JP2008522370A - 電気化学装置用封止ジョイント構造 - Google Patents

電気化学装置用封止ジョイント構造 Download PDF

Info

Publication number
JP2008522370A
JP2008522370A JP2007543579A JP2007543579A JP2008522370A JP 2008522370 A JP2008522370 A JP 2008522370A JP 2007543579 A JP2007543579 A JP 2007543579A JP 2007543579 A JP2007543579 A JP 2007543579A JP 2008522370 A JP2008522370 A JP 2008522370A
Authority
JP
Japan
Prior art keywords
electrode
joint
metal
electrolyte
insulating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007543579A
Other languages
English (en)
Inventor
シー. タッカー、マイケル
ピー. ジェイコブソン、クレイグ
ヨンゲ、ルットガード シー. デ
ジェイ. ビスコ、スティーブン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of California
Original Assignee
University of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of California filed Critical University of California
Publication of JP2008522370A publication Critical patent/JP2008522370A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/016Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on manganites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/006Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/191Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2404Processes or apparatus for grouping fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/243Grouping of unit cells of tubular or cylindrical configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/02Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/4911Electric battery cell making including sealing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Fuel Cell (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

各々異なる機能を果たす複数の部材により高温電気化学装置のジョイントが構成される。ジョイントは、例えば固体酸化物形燃料電池用の多電池直列セグメントスタックを作製するために電気化学装置の複数の電池(一般的には、管状モジュール)を接合するのに有益である。ジョイントは、接合部材を互いに結合するセクション、気密性を提供する1つ以上の封止セクション、および各種接合部材間の電気的接続および/または電気的絶縁を提供するセクションを含む。電気化学装置用の適切なジョイント構造は、金属ジョイントハウジング、第1の多孔質電極、固体電解質によって第1の多孔質電極と分離される第2の多孔質電極、および、金属ジョイントハウジングと電解質および第2の電極との間に配置される絶縁部材を有する。1つ以上のろう付け部は、第1の電極を金属ジョイントハウジングに構造的かつ電気的に接続し、第1の電極と第2の電極との間の気密封止を形成する。

Description

関連出願の相互参照:本願は、2004年11月30日に出願された米国仮特許出願第60/632,015号「電気化学装置用封止ジョイント構造」の優先権を主張する。
本発明は、固体酸化物形燃料電池、特に、モジュールの並列電気化学直列電池スタックなどの高温電気化学装置用の封止ジョイントに関する。ジョイントは、封止、構造上の一体性、および電気的接続と絶縁を提供する。
固体電気化学装置は通常、2つの多孔性電極、即ち陽極および陰極と、両電極間に配置された高密度固体電解質膜とを含む電池である。典型的な固体酸化物形燃料電池の場合、液体水素燃料で生じる可能性のある発熱反応による燃料と酸化剤との混合を避けるために、別個に閉鎖されたシステム内で、陽極は燃料に露出され、陰極は酸化剤に露出される。
電解質膜は通常、固体酸化物形燃料電池用途のセラミック酸素イオン伝導体から成る。ガス分離装置などの別の具体化では、固体膜は混合イオン電子伝導材(「MIEC」)から構成されてもよい。多孔質陽極は、電池の燃料側で電解質膜と接触するセラミックか、金属か、またはセラミック−金属複合材(「サーメット」)の層であってもよい。多孔質陰極は通常、混合イオン電子伝導(MIEC)金属酸化物、または電子伝導性金属酸化物(またはMIEC金属酸化物)とイオン伝導性金属酸化物の混合物の層である。
固体酸化物形燃料電池は通常、電解質膜のイオン伝導性を最大化するため、約900℃〜約1000℃の温度で動作する。適切な温度で、酸素イオンは電解質の結晶格子を容易に移動する。
各燃料電池は比較的小さな電圧を生成するので、システムの容量を増やすには、いくつかの燃料電池を対応付ける。このようなアレイまたはスタックは通常、管状または平面状の構造を有する。平面状構造は典型的には、平面状の陽極−電解質−陰極を導電性の相互接続上に溶着させ、直列に積み重ねる。しかしながら、平面的構造は、通常、ユニットの封止の複雑性と平面状スタックの連結のため、大きな安全性と信頼性の問題として認識される。支持管上に配置される電極と電解質層とを有する長い多孔質支持管を利用する管状構造は、システムに必要な封止の数を減少させる。燃料または酸化剤は、管または管の外装のチャネルを通じて導かれる。
高温(たとえば、約900〜1000℃などの800℃以上)電気化学装置の有用性は、複数の電池をまとめて接合する、あるいは個々の電池を電池ハウジングまたはマニホルドに接合する封止の質と頑強性に限定される。封止は通常、酸化剤/燃料/処理ガスの互いの分離、装置内のガスの封じ込め、封止面間の接合、電気的接続または絶縁の機能のうち1つ以上を提供する必要がある。当然、封止材は、システム内の他の材料のための封じ込めのソースであってはならない。単独の材料が、酸化、還元、または腐食環境における高騰した温度で、これらの機能をすべて実行することは困難である。
セラミック系接着剤、ガラス、ろう付け、およびマイカ圧縮封止など、多くの種類の封止材が高温電気化学装置での使用に考えられてきた。これらの材料はそれぞれ、必要な要件をすべて満たすことができない制限を有する。セラミック系接着剤は多孔性となりがちで、ガス封止を妨げる。ガラスは良好な初期の封止を提供するが、熱応力が招く亀裂や接合面との化学反応により寿命が短い。ろう付けは高価で導電性を有する。マイカ圧縮封止漏れ率が高く、亀裂により寿命が短い。よって、電気化学装置用の向上された封止ジョイントが必要とされる。
本発明は、高温電気化学装置用のジョイントにとって必要なすべての機能を提供するため、コンパクトな構造での材料の組み合わせを利用する。ジョイントを製造する方法も提供する。ジョイントは封止、構造上の一体性、および電気的接続および絶縁を提供する。
一側面では、ジョイントは、接合部材を互いに結合するセクション、気密性を提供する1つ以上の封止セクション、および各種接合部材間の電気的接続および/または電気的絶縁を提供するセクションを含む。各セクションは、動作寿命を延ばすためにさらに処理または被覆されてもよい。ジョイントは強力で、気密性を有し、幅広い温度での電力管理を提供する。ジョイントは、固体酸化物形燃料電池などの高温電気化学装置での使用に適する。
本発明の重要な特徴は、各種ジョイント機能を部分的または完全に分離することにより、コンパクトな容積内にすべての機能物質を含めつつ、全機能要件を満たすジョイントを製造するように各機能に適した材料と方法を組み合わせることができる点にある。従来、上述のジョイントの各種機能は、機能実体の物理的な分離を必要とした。ここで述べるコンパクトなジョイントは廉価であり、コンパクトな多電池構造を容易に製造し提供するものと予想される。
後述する本発明の具体的な実施形態の特に有利な特徴および技術には、複合絶縁部材(図2に示されるようなろう付け部と絶縁材料を含む)の複合CTEが電池の構成要素のCTEと類似になるような、ろう付け部と絶縁材料の厚みの選択が含まれる。さらに、ジョイント絶縁部材(D)と接触するジョイント金属ハウジングの荒い加工面が、ジョイントの強度を向上させることができる。場合によっては、ジョイント構造のろう付けを金属/金属焼結結合に置換することが有益かもしれない。
電気化学装置用の適切なジョイント構造は、金属ジョイントハウジングと、第1の多孔質電極と、固体電解質によって第1の多孔質電極と分離される第2の多孔質電極と、金属ジョイントハウジングと電解質および第2の電極との間に配置される絶縁部材とを有する。1つ以上のろう付け部は、第1の電極を金属ジョイントハウジングに構造的かつ電気的に接続し、第1の電極と第2の電極との間の気密封止を形成する。
以下、本発明の具体的な実施形態に詳細に言及する。具体的な実施形態の例を添付の図面に示す。本発明をこれらの具体的な実施形態と関連して説明するが、本発明がその具体的な実施形態に限定されるとみなすものではない。逆に、添付の特許請求の範囲に含まれる代替案、変更、および等価物を対象に含むものと意図される。以下の説明では、本発明をより理解し得るように種々の具体的な詳細について述べる。本発明は、これらの具体的な詳細の一部または全部がなくても実施可能である。別の例では、本発明を不要に曖昧にしないように十分既知な工程動作については詳細に説明しない。
本発明は、各種部材が異なる機能を実現する、ジョイント構成用の複数の部材を含む。ジョイントは、たとえば、多電池直列セグメントスタックを作製するために電気化学装置の複数の電池(一般的には、管状モジュール)を接合するのに有益である。ジョイントを本実施形態の観点で説明するが、これは例示を意図するもので、本発明の適用可能範囲を限定するものではない。本発明による電気化学装置用の適切なジョイント構造は、金属ジョイントハウジング、第1の多孔質電極、固体電解質によって第1の多孔質電極と分離される第2の多孔質電極、および、金属ジョイントハウジングと電解質および第2の電極との間に配置される絶縁部材を有する。1つ以上のろう付け部は、第1の電極を金属ジョイントハウジングに構造的かつ電気的に接続し、第1の電極と第2の電極との間の気密封止を形成する。
図1は、本発明によるジョイントのいくつかの一般的な特徴を示す。ジョイントの機能は、隣接する電池の機械的接合、大気1と大気2が混合しないような電池の封止、隣接する電池の電気的接合、および同一電池の互いの電極間の電気的絶縁を提供することを含む。ジョイントの好適な一つの構造配置を図1に示すが、同じ機能を満たす別の構造配置も本発明の範囲に含まれる。図2、3、4は、本発明によるジョイントの特定の別の態様を示す。各種ジョイント部材の機能と特徴を以下に要約する。
電気化学電池は一般的に、燃料電池アプリケーション内の多孔質陽極と多孔質陰極との間に挟まれたイオン伝導性電解質を備える。電気化学電池の例として図示のために燃料電池を使用しているが、電気化学電池は酸素発生器、合成ガス発生器または水素ガス分離器、および類似の装置でもよいことを理解し得る。
電気化学電池は、陽極支持型、陰極支持型、または電解質支持型のいずれであってもよい。電極支持型電気化学電池は、セラミック、セラミック金属複合物(サーメット)、または金属合金である電極支持部を有し得る。一実施形態では、電池はNi−YSZ/YSZまたはLSM/YSZのような二層で製造され、対向電極が二層の高温焼結後に塗布される。別の実施形態では、1つの高温ステップで、3層すべてが塗布され焼結される。たとえば、LSM/YSZ/LSMまたはLSM/YSZ/Ni−YSZの三層が1ステップで焼結される。
さらに、電極支持型構造は、種々の材料から成る多層または段階的構造および/または微細構造で、単なる同種の電極でなくてもよいことを理解し得る。たとえば、陰極支持型構造は、多孔質LSM+YSZの層が塗布される押出または射出成型多孔質LSM支持体から成り、その上にYSZ電解質膜および対向電極が塗布される。もしくは、Ni−YSZなどの多孔質触媒層が、フェライト鋼などの多孔質合金層とYSZなどの電解質層との間に配置される。
電気化学電池の好適な高さは、電極層の伝導率によって決定される。セラミック支持型構造の場合、電気化学電池は好ましくは約1〜約5cmの高さである。金属支持型電気化学電池構造の場合、電池は好ましくは約2〜約10cmの高さである。
陰極電極は好ましくは、陰極支持型実施形態の場合、約100〜約3000μmの厚さの円柱状または矩形状である。しかしながら、約150〜約2000μmの厚さの陰極層が特に好ましい。陽極支持型電気化学電池の場合、陰極は好ましくは薄膜として電解質の一面に塗布され接着されて、約50〜約1500μmの厚さの陰極電極を提供する。電極管と電解質の選択される厚さは、電極および電解質材料の熱膨張、電子伝導性、およびイオン伝導性に応じて変動可能であることを理解し得る。
本発明による好適な陰極電極材料は、サーメット、セラミック、および金属を含む。たとえば、適切なセラミック成分は、La1−xSrMn3−δ(1≧X≧0.05)(0.95≦y≦1.15)(「LSM」)(δは、理想的な化学量論比からのわずかな偏差を表す値として定義される)、La1−xSrCoO3−δ(1≧X≧0.10)(「LSC」)、La1−xSrFe3−δ(1≧X≧0.05)(0.95≦y≦1.15)(「LSF」)、SrCo1−xFe3−δ(0.30≧X≧0.20)、La0.6Sr0.4Co0.6Fe0.43−δ、Sr0.7Ce0.3MnO3−δ、LaNi0.6Fe0.43−δ、Sm0.5Sr0.5CoO3−δ、イットリア安定化ジルコニア(YSZ)、スカンジア安定化ジルコニア(SSZ)、(CeO0.8(Gd0.2(CGO)、La0.8Sr0.2Ga0.85Mg0.152.825(LSGM20−15)、(Bi0.75(Y0.25、およびアルミナなどである。
好適なLSM材料は、La0.8Sr0.2MnO、La0.65Sr0.30MnO3−δ、およびLa0.45Sr0.55MnO3−δを含む。サーメットを含む適切な金属成分は、遷移金属、Cr、Fe、Ag、および/または、タイプ405および409(11〜15%Cr)などの低クロムフェライト鋼、タイプ430および434、(16〜18%Cr)などの中クロムフェライト鋼、タイプ442、446、およびE−Brite(19〜30%Cr)などの高クロムフェライト鋼、Cr5Fe1Yなどのクロム系合金、Ni20Crなどのクロム含有Ni系合金、インコネル600(Ni76%、Cr15.5%、Fe8%、Cu0.2%、Si0.2%、Mn0.5%、およびC0.08%)を含むインコネル合金といった合金である。
電解質の極薄層は好ましくは陰極管に塗布される。電気化学電池の動作温度は、薄膜として蒸着されるイオンおよびイオン電子伝導性材料全体の抵抗損の減少のため、薄膜セラミック電解質および電極の使用によって低減できることが分かっている。一実施形態では、二層が同時焼成され、電極の多孔質構造に十分に結合するピンホール無しの高密度電解質膜が生成される。膜および基板材料の双方の焼結挙動は、電解質と電極材料の選択の際に検討される。たとえば、ガスが電解質層を横断するのを防ぐに十分な電解質密度を与えるために使用される温度と異なる温度、または、選択された電極材料の性質に応じて第1の電極を処理するのに使用される温度で第2の電極を焼成することが必要な場合がある。
薄膜製造のアプローチとして、物理的蒸気蒸着法、テープ圧延、ゾルゲル蒸着、スパッタリング、コロイド蒸着、遠心成形、スリップ鋳込、テープ鋳造、押出成形、スクリーン印刷、ブラッシング、テープ転写、同時押出成形、電気泳動蒸着、含浸塗布、エアゾール噴霧、減圧浸潤、プラズマ蒸着、電気化学蒸着、および当該技術におけるその他の多くの方法が当該技術で既知である。含浸塗布、エアゾール噴霧、およびスクリーン印刷が好ましい。多孔質支持体の結合と電解質の高密度化を確保するのに十分な温度で層を過熱することも、通常要求される。
薄膜を作製する方法は多いが、コロイド蒸着法を用いて薄膜を蒸着することが好ましい。本実施形態では、電解質材料は一般的に、水、イソプロパノール、およびその他の適切な有機溶媒などの液状媒体内の粉末材料の懸濁物として塗布される。懸濁物は、様々な方法、たとえば、エアゾール噴霧、含浸塗布、電気泳動蒸着、減圧浸潤、またはテープ鋳造によって電極層の表面に塗布することができる。典型的には、所望の酸化物の未加工薄膜が、未焼結または部分的に焼成された基板上にコロイド状に蒸着される。さらに、電極の多孔への過剰な浸潤なしに、膜を基板表面に十分に結合させ、電解質と電極との間のインタフェースで最小限の分極が行われるべきである。
コロイド処理は、廉価で拡大縮小可能であり、低温で高性能を発揮する装置を生成できるので好ましい。しかしながら、多孔質基板上への高密度電解質層のコロイド蒸着は、材料を処理温度で化学的に適合させる必要があり、層間に十分な熱膨張の整合がなければならない。
装置動作中の低い過電圧を確保するには、高多孔性で適切な微細構造を有する、電極基板上のピンホールおよび亀裂のない厚さ約1〜約50μmの電解質30の高密度層が一般的に好ましい。典型的な燃料電池アプリケーションの場合、厚さ約10〜約30μmの電解質層が好ましい。
電解質材料は好ましくは、イットリア安定化ジルコニア(YSZ)(たとえば、(ZrO(Y、(0.88≧X≧0.97)、(0.03≧y≧0.12))などの金属酸化物(セラミック)粉末の薄層から成る。好適な材料は、市販されている(ZrO0.92(Y0.08または(ZrO0.90(Y0.10である。その他の可能な電解質材料は、(ZrO0.9(Sc0.1スカンジア安定化ジルコニア(SSZ)、(CeO0.8(Gd0.2(CGO)、La0.8Sr0.2Ga0.85Mg0.152.825(LSGM20−15)、および(Bi0.75(Y0.25などである。もしくは、電解質材料は、混合イオン電子伝導体、たとえば、SrCo1−xFe3−δ(0.30≧X≧0.20)、La0.6Sr0.4Co0.6Fe0.43−δ、Sm0.5Sr0.5CoO、およびLa1−xSrCoO3−δである。このような構造は、たとえば、酸素分離装置での使用を見出すこともできる。
陰極支持型電気化学電池上の陽極電極は好ましくは、約50〜500μm厚の薄膜である。しかしながら、約150〜約300μm厚の電極層が好ましく、陽極支持型電気化学電池では、約250〜約2500μm厚の陽極が好ましい。
電極および電解質材料は好ましくは整合され、塗布材料は電極、電解質材料および相互連結材料の熱膨張、電子伝導性、およびイオン伝導性特性に基づき選択される。さらに、電解質の膜厚は、ガス不浸透性を有し、機械的一体性を保持する(たとえば、動作および休止温度の範囲にさらされたときの亀裂に抵抗する性能)電解質材料の性能に依存する。
金属ジョイントハウジングは、典型的な電極および電解質材料に整合する熱膨張を有する廉価なフェライト鋼材料で構成することができる。金属ジョイントハウジングに使用される金属は、Ni、Cu、Niを含有する合金、Ni超合金、Cuを含有する合金、Feを含有する合金、ステンレス鋼、Crを含有するFe合金、YまたはLaなどの反応素子を含有するFe−Cr合金、AISI304または316などのオーステナイト鋼、AISI430または446などのフェライト鋼、Alを含有する合金、AlおよびYなどの反応素子を含有するFe−Cr合金、0.1〜3.0wt%のMnを含有するFe−Cr合金、12〜30wt%のCrを含有するFe−Cr合金、16〜26wt%のCrを含有するFe−Cr合金、18〜22wt%のCrと0.5〜2.0wt%のMnと0.1〜1.0wt%のYとを含有するFe系合金を含むが、それらに限定されない。ゾルゲル蒸着、蒸気蒸着、プラズマ噴霧、めっき、またはその他の当該技術において既知な手段による金属の一部または全部の表面処理も適切である。
図1に示されるように、1つの電池は、電極1、電極2、および電解質を備える。電極1および2は互いに電気的に絶縁されていなければならない。電極1は前の電池の電極2に電気的に接続され、電極2は次の電池の電極1に電気的に接続される。図1に示されるジョイントは以下の特徴も含む。
金属ジョイントハウジング:上述したように、ジョイントの構造上の支持と、隣接する電池間の電気的接続を提供する。絶縁部材(D)に接触する粗面は、特定の実施形態において(たとえば、絶縁体が接着剤である場合)ジョイントの強度を高めることができる。該表面は、適所にろう付けられた絶縁体の場合、粗くなくてもよい。
A.粗面化は、サンドブラスト、化学エッチング、金属粉末上の焼結、またはきざみ付けなどの様々な方法により達成可能である。
B.ろう付け:大気1(電極1で)および大気2(電極2で)が混合しないように、電極1と金属ハウジング(A)との間の結合と電気的接続を提供する。Ag、Au、Cu、またはNi合金に基づくろう付け部、あるいはアルミナ、シリカ、またはチタニアなどのセラミックと混合されるろう付け合金、あるいは、より好ましくは、6ppm/K以下の熱膨張係数を有する微粒子状または繊維状のろう付け充填材(たとえば、チタン酸アルミニウム/マグネシウムもしくはタングステン酸ジルコニウム)が好ましい。ろう付け部は、ワイヤまたはフォイル、あるいはペーストまたは塗料などの母材として塗布することができる。ペーストまたは塗料は通常、シリンジ、スプレー、ブラシ、ローラ、注入、またはスクリーン印刷により塗布される。
C.ろう付けキャップ:ろう付け(B)の大気1への露出を低減する。大気1が酸化または腐食性である場合、これが特に重要である。ろう付けキャップは、セラミック接着剤、ガラスシーラントなどで製造することができる。ろう付け(B)が大気1で安定している場合、ろう付けキャップは不要である。
D.絶縁部材:電極2および金属ジョイントハウジング(A)間の絶縁を提供することにより電気的短絡を防止する。絶縁部材に孔がない場合、大気1および大気2の混合を防止するのに役立つ。絶縁部材が金属ジョイントハウジング(A)および電極2および/または電解質を結合する場合、電池と金属ジョイントハウジング(A)の機械的接合に役立つ。セラミックまたはガラスベースの接着剤、適所に嵌合またはろう付け可能な高密度または多孔質セラミック部材、またはガラス部材などの様々な材料を絶縁部材として使用することができる。
1つの電池の金属ジョイントハウジングは、前の電池に接合させることができる。すなわち、ろう付けによって、直列の複数の電池(直列セグメントデザイン)を作成することができる。図1に示されるように、多孔質絶縁部材の場合、ろう付け部(B)はガス封止のみを担う。高密度絶縁部材の場合、絶縁体自体がガス封止に役立つ。たとえば、ガラス絶縁体(たとえば、SiOまたはAl/SiOベースのガラス)は、電池および金属ジョイントハウジング(A)に接着させることができる、あるいは、図2および4に示されるようにセラミック絶縁体(たとえば、Al)は金属ジョイントハウジングおよび電池にろう付けすることができる。
本実施形態では、電解質はろう付け部に接触する。ろう付け部と電解質との間の熱膨張の不整合は電解質を亀裂させ、大気1と2を混合させるため、これが脆弱性の原因となる可能性がある。電解質層の強化のためにその組成を改良する、あるいはジョイントの近傍でより強固な材料と完全に置き換えることも可能である。たとえば、イットリア安定化ジルコニア(YSZ)電解質の場合、電池形成工程中に、Alを電解質と混合させることができる。これによって、電解質の伝導率は幾分減少するが、亀裂への抵抗は大幅に増す。もしくは、電解質の組成は、電池内部で豊富なYSZからろう付け近傍で豊富なAlまで変化させることができる。
電池および金属ジョイントハウジング(A)の成分は、類似の熱膨張係数(CTE)を有するように選択される。このため、特に起動やシャットダウンなどの温度変動中に、装置内の熱応力が低減する。たとえば、SOFCでは、成分のすべてが電解質のCTE(すなわち、YSZの場合、10.5ppm/K)に整合される。Alなどの多くの適切な絶縁材料はYSZのCTEよりも低いCTEを有するが、大部分のろう付け材料はより高いCTEを有する。したがって、(図2および4に示されるようなろう付け部および絶縁材料を備える)複合絶縁部材の複合CTEが電池部品のCTEに類似するように、ろう付け部および絶縁材料の厚さを選択することが好ましい。たとえば、0.5mmのアルミナ絶縁部材が、0.2mmのろう付け材料にろう付けされる。
絶縁部材が接着剤を備える場合、結合を向上させるため、接着剤によって接合される面が粗加工されるか、多孔性であるか、酸化されるか、あるいは下地層で被覆されることが好ましい。表面処理がラップジョイントのせん断強度に及ぼす効果は、絶縁微粒子を充填された燐酸塩ベースの接着剤バインダを用いる430ステンレス鋼ストリップを接合することによって発揮される。その結果を以下の表に示す。明らかに、いずれの表面処理でもせん断強度が向上されている。多孔質金属支持型電極(たとえば、電極2)の表面は、当然、焼結面に類似する。したがって、絶縁接着剤と電極2との結合は強くなると予想される。金属ジョイントハウジングの処理によって、図1に示される構造配置の場合のジョイント強度の向上が予想される。適切な処理は、化学エッチングまたは酸化、研磨、サンドブラスト、スクライビング、またはきざみ付けなどを含むが、それらに限定されない。
Figure 2008522370
図2および3は、図1を参照して概説される本発明の実施形態の代替案を示し、上述の一般的な側面の多くを含む。図2では、(第2の電気化学電池の)第1の電極は、ろう付け部1によって構造的かつ電気的に金属ジョイントハウジングに接続され、電極1と電極2との間の気密封止が絶縁部材の両側に一対のろう付け部(ろう付け部2,3)によって実現されている。
図3では、第1の電極が、ろう付け部1により構造的かつ電気的に金属ジョイントハウジングに接続される。しかしながら、この実施形態では、ろう付け部が電解質と接触するように延在され、絶縁部材の両側にろう付け部2,3が存在するかどうかにかかわらず、電極1および2間の気密封止を実現する。絶縁部材を電解質および金属ハウジングに封止するろう付け部がない場合、絶縁部材を浮動させることができ、絶縁部材と電解質との間のCTE不整合の問題が回避される。
本発明によるジョイントを含む金属支持SOFCは、以下のように組み立てることができる。
[電池アセンブリ]
1.電極2の未焼成(未焼結)体を組み立てる
金属支持体を形成する
多孔質YSZ中間層を塗布する
2.電極2に電解質未焼結体を噴霧する
3.1100〜1400℃(典型的には1300℃)の還元雰囲気内で電極2と電解質とを同時焼結する
4.電極1の未焼結体を電解質に塗布する
多孔質YSZ中間層を塗布する
集電材(化粧金属)を塗布する
5.1100〜1400℃(典型的には1300℃)の還元雰囲気内で電池構造全体を焼結する
電池構造が完成する(後に触媒を浸潤させる)。本明細書に記載された電池アセンブリのさらなる詳細は譲受人共通の米国特許第6,605,316号に記載され、該特許はあらゆる目的のため全文を引用することにより本明細書に組み込まれる。なお、ステップ3は任意である(すなわち、5層すべてが1ステップで同時焼結される)。ステップ3は、電解質層を電極1で被覆する前に電解質層の検査/品質管理を可能にする。
[ジョイントアセンブリ]
6.絶縁部材Dを使用して金属ハウジングAを電池に接合する
部材を配置する
部材Dが接着剤の場合:硬化させる(大気中の、20〜350℃の範囲で様々な硬化プロトコルで)
部材Dが適所にろう付けされた高密度スペーサの場合:硬化ステップは不要であり、接合は後述のろう付けステップ8間で生じる
7.ろう付け合金ペースト/粉末/プリフォームを配置する(ステップ7は、ステップ6のアセンブリ中に実行することもできる)
8.ろう付け融点(すなわち、銀ベースのろう付けの場合、800〜1100℃)を5〜150℃超える、典型的には不活性/還元、あるいは酸化雰囲気下でろう付けする
9.キャップを塗布する(上述するように、ろう付け材料の性質に応じて任意である)
直列構造におけるセグメントの次の電池で電極2を金属ジョイントハウジング(A)に接続するため、ろう付けは金属/金属焼結結合と置き換えてもよい。電極2は、2004年11月30日に出願された米国仮特許出願第60/632,030号「異種材料の接合」の優先権を主張する、2005年11月29日に出願された同時係属国際特許出願の「異種材料の接合」に記載されたような装飾法および焼結法を用いて、同じ電池内で絶縁部材(D)に結合させることができる。上記出願の開示は引用により本明細書に組み込まれる。ステップ7、8は、ステップ5のような別の焼結ステップと置き換えることができる。電池アセンブリステップ中にこれを組み込むことが可能である。必要なステップの順序は任意であり、特定の材料セット用に調節される。
[触媒作製]
触媒は、電池アセンブリに浸潤させる、あるいは組み込むことができる。以下、具体的な実施形態による触媒の作製に関する情報を記載する。触媒(特に陰極/電極1)は、ろう付けまたは金属/金属焼結に必要な厳しい条件に通常対処することができないため、触媒はこれらのステップの完了後に添加される。
10.触媒先駆物質材料を多孔質YSZおよび支持体/集電材に浸潤させる
11.触媒を形成する(通常は、大気中で600〜800℃)
触媒の形成は別個のステップでもよいし、あるいは、電池の第1の動作中に行ってもよい
本明細書に記載するような触媒の作成に関するさらなる詳細は、あらゆる目的のために全文を引用することにより本明細書に組み込まれる、共通譲渡の米国特許第6,682,842号に記載されている。
本発明のジョイントは、これに制限されないが、以下のような用途を有する。
1.電気化学装置の封止/接合
2.電子装置の封止/接合
3.液体移送装置(たとえば、熱交換器、ガス分離器、水脱塩装置およびガスマニホルド)の封止/接合。
結論
よって、本発明は、高温電気化学装置用のジョイントに必要なすべての機能を提供するコンパクトな構造における材料の組み合わせを含む。また、ジョイントを製造する方法が提供される。ジョイントは、封止、構造上の一体性、および電気的接続および絶縁を提供する。
本発明の理解を明瞭化させるために説明したが、添付の特許請求の範囲内で変更または変形可能であることを理解し得る。本発明の工程と構造を実行する代替方法が多数存在する。したがって、本実施形態は限定的ではなく例示的なものとみなすべきであり、本発明は本明細書に記載される詳細に限定されない。なお、本明細書に記載されるすべての参照文献はあらゆる目的により本明細書に組み込まれる。
固体酸化物形燃料電池スタックで使用されるような、本発明による封止ジョイントの一般的な特徴を示す。 固体酸化物形燃料電池スタックで使用されるような、本発明による封止ジョイントの別の具体的な実施形態の断面図である。 固体酸化物形燃料電池スタックで使用されるような、本発明による封止ジョイントの別の具体的な実施形態の断面図である。 本発明の一側面による適所にろう付けされた高密度絶縁体の断面の光学微細画像である。

Claims (21)

  1. 電気化学装置用のジョイントであって、
    金属ジョイントハウジングと、
    第1の多孔質電極と、
    固体電解質によって前記第1の多孔質電極と分離される第2の多孔質電極と、
    前記金属ジョイントハウジングと前記電解質および前記第2の電極との間に配置される絶縁部材と、
    前記第1の電極と前記金属ジョイントハウジングとを構造的かつ電気的に接続し、前記第1の電極と前記第2の電極との間の気密封止を形成する1つ以上のろう付け部と、
    を備えるジョイント。
  2. 前記第1の電極と前記金属ジョイントハウジングとの間の構造的かつ電気的な接続と、前記第1の電極と前記第2の電極との間の気密封止との両方が、前記第1の電極、前記金属ジョイントハウジングおよび前記電解質を接続する単一のろう付け部により実現されている、請求項1記載のジョイント。
  3. 前記絶縁部材が高密度である、請求項1記載のジョイント。
  4. 前記第1の電極と前記金属ジョイントハウジングとの間の構造的かつ電気的な接続が第1のろう付け部によって実現され、前記第1の電極と前記第2の電極との間の気密封止が前記絶縁部材を前記電解質に接続する第2のろう付け部と、前記絶縁部材を前記金属ジョイントハウジングに接続する第3のろう付け部とによって実現されている、請求項3記載のジョイント。
  5. 前記第2のろう付け部は前記第2の電極も接続する、請求項4記載のジョイント。
  6. 前記第1の電極は金属を含む、請求項1乃至5のいずれか一項記載のジョイント。
  7. 前記第2の電極は金属を含む、請求項1乃至6のいずれか一項記載のジョイント。
  8. 前記電極の金属はステンレス鋼またはAg集電材を含む、請求項6または7記載のジョイント。
  9. 前記集電材はステンレス鋼である、請求項8記載のジョイント。
  10. 前記絶縁部材は、高密度セラミック、多孔質セラミック、セラミック系接着剤、ガラス系接着剤、およびガラス部材から成るグループより選択された材料を含む、請求項1または2記載のジョイント。
  11. 前記電気化学電池が直列電池スタックの一部をなし、前記金属ジョイントハウジングが隣接する電池に接続される、請求項1乃至10のいずれか一項記載のジョイント。
  12. 前記1つ以上のろう付け部が、Ag、Au、Cu、Ni合金、および1つ以上のセラミック充填材と混合されたろう付け合金から成るグループから選択された材料を含む、請求項1乃至11のいずれか一項記載のジョイント。
  13. 前記1つ以上のセラミックろう付け充填材が6ppm/K以下の熱膨張係数を有する、請求項12記載のジョイント。
  14. 前記充填材が、チタン酸アルミニウム/マグネシウム、タングステン酸ジルコニウム、およびそれらの混合物から成るグループから選択されたものである、請求項13記載のジョイント。
  15. 前記電解質の組成は組成強化のために改良されているか、あるいはジョイントの近傍でより強固な材料と置換されている、請求項1乃至14のいずれか一項記載のジョイント。
  16. 前記電解質は、Alによって改良されたイットリア安定化ジルコニア(YSZ)を含む、請求項15記載のジョイント。
  17. 前記絶縁部材が接着剤であり、前記絶縁部材と接触する前記金属ジョイントハウジングの表面が粗面化されている、請求項10記載のジョイント。
  18. 前記電気化学装置が固体酸化物形燃料電池である、請求項1乃至17のいずれか一項記載のジョイント。
  19. 前記電気化学装置が管状形式である、請求項1乃至18のいずれか一項記載のジョイント。
  20. 高温電気化学装置用のジョイントを製造する方法であって、
    金属ジョイントハウジングと、第1の多孔質電極と、固体電解質によって第1の多孔質電極と分離される第2の多孔質電極と、前記金属ジョイントハウジングと前記電解質および前記第2の電極との間に配置される絶縁部材とを準備すること、
    前記第1の電極と前記金属ジョイントハウジングとを構造的かつ電気的に接続し、前記第1の電極と前記第2の電極との間の気密封止を形成する1つ以上のろう付け部を形成すること、
    を備える方法。
  21. 前記1つ以上のろう付け部が1回のろう付け動作で形成される、請求項20記載の方法。
JP2007543579A 2004-11-30 2005-11-28 電気化学装置用封止ジョイント構造 Pending JP2008522370A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US63201504P 2004-11-30 2004-11-30
PCT/US2005/042995 WO2006127045A2 (en) 2004-11-30 2005-11-28 Sealed joint structure for electrochemical device

Publications (1)

Publication Number Publication Date
JP2008522370A true JP2008522370A (ja) 2008-06-26

Family

ID=37452499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007543579A Pending JP2008522370A (ja) 2004-11-30 2005-11-28 電気化学装置用封止ジョイント構造

Country Status (12)

Country Link
US (1) US8445159B2 (ja)
EP (1) EP1825541A4 (ja)
JP (1) JP2008522370A (ja)
KR (1) KR20070083893A (ja)
CN (1) CN100530766C (ja)
AU (1) AU2005332026B2 (ja)
CA (1) CA2627863A1 (ja)
MY (1) MY147808A (ja)
NO (1) NO20073309L (ja)
RU (1) RU2389110C2 (ja)
TW (1) TW200642142A (ja)
WO (1) WO2006127045A2 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004297A (ja) * 2007-06-25 2009-01-08 Nippon Telegr & Teleph Corp <Ntt> インターコネクタ及び固体酸化物形燃料電池
JP4872027B1 (ja) * 2010-11-01 2012-02-08 日本碍子株式会社 固体酸化物型燃料電池
CN102534297A (zh) * 2010-12-16 2012-07-04 北京有色金属研究总院 一种热膨胀系数呈梯度变化的合金材料及其制备方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6605316B1 (en) 1999-07-31 2003-08-12 The Regents Of The University Of California Structures and fabrication techniques for solid state electrochemical devices
AU2005327925B2 (en) 2004-11-30 2011-01-27 The Regents Of The University Of California Joining of dissimilar materials
JP2008522370A (ja) 2004-11-30 2008-06-26 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア 電気化学装置用封止ジョイント構造
AU2005327164B2 (en) * 2004-11-30 2010-12-02 The Regents Of The University Of California Braze system with matched coefficients of thermal expansion
WO2008016345A2 (en) 2006-07-28 2008-02-07 The Regents Of The University Of California Joined concentric tubes
MY149355A (en) * 2007-07-25 2013-08-30 Univ California High temperature electrochemical device with interlocking structure
AU2008349842A1 (en) * 2008-02-04 2009-08-13 The Regents Of The University Of California Cu-based cermet for high-temperature fuel cell
DE102008013281A1 (de) * 2008-03-08 2009-09-17 Forschungszentrum Jülich GmbH Dichtungsanordnung für Hochtemperatur-Brennstoffzellenstapel
MY147805A (en) * 2008-04-18 2013-01-31 Univ California Integrated seal for high-temperature electrochemical device
DE102008049608A1 (de) * 2008-09-30 2010-04-01 Siemens Aktiengesellschaft Verfahren zur Herstellung eines Interkonnektors für Hochtemperatur-Brennstoffzellen, zugehörige Hochtemperatur-Brennstoffzelle sowie damit aufgebaute Brennstoffzellenanlage
FR2940857B1 (fr) 2009-01-07 2011-02-11 Commissariat Energie Atomique Procede de fabrication d'un electrolyseur haute temperature ou d'une pile a combustible haute temperature comprenant un empilement de cellules elementaires
US7855030B2 (en) * 2009-05-01 2010-12-21 Delphi Technologies, Inc. Inhibitor for prevention of braze migration in solid oxide fuel cells
KR101109233B1 (ko) * 2009-08-04 2012-01-30 삼성전기주식회사 집전가능한 매니폴드를 구비한 연료전지
US20110065019A1 (en) * 2009-09-15 2011-03-17 Shunsuke Taniguchi Combined cell module for solid oxide fuel cell
US20110111309A1 (en) * 2009-11-10 2011-05-12 Point Source Power, Inc. Fuel cell system
JP5732798B2 (ja) * 2010-09-29 2015-06-10 住友大阪セメント株式会社 セラミック部材
CN102290555A (zh) * 2011-07-18 2011-12-21 深圳市豪鹏科技有限公司 正极帽、钢壳及电池
US10105795B2 (en) 2012-05-25 2018-10-23 General Electric Company Braze compositions, and related devices
CN104604005B (zh) * 2012-08-31 2017-03-01 日本特殊陶业株式会社 带隔板的燃料电池单元及其制造方法和燃料电池堆
DE102013200594A1 (de) * 2013-01-16 2014-07-31 Siemens Aktiengesellschaft Verfahren zur Herstellung einer Elektroden-Elektrolyt-Einheit für einen wiederaufladbaren elektrischen Energiespeicher, insbesondere einen Metalloxid-Luft-Energiespeicher, mit einem zwischen zwei Elektroden angeordneten Elektrolyten
US9786043B2 (en) * 2014-12-03 2017-10-10 Bloom Energy Corporation Inspection method for the effect of composition on the bond strength of a metallized alumina ceramic
MX2024008104A (es) * 2021-12-29 2024-07-19 Topaz Llc Topaz Llc Metodo de fabricacion de una bateria de pilas de combustible tubulares de oxido solido y una bateria fabricada por el metodo reivindicado.
WO2024191933A1 (en) * 2023-03-12 2024-09-19 Acs Industries, Inc. All-metal knitted spacer mesh for electrochemical cells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916695A (ja) * 1982-07-20 1984-01-27 Toyota Motor Corp セラミツク繊維を含有するろう付用溶加材
JP2002289249A (ja) * 2001-03-22 2002-10-04 National Institute Of Advanced Industrial & Technology 固体電解質型燃料電池スタック構造体
JP2003288913A (ja) * 2002-03-27 2003-10-10 Toto Ltd 固体酸化物燃料電池

Family Cites Families (159)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126311A (en) 1964-03-24 Laminated plastic article and method wherein
US3324543A (en) 1965-03-26 1967-06-13 Charles I Mcvey Pressure bonded ceramic-to-metal gradient seals
US3402230A (en) 1965-06-21 1968-09-17 Gen Electric Method of producing tubular fuel cell stack
US3526646A (en) 1968-02-12 1970-09-01 American Home Prod 5,5'-disulfamoylbenzophenones
FR1585403A (ja) * 1968-04-19 1970-01-23
ZA702110B (en) 1969-04-18 1971-11-24 Nat Standard Co Metal bonding
BE749879A (fr) 1969-05-16 1970-11-04 Comp Generale Electricite Perfectionnements aux piles et batteries de piles a combustibles fonctionnant a haute temperature
CA941643A (en) 1971-03-25 1974-02-12 Union Carbide Corporation Metal porous abradable seals
BE792075A (fr) 1971-11-30 1973-05-29 Union Carbide Corp Elements metalliques poreux a revetement ceramique et leur procede de realisation
US4035547A (en) 1974-02-26 1977-07-12 William C. Heller Bonding element having separate heating and agitating particles
JPS59100854A (ja) 1982-12-01 1984-06-11 Mazda Motor Corp 広域空燃比センサ−
JPS59232693A (ja) 1983-06-17 1984-12-27 Ngk Spark Plug Co Ltd セラミツクと金属等との接合用クラツドろう材及びこれを用いたセラミツクと金属等との複合体
GB8332639D0 (en) 1983-12-07 1984-01-11 Atomic Energy Authority Uk Steel:ceramic seals
JPS60131875A (ja) 1983-12-20 1985-07-13 三菱重工業株式会社 セラミツクと金属の接合法
US4578214A (en) 1984-02-06 1986-03-25 C F Braun & Co. Process for ammonia syngas manufacture
US4560607A (en) 1984-06-07 1985-12-24 The Duriron Company, Inc. Method of joining materials by mechanical interlock and article
JPS61158839A (ja) 1984-12-28 1986-07-18 Okuno Seiyaku Kogyo Kk ガラス組成物
US4562124A (en) 1985-01-22 1985-12-31 Westinghouse Electric Corp. Air electrode material for high temperature electrochemical cells
DE3505739A1 (de) * 1985-02-20 1986-08-21 Th. Kieserling & Albrecht Gmbh & Co, 5650 Solingen Vorrichtung zum rundbiegen von konischen draehten
US5633081A (en) 1986-03-24 1997-05-27 Ensci Inc. Coated porous substrates
US4687717A (en) 1986-07-08 1987-08-18 The United States Of America As Represent By The United States Department Of Energy Bipolar battery with array of sealed cells
EP0261343A3 (de) 1986-08-23 1989-04-26 Blome GmbH &amp; Co. Kommanditgesellschaft Verfahren zur Schaffung von Profilierungsvorsprüngen auf kunststoffummantelten Stahlteilen sowie mit Profilierungsvorsprüngen versehene, kunststoffummantelte Stahlteile
SU1407675A1 (ru) 1987-01-19 1988-07-07 Предприятие П/Я В-8402 Способ изготовлени составных изделий из порошка
US5306411A (en) 1989-05-25 1994-04-26 The Standard Oil Company Solid multi-component membranes, electrochemical reactor components, electrochemical reactors and use of membranes, reactor components, and reactor for oxidation reactions
US4942999A (en) * 1987-08-31 1990-07-24 Ngk Insulators, Inc. Metal-ceramic joined composite bodies and joining process therefor
US4847172A (en) 1988-02-22 1989-07-11 Westinghouse Electric Corp. Low resistance fuel electrodes
US5013612A (en) 1989-11-13 1991-05-07 Ford Motor Company Braze material for joining ceramic to metal and ceramic to ceramic surfaces and joined ceramic to metal and ceramic to ceramic article
US5085720A (en) 1990-01-18 1992-02-04 E. I. Du Pont De Nemours And Company Method for reducing shrinkage during firing of green ceramic bodies
DE4002951A1 (de) 1990-02-01 1991-08-08 Medicoat Ag Niederrohrdorf Festelektrolyt - brennstoffzelle und verfahren zu ihrer herstellung
US5127969A (en) 1990-03-22 1992-07-07 University Of Cincinnati Reinforced solder, brazing and welding compositions and methods for preparation thereof
US5366770A (en) 1990-04-17 1994-11-22 Xingwu Wang Aerosol-plasma deposition of films for electronic cells
US5043229A (en) 1990-06-14 1991-08-27 Gte Products Corporation Brazed ceramic-metal composite
US5219828A (en) 1990-10-01 1993-06-15 Sharp Kabushiki Kaisha Method for fabricating oxide superconducting coatings
RU1822388C (ru) 1990-10-23 1993-06-15 Тсоо "Уникум" Способ изготовлени биметаллических труб
DE4203245C2 (de) 1991-02-07 1994-03-24 Yoshida Kogyo Kk Festelektrolytbrennstoffzelle
US5236787A (en) 1991-07-29 1993-08-17 Caterpillar Inc. Thermal barrier coating for metallic components
US5338623A (en) 1992-02-28 1994-08-16 Ceramatec, Inc. Series tubular design for solid electrolyte oxygen pump
US5750279A (en) 1992-02-28 1998-05-12 Air Products And Chemicals, Inc. Series planar design for solid electrolyte oxygen pump
US5279909A (en) 1992-05-01 1994-01-18 General Atomics Compact multilayer ceramic-to-metal seal structure
US5616223A (en) 1992-05-11 1997-04-01 Gas Research Institute Mixed ionic-electronic conducting composites for oxygen separation and electrocatalysis
US5240480A (en) 1992-09-15 1993-08-31 Air Products And Chemicals, Inc. Composite mixed conductor membranes for producing oxygen
US5735332A (en) 1992-09-17 1998-04-07 Coors Ceramics Company Method for making a ceramic metal composite
US5626914A (en) * 1992-09-17 1997-05-06 Coors Ceramics Company Ceramic-metal composites
JPH06103990A (ja) 1992-09-18 1994-04-15 Ngk Insulators Ltd 固体電解質型燃料電池及びその製造方法
AU675122B2 (en) 1993-03-20 1997-01-23 Acumentrics Corporation Solid oxide fuel cell structures
DE4314323C2 (de) 1993-04-30 1998-01-22 Siemens Ag Hochtemperaturbrennstoffzelle mit verbesserter Festelektrolyt/Elektroden-Grenzfläche und Verfahren zur Herstellung eines Mehrschichtaufbaus mit verbesserter Festelektrolyt/Elektroden-Grenzfläche
CA2163647C (en) 1993-05-25 2000-10-31 Eugene A. Sweeney Method for obtaining mechanical lock between surfaces
US5409784A (en) 1993-07-09 1995-04-25 Massachusetts Institute Of Technology Plasmatron-fuel cell system for generating electricity
US5589285A (en) 1993-09-09 1996-12-31 Technology Management, Inc. Electrochemical apparatus and process
JPH07202063A (ja) 1993-12-28 1995-08-04 Toshiba Corp セラミックス回路基板
US5441825A (en) 1994-01-24 1995-08-15 Westinghouse Electric Corporation Battery electrode compression mechanism
US5599383A (en) 1995-03-13 1997-02-04 Air Products And Chemicals, Inc. Tubular solid-state membrane module
US5993986A (en) 1995-11-16 1999-11-30 The Dow Chemical Company Solide oxide fuel cell stack with composite electrodes and method for making
US5670270A (en) 1995-11-16 1997-09-23 The Dow Chemical Company Electrode structure for solid state electrochemical devices
US5753385A (en) 1995-12-12 1998-05-19 Regents Of The University Of California Hybrid deposition of thin film solid oxide fuel cells and electrolyzers
EP0788175B1 (de) 1996-02-02 2000-04-12 Sulzer Hexis AG Hochtemperatur-Brennstoffzelle mit einem Dünnfilm-Elektrolyten
US5686198A (en) 1996-02-29 1997-11-11 Westinghouse Electric Corporation Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells
US5741605A (en) * 1996-03-08 1998-04-21 Westinghouse Electric Corporation Solid oxide fuel cell generator with removable modular fuel cell stack configurations
US5787578A (en) 1996-07-09 1998-08-04 International Business Machines Corporation Method of selectively depositing a metallic layer on a ceramic substrate
US5976216A (en) 1996-08-02 1999-11-02 Omg Americas, Inc. Nickel-containing strengthened sintered ferritic stainless steels
US5938822A (en) 1997-05-02 1999-08-17 Praxair Technology, Inc. Solid electrolyte membrane with porous catalytically-enhancing constituents
US6296910B1 (en) * 1997-05-29 2001-10-02 Imperial College Of Science, Technology & Medicine Film or coating deposition on a substrate
US5908713A (en) 1997-09-22 1999-06-01 Siemens Westinghouse Power Corporation Sintered electrode for solid oxide fuel cells
US6217732B1 (en) 1997-09-23 2001-04-17 Abb Business Services Inc. Coated products
US6492050B1 (en) 1997-10-01 2002-12-10 Acumentrics Corporation Integrated solid oxide fuel cell and reformer
US6200541B1 (en) 1997-10-28 2001-03-13 Bp Amoco Corporation Composite materials for membrane reactors
DE69829933T2 (de) 1997-11-25 2005-09-29 Japan Storage Battery Co. Ltd., Kyoto Elektrode aus Festpolymerelektrolyt-Katalysator Kompositen, Elektrode für Brennstoffzellen und Verfahren zur Herstellung dieser Elektroden
JP3315919B2 (ja) 1998-02-18 2002-08-19 日本碍子株式会社 2種類以上の異種部材よりなる複合部材を製造する方法
GB9807977D0 (en) 1998-04-16 1998-06-17 Gec Alsthom Ltd Improvements in or relating to coating
WO1999066570A1 (en) * 1998-06-15 1999-12-23 Bi-Patent Holding S.A. High temperature electrochemical cell including a seal
WO1999065642A1 (en) * 1998-06-15 1999-12-23 Bi-Patent Holding S.A. Brazing composition and seal for electrochemical cell
US7771547B2 (en) 1998-07-13 2010-08-10 Board Of Trustees Operating Michigan State University Methods for producing lead-free in-situ composite solder alloys
US6188582B1 (en) 1998-12-18 2001-02-13 Geoffrey Peter Flexible interconnection between integrated circuit chip and substrate or printed circuit board
US6358567B2 (en) 1998-12-23 2002-03-19 The Regents Of The University Of California Colloidal spray method for low cost thin coating deposition
US6589680B1 (en) 1999-03-03 2003-07-08 The Trustees Of The University Of Pennsylvania Method for solid oxide fuel cell anode preparation
US6368383B1 (en) 1999-06-08 2002-04-09 Praxair Technology, Inc. Method of separating oxygen with the use of composite ceramic membranes
JP3792440B2 (ja) 1999-06-25 2006-07-05 日本碍子株式会社 異種部材の接合方法、および同接合方法により接合された複合部材
US6605316B1 (en) 1999-07-31 2003-08-12 The Regents Of The University Of California Structures and fabrication techniques for solid state electrochemical devices
US7163713B2 (en) 1999-07-31 2007-01-16 The Regents Of The University Of California Method for making dense crack free thin films
US7553573B2 (en) 1999-07-31 2009-06-30 The Regents Of The University Of California Solid state electrochemical composite
US6682842B1 (en) 1999-07-31 2004-01-27 The Regents Of The University Of California Composite electrode/electrolyte structure
US6372078B1 (en) 1999-09-09 2002-04-16 Ronnie L. Melchert Method for bonding polyester to plastic and resultant product
US6270642B1 (en) 1999-09-30 2001-08-07 The Penn State Research Foundation Fabrication of zirconia electrolyte films by electrophoretic deposition
KR100344936B1 (ko) 1999-10-01 2002-07-19 한국에너지기술연구원 연료극 지지체식 원통형 고체산화물 연료전지 및 그 제조방법
JP5336685B2 (ja) 1999-10-08 2013-11-06 ヴァーサ パワー システムズ リミテッド 固体電気化学的装置のための複合電極
JP4367675B2 (ja) 1999-10-21 2009-11-18 日本碍子株式会社 セラミック製部材と金属製部材の接合用接着剤組成物、同組成物を用いた複合部材の製造方法、および同製造方法により得られた複合部材
JP3595223B2 (ja) 1999-10-29 2004-12-02 京セラ株式会社 固体電解質型燃料電池セル
JP2001233982A (ja) 1999-12-14 2001-08-28 Tokuyama Corp 多孔質ポリオレフィンフィルム及びその製造方法
DK174654B1 (da) 2000-02-02 2003-08-11 Topsoe Haldor As Faststofoxid brændselscelle og anvendelser heraf
US6428920B1 (en) * 2000-05-18 2002-08-06 Corning Incorporated Roughened electrolyte interface layer for solid oxide fuel cells
CA2447855C (en) 2000-05-22 2011-04-12 Acumentrics Corporation Electrode-supported solid state electrochemical cell
RU2197441C2 (ru) 2000-05-29 2003-01-27 Ермолаева Алевтина Ивановна Композиция легкоплавкого стеклокристаллического материала
AU2001284479B2 (en) 2000-09-08 2005-05-12 Nippon Steel Corporation Ceramic/metal composite article, composite structure for transporting oxide ion, and composite article having sealing property
US6767662B2 (en) 2000-10-10 2004-07-27 The Regents Of The University Of California Electrochemical device and process of making
KR100832282B1 (ko) 2000-10-23 2008-05-26 세키스이가가쿠 고교가부시키가이샤 피복 입자
GB2368450B (en) 2000-10-25 2004-05-19 Imperial College Fuel cells
US6541146B1 (en) 2000-11-07 2003-04-01 Hybrid Power Generation Systems, Llc Composite sealant materials based on reacting fillers for solid oxide fuel cells
EP1353391A4 (en) 2000-11-16 2008-08-06 Mitsubishi Materials Corp SOLID ELECTROLYTE TYPE FUEL CELL AND OXYDO-REDUCTIVE ELECTRODE COLLECTOR FOR USE THEREIN
JP3736452B2 (ja) 2000-12-21 2006-01-18 株式会社日立製作所 はんだ箔
US6887361B1 (en) 2001-03-22 2005-05-03 The Regents Of The University Of California Method for making thin-film ceramic membrane on non-shrinking continuous or porous substrates by electrophoretic deposition
US6974516B2 (en) 2001-04-05 2005-12-13 Presidio Components, Inc. Method of making laminate thin-wall ceramic tubes and said tubes with electrodes, particularly for solid oxide fuel cells
US6632554B2 (en) 2001-04-10 2003-10-14 Hybrid Power Generation Systems, Llc High performance cathodes for solid oxide fuel cells
US6677070B2 (en) 2001-04-19 2004-01-13 Hewlett-Packard Development Company, L.P. Hybrid thin film/thick film solid oxide fuel cell and method of manufacturing the same
DE10119538C2 (de) 2001-04-21 2003-06-26 Itn Nanovation Gmbh Verfahren zur Beschichtung von Substraten und deren Verwendungen
JP2004522275A (ja) * 2001-04-27 2004-07-22 アルバータ リサーチ カウンシル インコーポレイテッド 金属支持された電気化学的電池及び該電気化学的電池を備えたマルチセルリアクタ
US20030024611A1 (en) 2001-05-15 2003-02-06 Cornie James A. Discontinuous carbon fiber reinforced metal matrix composite
US6656526B2 (en) 2001-09-20 2003-12-02 Hewlett-Packard Development Company, L.P. Porously coated open-structure substrate and method of manufacture thereof
US6653009B2 (en) * 2001-10-19 2003-11-25 Sarnoff Corporation Solid oxide fuel cells and interconnectors
US7055733B2 (en) 2002-01-11 2006-06-06 Battelle Memorial Institute Oxidation ceramic to metal braze seals for applications in high temperature electrochemical devices and method of making
US6893762B2 (en) 2002-01-16 2005-05-17 Alberta Research Council, Inc. Metal-supported tubular micro-fuel cell
GB2386126B (en) 2002-03-06 2006-03-08 Ceres Power Ltd Forming an impermeable sintered ceramic electrolyte layer on a metallic foil substrate for solid oxide fuel cell
AU2003256251A1 (en) 2002-04-24 2003-11-10 The Regents Of The University Of California Planar electrochemical device assembly
KR100885696B1 (ko) 2002-05-07 2009-02-26 더 리전트 오브 더 유니버시티 오브 캘리포니아 전기화학 전지 스택 어셈블리
JP2004039574A (ja) 2002-07-05 2004-02-05 Tokyo Gas Co Ltd 低温作動固体酸化物形燃料電池用シール材
RU2236331C2 (ru) 2002-07-09 2004-09-20 Кабардино-Балкарский государственный университет им. Х.М. Бербекова Способ композиционной пайки
JP2004047598A (ja) 2002-07-10 2004-02-12 Toyota Industries Corp 複合材及び接続構造
GB2390739B (en) 2002-07-10 2005-07-20 Thomas Gordon Lindsay A novel planar seal-less fuel cell stack
US7208246B2 (en) 2002-07-23 2007-04-24 Hewlett-Packard Development Company, L.P. Fuel cell with integrated heater and robust construction
JP2004127761A (ja) 2002-10-03 2004-04-22 Kiyoshi Noshiro 固体酸化物形燃料電池用燃料極及び燃料極材料製造方法
JP2004142971A (ja) 2002-10-22 2004-05-20 Tokyo Gas Co Ltd セラミック材料とステンレス鋼の接合方法
CN1498877A (zh) 2002-11-04 2004-05-26 原效坤 纳米ZrO2(Y2O3)/Cu复合功能陶瓷材料的制备方法
JP2004164864A (ja) 2002-11-08 2004-06-10 Toyota Motor Corp 固体電解質型燃料電池用燃料極
US20040200187A1 (en) * 2002-11-27 2004-10-14 Warrier Sunil G. Compliant, strain tolerant interconnects for solid oxide fuel cell stack
JP5160731B2 (ja) 2002-12-24 2013-03-13 ヴァーサ パワー システムズ リミテッド 高温ガスシール
JP2004207088A (ja) 2002-12-26 2004-07-22 Nissan Motor Co Ltd ガス透過性基体及びこれを用いた固体酸化物形燃料電池
JP3967278B2 (ja) 2003-03-07 2007-08-29 日本碍子株式会社 接合部材及び静電チャック
US7838166B2 (en) 2003-03-31 2010-11-23 Tokyo Gas Co., Ltd. Method for fabricating solid oxide fuel cell module
US6984277B2 (en) 2003-07-31 2006-01-10 Siemens Westinghouse Power Corporation Bond enhancement for thermally insulated ceramic matrix composite materials
US7527888B2 (en) * 2003-08-26 2009-05-05 Hewlett-Packard Development Company, L.P. Current collector supported fuel cell
US7445814B2 (en) * 2003-10-22 2008-11-04 Hewlett-Packard Development Company, L.P. Methods of making porous cermet and ceramic films
US7767329B2 (en) 2003-11-17 2010-08-03 Adaptive Materials, Inc. Solid oxide fuel cell with improved current collection
US7476461B2 (en) 2003-12-02 2009-01-13 Nanodynamics Energy, Inc. Methods for the electrochemical optimization of solid oxide fuel cell electrodes
US7618731B2 (en) * 2003-12-17 2009-11-17 University Of Dayton Ceramic-ceramic nanocomposite electrolyte
JP4573525B2 (ja) 2003-12-24 2010-11-04 本田技研工業株式会社 固体高分子電解質型燃料電池
US7732084B2 (en) 2004-02-04 2010-06-08 General Electric Company Solid oxide fuel cell with internal reforming, catalyzed interconnect for use therewith, and methods
JP2005288526A (ja) 2004-04-02 2005-10-20 Toshiba Corp はんだ材及び半導体装置
JP4440711B2 (ja) 2004-06-11 2010-03-24 トヨタ自動車株式会社 燃料電池用セルモジュール及びその製造方法、並びに燃料電池
US7588856B2 (en) 2004-08-04 2009-09-15 Corning Incorporated Resistive-varying electrode structure
US20050037252A1 (en) 2004-08-06 2005-02-17 Pham Ai Quoc Tubular solid oxide fuel cells
US20060234855A1 (en) 2004-10-12 2006-10-19 Gorte Raymond J Preparation of solid oxide fuel cell electrodes by electrodeposition
AU2005327925B2 (en) 2004-11-30 2011-01-27 The Regents Of The University Of California Joining of dissimilar materials
JP2008522370A (ja) 2004-11-30 2008-06-26 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア 電気化学装置用封止ジョイント構造
AU2005327164B2 (en) 2004-11-30 2010-12-02 The Regents Of The University Of California Braze system with matched coefficients of thermal expansion
US7288469B2 (en) 2004-12-03 2007-10-30 Eastman Kodak Company Methods and apparatuses for forming an article
US6994884B1 (en) 2004-12-16 2006-02-07 General Electric Company High performance fuel cell electrode and method for manufacturing same
EP1844517B1 (en) 2005-02-02 2010-04-21 Technical University of Denmark A method for producing a reversible solid oxid fuel cell
US7595019B2 (en) 2005-03-01 2009-09-29 Air Products And Chemicals, Inc. Method of making an ion transport membrane oxygen separation device
US7785747B2 (en) 2005-04-11 2010-08-31 Worldwide Energy, Inc. Of Delaware Stack configurations for tubular solid oxide fuel cells
BRPI0608374A2 (pt) 2005-04-21 2010-11-16 Univ California método para formar uma camada particulada nas paredes de poros de uma estrutura porosa, e, dispositivo eletroquìmico
US20070117006A1 (en) 2005-11-22 2007-05-24 Zhongliang Zhan Direct Fabrication of Copper Cermet for Use in Solid Oxide Fuel Cell
WO2007097460A1 (ja) 2006-02-27 2007-08-30 Kyocera Corporation セラミック部材の製造方法、並びにセラミック部材、ガスセンサ素子、燃料電池素子、フィルタ素子、積層型圧電素子、噴射装置、及び燃料噴射システム
WO2008016345A2 (en) 2006-07-28 2008-02-07 The Regents Of The University Of California Joined concentric tubes
US20080254335A1 (en) 2007-04-16 2008-10-16 Worldwide Energy, Inc. Porous bi-tubular solid state electrochemical device
MY149355A (en) 2007-07-25 2013-08-30 Univ California High temperature electrochemical device with interlocking structure
US20090148743A1 (en) 2007-12-07 2009-06-11 Day Michael J High performance multilayer electrodes for use in oxygen-containing gases
AU2008349842A1 (en) 2008-02-04 2009-08-13 The Regents Of The University Of California Cu-based cermet for high-temperature fuel cell
MY147805A (en) 2008-04-18 2013-01-31 Univ California Integrated seal for high-temperature electrochemical device
WO2010030300A1 (en) 2008-09-11 2010-03-18 The Regents Of The University Of California Metal-supported, segmented-in-series high temperature electrochemical device
US20130078448A1 (en) 2010-04-09 2013-03-28 The Regents Of The University Of California Method of making electrochemical device with porous metal layer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5916695A (ja) * 1982-07-20 1984-01-27 Toyota Motor Corp セラミツク繊維を含有するろう付用溶加材
JP2002289249A (ja) * 2001-03-22 2002-10-04 National Institute Of Advanced Industrial & Technology 固体電解質型燃料電池スタック構造体
JP2003288913A (ja) * 2002-03-27 2003-10-10 Toto Ltd 固体酸化物燃料電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009004297A (ja) * 2007-06-25 2009-01-08 Nippon Telegr & Teleph Corp <Ntt> インターコネクタ及び固体酸化物形燃料電池
JP4872027B1 (ja) * 2010-11-01 2012-02-08 日本碍子株式会社 固体酸化物型燃料電池
WO2012060259A1 (ja) * 2010-11-01 2012-05-10 日本碍子株式会社 固体酸化物型燃料電池
US8865364B2 (en) 2010-11-01 2014-10-21 Ngk Insulators, Ltd. Solid oxide fuel cell
CN102534297A (zh) * 2010-12-16 2012-07-04 北京有色金属研究总院 一种热膨胀系数呈梯度变化的合金材料及其制备方法

Also Published As

Publication number Publication date
KR20070083893A (ko) 2007-08-24
AU2005332026A1 (en) 2006-11-30
US20080268323A1 (en) 2008-10-30
CN101065860A (zh) 2007-10-31
NO20073309L (no) 2007-08-28
EP1825541A4 (en) 2010-01-13
CA2627863A1 (en) 2006-11-30
MY147808A (en) 2013-01-31
RU2007124483A (ru) 2009-01-10
WO2006127045A2 (en) 2006-11-30
RU2389110C2 (ru) 2010-05-10
WO2006127045A3 (en) 2007-03-01
CN100530766C (zh) 2009-08-19
AU2005332026B2 (en) 2011-06-09
US8445159B2 (en) 2013-05-21
EP1825541A2 (en) 2007-08-29
TW200642142A (en) 2006-12-01

Similar Documents

Publication Publication Date Title
JP2008522370A (ja) 電気化学装置用封止ジョイント構造
KR101083701B1 (ko) 가역 고형 산화물 연료전지 스택 및 이의 제조방법
US20110269047A1 (en) Metal-supported, segmented-in-series high temperature electrochemical device
US20070037031A1 (en) Cermet and ceramic interconnects for a solid oxide fuel cell
KR101405477B1 (ko) 금속지지체형 고체산화물 연료전지용 셀의 제조방법 및 금속지지체형 고체산화물 연료전지용 셀
EP1444747A2 (en) Improved solid oxide fuel cells and interconnectors
JP2009544502A (ja) 接合された同心管
JP2009507356A (ja) 一体的な密封部および支持体を備えたセラミックメンブラン、ならびにそれを包含する電気化学的電池および電気化学的電池積重構造
JP5289190B2 (ja) 燃料電池セルスタック装置、燃料電池モジュールおよび燃料電池装置
JP2008186665A (ja) 燃料電池セルおよびセルスタックならびに燃料電池
JP5079991B2 (ja) 燃料電池セル及び燃料電池
CN111146445B (zh) 燃料电池、燃料电池堆、以及它们的制造方法
JP2004265734A (ja) 燃料電池セル
WO2011138915A1 (ja) 高温構造材料、固体電解質形燃料電池用構造体および固体電解質形燃料電池
JP6836156B2 (ja) 燃料電池
JP5122777B2 (ja) 固体電解質形燃料電池及びその製造方法
JPH10172590A (ja) 固体電解質型燃料電池
CN111244520A (zh) 燃料电池堆及其制造方法
JP5095878B1 (ja) 燃料電池
CN111244498B (zh) 燃料电池和燃料电池堆
JP4925574B2 (ja) 燃料電池セル及び燃料電池
JP5074004B2 (ja) 固体酸化物形燃料電池及びその製造方法
JP2005216619A (ja) 燃料電池セル及び燃料電池
WO2005001970A1 (ja) 固体酸化物形燃料電池
JP2005322452A (ja) 固体酸化物形燃料電池用セル板及び固体酸化物形燃料電池

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111004