVD(MCVD:Metal CVD)法、有機金属CVD(MOCVD:Metal Organic CVD)法に分けることができる。
プラズマCVD法は、比較的低温で高品質の膜が得られる。熱CVD法は、プラズマを用いないため、プラズマダメージが生じず、欠陥の少ない膜が得られる。
CVD法は、原料ガスの流量比によって、得られる膜の組成を制御することができる。例えば、MCVD法およびMOCVD法では、原料ガスの流量比によって、任意の組成の膜を成膜することができる。また、例えば、MCVD法およびMOCVD法では、成膜しながら原料ガスの流量比を変化させることによって、組成が連続的に変化した膜を成膜することができる。原料ガスの流量比を変化させながら成膜する場合、複数の成膜室を用いて成膜する場合と比べて、搬送や圧力調整に掛かる時間の分、成膜に掛かる時間を短くすることができる。したがって、トランジスタの生産性を高めることができる。
次に、導電体413となる導電体の一部をエッチングし、導電体413を形成する。
次に、絶縁体402を成膜する(図12(A)参照。)。絶縁体402は、スパッタリング法、CVD法、MBE法、PLD法またはALD法などを用いて成膜すればよい。なお、ここでは、絶縁体402は、CMP法などによって、上面から平坦化する場合について説明する。絶縁体402の上面を平坦化することで、後の工程が容易となり、トランジスタの歩留まりを高くすることができる。例えば、CMP法によって、絶縁体402のRMS粗さを1nm以下、好ましくは0.5nm以下、さらに好ましくは0.3nm以下とする。または、1μm×1μmの範囲におけるRaを1nm未満、好ましくは0.6nm未満、さらに好ましくは0.5nm未満、より好ましくは0.4nm未満とする。または、1μm×1μmの範囲におけるP−Vを10nm未満、好ましくは9nm未満、さらに好ましくは8nm未満、より好ましくは7nm未満とする。ただし、本発明の一態様に係るトランジスタは、絶縁体402の上面を平坦化した場合に限定されない。
絶縁体402は、過剰酸素を含ませるように成膜すればよい。または、絶縁体402の成膜後に酸素を添加しても構わない。酸素の添加は、例えば、イオン注入法により、加速電圧を2kV以上100kV以下とし、ドーズ量を5×1014ions/cm以上5×1016ions/cm以下として行えばよい。
なお、絶縁体402を積層膜で構成する場合には、それぞれの膜を、上記のような成膜方法を用いて、異なる成膜方法で成膜してもよい。例えば、1層目の膜をCVD法で成膜し、2層目の膜をALD法で成膜してもよい。または、1層目の膜をスパッタリング法で成膜し、2層目の膜をALD法で成膜してもよい。このように、それぞれ異なる成膜方法を用いることによって、各層の膜に異なる機能や性質を持たせることができる。そして、それらの膜を積層することによって、積層膜全体として、より適切な膜を構成することができる。
つまり、n層目(nは自然数)の膜を、スパッタリング法、CVD法、MBE法またはPLD法、ALD法などのうちの少なくとも1つの方法で成膜し、n+1層目の膜を、スパッタリング法、CVD法、MBE法またはPLD法、ALD法などのうちの少なくとも1つの方法で成膜する。なお、n層目の膜と、n+1層目の膜とで、成膜方法が同じでも異なっていてもよい。なお、n層目の膜とn+2層目の膜とで、成膜方法が同じでもよい。または、すべての膜において、成膜方法が同じでもよい。
次に、半導体406aとなる半導体、および半導体406bとなる半導体をこの順に成膜する。半導体406aとなる半導体、および半導体406bとなる半導体は、スパッタリング法、CVD法、MBE法またはPLD法、ALD法などを用いて成膜すればよい。
なお、半導体406aとなる半導体、および半導体406bとなる半導体として、In−Ga−Zn酸化物層をMOCVD法によって成膜する場合、原料ガスとしてトリメチルインジウム、トリメチルガリウムおよびジメチル亜鉛などを用いればよい。なお、上記原料ガスの組み合わせに限定されず、トリメチルインジウムに代えてトリエチルインジウムなどを用いてもよい。また、トリメチルガリウムに代えてトリエチルガリウムなどを用いてもよい。また、ジメチル亜鉛に代えてジエチル亜鉛などを用いてもよい。
次に、第1の加熱処理を行うと好ましい。第1の加熱処理は、250℃以上650℃以下、好ましくは300℃以上500℃以下で行えばよい。第1の加熱処理は、不活性ガス雰囲気、または酸化性ガスを10ppm以上、1%以上もしくは10%以上含む雰囲気で行う。第1の加熱処理は減圧状態で行ってもよい。または、第1の加熱処理は、不活性ガス雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1%以上または10%以上含む雰囲気で加熱処理を行ってもよい。第1の加熱処理によって、半導体406aとなる半導体、および半導体406bとなる半導体の結晶性を高めることや、水素や水などの不純物を除去することなどができる。
次に、半導体406aとなる半導体、および半導体406bとなる半導体の一部をエッチングし、半導体406aおよび半導体406bを形成する(図12(B)参照。)。このとき、半導体406aおよび半導体406bが、導電体413の少なくとも一部と重なるように形成する。
次に、導電体416aおよび導電体416bとなる導電体を成膜する。導電体416aおよび導電体416bとなる導電体は、スパッタリング法、CVD法、MBE法またはPLD法、ALD法などを用いて成膜すればよい。
導電体416aおよび導電体416bは、導電体416aおよび導電体416bとなる導電体を成膜した後で、該導電体の一部をエッチングすることで形成される。したがって、該導電体の成膜時に、半導体406bへダメージを与えない成膜方法を用いると好ましい。即ち、該導電体の成膜には、MCVD法などを用いると好ましい。
なお、該導電体を積層膜で構成する場合には、それぞれの膜を、スパッタリング法、CVD法(プラズマCVD法、熱CVD法、MCVD法、MOCVD法など)、MBE法、PLD法、ALD法などのような成膜方法を用いて、異なる成膜方法で成膜してもよい。例えば、1層目の膜をMOCVD法で成膜し、2層目の膜をスパッタリング法で成膜してもよい。または、1層目の膜をALD法で成膜し、2層目の膜をMOCVD法で成膜してもよい。または、1層目の膜をALD法で成膜し、2層目の膜をスパッタリング法で成膜してもよい。または、1層目の膜をALD法で成膜し、2層目の膜をスパッタリング法で成膜し、3層目の膜をALD法で成膜してもよい。このように、それぞれ、異なる成膜方法を用いることによって、各層の膜に異なる機能や性質を持たせることができる。そして、それらの膜を積層することによって、積層膜全体として、より適切な膜を構成することができる。
つまり、該導電体を積層膜で構成する場合には、例えば、n層目(nは自然数)の膜を、スパッタリング法、CVD法(プラズマCVD法、熱CVD法、MCVD法、MOCVD法など)、MBE法、PLD法、ALD法などのうちの少なくとも1つの方法で成膜し、n+1層目の膜を、スパッタリング法、CVD法(プラズマCVD法、熱CVD法、MCVD法、MOCVD法など)、MBE法、PLD法、ALD法などのうちの少なくとも1つの方法で成膜し、n層目の膜と、n+1層目の膜とで、成膜方法が異なっていてもよい。なお、n層目の膜とn+2層目の膜とで、成膜方法が同じでもよい。または、すべての膜において、成膜方法が同じでもよい。
なお、該導電体、または該導電体の積層膜の内の少なくとも一つの膜と、半導体406aとなる半導体、または半導体406bとなる半導体とは、同じ成膜方法を用いてもよい。例えば、どちらも、ALD法を用いてもよい。これにより、大気に触れさせずに成膜することができる。その結果、不純物の混入を防ぐことができる。
なお、該導電体、または該導電体の積層膜の内の少なくとも一つの膜と、半導体406aとなる半導体、または半導体406bとなる半導体と、絶縁体402、または絶縁体402の積層膜の内の少なくとも一つの膜とは、同じ成膜方法を用いてもよい。例えば、どれも、スパッタリング法を用いてもよい。これにより、大気に触れさせずに成膜することができる。その結果、不純物の混入を防ぐことができる。ただし、本発明の一態様に係る半導体装置の作製方法は、これらに限定されない。
次に、導電体416aおよび導電体416bとなる導電体の一部をエッチングし、導電体416aおよび導電体416bを形成する(図13(A)参照。)。次に、半導体406cとなる半導体を成膜する。半導体406cとなる半導体は、スパッタリング法、CVD法、MBE法またはPLD法、ALD法などを用いて成膜すればよい。
なお、半導体406cとなる半導体として、In−Ga−Zn酸化物層をMOCVD法によって成膜する場合、原料ガスとしてトリメチルインジウム、トリメチルガリウムおよびジメチル亜鉛などを用いればよい。なお、上記原料ガスの組み合わせに限定されず、トリメチルインジウムに代えてトリエチルインジウムなどを用いてもよい。また、トリメチルガリウムに代えてトリエチルガリウムなどを用いてもよい。また、ジメチル亜鉛に代えてジエチル亜鉛などを用いてもよい。
次に、第2の加熱処理を行っても構わない。例えば、半導体406aとして、半導体406cとなる半導体よりも酸素透過性の高い半導体を選択する。即ち、半導体406cとなる半導体として、半導体406aよりも酸素透過性の低い半導体を選択する。換言すると、半導体406aとして、酸素を透過する機能を有する半導体を選択する。また、半導体406cとなる半導体として、酸素をブロックする機能を有する半導体を選択する。このとき、第2の加熱処理を行うことで、半導体406aを介して、絶縁体402に含まれる過剰酸素が半導体406bまで移動する。半導体406bは半導体406cとなる半導体で覆われているため、過剰酸素の外方拡散が起こりにくい。そのため、このタイミングで第2の加熱処理を行うことで、効率的に半導体406bの欠陥(酸素欠損)を低減することができる。なお、第2の加熱処理は、絶縁体402中の過剰酸素(酸素)が半導体406bまで拡散する温度で行えばよい。例えば、第1の加熱処理についての記載を参照しても構わない。または、第2の加熱処理は、第1の加熱処理よりも20℃以上150℃以下、好ましくは40℃以上100℃以下低い温度で行うと、絶縁体402から余分に過剰酸素(酸素)が放出されないため好ましい。
次に、絶縁体412となる絶縁体を成膜する。絶縁体412となる絶縁体は、スパッタリング法、CVD法、MBE法またはPLD法、ALD法などを用いて成膜すればよい。
なお、絶縁体412となる絶縁体を積層膜で構成する場合には、それぞれの膜を、スパッタリング法、CVD法(プラズマCVD法、熱CVD法、MCVD法、MOCVD法など)、MBE法、PLD法、ALD法などのような成膜方法を用いて、異なる成膜方法で成膜してもよい。例えば、1層目の膜をMOCVD法で成膜し、2層目の膜をスパッタリング法で成膜してもよい。または、1層目の膜をALD法で成膜し、2層目の膜をMOCVD法で成膜してもよい。または、1層目の膜をALD法で成膜し、2層目の膜をスパッタリング法で成膜してもよい。または、1層目の膜をALD法で成膜し、2層目の膜をスパッタリング法で成膜し、3層目の膜をALD法で成膜してもよい。このように、それぞれ、異なる成膜方法を用いることによって、各層の膜に異なる機能や性質を持たせることができる。そして、それらの膜を積層することによって、積層膜全体として、より適切な膜を構成することができる。
つまり、絶縁体412となる絶縁体を積層膜で構成する場合には、例えば、n層目(nは自然数)の膜を、スパッタリング法、CVD法(プラズマCVD法、熱CVD法、MCVD法、MOCVD法など)、MBE法、PLD法、ALD法などのうちの少なくとも1つの方法で成膜し、n+1層目の膜を、スパッタリング法、CVD法(プラズマCVD法、熱CVD法、MCVD法、MOCVD法など)、MBE法、PLD法、ALD法などのうちの少なくとも1つの方法で成膜し、n層目の膜と、n+1層目の膜とで、成膜方法が異なっていてもよい。なお、n層目の膜とn+2層目の膜とで、成膜方法が同じでもよい。または、すべての膜において、成膜方法が同じでもよい。
なお、絶縁体412となる絶縁体、または絶縁体412となる絶縁体の積層膜の内の少なくとも一つの膜と、導電体416aおよび導電体416bとなる導電体、または該導電体の積層膜の内の少なくとも一つの膜とは、同じ成膜方法を用いてもよい。例えば、どちらも、ALD法を用いてもよい。これにより、大気に触れさせずに成膜することができる。その結果、不純物の混入を防ぐことができる。または、例えば、絶縁体412となる絶縁体と接する導電体416aおよび導電体416bとなる導電体と、該導電体と接する絶縁体412となる絶縁体とは、同じ成膜方法を用いてもよい。これにより、同じチャンバーで成膜することができる。その結果、不純物の混入を防ぐことができる。
なお、絶縁体412となる絶縁体、または絶縁体412となる絶縁体の積層膜の内の少なくとも一つの膜と、導電体416aおよび導電体416bとなる導電体、または該導電体の積層膜の内の少なくとも一つの膜と、半導体406aとなる半導体、または半導体406aとなる半導体の積層膜の内の少なくとも一つの膜と、半導体406bとなる半導体、または半導体406bとなる半導体の積層膜の内の少なくとも一つの膜と、絶縁体402、または絶縁体402の積層膜の内の少なくとも一つの膜とは、同じ成膜方法を用いてもよい。例えば、どれも、スパッタリング法を用いてもよい。これにより、大気に触れさせずに成膜することができる。その結果、不純物の混入を防ぐことができる。
次に、第3の加熱処理を行っても構わない。例えば、半導体406aとして、半導体406cとなる半導体よりも酸素透過性の高い半導体を選択する。即ち、半導体406cとなる半導体として、半導体406aよりも酸素透過性の低い半導体を選択する。また、半導体406cとなる半導体として、酸素をブロックする機能を有する半導体を選択する。または、例えば、半導体406aとして、絶縁体412となる絶縁体よりも酸素透過性の高い半導体を選択する。即ち、絶縁体412となる絶縁体として、半導体406aよりも酸素透過性の低い半導体を選択する。換言すると、半導体406aとして、酸素を透過する機能を有する半導体を選択する。また、絶縁体412となる絶縁体として、酸素をブロックする機能を有する絶縁体を選択する。このとき、第3の加熱処理を行うことで、半導体406aを介して、絶縁体402に含まれる過剰酸素が半導体406bまで移動する。半導体406bは半導体406cとなる半導体および絶縁体412となる絶縁体で覆われているため、過剰酸素の外方拡散が起こりにくい。そのため、このタイミングで第3の加熱処理を行うことで、効率的に半導体406bの欠陥(酸素欠損)を低減することができる。なお、第3の加熱処理は、絶縁体402中の過剰酸素(酸素)が半導体406bまで拡散する温度で行えばよい。例えば、第1の加熱処理についての記載を参照しても構わない。または、第3の加熱処理は、第1の加熱処理よりも20℃以上150℃以下、好ましくは40℃以上100℃以下低い温度で行うと、絶縁体402から余分に過剰酸素(酸素)が放出されないため好ましい。なお、絶縁体412となる絶縁体が酸素をブロックする機能を有する場合、半導体406cとなる半導体が酸素をブロックする機能を有さなくても構わない。
次に、導電体404となる導電体を成膜する。導電体404となる導電体は、スパッタリング法、CVD法、MBE法またはPLD法、ALD法などを用いて成膜すればよい。
絶縁体412となる絶縁体は、トランジスタのゲート絶縁体として機能する。したがって導電体404となる導電体の成膜時に、絶縁体412となる絶縁体へダメージを与えない成膜方法を用いると好ましい。即ち、該導電体の成膜には、MCVD法などを用いると好ましい。
なお、導電体404となる導電体を積層膜で構成する場合には、それぞれの膜を、スパッタリング法、CVD法(プラズマCVD法、熱CVD法、MCVD法、MOCVD法など)、MBE法、PLD法、ALD法などのような成膜方法を用いて、異なる成膜方法で成膜してもよい。例えば、1層目の膜をMOCVD法で成膜し、2層目の膜をスパッタリング法で成膜してもよい。または、1層目の膜をALD法で成膜し、2層目の膜をMOCVD法で成膜してもよい。または、1層目の膜をALD法で成膜し、2層目の膜をスパッタリング法で成膜してもよい。または、1層目の膜をALD法で成膜し、2層目の膜をスパッタリング法で成膜し、3層目の膜をALD法で成膜してもよい。このように、それぞれ、異なる成膜方法を用いることによって、各層の膜に異なる機能や性質を持たせることができる。そして、それらの膜を積層することによって、積層膜全体として、より適切な膜を構成することができる。
つまり、導電体404となる導電体を積層膜で構成する場合には、例えば、n層目(nは自然数)の膜を、スパッタリング法、CVD法(プラズマCVD法、熱CVD法、MCVD法、MOCVD法など)、MBE法、PLD法、ALD法などのうちの少なくとも1つの方法で成膜し、n+1層目の膜を、スパッタリング法、CVD法(プラズマCVD法、熱CVD法、MCVD法、MOCVD法など)、MBE法、PLD法、ALD法などのうちの少なくとも1つの方法で成膜し、n層目の膜と、n+1層目の膜とで、成膜方法が異なっていてもよい。なお、n層目の膜とn+2層目の膜とで、成膜方法が同じでもよい。または、すべての膜において、成膜方法が同じでもよい。
なお、導電体404となる導電体、または導電体404となる導電体の積層膜の内の少なくとも一つの膜と、絶縁体412となる絶縁体、または絶縁体412となる絶縁体の積層膜の内の少なくとも一つの膜とは、同じ成膜方法を用いてもよい。例えば、どちらも、ALD法を用いてもよい。これにより、大気に触れさせずに成膜することができる。その結果、不純物の混入を防ぐことができる。または、例えば、絶縁体412となる絶縁体と接する導電体404となる導電体と、導電体404となる導電体と接する絶縁体412となる絶縁体とは、同じ成膜方法を用いてもよい。これにより、同じチャンバーで成膜することができる。その結果、不純物の混入を防ぐことができる。
なお、導電体404となる導電体、または導電体404となる導電体の積層膜の内の少なくとも一つの膜と、絶縁体412となる絶縁体、または絶縁体412となる絶縁体の積層膜の内の少なくとも一つの膜と、導電体416aおよび導電体416bとなる導電体、または該導電体の積層膜の内の少なくとも一つの膜と、半導体406aとなる半導体と、半導体406bとなる半導体と、半導体406cとなる半導体と、絶縁体402、または絶縁体402の積層膜の内の少なくとも一つの膜とは、同じ成膜方法を用いてもよい。例えば、どれも、スパッタリング法を用いてもよい。これにより、大気に触れさせずに成膜することができる。その結果、不純物の混入を防ぐことができる。
次に、導電体404となる導電体の一部をエッチングして導電体404を形成する。なお、導電体404は、半導体406bの少なくとも一部と重なるように形成する。
次に、導電体404となる導電体と同様に、絶縁体412となる絶縁体の一部をエッチングして絶縁体412を形成する。
次に、導電体404となる導電体および絶縁体412となる絶縁体と同様に、半導体406cとなる半導体の一部をエッチングして半導体406cを形成する(図13(B)参照。)。
なお、導電体404となる導電体、絶縁体412となる絶縁体および半導体406cとなる半導体の一部をエッチングする際には、同一のフォトリソグラフィ工程など用いてもよい。または、導電体404をマスクとして用いて絶縁体412となる絶縁体および半導体406cとなる半導体をエッチングしてもよい。そのため、導電体404、絶縁体412および半導体406cは、上面図において同様の形状となる。なお、絶縁体412、半導体406c、導電体404の全部または一部を異なるフォトリソグラフィ工程で形成してもよい。その場合、図13(C1)に示す拡大断面のように、導電体404よりも絶縁体412または/および半導体406cが突出した(迫り出した)形状となる場合や、図13(C2)に示す拡大断面のように、導電体404が絶縁体412または/および半導体406cよりも突出した(迫り出した)形状となる場合がある。これらに示すような形状とすることによって、形状不良が低減され、ゲートリーク電流を低減できる場合がある。
次に、絶縁体408を成膜する(図14(A)参照。)。絶縁体408は、スパッタリング法、CVD法、MBE法またはPLD法、ALD法などを用いて成膜すればよい。
次に、第4の加熱処理を行っても構わない。例えば、半導体406aとして、半導体406cよりも酸素透過性の高い半導体を選択する。即ち、半導体406cとして、半導体406aよりも酸素透過性の低い半導体を選択する。また、半導体406cとして、酸素をブロックする機能を有する半導体を選択する。または、例えば、半導体406aとして、絶縁体412よりも酸素透過性の高い半導体を選択する。即ち、絶縁体412として、半導体406aよりも酸素透過性の低い半導体を選択する。または、例えば、半導体406aとして、絶縁体408よりも酸素透過性の高い半導体を選択する。即ち、絶縁体408として、半導体406aよりも酸素透過性の低い半導体を選択する。換言すると、半導体406aとして、酸素を透過する機能を有する半導体を選択する。また、絶縁体408として、酸素をブロックする機能を有する絶縁体を選択する。このとき、第4の加熱処理を行うことで、半導体406aを介して、絶縁体402に含まれる過剰酸素が半導体406bまで移動する。半導体406bは半導体406c、絶縁体412、絶縁体408のいずれかで覆われているため、過剰酸素の外方拡散が起こりにくい。そのため、このタイミングで第4の加熱処理を行うことで、効率的に半導体406bの欠陥(酸素欠損)を低減することができる。なお、第4の加熱処理は、絶縁体402中の過剰酸素(酸素)が半導体406bまで拡散する温度で行えばよい。例えば、第1の加熱処理についての記載を参照しても構わない。または、第4の加熱処理は、第1の加熱処理よりも20℃以上150℃以下、好ましくは40℃以上100℃低い温度で行うと、絶縁体402から余分に過剰酸素(酸素)が放出されないため好ましい。なお、絶縁体408が酸素をブロックする機能を有する場合、半導体406cまたは/および絶縁体412が酸素をブロックする機能を有さなくても構わない。
なお、第1の加熱処理、第2の加熱処理、第3の加熱処理および第4の加熱処理の全てまたは一部を行わなくても構わない。
次に、絶縁体418を成膜する(図14(B)参照。)。絶縁体418は、スパッタリング法、CVD法、MBE法またはPLD法、ALD法などを用いて成膜すればよい。
以上のようにして、図1に示したトランジスタを作製することができる。
<トランジスタ構造2>
図15(A)および図15(B)は、本発明の一態様のトランジスタの上面図および断面図である。図15(A)は上面図であり、図15(B)は、図15(A)に示す一点鎖線I1−I2、および一点鎖線I3−I4に対応する断面図である。なお、図15(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
図15(A)および図15(B)に示すトランジスタは、基板500上の導電体513と、基板500上および導電体513上の凸部を有する絶縁体502と、絶縁体502の凸部上の半導体506aと、半導体506a上の半導体506bと、半導体506b上の半導体506cと、半導体506a、半導体506bおよび半導体506cと接し、間隔を開けて配置された導電体516aおよび導電体516bと、半導体506c上、導電体516a上および導電体516b上の絶縁体512と、絶縁体512上の導電体504と、導電体516a上、導電体516b上、絶縁体512上および導電体504上の絶縁体508と、絶縁体508上の絶縁体518と、を有する。
なお、絶縁体512は、I3−I4断面において、少なくとも半導体506bの側面と接する。また、導電体504は、I3−I4断面において、少なくとも絶縁体512を介して半導体506bの上面および側面と面する。また、導電体513は、絶縁体502を介して半導体506bの下面と面する。また、絶縁体502が凸部を有さなくても構わない。また、半導体506cを有さなくても構わない。また、絶縁体508を有さなくても構わない。また、絶縁体518を有さなくても構わない。
なお、半導体506bは、トランジスタのチャネル形成領域としての機能を有する。また、導電体504は、トランジスタの第1のゲート電極(フロントゲート電極ともいう。)としての機能を有する。また、導電体513は、トランジスタの第2のゲート電極(バックゲート電極ともいう。)としての機能を有する。また、導電体516aおよび導電体516bは、トランジスタのソース電極およびドレイン電極としての機能を有する。また、絶縁体508は、バリア層としての機能を有する。絶縁体508は、例えば、酸素または/および水素をブロックする機能を有する。または、絶縁体508は、例えば、半導体506aまたは/および半導体506cよりも、酸素または/および水素をブロックする能力が高い。
なお、絶縁体502は過剰酸素を含む絶縁体である。
なお、基板500は、基板400についての記載を参照する。また、導電体513は、導電体413についての記載を参照する。また、絶縁体502は、絶縁体402についての記載を参照する。また、半導体506aは、半導体406aについての記載を参照する。また、半導体506bは、半導体406bについての記載を参照する。また、半導体506cは、半導体406cについての記載を参照する。また、導電体516aおよび導電体516bは、導電体416aおよび導電体416bについての記載を参照する。また、絶縁体512は、絶縁体412についての記載を参照する。また、導電体504は、導電体404についての記載を参照する。また、絶縁体508は、絶縁体408についての記載を参照する。また、絶縁体518は、絶縁体418についての記載を参照する。
したがって、図15に示すトランジスタは、図1に示したトランジスタと一部の構造が異なるのみである。具体的には、図1に示したトランジスタの半導体406a、半導体406bおよび半導体406cの構造と、図15に示すトランジスタの半導体506a、半導体506bおよび半導体506cの構造が異なるのみである。したがって、図15に示すトランジスタは、図1に示したトランジスタについての説明を適宜参照することができる。
なお、図15では、トランジスタの第1のゲート電極である導電体504と第2のゲート電極である導電体513とが、電気的に接続しない例を示したが、本発明の一態様に係るトランジスタの構造はこれに限定されない。例えば、図16(A)に示すように、導電体504と導電体513とが接する構造であっても構わない。このような構成とすることで、導電体504と導電体513とに同じ電位が供給されるため、トランジスタのスイッチング特性を向上させることができる。または、図16(B)に示すように、導電体513を有さない構造であっても構わない。
また、図17(A)は、トランジスタの上面図の一例である。図17(A)の一点鎖線J1−J2および一点鎖線J3−J4に対応する断面図の一例を図17(B)に示す。なお、図17(A)では、理解を容易にするため、絶縁体などの一部を省略して示す。
なお、図15(A)に示す上面図では、絶縁体512が導電体504と同様の形状である例を示したが、本発明の一態様に係るトランジスタの構造はこれに限定されない。例えば、図17(A)および図17(B)に示すように、絶縁体512が絶縁体502上、半導体506c上、導電体516a上および導電体516b上に配置されていてもよい。
<トランジスタ構造3>
図18(A)および図18(B)は、本発明の一態様のトランジスタの上面図および断面図である。図18(A)は上面図であり、図18(B)は、図18(A)に示す一点鎖線K1−K2、および一点鎖線K3−K4に対応する断面図である。なお、図18(A)の上面図では、図の明瞭化のために一部の要素を省いて図示している。
図18(A)および図18(B)に示すトランジスタは、基板600上の導電体604と、導電体604上の絶縁体612と、絶縁体612上の半導体606aと、半導体606a上の半導体606bと、半導体606b上の半導体606cと、半導体606a、半導体606bおよび半導体606cと接し、間隔を開けて配置された導電体616aおよび導電体616bと、半導体606c上、導電体616a上および導電体616b上の絶縁体618と、を有する。なお、導電体604は、絶縁体612を介して半導体606bの下面と面する。また、絶縁体612が凸部を有しても構わない。また、基板600と導電体604の間に絶縁体を有しても構わない。該絶縁体は、絶縁体502や絶縁体508についての記載を参照する。また、半導体606aを有さなくても構わない。また、絶縁体618を有さなくても構わない。
なお、半導体606bは、トランジスタのチャネル形成領域としての機能を有する。また、導電体604は、トランジスタの第1のゲート電極(フロントゲート電極ともいう。)としての機能を有する。また、導電体616aおよび導電体616bは、トランジスタのソース電極およびドレイン電極としての機能を有する。
なお、絶縁体618は過剰酸素を含む絶縁体である。
なお、基板600は、基板500についての記載を参照する。また、導電体604は、導電体504についての記載を参照する。また、絶縁体612は、絶縁体512についての記載を参照する。また、半導体606aは、半導体506cについての記載を参照する。また、半導体606bは、半導体506bについての記載を参照する。また、半導体606cは、半導体506aについての記載を参照する。また、導電体616aおよび導電体616bは、導電体516aおよび導電体516bついての記載を参照する。また、絶縁体618は、絶縁体502についての記載を参照する。
したがって、図18に示すトランジスタは、図15に示したトランジスタと一部の構造が異なるのみとみなせる場合がある。具体的には、図15に示したトランジスタの導電体504を有さない構造と類似する。したがって、図18に示すトランジスタは、図15に示したトランジスタについての説明を適宜参照することができる。
なお、トランジスタは、絶縁体618を介して半導体606bと重なる導電体を有してもよい。該導電体は、トランジスタの第2のゲート電極として機能する。該導電体は、導電体513についての記載を参照する。また、該第2のゲート電極によってs−channel構造を形成していても構わない。
なお、絶縁体618上には、表示素子が設けられていてもよい。例えば、画素電極、液晶層、共通電極、発光層、有機EL層、陽極、陰極などが設けられていてもよい。表示素子は、例えば、導電体616aなどと接続されている。
また、図19(A)は、トランジスタの上面図の一例である。図19(A)の一点鎖線L1−L2および一点鎖線L3−L4に対応する断面図の一例を図19(B)に示す。なお、図19(A)では、理解を容易にするため、絶縁体などの一部を省略して示す。
なお、半導体の上に、チャネル保護膜として機能させることができる絶縁体を配置してもよい。例えば、図19に示すように、導電体616aおよび導電体616bと、半導体606cとの間に、絶縁体620を配置してもよい。その場合、導電体616a(導電体616b)と半導体606cとは、絶縁体620中の開口部を介して接続される。絶縁体620は、絶縁体618についての記載を参照すればよい。
なお、図18(B)や図19(B)において、絶縁体618の上に、導電体613を配置してもよい。その場合の例を図20に示す。なお、導電体613については、導電体513についての記載を参照する。また、導電体613には、導電体604と同じ電位や同じ信号が供給されてもよいし、異なる電位や信号が供給されてもよい。例えば、導電体613に、一定の電位を供給して、トランジスタのしきい値電圧を制御してもよい。つまり、導電体613は、第2のゲート電極としての機能を有することができる。
<半導体装置>
以下では、本発明の一態様に係る半導体装置を例示する。
以下では、本発明の一態様に係るトランジスタを利用した半導体装置の一例について説明する。
図21(A)に本発明の一態様の半導体装置の断面図を示す。図21(A)に示す半導体装置は、下部に第1の半導体を用いたトランジスタ2200を有し、上部に第2の半導体を用いたトランジスタ2100を有している。図21(A)では、第2の半導体を用いたトランジスタ2100として、図1で例示したトランジスタを適用した例を示している。
第1の半導体は、第2の半導体と異なるエネルギーギャップを持つ半導体を用いてもよい。例えば、第1の半導体を酸化物半導体以外の半導体とし、第2の半導体を酸化物半導体とする。第1の半導体として多結晶構造、単結晶構造などのシリコン、ゲルマニウム、などを用いてもよい。または、歪みシリコンなどの歪みを有する半導体を用いてもよい。または、第1の半導体としてHEMTに適用可能なヒ化ガリウム、ヒ化アルミニウムガリウム、ヒ化インジウムガリウム、窒化ガリウム、リン化インジウム、シリコンゲルマニウムなどを用いてもよい。これらの半導体を第1の半導体に用いることで、高速動作をすることに適したトランジスタ2200とすることができる。また、酸化物半導体を第2の半導体に用いることで、オフ電流の低いトランジスタ2100とすることができる。
なお、トランジスタ2200は、nチャネル型、pチャネル型のどちらでもよいが、回路によって適切なトランジスタを用いる。また、トランジスタ2100または/およびトランジスタ2200として、上述したトランジスタや図21(A)に示したトランジスタを用いなくても構わない場合がある。
図21(A)に示す半導体装置は、絶縁体2201および絶縁体2207を介して、トランジスタ2200の上部にトランジスタ2100を有する。また、トランジスタ2200とトランジスタ2100の間には、配線として機能する複数の導電体2202が配置されている。また各種絶縁体に埋め込まれた複数の導電体2203により、上層と下層にそれぞれ配置された配線や電極が電気的に接続されている。また、該半導体装置は、トランジスタ2100上の絶縁体2204と、絶縁体2204上の導電体2205と、トランジスタ2100のソース電極およびドレイン電極と同一層に(同一工程を経て)形成された導電体2206と、を有する。
絶縁体2204は、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、または積層で用いればよい。なお、絶縁体2204が、窒化酸化シリコン、窒化シリコンなどの窒素を含む絶縁体を含んでも構わない。
または、絶縁体2204は、樹脂を用いてもよい。例えば、ポリイミド、ポリアミド、アクリル、シリコーンなどを含む樹脂を用いればよい。樹脂を用いることで、絶縁体2204の上面を平坦化処理しなくてもよい場合がある。また、樹脂は短い時間で厚い膜を成膜することができるため、生産性を高めることができる。
複数のトランジスタを積層した構造とすることにより、高密度に複数の回路を配置することができる。
ここで、トランジスタ2200に用いる第1の半導体に単結晶シリコンを用いた場合、トランジスタ2200の第1の半導体の近傍の絶縁体の水素濃度が高いことが好ましい。該水素により、シリコンのダングリングボンドを終端させることで、トランジスタ2200の信頼性を向上させることができる。一方、トランジスタ2100に用いる第2の半導体に酸化物半導体を用いた場合、トランジスタ2100の第2の半導体の近傍の絶縁体の水素濃度が低いことが好ましい。該水素は、酸化物半導体中にキャリアを生成する要因の一つとなるため、トランジスタ2100の信頼性を低下させる要因となる場合がある。したがって、単結晶シリコンを用いたトランジスタ2200、および酸化物半導体を用いたトランジスタ2100を積層する場合、これらの間に水素をブロックする機能を有する絶縁体2207を配置することは両トランジスタの信頼性を高めるために有効である。
絶縁体2207としては、例えば酸化アルミニウム、酸化窒化アルミニウム、酸化ガリウム、酸化窒化ガリウム、酸化イットリウム、酸化窒化イットリウム、酸化ハフニウム、酸化窒化ハフニウム、イットリア安定化ジルコニア(YSZ)などを含む絶縁体を、単層で、または積層で用いればよい。
また、酸化物半導体を用いたトランジスタ2100を覆うように、トランジスタ2100上に水素をブロックする機能を有する絶縁体を形成することが好ましい。絶縁体としては、絶縁体2207と同様の絶縁体を用いることができ、特に酸化アルミニウムを適用することが好ましい。酸化アルミニウム膜は、水素、水分などの不純物および酸素の双方に対して膜を透過させない遮断効果が高い。したがって、トランジスタ2100を覆う絶縁体2208として酸化アルミニウム膜を用いることで、トランジスタ2100に含まれる酸化物半導体からの酸素の脱離を防止するとともに、酸化物半導体への水および水素の混入を防止することができる。
なお、トランジスタ2200は、プレーナ型のトランジスタだけでなく、様々なタイプのトランジスタとすることができる。例えば、FIN(フィン)型のトランジスタなどとすることができる。その場合の断面図の例を、図21(B)に示す。半導体基板2211の上に、絶縁層2212が配置されている。半導体基板2211は、先端の細い凸部(フィンともいう。)を有する。なお、凸部は、先端が細くなくてもよく、例えば、略直方体の凸部であってもよいし、先端が太い凸部であってもよい。半導体基板2211の凸部の上には、ゲート絶縁体2214が配置され、その上には、ゲート電極2213が配置されている。半導体基板2211には、ソース領域およびドレイン領域2215が形成されている。なお、ここでは、半導体基板2211が、凸部を有する例を示したが、本発明の一態様に係る半導体装置は、これに限定されない。例えば、SOI基板を加工して、凸型の半導体領域を形成しても構わない。
上記回路において、トランジスタ2100やトランジスタ2200の電極の接続を異ならせることにより、様々な回路を構成することができる。以下では、本発明の一態様の半導体装置を用いることにより実現できる回路構成の例を説明する。
図22(A)に示す回路図は、pチャネル型のトランジスタ2200とnチャネル型のトランジスタ2100を直列に接続し、かつそれぞれのゲートを接続した、いわゆるCMOSインバータの構成を示している。
また図22(B)に示す回路図は、トランジスタ2100とトランジスタ2200のそれぞれのソースとドレインを接続した構成を示している。このような構成とすることで、いわゆるCMOSアナログスイッチとして機能させることができる。
本発明の一態様に係るトランジスタを用いた、電力が供給されない状況でも記憶内容の保持が可能で、かつ、書き込み回数にも制限が無い半導体装置(記憶装置)の一例を図23に示す。
図23(A)に示す半導体装置は、第1の半導体を用いたトランジスタ3200と第2の半導体を用いたトランジスタ3300、および容量素子3400を有している。なお、トランジスタ3300としては、上述したトランジスタを用いることができる。
トランジスタ3300は、酸化物半導体を用いたトランジスタである。トランジスタ3300のオフ電流が小さいことにより、半導体装置の特定のノードに長期にわたり記憶内容を保持することが可能である。つまり、リフレッシュ動作を必要としない、またはリフレッシュ動作の頻度が極めて少なくすることが可能となるため、消費電力の低い半導体装置となる。
図23(A)において、第1の配線3001はトランジスタ3200のソースと電気的に接続され、第2の配線3002はトランジスタ3200のドレインと電気的に接続される。また、第3の配線3003はトランジスタ3300のソース、ドレインの一方と電気的に接続され、第4の配線3004はトランジスタ3300のゲートと電気的に接続されている。そして、トランジスタ3200のゲート、およびトランジスタ3300のソース、ドレインの他方は、容量素子3400の電極の一方と電気的に接続され、第5の配線3005は容量素子3400の電極の他方と電気的に接続されている。
図23(A)に示す半導体装置は、トランジスタ3200のゲートの電位が保持可能という特性を有することで、以下に示すように、情報の書き込み、保持、読み出しが可能である。
情報の書き込みおよび保持について説明する。まず、第4の配線3004の電位を、トランジスタ3300が導通状態となる電位にして、トランジスタ3300を導通状態とする。これにより、第3の配線3003の電位が、トランジスタ3200のゲート、および容量素子3400の電極の一方と電気的に接続するノードFGに与えられる。すなわち、トランジスタ3200のゲートには、所定の電荷が与えられる(書き込み)。ここでは、異なる二つの電位レベルを与える電荷(以下Lowレベル電荷、Highレベル電荷という。)のどちらかが与えられるものとする。その後、第4の配線3004の電位を、トランジスタ3300が非導通状態となる電位にして、トランジスタ3300を非導通状態とすることにより、ノードFGに電荷が保持される(保持)。
トランジスタ3300のオフ電流は極めて小さいため、ノードFGの電荷は長期間にわたって保持される。
次に情報の読み出しについて説明する。第1の配線3001に所定の電位(定電位)を与えた状態で、第5の配線3005に適切な電位(読み出し電位)を与えると、第2の配線3002は、ノードFGに保持された電荷量に応じた電位をとる。これは、トランジスタ3200をnチャネル型とすると、トランジスタ3200のゲートにHighレベル電荷が与えられている場合の見かけ上のしきい値電圧Vth_Hは、トランジスタ3200のゲートにLowレベル電荷が与えられている場合の見かけ上のしきい値電圧Vth_Lより低くなるためである。ここで、見かけ上のしきい値電圧とは、トランジスタ3200を「導通状態」とするために必要な第5の配線3005の電位をいうものとする。したがって、第5の配線3005の電位をVth_HとVth_Lの間の電位Vとすることにより、ノードFGに与えられた電荷を判別できる。例えば、書き込みにおいて、ノードFGにHighレベル電荷が与えられていた場合には、第5の配線3005の電位がV(>Vth_H)となれば、トランジスタ3200は「導通状態」となる。一方、ノードFGにLowレベル電荷が与えられていた場合には、第5の配線3005の電位がV(<Vth_L)となっても、トランジスタ3200は「非導通状態」のままである。このため、第2の配線3002の電位を判別することで、ノードFGに保持されている情報を読み出すことができる。
なお、メモリセルをアレイ状に配置する場合、読み出し時には、所望のメモリセルの情報を読み出さなくてはならない。ほかのメモリセルの情報を読み出さないためには、ノードFGに与えられた電荷によらずトランジスタ3200が「非導通状態」となるような電位、つまり、Vth_Hより低い電位を第5の配線3005に与えればよい。または、ノードFGに与えられた電荷によらずトランジスタ3200が「導通状態」となるような電位、つまり、Vth_Lより高い電位を第5の配線3005に与えればよい。
図23(B)に示す半導体装置は、トランジスタ3200を有さない点で図23(A)に示した半導体装置と異なる。この場合も図23(A)に示した半導体装置と同様の動作により情報の書き込みおよび保持動作が可能である。
図23(B)に示す半導体装置における、情報の読み出しについて説明する。トランジスタ3300が導通状態になると、浮遊状態である第3の配線3003と容量素子3400とが導通し、第3の配線3003と容量素子3400の間で電荷が再分配される。その結果、第3の配線3003の電位が変化する。第3の配線3003の電位の変化量は、容量素子3400の電極の一方の電位(または容量素子3400に蓄積された電荷)によって、異なる値をとる。
例えば、容量素子3400の電極の一方の電位をV、容量素子3400の容量をC、第3の配線3003が有する容量成分をCB、電荷が再分配される前の第3の配線3003の電位をVB0とすると、電荷が再分配された後の第3の配線3003の電位は、(CB×VB0+C×V)/(CB+C)となる。したがって、メモリセルの状態として、容量素子3400の電極の一方の電位がV1とV0(V1>V0)の2つの状態をとるとすると、電位V1を保持している場合の第3の配線3003の電位(=(CB×VB0+C×V1)/(CB+C))は、電位V0を保持している場合の第3の配線3003の電位(=(CB×VB0+C×V0)/(CB+C))よりも高くなることがわかる。
そして、第3の配線3003の電位を所定の電位と比較することで、情報を読み出すことができる。
この場合、メモリセルを駆動させるための駆動回路に上記第1の半導体が適用されたトランジスタを用い、トランジスタ3300として第2の半導体が適用されたトランジスタを駆動回路上に積層して配置する構成とすればよい。
以上に示した半導体装置は、酸化物半導体を用いたオフ電流の極めて小さいトランジスタを適用することで、長期にわたって記憶内容を保持することが可能となる。つまり、リフレッシュ動作が不要となるか、またはリフレッシュ動作の頻度を極めて低くすることが可能となるため、消費電力の低い半導体装置を実現することができる。また、電力の供給がない場合(ただし、電位は固定されていることが好ましい)であっても、長期にわたって記憶内容を保持することが可能である。
また、該半導体装置は、情報の書き込みに高い電圧が不要であるため、素子の劣化が起こりにくい。例えば、従来の不揮発性メモリのように、フローティングゲートへの電子の注入や、フローティングゲートからの電子の引き抜きを行わないため、絶縁体の劣化といった問題が全く生じない。すなわち、本発明の一態様に係る半導体装置は、従来の不揮発性メモリで問題となっている書き換え可能回数に制限はなく、信頼性が飛躍的に向上した半導体装置である。さらに、トランジスタの導通状態、非導通状態によって、情報の書き込みが行われるため、高速な動作が可能となる。
<RFタグ>
以下では、上述したトランジスタ、または記憶装置を含むRFタグについて、図24を用いて説明する。
本発明の一態様に係るRFタグは、内部に記憶回路を有し、記憶回路に情報を記憶し、非接触手段、例えば無線通信を用いて外部と情報の授受を行うものである。このような特徴から、RFタグは、物品などの個体情報を読み取ることにより物品の識別を行う個体認証システムなどに用いることが可能である。なお、これらの用途に用いるためには高い信頼性が要求される。
RFタグの構成について図24を用いて説明する。図24は、RFタグの構成例を示すブロック図である。
図24に示すようにRFタグ800は、通信器801(質問器、リーダ/ライタなどともいう)に接続されたアンテナ802から送信される無線信号803を受信するアンテナ804を有する。またRFタグ800は、整流回路805、定電圧回路806、復調回路807、変調回路808、論理回路809、記憶回路810、ROM811を有している。なお、復調回路807に含まれる整流作用を示すトランジスタの半導体には、逆方向電流を十分に抑制することが可能な、例えば、酸化物半導体を用いてもよい。これにより、逆方向電流に起因する整流作用の低下を抑制し、復調回路の出力が飽和することを防止できる。つまり、復調回路の入力に対する復調回路の出力を線形に近づけることができる。なお、データの伝送形式は、一対のコイルを対向配置して相互誘導によって交信を行う電磁結合方式、誘導電磁界によって交信する電磁誘導方式、電波を利用して交信する電波方式の3つに大別される。RFタグ800は、そのいずれの方式に用いることも可能である。
次に各回路の構成について説明する。アンテナ804は、通信器801に接続されたアンテナ802との間で無線信号803の送受信を行うためのものである。また、整流回路805は、アンテナ804で無線信号を受信することにより生成される入力交流信号を整流、例えば、半波2倍圧整流し、後段の容量素子により、整流された信号を平滑化することで入力電位を生成するための回路である。なお、整流回路805の入力側または出力側には、リミッタ回路を有してもよい。リミッタ回路とは、入力交流信号の振幅が大きく、内部生成電圧が大きい場合に、ある電力以上の電力を後段の回路に入力しないように制御するための回路である。
定電圧回路806は、入力電位から安定した電源電圧を生成し、各回路に供給するための回路である。なお、定電圧回路806は、内部にリセット信号生成回路を有していてもよい。リセット信号生成回路は、安定した電源電圧の立ち上がりを利用して、論理回路809のリセット信号を生成するための回路である。
復調回路807は、入力交流信号を包絡線検出することにより復調し、復調信号を生成するための回路である。また、変調回路808は、アンテナ804より出力するデータに応じて変調をおこなうための回路である。
論理回路809は復調信号を解析し、処理を行うための回路である。記憶回路810は、入力された情報を保持する回路であり、ロウデコーダ、カラムデコーダ、記憶領域などを有する。また、ROM811は、固有番号(ID)などを格納し、処理に応じて出力を行うための回路である。
なお、上述の各回路は、適宜、取捨することができる。
ここで、上述した記憶装置を、記憶回路810に用いることができる。本発明の一態様に係る記憶装置は、電源が遮断された状態であっても情報を保持できるため、RFタグに好適である。さらに本発明の一態様に係る記憶装置は、データの書き込みに必要な電力(電圧)が従来の不揮発性メモリに比べて低いため、データの読み出し時と書込み時の最大通信距離の差を生じさせないことも可能である。さらに、データの書き込み時に電力が不足し、誤動作または誤書込みが生じることを抑制することができる。
また、本発明の一態様に係る記憶装置は、不揮発性メモリとして用いることが可能であるため、ROM811に適用することもできる。その場合には、生産者がROM811にデータを書き込むためのコマンドを別途用意し、ユーザが自由に書き換えできないようにしておくことが好ましい。生産者が出荷前に固有番号を書込んだのちに製品を出荷することで、作製したRFタグすべてについて固有番号を付与するのではなく、出荷する良品にのみ固有番号を割り当てることが可能となり、出荷後の製品の固有番号が不連続になることがなく出荷後の製品に対応した顧客管理が容易となる。
<RFタグの使用例>
以下では、本発明の一態様に係るRFタグの使用例について図25を用いて説明する。RFタグの用途は広範にわたるが、例えば、紙幣、硬貨、有価証券類、無記名債券類、証書類(運転免許証や住民票等、図25(A)参照。)、包装用容器類(包装紙やボトル等、図25(C)参照。)、記録媒体(DVDやビデオテープ等、図25(B)参照。)、乗り物類(自転車等、図25(D)参照。)、身の回り品(鞄や眼鏡等)、食品類、植物類、動物類、人体、衣類、生活用品類、薬品や薬剤を含む医療品、または電子機器(液晶表示装置、EL表示装置、テレビジョン装置、または携帯電話)等の物品、もしくは各物品に取り付ける荷札(図25(E)および図25(F)参照。)等に設けて使用することができる。
本発明の一態様に係るRFタグ4000は、表面に貼る、または埋め込むことにより、物品に固定される。例えば、本であれば紙に埋め込み、有機樹脂からなるパッケージであれば当該有機樹脂の内部に埋め込み、各物品に固定される。本発明の一態様に係るRFタグ4000は、小型、薄型、軽量を実現するため、物品に固定した後もその物品自体のデザイン性を損なうことがない。また、紙幣、硬貨、有価証券類、無記名債券類、または証書類等に本発明の一態様に係るRFタグ4000により、認証機能を付与することができ、この認証機能を活用すれば、偽造を防止することができる。また、包装用容器類、記録媒体、身の回り品、食品類、衣類、生活用品類、または電子機器等に本発明の一態様に係るRFタグ4000を取り付けることにより、検品システム等のシステムの効率化を図ることができる。また、乗り物類であっても、本発明の一態様に係るRFタグ4000を取り付けることにより、盗難などに対するセキュリティ性を高めることができる。
以上のように、本発明の一態様に係るRFタグは、上述したような各用途に用いることができる。
<CPU>
以下では、上述したトランジスタや上述した記憶装置などの半導体装置を含むCPUについて説明する。
図26は、上述したトランジスタを一部に用いたCPUの一例の構成を示すブロック図である。
図26に示すCPUは、基板1190上に、ALU1191(ALU:Arithmetic logic unit、演算回路)、ALUコントローラ1192、インストラクションデコーダ1193、インタラプトコントローラ1194、タイミングコントローラ1195、レジスタ1196、レジスタコントローラ1197、バスインターフェース1198(Bus I/F)、書き換え可能なROM1199、およびROMインターフェース1189(ROM I/F)を有している。基板1190は、半導体基板、SOI基板、ガラス基板などを用いる。ROM1199およびROMインターフェース1189は、別チップに設けてもよい。もちろん、図26に示すCPUは、その構成を簡略化して示した一例にすぎず、実際のCPUはその用途によって多種多様な構成を有している。例えば、図26に示すCPUまたは演算回路を含む構成を一つのコアとし、当該コアを複数含み、それぞれのコアが並列で動作するような構成としてもよい。また、CPUが内部演算回路やデータバスで扱えるビット数は、例えば8ビット、16ビット、32ビット、64ビットなどとすることができる。
バスインターフェース1198を介してCPUに入力された命令は、インストラクションデコーダ1193に入力され、デコードされた後、ALUコントローラ1192、インタラプトコントローラ1194、レジスタコントローラ1197、タイミングコントローラ1195に入力される。
ALUコントローラ1192、インタラプトコントローラ1194、レジスタコントローラ1197、タイミングコントローラ1195は、デコードされた命令に基づき、各種制御を行なう。具体的にALUコントローラ1192は、ALU1191の動作を制御するための信号を生成する。また、インタラプトコントローラ1194は、CPUのプログラム実行中に、外部の入出力装置や、周辺回路からの割り込み要求を、その優先度やマスク状態から判断し、処理する。レジスタコントローラ1197は、レジスタ1196のアドレスを生成し、CPUの状態に応じてレジスタ1196の読み出しや書き込みを行なう。
また、タイミングコントローラ1195は、ALU1191、ALUコントローラ1192、インストラクションデコーダ1193、インタラプトコントローラ1194、およびレジスタコントローラ1197の動作のタイミングを制御する信号を生成する。例えばタイミングコントローラ1195は、基準クロック信号CLK1を元に、内部クロック信号CLK2を生成する内部クロック生成部を備えており、内部クロック信号CLK2を上記各種回路に供給する。
図26に示すCPUでは、レジスタ1196に、メモリセルが設けられている。レジスタ1196のメモリセルとして、上述したトランジスタや記憶装置などを用いることができる。
図26に示すCPUにおいて、レジスタコントローラ1197は、ALU1191からの指示に従い、レジスタ1196における保持動作の選択を行う。すなわち、レジスタ1196が有するメモリセルにおいて、フリップフロップによるデータの保持を行うか、容量素子によるデータの保持を行うかを、選択する。フリップフロップによるデータの保持が選択されている場合、レジスタ1196内のメモリセルへの、電源電圧の供給が行われる。容量素子におけるデータの保持が選択されている場合、容量素子へのデータの書き換えが行われ、レジスタ1196内のメモリセルへの電源電圧の供給を停止することができる。
図27は、レジスタ1196として用いることのできる記憶素子1200の回路図の一例である。記憶素子1200は、電源遮断で記憶データが揮発する回路1201と、電源遮断で記憶データが揮発しない回路1202と、スイッチ1203と、スイッチ1204と、論理素子1206と、容量素子1207と、選択機能を有する回路1220と、を有する。回路1202は、容量素子1208と、トランジスタ1209と、トランジスタ1210と、を有する。なお、記憶素子1200は、必要に応じて、ダイオード、抵抗素子、インダクタなどのその他の素子をさらに有していてもよい。
ここで、回路1202には、上述した記憶装置を用いることができる。記憶素子1200への電源電圧の供給が停止した際、回路1202のトランジスタ1209のゲートにはGND(0V)、またはトランジスタ1209がオフする電位が入力され続ける構成とする。例えば、トランジスタ1209のゲートが抵抗等の負荷を介して接地される構成とする。
スイッチ1203は、一導電型(例えば、nチャネル型)のトランジスタ1213を用いて構成され、スイッチ1204は、一導電型とは逆の導電型(例えば、pチャネル型)のトランジスタ1214を用いて構成した例を示す。ここで、スイッチ1203の第1の端子はトランジスタ1213のソースとドレインの一方に対応し、スイッチ1203の第2の端子はトランジスタ1213のソースとドレインの他方に対応し、スイッチ1203はトランジスタ1213のゲートに入力される制御信号RDによって、第1の端子と第2の端子の間の導通または非導通(つまり、トランジスタ1213の導通状態または非導通状態)が選択される。スイッチ1204の第1の端子はトランジスタ1214のソースとドレインの一方に対応し、スイッチ1204の第2の端子はトランジスタ1214のソースとドレインの他方に対応し、スイッチ1204はトランジスタ1214のゲートに入力される制御信号RDによって、第1の端子と第2の端子の間の導通または非導通(つまり、トランジスタ1214の導通状態または非導通状態)が選択される。
トランジスタ1209のソースとドレインの一方は、容量素子1208の一対の電極のうちの一方、およびトランジスタ1210のゲートと電気的に接続される。ここで、接続部分をノードM2とする。トランジスタ1210のソースとドレインの一方は、低電源電位を供給することのできる配線(例えばGND線)に電気的に接続され、他方は、スイッチ1203の第1の端子(トランジスタ1213のソースとドレインの一方)と電気的に接続される。スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方)はスイッチ1204の第1の端子(トランジスタ1214のソースとドレインの一方)と電気的に接続される。スイッチ1204の第2の端子(トランジスタ1214のソースとドレインの他方)は電源電位VDDを供給することのできる配線と電気的に接続される。スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方)と、スイッチ1204の第1の端子(トランジスタ1214のソースとドレインの一方)と、論理素子1206の入力端子と、容量素子1207の一対の電極のうちの一方と、は電気的に接続される。ここで、接続部分をノードM1とする。容量素子1207の一対の電極のうちの他方は、一定の電位が入力される構成とすることができる。例えば、低電源電位(GND等)または高電源電位(VDD等)が入力される構成とすることができる。容量素子1207の一対の電極のうちの他方は、低電源電位を供給することのできる配線(例えばGND線)と電気的に接続される。容量素子1208の一対の電極のうちの他方は、一定の電位が入力される構成とすることができる。例えば、低電源電位(GND等)または高電源電位(VDD等)が入力される構成とすることができる。容量素子1208の一対の電極のうちの他方は、低電源電位を供給することのできる配線(例えばGND線)と電気的に接続される。
なお、容量素子1207および容量素子1208は、トランジスタや配線の寄生容量等を積極的に利用することによって省略することも可能である。
トランジスタ1209のゲートには、制御信号WEが入力される。スイッチ1203およびスイッチ1204は、制御信号WEとは異なる制御信号RDによって第1の端子と第2の端子の間の導通状態または非導通状態を選択され、一方のスイッチの第1の端子と第2の端子の間が導通状態のとき他方のスイッチの第1の端子と第2の端子の間は非導通状態となる。
トランジスタ1209のソースとドレインの他方には、回路1201に保持されたデータに対応する信号が入力される。図27では、回路1201から出力された信号が、トランジスタ1209のソースとドレインの他方に入力される例を示した。スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方)から出力される信号は、論理素子1206によってその論理値が反転された反転信号となり、回路1220を介して回路1201に入力される。
なお、図27では、スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方)から出力される信号は、論理素子1206および回路1220を介して回路1201に入力する例を示したがこれに限定されない。スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方)から出力される信号が、論理値を反転させられることなく、回路1201に入力されてもよい。例えば、回路1201内に、入力端子から入力された信号の論理値が反転した信号が保持されるノードが存在する場合に、スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方)から出力される信号を当該ノードに入力することができる。
また、図27において、記憶素子1200に用いられるトランジスタのうち、トランジスタ1209以外のトランジスタは、酸化物半導体以外の半導体でなる膜または基板1190にチャネルが形成されるトランジスタとすることができる。例えば、シリコン層またはシリコン基板にチャネルが形成されるトランジスタとすることができる。また、記憶素子1200に用いられるトランジスタ全てを、チャネルが酸化物半導体で形成されるトランジスタとすることもできる。または、記憶素子1200は、トランジスタ1209以外にも、チャネルが酸化物半導体で形成されるトランジスタを含んでいてもよく、残りのトランジスタは酸化物半導体以外の半導体でなる層または基板1190にチャネルが形成されるトランジスタとすることもできる。
図27における回路1201には、例えばフリップフロップ回路を用いることができる。また、論理素子1206としては、例えばインバータやクロックドインバータ等を用いることができる。
本発明の一態様に係る半導体装置では、記憶素子1200に電源電圧が供給されない間は、回路1201に記憶されていたデータを、回路1202に設けられた容量素子1208によって保持することができる。
また、酸化物半導体にチャネルが形成されるトランジスタはオフ電流が極めて小さい。例えば、酸化物半導体にチャネルが形成されるトランジスタのオフ電流は、結晶性を有するシリコンにチャネルが形成されるトランジスタのオフ電流に比べて著しく低い。そのため、当該トランジスタをトランジスタ1209として用いることによって、記憶素子1200に電源電圧が供給されない間も容量素子1208に保持された信号は長期間にわたり保たれる。こうして、記憶素子1200は電源電圧の供給が停止した間も記憶内容(データ)を保持することが可能である。
また、スイッチ1203およびスイッチ1204を設けることによって、プリチャージ動作を行うことを特徴とする記憶素子であるため、電源電圧供給再開後に、回路1201が元のデータを保持しなおすまでの時間を短くすることができる。
また、回路1202において、容量素子1208によって保持された信号はトランジスタ1210のゲートに入力される。そのため、記憶素子1200への電源電圧の供給が再開された後、容量素子1208によって保持された信号を、トランジスタ1210の状態(導通状態、または非導通状態)に変換して、回路1202から読み出すことができる。それ故、容量素子1208に保持された信号に対応する電位が多少変動していても、元の信号を正確に読み出すことが可能である。
このような記憶素子1200を、プロセッサが有するレジスタやキャッシュメモリなどの記憶装置に用いることで、電源電圧の供給停止による記憶装置内のデータの消失を防ぐことができる。また、電源電圧の供給を再開した後、短時間で電源供給停止前の状態に復帰することができる。よって、プロセッサ全体、もしくはプロセッサを構成する一つ、または複数の論理回路において、短い時間でも電源停止を行うことができるため、消費電力を抑えることができる。
記憶素子1200をCPUに用いる例として説明したが、記憶素子1200は、DSP(Digital Signal Processor)、カスタムLSI、PLD(Programmable Logic Device)等のLSI、RF−ID(Radio Frequency Identification)にも応用可能である。
<表示装置>
以下では、本発明の一態様に係る表示装置の構成例について説明する。
[構成例]
図28(A)には、本発明の一態様に係る表示装置の上面図を示す。また、図28(B)には、本発明の一態様に係る表示装置の画素に液晶素子を用いた場合における画素回路を示す。また、図28(C)には、本発明の一態様に係る表示装置の画素に有機EL素子を用いた場合における画素回路を示す。
画素に用いるトランジスタは、上述したトランジスタを用いることができる。ここでは、nチャネル型のトランジスタを用いる例を示す。なお、画素に用いたトランジスタと、同一工程を経て作製したトランジスタを駆動回路として用いても構わない。このように、画素や駆動回路に上述したトランジスタを用いることにより、表示品位が高い、または/および信頼性の高い表示装置となる。
アクティブマトリクス型表示装置の上面図の一例を図28(A)に示す。表示装置の基板5000上には、画素部5001、第1の走査線駆動回路5002、第2の走査線駆動回路5003、信号線駆動回路5004が配置される。画素部5001は、複数の信号線によって信号線駆動回路5004と電気的に接続され、複数の走査線によって第1の走査線駆動回路5002、および第2の走査線駆動回路5003と電気的に接続される。なお、走査線と信号線とによって区切られる領域には、それぞれ表示素子を有する画素が配置されている。また、表示装置の基板5000は、FPC(Flexible Printed Circuit)等の接続部を介して、タイミング制御回路(コントローラ、制御ICともいう)に電気的に接続されている。
第1の走査線駆動回路5002、第2の走査線駆動回路5003および信号線駆動回路5004は、画素部5001と同じ基板5000上に形成される。そのため、駆動回路を別途作製する場合と比べて、表示装置を作製するコストを低減することができる。また、駆動回路を別途作製した場合、配線間の接続数が増える。したがって、同じ基板5000上に駆動回路を設けることで、配線間の接続数を減らすことができ、信頼性の向上、または/および歩留まりの向上を図ることができる。
〔液晶表示装置〕
また、画素の回路構成の一例を図28(B)に示す。ここでは、VA型液晶表示装置の画素などに適用することができる画素回路を示す。
この画素回路は、一つの画素に複数の画素電極を有する構成に適用できる。それぞれの画素電極は異なるトランジスタに接続され、各トランジスタは異なるゲート信号で駆動できるように構成されている。これにより、マルチドメイン設計された画素の個々の画素電極に印加する信号を、独立して制御できる。
トランジスタ5016のゲート配線5012と、トランジスタ5017のゲート配線5013には、異なるゲート信号を与えることができるように分離されている。一方、データ線として機能するソース電極またはドレイン電極5014は、トランジスタ5016とトランジスタ5017で共通に用いられている。トランジスタ5016とトランジスタ5017は上述したトランジスタを適宜用いることができる。これにより、表示品位が高い、または/および信頼性の高い液晶表示装置を提供することができる。
トランジスタ5016と電気的に接続する第1の画素電極と、トランジスタ5017と電気的に接続する第2の画素電極の形状について説明する。第1の画素電極と第2の画素電極の形状は、スリットによって分離されている。第1の画素電極はV字型に広がる形状を有し、第2の画素電極は第1の画素電極の外側を囲むように形成される。
トランジスタ5016のゲート電極はゲート配線5012と電気的に接続され、トランジスタ5017のゲート電極はゲート配線5013と電気的に接続されている。ゲート配線5012とゲート配線5013に異なるゲート信号を与えてトランジスタ5016とトランジスタ5017の動作タイミングを異ならせ、液晶の配向を制御することができる。
また、容量配線5010と、誘電体として機能するゲート絶縁体と、第1の画素電極または第2の画素電極と電気的に接続する容量電極とで容量素子を形成してもよい。
マルチドメイン構造は、一画素に第1の液晶素子5018と第2の液晶素子5019を備える。第1の液晶素子5018は第1の画素電極と対向電極とその間の液晶層とで構成され、第2の液晶素子5019は第2の画素電極と対向電極とその間の液晶層とで構成される。
なお、本発明の一態様に係る表示装置は、図28(B)に示す画素回路に限定されない。例えば、図28(B)に示す画素回路に新たにスイッチ、抵抗素子、容量素子、トランジスタ、センサ、または論理回路などを追加してもよい。
〔有機EL表示装置〕
画素の回路構成の他の一例を図28(C)に示す。ここでは、有機EL素子を用いた表示装置の画素構造を示す。
有機EL素子は、発光素子に電圧を印加することにより、有機EL素子が有する一対の電極の一方から電子が、他方から正孔がそれぞれ発光性の有機化合物を含む層に注入され、電流が流れる。そして、電子および正孔が再結合することにより、発光性の有機化合物が励起状態を形成し、その励起状態が基底状態に戻る際に発光する。このようなメカニズムから、このような発光素子は、電流励起型の発光素子と呼ばれる。
図28(C)は、画素回路の一例を示す図である。ここでは1つの画素にnチャネル型のトランジスタを2つ用いる例を示す。なお、nチャネル型のトランジスタには、上述したトランジスタを用いることができる。また、当該画素回路は、デジタル時間階調駆動を適用することができる。
適用可能な画素回路の構成およびデジタル時間階調駆動を適用した場合の画素の動作について説明する。
画素5020は、スイッチング用トランジスタ5021、駆動用トランジスタ5022、発光素子5024および容量素子5023を有する。スイッチング用トランジスタ5021は、ゲート電極が走査線5026に接続され、第1電極(ソース電極、ドレイン電極の一方)が信号線5025に接続され、第2電極(ソース電極、ドレイン電極の他方)が駆動用トランジスタ5022のゲート電極に接続されている。駆動用トランジスタ5022は、ゲート電極が容量素子5023を介して電源線5027に接続され、第1電極が電源線5027に接続され、第2電極が発光素子5024の第1電極(画素電極)に接続されている。発光素子5024の第2電極は共通電極5028に相当する。共通電極5028は、同一基板上に形成される共通電位線と電気的に接続される。
スイッチング用トランジスタ5021および駆動用トランジスタ5022は上述したトランジスタを用いることができる。これにより、表示品位の高い、または/および信頼性の高い有機EL表示装置となる。
発光素子5024の第2電極(共通電極5028)の電位は低電源電位に設定する。なお、低電源電位とは、電源線5027に供給される高電源電位より低い電位であり、例えばGND、0Vなどを低電源電位として設定することができる。発光素子5024の順方向のしきい値電圧以上となるように高電源電位と低電源電位を設定し、その電位差を発光素子5024に印加することにより、発光素子5024に電流を流して発光させる。なお、発光素子5024の順方向電圧とは、所望の輝度とする場合の電圧を指しており、少なくとも順方向しきい値電圧を含む。
なお、容量素子5023は駆動用トランジスタ5022のゲート容量を代用することにより省略できる場合がある。駆動用トランジスタ5022のゲート容量については、チャネル形成領域とゲート電極との間で容量が形成されていてもよい。
次に、駆動用トランジスタ5022に入力する信号について説明する。電圧入力電圧駆動方式の場合、駆動用トランジスタ5022がオンまたはオフの二つの状態となるようなビデオ信号を、駆動用トランジスタ5022に入力する。なお、駆動用トランジスタ5022を線形領域で動作させるために、電源線5027の電圧よりも高い電圧を駆動用トランジスタ5022のゲート電極に与える。また、信号線5025には、電源線電圧に駆動用トランジスタ5022のしきい値電圧Vthを加えた値以上の電圧をかける。
アナログ階調駆動を行う場合、駆動用トランジスタ5022のゲート電極に発光素子5024の順方向電圧に駆動用トランジスタ5022のしきい値電圧Vthを加えた値以上の電圧をかける。なお、駆動用トランジスタ5022が飽和領域で動作するようにビデオ信号を入力し、発光素子5024に電流を流す。また、駆動用トランジスタ5022を飽和領域で動作させるために、電源線5027の電位を、駆動用トランジスタ5022のゲート電位より高くする。ビデオ信号をアナログとすることで、発光素子5024にビデオ信号に応じた電流を流し、アナログ階調駆動を行うことができる。
なお、本発明の一態様に係る表示装置は、図28(C)に示す画素構成に限定されない。例えば、図28(C)に示す画素回路にスイッチ、抵抗素子、容量素子、センサ、トランジスタまたは論理回路などを追加してもよい。
図28で例示した回路に上述したトランジスタを適用する場合、低電位側にソース電極(第1の電極)、高電位側にドレイン電極(第2の電極)がそれぞれ電気的に接続される構成とする。さらに、制御回路等により第1のゲート電極の電位を制御し、第2のゲート電極にはソース電極に与える電位よりも低い電位など、上記で例示した電位を入力可能な構成とすればよい。
例えば、本明細書等において、表示素子、表示素子を有する装置である表示装置、発光素子、および発光素子を有する装置である発光装置は、様々な形態を用いること、または様々な素子を有することが出来る。表示素子、表示装置、発光素子または発光装置は、例えば、EL素子(有機物および無機物を含むEL素子、有機EL素子、無機EL素子)、LED(白色LED、赤色LED、緑色LED、青色LEDなど)、トランジスタ(電流に応じて発光するトランジスタ)、電子放出素子、液晶素子、電子インク、電気泳動素子、グレーティングライトバルブ(GLV)、プラズマディスプレイパネル(PDP)、MEMS(マイクロ・エレクトロ・メカニカル・システム)、デジタルマイクロミラーデバイス(DMD)、DMS(デジタル・マイクロ・シャッター)、IMOD(インターフェアレンス・モジュレーション)素子、エレクトロウェッティング素子、圧電セラミックディスプレイ、カーボンナノチューブを用いた表示素子などの少なくとも一つを有している。これらのほかにも、電気的または磁気的作用により、コントラスト、輝度、反射率、透過率などが変化する表示媒体を有してもよい。EL素子を用いた表示装置の一例としては、ELディスプレイなどがある。電子放出素子を用いた表示装置の一例としては、フィールドエミッションディスプレイ(FED)またはSED方式平面型ディスプレイ(SED:Surface−conduction Electron−emitter Display)などがある。液晶素子を用いた表示装置の一例としては、液晶ディスプレイ(透過型液晶ディスプレイ、半透過型液晶ディスプレイ、反射型液晶ディスプレイ、直視型液晶ディスプレイ、投射型液晶ディスプレイ)などがある。電子インクまたは電気泳動素子を用いた表示装置の一例としては、電子ペーパーなどがある。
なお、バックライト(有機EL素子、無機EL素子、LED、蛍光灯など)に白色光(W)を用いて表示装置をフルカラー表示させるために、着色層(カラーフィルターともいう。)を用いてもよい。着色層は、例えば、レッド(R)、グリーン(G)、ブルー(B)、イエロー(Y)などを適宜組み合わせて用いることができる。着色層を用いることで、着色層を用いない場合と比べて色の再現性を高くすることができる。このとき、着色層を有する領域と、着色層を有さない領域と、を配置することによって、着色層を有さない領域における白色光を直接表示に利用しても構わない。一部に着色層を有さない領域を配置することで、明るい表示の際に、着色層による輝度の低下を少なくでき、消費電力を2割から3割程度低減できる場合がある。ただし、有機EL素子や無機EL素子などの自発光素子を用いてフルカラー表示する場合、R、G、B、Y、Wを、それぞれの発光色を有する素子から発光させても構わない。自発光素子を用いることで、着色層を用いた場合よりも、さらに消費電力を低減できる場合がある。
<モジュール>
以下では、本発明の一態様に係る半導体装置を適用した表示モジュールについて、図29を用いて説明を行う。
図29に示す表示モジュール8000は、上部カバー8001と下部カバー8002との間に、FPC8003に接続されたタッチパネル8004、FPC8005に接続されたセル8006、バックライトユニット8007、フレーム8009、プリント基板8010、バッテリー8011を有する。なお、バックライトユニット8007、バッテリー8011、タッチパネル8004などを有さない場合もある。
本発明の一態様に係る半導体装置は、例えば、セル8006に用いることができる。
上部カバー8001および下部カバー8002は、タッチパネル8004およびセル8006のサイズに合わせて、形状や寸法を適宜変更することができる。
タッチパネル8004は、抵抗膜方式または静電容量方式のタッチパネルをセル8006に重畳して用いることができる。また、セル8006の対向基板(封止基板)に、タッチパネル機能を持たせるようにすることも可能である。または、セル8006の各画素内に光センサを設け、光学式のタッチパネルとすることも可能である。または、セル8006の各画素内にタッチセンサ用電極を設け、静電容量方式のタッチパネルとすることも可能である。
バックライトユニット8007は、光源8008を有する。光源8008をバックライトユニット8007の端部に設け、光拡散板を用いる構成としてもよい。
フレーム8009は、セル8006の保護機能の他、プリント基板8010の動作により発生する電磁波を遮断するための電磁シールドとしての機能を有してもよい。またフレーム8009は、放熱板としての機能を有していてもよい。
プリント基板8010は、電源回路、ビデオ信号およびクロック信号を出力するための信号処理回路を有する。電源回路に電力を供給する電源としては、外部の商用電源であってもよいし、別途設けたバッテリー8011による電源であってもよい。商用電源を用いる場合には、バッテリー8011を有さなくてもよい。
また、表示モジュール8000には、偏光板、位相差板、プリズムシートなどの部材を追加して設けてもよい。
<電子機器>
本発明の一態様に係る半導体装置は、表示機器、パーソナルコンピュータ、記録媒体を備えた画像再生装置(代表的にはDVD:Digital Versatile Disc等の記録媒体を再生し、その画像を表示しうるディスプレイを有する装置)に用いることができる。その他に、本発明の一態様に係る半導体装置を用いることができる電子機器として、携帯電話、携帯型を含むゲーム機、携帯データ端末、電子書籍端末、ビデオカメラ、デジタルスチルカメラ等のカメラ、ゴーグル型ディスプレイ(ヘッドマウントディスプレイ)、ナビゲーションシステム、音響再生装置(カーオーディオ、デジタルオーディオプレイヤー等)、複写機、ファクシミリ、プリンタ、プリンタ複合機、現金自動預け入れ払い機(ATM)、自動販売機などが挙げられる。これら電子機器の具体例を図30に示す。
図30(A)は携帯型ゲーム機であり、筐体901、筐体902、表示部903、表示部904、マイクロフォン905、スピーカー906、操作キー907、スタイラス908等を有する。なお、図30(A)に示した携帯型ゲーム機は、2つの表示部903と表示部904とを有しているが、携帯型ゲーム機が有する表示部の数は、これに限定されない。
図30(B)は携帯データ端末であり、第1筐体911、第2筐体912、第1表示部913、第2表示部914、接続部915、操作キー916等を有する。第1表示部913は第1筐体911に設けられており、第2表示部914は第2筐体912に設けられている。そして、第1筐体911と第2筐体912とは、接続部915により接続されており、第1筐体911と第2筐体912の間の角度は、接続部915により変更が可能である。第1表示部913における映像を、接続部915における第1筐体911と第2筐体912との間の角度にしたがって、切り替える構成としてもよい。また、第1表示部913および第2表示部914の少なくとも一方に、位置入力装置としての機能が付加された表示装置を用いるようにしてもよい。なお、位置入力装置としての機能は、表示装置にタッチパネルを設けることで付加することができる。または、位置入力装置としての機能は、フォトセンサとも呼ばれる光電変換素子を表示装置の画素部に設けることでも、付加することができる。
図30(C)はノート型パーソナルコンピュータであり、筐体921、表示部922、キーボード923、ポインティングデバイス924等を有する。
図30(D)は電気冷凍冷蔵庫であり、筐体931、冷蔵室用扉932、冷凍室用扉933等を有する。
図30(E)はビデオカメラであり、第1筐体941、第2筐体942、表示部943、操作キー944、レンズ945、接続部946等を有する。操作キー944およびレンズ945は第1筐体941に設けられており、表示部943は第2筐体942に設けられている。そして、第1筐体941と第2筐体942とは、接続部946により接続されており、第1筐体941と第2筐体942の間の角度は、接続部946により変更が可能である。表示部943における映像を、接続部946における第1筐体941と第2筐体942との間の角度にしたがって切り替える構成としてもよい。
図30(F)は普通自動車であり、車体951、車輪952、ダッシュボード953、ライト954等を有する。
本実施例では、本発明の一態様に係る半導体を有する試料を作製し、その物理的性質について評価した。
<平坦性>
まずは、半導体の平坦性について評価した。以下では、試料の作製方法について説明する。
まず、基板としてシリコン基板を準備した。
次に、熱酸化法により、シリコン基板に100nmの厚さの酸化シリコン膜を形成した。
次に、スパッタリング法により、300nmの厚さの酸化シリコン膜を形成した。次に、該酸化シリコン膜の上面からCMP法によって平坦化処理を行った。なお、平坦化処理によって、酸化シリコン膜は、厚さが12nm程度薄くなり、かつ上面の平均面粗さが0.2nm以下となった。
次に、スパッタリング法により、厚さが20nmの第1の半導体を成膜した。第1の半導体の成膜は、In−Ga−Zn酸化物(In:Ga:Zn=1:3:4[原子数比])ターゲットを用いて行った。なお、In−Ga−Zn酸化物(In:Ga:Zn=1:3:4[原子数比])ターゲットを用いて成膜したIn−Ga−Zn酸化物層を<134>とも表記する。なお、成膜時の基板温度を200℃、250℃、300℃または350℃、酸素ガス割合[O/(O+Ar)]を33%、圧力を0.4Pa、DC電力を0.5kWとした。
または、第1の半導体の成膜は、In−Ga−Zn酸化物(In:Ga:Zn=1:3:2[原子数比])ターゲットを用いて行った。なお、In−Ga−Zn酸化物(In:Ga:Zn=1:3:2[原子数比])ターゲットを用いて成膜したIn−Ga−Zn酸化物層を<132>とも表記する。なお、成膜時の基板温度を200℃と、酸素ガス割合[O/(O+Ar)]を33%、圧力を0.4Pa、DC電力を0.5kWとした。
次に、一部の試料ではスパッタリング法により、厚さが15nmの第2の半導体を成膜した。第2の半導体の成膜は、In−Ga−Zn酸化物(In:Ga:Zn=1:1:1[原子数比])ターゲットを用いて行った。なお、In−Ga−Zn酸化物(In:Ga:Zn=1:1:1[原子数比])ターゲットを用いて成膜したIn−Ga−Zn酸化物層を<111>とも表記する。なお、成膜時の基板温度を300℃、酸素ガス割合[O/(O+Ar)]を33%、圧力を0.4Pa、DC電力を0.5kWとした。
次に、エスアイアイ・ナノテクノロジー株式会社製走査型プローブ顕微鏡システムSPA−500を用いて、RMS粗さ、RaおよびP−Vを測定した。なお、測定範囲は1μm×1μmとし、データ数をX=512、Y=512とした。
結果を図35に示す。RMS粗さは、基板温度が高くなるにしたがって大きくなることがわかった。特に、<134>上に<111>を配置した積層構造(<134>\<111>とも表記する。)において傾向が顕著となった。また、<132>単層、および<132>上に<111>を配置した積層構造(<132>\<111>とも表記する。)では、RMS粗さは0.4nm以下まで小さくなることがわかった。
また、RaもRMS粗さと同様の傾向であった。また、<132>単層、および<132>\<111>では、Raは0.3nm以下まで小さくなることがわかった。
また、P−Vは、<134>\<111>では、基板温度が高くなるにしたがって大きくなることがわかった。一方、<134>単層では基板温度によらずP−Vは一定であった。
次に、上記試料のうち、<134>単層と同様の構造を有し、第1の半導体の成膜条件のみ異なる試料について、RMS粗さ、RaおよびP−Vを測定した。なお、第1の半導体の成膜は、In−Ga−Zn酸化物(In:Ga:Zn=1:3:4[原子数比])ターゲットを用いて行った。なお、成膜時の基板温度を200℃、酸素ガス割合[O/(O+Ar)]を11%、33%、50%または100%、圧力を0.4Pa、DC電力を0.5kWとした。
結果を図36に示す。RMS粗さは、酸素ガス割合が高くなるにしたがって大きくなることがわかった。また、酸素ガス割合が11%および33%の試料では、RMS粗さは0.5nm以下まで小さくなることがわかった。
また、RaもRMS粗さと同様の傾向であった。また、酸素ガス割合が11%および33%の試料では、Raは0.4nm以下まで小さくなることがわかった。
また、P−Vは、4nm以上6nm以下程度となった。
<結晶性>
次に、半導体の結晶性について評価した。
試料の構造は、平坦性の評価を行った<134>単層の試料と同様である。即ち、シリコン基板と、シリコン基板表面に熱酸化法により形成された厚さが100nmの酸化シリコン膜と、該酸化シリコン膜上にスパッタリング法によって成膜され、かつCMP法により平坦化された厚さが288nm(CMP法による薄膜化分を含む。)の酸化シリコン膜と、該酸化シリコン膜上にスパッタリング法により形成された厚さが20nmの半導体<134>と、を有する試料である。
ただし、<134>は、成膜時の基板温度を、室温(25℃程度。RTとも表記する。)、100℃、200℃、250℃、300℃または350℃とした。また、それぞれの基板温度条件に対して、酸素ガス割合を11%、33%、50%または100%とした試料を準備した。
結晶性の評価は、Bruker AXS社製X線回折装置D8 ADVANCEを用い、Out of Plane法で行った。
結果を図37に示す。室温で成膜した全ての試料、ならびに100℃で成膜した酸素ガス割合が11%および33%の試料を除き、2θが30°付近に配向性を示すピークが確認できた。該ピークを有する試料は、c軸方向に配向性を有するIn−Ga−Zn酸化物の結晶を含むと推測される。したがって、該試料はCAAC−OSであることが推測される。
次に、上記のうち、200℃で成膜した酸素ガス割合が11%、33%および100%の試料に対し、プローブ径を1nmとしたナノビーム電子回折を行い、CAAC化率を測定した。CAAC化率の測定方法については、先の実施の形態の記載を参照する。
ここでは、各試料の上面に対し、5nm/秒の速度で60秒間スキャンしながら透過電子回折パターンを取得した。そして、観測された回折パターンを0.5秒ごとに静止画に変換することで、CAAC化率を導出した。
各試料におけるCAAC化率を図38に示す。酸素ガス割合が11%である<134>のCAAC化率は91.8%(非CAAC化率は8.2%)であった。また、酸素ガス割合が33%である<134>のCAAC化率は95.0%(非CAAC化率は5.0%)であった。また、酸素ガス割合が100%である<134>のCAAC化率は100.0%(非CAAC化率は0.0%)であった。したがって、これらの各試料は全てCAAC−OSであることがわかった。また、酸素ガス割合が高いほど、非CAAC化率が低くなる(CAAC化率が高くなる)ことがわかった。換言すると、酸素ガス割合が低いほど、非CAAC化率が高くなる(CAAC化率が低くなる)ことがわかった。
なお、CAAC−OSと異なる回折パターンのほとんどはnc−OSと同様の回折パターンであった。
次に、<134>を100nmまで厚くすることでXRD強度を高め、改めて結晶性の比較を行った。なお、そのほかの条件については同じとした。
結果を、図39に示す。<134>が20nmである試料と比べ、2θが30°付近のピーク強度が大きい。そのため、20nmの試料でピークを確認することができなかった室温で成膜した試料においても、酸素ガス割合が50%および100%の条件でピークを確認することができた。
ここで、各試料における、CAAC起因と見られる30°付近のピークのXRD強度(XRD強度|CAACとも表記する。)を図40に示す。なお、XRD強度は、基板など他の要素に起因するバックグラウンドを差し引くことでピークのみを分離し、該ピークをローレンツ関数でフィッティングすることで導出した。
以上に示した結晶性の評価より、CAAC−OSの形成には、あるしきい値が存在することが示唆された。即ち、良質なCAAC−OSである<134>単層を成膜するためには、例えば、成膜時の基板温度は100℃以上、好ましくは200℃以上とすればよいことがわかる。ただし、成膜時の基板温度が高いほど、酸素ガス割合が高いほど結晶性が高まるとも限らないことがわかった。したがって、求められる結晶性の高さに応じて、適宜条件の組み合わせを選択することが重要である。
<膜密度>
次に、半導体の膜密度について評価した。
試料の構造は、結晶性の評価を行った<134>単層の試料と同様である。即ち、シリコン基板と、シリコン基板表面に熱酸化法により形成された厚さが100nmの酸化シリコン膜と、該酸化シリコン膜上にスパッタリング法によって成膜され、かつCMP法により平坦化された厚さが288nm(CMP法による薄膜化分を含む。)の酸化シリコン膜と、該酸化シリコン膜上にスパッタリング法により形成された厚さが20nmの半導体<134>と、を有する試料である。
膜密度の測定は、Bruker AXS社製X線回折装置D8 ADVANCEを用い、X線反射率(XRR:X−Ray Reflection)測定法によって行った。なお、膜密度の導出は、下面、上面における界面層を除外して行った。
結果を図41に示す。<134>単層の膜密度は、5.5g/cmから6.4g/cmまでの範囲をとることがわかった。また、傾向として、成膜時の酸素ガス割合が高いほど、成膜時の基板温度が高いほど膜密度が高くなる条件が多く見られた。
次に、横軸に膜密度、縦軸にXRD強度|CAACをとり、図40および図41のデータ(24点)をプロットした(図42参照。)。図42には、近似直線および相関係数Rの二乗(Rとも表記する。)を示す。結果、<134>の膜密度と結晶性には正の相関関係が見られることがわかった。即ち、結晶性が高いほど膜密度が高くなり、膜密度が高いほど結晶性が高くなることがわかった。
<酸素の拡散>
次に、半導体中における酸素の拡散について評価した。以下は、試料の作製方法について説明する。
まず、基板として一辺が126.6mmの角型シリコン基板を準備した。
次に、熱酸化法により、シリコン基板に100nmの厚さの酸化シリコン膜を形成した。
次に、スパッタリング法により、300nmの厚さの酸化シリコン膜を形成した。酸化シリコン膜の成膜は、合成石英ターゲットを用いて行った。なお、酸素ガスとして18を用い、酸素ガス割合[O/(O+Ar)]を50%とした。次に、該酸化シリコン膜の上面からCMP法によって平坦化処理を行った。なお、平坦化処理によって、酸化シリコン膜は、厚さが12nm程度薄くなり、かつ上面の平均面粗さが0.2nm以下となった。
次に、スパッタリング法により、厚さが50nmの半導体を成膜した。半導体の成膜は、In−Ga−Zn酸化物(In:Ga:Zn=1:3:4[原子数比])ターゲットを用いて行った。なお、成膜時の基板温度を100℃、200℃、250℃または300℃、酸素ガス割合[O/(O+Ar)]を11%、33%、50%または100%、圧力を0.4Pa、DC電力を0.5kWとした。
次に、加熱処理を行った。加熱処理は、窒素ガス雰囲気にて1時間行った後、酸素ガス雰囲気にて1時間行った。また、加熱処理の温度は、350℃、400℃または450℃とした。
酸素の拡散は、アルバック・ファイ株式会社製四重極型二次イオン質量分析装置PHI ADEPT1010を用いて<134>中の深さ方向の18Oの濃度分布を測定することで評価した。このように、酸素の同位体元素である18Oを含む酸化シリコン膜から<134>への18Oの拡散を測定することで、酸素を主成分とする層中であっても酸素の拡散を評価することが可能となる。
図43に、成膜時の基板温度(成膜温度とも表記する。)ごとの各試料の深さ方向の18Oの濃度分布を示す。なお、成膜時の酸素ガス割合は33%とした。また、図44に、成膜時の酸素ガス割合と各試料の深さ方向の18Oの濃度分布を示す。なお、成膜時の基板温度は200℃とした。また、図43および図44では、比較として加熱処理を行っていない試料(as−depoとも表記する。)の深さ方向の18Oの濃度分布も示す。
次に、深さ方向の18Oの濃度分布から、酸化シリコン膜から拡散する18Oの<134>中における拡散長を求める手順について、図45を用いて説明する。
図45などに示すように、18を用いて成膜した酸化シリコン膜(SiOx 18Oとも表記する。)は、18Oの深さ方向の濃度分布が略一定となる領域を有する。ここでは、酸化シリコン膜中における18O濃度の最大値を図中に破線で示す。次に、酸化シリコン膜中における18O濃度の最大値に1/eを乗じた値を図中に破線で示す。そして、この値となる深さを酸化シリコン膜と<134>との境界とする。ただし、本実施例では、該領域において18O濃度の定量は行っていない。
また、<134>中にも、18Oの深さ方向の濃度分布が略一定となる領域を有する。該領域における18O濃度は、18Oの拡散によらず元来<134>に含まれる18O濃度である可能性が高い。したがって、該領域を有さない試料においては、18Oの拡散を評価することは困難となる場合がある。該領域を形成するために、適宜<134>の厚さを変えてもよい。
本実施例では、18O濃度が18O濃度の最大値に1/eを乗じた値から2×1020atoms/cm(図中に破線で示す。)となる深さまでの領域を<134>への18Oの拡散領域と見なして評価した。
即ち、図45中に両矢印で示した深さが、<134>における18Oの拡散長である。
この手順によって、図43および図44に示した各試料における18Oの拡散長を導出した。結果を表2に示す。
次に、横軸に膜密度をとり、縦軸に拡散長をとって、データをプロットしたものを図46に示す。なお、膜密度は、前出の膜密度を利用している。そのため、酸素の拡散を評価した試料とは<134>の厚さが異なる。また、成膜後の加熱処理によって膜密度が変化する場合もあるが、本実施例では考慮しない。
図46において、as−depoの試料においては、膜密度と拡散長に関係性は見出せなかった。したがって、<134>の成膜時などに形成される、酸化シリコンと<134>との混合領域の厚さは、ほとんど<134>の膜密度によらないことがわかった。または、該混合領域の厚さは、ほとんど<134>の成膜条件によらないことがわかった。
また、350℃、400℃、450℃にて加熱処理を行った場合、膜密度が低い試料ほど拡散長が大きいことがわかった。即ち、膜密度が低いほど酸素は拡散しやすいことがわかった。
本実施例では、半導体の物性について多角的に評価を行ってきた。その結果、平坦性と結晶性との関係性、結晶性と膜密度との関係性、膜密度と酸素の拡散との関係性など相互の結びつきを確認することができた。
本実施例では、本発明の一態様に係るトランジスタを作製し、その電気特性を評価した。以下に試料の作製方法を説明する。なお、本実施例で作製したトランジスタの構造は、図1に示した構造と比べて、第2のゲート電極として機能する導電体413を有さない点が異なる。即ち、図5(B)に示した構造と同様の構造である。したがって、以下では、図1、図5(B)図12、図13および図14などに記載の符号などを用いて説明する。
まず、基板400としてシリコン基板を準備した。
次に、熱酸化法により、シリコン基板に100nmの厚さの酸化シリコン膜を形成した。
次に、PECVD法により、300nmの厚さの酸化窒化シリコン膜を形成した。次に、該酸化窒化シリコン膜の上面からCMP法によって平坦化処理を行った。なお、平坦化処理によって、酸化窒化シリコン膜は、厚さが12nm程度薄くなり、かつ上面の平均面粗さが0.2nm以下となった。
次に、イオン注入法により、酸化窒化シリコン膜に酸素を添加した。イオン注入法は、加速電圧を60kVとし、16イオンを2×1016ions/cmの濃度で行った。
なお、酸化シリコン膜および酸化窒化シリコン膜は、絶縁体402に相当する。
次に、スパッタリング法により、半導体406aに相当する厚さが20nmの半導体と、半導体406bに相当する厚さが15nmの半導体の積層構造を形成した。
半導体406aに相当する半導体の成膜は、In−Ga−Zn酸化物(In:Ga:Zn=1:3:4[原子数比])ターゲットを用いて行った。なお、In−Ga−Zn酸化物(In:Ga:Zn=1:3:4[原子数比])ターゲットを用いて成膜したIn−Ga−Zn酸化物層を<134>とも表記する。なお、成膜時の基板温度を200℃、酸素ガス割合[O/(O+Ar)]を11%、33%、50%または100%、圧力を0.4Pa、DC電力を0.5kWとした。
半導体406bに相当する半導体の成膜は、In−Ga−Zn酸化物(In:Ga:Zn=1:1:1[原子数比])ターゲットを用いて行った。なお、In−Ga−Zn酸化物(In:Ga:Zn=1:1:1[原子数比])ターゲットを用いて成膜したIn−Ga−Zn酸化物層を<111>とも表記する。なお、成膜時の基板温度を300℃、酸素ガス割合[O/(O+Ar)]を33%、圧力を0.4Pa、DC電力を0.5kWとした。
次に、加熱処理を行った。加熱処理は、窒素ガス雰囲気にて1時間行った後、酸素ガス雰囲気にて1時間行った。また、加熱処理の温度は450℃とした。
次に、スパッタリング法により、導電体416aおよび導電体416bに相当する厚さが100nmのタングステン膜を形成した。
次に、スパッタリング法により半導体406cに相当する厚さが5nmの半導体と、PECVD法により絶縁体412に相当する厚さが20nmの酸化窒化シリコン膜と、スパッタリング法により厚さが30nmの窒化タンタル膜と、スパッタリング法により厚さが135nmのタングステン膜と、を形成した。なお、窒化タンタル膜とタングステン膜との積層構造は、導電体404に相当する。半導体406cに相当する半導体の成膜は、In−Ga−Zn酸化物(In:Ga:Zn=1:3:2[原子数比])ターゲットを用いて行った(<132>とも表記する。)。なお、成膜時の基板温度を200℃、酸素ガス割合[O/(O+Ar)]を33%、圧力を0.4Pa、DC電力を0.5kWとした。
次に、スパッタリング法により絶縁体408に相当する厚さが70nmの酸化アルミニウム膜と、PECVD法により絶縁体418に相当する厚さが300nmの酸化窒化シリコン膜を成膜する。
次に、加熱処理を行った。加熱処理は、酸素ガス雰囲気にて1時間行った。また、加熱処理の温度は400℃とした。
以上のようにして作製したトランジスタに、端子部を形成して、電気特性を測定した。
<Vg−Id特性>
まずは、ドレイン電圧を印加した状態で、ゲート電圧Vgを変動させたときのドレイン電流Idの変化(Vg−Id特性ともいう。)を測定した。なお、トランジスタは、チャネル長Lを0.45μm、チャネル幅W(SCW)を1μmとした。
なお、印加したドレイン電圧Vdは、0.1Vまたは3Vとした。また、各ドレイン電圧における基板面内に満遍なく配置された25箇所にて測定を行った。ただし、一部の異常点を除く場合がある。
結果を図47に示す。また、図47を解析することで電界効果移動度(μFEとも表記する。)、サブスレッショルドスイング値(S値とも表記する。)およびシフト値(Shiftとも表記する。)を導出した。なお、電界効果移動度およびサブスレッショルドスイング値は、ドレイン電圧Vdが0.1VのVg−Id特性から導出した。また、シフト値はドレイン電圧Vdが3VのVg−Id特性から導出した。
なお、シフト値は、Vg−Id特性において、最大傾きである接線を外挿したときの直線と、ドレイン電流Idが1×10―12Aを示す直線との交点におけるゲート電圧Vgとして算出した。
図48は、<134>の成膜時の酸素ガス割合と、上記電気特性との関係を示す図である。なお、図48に示すプロットを繋ぐ線は、それぞれの中央値を繋いだ線である。
図48より、<134>の成膜時の酸素ガス割合が小さいほど、電界効果移動度が高くなることがわかった。また、成膜時の酸素ガス割合が小さいほど、サブスレッショルドスイング値が小さくなることがわかった。また、成膜時の酸素ガス割合が小さいほど、シフト値が小さくなるものの、ノーマリーオフを維持していることがわかった。
本実施例では、<134>の成膜時の酸素ガス割合のもっとも小さい11%のトランジスタにおいて、良好な電気特性が実現していることがわかった。実施例1に示したように、<134>は成膜時の酸素ガス割合が小さいほど平坦性が向上することがわかっている。したがって、図4(B)に示したモデルのように、物理的な凹凸が小さくなったことで電気特性が向上した可能性がある。また、成膜時の酸素ガス割合の小さい<134>は、比較的酸素透過性の高い性質を有するため、酸素ガス割合の大きい条件よりも<111>中の酸素欠損を低減できると推測される。即ち、酸素欠損に起因する欠陥準位密度が低減することで電気特性が向上した可能性がある。
<信頼性>
次に、トランジスタの信頼性を評価した。信頼性の評価は、ゲートBTストレス試験によって行った。
プラスゲートBTストレス試験(+GBT)の測定方法について説明する。プラスゲートBTストレス試験の対象となるトランジスタの初期(ストレス印加前)の電気特性を測定するため、基板温度を40℃とし、ドレイン電圧Vdを0.1Vまたは3Vとし、ゲート電圧を−3Vから+3Vまで変化させたときのドレイン電流Idの変化特性、すなわちVg−Id特性を測定した。
次に、基板温度を150℃まで上昇させた後、トランジスタのドレイン電圧Vdを0Vとした。次に、絶縁体412に相当する絶縁体へ印加される電界強度が1.65MV/cmとなるようにゲート電圧3.3Vを印加し、3600秒保持した。
なお、マイナスゲートBTストレス試験(−GBT)では、ゲート電圧−3.3Vを印加した。
各試料のゲートBTストレス試験前後のVg−Id特性を、図49および図50に示す。図49は、チャネル長Lが0.45μm、チャネル幅W(SCW)が1μmのトランジスタ、図50は、チャネル長Lが0.45μm、チャネル幅W(SCW)が10μmのトランジスタのゲートBTストレス試験結果を示す。なお、図49および図50において、実線はゲートBTストレス試験前(GBT前)の電気特性を示し、破線はゲートBTストレス試験後(GBT後)の電気特性を示す。また、図49および図50において、上段にプラスゲートBTストレス試験前後のVg−Id特性を示し、下段にマイナスゲートBTストレス試験前後のVg−Id特性を示す。
図49および図50から得られたゲートBTストレス試験前後のしきい値電圧の変化(ΔVth)およびシフト値の変化(ΔShift)を表3に示す。なお、しきい値電圧(Vth)とは、チャネルが形成されたときのゲート電圧(ソースとゲート間の電圧)をいう。しきい値電圧(Vth)は、ゲート電圧Vgを横軸にとり、ドレイン電流Idの平方根を縦軸にとり、データをプロットすることで作成した曲線(Vg−√Id特性)において、最大傾きである接線を外挿したときの直線とドレイン電流Idの平方根が0(Idが0A)との交点におけるゲート電圧Vgとして算出した。
表3に示したゲートBTストレス試験の結果を図51にも示す。表3および図51より、<134>の成膜時の酸素ガス割合が小さいほど、信頼性も高くなる傾向を有する場合があることがわかった。
<134>の成膜時の酸素ガス割合を小さくすることで、<111>および<111>の有する界面における準位密度を低減できるため、信頼性が高くなった可能性がある。
400 基板
402 絶縁体
404 導電体
406a 半導体
406b 半導体
406c 半導体
408 絶縁体
412 絶縁体
413 導電体
416a 導電体
416b 導電体
418 絶縁体
423a 低抵抗領域
423b 低抵抗領域
424a 導電体
424b 導電体
426a 導電体
426b 導電体
428 絶縁体
500 基板
502 絶縁体
504 導電体
506a 半導体
506b 半導体
506c 半導体
508 絶縁体
512 絶縁体
513 導電体
516a 導電体
516b 導電体
518 絶縁体
600 基板
604 導電体
606a 半導体
606b 半導体
606c 半導体
612 絶縁体
613 導電体
616a 導電体
616b 導電体
618 絶縁体
620 絶縁体
800 RFタグ
801 通信器
802 アンテナ
803 無線信号
804 アンテナ
805 整流回路
806 定電圧回路
807 復調回路
808 変調回路
809 論理回路
810 記憶回路
811 ROM
901 筐体
902 筐体
903 表示部
904 表示部
905 マイクロフォン
906 スピーカー
907 操作キー
908 スタイラス
911 筐体
912 筐体
913 表示部
914 表示部
915 接続部
916 操作キー
921 筐体
922 表示部
923 キーボード
924 ポインティングデバイス
931 筐体
932 冷蔵室用扉
933 冷凍室用扉
941 筐体
942 筐体
943 表示部
944 操作キー
945 レンズ
946 接続部
951 車体
952 車輪
953 ダッシュボード
954 ライト
1189 ROMインターフェース
1190 基板
1191 ALU
1192 ALUコントローラ
1193 インストラクションデコーダ
1194 インタラプトコントローラ
1195 タイミングコントローラ
1196 レジスタ
1197 レジスタコントローラ
1198 バスインターフェース
1199 ROM
1200 記憶素子
1201 回路
1202 回路
1203 スイッチ
1204 スイッチ
1206 論理素子
1207 容量素子
1208 容量素子
1209 トランジスタ
1210 トランジスタ
1213 トランジスタ
1214 トランジスタ
1220 回路
2100 トランジスタ
2200 トランジスタ
2201 絶縁体
2202 導電体
2203 導電体
2204 絶縁体
2205 導電体
2206 導電体
2207 絶縁体
2208 絶縁体
2211 半導体基板
2212 絶縁層
2213 ゲート電極
2214 ゲート絶縁体
2215 ソース領域およびドレイン領域
3001 配線
3002 配線
3003 配線
3004 配線
3005 配線
3200 トランジスタ
3300 トランジスタ
3400 容量素子
4000 RFタグ
5000 基板
5001 画素部
5002 走査線駆動回路
5003 走査線駆動回路
5004 信号線駆動回路
5010 容量配線
5012 ゲート配線
5013 ゲート配線
5014 ドレイン電極
5016 トランジスタ
5017 トランジスタ
5018 液晶素子
5019 液晶素子
5020 画素
5021 スイッチング用トランジスタ
5022 駆動用トランジスタ
5023 容量素子
5024 発光素子
5025 信号線
5026 走査線
5027 電源線
5028 共通電極
5120 基板
5161 領域
8000 表示モジュール
8001 上部カバー
8002 下部カバー
8003 FPC
8004 タッチパネル
8005 FPC
8006 セル
8007 バックライトユニット
8008 光源
8009 フレーム
8010 プリント基板
8011 バッテリー

Claims (16)

  1. 過剰酸素を含む第1の絶縁体と、
    前記第1の絶縁体上の第1の酸化物半導体と、
    前記第1の酸化物半導体上の第2の酸化物半導体と、
    前記第2の酸化物半導体上に間隔を開けて配置された第1の導電体および第2の導電体と、
    前記第2の酸化物半導体上、第1の導電体上および第2の導電体上の第2の絶縁体と、
    前記第2の絶縁体を介して、前記第2の酸化物半導体と面する第3の導電体と、を有し、
    前記第1の酸化物半導体は酸素を透過する性質を有することを特徴とする半導体装置。
  2. 過剰酸素を含む第1の絶縁体と、
    前記第1の絶縁体上の第1の酸化物半導体と、
    前記第1の酸化物半導体上の第2の酸化物半導体と、
    前記第2の酸化物半導体上に間隔を開けて配置された第1の導電体および第2の導電体と、
    前記第1の酸化物半導体の側面、前記第2の酸化物半導体の上面および側面、前記第1の導電体の上面、ならびに前記第2の導電体の上面と接する第3の酸化物半導体と、
    前記第3の酸化物半導体上の第2の絶縁体と、
    前記第2の絶縁体および前記第3の酸化物半導体を介して、前記第2の酸化物半導体の上面および側面と面する第3の導電体と、を有し、
    前記第1の酸化物半導体は前記第3の酸化物半導体よりも酸素透過性が高いことを特徴とする半導体装置。
  3. 過剰酸素を含む第1の絶縁体と、
    前記第1の絶縁体上の第1の酸化物半導体と、
    前記第1の酸化物半導体上の第2の酸化物半導体と、
    前記第2の酸化物半導体上に間隔を開けて配置された第1の導電体および第2の導電体と、
    前記第1の酸化物半導体の側面、前記第2の酸化物半導体の上面および側面、前記第1の導電体の上面、ならびに前記第2の導電体の上面と接する第3の酸化物半導体と、
    前記第3の酸化物半導体上の第2の絶縁体と、
    前記第2の絶縁体および前記第3の酸化物半導体を介して、前記第2の酸化物半導体の上面および側面と面する第3の導電体と、を有し、
    前記第1の酸化物半導体は前記第3の酸化物半導体よりも密度が低いことを特徴とする半導体装置。
  4. 過剰酸素を含む第1の絶縁体と、
    前記第1の絶縁体上の第1の酸化物半導体と、
    前記第1の酸化物半導体上の第2の酸化物半導体と、
    前記第2の酸化物半導体上に間隔を開けて配置された第1の導電体および第2の導電体と、
    前記第1の酸化物半導体の側面、前記第2の酸化物半導体の上面および側面、前記第1の導電体の上面、ならびに前記第2の導電体の上面と接する第3の酸化物半導体と、
    前記第3の酸化物半導体上の第2の絶縁体と、
    前記第2の絶縁体および前記第3の酸化物半導体を介して、前記第2の酸化物半導体の上面および側面と面する第3の導電体と、を有し、
    前記第1の酸化物半導体は前記第3の酸化物半導体よりも結晶性が低いことを特徴とする半導体装置。
  5. 請求項1乃至請求項4のいずれか一において、
    少なくとも、前記第1の絶縁体、前記第1の酸化物半導体、前記第2の酸化物半導体を覆う第3の絶縁体を有し、
    前記第3の絶縁体が酸素をブロックする機能を有することを特徴とする半導体装置。
  6. 請求項1乃至請求項4のいずれか一において、
    少なくとも、前記第1の絶縁体、前記第1の酸化物半導体、前記第2の酸化物半導体を覆う第3の絶縁体を有し、
    前記第3の絶縁体が水素をブロックする機能を有することを特徴とする半導体装置。
  7. 請求項1乃至請求項6のいずれか一において、
    前記第1の酸化物半導体は前記第2の酸化物半導体よりも電子親和力が小さいことを特徴とする半導体装置。
  8. 請求項2乃至請求項7のいずれか一において、
    前記第3の酸化物半導体は前記第2の酸化物半導体よりも電子親和力が小さいことを特徴とする半導体装置。
  9. 請求項1乃至請求項8のいずれか一において、
    前記第1の酸化物半導体は前記第2の酸化物半導体よりもエネルギーギャップが大きいことを特徴とする半導体装置。
  10. 請求項2乃至請求項9のいずれか一において、
    前記第3の酸化物半導体は前記第2の酸化物半導体よりもエネルギーギャップが大きいことを特徴とする半導体装置。
  11. 請求項1乃至請求項10のいずれか一において、
    前記第1の絶縁体は、酸化シリコン層または酸化窒化シリコン層であることを特徴とする半導体装置。
  12. 請求項2乃至請求項11のいずれか一において、
    前記第3の酸化物半導体は、酸素をブロックする機能を有することを特徴とする半導体装置。
  13. 請求項1乃至請求項12のいずれか一において、
    前記第2の絶縁体は、二次イオン質量分析法における水素濃度が1×1019atoms/cm未満である領域を有することを特徴とする半導体装置。
  14. 請求項2乃至請求項13のいずれか一において、
    前記第3の酸化物半導体、前記第2の絶縁体および前記第3の導電体は、上面から見た端部の形状が同様であることを特徴とする半導体装置。
  15. 請求項1乃至請求項14のいずれか一において、
    前記第2の酸化物半導体が過剰酸素を含むことを特徴とする半導体装置。
  16. 請求項1乃至請求項15のいずれか一において、
    前記第3の絶縁体上に第4の絶縁体を有し、
    前記第4の絶縁体は、前記第2の酸化物半導体が有する領域よりも、二次イオン質量分析法における水素濃度が高い領域を有することを特徴とする半導体装置。
JP2014255831A 2013-12-19 2014-12-18 半導体装置 Withdrawn JP2015135961A (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014255831A JP2015135961A (ja) 2013-12-19 2014-12-18 半導体装置
JP2020068533A JP6950032B2 (ja) 2013-12-19 2020-04-06 半導体装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013262873 2013-12-19
JP2013262873 2013-12-19
JP2014255831A JP2015135961A (ja) 2013-12-19 2014-12-18 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020068533A Division JP6950032B2 (ja) 2013-12-19 2020-04-06 半導体装置

Publications (2)

Publication Number Publication Date
JP2015135961A true JP2015135961A (ja) 2015-07-27
JP2015135961A5 JP2015135961A5 (ja) 2018-02-01

Family

ID=53400997

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2014255831A Withdrawn JP2015135961A (ja) 2013-12-19 2014-12-18 半導体装置
JP2020068533A Active JP6950032B2 (ja) 2013-12-19 2020-04-06 半導体装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020068533A Active JP6950032B2 (ja) 2013-12-19 2020-04-06 半導体装置

Country Status (4)

Country Link
US (3) US9882059B2 (ja)
JP (2) JP2015135961A (ja)
KR (1) KR102330407B1 (ja)
TW (2) TWI721409B (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018002763A1 (en) * 2016-06-27 2018-01-04 Semiconductor Energy Laboratory Co., Ltd. Transistor and semiconductor device
WO2020049396A1 (ja) * 2018-09-05 2020-03-12 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
JP2020194977A (ja) * 2015-11-20 2020-12-03 株式会社半導体エネルギー研究所 半導体装置
JP2020198434A (ja) * 2015-08-21 2020-12-10 株式会社半導体エネルギー研究所 半導体装置
JP2022081581A (ja) * 2017-06-05 2022-05-31 株式会社半導体エネルギー研究所 半導体装置
US11508850B2 (en) 2018-09-05 2022-11-22 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10416504B2 (en) 2013-05-21 2019-09-17 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device
US9425217B2 (en) 2013-09-23 2016-08-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9882014B2 (en) 2013-11-29 2018-01-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6488124B2 (ja) 2013-12-27 2019-03-20 株式会社半導体エネルギー研究所 半導体装置
US9397149B2 (en) * 2013-12-27 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102513764B1 (ko) * 2013-12-27 2023-03-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치
CN103779390B (zh) * 2014-02-11 2016-08-17 京东方科技集团股份有限公司 一种柔性显示基板及其制备方法
TWI675004B (zh) 2014-02-21 2019-10-21 日商半導體能源研究所股份有限公司 半導體膜、電晶體、半導體裝置、顯示裝置以及電子裝置
WO2015132697A1 (en) 2014-03-07 2015-09-11 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI663726B (zh) 2014-05-30 2019-06-21 Semiconductor Energy Laboratory Co., Ltd. 半導體裝置、模組及電子裝置
US9722091B2 (en) 2014-09-12 2017-08-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
WO2016092427A1 (en) 2014-12-10 2016-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
CN107210230B (zh) 2015-02-12 2022-02-11 株式会社半导体能源研究所 氧化物半导体膜及半导体装置
US9653613B2 (en) * 2015-02-27 2017-05-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR20160114511A (ko) 2015-03-24 2016-10-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
US9806200B2 (en) 2015-03-27 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TW202236685A (zh) 2015-10-30 2022-09-16 日商半導體能源研究所股份有限公司 電容器、半導體裝置、模組以及電子裝置的製造方法
US10714633B2 (en) 2015-12-15 2020-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
US10115741B2 (en) 2016-02-05 2018-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and electronic device
US10043917B2 (en) 2016-03-03 2018-08-07 United Microelectronics Corp. Oxide semiconductor device and method of manufacturing the same
KR20180123028A (ko) 2016-03-11 2018-11-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장비, 상기 반도체 장치의 제작 방법, 및 상기 반도체 장치를 포함하는 표시 장치
KR102480052B1 (ko) 2016-06-09 2022-12-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 트랜지스터
KR102330605B1 (ko) * 2016-06-22 2021-11-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
TWI811761B (zh) 2016-07-11 2023-08-11 日商半導體能源研究所股份有限公司 金屬氧化物及半導體裝置
US10504925B2 (en) 2016-08-08 2019-12-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US10411003B2 (en) 2016-10-14 2019-09-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR102384624B1 (ko) 2016-10-21 2022-04-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US10910407B2 (en) 2017-01-30 2021-02-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN111033702B (zh) * 2017-09-05 2023-12-05 株式会社半导体能源研究所 半导体装置及半导体装置的制造方法
TWI720263B (zh) 2017-10-30 2021-03-01 聯華電子股份有限公司 電晶體結構以及其製造方法
KR20200132917A (ko) 2018-03-12 2020-11-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 금속 산화물 및 금속 산화물을 포함한 트랜지스터
JP7275112B2 (ja) * 2018-04-20 2023-05-17 株式会社半導体エネルギー研究所 半導体装置
KR20210052462A (ko) * 2018-09-07 2021-05-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
US10720509B1 (en) * 2019-07-31 2020-07-21 Nanya Technology Corporation Method for preparing a semiconductor device structure with an annular semiconductor fin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224479A (ja) * 2008-03-14 2009-10-01 Fujifilm Corp 薄膜電界効果型トランジスタおよびその製造方法
JP2013021313A (ja) * 2011-06-17 2013-01-31 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法及び半導体装置
JP2013038402A (ja) * 2011-07-08 2013-02-21 Semiconductor Energy Lab Co Ltd 半導体装置

Family Cites Families (219)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP3298974B2 (ja) 1993-03-23 2002-07-08 電子科学株式会社 昇温脱離ガス分析装置
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
WO1997006554A2 (en) 1995-08-03 1997-02-20 Philips Electronics N.V. Semiconductor device provided with transparent switching element
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
US7061014B2 (en) 2001-11-05 2006-06-13 Japan Science And Technology Agency Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
US7049190B2 (en) 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
CN102867855B (zh) 2004-03-12 2015-07-15 独立行政法人科学技术振兴机构 薄膜晶体管及其制造方法
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
CA2585071A1 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Field effect transistor employing an amorphous oxide
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
CN102945857B (zh) 2004-11-10 2015-06-03 佳能株式会社 无定形氧化物和场效应晶体管
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
WO2006051994A2 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Light-emitting device
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI390735B (zh) 2005-01-28 2013-03-21 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
TWI412138B (zh) 2005-01-28 2013-10-11 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
US7544967B2 (en) 2005-03-28 2009-06-09 Massachusetts Institute Of Technology Low voltage flexible organic/transparent transistor for selective gas sensing, photodetecting and CMOS device applications
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
EP3614442A3 (en) 2005-09-29 2020-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having oxide semiconductor layer and manufactoring method thereof
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
WO2007058329A1 (en) 2005-11-15 2007-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
WO2008133345A1 (en) 2007-04-25 2008-11-06 Canon Kabushiki Kaisha Oxynitride semiconductor
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
JP5215158B2 (ja) 2007-12-17 2013-06-19 富士フイルム株式会社 無機結晶性配向膜及びその製造方法、半導体デバイス
KR100941850B1 (ko) 2008-04-03 2010-02-11 삼성모바일디스플레이주식회사 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를구비하는 평판 표시 장치
KR100963027B1 (ko) 2008-06-30 2010-06-10 삼성모바일디스플레이주식회사 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를구비하는 평판 표시 장치
KR100963104B1 (ko) 2008-07-08 2010-06-14 삼성모바일디스플레이주식회사 박막 트랜지스터, 그의 제조 방법 및 박막 트랜지스터를구비하는 평판 표시 장치
TWI518800B (zh) * 2008-08-08 2016-01-21 半導體能源研究所股份有限公司 半導體裝置的製造方法
JP5345456B2 (ja) 2008-08-14 2013-11-20 富士フイルム株式会社 薄膜電界効果型トランジスタ
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
KR101648927B1 (ko) * 2009-01-16 2016-08-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
CN102473729B (zh) 2009-07-03 2015-01-28 株式会社半导体能源研究所 制造半导体装置的方法
KR101967480B1 (ko) 2009-07-31 2019-04-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제조 방법
JP5459902B2 (ja) * 2009-08-04 2014-04-02 株式会社半導体エネルギー研究所 半導体装置
JP5497417B2 (ja) 2009-12-10 2014-05-21 富士フイルム株式会社 薄膜トランジスタおよびその製造方法、並びにその薄膜トランジスタを備えた装置
JP2011138934A (ja) 2009-12-28 2011-07-14 Sony Corp 薄膜トランジスタ、表示装置および電子機器
CN103500709B (zh) 2010-04-23 2015-09-23 株式会社半导体能源研究所 半导体装置的制造方法
CN102859705B (zh) 2010-04-23 2015-12-09 株式会社半导体能源研究所 半导体装置及半导体装置的制造方法
WO2011132590A1 (en) 2010-04-23 2011-10-27 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR101809105B1 (ko) 2010-08-06 2017-12-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 집적 회로
JP5626978B2 (ja) 2010-09-08 2014-11-19 富士フイルム株式会社 薄膜トランジスタおよびその製造方法、並びにその薄膜トランジスタを備えた装置
US8916866B2 (en) * 2010-11-03 2014-12-23 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI525818B (zh) * 2010-11-30 2016-03-11 半導體能源研究所股份有限公司 半導體裝置及半導體裝置之製造方法
KR102637010B1 (ko) * 2010-12-03 2024-02-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막 및 반도체 장치
JP2012160679A (ja) 2011-02-03 2012-08-23 Sony Corp 薄膜トランジスタ、表示装置および電子機器
US9214474B2 (en) 2011-07-08 2015-12-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US8952377B2 (en) 2011-07-08 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8748886B2 (en) 2011-07-08 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
US8796683B2 (en) 2011-12-23 2014-08-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5917385B2 (ja) 2011-12-27 2016-05-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR102103913B1 (ko) * 2012-01-10 2020-04-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
KR102083380B1 (ko) 2012-01-25 2020-03-03 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
TWI562361B (en) 2012-02-02 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device
US20150129865A1 (en) * 2012-03-12 2015-05-14 Sharp Kabushiki Kaisha Semiconductor device and method for manufacturing same
US8999773B2 (en) 2012-04-05 2015-04-07 Semiconductor Energy Laboratory Co., Ltd. Processing method of stacked-layer film and manufacturing method of semiconductor device
KR102330543B1 (ko) 2012-04-13 2021-11-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US8785928B2 (en) 2012-05-31 2014-07-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102071545B1 (ko) 2012-05-31 2020-01-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
KR102119914B1 (ko) 2012-05-31 2020-06-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
US8901557B2 (en) 2012-06-15 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9153699B2 (en) 2012-06-15 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor with multiple oxide semiconductor layers
US9059219B2 (en) 2012-06-27 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device
KR102161077B1 (ko) 2012-06-29 2020-09-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US9190525B2 (en) 2012-07-06 2015-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including oxide semiconductor layer
KR20140009023A (ko) 2012-07-13 2014-01-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
WO2014014039A1 (en) 2012-07-20 2014-01-23 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device including the display device
US20140027762A1 (en) 2012-07-27 2014-01-30 Semiconductor Energy Laboratory Co. Ltd. Semiconductor device
JP6134598B2 (ja) 2012-08-02 2017-05-24 株式会社半導体エネルギー研究所 半導体装置
SG11201505225TA (en) 2012-08-03 2015-08-28 Semiconductor Energy Lab Oxide semiconductor stacked film and semiconductor device
KR20150043307A (ko) 2012-08-10 2015-04-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제조 방법
US9929276B2 (en) 2012-08-10 2018-03-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2014024808A1 (en) 2012-08-10 2014-02-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR102171650B1 (ko) 2012-08-10 2020-10-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
US9245958B2 (en) 2012-08-10 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6220597B2 (ja) 2012-08-10 2017-10-25 株式会社半導体エネルギー研究所 半導体装置
US8981372B2 (en) 2012-09-13 2015-03-17 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic appliance
US9018624B2 (en) 2012-09-13 2015-04-28 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic appliance
TWI799011B (zh) 2012-09-14 2023-04-11 日商半導體能源研究所股份有限公司 半導體裝置及其製造方法
WO2014046222A1 (en) 2012-09-24 2014-03-27 Semiconductor Energy Laboratory Co., Ltd. Display device
TWI821777B (zh) 2012-09-24 2023-11-11 日商半導體能源研究所股份有限公司 半導體裝置
US9166021B2 (en) 2012-10-17 2015-10-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2014061567A1 (en) 2012-10-17 2014-04-24 Semiconductor Energy Laboratory Co., Ltd. Programmable logic device
JP6283191B2 (ja) 2012-10-17 2018-02-21 株式会社半導体エネルギー研究所 半導体装置
JP5951442B2 (ja) 2012-10-17 2016-07-13 株式会社半導体エネルギー研究所 半導体装置
JP6059501B2 (ja) 2012-10-17 2017-01-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR102168987B1 (ko) 2012-10-17 2020-10-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 마이크로컨트롤러 및 그 제조 방법
KR102220279B1 (ko) 2012-10-19 2021-02-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막을 포함하는 다층막 및 반도체 장치의 제작 방법
JP6204145B2 (ja) 2012-10-23 2017-09-27 株式会社半導体エネルギー研究所 半導体装置
KR102279459B1 (ko) 2012-10-24 2021-07-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
WO2014065343A1 (en) 2012-10-24 2014-05-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9865743B2 (en) 2012-10-24 2018-01-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including oxide layer surrounding oxide semiconductor layer
JP6300489B2 (ja) 2012-10-24 2018-03-28 株式会社半導体エネルギー研究所 半導体装置の作製方法
TWI691084B (zh) 2012-10-24 2020-04-11 日商半導體能源研究所股份有限公司 半導體裝置及其製造方法
JP6220641B2 (ja) 2012-11-15 2017-10-25 株式会社半導体エネルギー研究所 半導体装置
TWI620323B (zh) 2012-11-16 2018-04-01 半導體能源研究所股份有限公司 半導體裝置
US9153649B2 (en) 2012-11-30 2015-10-06 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for evaluating semiconductor device
US9246011B2 (en) 2012-11-30 2016-01-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
CN104823283B (zh) 2012-11-30 2018-04-27 株式会社半导体能源研究所 半导体装置
JP6320009B2 (ja) 2012-12-03 2018-05-09 株式会社半導体エネルギー研究所 半導体装置及びその作製方法
KR102207028B1 (ko) 2012-12-03 2021-01-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
WO2014103901A1 (en) 2012-12-25 2014-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
WO2014104267A1 (en) 2012-12-28 2014-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9391096B2 (en) 2013-01-18 2016-07-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
TWI618252B (zh) 2013-02-12 2018-03-11 半導體能源研究所股份有限公司 半導體裝置
US9231111B2 (en) 2013-02-13 2016-01-05 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9190527B2 (en) 2013-02-13 2015-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of semiconductor device
US9373711B2 (en) 2013-02-27 2016-06-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102238682B1 (ko) 2013-02-28 2021-04-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치와 그 제작 방법
KR102153110B1 (ko) 2013-03-06 2020-09-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체막 및 반도체 장치
TWI644433B (zh) 2013-03-13 2018-12-11 半導體能源研究所股份有限公司 半導體裝置
US9368636B2 (en) 2013-04-01 2016-06-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device comprising a plurality of oxide semiconductor layers
TWI620324B (zh) 2013-04-12 2018-04-01 半導體能源研究所股份有限公司 半導體裝置
US10304859B2 (en) 2013-04-12 2019-05-28 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide film on an oxide semiconductor film
US9893192B2 (en) 2013-04-24 2018-02-13 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6401483B2 (ja) 2013-04-26 2018-10-10 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR102210298B1 (ko) 2013-05-09 2021-01-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
TWI809474B (zh) 2013-05-16 2023-07-21 日商半導體能源研究所股份有限公司 半導體裝置
TWI742574B (zh) 2013-05-16 2021-10-11 日商半導體能源研究所股份有限公司 半導體裝置
DE102014208859B4 (de) 2013-05-20 2021-03-11 Semiconductor Energy Laboratory Co., Ltd. Halbleitervorrichtung
US9343579B2 (en) 2013-05-20 2016-05-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102537022B1 (ko) 2013-05-20 2023-05-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
TWI664731B (zh) 2013-05-20 2019-07-01 半導體能源研究所股份有限公司 半導體裝置
KR20200038333A (ko) 2013-05-20 2020-04-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
TWI624936B (zh) 2013-06-05 2018-05-21 半導體能源研究所股份有限公司 顯示裝置
JP6475424B2 (ja) 2013-06-05 2019-02-27 株式会社半導体エネルギー研究所 半導体装置
JP6374221B2 (ja) 2013-06-05 2018-08-15 株式会社半導体エネルギー研究所 半導体装置
JP2015195327A (ja) 2013-06-05 2015-11-05 株式会社半導体エネルギー研究所 半導体装置
JP6400336B2 (ja) 2013-06-05 2018-10-03 株式会社半導体エネルギー研究所 半導体装置
US20140374744A1 (en) 2013-06-19 2014-12-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6018607B2 (ja) 2013-07-12 2016-11-02 株式会社半導体エネルギー研究所 半導体装置
JP6322503B2 (ja) 2013-07-16 2018-05-09 株式会社半導体エネルギー研究所 半導体装置
TWI632688B (zh) 2013-07-25 2018-08-11 半導體能源研究所股份有限公司 半導體裝置以及半導體裝置的製造方法
JP2015053477A (ja) 2013-08-05 2015-03-19 株式会社半導体エネルギー研究所 半導体装置および半導体装置の作製方法
JP6401977B2 (ja) 2013-09-06 2018-10-10 株式会社半導体エネルギー研究所 半導体装置
US9461126B2 (en) 2013-09-13 2016-10-04 Semiconductor Energy Laboratory Co., Ltd. Transistor, clocked inverter circuit, sequential circuit, and semiconductor device including sequential circuit
US9397153B2 (en) 2013-09-23 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102183763B1 (ko) 2013-10-11 2020-11-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
US9882014B2 (en) 2013-11-29 2018-01-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
CN106597697A (zh) 2013-12-02 2017-04-26 株式会社半导体能源研究所 显示装置及其制造方法
DE112014005486T5 (de) 2013-12-02 2016-08-18 Semiconductor Energy Laboratory Co., Ltd. Anzeigevorrichtung
JP6537264B2 (ja) 2013-12-12 2019-07-03 株式会社半導体エネルギー研究所 半導体装置
US9349751B2 (en) 2013-12-12 2016-05-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
TWI642186B (zh) 2013-12-18 2018-11-21 日商半導體能源研究所股份有限公司 半導體裝置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009224479A (ja) * 2008-03-14 2009-10-01 Fujifilm Corp 薄膜電界効果型トランジスタおよびその製造方法
JP2013021313A (ja) * 2011-06-17 2013-01-31 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法及び半導体装置
JP2013038402A (ja) * 2011-07-08 2013-02-21 Semiconductor Energy Lab Co Ltd 半導体装置

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020198434A (ja) * 2015-08-21 2020-12-10 株式会社半導体エネルギー研究所 半導体装置
JP2020194977A (ja) * 2015-11-20 2020-12-03 株式会社半導体エネルギー研究所 半導体装置
US11329166B2 (en) 2015-11-20 2022-05-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including the semiconductor device, and an electronic device including the semiconductor device
US11942554B2 (en) 2015-11-20 2024-03-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, display device including the semiconductor device, and an electronic device including the semiconductor device
WO2018002763A1 (en) * 2016-06-27 2018-01-04 Semiconductor Energy Laboratory Co., Ltd. Transistor and semiconductor device
JP2018019073A (ja) * 2016-06-27 2018-02-01 株式会社半導体エネルギー研究所 トランジスタおよび半導体装置
JP2022081581A (ja) * 2017-06-05 2022-05-31 株式会社半導体エネルギー研究所 半導体装置
WO2020049396A1 (ja) * 2018-09-05 2020-03-12 株式会社半導体エネルギー研究所 半導体装置、および半導体装置の作製方法
US11508850B2 (en) 2018-09-05 2022-11-22 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
US11929426B2 (en) 2018-09-05 2024-03-12 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the semiconductor device
US11942370B2 (en) 2018-09-05 2024-03-26 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device

Also Published As

Publication number Publication date
US20190341495A1 (en) 2019-11-07
US20150179803A1 (en) 2015-06-25
US10374097B2 (en) 2019-08-06
TW201528510A (zh) 2015-07-16
JP2020107913A (ja) 2020-07-09
TWI666770B (zh) 2019-07-21
KR102330407B1 (ko) 2021-11-25
US20180151743A1 (en) 2018-05-31
US10944014B2 (en) 2021-03-09
TWI721409B (zh) 2021-03-11
JP6950032B2 (ja) 2021-10-13
TW201933615A (zh) 2019-08-16
US9882059B2 (en) 2018-01-30
KR20150072345A (ko) 2015-06-29

Similar Documents

Publication Publication Date Title
JP6670408B2 (ja) 半導体装置
JP7443435B2 (ja) 半導体装置
JP6950032B2 (ja) 半導体装置
JP6715364B2 (ja) 半導体装置
JP7455928B2 (ja) 半導体装置
JP2015084418A (ja) 半導体装置
JP6474625B2 (ja) 半導体装置の作製方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180925

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20181122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190826

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200107

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20200407