JP7443435B2 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP7443435B2
JP7443435B2 JP2022130025A JP2022130025A JP7443435B2 JP 7443435 B2 JP7443435 B2 JP 7443435B2 JP 2022130025 A JP2022130025 A JP 2022130025A JP 2022130025 A JP2022130025 A JP 2022130025A JP 7443435 B2 JP7443435 B2 JP 7443435B2
Authority
JP
Japan
Prior art keywords
semiconductor
transistor
insulator
conductor
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2022130025A
Other languages
English (en)
Other versions
JP2022164717A (ja
Inventor
佑太 遠藤
耕生 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2022164717A publication Critical patent/JP2022164717A/ja
Priority to JP2024024460A priority Critical patent/JP2024052818A/ja
Application granted granted Critical
Publication of JP7443435B2 publication Critical patent/JP7443435B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78645Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate
    • H01L29/78648Thin film transistors, i.e. transistors with a channel being at least partly a thin film with multiple gate arranged on opposing sides of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Description

本発明は、物、方法、または、製造方法に関する。または、本発明は、プロセス、マシン
、マニュファクチャ、または組成物(コンポジション・オブ・マター)に関する。特に、
本発明は、例えば、半導体、半導体装置、表示装置、発光装置、照明装置、蓄電装置、記
憶装置またはプロセッサに関する。または、半導体、半導体装置、表示装置、発光装置、
照明装置、蓄電装置、記憶装置またはプロセッサの製造方法に関する。または、半導体装
置、表示装置、発光装置、照明装置、蓄電装置、記憶装置またはプロセッサの駆動方法に
関する。
なお、本明細書等において半導体装置とは、半導体特性を利用することで機能しうる装置
全般を指す。表示装置、発光装置、照明装置、電気光学装置、半導体回路および電子機器
は、半導体装置を有する場合がある。
絶縁表面を有する基板上の半導体を用いて、トランジスタを構成する技術が注目されてい
る。当該トランジスタは集積回路や表示装置のような半導体装置に広く応用されている。
トランジスタに適用可能な半導体としてシリコンが知られている。
トランジスタの半導体に用いられるシリコンは、用途によって非晶質シリコン、多結晶シ
リコン、単結晶シリコンなどが使い分けられている。例えば、大型の表示装置を構成する
トランジスタに適用する場合、大面積基板への成膜技術が確立されている非晶質シリコン
を用いると好適である。一方、駆動回路を一体形成した高機能の表示装置を構成するトラ
ンジスタに適用する場合、高い電界効果移動度を有するトランジスタを作製可能な多結晶
シリコンを用いると好適である。また、集積回路などを構成するトランジスタに適用する
場合、さらに高い電界効果移動度を有する単結晶シリコンを用いると好適である。多結晶
シリコンは、非晶質シリコンに対し高温での熱処理、またはレーザ光処理を行うことで形
成する方法が知られる。
また、近年は、酸化物半導体が注目されている。酸化物半導体は、スパッタリング法など
を用いて成膜できるため、大型の表示装置を構成するトランジスタの半導体に用いること
ができる。また、酸化物半導体を用いたトランジスタは、高い電界効果移動度を有するた
め、駆動回路を一体形成した高機能の表示装置を実現できる。また、非晶質シリコンを用
いたトランジスタの生産設備の一部を改良して利用することが可能であるため、設備投資
を抑えられるメリットもある。
酸化物半導体を用いたトランジスタに安定した電気特性を与える方法として、酸化物半導
体と接する絶縁体への酸素ドーピング技術が開示されている(特許文献1参照。)。特許
文献1に開示された技術を用いることで、酸化物半導体中の酸素欠損を低減することがで
きる。その結果、酸化物半導体を用いたトランジスタの電気特性のばらつきを低減し、信
頼性を向上させることができる。
ところで、酸化物半導体を用いたトランジスタは、非導通状態において極めてリーク電流
が小さいことが知られている。例えば、酸化物半導体を用いたトランジスタのリーク特性
を応用した低消費電力のCPUなどが開示されている(特許文献2参照。)。
また、半導体からなる活性層で井戸型ポテンシャルを構成することにより、高い電界効果
移動度を有するトランジスタが得られることが開示されている(特許文献3参照。)。
特開2011-243974号公報 特開2012-257187号公報 特開2012-59860号公報
安定した電気特性を有するトランジスタを提供することを課題の一とする。または、非導
通時の電流の小さいトランジスタを提供することを課題の一とする。または、導通時の電
流の大きいトランジスタを提供することを課題の一とする。または、当該トランジスタを
有する半導体装置を提供することを課題の一とする。または、丈夫な半導体装置を提供す
ることを課題の一とする。または、新規な半導体装置を提供することを課題の一とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一
態様は、これらの課題の全てを解決する必要はないものとする。なお、これら以外の課題
は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図
面、請求項などの記載から、これら以外の課題を抽出することが可能である。
(1)本発明の一態様は、過剰酸素を有する第1の絶縁体と、第1の絶縁体上の半導体と
、半導体上の第2の絶縁体と、第2の絶縁体を介して半導体と重なる領域を有する導電体
と、を有し、第1の絶縁体と半導体との間に、ホウ素またはリンを含む領域を有する半導
体装置である。
(2)または、本発明の一態様は、ホウ素またはリンを含む領域は、導電体と重ならない
領域を有する(1)に記載の半導体装置である。
(3)または、本発明の一態様は、過剰酸素を有する第1の絶縁体と、第1の絶縁体上の
半導体と、半導体上の第1の導電体および第2の導電体と、半導体上、第1の導電体上お
よび第2の導電体上の第2の絶縁体と、第2の絶縁体を介して半導体と重なる領域を有し
、かつ第1の導電体と重なる領域を有さない第3の導電体と、を有し、第1の絶縁体と半
導体との間に、ホウ素またはリンを含む領域を有する半導体装置である。
(4)または、本発明の一態様は、ホウ素またはリンを含む領域は、第3の導電体と重な
らない領域を有する(3)に記載の半導体装置である。
(5)または、本発明の一態様は、第1の絶縁体は、酸化シリコンまたは酸化窒化シリコ
ンである(1)乃至(4)に記載の半導体装置である。
(6)または、本発明の一態様は、半導体は、インジウムおよび酸素を含む(1)乃至(
5)に記載の半導体装置である。
なお、本発明の一態様に係る半導体装置において、酸化物半導体を他の半導体に置き換え
ても構わない。
電気特性の安定したトランジスタを提供することができる。または、非導通時の電流の小
さいトランジスタを提供することができる。または、導通時の電流が大きいトランジスタ
を提供することができる。または、当該トランジスタを有する半導体装置を提供すること
ができる。または、丈夫な半導体装置を提供することができる。または、新規な半導体装
置を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一
態様は、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、
図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項な
どの記載から、これら以外の効果を抽出することが可能である。
本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタを示す断面図。 本発明の一態様に係るトランジスタを示す断面図。 本発明の一態様に係るトランジスタを示す断面図。 本発明の一態様に係るトランジスタを示す断面図。 本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタを示す断面図。 本発明の一態様に係るトランジスタを示す断面図。 本発明の一態様に係るトランジスタを示す断面図。 本発明の一態様に係るトランジスタを示す上面図および断面図。 本発明の一態様に係るトランジスタの作製方法を示す断面図。 本発明の一態様に係るトランジスタの作製方法を示す断面図。 イオンの入射を説明する図。 半導体装置内部における過剰酸素の拡散について説明する断面模式図。 本発明の一態様に係る半導体装置の断面図。 本発明の一態様に係る半導体装置の回路図。 本発明の一態様に係る記憶装置の回路図。 本発明の一態様に係るRFタグのブロック図。 本発明の一態様に係るRFタグの使用例を示す図。 本発明の一態様に係るCPUを示すブロック図。 本発明の一態様に係る記憶素子の回路図。 本発明の一態様に係る表示装置の上面図および回路図。 本発明の一態様に係る表示モジュールを説明する図。 本発明の一態様に係る電子機器を示す図。 本発明の一態様に係る電子機器を示す図。 CAAC-OSの断面におけるCs補正高分解能TEM像、およびCAAC-OSの断面模式図。 CAAC-OSの平面におけるCs補正高分解能TEM像。 CAAC-OSおよび単結晶酸化物半導体のXRDによる構造解析を説明する図。 CAAC-OSの電子回折パターンを示す図。 In-Ga-Zn酸化物の電子照射による結晶部の変化を示す図。 半導体の積層を示す断面図、およびバンド構造を示す図。 TDSによる基板温度とイオン強度との関係を示す図。 リンイオン注入濃度と酸素放出量との関係を示す図。 エッチング深さと酸素放出量との関係を示す図。 TDSによる基板温度とイオン強度との関係を示す図。
本発明の実施の形態について、図面を用いて詳細に説明する。ただし、本発明は以下の説
明に限定されず、その形態および詳細を様々に変更し得ることは、当業者であれば容易に
理解される。また、本発明は以下に示す実施の形態の記載内容に限定して解釈されるもの
ではない。なお、図面を用いて発明の構成を説明するにあたり、同じものを指す符号は異
なる図面間でも共通して用いる。なお、同様のものを指す際にはハッチパターンを同じく
し、特に符号を付さない場合がある。
なお、図において、大きさ、膜(層)の厚さ、または領域は、明瞭化のために誇張されて
いる場合がある。
また、電圧は、ある電位と、基準の電位(例えば接地電位(GND)またはソース電位)
との電位差のことを示す場合が多い。よって、電圧を電位と言い換えることが可能である
なお、第1、第2として付される序数詞は便宜的に用いるものであり、工程順または積層
順を示すものではない。そのため、例えば、「第1の」を「第2の」または「第3の」な
どと適宜置き換えて説明することができる。また、本明細書等に記載されている序数詞と
、本発明の一態様を特定するために用いられる序数詞は一致しない場合がある。
なお、「半導体」と表記した場合でも、例えば、導電性が十分低い場合は「絶縁体」とし
ての特性を有する場合がある。また、「半導体」と「絶縁体」は境界が曖昧であり、厳密
に区別できない場合がある。したがって、本明細書に記載の「半導体」は、「絶縁体」と
言い換えることができる場合がある。同様に、本明細書に記載の「絶縁体」は、「半導体
」と言い換えることができる場合がある。
また、「半導体」と表記した場合でも、例えば、導電性が十分高い場合は「導電体」とし
ての特性を有する場合がある。また、「半導体」と「導電体」は境界が曖昧であり、厳密
に区別できない場合がある。したがって、本明細書に記載の「半導体」は、「導電体」と
言い換えることができる場合がある。同様に、本明細書に記載の「導電体」は、「半導体
」と言い換えることができる場合がある。
なお、半導体の不純物とは、例えば、半導体を構成する主成分以外をいう。例えば、濃度
が0.1原子%未満の元素は不純物である。不純物が含まれることにより、例えば、半導
体にDOS(Density of State)が形成されることや、キャリア移動度
が低下することや、結晶性が低下することなどが起こる場合がある。半導体が酸化物半導
体である場合、半導体の特性を変化させる不純物としては、例えば、第1族元素、第2族
元素、第14族元素、第15族元素、主成分以外の遷移金属などがあり、特に、例えば、
水素(水にも含まれる)、リチウム、ナトリウム、シリコン、ホウ素、リン、炭素、窒素
などがある。酸化物半導体の場合、例えば水素などの不純物の混入によって酸素欠損を形
成する場合がある。また、半導体がシリコンである場合、半導体の特性を変化させる不純
物としては、例えば、酸素、水素を除く第1族元素、第2族元素、第13族元素、第15
族元素などがある。
なお、以下に示す実施の形態では、半導体が酸化物半導体である場合について説明するが
、これに限定されるものではない。例えば、半導体として、多結晶構造、単結晶構造など
のシリコン、ゲルマニウム、などを用いてもよい。または、歪みシリコンなどの歪みを有
する半導体を用いてもよい。または、半導体としてHEMTに適用可能なヒ化ガリウム、
ヒ化アルミニウムガリウム、ヒ化インジウムガリウム、窒化ガリウム、リン化インジウム
、シリコンゲルマニウムなどを用いてもよい。これらの半導体を用いることで、高速動作
をすることに適したトランジスタとすることができる。
なお、本明細書において、Aが濃度Bの領域を有する、と記載する場合、例えば、Aのあ
る領域における深さ方向全体が濃度Bである場合、Aのある領域における深さ方向の平均
値が濃度Bである場合、Aのある領域における深さ方向の中央値が濃度Bである場合、A
のある領域における深さ方向の最大値が濃度Bである場合、Aのある領域における深さ方
向の最小値が濃度Bである場合、Aのある領域における深さ方向の収束値が濃度Bである
場合、測定上Aそのものの確からしい値の得られる領域が濃度Bである場合などを含む。
また、本明細書において、Aが大きさB、長さB、厚さB、幅Bまたは距離Bの領域を有
する、と記載する場合、例えば、Aのある領域における全体が大きさB、長さB、厚さB
、幅Bまたは距離Bである場合、Aのある領域における平均値が大きさB、長さB、厚さ
B、幅Bまたは距離Bである場合、Aのある領域における中央値が大きさB、長さB、厚
さB、幅Bまたは距離Bである場合、Aのある領域における最大値が大きさB、長さB、
厚さB、幅Bまたは距離Bである場合、Aのある領域における最小値が大きさB、長さB
、厚さB、幅Bまたは距離Bである場合、Aのある領域における収束値が大きさB、長さ
B、厚さB、幅Bまたは距離Bである場合、測定上Aそのものの確からしい値の得られる
領域が大きさB、長さB、厚さB、幅Bまたは距離Bである場合などを含む。
<トランジスタ構造1>
図1(A)は、本発明の一態様に係るトランジスタの上面図の一例である。図1(A)の
一点鎖線A1-A2および一点鎖線A3-A4に対応する断面図の一例を図1(B)に示
す。なお、図1(A)では、理解を容易にするため、絶縁体などの一部を省略して示す。
図1(A)および図1(B)に示すトランジスタは、基板400上の導電体413と、基
板400上および導電体413上の凸部を有する絶縁体402と、絶縁体402の凸部上
の半導体406aと、半導体406a上の半導体406bと、半導体406b上の半導体
406cと、半導体406c上の絶縁体412と、絶縁体412上の導電体404と、絶
縁体402上、半導体406b上および導電体404上の絶縁体408と、を有する。な
お、ここでは、導電体413をトランジスタの一部としているが、これに限定されない。
例えば、導電体413がトランジスタとは独立した構成要素であるとしてもよい。
なお、半導体406bは、トランジスタのチャネル形成領域としての機能を有する。また
、導電体404は、トランジスタの第1のゲート電極(フロントゲート電極ともいう。)
としての機能を有する。また、導電体413は、トランジスタの第2のゲート電極(バッ
クゲート電極ともいう。)としての機能を有する。また、絶縁体408は、バリア層とし
ての機能を有する。絶縁体408は、例えば、酸素または/および水素をブロックする機
能を有する。または、絶縁体408は、例えば、半導体406aまたは/および半導体4
06cよりも、酸素または/および水素をブロックする能力が高い。
トランジスタは、導電体426aおよび導電体426bなどを介して、導電体424aお
よび導電体424bとそれぞれ電気的に接続していても構わない。なお、導電体426a
および導電体426bは、絶縁体408と、絶縁体408上の絶縁体418と、絶縁体4
18上の絶縁体428と、に設けられた開口部を介して、それぞれトランジスタのソース
領域およびドレイン領域と電気的に接続する。なお、図1(B)では、導電体426aお
よび導電体426bと、領域423とが接する例を示したが、これに限定されない。例え
ば、導電体426aおよび導電体426bと、領域423とが接しなくても構わない。ま
た、導電体424aおよび導電体424bは、例えば、半導体装置の配線としての機能を
有する。
なお、半導体406cは、A3-A4断面において、少なくとも半導体406bの上面お
よび側面と接する。また、導電体404は、A3-A4断面において、半導体406cお
よび絶縁体412を介して半導体406bの上面および側面と面する。また、導電体41
3は、絶縁体402を介して半導体406bの下面と面する。また、絶縁体402が凸部
を有さなくても構わない。また、半導体406cを有さなくても構わない。また、絶縁体
408を有さなくても構わない。
図1(B)において、トランジスタは、絶縁体402、および絶縁体402と半導体40
6aとの間に、領域423を有する。半導体406aの領域423は、それ以外の領域よ
りも抵抗が低い領域である。また、絶縁体402の領域423は、それ以外の領域よりも
酸素をブロックする能力が高い領域である。領域423は、例えば、希ガスなどの不活性
な元素、酸素との結合エネルギーの高い元素、酸素との反応性の高い元素、または酸素と
反応して安定な酸化物を形成する元素を含む領域である。領域423は、例えば、ヘリウ
ム、ホウ素、炭素、窒素、ネオン、マグネシウム、アルミニウム、シリコン、リン、アル
ゴン、カルシウム、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ゲルマニウ
ム、クリプトン、ストロンチウム、イットリウム、ジルコニウム、ニオブ、モリブデン、
キセノン、ランタン、セリウム、ネオジム、ハフニウム、タンタルまたはタングステンか
ら選択された一種以上を含む領域である。領域423は、特に、ホウ素またはリンを含む
領域である。領域423は、例えば、上述の元素を5×1019atoms/cm以上
、好ましくは1×1020atoms/cm以上、さらに好ましくは2×1020at
oms/cm以上、より好ましくは5×1020atoms/cm以上含む領域であ
る。本明細書中では、上述の元素を不純物と呼ぶこともある。
なお、以下では、半導体406a、半導体406bおよび半導体406cが酸化物半導体
である場合について説明するが、半導体406a、半導体406bおよび半導体406c
が酸化物半導体以外の半導体であってもよい。
なお、絶縁体402は、過剰酸素を含む絶縁体である。
例えば、過剰酸素を含む絶縁体は、加熱処理によって酸素を放出する機能を有する絶縁体
である。例えば、過剰酸素を含む酸化シリコンは、加熱処理などによって酸素を放出する
ことができる酸化シリコンである。したがって、絶縁体402は膜中を酸素が移動可能な
絶縁体である。即ち、絶縁体402は酸素透過性を有する絶縁体とすればよい。例えば、
絶縁体402は、半導体406aよりも酸素透過性の高い絶縁体とすればよい。
過剰酸素を含む絶縁体は、半導体406b中の酸素欠損を低減させる機能を有する場合が
ある。半導体406b中で酸素欠損は、DOSを形成し、正孔トラップなどとなる。また
、酸素欠損のサイトに水素が入ることによって、キャリアである電子を生成することがあ
る。したがって、半導体406b中の酸素欠損を低減することで、トランジスタに安定し
た電気特性を付与することができる。
ここで、加熱処理によって酸素を放出する絶縁体は、TDS分析にて、100℃以上70
0℃以下または100℃以上500℃以下の表面温度の範囲で1×1018atoms/
cm以上、1×1019atoms/cm以上または1×1020atoms/cm
以上の酸素(酸素原子数換算)を放出することもある。
ここで、TDS分析を用いた酸素の放出量の測定方法について、以下に説明する。
測定試料をTDS分析したときの気体の全放出量は、放出ガスのイオン強度の積分値に比
例する。そして標準試料との比較により、気体の全放出量を計算することができる。
例えば、標準試料である所定の密度の水素を含むシリコン基板のTDS分析結果、および
測定試料のTDS分析結果から、測定試料の酸素分子の放出量(NO2)は、下に示す式
で求めることができる。ここで、TDS分析で得られる質量電荷比32で検出されるガス
の全てが酸素分子由来と仮定する。CHOHの質量電荷比は32であるが、存在する可
能性が低いものとしてここでは考慮しない。また、酸素原子の同位体である質量数17の
酸素原子および質量数18の酸素原子を含む酸素分子についても、自然界における存在比
率が極微量であるため考慮しない。
O2=NH2/SH2×SO2×α
H2は、標準試料から脱離した水素分子を密度で換算した値である。SH2は、標準試
料をTDS分析したときのイオン強度の積分値である。ここで、標準試料の基準値を、N
H2/SH2とする。SO2は、測定試料をTDS分析したときのイオン強度の積分値で
ある。αは、TDS分析におけるイオン強度に影響する係数である。上に示す式の詳細に
関しては、特開平6-275697公報を参照する。なお、上記酸素の放出量は、電子科
学株式会社製の昇温脱離分析装置EMD-WA1000S/Wを用い、標準試料として1
×1016atoms/cmの水素原子を含むシリコン基板を用いて測定した。
また、TDS分析において、酸素の一部は酸素原子として検出される。酸素分子と酸素原
子の比率は、酸素分子のイオン化率から算出することができる。なお、上述のαは酸素分
子のイオン化率を含むため、酸素分子の放出量を評価することで、酸素原子の放出量につ
いても見積もることができる。
なお、NO2は酸素分子の放出量である。酸素原子に換算したときの放出量は、酸素分子
の放出量の2倍となる。
または、加熱処理によって酸素を放出する絶縁体は、過酸化ラジカルを含むこともある。
具体的には、過酸化ラジカルに起因するスピン密度が、5×1017spins/cm
以上であることをいう。なお、過酸化ラジカルを含む絶縁体は、ESRにて、g値が2.
01近傍に非対称の信号を有することもある。
または、過剰酸素を含む絶縁体は、酸素が過剰な酸化シリコン(SiO(X>2))で
あってもよい。酸素が過剰な酸化シリコン(SiO(X>2))は、シリコン原子数の
2倍より多い酸素原子を単位体積当たりに含むものである。単位体積当たりのシリコン原
子数および酸素原子数は、ラザフォード後方散乱法(RBS:Rutherford B
ackscattering Spectrometry)により測定した値である。
図1(B)に示すように、導電体404の電界によって、半導体406bを電気的に取り
囲むことができる(導電体から生じる電界によって、半導体を電気的に取り囲むトランジ
スタの構造を、surrounded channel(s-channel)構造とよ
ぶ。)。そのため、半導体406bの全体(バルク)にチャネルが形成される場合がある
。s-channel構造では、トランジスタのソース-ドレイン間に大電流を流すこと
ができ、導通時の電流(オン電流)を高くすることができる。
高いオン電流が得られるため、s-channel構造は、微細化されたトランジスタに
適した構造といえる。トランジスタを微細化できるため、該トランジスタを有する半導体
装置は、集積度の高い、高密度化された半導体装置とすることが可能となる。例えば、ト
ランジスタは、チャネル長が好ましくは40nm以下、さらに好ましくは30nm以下、
より好ましくは20nm以下の領域を有し、かつ、トランジスタは、チャネル幅が好まし
くは40nm以下、さらに好ましくは30nm以下、より好ましくは20nm以下の領域
を有する。
なお、チャネル長とは、例えば、トランジスタの上面図において、半導体(またはトラン
ジスタがオン状態のときに半導体の中で電流の流れる部分)とゲート電極とが重なる領域
、またはチャネルが形成される領域における、ソース(ソース領域またはソース電極)と
ドレイン(ドレイン領域またはドレイン電極)との間の距離をいう。なお、一つのトラン
ジスタにおいて、チャネル長が全ての領域で同じ値をとるとは限らない。即ち、一つのト
ランジスタのチャネル長は、一つの値に定まらない場合がある。そのため、本明細書では
、チャネル長は、チャネルの形成される領域における、いずれか一の値、最大値、最小値
または平均値とする。
チャネル幅とは、例えば、上面図において半導体(またはトランジスタがオン状態のとき
に半導体の中で電流の流れる部分)とゲート電極とが重なる領域、またはチャネルが形成
される領域における、ソースとドレインとが向かい合っている部分の長さをいう。なお、
一つのトランジスタにおいて、チャネル幅がすべての領域で同じ値をとるとは限らない。
即ち、一つのトランジスタのチャネル幅は、一つの値に定まらない場合がある。そのため
、本明細書では、チャネル幅は、チャネルの形成される領域における、いずれか一の値、
最大値、最小値または平均値とする。
なお、トランジスタの構造によっては、実際にチャネルの形成される領域におけるチャネ
ル幅(以下、実効的なチャネル幅と呼ぶ。)と、トランジスタの上面図において示される
チャネル幅(以下、見かけ上のチャネル幅と呼ぶ。)と、が異なる場合がある。例えば、
立体的な構造を有するトランジスタでは、実効的なチャネル幅が、トランジスタの上面図
において示される見かけ上のチャネル幅よりも大きくなり、その影響が無視できなくなる
場合がある。例えば、微細かつ立体的な構造を有するトランジスタでは、半導体の上面に
形成されるチャネル領域の割合に対して、半導体の側面に形成されるチャネル領域の割合
が大きくなる場合がある。その場合は、上面図において示される見かけ上のチャネル幅よ
りも、実際にチャネルの形成される実効的なチャネル幅の方が大きくなる。
ところで、立体的な構造を有するトランジスタにおいては、実効的なチャネル幅の、実測
による見積もりが困難となる場合がある。例えば、設計値から実効的なチャネル幅を見積
もるためには、半導体の形状が既知という仮定が必要である。したがって、半導体の形状
が正確にわからない場合には、実効的なチャネル幅を正確に測定することは困難である。
そこで、本明細書では、トランジスタの上面図において、半導体とゲート電極とが重なる
領域における、ソースとドレインとが向かい合っている部分の長さである見かけ上のチャ
ネル幅を、「囲い込みチャネル幅(SCW:Surrounded Channel W
idth)」と呼ぶ場合がある。また、本明細書では、単にチャネル幅と記載した場合に
は、囲い込みチャネル幅または見かけ上のチャネル幅を指す場合がある。または、本明細
書では、単にチャネル幅と記載した場合には、実効的なチャネル幅を指す場合がある。な
お、チャネル長、チャネル幅、実効的なチャネル幅、見かけ上のチャネル幅、囲い込みチ
ャネル幅などは、断面TEM像などを取得して、その画像を解析することなどによって、
値を決定することができる。
なお、トランジスタの電界効果移動度や、チャネル幅当たりの電流値などを計算して求め
る場合、囲い込みチャネル幅を用いて計算する場合がある。その場合には、実効的なチャ
ネル幅を用いて計算する場合とは異なる値をとる場合がある。
また、導電体413に、ソース電極よりも低い電圧または高い電圧を印加し、トランジス
タのしきい値電圧をプラス方向またはマイナス方向へ変動させてもよい。例えば、トラン
ジスタのしきい値電圧をプラス方向に変動させることで、ゲート電圧が0Vであってもト
ランジスタが非導通状態(オフ状態)となる、ノーマリーオフが実現できる場合がある。
なお、導電体413に印加する電圧は、可変であってもよいし、固定であってもよい。導
電体413に印加する電圧を可変にする場合、電圧を制御する回路を導電体413と電気
的に接続してもよい。
次に、半導体406a、半導体406b、半導体406cなどに適用可能な半導体につい
て説明する。
半導体406bは、例えば、インジウムを含む酸化物半導体である。半導体406bは、
例えば、インジウムを含むと、キャリア移動度(電子移動度)が高くなる。また、半導体
406bは、元素Mを含むと好ましい。元素Mは、好ましくは、アルミニウム、ガリウム
、イットリウムまたはスズなどとする。そのほかの元素Mに適用可能な元素としては、ホ
ウ素、シリコン、チタン、鉄、ニッケル、ゲルマニウム、イットリウム、ジルコニウム、
モリブデン、ランタン、セリウム、ネオジム、ハフニウム、タンタル、タングステンなど
がある。ただし、元素Mとして、前述の元素を複数組み合わせても構わない場合がある。
元素Mは、例えば、酸素との結合エネルギーが高い元素である。例えば、酸素との結合エ
ネルギーがインジウムよりも高い元素である。または、元素Mは、例えば、酸化物半導体
のエネルギーギャップを大きくする機能を有する元素である。また、半導体406bは、
亜鉛を含むと好ましい。酸化物半導体は、亜鉛を含むと結晶化しやすくなる場合がある。
ただし、半導体406bは、インジウムを含む酸化物半導体に限定されない。半導体40
6bは、例えば、亜鉛スズ酸化物、ガリウムスズ酸化物などの、インジウムを含まず、亜
鉛を含む酸化物半導体、ガリウムを含む酸化物半導体、スズを含む酸化物半導体などであ
っても構わない。
半導体406bは、例えば、エネルギーギャップが大きい酸化物を用いる。半導体406
bのエネルギーギャップは、例えば、2.5eV以上4.2eV以下、好ましくは2.8
eV以上3.8eV以下、さらに好ましくは3eV以上3.5eV以下とする。
例えば、半導体406aおよび半導体406cは、半導体406bを構成する酸素以外の
元素のうち一種以上、または二種以上から構成される酸化物半導体である。半導体406
bを構成する酸素以外の元素のうち一種以上、または二種以上から半導体406aおよび
半導体406cが構成されるため、半導体406aと半導体406bとの界面、および半
導体406bと半導体406cとの界面において、界面準位が形成されにくい。
半導体406a、半導体406bおよび半導体406cは、少なくともインジウムを含む
と好ましい。なお、半導体406aがIn-M-Zn酸化物のとき、InおよびMの和を
100atomic%としたとき、好ましくはInが50atomic%未満、Mが50
atomic%以上、さらに好ましくはInが25atomic%未満、Mが75ato
mic%以上とする。また、半導体406bがIn-M-Zn酸化物のとき、Inおよび
Mの和を100atomic%としたとき、好ましくはInが25atomic%以上、
Mが75atomic%未満、さらに好ましくはInが34atomic%以上、Mが6
6atomic%未満とする。また、半導体406cがIn-M-Zn酸化物のとき、I
nおよびMの和を100atomic%としたとき、好ましくはInが50atomic
%未満、Mが50atomic%以上、さらに好ましくはInが25atomic%未満
、Mが75atomic%以上とする。なお、半導体406cは、半導体406aと同種
の酸化物を用いても構わない。
半導体406bは、半導体406aおよび半導体406cよりも電子親和力の大きい酸化
物を用いる。例えば、半導体406bとして、半導体406aおよび半導体406cより
も電子親和力の0.07eV以上1.3eV以下、好ましくは0.1eV以上0.7eV
以下、さらに好ましくは0.15eV以上0.4eV以下大きい酸化物を用いる。なお、
電子親和力は、真空準位と伝導帯下端のエネルギーとの差である。
なお、インジウムガリウム酸化物は、小さい電子親和力と、高い酸素ブロック性を有する
。そのため、半導体406cがインジウムガリウム酸化物を含むと好ましい。ガリウム原
子割合[Ga/(In+Ga)]は、例えば、70%以上、好ましくは80%以上、さら
に好ましくは90%以上とする。
このとき、ゲート電圧を印加すると、半導体406a、半導体406b、半導体406c
のうち、電子親和力の大きい半導体406bにチャネルが形成される。
ここで、半導体406aと半導体406bとの間には、半導体406aと半導体406b
との混合領域を有する場合がある。また、半導体406bと半導体406cとの間には、
半導体406bと半導体406cとの混合領域を有する場合がある。混合領域は、界面準
位密度が低くなる。そのため、半導体406a、半導体406bおよび半導体406cの
積層体は、それぞれの界面近傍において、エネルギーが連続的に変化する(連続接合とも
いう。)バンド構造となる。なお、図32(A)は、半導体406a、半導体406bお
よび半導体406cが、この順番に積層した断面図である。図32(B)は、図32(A
)の一点鎖線P1-P2に対応する伝導帯下端のエネルギー(Ec)であり、半導体40
6aより半導体406cの電子親和力が大きい場合を示す。また、図32(C)は、半導
体406aより半導体406cの電子親和力が小さい場合を示す。
このとき、電子は、半導体406a中および半導体406c中ではなく、半導体406b
中を主として移動する。上述したように、半導体406aおよび半導体406bの界面に
おける界面準位密度、半導体406bと半導体406cとの界面における界面準位密度を
低くすることによって、半導体406b中で電子の移動が阻害されることが少なく、トラ
ンジスタのオン電流を高くすることができる。
トランジスタのオン電流は、電子の移動を阻害する要因を低減するほど、高くすることが
できる。例えば、電子の移動を阻害する要因のない場合、効率よく電子が移動すると推定
される。電子の移動は、例えば、チャネル形成領域の物理的な凹凸が大きい場合にも阻害
される。
トランジスタのオン電流を高くするためには、例えば、半導体406bの上面または下面
(被形成面、ここでは半導体406a)の、1μm×1μmの範囲における二乗平均平方
根(RMS:Root Mean Square)粗さが1nm未満、好ましくは0.6
nm未満、さらに好ましくは0.5nm未満、より好ましくは0.4nm未満とすればよ
い。また、1μm×1μmの範囲における平均面粗さ(Raともいう。)が1nm未満、
好ましくは0.6nm未満、さらに好ましくは0.5nm未満、より好ましくは0.4n
m未満とすればよい。また、1μm×1μmの範囲における最大高低差(P-Vともいう
。)が10nm未満、好ましくは9nm未満、さらに好ましくは8nm未満、より好まし
くは7nm未満とすればよい。RMS粗さ、RaおよびP-Vは、エスアイアイ・ナノテ
クノロジー株式会社製走査型プローブ顕微鏡システムSPA-500などを用いて測定す
ることができる。
酸化物半導体において、酸素欠損はトランジスタの電気特性を劣化させる要因となる場合
がある。よって、チャネル形成領域における酸素欠損を低減することがトランジスタに安
定した電気特性を付与するためには重要となる。一方、トランジスタのソース領域および
ドレイン領域に酸化物半導体を用いる場合、酸素欠損に起因して酸化物半導体を低抵抗化
させることができる。よって、トランジスタのオン電流を大きくするために酸素欠損を有
するほうがよい場合がある。
例えば、酸化物半導体が酸素欠損(Voとも表記。)を有する場合、酸素欠損のサイトに
水素が入り込むことでドナー準位を形成することがある。以下では酸素欠損のサイトに水
素が入り込んだ状態をVoHと表記する場合がある。なお、酸素欠損のサイトは、水素が
入るよりも酸素が入る方が安定する。したがって、酸化物半導体に酸素を供給することで
、VoHを低減することができる。
図1に示したトランジスタは、絶縁体402から過剰酸素が放出されるとき、絶縁体40
2の領域423がソース領域およびドレイン領域に酸素が供給されることを抑制する。一
方、領域423を避けて、チャネル形成領域には酸素を供給することができる。したがっ
て、ソース領域およびドレイン領域の高抵抗化を抑制しつつ、チャネル形成領域中の酸素
欠損のみを効果的に低減することができる。即ち、領域423によって、安定した電気特
性を有し、かつオン電流の大きいトランジスタとすることができる。
なお、トランジスタがs-channel構造を有する場合、半導体406bの全体にチ
ャネルが形成される。したがって、半導体406bが厚いほどチャネル領域は大きくなる
。即ち、半導体406bが厚いほど、トランジスタのオン電流を高くすることができる。
例えば、20nm以上、好ましくは40nm以上、さらに好ましくは60nm以上、より
好ましくは100nm以上の厚さの領域を有する半導体406bとすればよい。ただし、
半導体装置の生産性が低下する場合があるため、例えば、300nm以下、好ましくは2
00nm以下、さらに好ましくは150nm以下の厚さの領域を有する半導体406bと
すればよい。
また、トランジスタのオン電流を高くするためには、半導体406cの厚さは小さいほど
好ましい。例えば、10nm未満、好ましくは5nm以下、さらに好ましくは3nm以下
の領域を有する半導体406cとすればよい。一方、半導体406cは、チャネルの形成
される半導体406bへ、隣接する絶縁体を構成する酸素以外の元素(水素、シリコンな
ど)が入り込まないようブロックする機能を有する。そのため、半導体406cは、ある
程度の厚さを有することが好ましい。例えば、0.3nm以上、好ましくは1nm以上、
さらに好ましくは2nm以上の厚さの領域を有する半導体406cとすればよい。また、
半導体406cは、絶縁体402などから放出される酸素の外方拡散を抑制するために、
酸素をブロックする性質を有すると好ましい。
また、信頼性を高くするためには、半導体406aは厚く、半導体406cは薄いことが
好ましい。例えば、10nm以上、好ましくは20nm以上、さらに好ましくは40nm
以上、より好ましくは60nm以上の厚さの領域を有する半導体406aとすればよい。
半導体406aの厚さを、厚くすることで、隣接する絶縁体と半導体406aとの界面か
らチャネルの形成される半導体406bまでの距離を離すことができる。ただし、半導体
装置の生産性が低下する場合があるため、例えば、200nm以下、好ましくは120n
m以下、さらに好ましくは80nm以下の厚さの領域を有する半導体406aとすればよ
い。
例えば、半導体406bと半導体406aとの間に、例えば、二次イオン質量分析法(S
IMS:Secondary Ion Mass Spectrometry)において
、1×1019atoms/cm未満、好ましくは5×1018atoms/cm
満、さらに好ましくは2×1018atoms/cm未満のシリコン濃度となる領域を
有する。また、半導体406bと半導体406cとの間に、SIMSにおいて、1×10
19atoms/cm未満、好ましくは5×1018atoms/cm未満、さらに
好ましくは2×1018atoms/cm未満のシリコン濃度となる領域を有する。
また、半導体406bの水素濃度を低減するために、半導体406aおよび半導体406
cの水素濃度を低減すると好ましい。半導体406aおよび半導体406cは、SIMS
において、2×1020atoms/cm以下、好ましくは5×1019atoms/
cm以下、より好ましくは1×1019atoms/cm以下、さらに好ましくは5
×1018atoms/cm以下の水素濃度となる領域を有する。また、半導体406
bの窒素濃度を低減するために、半導体406aおよび半導体406cの窒素濃度を低減
すると好ましい。半導体406aおよび半導体406cは、SIMSにおいて、5×10
19atoms/cm未満、好ましくは5×1018atoms/cm以下、より好
ましくは1×1018atoms/cm以下、さらに好ましくは5×1017atom
s/cm以下の窒素濃度となる領域を有する。
なお、酸化物半導体に銅が混入すると、電子トラップを生成する場合がある。電子トラッ
プは、トランジスタのしきい値電圧をプラス方向へ変動させる場合がある。したがって、
半導体406bの表面または内部における銅濃度は低いほど好ましい。例えば、半導体4
06bは、銅濃度が1×1019atoms/cm以下、5×1018atoms/c
以下、または1×1018atoms/cm以下となる領域を有すると好ましい。
また、半導体406aの表面または内部における銅濃度は低いほど好ましい。例えば、半
導体406aは、銅濃度が1×1019atoms/cm以下、5×1018atom
s/cm以下、または1×1018atoms/cm以下となる領域を有すると好ま
しい。また、半導体406cの表面または内部における銅濃度は低いほど好ましい。例え
ば、半導体406cは、銅濃度が1×1019atoms/cm以下、5×1018
toms/cm以下、または1×1018atoms/cm以下となる領域を有する
と好ましい。
上述の3層構造は一例である。例えば、半導体406aまたは半導体406cのない2層
構造としても構わない。または、半導体406aの上もしくは下、または半導体406c
上もしくは下に、半導体406a、半導体406bおよび半導体406cとして例示した
半導体のいずれか一を有する4層構造としても構わない。または、半導体406aの上、
半導体406aの下、半導体406cの上、半導体406cの下のいずれか二箇所以上に
、半導体406a、半導体406bおよび半導体406cとして例示した半導体のいずれ
か一を有するn層構造(nは5以上の整数)としても構わない。
<酸化物半導体の構造について>
以下では、酸化物半導体の構造について説明する。
本明細書において、「平行」とは、二つの直線が-10°以上10°以下の角度で配置さ
れている状態をいう。したがって、-5°以上5°以下の場合も含まれる。また、「略平
行」とは、二つの直線が-30°以上30°以下の角度で配置されている状態をいう。ま
た、「垂直」とは、二つの直線が80°以上100°以下の角度で配置されている状態を
いう。したがって、85°以上95°以下の場合も含まれる。また、「略垂直」とは、二
つの直線が60°以上120°以下の角度で配置されている状態をいう。
また、本明細書において、結晶が三方晶または菱面体晶である場合、六方晶系として表す
酸化物半導体は、単結晶酸化物半導体と、それ以外の非単結晶酸化物半導体とに分けられ
る。非単結晶酸化物半導体としては、CAAC-OS(C Axis Aligned
Crystalline Oxide Semiconductor)、多結晶酸化物半
導体、微結晶酸化物半導体、非晶質酸化物半導体などがある。
また別の観点では、酸化物半導体は、非晶質酸化物半導体と、それ以外の結晶性酸化物半
導体とに分けられる。結晶性酸化物半導体としては、単結晶酸化物半導体、CAAC-O
S、多結晶酸化物半導体、微結晶酸化物半導体などがある。
<CAAC-OS>
まずは、CAAC-OSについて説明する。なお、CAAC-OSを、CANC(C-A
xis Aligned nanocrystals)を有する酸化物半導体と呼ぶこと
もできる。
CAAC-OSは、c軸配向した複数の結晶部(ペレットともいう。)を有する酸化物半
導体の一つである。
透過型電子顕微鏡(TEM:Transmission Electron Micro
scope)によって、CAAC-OSの明視野像と回折パターンとの複合解析像(高分
解能TEM像ともいう。)を観察すると、複数のペレットを確認することができる。一方
、高分解能TEM像ではペレット同士の境界、即ち結晶粒界(グレインバウンダリーとも
いう。)を明確に確認することができない。そのため、CAAC-OSは、結晶粒界に起
因する電子移動度の低下が起こりにくいといえる。
以下では、TEMによって観察したCAAC-OSについて説明する。図27(A)に、
試料面と略平行な方向から観察したCAAC-OSの断面の高分解能TEM像を示す。高
分解能TEM像の観察には、球面収差補正(Spherical Aberration
Corrector)機能を用いた。球面収差補正機能を用いた高分解能TEM像を、
特にCs補正高分解能TEM像と呼ぶ。Cs補正高分解能TEM像の取得は、例えば、日
本電子株式会社製原子分解能分析電子顕微鏡JEM-ARM200Fなどによって行うこ
とができる。
図27(A)の領域(1)を拡大したCs補正高分解能TEM像を図27(B)に示す。
図27(B)より、ペレットにおいて、金属原子が層状に配列していることを確認できる
。金属原子の各層の配列は、CAAC-OSの膜を形成する面(被形成面ともいう。)ま
たは上面の凹凸を反映しており、CAAC-OSの被形成面または上面と平行となる。
図27(B)に示すように、CAAC-OSは特徴的な原子配列を有する。図27(C)
は、特徴的な原子配列を、補助線で示したものである。図27(B)および図27(C)
より、ペレット一つの大きさは1nm以上3nm以下程度であり、ペレットとペレットと
の傾きにより生じる隙間の大きさは0.8nm程度であることがわかる。したがって、ペ
レットを、ナノ結晶(nc:nanocrystal)と呼ぶこともできる。
ここで、Cs補正高分解能TEM像をもとに、基板5120上のCAAC-OSのペレッ
ト5100の配置を模式的に示すと、レンガまたはブロックが積み重なったような構造と
なる(図27(D)参照。)。図27(C)で観察されたペレットとペレットとの間で傾
きが生じている箇所は、図27(D)に示す領域5161に相当する。
また、図28(A)に、試料面と略垂直な方向から観察したCAAC-OSの平面のCs
補正高分解能TEM像を示す。図28(A)の領域(1)、領域(2)および領域(3)
を拡大したCs補正高分解能TEM像を、それぞれ図28(B)、図28(C)および図
28(D)に示す。図28(B)、図28(C)および図28(D)より、ペレットは、
金属原子が三角形状、四角形状または六角形状に配列していることを確認できる。しかし
ながら、異なるペレット間で、金属原子の配列に規則性は見られない。
次に、X線回折(XRD:X-Ray Diffraction)によって解析したCA
AC-OSについて説明する。例えば、InGaZnOの結晶を有するCAAC-OS
に対し、out-of-plane法による構造解析を行うと、図29(A)に示すよう
に回折角(2θ)が31°近傍にピークが現れる場合がある。このピークは、InGaZ
nOの結晶の(009)面に帰属されることから、CAAC-OSの結晶がc軸配向性
を有し、c軸が被形成面または上面に略垂直な方向を向いていることが確認できる。
なお、CAAC-OSのout-of-plane法による構造解析では、2θが31°
近傍のピークの他に、2θが36°近傍にもピークが現れる場合がある。2θが36°近
傍のピークは、CAAC-OS中の一部に、c軸配向性を有さない結晶が含まれることを
示している。より好ましいCAAC-OSは、out-of-plane法による構造解
析では、2θが31°近傍にピークを示し、2θが36°近傍にピークを示さない。
一方、CAAC-OSに対し、c軸に略垂直な方向からX線を入射させるin-plan
e法による構造解析を行うと、2θが56°近傍にピークが現れる。このピークは、In
GaZnOの結晶の(110)面に帰属される。CAAC-OSの場合は、2θを56
°近傍に固定し、試料面の法線ベクトルを軸(φ軸)として試料を回転させながら分析(
φスキャン)を行っても、図29(B)に示すように明瞭なピークは現れない。これに対
し、InGaZnOの単結晶酸化物半導体であれば、2θを56°近傍に固定してφス
キャンした場合、図29(C)に示すように(110)面と等価な結晶面に帰属されるピ
ークが6本観察される。したがって、XRDを用いた構造解析から、CAAC-OSは、
a軸およびb軸の配向が不規則であることが確認できる。
次に、電子回折によって解析したCAAC-OSについて説明する。例えば、InGaZ
nOの結晶を有するCAAC-OSに対し、試料面に平行にプローブ径が300nmの
電子線を入射させると、図30(A)に示すような回折パターン(制限視野透過電子回折
パターンともいう。)が現れる場合がある。この回折パターンには、InGaZnO
結晶の(009)面に起因するスポットが含まれる。したがって、電子回折によっても、
CAAC-OSに含まれるペレットがc軸配向性を有し、c軸が被形成面または上面に略
垂直な方向を向いていることがわかる。一方、同じ試料に対し、試料面に垂直にプローブ
径が300nmの電子線を入射させたときの回折パターンを図30(B)に示す。図30
(B)より、リング状の回折パターンが確認される。したがって、電子回折によっても、
CAAC-OSに含まれるペレットのa軸およびb軸は配向性を有さないことがわかる。
なお、図30(B)における第1リングは、InGaZnOの結晶の(010)面およ
び(100)面などに起因すると考えられる。また、図30(B)における第2リングは
(110)面などに起因すると考えられる。
また、CAAC-OSは、欠陥準位密度の低い酸化物半導体である。酸化物半導体の欠陥
としては、例えば、不純物に起因する欠陥や、酸素欠損などがある。したがって、CAA
C-OSは、不純物濃度の低い酸化物半導体ということもできる。また、CAAC-OS
は、酸素欠損の少ない酸化物半導体ということもできる。
酸化物半導体に含まれる不純物は、キャリアトラップとなる場合や、キャリア発生源とな
る場合がある。また、酸化物半導体中の酸素欠損は、キャリアトラップとなる場合や、水
素を捕獲することによってキャリア発生源となる場合がある。
なお、不純物は、酸化物半導体の主成分以外の元素で、水素、炭素、シリコン、遷移金属
元素などがある。例えば、シリコンなどの、酸化物半導体を構成する金属元素よりも酸素
との結合力の強い元素は、酸化物半導体から酸素を奪うことで酸化物半導体の原子配列を
乱し、結晶性を低下させる要因となる。また、鉄やニッケルなどの重金属、アルゴン、二
酸化炭素などは、原子半径(または分子半径)が大きいため、酸化物半導体の原子配列を
乱し、結晶性を低下させる要因となる。
また、欠陥準位密度の低い(酸素欠損が少ない)酸化物半導体は、キャリア密度を低くす
ることができる。そのような酸化物半導体を、高純度真性または実質的に高純度真性な酸
化物半導体と呼ぶ。CAAC-OSは、不純物濃度が低く、欠陥準位密度が低い。即ち、
高純度真性または実質的に高純度真性な酸化物半導体となりやすい。したがって、CAA
C-OSを用いたトランジスタは、しきい値電圧がマイナスとなる電気特性(ノーマリー
オンともいう。)になることが少ない。また、高純度真性または実質的に高純度真性な酸
化物半導体は、キャリアトラップが少ない。酸化物半導体のキャリアトラップに捕獲され
た電荷は、放出するまでに要する時間が長く、あたかも固定電荷のように振る舞うことが
ある。そのため、不純物濃度が高く、欠陥準位密度が高い酸化物半導体を用いたトランジ
スタは、電気特性が不安定となる場合がある。一方、CAAC-OSを用いたトランジス
タは、電気特性の変動が小さく、信頼性の高いトランジスタとなる。
また、CAAC-OSは欠陥準位密度が低いため、光の照射などによって生成されたキャ
リアが、欠陥準位に捕獲されることが少ない。したがって、CAAC-OSを用いたトラ
ンジスタは、可視光や紫外光の照射による電気特性の変動が小さい。
<微結晶酸化物半導体>
次に、微結晶酸化物半導体について説明する。
微結晶酸化物半導体は、高分解能TEM像において、結晶部を確認することのできる領域
と、明確な結晶部を確認することのできない領域と、を有する。微結晶酸化物半導体に含
まれる結晶部は、1nm以上100nm以下、または1nm以上10nm以下の大きさで
あることが多い。特に、1nm以上10nm以下、または1nm以上3nm以下の微結晶
であるナノ結晶を有する酸化物半導体を、nc-OS(nanocrystalline
Oxide Semiconductor)と呼ぶ。nc-OSは、例えば、高分解能
TEM像では、結晶粒界を明確に確認できない場合がある。なお、ナノ結晶は、CAAC
-OSにおけるペレットと起源を同じくする可能性がある。そのため、以下ではnc-O
Sの結晶部をペレットと呼ぶ場合がある。
nc-OSは、微小な領域(例えば、1nm以上10nm以下の領域、特に1nm以上3
nm以下の領域)において原子配列に周期性を有する。また、nc-OSは、異なるペレ
ット間で結晶方位に規則性が見られない。そのため、膜全体で配向性が見られない。した
がって、nc-OSは、分析方法によっては、非晶質酸化物半導体と区別が付かない場合
がある。例えば、nc-OSに対し、ペレットよりも大きい径のX線を用いるXRD装置
を用いて構造解析を行うと、out-of-plane法による解析では、結晶面を示す
ピークが検出されない。また、nc-OSに対し、ペレットよりも大きいプローブ径(例
えば50nm以上)の電子線を用いる電子回折(制限視野電子回折ともいう。)を行うと
、ハローパターンのような回折パターンが観測される。一方、nc-OSに対し、ペレッ
トの大きさと近いかペレットより小さいプローブ径の電子線を用いるナノビーム電子回折
を行うと、スポットが観測される。また、nc-OSに対しナノビーム電子回折を行うと
、円を描くように(リング状に)輝度の高い領域が観測される場合がある。さらに、リン
グ状の領域内に複数のスポットが観測される場合がある。
このように、ペレット(ナノ結晶)間では結晶方位が規則性を有さないことから、nc-
OSを、RANC(Random Aligned nanocrystals)を有す
る酸化物半導体、またはNANC(Non-Aligned nanocrystals
)を有する酸化物半導体と呼ぶこともできる。
nc-OSは、非晶質酸化物半導体よりも規則性の高い酸化物半導体である。そのため、
nc-OSは、非晶質酸化物半導体よりも欠陥準位密度が低くなる。ただし、nc-OS
は、異なるペレット間で結晶方位に規則性が見られない。そのため、nc-OSは、CA
AC-OSと比べて欠陥準位密度が高くなる。
<非晶質酸化物半導体>
次に、非晶質酸化物半導体について説明する。
非晶質酸化物半導体は、膜中における原子配列が不規則であり、結晶部を有さない酸化物
半導体である。石英のような無定形状態を有する酸化物半導体が一例である。
非晶質酸化物半導体は、高分解能TEM像において結晶部を確認することができない。
非晶質酸化物半導体に対し、XRD装置を用いた構造解析を行うと、out-of-pl
ane法による解析では、結晶面を示すピークが検出されない。また、非晶質酸化物半導
体に対し、電子回折を行うと、ハローパターンが観測される。また、非晶質酸化物半導体
に対し、ナノビーム電子回折を行うと、スポットが観測されず、ハローパターンのみが観
測される。
非晶質構造については、様々な見解が示されている。例えば、原子配列に全く秩序性を有
さない構造を完全な非晶質構造(completely amorphous stru
cture)と呼ぶ場合がある。また、最近接原子間距離または第2近接原子間距離まで
秩序性を有し、かつ長距離秩序性を有さない構造を非晶質構造と呼ぶ場合もある。したが
って、最も厳格な定義によれば、僅かでも原子配列に秩序性を有する酸化物半導体を非晶
質酸化物半導体と呼ぶことはできない。また、少なくとも、長距離秩序性を有する酸化物
半導体を非晶質酸化物半導体と呼ぶことはできない。よって、結晶部を有することから、
例えば、CAAC-OSおよびnc-OSを、非晶質酸化物半導体または完全な非晶質酸
化物半導体と呼ぶことはできない。
<非晶質ライク酸化物半導体>
なお、酸化物半導体は、nc-OSと非晶質酸化物半導体との間の構造を有する場合があ
る。そのような構造を有する酸化物半導体を、特に非晶質ライク酸化物半導体(a-li
ke OS:amorphous-like Oxide Semiconductor
)と呼ぶ。
a-like OSは、高分解能TEM像において鬆(ボイドともいう。)が観察される
場合がある。また、高分解能TEM像において、明確に結晶部を確認することのできる領
域と、結晶部を確認することのできない領域と、を有する。
鬆を有するため、a-like OSは、不安定な構造である。以下では、a-like
OSが、CAAC-OSおよびnc-OSと比べて不安定な構造であることを示すため
、電子照射による構造の変化を示す。
電子照射を行う試料として、a-like OS(試料Aと表記する。)、nc-OS(
試料Bと表記する。)およびCAAC-OS(試料Cと表記する。)を準備する。いずれ
の試料もIn-Ga-Zn酸化物である。
まず、各試料の高分解能断面TEM像を取得する。高分解能断面TEM像により、各試料
は、いずれも結晶部を有することがわかる。
なお、どの部分を一つの結晶部と見なすかの判定は、以下のように行えばよい。例えば、
InGaZnOの結晶の単位格子は、In-O層を3層有し、またGa-Zn-O層を
6層有する、計9層がc軸方向に層状に重なった構造を有することが知られている。これ
らの近接する層同士の間隔は、(009)面の格子面間隔(d値ともいう。)と同程度で
あり、結晶構造解析からその値は0.29nmと求められている。したがって、格子縞の
間隔が0.28nm以上0.30nm以下である箇所を、InGaZnOの結晶部と見
なすことができる。なお、格子縞は、InGaZnOの結晶のa-b面に対応する。
図31は、各試料の結晶部(22箇所から45箇所)の平均の大きさを調査した例である
。ただし、上述した格子縞の長さを結晶部の大きさとしている。図31より、a-lik
e OSは、電子の累積照射量に応じて結晶部が大きくなっていくことがわかる。具体的
には、図31中に(1)で示すように、TEMによる観察初期においては1.2nm程度
の大きさだった結晶部(初期核ともいう。)が、累積照射量が4.2×10/nm
においては2.6nm程度の大きさまで成長していることがわかる。一方、nc-OS
およびCAAC-OSは、電子照射開始時から電子の累積照射量が4.2×10
nmまでの範囲で、結晶部の大きさに変化が見られないことがわかる。具体的には、図
31中の(2)および(3)で示すように、電子の累積照射量によらず、nc-OSおよ
びCAAC-OSの結晶部の大きさは、それぞれ1.4nm程度および2.1nm程度で
あることがわかる。
このように、a-like OSは、電子照射によって結晶部の成長が見られる場合があ
る。一方、nc-OSおよびCAAC-OSは、電子照射による結晶部の成長がほとんど
見られないことがわかる。即ち、a-like OSは、nc-OSおよびCAAC-O
Sと比べて、不安定な構造であることがわかる。
また、鬆を有するため、a-like OSは、nc-OSおよびCAAC-OSと比べ
て密度の低い構造である。具体的には、a-like OSの密度は、同じ組成の単結晶
の密度の78.6%以上92.3%未満となる。また、nc-OSの密度およびCAAC
-OSの密度は、同じ組成の単結晶の密度の92.3%以上100%未満となる。単結晶
の密度の78%未満となる酸化物半導体は、成膜すること自体が困難である。
例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、菱
面体晶構造を有する単結晶InGaZnOの密度は6.357g/cmとなる。よっ
て、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において
、a-like OSの密度は5.0g/cm以上5.9g/cm未満となる。また
、例えば、In:Ga:Zn=1:1:1[原子数比]を満たす酸化物半導体において、
nc-OSの密度およびCAAC-OSの密度は5.9g/cm以上6.3g/cm
未満となる。
なお、同じ組成の単結晶が存在しない場合がある。その場合、任意の割合で組成の異なる
単結晶を組み合わせることにより、所望の組成における単結晶に相当する密度を見積もる
ことができる。所望の組成の単結晶に相当する密度は、組成の異なる単結晶を組み合わせ
る割合に対して、加重平均を用いて見積もればよい。ただし、密度は、可能な限り少ない
種類の単結晶を組み合わせて見積もることが好ましい。
以上のように、酸化物半導体は、様々な構造をとり、それぞれが様々な特性を有する。な
お、酸化物半導体は、例えば、非晶質酸化物半導体、a-like OS、微結晶酸化物
半導体、CAAC-OSのうち、二種以上を有する積層膜であってもよい。
図1において、基板400としては、例えば、絶縁体基板、半導体基板または導電体基板
を用いればよい。絶縁体基板としては、例えば、ガラス基板、石英基板、サファイア基板
、安定化ジルコニア基板(イットリア安定化ジルコニア基板など)、樹脂基板などがある
。また、半導体基板としては、例えば、シリコン、ゲルマニウムなどの単体半導体基板、
または炭化シリコン、シリコンゲルマニウム、ヒ化ガリウム、リン化インジウム、酸化亜
鉛、酸化ガリウムなどの化合物半導体基板などがある。さらには、前述の半導体基板内部
に絶縁体領域を有する半導体基板、例えばSOI(Silicon On Insula
tor)基板などがある。導電体基板としては、黒鉛基板、金属基板、合金基板、導電性
樹脂基板などがある。または、金属の窒化物を有する基板、金属の酸化物を有する基板な
どがある。さらには、絶縁体基板に導電体または半導体が設けられた基板、半導体基板に
導電体または絶縁体が設けられた基板、導電体基板に半導体または絶縁体が設けられた基
板などがある。または、これらの基板に素子が設けられたものを用いてもよい。基板に設
けられる素子としては、容量素子、抵抗素子、スイッチ素子、発光素子、記憶素子などが
ある。
また、基板400として、可とう性基板を用いてもよい。なお、可とう性基板上にトラン
ジスタを設ける方法としては、非可とう性の基板上にトランジスタを作製した後、トラン
ジスタを剥離し、可とう性基板である基板400に転置する方法もある。その場合には、
非可とう性基板とトランジスタとの間に剥離層を設けるとよい。なお、基板400として
、繊維を編みこんだシート、フィルムまたは箔などを用いてもよい。また、基板400が
伸縮性を有してもよい。また、基板400は、折り曲げや引っ張りをやめた際に、元の形
状に戻る性質を有してもよい。または、元の形状に戻らない性質を有してもよい。基板4
00の厚さは、例えば、5μm以上700μm以下、好ましくは10μm以上500μm
以下、さらに好ましくは15μm以上300μm以下とする。基板400を薄くすると、
半導体装置を軽量化することができる。また、基板400を薄くすることで、ガラスなど
を用いた場合にも伸縮性を有する場合や、折り曲げや引っ張りをやめた際に、元の形状に
戻る性質を有する場合がある。そのため、落下などによって基板400上の半導体装置に
加わる衝撃などを緩和することができる。即ち、丈夫な半導体装置を提供することができ
る。
可とう性基板である基板400としては、例えば、金属、合金、樹脂もしくはガラス、ま
たはそれらの繊維などを用いることができる。可とう性基板である基板400は、線膨張
率が低いほど環境による変形が抑制されて好ましい。可とう性基板である基板400とし
ては、例えば、線膨張率が1×10-3/K以下、5×10-5/K以下、または1×1
-5/K以下である材質を用いればよい。樹脂としては、例えば、ポリエステル、ポリ
オレフィン、ポリアミド(ナイロン、アラミドなど)、ポリイミド、ポリカーボネート、
アクリルなどがある。特に、アラミドは、線膨張率が低いため、可とう性基板である基板
400として好適である。
導電体413としては、例えば、ホウ素、窒素、酸素、フッ素、シリコン、リン、アルミ
ニウム、チタン、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ガリウム、イット
リウム、ジルコニウム、モリブデン、ルテニウム、銀、インジウム、スズ、タンタルおよ
びタングステンを一種以上含む導電体を、単層で、または積層で用いればよい。例えば、
合金や化合物であってもよく、アルミニウムを含む導電体、銅およびチタンを含む導電体
、銅およびマンガンを含む導電体、インジウム、スズおよび酸素を含む導電体、チタンお
よび窒素を含む導電体などを用いてもよい。
絶縁体402としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、ア
ルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム
、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層
で、または積層で用いればよい。なお、絶縁体402が、窒化酸化シリコン、窒化シリコ
ンなどの窒素を含む絶縁体を含んでも構わない。
絶縁体402は、基板400からの不純物の拡散を防止する役割を有してもよい。また、
半導体406bが酸化物半導体である場合、絶縁体402は、半導体406bに酸素を供
給する役割を担うことができる。
絶縁体412としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、ア
ルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム
、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層
で、または積層で用いればよい。
導電体404としては、例えば、ホウ素、窒素、酸素、フッ素、シリコン、リン、アルミ
ニウム、チタン、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、ガリウム、イット
リウム、ジルコニウム、モリブデン、ルテニウム、銀、インジウム、スズ、タンタルおよ
びタングステンを一種以上含む導電体を、単層で、または積層で用いればよい。例えば、
合金や化合物であってもよく、アルミニウムを含む導電体、銅およびチタンを含む導電体
、銅およびマンガンを含む導電体、インジウム、スズおよび酸素を含む導電体、チタンお
よび窒素を含む導電体などを用いてもよい。
絶縁体408としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、ア
ルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム
、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層
で、または積層で用いればよい。絶縁体408は、好ましくは酸化アルミニウム、窒化酸
化シリコン、窒化シリコン、酸化ガリウム、酸化イットリウム、酸化ジルコニウム、酸化
ランタン、酸化ネオジム、酸化ハフニウムまたは酸化タンタルを含む絶縁体を、単層で、
または積層で用いればよい。
絶縁体418としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、ア
ルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム
、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層
で、または積層で用いればよい。絶縁体418は、好ましくは酸化シリコンまたは酸化窒
化シリコンを含む絶縁体を、単層で、または積層で用いればよい。
絶縁体428としては、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、ア
ルミニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム
、ジルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層
で、または積層で用いればよい。絶縁体428は、好ましくは酸化シリコンまたは酸化窒
化シリコンを含む絶縁体を、単層で、または積層で用いればよい。
導電体426aおよび導電体426bとしては、例えば、ホウ素、窒素、酸素、フッ素、
シリコン、リン、アルミニウム、チタン、クロム、マンガン、コバルト、ニッケル、銅、
亜鉛、ガリウム、イットリウム、ジルコニウム、モリブデン、ルテニウム、銀、インジウ
ム、スズ、タンタルおよびタングステンを一種以上含む導電体を、単層で、または積層で
用いればよい。例えば、合金や化合物であってもよく、アルミニウムを含む導電体、銅お
よびチタンを含む導電体、銅およびマンガンを含む導電体、インジウム、スズおよび酸素
を含む導電体、チタンおよび窒素を含む導電体などを用いてもよい。
導電体424aおよび導電体424bとしては、例えば、ホウ素、窒素、酸素、フッ素、
シリコン、リン、アルミニウム、チタン、クロム、マンガン、コバルト、ニッケル、銅、
亜鉛、ガリウム、イットリウム、ジルコニウム、モリブデン、ルテニウム、銀、インジウ
ム、スズ、タンタルおよびタングステンを一種以上含む導電体を、単層で、または積層で
用いればよい。例えば、合金や化合物であってもよく、アルミニウムを含む導電体、銅お
よびチタンを含む導電体、銅およびマンガンを含む導電体、インジウム、スズおよび酸素
を含む導電体、チタンおよび窒素を含む導電体などを用いてもよい。
なお、図1では、トランジスタの第1のゲート電極である導電体404と第2のゲート電
極である導電体413とが、電気的に接続しない例を示したが、本発明の一態様に係るト
ランジスタの構造はこれに限定されない。例えば、図2(A)に示すように、導電体40
4と導電体413とが導電体405などを介して電気的に接続する構造であっても構わな
い。このような構成とすることで、導電体404と導電体413とに同じ電位が供給され
るため、トランジスタのスイッチング特性を向上させることができる。または、図2(B
)に示すように、導電体413を有さない構造であっても構わない。
または、図1では、トランジスタのソース領域およびドレイン領域と電気的に接続する導
電体426aおよび導電体426bが、半導体406bと接する例を示したが、本発明の
一態様に係るトランジスタの構造はこれに限定されない。例えば、図3(A)に示すよう
に、導電体426aおよび導電体426bが半導体406bおよび半導体406aを貫通
して、絶縁体402と接していても構わない。または、図3(B)に示すように、半導体
406bを貫通して、半導体406aと接していても構わない。
または、図1では、領域423が、半導体406aの深さ方向の全体、および半導体40
6bの深さ方向の一部分のみに設けられる例を示したが、本発明の一態様に係るトランジ
スタの構造はこれに限定されない。例えば、図4(A)に示すように、領域423が半導
体406aおよび半導体406bの深さ方向の全体に設けられていても構わない。
または、トランジスタは、例えば、図4(B)に示すように、導電体404がテーパー角
を有する形状であってもよい。その場合、例えば、領域423は、深さ方向に勾配を有す
る形状となる場合がある。
または、図1では、半導体406cおよび絶縁体412が、導電体404と重なる領域に
のみ配置される例を示したが、本発明の一態様に係るトランジスタの構造はこれに限定さ
れない。例えば、図5(A)に示すように、半導体406cおよび絶縁体412を、半導
体406bおよび半導体406aを覆うように配置しても構わない。または、図5(B)
に示すように、半導体406cを半導体406bと重なるように配置し、絶縁体412を
半導体406c、半導体406bおよび半導体406aを覆うように配置しても構わない
<トランジスタ構造2>
図6(A)は、本発明の一態様に係るトランジスタの上面図の一例である。図6(A)の
一点鎖線B1-B2および一点鎖線B3-B4に対応する断面図の一例を図6(B)に示
す。なお、図6(A)では、理解を容易にするため、絶縁体などの一部を省略して示す。
図6(A)および図6(B)に示すトランジスタは、基板400上の導電体413と、基
板400上および導電体413上の凸部を有する絶縁体402と、絶縁体402の凸部上
の半導体406aと、半導体406a上の半導体406bと、半導体406bの上面と接
し、半導体406bの側面と接しない導電体416aおよび導電体416bと、半導体4
06b上の、導電体416aおよび導電体416bと重ならない領域に配置された半導体
406cと、半導体406c上の絶縁体412と、絶縁体412上の導電体404と、絶
縁体402上、半導体406b上および導電体404上の絶縁体408と、を有する。な
お、ここでは、導電体413をトランジスタの一部としているが、これに限定されない。
例えば、導電体413がトランジスタとは独立した構成要素であるとしてもよい。
なお、導電体416aおよび導電体416bとしては、例えば、ホウ素、窒素、酸素、フ
ッ素、シリコン、リン、アルミニウム、チタン、クロム、マンガン、コバルト、ニッケル
、銅、亜鉛、ガリウム、イットリウム、ジルコニウム、モリブデン、ルテニウム、銀、イ
ンジウム、スズ、タンタルおよびタングステンを一種以上含む導電体を、単層で、または
積層で用いればよい。例えば、合金や化合物であってもよく、アルミニウムを含む導電体
、銅およびチタンを含む導電体、銅およびマンガンを含む導電体、インジウム、スズおよ
び酸素を含む導電体、チタンおよび窒素を含む導電体などを用いてもよい。
図6に示すトランジスタは、図1などに示したトランジスタと比べて、導電体416aお
よび導電体416bを有する点が異なるが、そのほかの構成については類似している。し
たがって、図6に示すトランジスタの詳細は、図1などに示したトランジスタについての
記載を参酌することができる。
図6に示すトランジスタは、図1などに示したトランジスタと比べて、導電体416aお
よび導電体416bを有する分だけ、オン電流の大きいトランジスタを実現することがで
きる場合がある。
<トランジスタ構造3>
図7(A)は、本発明の一態様に係るトランジスタの上面図の一例である。図7(A)の
一点鎖線C1-C2および一点鎖線C3-C4に対応する断面図の一例を図7(B)に示
す。なお、図7(A)では、理解を容易にするため、絶縁体などの一部を省略して示す。
図7(A)および図7(B)に示すトランジスタは、基板400上の導電体413と、基
板400上および導電体413上の凸部を有する絶縁体402と、絶縁体402の凸部上
の半導体406aと、半導体406a上の半導体406bと、半導体406bの上面およ
び側面と接する導電体416aおよび導電体416bと、半導体406b上の、導電体4
16aおよび導電体416bと重ならない領域に配置された半導体406cと、半導体4
06c上の絶縁体412と、絶縁体412上の導電体404と、絶縁体402上、半導体
406b上および導電体404上の絶縁体408と、を有する。なお、ここでは、導電体
413をトランジスタの一部としているが、これに限定されない。例えば、導電体413
がトランジスタとは独立した構成要素であるとしてもよい。
図7に示すトランジスタは、図6に示したトランジスタと比べて、導電体416aおよび
導電体416bが半導体406bの側面と接する点が異なるが、そのほかの構成について
は類似している。したがって、図7に示すトランジスタの詳細は、図6などに示したトラ
ンジスタについての記載を参酌することができる。
図7に示すトランジスタは、図6に示したトランジスタと比べて、導電体416aおよび
導電体416bが半導体406bの側面に接する分だけ、オン電流の大きいトランジスタ
を実現することができる場合がある。
なお、図7では、トランジスタの第1のゲート電極である導電体404と第2のゲート電
極である導電体413とが、電気的に接続しない例を示したが、本発明の一態様に係るト
ランジスタの構造はこれに限定されない。例えば、図8(A)に示すように、導電体40
4と導電体413とが、導電体405を介して電気的に接続する構造であっても構わない
。このような構成とすることで、導電体404と導電体413とに同じ電位が供給される
ため、トランジスタのスイッチング特性を向上させることができる。または、図8(B)
に示すように、導電体413を有さない構造であっても構わない。
または、図7では、領域423が半導体406bの深さ方向の一部分のみに設けられる例
を示したが、本発明の一態様に係るトランジスタの構造はこれに限定されない。例えば、
図9(A)に示すように、領域423が半導体406aおよび半導体406bの深さ方向
の全体に設けられていても構わない。
または、トランジスタは、例えば、図9(B)に示すように、導電体404がテーパー角
を有する形状であってもよい。その場合、例えば、領域423は、深さ方向に勾配を有す
る形状となる場合がある。
または、図7では、半導体406cおよび絶縁体412が、導電体404と重なる領域に
のみ配置される例を示したが、本発明の一態様に係るトランジスタの構造はこれに限定さ
れない。例えば、図10(A)に示すように、半導体406cを、半導体406bおよび
半導体406aを覆うように配置しても構わない。または、図10(B)に示すように、
半導体406cを、半導体406bおよび半導体406aを覆うように配置し、絶縁体4
12を導電体416a、導電体416b、半導体406c、半導体406bおよび半導体
406aを覆うように配置しても構わない。
<トランジスタ構造4>
図11(A)は、本発明の一態様に係るトランジスタの上面図の一例である。図11(A
)の一点鎖線D1-D2および一点鎖線D3-D4に対応する断面図の一例を図11(B
)に示す。なお、図11(A)では、理解を容易にするため、絶縁体などの一部を省略し
て示す。
図11(A)および図11(B)に示すトランジスタは、基板400上の導電体413と
、基板400上および導電体413上の凸部を有する絶縁体402と、絶縁体402の凸
部上の半導体406aと、半導体406a上の半導体406bと、半導体406bの上面
および側面と接する導電体416aおよび導電体416bと、半導体406b上の、導電
体416aと重ならず、導電体416bと重なる領域に配置された半導体406cと、半
導体406c上の絶縁体412と、絶縁体412上の導電体404と、絶縁体402上、
半導体406b上および導電体404上の絶縁体408と、を有する。なお、図11に示
すトランジスタは、導電体404が導電体416bと重なる領域を有する。なお、ここで
は、導電体413をトランジスタの一部としているが、これに限定されない。例えば、導
電体413がトランジスタとは独立した構成要素であるとしてもよい。
図11に示すトランジスタは、図7に示したトランジスタと比べて、導電体404が導電
体416bと重なる領域を有する点が異なるが、そのほかの構成については類似している
。したがって、図11に示すトランジスタの詳細は、図7などに示したトランジスタにつ
いての記載を参酌することができる。
なお、図11(B)に示すように、トランジスタにおいてゲート電極としての機能を有す
る導電体404と、導電体416bとが重なる領域をLov領域と呼ぶ。
Lov領域が大きすぎると、寄生容量が増大するため、トランジスタのスイッチング特性
を低下させる場合がある。したがって、図11(B)に示すLov領域の大きさは、チャ
ネル形成領域の大きさの100%未満、好ましくは80%未満、さらに好ましくは50%
未満とする。例えば、Lov領域の大きさは、50nm未満、好ましくは20nm未満、
さらに好ましくは10nm未満とする。
図11に示すトランジスタは、図7などに示したトランジスタと比べて、導電体404が
導電体416bと重なる領域を有する分だけ、オン電流の大きいトランジスタを実現する
ことができる場合がある。
以上に示したトランジスタの構造は一例であり、これらを組み合わせたものも本発明の一
態様の範疇に含まれる。
<トランジスタの作製方法>
以下では、一例として、図1に示したトランジスタの作製方法を図12および図13を用
いて説明する。
まず、基板400を準備する。
次に、導電体413となる導電体を成膜する。導電体413となる導電体は、スパッタリ
ング法、化学気相成長(CVD:Chemical Vapor Deposition
)法、分子線エピタキシー(MBE:Molecular Beam Epitaxy)
法またはパルスレーザ堆積(PLD:Pulsed Laser Deposition
)法、原子層堆積法(ALD:Atomic Layer Deposition)法な
どを用いて成膜すればよい。
なお、CVD法は、プラズマを利用するプラズマCVD(PECVD:Plasma E
nhanced CVD)法、熱を利用する熱CVD(TCVD:Thermal CV
D)法などに分類できる。さらに用いる原料ガスによって金属CVD(MCVD:Met
al CVD)法、有機金属CVD(MOCVD:Metal Organic CVD
)法に分けることができる。
プラズマCVD法は、比較的低温で高品質の膜が得られる。熱CVD法は、プラズマを用
いないため、プラズマダメージが生じず、欠陥の少ない膜が得られる。
CVD法は、原料ガスの流量比によって、得られる膜の組成を制御することができる。例
えば、MCVD法およびMOCVD法では、原料ガスの流量比によって、任意の組成の膜
を成膜することができる。また、例えば、MCVD法およびMOCVD法では、成膜しな
がら原料ガスの流量比を変化させることによって、組成が連続的に変化した膜を成膜する
ことができる。原料ガスの流量比を変化させながら成膜する場合、複数の成膜室を用いて
成膜する場合と比べて、搬送や圧力調整に掛かる時間の分、成膜に掛かる時間を短くする
ことができる。したがって、トランジスタの生産性を高めることができる。
次に、導電体413となる導電体の一部をエッチングし、導電体413を形成する。
次に、絶縁体402を成膜する(図12(A)参照。)。絶縁体402は、スパッタリン
グ法、CVD法、MBE法またはPLD法、ALD法などを用いて成膜すればよい。なお
、ここでは、絶縁体402は、CMP法などによって、上面から平坦化する場合について
説明する。絶縁体402の上面を平坦化することで、後の工程が容易となり、トランジス
タの歩留まりを高くすることができる。例えば、CMP法によって、絶縁体402のRM
S粗さを1nm以下、好ましくは0.5nm以下、さらに好ましくは0.3nm以下とす
る。または、1μm×1μmの範囲におけるRaを1nm未満、好ましくは0.6nm未
満、さらに好ましくは0.5nm未満、より好ましくは0.4nm未満とする。または、
1μm×1μmの範囲におけるP-Vを10nm未満、好ましくは9nm未満、さらに好
ましくは8nm未満、より好ましくは7nm未満とする。ただし、本発明の一態様に係る
トランジスタは、絶縁体402の上面を平坦化した場合に限定されない。
絶縁体402は、過剰酸素を含ませるように成膜すればよい。または、絶縁体402の成
膜後に酸素を添加しても構わない。酸素の添加は、例えば、イオン注入法により、加速電
圧を2kV以上100kV以下とし、ドーズ量を5×1014ions/cm以上5×
1016ions/cm以下として行えばよい。
なお、絶縁体402を積層膜で構成する場合には、それぞれの膜を、上記のような成膜方
法を用いて、異なる成膜方法で成膜してもよい。例えば、1層目をCVD法で成膜し、2
層目をALD法で成膜してもよい。または、1層目をスパッタリング法で成膜し、2層目
をALD法で成膜してもよい。このように、それぞれ異なる成膜方法を用いることによっ
て、各層の膜に異なる機能や性質を持たせることができる。そして、それらの膜を積層す
ることによって、積層膜全体として、より適切な膜を構成することができる。
つまり、n層目(nは自然数)の膜を、スパッタリング法、CVD法、MBE法またはP
LD法、ALD法などのうちの少なくとも1つの方法で成膜し、n+1層目の膜を、スパ
ッタリング法、CVD法、MBE法またはPLD法、ALD法などのうちの少なくとも1
つの方法で成膜する。なお、n層目の膜と、n+1層目の膜とで、成膜方法が同じでも異
なっていてもよい。なお、n層目の膜とn+2層目の膜とで、成膜方法が同じでもよい。
または、すべての膜において、成膜方法が同じでもよい。
次に、半導体406aとなる半導体、および半導体406bとなる半導体をこの順に成膜
する。半導体406aとなる半導体、および半導体406bとなる半導体は、スパッタリ
ング法、CVD法、MBE法またはPLD法、ALD法などを用いて成膜すればよい。
なお、半導体406aとなる半導体、および半導体406bとなる半導体として、In-
Ga-Zn酸化物層をMOCVD法によって成膜する場合、原料ガスとしてトリメチルイ
ンジウム、トリメチルガリウムおよびジメチル亜鉛などを用いればよい。なお、上記原料
ガスの組み合わせに限定されず、トリメチルインジウムに代えてトリエチルインジウムな
どを用いてもよい。また、トリメチルガリウムに代えてトリエチルガリウムなどを用いて
もよい。また、ジメチル亜鉛に代えてジエチル亜鉛などを用いてもよい。
次に、第1の加熱処理を行うと好ましい。第1の加熱処理は、250℃以上650℃以下
、好ましくは300℃以上500℃以下で行えばよい。第1の加熱処理は、不活性ガス雰
囲気、または酸化性ガスを10ppm以上、1%以上もしくは10%以上含む雰囲気で行
う。第1の加熱処理は減圧状態で行ってもよい。または、第1の加熱処理は、不活性ガス
雰囲気で加熱処理した後に、脱離した酸素を補うために酸化性ガスを10ppm以上、1
%以上または10%以上含む雰囲気で加熱処理を行ってもよい。第1の加熱処理によって
、半導体406aとなる半導体、および半導体406bとなる半導体の結晶性を高めるこ
とや、水素や水などの不純物を除去することなどができる。
次に、半導体406aとなる半導体、および半導体406bとなる半導体の一部をエッチ
ングして半導体406aおよび半導体406bを形成する(図12(B)参照。)。
次に、半導体406cとなる半導体を成膜する。半導体406cとなる半導体は、スパッ
タリング法、CVD法、MBE法またはPLD法、ALD法などを用いて成膜すればよい
なお、半導体406cとなる半導体として、In-Ga-Zn酸化物層をMOCVD法に
よって成膜する場合、原料ガスとしてトリメチルインジウム、トリメチルガリウムおよび
ジメチル亜鉛などを用いればよい。なお、上記原料ガスの組み合わせに限定されず、トリ
メチルインジウムに代えてトリエチルインジウムなどを用いてもよい。また、トリメチル
ガリウムに代えてトリエチルガリウムなどを用いてもよい。また、ジメチル亜鉛に代えて
ジエチル亜鉛などを用いてもよい。
次に、第2の加熱処理を行っても構わない。例えば、半導体406aとして、半導体40
6cとなる半導体よりも酸素透過性の高い半導体を選択する。即ち、半導体406cとな
る半導体として、半導体406aよりも酸素透過性の低い半導体を選択する。換言すると
、半導体406aとして、酸素を透過する機能を有する半導体を選択する。また、半導体
406cとなる半導体として、酸素をブロックする機能を有する半導体を選択する。この
とき、第2の加熱処理を行うことで、半導体406aを介して、絶縁体402に含まれる
過剰酸素が半導体406bまで移動する。半導体406bは半導体406cとなる半導体
で覆われているため、過剰酸素の外方拡散が起こりにくい。そのため、このタイミングで
第2の加熱処理を行うことで、効率的に半導体406bの欠陥(酸素欠損)を低減するこ
とができる。なお、第2の加熱処理は、絶縁体402中の過剰酸素(酸素)が半導体40
6bまで拡散する温度で行えばよい。例えば、第1の加熱処理についての記載を参照して
も構わない。または、第2の加熱処理は、第1の加熱処理よりも20℃以上150℃以下
、好ましくは40℃以上100℃以下低い温度で行うと、絶縁体402から余分に過剰酸
素(酸素)が放出されないため好ましい。
次に、絶縁体412となる絶縁体を成膜する。絶縁体412となる絶縁体は、スパッタリ
ング法、CVD法、MBE法またはPLD法、ALD法などを用いて成膜すればよい。
なお、絶縁体412となる絶縁体を積層膜で構成する場合には、それぞれの膜を、CVD
法(プラズマCVD法、熱CVD法、MCVD法、MOCVD法など)、MBE法、PL
D法、ALD法などのような成膜方法を用いて、異なる成膜方法で成膜してもよい。例え
ば、1層目をMOCVD法で成膜し、2層目をスパッタリング法で成膜してもよい。また
は、1層目をALD法で成膜し、2層目をMOCVD法で成膜してもよい。または、1層
目をALD法で成膜し、2層目をスパッタリング法で成膜してもよい。または、1層目を
ALD法で成膜し、2層目をスパッタリング法で成膜し、3層目をALD法で成膜しても
よい。このように、それぞれ、異なる成膜方法を用いることによって、各層の膜に異なる
機能や性質を持たせることができる。そして、それらの膜を積層することによって、積層
膜全体として、より適切な膜を構成することができる。
つまり、絶縁体412となる絶縁体を積層膜で構成する場合には、例えば、n層目の膜を
、CVD法(プラズマCVD法、熱CVD法、MCVD法、MOCVD法など)、MBE
法、PLD法、ALD法などのうちの少なくとも1つの方法で成膜し、n+1層目の膜を
、CVD法(プラズマCVD法、熱CVD法、MCVD法、MOCVD法など)、MBE
法、PLD法、ALD法などのうちの少なくとも1つの方法で成膜し、n層目の膜と、n
+1層目の膜とで、成膜方法が異なっていてもよい(nは自然数)。なお、n層目の膜と
n+2層目の膜とで、成膜方法が同じでもよい。または、すべての膜において、成膜方法
が同じでもよい。
次に、第3の加熱処理を行っても構わない。例えば、半導体406aとして、半導体40
6cとなる半導体よりも酸素透過性の高い半導体を選択する。即ち、半導体406cとな
る半導体として、半導体406aよりも酸素透過性の低い半導体を選択する。また、半導
体406cとなる半導体として、酸素をブロックする機能を有する半導体を選択する。ま
たは、例えば、半導体406aとして、絶縁体412となる絶縁体よりも酸素透過性の高
い半導体を選択する。即ち、絶縁体412となる絶縁体として、半導体406aよりも酸
素透過性の低い半導体を選択する。換言すると、半導体406aとして、酸素を透過する
機能を有する半導体を選択する。また、絶縁体412となる絶縁体として、酸素をブロッ
クする機能を有する絶縁体を選択する。このとき、第3の加熱処理を行うことで、半導体
406aを介して、絶縁体402に含まれる過剰酸素が半導体406bまで移動する。半
導体406bは半導体406cとなる半導体および絶縁体412となる絶縁体で覆われて
いるため、過剰酸素の外方拡散が起こりにくい。そのため、このタイミングで第3の加熱
処理を行うことで、効率的に半導体406bの欠陥(酸素欠損)を低減することができる
。なお、第3の加熱処理は、絶縁体402中の過剰酸素(酸素)が半導体406bまで拡
散する温度で行えばよい。例えば、第1の加熱処理についての記載を参照しても構わない
。または、第3の加熱処理は、第1の加熱処理よりも20℃以上150℃以下、好ましく
は40℃以上100℃低い温度で行うと、絶縁体402から余分に過剰酸素(酸素)が放
出されないため好ましい。なお、絶縁体412となる絶縁体が酸素をブロックする機能を
有する場合、半導体406cとなる半導体が酸素をブロックする機能を有さなくても構わ
ない。
次に、導電体404となる導電体を成膜する。導電体404となる導電体は、スパッタリ
ング法、CVD法、MBE法またはPLD法、ALD法などを用いて成膜すればよい。
絶縁体412となる絶縁体は、トランジスタのゲート絶縁体として機能する。したがって
導電体404となる導電体の成膜時に、絶縁体412となる絶縁体へダメージを与えない
成膜方法を用いると好ましい。即ち、該導電体の成膜には、MCVD法などを用いると好
ましい。
なお、導電体404となる導電体を積層膜で構成する場合には、それぞれの膜を、CVD
法(プラズマCVD法、熱CVD法、MCVD法、MOCVD法など)、MBE法、PL
D法、ALD法などのような成膜方法を用いて、異なる成膜方法で成膜してもよい。例え
ば、1層目をMOCVD法で成膜し、2層目をスパッタリング法で成膜してもよい。また
は、1層目をALD法で成膜し、2層目をMOCVD法で成膜してもよい。または、1層
目をALD法で成膜し、2層目をスパッタリング法で成膜してもよい。または、1層目を
ALD法で成膜し、2層目をスパッタリング法で成膜し、3層目をALD法で成膜しても
よい。このように、それぞれ、異なる成膜方法を用いることによって、各層の膜に異なる
機能や性質を持たせることができる。そして、それらの膜を積層することによって、積層
膜全体として、より適切な膜を構成することができる。
つまり、導電体404となる導電体を積層膜で構成する場合には、例えば、n層目の膜を
、CVD法(プラズマCVD法、熱CVD法、MCVD法、MOCVD法など)、MBE
法、PLD法、ALD法などのうちの少なくとも1つの方法で成膜し、n+1層目の膜を
、CVD法(プラズマCVD法、熱CVD法、MCVD法、MOCVD法など)、MBE
法、PLD法、ALD法などのうちの少なくとも1つの方法で成膜し、n層目の膜と、n
+1層目の膜とで、成膜方法が異なっていてもよい(nは自然数)。なお、n層目の膜と
n+2層目の膜とで、成膜方法が同じでもよい。または、すべての膜において、成膜方法
が同じでもよい。
なお、導電体404となる導電体、または導電体404となる導電体の積層膜の内の少な
くとも一つの膜と、絶縁体412となる絶縁体、または絶縁体412となる絶縁体の積層
膜の内の少なくとも一つの膜とは、同じ成膜方法を用いてもよい。例えば、どちらも、A
LD法を用いてもよい。これにより、大気に触れさせずに成膜することができる。その結
果、不純物の混入を防ぐことができる。または、例えば、絶縁体412となる絶縁体と接
する導電体404となる導電体と、導電体404となる導電体と接する絶縁体412とな
る絶縁体とは、同じ成膜方法を用いてもよい。これにより、同じチャンバーで成膜するこ
とができる。その結果、不純物の混入を防ぐことができる。
なお、導電体404となる導電体、または導電体404となる導電体の積層膜の内の少な
くとも一つの膜と、絶縁体412となる絶縁体、または絶縁体412となる絶縁体の積層
膜の内の少なくとも一つの膜とは同じ成膜方法を用いてもよい。例えば、どれも、スパッ
タリング法を用いてもよい。これにより、大気に触れさせずに成膜することができる。そ
の結果、不純物の混入を防ぐことができる。
次に、導電体404となる導電体の一部をエッチングして導電体404を形成する。なお
、導電体404は、半導体406bの少なくとも一部と重なるように形成する。
次に、導電体404となる導電体と同様に、絶縁体412となる絶縁体の一部をエッチン
グして絶縁体412を形成する。ただし、図5(A)、図5(B)などに示したトランジ
スタを作製する場合、絶縁体412となる絶縁体をエッチングしなくてもよい。
次に、導電体404となる導電体および絶縁体412となる絶縁体と同様に、半導体40
6cとなる半導体の一部をエッチングして半導体406cを形成する。ただし、図5(A
)などに示したトランジスタを作製する場合、半導体406cとなる半導体をエッチング
しなくてもよい。
なお、導電体404となる導電体、絶縁体412となる絶縁体および半導体406cとな
る半導体の一部をエッチングする際には、同一のフォトリソグラフィ工程など用いてもよ
い。または、導電体404をマスクとして用いて絶縁体412となる絶縁体および半導体
406cとなる半導体をエッチングしてもよい。そのため、導電体404、絶縁体412
および半導体406cは、上面図において同様の形状となる。なお、導電体404よりも
絶縁体412または/および半導体406cが突出した(迫り出した)形状となる場合や
、導電体404が絶縁体412または/および半導体406cよりも突出した(迫り出し
た)形状となる場合がある。このような形状とすることによって、形状不良が低減され、
ゲートリーク電流を低減できる場合がある。
次に、不純物を添加する(図13(A)参照。)。不純物の添加は、導電体404などを
マスクとして行う。不純物としては、例えば、ヘリウム、ホウ素、炭素、窒素、ネオン、
マグネシウム、アルミニウム、シリコン、リン、アルゴン、カルシウム、チタン、バナジ
ウム、クロム、マンガン、鉄、コバルト、ゲルマニウム、クリプトン、ストロンチウム、
イットリウム、ジルコニウム、ニオブ、モリブデン、キセノン、ランタン、セリウム、ネ
オジム、ハフニウム、タンタルまたはタングステンから選択された一種以上を添加すれば
よい。不純物としては、特に、ホウ素またはリンを添加すればよい。
不純物の添加は、例えば、プラズマ処理、イオンドーピング処理などによって行えばよい
。なお、不純物の添加は、上述の方法に限定されるものではない。例えば、後に成膜する
絶縁体408などの成膜とともに不純物を添加することもできる。
ここでは、絶縁体402、半導体406aおよび半導体406bに渡って不純物を添加す
るため、イオンドーピング処理を用いると好ましい。イオンドーピング処理としては、イ
オン化された原料ガスを質量分離してドーピングする方法や、イオン化された原料ガスを
質量分離せずにドーピングする方法などがある。質量分離を行う場合、添加するイオン種
およびその濃度を厳密に制御することができる。一方、質量分離を行わない場合、短時間
で高濃度のイオンを添加することができる。また、原子または分子のクラスターを生成し
てイオン化するイオンドーピング法を用いてもよい。
以下では、不純物をドーピングする方法の詳細について図14を用いて説明する。
例えば、イオンドーピング処理における加速電圧は、0.5kV以上100kV以下、好
ましくは1kV以上50kV以下、さらに好ましくは1kV以上30kV以下、より好ま
しくは1kV以上10kV以下とする。また、イオンの注入濃度は、1×1015ato
ms/cm以上、好ましくは2×1015atoms/cm以上、さらに好ましくは
5×1015atoms/cm以上、より好ましくは1×1016atoms/cm
以上、より好ましくは2×1016atoms/cm以上とする。
イオンドーピング処理によるイオンの添加は、試料面に対して特定の角度(例えば、垂直
な角度)から行ってもよいが、図14に示す方法で行うと好ましい。図14は、一つのイ
オンが、試料面に対し、角度(θ)および角度(φ)で入射する様子を簡略的に示した図
である。
図中のx軸、y軸およびz軸は、あるイオンの入射点で交差する直線である。x軸は、試
料面上に任意に定めた直線である。y軸は、試料面上にあり、x軸と直交する直線である
。z軸は、入射点における試料面の法線である。角度(θ)は、断面図において、イオン
の入射方向とz軸との為す角度である。また、角度(φ)は、上面図において、イオンの
入射方向とx軸との為す角度である。
試料面に対して特定の角度(θ,φ)のみからイオンを入射させた場合、イオンの添加さ
れない領域が生じる場合がある。例えば、試料面上に、物体が設けられている場合、一部
にイオンの添加されない陰が生じる場合がある。したがって、イオンを複数の角度から入
射させることにより、試料面に生じる陰の影響を低減することが好ましい。
図14(A1)および図14(A2)に示すように、イオンを試料面に対し、第1の角度
(θ,φ)で入射させた後、第2の角度(θ,φ)で入射させればよい。ただし、第1の
角度(θ,φ)および第2の角度(θ,φ)はθ、φの少なくとも一方が異なる角度であ
る。
第1の角度(θ,φ)において、角度(θ)は、例えば、0°以上90°未満、好ましく
は30°以上88°以下、さらに好ましくは60°以上85°以下とする。第2の角度(
θ,φ)において、角度(θ)は、例えば、0°以上90°未満、好ましくは30°以上
88°以下、さらに好ましくは60°以上85°以下とする。第2の角度(θ,φ)にお
ける角度(φ)は、例えば、第1の角度(θ,φ)における角度(φ)よりも90°以上
270°以下、好ましくは135°以上225°以下大きい角度とする。ただし、ここで
示した第1の角度(θ,φ)および第2の角度(θ,φ)は一例であり、これに限定され
るものではない。
なお、イオンを入射させる角度は、第1の角度(θ,φ)、第2の角度(θ,φ)の2種
類に限定されない。例えば、第1乃至第n(nは2以上の自然数)の角度(θ,φ)で入
射させてもよい。第1乃至第nの角度(θ,φ)は、それぞれθ、φの少なくとも一方が
異なる角度を含む。
または、図14(B)に示すように、イオンを試料面に対し、第1の角度(θ,φ)で入
射させた後、角度(θ)が90°を経由して第2の角度(θ,φ)までθ方向にスキャン
(θスキャンともいう。)させればよい。ただし、イオンを入射させる角度(φ)は、1
種類に限定されず、第1乃至第n(nは2以上の自然数)の角度(φ)で入射させてもよ
い。イオンの入射角度をθスキャンさせることで、アスペクト比の高い(例えば、1以上
、2以上、5以上または10以上)開口部などであっても、深い領域まで確実にイオンを
添加することができる。そのため、隙間なく酸素ブロック領域を形成することができる。
第1の角度(θ,φ)において、角度(θ)は、例えば、0°以上90°未満、好ましく
は30°以上88°以下、さらに好ましくは60°以上85°以下とする。第2の角度(
θ,φ)において、角度(θ)は、例えば、0°以上90°未満、好ましくは30°以上
88°以下、さらに好ましくは60°以上85°以下とする。第1の角度(θ,φ)と第
2の角度(θ,φ)とは同じ角度(θ)であってもよい。
なお、θスキャンは、連続的にスキャンしてもよいが、例えば、0.5°、1°、2°、
3°、4°、5°、6°、10°、12°、18°、20°、24°または30°ステッ
プで段階的にスキャンしてもよい。
または、イオンは、図14(C)に示すように、試料面に対し、第1の角度(θ,φ)で
入射させた後、第2の角度(θ,φ)までφ方向にスキャン(φスキャンともいう。)さ
せればよい。ただし、イオンを入射させる角度(θ)は、1種類に限定されず、第1乃至
第n(nは2以上の自然数)の角度(θ)で入射させてもよい。
第1の角度(θ,φ)および第2の角度(θ,φ)において、角度(θ)は、例えば、0
°以上90°未満、好ましくは30°以上88°以下、さらに好ましくは60°以上85
°以下とする。第1の角度(θ,φ)と第2の角度(θ,φ)とは同じ角度(φ)であっ
てもよい。
なお、φスキャンは、連続的にスキャンしてもよいが、例えば、0.5°、1°、2°、
3°、4°、5°、6°、10°、12°、18°、20°、24°または30°ステッ
プで段階的にスキャンしてもよい。
なお、図示しないが、θスキャンおよびφスキャンを組み合わせて行っても構わない。
以上のようにして、不純物の添加された領域423を形成すればよい(図13(B)参照
。)。
図14に示した方法を用いることで、領域423は、導電体404と重ならない領域に加
え、一部が導電体404と重なる領域にも均一に形成することができる。したがって、ト
ランジスタの電気特性のばらつきを低減することができる。
次に、絶縁体408を成膜する。絶縁体408は、スパッタリング法、CVD法、MBE
法またはPLD法、ALD法などを用いて成膜すればよい。
次に、第4の加熱処理を行っても構わない。例えば、半導体406aとして、半導体40
6cよりも酸素透過性の高い半導体を選択する。即ち、半導体406cとして、半導体4
06aよりも酸素透過性の低い半導体を選択する。また、半導体406cとして、酸素を
ブロックする機能を有する半導体を選択する。または、例えば、半導体406aとして、
絶縁体412よりも酸素透過性の高い半導体を選択する。即ち、絶縁体412として、半
導体406aよりも酸素透過性の低い半導体を選択する。または、例えば、半導体406
aとして、絶縁体408よりも酸素透過性の高い半導体を選択する。即ち、絶縁体408
として、半導体406aよりも酸素透過性の低い半導体を選択する。換言すると、半導体
406aとして、酸素を透過する機能を有する半導体を選択する。また、絶縁体408と
して、酸素をブロックする機能を有する絶縁体を選択する。このとき、第4の加熱処理を
行うことで、半導体406aを介して、絶縁体402に含まれる過剰酸素が半導体406
bまで移動する。半導体406bは半導体406c、絶縁体412、絶縁体408のいず
れかで覆われているため、過剰酸素の外方拡散が起こりにくい。そのため、このタイミン
グで第4の加熱処理を行うことで、効率的に半導体406bの欠陥(酸素欠損)を低減す
ることができる。なお、第4の加熱処理は、絶縁体402中の過剰酸素(酸素)が半導体
406bまで拡散する温度で行えばよい。例えば、第1の加熱処理についての記載を参照
しても構わない。または、第4の加熱処理は、第1の加熱処理よりも20℃以上150℃
以下、好ましくは40℃以上100℃低い温度で行うと、絶縁体402から余分に過剰酸
素(酸素)が放出されないため好ましい。なお、絶縁体408が酸素をブロックする機能
を有する場合、第3の半導体406cまたは/および絶縁体412が酸素をブロックする
機能を有さなくても構わない。
なお、第1の加熱処理、第2の加熱処理、第3の加熱処理および第4の加熱処理の全てま
たは一部を行わなくても構わない。
次に、絶縁体418を成膜する。絶縁体418は、スパッタリング法、CVD法、MBE
法またはPLD法、ALD法などを用いて成膜すればよい。
以上のようにして、図1に示したトランジスタを作製することができる。
なお、ここでは、一例として図1に示したトランジスタの作製方法を示したが、これに限
定されるものではない。例えば、ここで示したトランジスタの作製方法の一部やその組み
合わせを、図1以外のトランジスタの作製方法として用いても構わない。
<過剰酸素の挙動について>
以下では、半導体装置内部における過剰酸素の挙動について図15を用いて説明する。
図15(A)は、基板50と、基板50上の絶縁体52と、絶縁体52上の島状の半導体
56と、絶縁体52および半導体56上の絶縁体68と、を有する試料の断面模式図であ
る。図15(A)に示す試料において、絶縁体52は過剰酸素(図中ではex-Oと表記
する。)を含む絶縁体とする。
絶縁体52としては、酸化物、酸化窒化物などを用いることができる。例えば、絶縁体5
2としては、酸化シリコンまたは酸化窒化シリコンなどを用いればよい。ただし、本明細
書において、酸化窒化物とは、窒素を0.1atomic%以上25atomic%未満
含む酸化物をいう。なお、窒化酸化物とは、酸素を0.1atomic%以上25ato
mic%未満含む窒化物をいう。
半導体56および絶縁体68については、冗長になるため、それぞれ前述の半導体406
bおよび絶縁体402についての記載を参照することとし、ここでの説明を省略する。
熱が加わると、絶縁体52中を過剰酸素が拡散する。例えば、絶縁体52中を拡散した過
剰酸素は、絶縁体52と半導体56との界面に達すると、半導体56中の酸素欠損を埋め
ることができる。半導体56中の酸素欠損が低減されることで、半導体56中の酸素欠損
に起因する欠陥準位密度を低くすることができる。
ところが、絶縁体52中を拡散する過剰酸素の全てが、絶縁体52と半導体56との界面
に達するわけではない。例えば、絶縁体52中を拡散した過剰酸素は、絶縁体68を介し
て外方拡散してしまう場合がある。または、例えば、絶縁体52中を拡散した過剰酸素は
、半導体装置を構成する配線などと反応し、配線抵抗を高めてしまう場合がある。
したがって、図15(A)に示す試料構造は、過剰酸素の活用が効率的ではない可能性が
ある。
図15(B)および図15(C)に、効率的に過剰酸素を活用することができる試料構造
の一例を示す。
図15(B)は、図15(A)に示した試料と類似の構造を有する試料である。ただし、
図15(B)に示す試料は、絶縁体52が、絶縁体68の近傍に領域53を有する点が異
なる。領域53については、前述した領域423に相当する。図15(B)に示す試料に
おいて、絶縁体52は過剰酸素を含む絶縁体とする。領域53は、絶縁体52の上面から
深さ1nm以上200nm以下、好ましくは5nm以上150nm以下、さらに好ましく
は10nm以上100nm以下に設けられる領域である。なお、領域53が、深さ方向に
おいて絶縁体52の全体に設けられていても構わない。
領域53は、酸素ブロック領域である。例えば、絶縁体52に、ヘリウム、ホウ素、炭素
、窒素、ネオン、マグネシウム、アルミニウム、シリコン、リン、アルゴン、カルシウム
、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ゲルマニウム、クリプトン、
ストロンチウム、イットリウム、ジルコニウム、ニオブ、モリブデン、キセノン、ランタ
ン、セリウム、ネオジム、ハフニウム、タンタルまたはタングステンから選択された一種
以上を添加すると、酸素ブロック領域である領域53を形成することができる場合がある
。上述の不純物は、金属を高抵抗化させる要因となりにくい。なお、絶縁体52に、ホウ
素またはリンを添加すると、酸素ブロック性の高い(酸素の拡散係数が小さい)、特に良
質な領域53を形成することができる。領域53は、例えば、絶縁体52中に、上述の不
純物を5×1019atoms/cm以上、好ましくは1×1020atoms/cm
以上、さらに好ましくは2×1020atoms/cm以上、より好ましくは5×1
20atoms/cm以上含む領域である。
図15(B)に示す試料における過剰酸素の挙動を以下に示す。
熱が加わると、絶縁体52中を過剰酸素が拡散する。絶縁体52中を拡散した過剰酸素は
、絶縁体52と半導体56との界面に達すると、半導体56中の酸素欠損を埋めることが
できる。
絶縁体52中を拡散する過剰酸素は、領域53を透過しにくいため、絶縁体52と半導体
56との界面に達する過剰酸素の割合は高くなる。したがって、効率的に半導体56中の
酸素欠損を埋めることができる。また、例えば、絶縁体52中を拡散した過剰酸素が、絶
縁体68を介して外方拡散することを抑制することができる。または、例えば、絶縁体5
2中を拡散した過剰酸素が、半導体装置を構成する導電体、低抵抗領域などと反応し、抵
抗を高めることを抑制することができる。
したがって、図15(B)に示す試料は、過剰酸素の効率的な活用が可能な構造であるこ
とがわかる。
同様に、図15(C)は、図15(A)に示した試料と類似の構造を有する試料である。
ただし、図15(C)に示す試料は、絶縁体68が領域69を有する点が異なる。図15
(C)に示す試料において、絶縁体68は過剰酸素を含む絶縁体とする。領域69は、絶
縁体68の上面から深さ1nm以上200nm以下、好ましくは5nm以上150nm以
下、さらに好ましくは10nm以上100nm以下に設けられる領域である。
領域69は、酸素ブロック領域である。例えば、絶縁体68に、ヘリウム、ホウ素、炭素
、窒素、ネオン、マグネシウム、アルミニウム、シリコン、リン、アルゴン、カルシウム
、チタン、バナジウム、クロム、マンガン、鉄、コバルト、ゲルマニウム、クリプトン、
ストロンチウム、イットリウム、ジルコニウム、ニオブ、モリブデン、キセノン、ランタ
ン、セリウム、ネオジム、ハフニウム、タンタルまたはタングステンから選択された一種
以上を添加すると、酸素ブロック領域である領域69を形成することができる場合がある
。なお、絶縁体68に、ホウ素またはリンを添加すると、酸素ブロック性の高い、特に良
質な領域69を形成することができる。領域69は、例えば、絶縁体68中に、上述の不
純物を5×1019atoms/cm以上、好ましくは1×1020atoms/cm
以上、さらに好ましくは2×1020atoms/cm以上、より好ましくは5×1
20atoms/cm以上含む領域である。
図15(C)に示す試料における過剰酸素の挙動を以下に示す。
熱が加わると、絶縁体68中を過剰酸素が拡散する。絶縁体68中を拡散した過剰酸素は
、絶縁体68と半導体56との界面に達すると、半導体56中の酸素欠損を埋めることが
できる。
絶縁体68中を拡散する過剰酸素は、領域69を透過しにくいため、絶縁体68と半導体
56との界面に達する過剰酸素の割合は高くなる。したがって、効率的に半導体56中の
酸素欠損を埋めることができる。また、例えば、絶縁体68中を拡散した過剰酸素が、外
方拡散することを抑制することができる。または、例えば、絶縁体68中を拡散した過剰
酸素が、半導体装置を構成する配線などと反応し、配線抵抗を高めることを抑制すること
ができる。
したがって、図15(C)に示す試料は、過剰酸素の効率的な活用が可能な構造であるこ
とがわかる。
図示しないが、図15(B)に示した試料構造と、図15(C)に示した試料構造を組み
合わせても構わない。例えば、絶縁体52および絶縁体68の両方が過剰酸素を含む絶縁
体であってもよい。または、例えば、絶縁体52が絶縁体68の近傍に領域53を有し、
かつ絶縁体68が領域69を有する構造であってもよい。
<半導体装置>
以下では、本発明の一態様に係る半導体装置を例示する。
以下では、本発明の一態様に係るトランジスタを利用した半導体装置の一例について説明
する。
図16(A)に本発明の一態様の半導体装置の断面図を示す。図16(A)に示す半導体
装置は、下部に第1の半導体を用いたトランジスタ2200を有し、上部に第2の半導体
を用いたトランジスタ2100を有している。図16(A)では、第2の半導体を用いた
トランジスタ2100として、図6で例示したトランジスタを適用した例を示している。
第1の半導体は、第2の半導体と異なるエネルギーギャップを持つ半導体を用いてもよい
。例えば、第1の半導体を酸化物半導体以外の半導体とし、第2の半導体を酸化物半導体
とする。第1の半導体として多結晶構造、単結晶構造などのシリコン、ゲルマニウム、な
どを用いてもよい。または、歪みシリコンなどの歪みを有する半導体を用いてもよい。ま
たは、第1の半導体として高電子移動度トランジスタ(HEMT:High Elect
ron Mobility Transistor)に適用可能なヒ化ガリウム、ヒ化ア
ルミニウムガリウム、ヒ化インジウムガリウム、窒化ガリウム、リン化インジウム、シリ
コンゲルマニウムなどを用いてもよい。これらの半導体を第1の半導体に用いることで、
高速動作をすることに適したトランジスタ2200とすることができる。また、酸化物半
導体を第2の半導体に用いることで、オフ電流の小さいトランジスタ2100とすること
ができる。
なお、トランジスタ2200は、nチャネル型、pチャネル型のどちらでもよいが、回路
によって適切なトランジスタを用いる。また、トランジスタ2100または/およびトラ
ンジスタ2200として、上述したトランジスタや図16(A)に示したトランジスタを
用いなくても構わない場合がある。
図16(A)に示す半導体装置は、絶縁体2201および絶縁体2207を介して、トラ
ンジスタ2200の上部にトランジスタ2100を有する。また、トランジスタ2200
とトランジスタ2100の間には、配線として機能する複数の導電体2202が配置され
ている。また各種絶縁体に埋め込まれた複数の導電体2203により、上層と下層にそれ
ぞれ配置された配線や電極が電気的に接続されている。また、該半導体装置は、トランジ
スタ2100上の絶縁体2204と、絶縁体2204上の導電体2205と、トランジス
タ2100のソース電極およびドレイン電極と同一層に(同一工程を経て)形成された導
電体2206と、を有する。
絶縁体2204は、例えば、ホウ素、炭素、窒素、酸素、フッ素、マグネシウム、アルミ
ニウム、シリコン、リン、塩素、アルゴン、ガリウム、ゲルマニウム、イットリウム、ジ
ルコニウム、ランタン、ネオジム、ハフニウムまたはタンタルを含む絶縁体を、単層で、
または積層で用いればよい。なお、絶縁体2204が、窒化酸化シリコン、窒化シリコン
などの窒素を含む絶縁体を含んでも構わない。
または、絶縁体2204は、樹脂を用いてもよい。例えば、ポリイミド、ポリアミド、ア
クリル、シリコーンなどを含む樹脂を用いればよい。樹脂を用いることで、絶縁体220
4の上面を平坦化処理しなくてもよい場合がある。また、樹脂は短い時間で厚い膜を成膜
することができるため、生産性を高めることができる。
複数のトランジスタを積層した構造とすることにより、高密度に複数の回路を配置するこ
とができる。
ここで、トランジスタ2200に用いる第1の半導体に半導体基板2211に含まれる単
結晶シリコンを用いた場合、トランジスタ2200の第1の半導体の近傍の絶縁体の水素
濃度が高いことが好ましい。該水素により、シリコンのダングリングボンドを終端させる
ことで、トランジスタ2200の信頼性を向上させることができる。一方、トランジスタ
2100に用いる第2の半導体に酸化物半導体を用いた場合、トランジスタ2100の第
2の半導体の近傍の絶縁体の水素濃度が低いことが好ましい。該水素は、酸化物半導体中
にキャリアを生成する要因の一つとなるため、トランジスタ2100の信頼性を低下させ
る要因となる場合がある。したがって、単結晶シリコンを用いたトランジスタ2200、
および酸化物半導体を用いたトランジスタ2100を積層する場合、これらの間に水素を
ブロックする機能を有する絶縁体2207を配置することは両トランジスタの信頼性を高
めるために有効である。
絶縁体2207としては、例えば酸化アルミニウム、酸化窒化アルミニウム、酸化ガリウ
ム、酸化窒化ガリウム、酸化イットリウム、酸化窒化イットリウム、酸化ハフニウム、酸
化窒化ハフニウム、イットリア安定化ジルコニア(YSZ)などを含む絶縁体を、単層で
、または積層で用いればよい。
また、酸化物半導体を用いたトランジスタ2100を覆うように、トランジスタ2100
上に水素をブロックする機能を有する絶縁体を形成することが好ましい。絶縁体としては
、絶縁体2207と同様の絶縁体を用いることができ、特に酸化アルミニウムを適用する
ことが好ましい。酸化アルミニウム膜は、水素、水分などの不純物および酸素の双方に対
して膜を透過させない遮断効果が高い。したがって、トランジスタ2100を覆う絶縁体
2208として酸化アルミニウム膜を用いることで、トランジスタ2100に含まれる酸
化物半導体からの酸素の脱離を防止するとともに、酸化物半導体への水および水素の混入
を防止することができる。
なお、トランジスタ2200は、プレーナ型のトランジスタだけでなく、様々なタイプの
トランジスタとすることができる。例えば、FIN(フィン)型のトランジスタなどとす
ることができる。その場合の断面図の例を、図16(B)に示す。半導体基板2211の
上に、絶縁体2212が配置されている。半導体基板2211は、先端の細い凸部(フィ
ンともいう。)を有する。なお、凸部は、先端が細くなくてもよく、例えば、略直方体の
凸部であってもよいし、先端が太い凸部であってもよい。半導体基板2211の凸部の上
には、ゲート絶縁体2214が配置され、その上には、ゲート電極2213が配置されて
いる。半導体基板2211には、ソース領域およびドレイン領域2215が形成されてい
る。なお、ここでは、半導体基板2211が、凸部を有する例を示したが、本発明の一態
様に係る半導体装置は、これに限定されない。例えば、SOI基板を加工して、凸型の半
導体領域を形成しても構わない。
上記回路において、トランジスタ2100やトランジスタ2200の電極の接続を異なら
せることにより、様々な回路を構成することができる。以下では、本発明の一態様の半導
体装置を用いることにより実現できる回路構成の例を説明する。
図17(A)に示す回路図は、pチャネル型のトランジスタ2200とnチャネル型のト
ランジスタ2100を直列に接続し、かつそれぞれのゲートを接続した、いわゆるCMO
Sインバータの構成を示している。
また図17(B)に示す回路図は、トランジスタ2100とトランジスタ2200のそれ
ぞれのソースとドレインを接続した構成を示している。このような構成とすることで、い
わゆるCMOSアナログスイッチとして機能させることができる。
本発明の一態様に係るトランジスタを用いた、電力が供給されない状況でも記憶内容の保
持が可能で、かつ、書き込み回数にも制限が無い半導体装置(記憶装置)の一例を図18
に示す。
図18(A)に示す半導体装置は、第1の半導体を用いたトランジスタ3200と第2の
半導体を用いたトランジスタ3300、および容量素子3400を有している。なお、ト
ランジスタ3300としては、上述したトランジスタを用いることができる。
トランジスタ3300は、酸化物半導体を用いたトランジスタである。トランジスタ33
00のオフ電流が小さいことにより、半導体装置の特定のノードに長期にわたり記憶内容
を保持することが可能である。つまり、リフレッシュ動作を必要としない、またはリフレ
ッシュ動作の頻度が極めて少なくすることが可能となるため、消費電力の低い半導体装置
となる。
図18(A)において、第1の配線3001はトランジスタ3200のソースと電気的に
接続され、第2の配線3002はトランジスタ3200のドレインと電気的に接続される
。また、第3の配線3003はトランジスタ3300のソース、ドレインの一方と電気的
に接続され、第4の配線3004はトランジスタ3300のゲートと電気的に接続されて
いる。そして、トランジスタ3200のゲート、およびトランジスタ3300のソース、
ドレインの他方は、容量素子3400の電極の一方と電気的に接続され、第5の配線30
05は容量素子3400の電極の他方と電気的に接続されている。
図18(A)に示す半導体装置は、トランジスタ3200のゲートの電位が保持可能とい
う特性を有することで、以下に示すように、情報の書き込み、保持、読み出しが可能であ
る。
情報の書き込みおよび保持について説明する。まず、第4の配線3004の電位を、トラ
ンジスタ3300が導通状態となる電位にして、トランジスタ3300を導通状態とする
。これにより、第3の配線3003の電位が、トランジスタ3200のゲート、および容
量素子3400の電極の一方と電気的に接続するノードFGに与えられる。すなわち、ト
ランジスタ3200のゲートには、所定の電荷が与えられる(書き込み)。ここでは、異
なる二つの電位レベルを与える電荷(以下Lowレベル電荷、Highレベル電荷という
。)のどちらかが与えられるものとする。その後、第4の配線3004の電位を、トラン
ジスタ3300が非導通状態となる電位にして、トランジスタ3300を非導通状態とす
ることにより、ノードFGに電荷が保持される(保持)。
トランジスタ3300のオフ電流は極めて小さいため、ノードFGの電荷は長期間にわた
って保持される。
次に情報の読み出しについて説明する。第1の配線3001に所定の電位(定電位)を与
えた状態で、第5の配線3005に適切な電位(読み出し電位)を与えると、第2の配線
3002は、ノードFGに保持された電荷量に応じた電位をとる。これは、トランジスタ
3200をnチャネル型とすると、トランジスタ3200のゲートにHighレベル電荷
が与えられている場合の見かけ上のしきい値電圧Vth_Hは、トランジスタ3200の
ゲートにLowレベル電荷が与えられている場合の見かけ上のしきい値電圧Vth_L
り低くなるためである。ここで、見かけ上のしきい値電圧とは、トランジスタ3200を
「導通状態」とするために必要な第5の配線3005の電位をいうものとする。したがっ
て、第5の配線3005の電位をVth_HとVth_Lの間の電位Vとすることによ
り、ノードFGに与えられた電荷を判別できる。例えば、書き込みにおいて、ノードFG
にHighレベル電荷が与えられていた場合には、第5の配線3005の電位がV(>
th_H)となれば、トランジスタ3200は「導通状態」となる。一方、ノードFG
にLowレベル電荷が与えられていた場合には、第5の配線3005の電位がV(<V
th_L)となっても、トランジスタ3200は「非導通状態」のままである。このため
、第2の配線3002の電位を判別することで、ノードFGに保持されている情報を読み
出すことができる。
なお、メモリセルをアレイ状に配置する場合、読み出し時には、所望のメモリセルの情報
を読み出さなくてはならない。ほかのメモリセルの情報を読み出さないためには、ノード
FGに与えられた電荷によらずトランジスタ3200が「非導通状態」となるような電位
、つまり、Vth_Hより低い電位を第5の配線3005に与えればよい。または、ノー
ドFGに与えられた電荷によらずトランジスタ3200が「導通状態」となるような電位
、つまり、Vth_Lより高い電位を第5の配線3005に与えればよい。
図18(B)に示す半導体装置は、トランジスタ3200を有さない点で図18(A)に
示した半導体装置と異なる。この場合も図18(A)に示した半導体装置と同様の動作に
より情報の書き込みおよび保持動作が可能である。
図18(B)に示す半導体装置における、情報の読み出しについて説明する。トランジス
タ3300が導通状態になると、浮遊状態である第3の配線3003と容量素子3400
とが導通し、第3の配線3003と容量素子3400の間で電荷が再分配される。その結
果、第3の配線3003の電位が変化する。第3の配線3003の電位の変化量は、容量
素子3400の電極の一方の電位(または容量素子3400に蓄積された電荷)によって
、異なる値をとる。
例えば、容量素子3400の電極の一方の電位をV、容量素子3400の容量をC、第3
の配線3003が有する容量成分をCB、電荷が再分配される前の第3の配線3003の
電位をVB0とすると、電荷が再分配された後の第3の配線3003の電位は、(CB×
VB0+C×V)/(CB+C)となる。したがって、メモリセルの状態として、容量素
子3400の電極の一方の電位がV1とV0(V1>V0)の2つの状態をとるとすると
、電位V1を保持している場合の第3の配線3003の電位(=(CB×VB0+C×V
1)/(CB+C))は、電位V0を保持している場合の第3の配線3003の電位(=
(CB×VB0+C×V0)/(CB+C))よりも高くなることがわかる。
そして、第3の配線3003の電位を所定の電位と比較することで、情報を読み出すこと
ができる。
この場合、メモリセルを駆動させるための駆動回路に上記第1の半導体が適用されたトラ
ンジスタを用い、トランジスタ3300として第2の半導体が適用されたトランジスタを
駆動回路上に積層して配置する構成とすればよい。
以上に示した半導体装置は、酸化物半導体を用いたオフ電流の極めて小さいトランジスタ
を適用することで、長期にわたって記憶内容を保持することが可能となる。つまり、リフ
レッシュ動作が不要となるか、またはリフレッシュ動作の頻度を極めて低くすることが可
能となるため、消費電力の低い半導体装置を実現することができる。また、電力の供給が
ない場合(ただし、電位は固定されていることが好ましい)であっても、長期にわたって
記憶内容を保持することが可能である。
また、該半導体装置は、情報の書き込みに高い電圧が不要であるため、素子の劣化が起こ
りにくい。例えば、従来の不揮発性メモリのように、フローティングゲートへの電子の注
入や、フローティングゲートからの電子の引き抜きを行わないため、絶縁体の劣化といっ
た問題が生じない。すなわち、本発明の一態様に係る半導体装置は、従来の不揮発性メモ
リで問題となっている書き換え可能回数に制限はなく、信頼性が飛躍的に向上した半導体
装置である。さらに、トランジスタの導通状態、非導通状態によって、情報の書き込みが
行われるため、高速な動作が可能となる。
<RFタグ>
以下では、上述したトランジスタ、または記憶装置を含むRFタグについて、図19を用
いて説明する。
本発明の一態様に係るRFタグは、内部に記憶回路を有し、記憶回路に情報を記憶し、非
接触手段、例えば無線通信を用いて外部と情報の授受を行うものである。このような特徴
から、RFタグは、物品などの個体情報を読み取ることにより物品の識別を行う個体認証
システムなどに用いることが可能である。なお、これらの用途に用いるためには高い信頼
性が要求される。
RFタグの構成について図19を用いて説明する。図19は、RFタグの構成例を示すブ
ロック図である。
図19に示すようにRFタグ800は、通信器801(質問器、リーダ/ライタなどとも
いう)に接続されたアンテナ802から送信される無線信号803を受信するアンテナ8
04を有する。またRFタグ800は、整流回路805、定電圧回路806、復調回路8
07、変調回路808、論理回路809、記憶回路810、ROM811を有している。
なお、復調回路807に含まれる整流作用を示すトランジスタの半導体には、逆方向電流
を十分に抑制することが可能な、例えば、酸化物半導体を用いてもよい。これにより、逆
方向電流に起因する整流作用の低下を抑制し、復調回路の出力が飽和することを防止でき
る。つまり、復調回路の入力に対する復調回路の出力を線形に近づけることができる。な
お、データの伝送形式は、一対のコイルを対向配置して相互誘導によって交信を行う電磁
結合方式、誘導電磁界によって交信する電磁誘導方式、電波を利用して交信する電波方式
の3つに大別される。RFタグ800は、そのいずれの方式に用いることも可能である。
次に各回路の構成について説明する。アンテナ804は、通信器801に接続されたアン
テナ802との間で無線信号803の送受信を行うためのものである。また、整流回路8
05は、アンテナ804で無線信号を受信することにより生成される入力交流信号を整流
、例えば、半波2倍圧整流し、後段の容量素子により、整流された信号を平滑化すること
で入力電位を生成するための回路である。なお、整流回路805の入力側または出力側に
は、リミッタ回路を有してもよい。リミッタ回路とは、入力交流信号の振幅が大きく、内
部生成電圧が大きい場合に、ある電力以上の電力を後段の回路に入力しないように制御す
るための回路である。
定電圧回路806は、入力電位から安定した電源電圧を生成し、各回路に供給するための
回路である。なお、定電圧回路806は、内部にリセット信号生成回路を有していてもよ
い。リセット信号生成回路は、安定した電源電圧の立ち上がりを利用して、論理回路80
9のリセット信号を生成するための回路である。
復調回路807は、入力交流信号を包絡線検出することにより復調し、復調信号を生成す
るための回路である。また、変調回路808は、アンテナ804より出力するデータに応
じて変調をおこなうための回路である。
論理回路809は復調信号を解析し、処理を行うための回路である。記憶回路810は、
入力された情報を保持する回路であり、ロウデコーダ、カラムデコーダ、記憶領域などを
有する。また、ROM811は、固有番号(ID)などを格納し、処理に応じて出力を行
うための回路である。
なお、上述の各回路は、適宜、取捨することができる。
ここで、上述した記憶装置を、記憶回路810に用いることができる。本発明の一態様に
係る記憶装置は、電源が遮断された状態であっても情報を保持できるため、RFタグに好
適である。さらに本発明の一態様に係る記憶装置は、データの書き込みに必要な電力(電
圧)が従来の不揮発性メモリに比べて低いため、データの読み出し時と書込み時の最大通
信距離の差を生じさせないことも可能である。さらに、データの書き込み時に電力が不足
し、誤動作または誤書込みが生じることを抑制することができる。
また、本発明の一態様に係る記憶装置は、不揮発性メモリとして用いることが可能である
ため、ROM811に適用することもできる。その場合には、生産者がROM811にデ
ータを書き込むためのコマンドを別途用意し、ユーザが自由に書き換えできないようにし
ておくことが好ましい。生産者が出荷前に固有番号を書込んだのちに製品を出荷すること
で、作製したRFタグすべてについて固有番号を付与するのではなく、出荷する良品にの
み固有番号を割り当てることが可能となり、出荷後の製品の固有番号が不連続になること
がなく出荷後の製品に対応した顧客管理が容易となる。
<RFタグの使用例>
以下では、本発明の一態様に係るRFタグの使用例について図20を用いて説明する。R
Fタグの用途は広範にわたるが、例えば、紙幣、硬貨、有価証券類、無記名債券類、証書
類(運転免許証や住民票等、図20(A)参照。)、包装用容器類(包装紙やボトル等、
図20(C)参照。)、記録媒体(DVDやビデオテープ等、図20(B)参照。)、乗
り物類(自転車等、図20(D)参照。)、身の回り品(鞄や眼鏡等)、食品類、植物類
、動物類、人体、衣類、生活用品類、薬品や薬剤を含む医療品、または電子機器(液晶表
示装置、EL表示装置、テレビジョン装置、または携帯電話)等の物品、もしくは各物品
に取り付ける荷札(図20(E)および図20(F)参照。)等に設けて使用することが
できる。
本発明の一態様に係るRFタグ4000は、表面に貼る、または埋め込むことにより、物
品に固定される。例えば、本であれば紙に埋め込み、有機樹脂からなるパッケージであれ
ば当該有機樹脂の内部に埋め込み、各物品に固定される。本発明の一態様に係るRFタグ
4000は、小型、薄型、軽量を実現するため、物品に固定した後もその物品自体のデザ
イン性を損なうことがない。また、紙幣、硬貨、有価証券類、無記名債券類、または証書
類等に本発明の一態様に係るRFタグ4000により、認証機能を付与することができ、
この認証機能を活用すれば、偽造を防止することができる。また、包装用容器類、記録媒
体、身の回り品、食品類、衣類、生活用品類、または電子機器等に本発明の一態様に係る
RFタグ4000を取り付けることにより、検品システム等のシステムの効率化を図るこ
とができる。また、乗り物類であっても、本発明の一態様に係るRFタグ4000を取り
付けることにより、盗難などに対するセキュリティ性を高めることができる。
以上のように、本発明の一態様に係るRFタグは、上述したような各用途に用いることが
できる。
<CPU>
以下では、上述したトランジスタや上述した記憶装置などの半導体装置を含むCPUにつ
いて説明する。
図21は、上述したトランジスタを一部に用いたCPUの一例の構成を示すブロック図で
ある。
図21に示すCPUは、基板1190上に、ALU1191(ALU:Arithmet
ic logic unit、演算回路)、ALUコントローラ1192、インストラク
ションデコーダ1193、インタラプトコントローラ1194、タイミングコントローラ
1195、レジスタ1196、レジスタコントローラ1197、バスインターフェース1
198(Bus I/F)、書き換え可能なROM1199、およびROMインターフェ
ース1189(ROM I/F)を有している。基板1190は、半導体基板、SOI基
板、ガラス基板などを用いる。ROM1199およびROMインターフェース1189は
、別チップに設けてもよい。もちろん、図21に示すCPUは、その構成を簡略化して示
した一例にすぎず、実際のCPUはその用途によって多種多様な構成を有している。例え
ば、図21に示すCPUまたは演算回路を含む構成を一つのコアとし、当該コアを複数含
み、それぞれのコアが並列で動作するような構成としてもよい。また、CPUが内部演算
回路やデータバスで扱えるビット数は、例えば8ビット、16ビット、32ビット、64
ビットなどとすることができる。
バスインターフェース1198を介してCPUに入力された命令は、インストラクション
デコーダ1193に入力され、デコードされた後、ALUコントローラ1192、インタ
ラプトコントローラ1194、レジスタコントローラ1197、タイミングコントローラ
1195に入力される。
ALUコントローラ1192、インタラプトコントローラ1194、レジスタコントロー
ラ1197、タイミングコントローラ1195は、デコードされた命令に基づき、各種制
御を行なう。具体的にALUコントローラ1192は、ALU1191の動作を制御する
ための信号を生成する。また、インタラプトコントローラ1194は、CPUのプログラ
ム実行中に、外部の入出力装置や、周辺回路からの割り込み要求を、その優先度やマスク
状態から判断し、処理する。レジスタコントローラ1197は、レジスタ1196のアド
レスを生成し、CPUの状態に応じてレジスタ1196の読み出しや書き込みを行なう。
また、タイミングコントローラ1195は、ALU1191、ALUコントローラ119
2、インストラクションデコーダ1193、インタラプトコントローラ1194、および
レジスタコントローラ1197の動作のタイミングを制御する信号を生成する。例えばタ
イミングコントローラ1195は、基準クロック信号CLK1を元に、内部クロック信号
CLK2を生成する内部クロック生成部を備えており、内部クロック信号CLK2を上記
各種回路に供給する。
図21に示すCPUでは、レジスタ1196に、メモリセルが設けられている。レジスタ
1196のメモリセルとして、上述したトランジスタや記憶装置などを用いることができ
る。
図21に示すCPUにおいて、レジスタコントローラ1197は、ALU1191からの
指示に従い、レジスタ1196における保持動作の選択を行う。すなわち、レジスタ11
96が有するメモリセルにおいて、フリップフロップによるデータの保持を行うか、容量
素子によるデータの保持を行うかを、選択する。フリップフロップによるデータの保持が
選択されている場合、レジスタ1196内のメモリセルへの、電源電圧の供給が行われる
。容量素子におけるデータの保持が選択されている場合、容量素子へのデータの書き換え
が行われ、レジスタ1196内のメモリセルへの電源電圧の供給を停止することができる
図22は、レジスタ1196として用いることのできる記憶素子1200の回路図の一例
である。記憶素子1200は、電源遮断で記憶データが揮発する回路1201と、電源遮
断で記憶データが揮発しない回路1202と、スイッチ1203と、スイッチ1204と
、論理素子1206と、容量素子1207と、選択機能を有する回路1220と、を有す
る。回路1202は、容量素子1208と、トランジスタ1209と、トランジスタ12
10と、を有する。なお、記憶素子1200は、必要に応じて、ダイオード、抵抗素子、
インダクタなどのその他の素子をさらに有していてもよい。
ここで、回路1202には、上述した記憶装置を用いることができる。記憶素子1200
への電源電圧の供給が停止した際、回路1202のトランジスタ1209のゲートにはG
ND(0V)、またはトランジスタ1209がオフする電位が入力され続ける構成とする
。例えば、トランジスタ1209のゲートが抵抗等の負荷を介して接地される構成とする
スイッチ1203は、一導電型(例えば、nチャネル型)のトランジスタ1213を用い
て構成され、スイッチ1204は、一導電型とは逆の導電型(例えば、pチャネル型)の
トランジスタ1214を用いて構成した例を示す。ここで、スイッチ1203の第1の端
子はトランジスタ1213のソースとドレインの一方に対応し、スイッチ1203の第2
の端子はトランジスタ1213のソースとドレインの他方に対応し、スイッチ1203は
トランジスタ1213のゲートに入力される制御信号RDによって、第1の端子と第2の
端子の間の導通または非導通(つまり、トランジスタ1213の導通状態または非導通状
態)が選択される。スイッチ1204の第1の端子はトランジスタ1214のソースとド
レインの一方に対応し、スイッチ1204の第2の端子はトランジスタ1214のソース
とドレインの他方に対応し、スイッチ1204はトランジスタ1214のゲートに入力さ
れる制御信号RDによって、第1の端子と第2の端子の間の導通または非導通(つまり、
トランジスタ1214の導通状態または非導通状態)が選択される。
トランジスタ1209のソースとドレインの一方は、容量素子1208の一対の電極のう
ちの一方、およびトランジスタ1210のゲートと電気的に接続される。ここで、接続部
分をノードM2とする。トランジスタ1210のソースとドレインの一方は、低電源電位
を供給することのできる配線(例えばGND線)に電気的に接続され、他方は、スイッチ
1203の第1の端子(トランジスタ1213のソースとドレインの一方)と電気的に接
続される。スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの
他方)はスイッチ1204の第1の端子(トランジスタ1214のソースとドレインの一
方)と電気的に接続される。スイッチ1204の第2の端子(トランジスタ1214のソ
ースとドレインの他方)は電源電位VDDを供給することのできる配線と電気的に接続さ
れる。スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方
)と、スイッチ1204の第1の端子(トランジスタ1214のソースとドレインの一方
)と、論理素子1206の入力端子と、容量素子1207の一対の電極のうちの一方と、
は電気的に接続される。ここで、接続部分をノードM1とする。容量素子1207の一対
の電極のうちの他方は、一定の電位が入力される構成とすることができる。例えば、低電
源電位(GND等)または高電源電位(VDD等)が入力される構成とすることができる
。容量素子1207の一対の電極のうちの他方は、低電源電位を供給することのできる配
線(例えばGND線)と電気的に接続される。容量素子1208の一対の電極のうちの他
方は、一定の電位が入力される構成とすることができる。例えば、低電源電位(GND等
)または高電源電位(VDD等)が入力される構成とすることができる。容量素子120
8の一対の電極のうちの他方は、低電源電位を供給することのできる配線(例えばGND
線)と電気的に接続される。
なお、容量素子1207および容量素子1208は、トランジスタや配線の寄生容量等を
積極的に利用することによって省略することも可能である。
トランジスタ1209のゲートには、制御信号WEが入力される。スイッチ1203およ
びスイッチ1204は、制御信号WEとは異なる制御信号RDによって第1の端子と第2
の端子の間の導通状態または非導通状態を選択され、一方のスイッチの第1の端子と第2
の端子の間が導通状態のとき他方のスイッチの第1の端子と第2の端子の間は非導通状態
となる。
トランジスタ1209のソースとドレインの他方には、回路1201に保持されたデータ
に対応する信号が入力される。図22では、回路1201から出力された信号が、トラン
ジスタ1209のソースとドレインの他方に入力される例を示した。スイッチ1203の
第2の端子(トランジスタ1213のソースとドレインの他方)から出力される信号は、
論理素子1206によってその論理値が反転された反転信号となり、回路1220を介し
て回路1201に入力される。
なお、図22では、スイッチ1203の第2の端子(トランジスタ1213のソースとド
レインの他方)から出力される信号は、論理素子1206および回路1220を介して回
路1201に入力する例を示したがこれに限定されない。スイッチ1203の第2の端子
(トランジスタ1213のソースとドレインの他方)から出力される信号が、論理値を反
転させられることなく、回路1201に入力されてもよい。例えば、回路1201内に、
入力端子から入力された信号の論理値が反転した信号が保持されるノードが存在する場合
に、スイッチ1203の第2の端子(トランジスタ1213のソースとドレインの他方)
から出力される信号を当該ノードに入力することができる。
また、図22において、記憶素子1200に用いられるトランジスタのうち、トランジス
タ1209以外のトランジスタは、酸化物半導体以外の半導体でなる膜または基板119
0にチャネルが形成されるトランジスタとすることができる。例えば、シリコンまたはシ
リコン基板にチャネルが形成されるトランジスタとすることができる。また、記憶素子1
200に用いられるトランジスタ全てを、チャネルが酸化物半導体で形成されるトランジ
スタとすることもできる。または、記憶素子1200は、トランジスタ1209以外にも
、チャネルが酸化物半導体で形成されるトランジスタを含んでいてもよく、残りのトラン
ジスタは酸化物半導体以外の半導体でなる層または基板1190にチャネルが形成される
トランジスタとすることもできる。
図22における回路1201には、例えばフリップフロップ回路を用いることができる。
また、論理素子1206としては、例えばインバータやクロックドインバータ等を用いる
ことができる。
本発明の一態様に係る半導体装置では、記憶素子1200に電源電圧が供給されない間は
、回路1201に記憶されていたデータを、回路1202に設けられた容量素子1208
によって保持することができる。
また、酸化物半導体にチャネルが形成されるトランジスタはオフ電流が極めて小さい。例
えば、酸化物半導体にチャネルが形成されるトランジスタのオフ電流は、結晶性を有する
シリコンにチャネルが形成されるトランジスタのオフ電流に比べて著しく小さい。そのた
め、当該トランジスタをトランジスタ1209として用いることによって、記憶素子12
00に電源電圧が供給されない間も容量素子1208に保持された信号は長期間にわたり
保たれる。こうして、記憶素子1200は電源電圧の供給が停止した間も記憶内容(デー
タ)を保持することが可能である。
また、スイッチ1203およびスイッチ1204を設けることによって、プリチャージ動
作を行うことを特徴とする記憶素子であるため、電源電圧供給再開後に、回路1201が
元のデータを保持しなおすまでの時間を短くすることができる。
また、回路1202において、容量素子1208によって保持された信号はトランジスタ
1210のゲートに入力される。そのため、記憶素子1200への電源電圧の供給が再開
された後、容量素子1208によって保持された信号を、トランジスタ1210の状態(
導通状態、または非導通状態)に変換して、回路1202から読み出すことができる。そ
れ故、容量素子1208に保持された信号に対応する電位が多少変動していても、元の信
号を正確に読み出すことが可能である。
このような記憶素子1200を、プロセッサが有するレジスタやキャッシュメモリなどの
記憶装置に用いることで、電源電圧の供給停止による記憶装置内のデータの消失を防ぐこ
とができる。また、電源電圧の供給を再開した後、短時間で電源供給停止前の状態に復帰
することができる。よって、プロセッサ全体、もしくはプロセッサを構成する一つ、また
は複数の論理回路において、短い時間でも電源停止を行うことができるため、消費電力を
抑えることができる。
記憶素子1200をCPUに用いる例として説明したが、記憶素子1200は、DSP(
Digital Signal Processor)、カスタムLSI、PLD(Pr
ogrammable Logic Device)等のLSI、RF-ID(Radi
o Frequency Identification)にも応用可能である。
<表示装置>
以下では、本発明の一態様に係る表示装置の構成例について説明する。
[構成例]
図23(A)には、本発明の一態様に係る表示装置の上面図を示す。また、図23(B)
には、本発明の一態様に係る表示装置の画素に液晶素子を用いた場合における画素回路を
示す。また、図23(C)には、本発明の一態様に係る表示装置の画素に有機EL素子を
用いた場合における画素回路を示す。
画素に用いるトランジスタは、上述したトランジスタを用いることができる。ここでは、
nチャネル型のトランジスタを用いる例を示す。なお、画素に用いたトランジスタと、同
一工程を経て作製したトランジスタを駆動回路として用いても構わない。このように、画
素や駆動回路に上述したトランジスタを用いることにより、表示品位が高い、または/お
よび信頼性の高い表示装置となる。
アクティブマトリクス型表示装置の上面図の一例を図23(A)に示す。表示装置の基板
5000上には、画素部5001、第1の走査線駆動回路5002、第2の走査線駆動回
路5003、信号線駆動回路5004が配置される。画素部5001は、複数の信号線に
よって信号線駆動回路5004と電気的に接続され、複数の走査線によって第1の走査線
駆動回路5002、および第2の走査線駆動回路5003と電気的に接続される。なお、
走査線と信号線とによって区切られる領域には、それぞれ表示素子を有する画素が配置さ
れている。また、表示装置の基板5000は、FPC(Flexible Printe
d Circuit)等の接続部を介して、タイミング制御回路(コントローラ、制御I
Cともいう)に電気的に接続されている。
第1の走査線駆動回路5002、第2の走査線駆動回路5003および信号線駆動回路5
004は、画素部5001と同じ基板5000上に形成される。そのため、駆動回路を別
途作製する場合と比べて、表示装置を作製するコストを低減することができる。また、駆
動回路を別途作製した場合、配線間の接続数が増える。したがって、同じ基板5000上
に駆動回路を設けることで、配線間の接続数を減らすことができ、信頼性の向上、または
/および歩留まりの向上を図ることができる。
〔液晶表示装置〕
また、画素の回路構成の一例を図23(B)に示す。ここでは、VA型液晶表示装置の画
素などに適用することができる画素回路を示す。
この画素回路は、一つの画素に複数の画素電極を有する構成に適用できる。それぞれの画
素電極は異なるトランジスタに接続され、各トランジスタは異なるゲート信号で駆動でき
るように構成されている。これにより、マルチドメイン設計された画素の個々の画素電極
に印加する信号を、独立して制御できる。
トランジスタ5016のゲート配線5012と、トランジスタ5017のゲート配線50
13には、異なるゲート信号を与えることができるように分離されている。一方、データ
線として機能するソース電極またはドレイン電極5014は、トランジスタ5016とト
ランジスタ5017で共通に用いられている。トランジスタ5016とトランジスタ50
17は上述したトランジスタを適宜用いることができる。これにより、表示品位が高い、
または/および信頼性の高い液晶表示装置を提供することができる。
トランジスタ5016と電気的に接続する第1の画素電極と、トランジスタ5017と電
気的に接続する第2の画素電極の形状について説明する。第1の画素電極と第2の画素電
極の形状は、スリットによって分離されている。第1の画素電極はV字型に広がる形状を
有し、第2の画素電極は第1の画素電極の外側を囲むように形成される。
トランジスタ5016のゲート電極はゲート配線5012と電気的に接続され、トランジ
スタ5017のゲート電極はゲート配線5013と電気的に接続されている。ゲート配線
5012とゲート配線5013に異なるゲート信号を与えてトランジスタ5016とトラ
ンジスタ5017の動作タイミングを異ならせ、液晶の配向を制御することができる。
また、容量配線5010と、誘電体として機能するゲート絶縁体と、第1の画素電極また
は第2の画素電極と電気的に接続する容量電極とで容量素子を形成してもよい。
マルチドメイン構造は、一画素に第1の液晶素子5018と第2の液晶素子5019を備
える。第1の液晶素子5018は第1の画素電極と対向電極とその間の液晶層とで構成さ
れ、第2の液晶素子5019は第2の画素電極と対向電極とその間の液晶層とで構成され
る。
なお、本発明の一態様に係る表示装置は、図23(B)に示す画素回路に限定されない。
例えば、図23(B)に示す画素回路に新たにスイッチ、抵抗素子、容量素子、トランジ
スタ、センサ、または論理回路などを追加してもよい。
〔有機EL表示装置〕
画素の回路構成の他の一例を図23(C)に示す。ここでは、有機EL素子を用いた表示
装置の画素構造を示す。
有機EL素子は、発光素子に電圧を印加することにより、有機EL素子が有する一対の電
極の一方から電子が、他方から正孔がそれぞれ発光性の有機化合物を含む層に注入され、
電流が流れる。そして、電子および正孔が再結合することにより、発光性の有機化合物が
励起状態を形成し、その励起状態が基底状態に戻る際に発光する。このようなメカニズム
から、このような発光素子は、電流励起型の発光素子と呼ばれる。
図23(C)は、画素回路の一例を示す図である。ここでは1つの画素にnチャネル型の
トランジスタを2つ用いる例を示す。なお、nチャネル型のトランジスタには、上述した
トランジスタを用いることができる。また、当該画素回路は、デジタル時間階調駆動を適
用することができる。
適用可能な画素回路の構成およびデジタル時間階調駆動を適用した場合の画素の動作につ
いて説明する。
画素5020は、スイッチング用トランジスタ5021、駆動用トランジスタ5022、
発光素子5024および容量素子5023を有する。スイッチング用トランジスタ502
1は、ゲート電極が走査線5026に接続され、第1電極(ソース電極、ドレイン電極の
一方)が信号線5025に接続され、第2電極(ソース電極、ドレイン電極の他方)が駆
動用トランジスタ5022のゲート電極に接続されている。駆動用トランジスタ5022
は、ゲート電極が容量素子5023を介して電源線5027に接続され、第1電極が電源
線5027に接続され、第2電極が発光素子5024の第1電極(画素電極)に接続され
ている。発光素子5024の第2電極は共通電極5028に相当する。共通電極5028
は、同一基板上に形成される共通電位線と電気的に接続される。
スイッチング用トランジスタ5021および駆動用トランジスタ5022は上述したトラ
ンジスタを用いることができる。これにより、表示品位の高い、または/および信頼性の
高い有機EL表示装置となる。
発光素子5024の第2電極(共通電極5028)の電位は低電源電位に設定する。なお
、低電源電位とは、電源線5027に供給される高電源電位より低い電位であり、例えば
GND、0Vなどを低電源電位として設定することができる。発光素子5024の順方向
のしきい値電圧以上となるように高電源電位と低電源電位を設定し、その電位差を発光素
子5024に印加することにより、発光素子5024に電流を流して発光させる。なお、
発光素子5024の順方向電圧とは、所望の輝度とする場合の電圧を指しており、少なく
とも順方向しきい値電圧を含む。
なお、容量素子5023は駆動用トランジスタ5022のゲート容量を代用することによ
り省略できる場合がある。駆動用トランジスタ5022のゲート容量については、チャネ
ル形成領域とゲート電極との間で容量が形成されていてもよい。
次に、駆動用トランジスタ5022に入力する信号について説明する。電圧入力電圧駆動
方式の場合、駆動用トランジスタ5022がオンまたはオフの二つの状態となるようなビ
デオ信号を、駆動用トランジスタ5022に入力する。なお、駆動用トランジスタ502
2を線形領域で動作させるために、電源線5027の電圧よりも高い電圧を駆動用トラン
ジスタ5022のゲート電極に与える。また、信号線5025には、電源線電圧に駆動用
トランジスタ5022のしきい値電圧Vthを加えた値以上の電圧をかける。
アナログ階調駆動を行う場合、駆動用トランジスタ5022のゲート電極に発光素子50
24の順方向電圧に駆動用トランジスタ5022のしきい値電圧Vthを加えた値以上の
電圧をかける。なお、駆動用トランジスタ5022が飽和領域で動作するようにビデオ信
号を入力し、発光素子5024に電流を流す。また、駆動用トランジスタ5022を飽和
領域で動作させるために、電源線5027の電位を、駆動用トランジスタ5022のゲー
ト電位より高くする。ビデオ信号をアナログとすることで、発光素子5024にビデオ信
号に応じた電流を流し、アナログ階調駆動を行うことができる。
なお、本発明の一態様に係る表示装置は、図23(C)に示す画素構成に限定されない。
例えば、図23(C)に示す画素回路にスイッチ、抵抗素子、容量素子、センサ、トラン
ジスタまたは論理回路などを追加してもよい。
図23で例示した回路に上述したトランジスタを適用する場合、低電位側にソース電極(
第1の電極)、高電位側にドレイン電極(第2の電極)がそれぞれ電気的に接続される構
成とする。さらに、制御回路等により第1のゲート電極の電位を制御し、第2のゲート電
極にはソース電極に与える電位よりも低い電位など、上記で例示した電位を入力可能な構
成とすればよい。
例えば、本明細書等において、表示素子、表示素子を有する装置である表示装置、発光素
子、および発光素子を有する装置である発光装置は、様々な形態を用いること、または様
々な素子を有することが出来る。表示素子、表示装置、発光素子または発光装置は例えば
、EL素子(有機物および無機物を含むEL素子、有機EL素子、無機EL素子)、LE
D(白色LED、赤色LED、緑色LED、青色LEDなど)、トランジスタ(電流に応
じて発光するトランジスタ)、電子放出素子、液晶素子、電子インク、電気泳動素子、グ
レーティングライトバルブ(GLV)、プラズマディスプレイパネル(PDP)、MEM
S(マイクロ・エレクトロ・メカニカル・システム)、デジタルマイクロミラーデバイス
(DMD)、DMS(デジタル・マイクロ・シャッター)、IMOD(インターフェアレ
ンス・モジュレーション)素子、エレクトロウェッティング素子、圧電セラミックディス
プレイ、カーボンナノチューブを用いた表示素子などの少なくとも一つを有している。こ
れらのほかにも、電気磁気的作用により、コントラスト、輝度、反射率、透過率などが変
化する表示媒体を有していてもよい。EL素子を用いた表示装置の一例としては、ELデ
ィスプレイなどがある。電子放出素子を用いた表示装置の一例としては、フィールドエミ
ッションディスプレイ(FED)またはSED方式平面型ディスプレイ(SED:Sur
face-conduction Electron-emitter Display
)などがある。液晶素子を用いた表示装置の一例としては、液晶ディスプレイ(透過型液
晶ディスプレイ、半透過型液晶ディスプレイ、反射型液晶ディスプレイ、直視型液晶ディ
スプレイ、投射型液晶ディスプレイ)などがある。電子インクまたは電気泳動素子を用い
た表示装置の一例としては、電子ペーパーなどがある。
なお、バックライト(有機EL素子、無機EL素子、LED、蛍光灯など)に白色光(W
)を用いて表示装置をフルカラー表示させるために、着色層(カラーフィルターともいう
。)を用いてもよい。着色層は、例えば、レッド(R)、グリーン(G)、ブルー(B)
、イエロー(Y)などを適宜組み合わせて用いることができる。着色層を用いることで、
着色層を用いない場合と比べて色の再現性を高くすることができる。このとき、着色層を
有する領域と、着色層を有さない領域と、を配置することによって、着色層を有さない領
域における白色光を直接表示に利用しても構わない。一部に着色層を有さない領域を配置
することで、明るい表示の際に、着色層による輝度の低下を少なくでき、消費電力を2割
から3割程度低減できる場合がある。ただし、有機EL素子や無機EL素子などの自発光
素子を用いてフルカラー表示する場合、R、G、B、Y、Wを、それぞれの発光色を有す
る素子から発光させても構わない。自発光素子を用いることで、着色層を用いた場合より
も、さらに消費電力を低減できる場合がある。
<モジュール>
以下では、本発明の一態様に係る半導体装置を適用した表示モジュールについて、図24
を用いて説明を行う。
図24に示す表示モジュール8000は、上部カバー8001と下部カバー8002との
間に、FPC8003に接続されたタッチパネル8004、FPC8005に接続された
セル8006、バックライトユニット8007、フレーム8009、プリント基板801
0、バッテリー8011を有する。なお、バックライトユニット8007、バッテリー8
011、タッチパネル8004などを有さない場合もある。
本発明の一態様に係る半導体装置は、例えば、セル8006に用いることができる。
上部カバー8001および下部カバー8002は、タッチパネル8004およびセル80
06のサイズに合わせて、形状や寸法を適宜変更することができる。
タッチパネル8004は、抵抗膜方式または静電容量方式のタッチパネルをセル8006
に重畳して用いることができる。また、セル8006の対向基板(封止基板)に、タッチ
パネル機能を持たせるようにすることも可能である。または、セル8006の各画素内に
光センサを設け、光学式のタッチパネルとすることも可能である。または、セル8006
の各画素内にタッチセンサ用電極を設け、静電容量方式のタッチパネルとすることも可能
である。
バックライトユニット8007は、光源8008を有する。光源8008をバックライト
ユニット8007の端部に設け、光拡散板を用いる構成としてもよい。
フレーム8009は、セル8006の保護機能の他、プリント基板8010の動作により
発生する電磁波を遮断するための電磁シールドとしての機能を有してもよい。またフレー
ム8009は、放熱板としての機能を有していてもよい。
プリント基板8010は、電源回路、ビデオ信号およびクロック信号を出力するための信
号処理回路を有する。電源回路に電力を供給する電源としては、外部の商用電源であって
もよいし、別途設けたバッテリー8011による電源であってもよい。商用電源を用いる
場合には、バッテリー8011を有さなくてもよい。
また、表示モジュール8000には、偏光板、位相差板、プリズムシートなどの部材を追
加して設けてもよい。
<電子機器>
本発明の一態様に係る半導体装置は、表示機器、パーソナルコンピュータ、記録媒体を備
えた画像再生装置(代表的にはDVD:Digital Versatile Disc
等の記録媒体を再生し、その画像を表示しうるディスプレイを有する装置)に用いること
ができる。その他に、本発明の一態様に係る半導体装置を用いることができる電子機器と
して、携帯電話、携帯型を含むゲーム機、携帯データ端末、電子書籍端末、ビデオカメラ
、デジタルスチルカメラ等のカメラ、ゴーグル型ディスプレイ(ヘッドマウントディスプ
レイ)、ナビゲーションシステム、音響再生装置(カーオーディオ、デジタルオーディオ
プレイヤー等)、複写機、ファクシミリ、プリンタ、プリンタ複合機、現金自動預け入れ
払い機(ATM)、自動販売機などが挙げられる。これら電子機器の具体例を図25に示
す。
図25(A)は携帯型ゲーム機であり、筐体901、筐体902、表示部903、表示部
904、マイクロフォン905、スピーカー906、操作キー907、スタイラス908
等を有する。なお、図25(A)に示した携帯型ゲーム機は、2つの表示部903と表示
部904とを有しているが、携帯型ゲーム機が有する表示部の数は、これに限定されない
図25(B)は携帯データ端末であり、第1筐体911、第2筐体912、第1表示部9
13、第2表示部914、接続部915、操作キー916等を有する。第1表示部913
は第1筐体911に設けられており、第2表示部914は第2筐体912に設けられてい
る。そして、第1筐体911と第2筐体912とは、接続部915により接続されており
、第1筐体911と第2筐体912の間の角度は、接続部915により変更が可能である
。第1表示部913における映像を、接続部915における第1筐体911と第2筐体9
12との間の角度にしたがって、切り替える構成としてもよい。また、第1表示部913
および第2表示部914の少なくとも一方に、位置入力装置としての機能が付加された表
示装置を用いるようにしてもよい。なお、位置入力装置としての機能は、表示装置にタッ
チパネルを設けることで付加することができる。または、位置入力装置としての機能は、
フォトセンサとも呼ばれる光電変換素子を表示装置の画素部に設けることでも、付加する
ことができる。
図25(C)はノート型パーソナルコンピュータであり、筐体921、表示部922、キ
ーボード923、ポインティングデバイス924等を有する。
図25(D)は電気冷凍冷蔵庫であり、筐体931、冷蔵室用扉932、冷凍室用扉93
3等を有する。
図25(E)はビデオカメラであり、第1筐体941、第2筐体942、表示部943、
操作キー944、レンズ945、接続部946等を有する。操作キー944およびレンズ
945は第1筐体941に設けられており、表示部943は第2筐体942に設けられて
いる。そして、第1筐体941と第2筐体942とは、接続部946により接続されてお
り、第1筐体941と第2筐体942の間の角度は、接続部946により変更が可能であ
る。表示部943における映像を、接続部946における第1筐体941と第2筐体94
2との間の角度にしたがって切り替える構成としてもよい。
図25(F)は普通自動車であり、車体951、車輪952、ダッシュボード953、ラ
イト954等を有する。
<表示領域または発光領域に曲面を有する電子機器>
以下では、本発明の一態様に係る電子機器の一例である表示領域または発光領域に曲面を
有する電子機器について、図26を参照しながら説明する。なお、ここでは、電子機器の
一例として、情報機器、特に携帯性を有する情報機器(携帯機器)について説明する。携
帯性を有する情報機器としては、例えば、携帯電話機(ファブレット、スマートフォン(
スマホ))、タブレット端末(スレートPC)なども含まれる。
図26(A-1)は、携帯機器1300Aの外形を説明する斜視図である。図26(A-
2)は、携帯機器1300Aの上面図である。図26(A-3)は、携帯機器1300A
の使用状態を説明する図である。
図26(B-1)および図26(B-2)は、携帯機器1300Bの外形を説明する斜視
図である。
図26(C-1)および図26(C-2)は、携帯機器1300Cの外形を説明する斜視
図である。
<携帯機器>
携帯機器1300Aは、例えば電話、電子メール作成閲覧、手帳または情報閲覧などの機
能から選ばれた一つまたは複数の機能を有する。
携帯機器1300Aは、筐体の複数の面に沿って表示部が設けられている。例えば、可と
う性を有する表示装置を、筐体の内側に沿うように配置することで表示部を設ければよい
。これにより、文字情報や画像情報などを第1の領域1311または/および第2の領域
1312に表示することができる。
例えば、3つの操作の用に供する画像を第1の領域1311に表示することができる(図
26(A-1)参照。)。また、図中に破線の矩形で示すように文字情報などを第2の領
域1312に表示することができる(図26(A-2)参照。)。
携帯機器1300Aの上部に第2の領域1312を配置した場合、携帯機器1300Aを
洋服の胸ポケットに収納したままの状態で、携帯機器1300Aの第2の領域1312に
表示された文字や画像情報を、使用者は容易に確認することができる(図26(A-3)
参照。)。例えば、着信した電話の発信者の電話番号または氏名などを、携帯機器130
0Aの上方から観察できる。
なお、携帯機器1300Aは、表示装置と筐体との間、表示装置内または筐体上に入力装
置などを有してもよい。入力装置は、例えば、タッチセンサ、光センサ、超音波センサな
どを用いればよい。入力装置を表示装置と筐体との間または筐体上に配置する場合、マト
リクススイッチ方式、抵抗膜方式、超音波表面弾性波方式、赤外線方式、電磁誘導方式、
静電容量方式などのタッチパネルを用いればよい。また、入力装置を表示装置内に配置す
る場合、インセルタイプのセンサ、またはオンセルタイプのセンサなどを用いればよい。
なお、携帯機器1300Aは、振動センサなどと、当該振動センサなどに検知された振動
に基づいて、着信を拒否するモードに移行するプログラムを記憶した記憶装置を備えるこ
とができる。これにより、使用者は携帯機器1300Aを洋服の上から軽く叩いて振動を
与えることにより着信を拒否するモードに移行させることができる。
携帯機器1300Bは、第1の領域1311および第2の領域1312を有する表示部と
、表示部を支持する筐体1310を有する。
筐体1310は複数の屈曲部を備え、筐体1310が備える最も長い屈曲部が、第1の領
域1311と第2の領域1312に挟まれる。
携帯機器1300Bは、最も長い屈曲部に沿って設けられた第2の領域1312を側面に
向けて使用することができる。
携帯機器1300Cは、第1の領域1311および第2の領域1312を有する表示部と
、表示部を支持する筐体1310を有する。
筐体1310は複数の屈曲部を備え、筐体1310が備える二番目に長い屈曲部が、第1
の領域1311と第2の領域1312に挟まれる。
携帯機器1300Cは、第2の領域1312を上部に向けて使用することができる。
本実施例では、過剰酸素を含む絶縁体である、酸化シリコンまたは酸化窒化シリコンに不
純物としてリンを添加し、TDSによる酸素放出を評価した。
試料の作製方法を以下に示す。
まず、基板としてシリコン基板を準備した。次に、シリコン基板を熱酸化法により酸化さ
せ、表面に厚さ100nmの第1の酸化シリコンを形成した。次に、スパッタリング法に
より、厚さが300nmの第2の酸化シリコンを成膜した。
第2の酸化シリコンは、合成石英ターゲットを用い、成膜ガスを酸素50sccmとし、
圧力を0.4Paとし、成膜電力を1.5kW(13.56MHz)とし、ターゲット-
基板間距離を60mmとし、基板温度を100℃として成膜した。
次に、試料に不純物としてリンイオン(P)を注入することで実施例試料1、実施例試
料2および実施例試料3を作製した。
リンイオンの添加は、イオン注入法を用い、加速電圧を30kVとして行った。実施例試
料1は、リンイオンの注入濃度を1×1015ions/cmとした。実施例試料2は
、リンイオンの注入濃度を2×1015ions/cmとした。実施例試料3は、リン
イオンの注入濃度を1×1016ions/cmとした。なお、比較例試料として、リ
ンイオンを注入していない試料を準備した。
図33に、実施例試料1、実施例試料2、実施例試料3および比較例試料の、TDSによ
る基板温度と質量電荷比(M/z)が32のイオン強度との関係を示す。TDSの測定は
、各試料を10mm×10mmに分断した試料に対して行った。なお、M/zが32で検
出されるガスには酸素ガス(O)がある。本実施例では、M/zが32で検出されるガ
スは、全て酸素ガスとみなす。
図33より、リンイオンを注入していない、比較例試料は、基板温度250℃以上450
℃以下程度の範囲で酸素ガスを放出した。一方、リンイオンを注入した、実施例試料1、
実施例試料2および実施例試料3は、比較例試料に対して酸素ガスの放出量が少ないこと
がわかった。
図33より、実施例試料1の酸素放出量は、8.1×1015atoms/cm(2.
7×1020atoms/cm)であった。また、実施例試料2の酸素放出量は、5.
5×1015atoms/cm(1.8×1020atoms/cm)であった。ま
た、実施例試料3の酸素放出量は、1.1×1014atoms/cm(3.7×10
18atoms/cm)であった。また、比較例試料の酸素放出量は、1.1×10
atoms/cm(3.7×1020atoms/cm)であった。なお、単位体
積当たりの酸素放出量は、第2の酸化シリコンの厚さ300nmから換算した。
図34に、図33から算出した酸素放出量を示す。なお、酸素放出量は、酸素原子に換算
した値を示す。図34は、リンイオン注入濃度と酸素放出量との関係である。なお、リン
イオンを注入していない、比較例試料の酸素放出量を破線で示す。
したがって、加熱によって放出する酸素の量を低減させるためには、30kVの加速電圧
では、酸化シリコン中にリンイオンを1×1015ions/cm以上、好ましくは2
×1015ions/cm以上、さらに好ましくは1×1016ions/cm以上
の濃度で注入すればよいことがわかった。
図33より、加熱により酸素を放出することが可能な絶縁体にリンイオンを注入すること
で、加熱によって放出する酸素の量を低減できることがわかる。
次に、実施例試料4の作製方法を示す。
まず、基板としてシリコン基板を準備した。次に、シリコン基板を熱酸化法により酸化さ
せ、表面に厚さ100nmの酸化シリコンを形成した。次に、CVD法により、厚さが3
00nmの酸化窒化シリコンを成膜した。
酸化窒化シリコンは、成膜ガスをシラン2sccmおよび亜酸化窒素4000sccmと
し、圧力を700Paとし、成膜電力を250W(60MHz)とし、電極間距離を9m
mとし、基板温度を400℃として成膜した。
次に、試料に不純物としてリンイオン(P)を注入することで実施例試料4を作製した
。リンイオンの添加は、イオン注入法を用い、加速電圧を30kVとして行った。実施例
試料4は、リンイオンの注入濃度を1×1016ions/cmとした。
したがって、実施例試料3と実施例試料4との違いは、第2の酸化シリコンを用いるか、
酸化窒化シリコンを用いるかのみである。
次に、実施例試料3および実施例試料4をエッチングし、エッチング深さと酸素放出量と
の関係を評価した。実施例試料3および実施例試料4は、10mm×10mmに分断した
。なお、TDSの測定は、測定1回に対して分断した試料を1枚用いた。
図35は、エッチングなしの第2の酸化シリコンまたは酸化窒化シリコンの厚さを基準(
深さ0nm)とし、各エッチング深さにおける酸素放出量をプロットした。エッチングは
、エッチャントには、フッ化水素アンモニウムを6.7%とフッ化アンモニウムを12.
7%含む混合溶液(ステラケミファ社製 LAL500)を用い、20℃で行った。図3
5(A)に実施例試料3の酸素放出量を、図35(B)に実施例試料4の酸素放出量を、
それぞれ示す。
なお、図35には、計算によって算出した、第2の酸化シリコンまたは酸化窒化シリコン
中のリン濃度を示す。計算は、TRIM(Transport of Ion in M
atter)を用い、密度を2.2g/cmとして行った。計算により、各試料は、深
さ50nmから60nm程度にリン濃度の最大値を有することがわかった。
図35(A)より、実施例試料3は、第2の酸化シリコンを50nmの深さまでエッチン
グすることで、酸素放出量が増大することがわかった。また、第2の酸化シリコンを90
nmの深さまでエッチングすることで、酸素放出量が最大となることがわかった。また、
図35(B)より、実施例試料4は、酸化窒化シリコンを78nmの深さまでエッチング
することで、酸素放出量が増大することがわかった。また、酸化窒化シリコンを83nm
の深さまでエッチングすることで、酸素放出量が最大となることがわかった。
図35より、絶縁体中のリン濃度が最大値を示す領域をエッチングすると、酸素放出量は
大きく変化することがわかった。このことから、リン濃度を2×1020atoms/c
以上とすることで高い酸素ブロック性を示す領域が形成できていることがわかった。
また、リン濃度の低い領域では、加熱によって放出される酸素が保持されていることがわ
かった。
本実施例より、過剰酸素を含む絶縁体である、酸化シリコンおよび酸化窒化シリコン中に
不純物としてリンを添加することで、酸素ブロック領域を形成できることがわかる。
本実施例では、過剰酸素を含む絶縁体である酸化シリコン中に、不純物としてホウ素を添
加し、TDSによる酸素放出を評価した。
試料の作製方法を以下に示す。
まず、基板としてシリコン基板を準備した。次に、シリコン基板を熱酸化法により酸化さ
せ、表面に厚さ100nmの第1の酸化シリコンを形成した。次に、スパッタリング法に
より、厚さが300nmの第2の酸化シリコンを成膜した。
第2の酸化シリコンは、合成石英ターゲットを用い、成膜ガスを酸素50sccmとし、
圧力を0.4Paとし、成膜電力を1.5kW(13.56MHz)とし、ターゲット-
基板間距離を60mmとし、基板温度を100℃として成膜した。
次に、試料に不純物としてホウ素イオン(B)を注入することで、実施例試料5を作製
した。
ホウ素イオンの添加は、イオン注入法を用い、加速電圧を10kVとして行った。実施例
試料5は、ホウ素イオンの注入濃度を1×1016ions/cmとした。なお、比較
例試料として、イオンを注入していない試料を準備した。当該試料は、比較例試料として
先の実施例に示した試料と同一である。
図36に、実施例試料5および比較例試料の、TDSによる基板温度とM/zが32のイ
オン強度との関係を示す。TDSの測定は、各試料を10mm×10mmに分断した試料
に対して行った。
図36より、ホウ素イオンを注入していない、比較例試料は、基板温度250℃以上45
0℃以下程度の範囲で酸素ガスを放出した。一方、ホウ素イオンを注入した実施例試料5
は、比較例試料に対して酸素ガスの放出量が少ないことがわかった。
図36より、実施例試料5の酸素放出量は、3.1×1015atoms/cm(1.
0×1020atoms/cm)であった。また、比較例試料の酸素放出量は、1.1
×1016atoms/cm(3.7×1020atoms/cm)であった。なお
、単位体積当たりの酸素放出量は、第2の酸化シリコンの厚さ300nmから換算した。
したがって、加熱によって放出する酸素の量を低減させるためには、10kVの加速電圧
では、酸化シリコン中にホウ素イオンを1×1016ions/cm以上の濃度で注入
すればよいことがわかった。
図36より、加熱により酸素を放出することが可能な絶縁体に、ホウ素イオンを注入する
ことでも、加熱によって放出する酸素の量を低減できることがわかる。
本実施例より、過剰酸素を含む絶縁体である、酸化シリコン中に不純物としてホウ素を添
加することでも、酸素ブロック領域を形成できることがわかる。
50 基板
52 絶縁体
53 領域
56 半導体
68 絶縁体
69 領域
400 基板
402 絶縁体
404 導電体
405 導電体
406a 半導体
406b 半導体
406c 半導体
408 絶縁体
412 絶縁体
413 導電体
416a 導電体
416b 導電体
418 絶縁体
423 領域
424a 導電体
424b 導電体
426a 導電体
426b 導電体
428 絶縁体
800 RFタグ
801 通信器
802 アンテナ
803 無線信号
804 アンテナ
805 整流回路
806 定電圧回路
807 復調回路
808 変調回路
809 論理回路
810 記憶回路
811 ROM
901 筐体
902 筐体
903 表示部
904 表示部
905 マイクロフォン
906 スピーカー
907 操作キー
908 スタイラス
911 筐体
912 筐体
913 表示部
914 表示部
915 接続部
916 操作キー
921 筐体
922 表示部
923 キーボード
924 ポインティングデバイス
931 筐体
932 冷蔵室用扉
933 冷凍室用扉
941 筐体
942 筐体
943 表示部
944 操作キー
945 レンズ
946 接続部
951 車体
952 車輪
953 ダッシュボード
954 ライト
1189 ROMインターフェース
1190 基板
1191 ALU
1192 ALUコントローラ
1193 インストラクションデコーダ
1194 インタラプトコントローラ
1195 タイミングコントローラ
1196 レジスタ
1197 レジスタコントローラ
1198 バスインターフェース
1199 ROM
1200 記憶素子
1201 回路
1202 回路
1203 スイッチ
1204 スイッチ
1206 論理素子
1207 容量素子
1208 容量素子
1209 トランジスタ
1210 トランジスタ
1213 トランジスタ
1214 トランジスタ
1220 回路
1300A 携帯機器
1300B 携帯機器
1300C 携帯機器
1310 筐体
1311 領域
1312 領域
2100 トランジスタ
2200 トランジスタ
2201 絶縁体
2202 導電体
2203 導電体
2204 絶縁体
2205 導電体
2206 導電体
2207 絶縁体
2208 絶縁体
2211 半導体基板
2212 絶縁体
2213 ゲート電極
2214 ゲート絶縁体
2215 ソース領域およびドレイン領域
3001 配線
3002 配線
3003 配線
3004 配線
3005 配線
3200 トランジスタ
3300 トランジスタ
3400 容量素子
4000 RFタグ
5000 基板
5001 画素部
5002 走査線駆動回路
5003 走査線駆動回路
5004 信号線駆動回路
5010 容量配線
5012 ゲート配線
5013 ゲート配線
5014 ドレイン電極
5016 トランジスタ
5017 トランジスタ
5018 液晶素子
5019 液晶素子
5020 画素
5021 スイッチング用トランジスタ
5022 駆動用トランジスタ
5023 容量素子
5024 発光素子
5025 信号線
5026 走査線
5027 電源線
5028 共通電極
5100 ペレット
5120 基板
5161 領域
8000 表示モジュール
8001 上部カバー
8002 下部カバー
8003 FPC
8004 タッチパネル
8005 FPC
8006 セル
8007 バックライトユニット
8008 光源
8009 フレーム
8010 プリント基板
8011 バッテリー

Claims (2)

  1. シリコンを有する第1のチャネル形成領域を有する第1のトランジスタと、
    酸化物半導体を有する第2のチャネル形成領域を有する第2のトランジスタと、を有する半導体装置であって、
    前記第1のチャネル形成領域上の第1の絶縁層と、
    前記第1の絶縁層上に位置し、前記第1のチャネル形成領域と重なる領域を有する第1の導電層と、
    前記第1の導電層上の第2の絶縁層と、
    前記第2の絶縁層上の第3の絶縁層と、
    前記第3の絶縁層上の第4の絶縁層と、
    前記第4の絶縁層の上面と接する領域を有し、前記第2のチャネル形成領域を有する酸化物半導体層と、
    前記酸化物半導体層上の第5の絶縁層と、
    前記第5の絶縁層上に位置し、前記酸化物半導体層と重なる領域を有する第2の導電層と、
    前記第2のチャネル形成領域を挟んで前記第2の導電層と互いに重なる領域を有する第3の導電層と、
    前記第2の導電層上の第6の絶縁層と、
    前記第6の絶縁層上の第7の絶縁層と、
    前記第7の絶縁層上の第8の絶縁層と、
    前記第8の絶縁層の上面と接する領域を有し、前記第6の絶縁層、前記第7の絶縁層および前記第8の絶縁層に設けられた第1の開口部を介して前記酸化物半導体層と電気的に接続された第4の導電層と、を有し、
    前記酸化物半導体層は、前記第4の導電層と接する第1の領域と、前記第1の開口部と重ならない第2の領域と、を有し、
    前記第1の領域における前記酸化物半導体層の膜厚は、前記第2の領域における前記酸化物半導体層の膜厚よりも小さく、
    前記第4の導電層は、前記第6の絶縁層、前記第7の絶縁層および前記第8の絶縁層に設けられた第2の開口部を介して前記第1の導電層と電気的に接続され、
    前記第4の導電層は、他の導電層を介することなく、前記第1の開口部から前記第2の開口部まで延在し、
    前記第1の導電層は、前記第1のトランジスタのゲート電極として機能する領域を有し、
    前記第2の導電層は、前記第2のトランジスタの第1のゲート電極として機能する領域を有し、
    前記第3の導電層は、前記第2のトランジスタの第2のゲート電極として機能する領域を有し、
    前記第2の導電層の一部は、前記酸化物半導体層の前記第2のチャネル形成領域上に配置され、
    前記第2の導電層の下面の一部は、前記酸化物半導体層の下面よりも下方に配置される半導体装置。
  2. 請求項1において、前記第2の導電層は、前記第3の導電層と電気的に接続される半導体装置。
JP2022130025A 2013-12-27 2022-08-17 半導体装置 Active JP7443435B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024024460A JP2024052818A (ja) 2013-12-27 2024-02-21 半導体装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013271934 2013-12-27
JP2013271934 2013-12-27
JP2020187953A JP2021036607A (ja) 2013-12-27 2020-11-11 トランジスタ

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020187953A Division JP2021036607A (ja) 2013-12-27 2020-11-11 トランジスタ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2024024460A Division JP2024052818A (ja) 2013-12-27 2024-02-21 半導体装置

Publications (2)

Publication Number Publication Date
JP2022164717A JP2022164717A (ja) 2022-10-27
JP7443435B2 true JP7443435B2 (ja) 2024-03-05

Family

ID=53482822

Family Applications (6)

Application Number Title Priority Date Filing Date
JP2014259609A Expired - Fee Related JP6446258B2 (ja) 2013-12-27 2014-12-23 トランジスタ
JP2018226789A Active JP6716672B2 (ja) 2013-12-27 2018-12-03 トランジスタ
JP2020100882A Active JP6794572B2 (ja) 2013-12-27 2020-06-10 トランジスタ
JP2020187953A Withdrawn JP2021036607A (ja) 2013-12-27 2020-11-11 トランジスタ
JP2022130025A Active JP7443435B2 (ja) 2013-12-27 2022-08-17 半導体装置
JP2024024460A Pending JP2024052818A (ja) 2013-12-27 2024-02-21 半導体装置

Family Applications Before (4)

Application Number Title Priority Date Filing Date
JP2014259609A Expired - Fee Related JP6446258B2 (ja) 2013-12-27 2014-12-23 トランジスタ
JP2018226789A Active JP6716672B2 (ja) 2013-12-27 2018-12-03 トランジスタ
JP2020100882A Active JP6794572B2 (ja) 2013-12-27 2020-06-10 トランジスタ
JP2020187953A Withdrawn JP2021036607A (ja) 2013-12-27 2020-11-11 トランジスタ

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2024024460A Pending JP2024052818A (ja) 2013-12-27 2024-02-21 半導体装置

Country Status (2)

Country Link
US (1) US9318618B2 (ja)
JP (6) JP6446258B2 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9882014B2 (en) 2013-11-29 2018-01-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9397149B2 (en) * 2013-12-27 2016-07-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9318618B2 (en) * 2013-12-27 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9472678B2 (en) * 2013-12-27 2016-10-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR20220046701A (ko) * 2013-12-27 2022-04-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치
TWI663726B (zh) 2014-05-30 2019-06-21 Semiconductor Energy Laboratory Co., Ltd. 半導體裝置、模組及電子裝置
WO2016016761A1 (en) * 2014-07-31 2016-02-04 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing semiconductor device
WO2016092427A1 (en) 2014-12-10 2016-06-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR102349246B1 (ko) * 2015-02-23 2022-01-11 삼성디스플레이 주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
US9653613B2 (en) * 2015-02-27 2017-05-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
KR20160114511A (ko) 2015-03-24 2016-10-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
US9806200B2 (en) 2015-03-27 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP6736351B2 (ja) * 2015-06-19 2020-08-05 株式会社半導体エネルギー研究所 半導体装置
US10714633B2 (en) 2015-12-15 2020-07-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and display device
KR20170080320A (ko) * 2015-12-31 2017-07-10 엘지디스플레이 주식회사 박막트랜지스터, 그를 갖는 표시장치, 및 박막트랜지스터의 제조방법
WO2017153882A1 (en) 2016-03-11 2017-09-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and display device including the semiconductor device
KR102330605B1 (ko) * 2016-06-22 2021-11-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
TWI811761B (zh) 2016-07-11 2023-08-11 日商半導體能源研究所股份有限公司 金屬氧化物及半導體裝置
WO2018051208A1 (en) 2016-09-14 2018-03-22 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
US10411003B2 (en) 2016-10-14 2019-09-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR20180048327A (ko) 2016-11-01 2018-05-10 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 및 반도체 장치의 제작 방법
KR20180066848A (ko) 2016-12-09 2018-06-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 및 반도체 장치의 제작 방법
JP6960807B2 (ja) 2017-08-31 2021-11-05 株式会社ジャパンディスプレイ 表示装置及びその製造方法
US11195758B2 (en) * 2017-09-05 2021-12-07 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing semiconductor device having plurality of insulator
US11430897B2 (en) 2018-03-23 2022-08-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP7275112B2 (ja) * 2018-04-20 2023-05-17 株式会社半導体エネルギー研究所 半導体装置
KR20210005620A (ko) * 2018-04-27 2021-01-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
US11088078B2 (en) * 2019-05-22 2021-08-10 Nanya Technology Corporation Semiconductor device and method for manufacturing the same
WO2023094941A1 (ja) * 2021-11-26 2023-06-01 株式会社半導体エネルギー研究所 半導体装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011139047A (ja) 2009-12-04 2011-07-14 Semiconductor Energy Lab Co Ltd 表示装置
JP2012064929A (ja) 2010-08-16 2012-03-29 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2012160679A (ja) 2011-02-03 2012-08-23 Sony Corp 薄膜トランジスタ、表示装置および電子機器
JP2013128105A (ja) 2011-11-18 2013-06-27 Semiconductor Energy Lab Co Ltd 半導体素子、及び半導体素子の作製方法、並びに半導体素子を用いた半導体装置
JP2013179286A (ja) 2012-02-07 2013-09-09 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2013236059A (ja) 2012-04-13 2013-11-21 Semiconductor Energy Lab Co Ltd 半導体装置

Family Cites Families (142)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP3298974B2 (ja) 1993-03-23 2002-07-08 電子科学株式会社 昇温脱離ガス分析装置
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
EP0820644B1 (en) 1995-08-03 2005-08-24 Koninklijke Philips Electronics N.V. Semiconductor device provided with transparent switching element
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
WO2003040441A1 (en) 2001-11-05 2003-05-15 Japan Science And Technology Agency Natural superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
CN1445821A (zh) 2002-03-15 2003-10-01 三洋电机株式会社 ZnO膜和ZnO半导体层的形成方法、半导体元件及其制造方法
US6885028B2 (en) 2002-03-25 2005-04-26 Sharp Kabushiki Kaisha Transistor array and active-matrix substrate
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
CN1998087B (zh) 2004-03-12 2014-12-31 独立行政法人科学技术振兴机构 非晶形氧化物和薄膜晶体管
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
RU2399989C2 (ru) 2004-11-10 2010-09-20 Кэнон Кабусики Кайся Аморфный оксид и полевой транзистор с его использованием
US7868326B2 (en) 2004-11-10 2011-01-11 Canon Kabushiki Kaisha Field effect transistor
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
WO2006051994A2 (en) 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Light-emitting device
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI569441B (zh) 2005-01-28 2017-02-01 半導體能源研究所股份有限公司 半導體裝置,電子裝置,和半導體裝置的製造方法
TWI412138B (zh) 2005-01-28 2013-10-11 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
WO2006105077A2 (en) 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
EP1995787A3 (en) 2005-09-29 2012-01-18 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method therof
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
CN101577282A (zh) 2005-11-15 2009-11-11 株式会社半导体能源研究所 半导体器件及其制造方法
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
EP2025004A1 (en) 2006-06-02 2009-02-18 Kochi Industrial Promotion Center Semiconductor device including an oxide semiconductor thin film layer of zinc oxide and manufacturing method thereof
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR101030765B1 (ko) * 2007-02-27 2011-04-27 후지쯔 세미컨덕터 가부시키가이샤 반도체 기억 장치, 반도체 기억 장치의 제조 방법, 및 패키지 수지 형성 방법
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
WO2008133345A1 (en) 2007-04-25 2008-11-06 Canon Kabushiki Kaisha Oxynitride semiconductor
KR101345376B1 (ko) 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
JP2009016469A (ja) * 2007-07-03 2009-01-22 Mitsubishi Electric Corp 半導体装置およびその製造方法
JP5430846B2 (ja) * 2007-12-03 2014-03-05 株式会社半導体エネルギー研究所 半導体装置の作製方法
US8202365B2 (en) 2007-12-17 2012-06-19 Fujifilm Corporation Process for producing oriented inorganic crystalline film, and semiconductor device using the oriented inorganic crystalline film
JP5584960B2 (ja) * 2008-07-03 2014-09-10 ソニー株式会社 薄膜トランジスタおよび表示装置
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
SG10201503877UA (en) 2009-10-29 2015-06-29 Semiconductor Energy Lab Semiconductor device
KR101675113B1 (ko) 2010-01-08 2016-11-11 삼성전자주식회사 트랜지스터 및 그 제조방법
JP2011164302A (ja) 2010-02-08 2011-08-25 Seiko Epson Corp 電気泳動表示装置、電子機器
KR101332374B1 (ko) 2010-04-23 2013-11-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치의 제작 방법
WO2011145467A1 (en) 2010-05-21 2011-11-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
JP5917035B2 (ja) * 2010-07-26 2016-05-11 株式会社半導体エネルギー研究所 半導体装置
DE112011102644B4 (de) 2010-08-06 2019-12-05 Semiconductor Energy Laboratory Co., Ltd. Integrierte Halbleiterschaltung
JP5626978B2 (ja) 2010-09-08 2014-11-19 富士フイルム株式会社 薄膜トランジスタおよびその製造方法、並びにその薄膜トランジスタを備えた装置
JP5951351B2 (ja) * 2011-05-20 2016-07-13 株式会社半導体エネルギー研究所 加算器及び全加算器
JP6104522B2 (ja) * 2011-06-10 2017-03-29 株式会社半導体エネルギー研究所 半導体装置
US8878176B2 (en) 2011-08-11 2014-11-04 The Hong Kong University Of Science And Technology Metal-oxide based thin-film transistors with fluorinated active layer
JP6016532B2 (ja) 2011-09-07 2016-10-26 株式会社半導体エネルギー研究所 半導体装置
WO2013039126A1 (en) 2011-09-16 2013-03-21 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8952379B2 (en) * 2011-09-16 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8962386B2 (en) * 2011-11-25 2015-02-24 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
TWI569446B (zh) * 2011-12-23 2017-02-01 半導體能源研究所股份有限公司 半導體元件、半導體元件的製造方法、及包含半導體元件的半導體裝置
CN103367363B (zh) 2012-03-27 2016-08-10 中国科学院微电子研究所 半导体器件及其制造方法
JP2013229013A (ja) * 2012-03-29 2013-11-07 Semiconductor Energy Lab Co Ltd アレイコントローラ及びストレージシステム
US9276121B2 (en) * 2012-04-12 2016-03-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9006024B2 (en) * 2012-04-25 2015-04-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
KR20130125717A (ko) * 2012-05-09 2013-11-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 구동 방법
JP2013247270A (ja) * 2012-05-28 2013-12-09 Sony Corp 撮像装置および撮像表示システム
TWI620324B (zh) 2013-04-12 2018-04-01 半導體能源研究所股份有限公司 半導體裝置
TWI644434B (zh) 2013-04-29 2018-12-11 日商半導體能源研究所股份有限公司 半導體裝置及其製造方法
US9647125B2 (en) * 2013-05-20 2017-05-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
SG10201601511RA (en) * 2013-05-20 2016-03-30 Semiconductor Energy Lab Semiconductor device
US9343579B2 (en) * 2013-05-20 2016-05-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR102442752B1 (ko) * 2013-05-20 2022-09-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US9806198B2 (en) 2013-06-05 2017-10-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
JP6400336B2 (ja) * 2013-06-05 2018-10-03 株式会社半導体エネルギー研究所 半導体装置
TWI646690B (zh) * 2013-09-13 2019-01-01 半導體能源研究所股份有限公司 半導體裝置及其製造方法
JP6104775B2 (ja) * 2013-09-24 2017-03-29 株式会社東芝 薄膜トランジスタ及びその製造方法
JP6383616B2 (ja) * 2013-09-25 2018-08-29 株式会社半導体エネルギー研究所 半導体装置
US9472678B2 (en) * 2013-12-27 2016-10-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US9318618B2 (en) * 2013-12-27 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011139047A (ja) 2009-12-04 2011-07-14 Semiconductor Energy Lab Co Ltd 表示装置
JP2012064929A (ja) 2010-08-16 2012-03-29 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2012160679A (ja) 2011-02-03 2012-08-23 Sony Corp 薄膜トランジスタ、表示装置および電子機器
JP2013128105A (ja) 2011-11-18 2013-06-27 Semiconductor Energy Lab Co Ltd 半導体素子、及び半導体素子の作製方法、並びに半導体素子を用いた半導体装置
JP2013179286A (ja) 2012-02-07 2013-09-09 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法
JP2013236059A (ja) 2012-04-13 2013-11-21 Semiconductor Energy Lab Co Ltd 半導体装置

Also Published As

Publication number Publication date
JP2019047136A (ja) 2019-03-22
JP6716672B2 (ja) 2020-07-01
JP2020167426A (ja) 2020-10-08
JP6446258B2 (ja) 2018-12-26
US20150187951A1 (en) 2015-07-02
JP6794572B2 (ja) 2020-12-02
JP2021036607A (ja) 2021-03-04
JP2015144266A (ja) 2015-08-06
JP2024052818A (ja) 2024-04-12
US9318618B2 (en) 2016-04-19
JP2022164717A (ja) 2022-10-27

Similar Documents

Publication Publication Date Title
JP7443435B2 (ja) 半導体装置
JP6670408B2 (ja) 半導体装置
JP6950032B2 (ja) 半導体装置
JP7455928B2 (ja) 半導体装置
JP6715364B2 (ja) 半導体装置
JP6467171B2 (ja) 半導体装置
KR20210103585A (ko) 반도체 장치, 그 제작 방법, 및 전자 기기
KR20170015982A (ko) 반도체 장치, 및 반도체 장치를 포함하는 전자 기기
JP6440457B2 (ja) 半導体装置
JP2019091904A (ja) 半導体装置
KR102306502B1 (ko) 반도체 장치의 제작 방법
JP2016001722A (ja) 半導体装置及び該半導体装置を含む電子機器
JP6537341B2 (ja) 半導体装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220901

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220901

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230905

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20231031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240221

R150 Certificate of patent or registration of utility model

Ref document number: 7443435

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150