RU2389110C2 - Структура уплотненного узла соединения для электрохимического устройства - Google Patents

Структура уплотненного узла соединения для электрохимического устройства Download PDF

Info

Publication number
RU2389110C2
RU2389110C2 RU2007124483/09A RU2007124483A RU2389110C2 RU 2389110 C2 RU2389110 C2 RU 2389110C2 RU 2007124483/09 A RU2007124483/09 A RU 2007124483/09A RU 2007124483 A RU2007124483 A RU 2007124483A RU 2389110 C2 RU2389110 C2 RU 2389110C2
Authority
RU
Russia
Prior art keywords
electrode
connection node
electrolyte
metal casing
node according
Prior art date
Application number
RU2007124483/09A
Other languages
English (en)
Other versions
RU2007124483A (ru
Inventor
Майкл С. ТАКЕР (US)
Майкл С. ТАКЕР
Крейг П. ЯКОБСОН (US)
Крейг П. ЯКОБСОН
ЙОНГЕ Лютгард С. ДЕ (US)
ЙОНГЕ Лютгард С. ДЕ
Стивен Джей ВИСКО (US)
Стивен Джей ВИСКО
Original Assignee
Члены Правления Университета Калифорнии
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Члены Правления Университета Калифорнии filed Critical Члены Правления Университета Калифорнии
Publication of RU2007124483A publication Critical patent/RU2007124483A/ru
Application granted granted Critical
Publication of RU2389110C2 publication Critical patent/RU2389110C2/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/016Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on manganites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/003Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts
    • C04B37/006Joining burned ceramic articles with other burned ceramic articles or other articles by heating by means of an interlayer consisting of a combination of materials selected from glass, or ceramic material with metals, metal oxides or metal salts consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/191Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2404Processes or apparatus for grouping fuel cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/243Grouping of unit cells of tubular or cylindrical configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2315/00Other materials containing non-metallic inorganic compounds not provided for in groups B32B2311/00 - B32B2313/04
    • B32B2315/02Ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/345Refractory metal oxides
    • C04B2237/348Zirconia, hafnia, zirconates or hafnates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/4911Electric battery cell making including sealing

Abstract

Изобретение относится к узлу соединения в высокотемпературном электрохимическом устройстве. Техническим результатом изобретения является повышение эффективности соединения множества ячеек (как правило, трубчатых модулей) электрохимического устройства при создании, например, сборки из последовательно соединенных многоячейковых сегментов для твердооксидного топливного элемента. Согласно изобретению узел соединения включает в себя секции, которые обеспечивают сцепление соединяющихся элементов одного с другим; одну или более секций уплотнения, обеспечивающих газонепроницаемость, и секции, обеспечивающие электрическое соединение и/или электрическую изоляцию между различными элементами узла соединения. Подходящая конфигурация узла соединения для электрохимического устройства имеет металлический кожух узла соединения, первый пористый электрод, второй пористый электрод, отделенный от первого пористого электрода твердым электролитом, и изолирующий элемент, размещенный между металлическим кожухом узла соединения и электролитом и вторым электродом. Один или более участков твердого припоя структурно и электрически соединяют первый электрод с металлическим кожухом узла соединения и образуют газонепроницаемое уплотнение между первым электродом и вторым электродом. 2 н. и 19 з.п. ф-лы, 4 ил., 1 табл.

Description

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ
Эта заявка притязает на приоритет предварительной заявки на патент США №60/632015, поданной 30 ноября 2004 г. под названием "СТРУКТУРА УПЛОТНЕННОГО УЗЛА СОЕДИНЕНИЯ ДЛЯ ЭЛЕКТРОХИМИЧЕСКОГО УСТРОЙСТВА".
сведения О ПРАВИТЕЛЬСТВЕННОЙ ПОДДЕРЖКИ
Это изобретение было сделано при правительственной поддержке согласно договору DE-AC02-05CH11231, предоставленной Министерством энергетики Соединенных Штатов Правлению Университета Калифорнии для руководства и управления Национальной лабораторией Лоуренс Беркли. Правительство имеет в этом изобретении определенные права.
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение касается уплотненного узла соединения для высокотемпературных электрохимических устройств типа твердооксидных топливных элементов, в частности модульных параллельных сборок из последовательно соединенных электрохимических ячеек. Узел соединения обеспечивает уплотнение, структурную целостность, а также электрическое соединение и изоляцию.
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Твердотельные электрохимические устройства представляют собой обычно ячейки, которые включают в себя два пористых электрода - анод и катод и плотную мембрану из твердого электролита, размещенную между электродами. В случае типичного твердооксидного топливного элемента анод подвергается воздействию топлива, а катод подвергается воздействию окислителя в отдельных замкнутых системах для предотвращения какого-либо смешивания топлива и окислителей вследствие экзотермических реакций, которые могут протекать при использовании водородного топлива.
В областях применения твердооксидных топливных элементов электролитная мембрана обычно состоит из проводника ионов кислорода керамики. В других примерах реализации типа устройств для отделения газов твердая мембрана может быть выполнена из смешанного ионно-электронного проводящего материала ("MIEC"). Пористый анод может представлять собой слой керамики, металла или керамико-металлического композиционного материала ("кермета"), который контактирует с электролитной мембраной на топливной стороне элемента. Пористый катод обычно представляет собой слой оксида металла со смешанной ионно-электронной проводимостью (MIEC) или смеси оксида металла с электронной проводимостью (или оксида металла MIEC) и оксида металла с ионной проводимостью.
Рабочая температура твердооксидных топливных элементов обычно варьируется между приблизительно 900°С и приблизительно 1000°С, чтобы максимизировать ионную проводимость электролитной мембраны. При соответствующих температурах ионы кислорода с легкостью мигрируют через кристаллическую решетку электролита.
Так как каждый топливный элемент генерирует относительно малое напряжение, то для увеличения мощности системы возможно объединение нескольких топливных элементов. Такие матрицы или сборки, как правило, имеют трубчатую или планарную конструкцию. Обычно планарные конструкции имеют планарные анод, электролит и катод, нанесенные на проводящее межсоединение и собранные путем последовательного соединения. Однако, как правило, планарные конструкции характеризуются наличием значительных проблем с точки зрения безопасности и надежности вследствие сложности уплотнения блоков и комплектования планарной сборки. Трубчатые конструкции, использующие длинные пористые несущие трубки с электродами и электролитными слоями, осажденными на несущую трубку, позволяют уменьшить число уплотнений, требуемых в системе. Топливо или окислители направляются через каналы в трубке или вокруг внешней поверхности трубки.
Эффективность высокотемпературных электрохимических устройств (работающих при температурах выше 800°С, например, в диапазоне между приблизительно 900°С и 1000°С) ограничена качеством и надежностью уплотнений, которые соединяют множество ячеек одну с другой, или отдельные ячейки с кожухами или комплектами ячеек. Как правило, уплотнения должны выполнять одну или более следующих функций: взаимное разделение окислителя, топлива и технологических газов, локализацию газов внутри устройства, сцепление между уплотненными поверхностями и электрическое соединение или изоляцию. Разумеется, материал уплотнения не должен быть источником загрязнения для других материалов в системе. Выполнение всех этих функций для одного материала при повышенной температуре в окислительных, восстановительных или коррозионных средах является затруднительным.
В качестве возможных для использования в высокотемпературных электрохимических устройствах были рассмотрены многие типы материалов уплотнения, в том числе керамические адгезивы, стекло, твердые припои и слюдяные сжимаемые уплотнения. Каждый из этих материалов имеет недостатки, которые препятствуют выполнению всех необходимых требований. Керамические адгезивы обычно бывают пористыми и не обладают газонепроницаемостью. Стекла обеспечивают хорошее уплотнение на начальном этапе использования, но имеют короткий срок службы вследствие растрескивания под действием термических напряжений и химической реакции с соединяемыми поверхностями. Твердые припои являются дорогими и обладают проводимостью. Слюдяные сжимаемые уплотнения часто имеют высокую скорость утечки и короткий срок службы вследствие растрескивания.
Таким образом, существует необходимость в усовершенствованном уплотненном узле соединения для электрохимических устройств.
Краткое изложение сущности изобретения
В настоящем изобретении используется комбинация материалов в виде компактной структуры, позволяющей обеспечить все необходимые функции узла соединения для высокотемпературных электрохимических устройств. Предлагается также способ образования узла соединения. Узел соединения обеспечивает уплотнение, структурную целостность, а также электрическое соединение и изоляцию.
Согласно одному предмету изобретения узел соединения включает в себя: секции, которые обеспечивают сцепление соединяющихся элементов одного с другим; одну или более секций уплотнения, которые обеспечивают газонепроницаемость; и секции, обеспечивающие электрическое соединение и/или электрическую изоляцию между различными соединяющимися элементами. Кроме того, каждая из секций может быть подвергнута обработке или на нее может быть нанесено покрытие, чтобы увеличить срок эксплуатации этих секций. Узел соединения является прочным, газонепроницаемым и обеспечивает регулирование электрических характеристик в широком диапазоне температур. Узел соединения может быть использован в высокотемпературных электрохимических устройствах типа твердооксидных топливных элементов.
Важным отличительным признаком изобретения является частичное или полное разделение различных функций узла соединения, обеспечивающее возможность комбинирования материалов и способов, соответствующих каждой функции, с целью создания узла соединения, удовлетворяющего всем функциональным требованиям и содержащего все функциональные материалы в компактном объеме. Традиционно различные функции описанного узла соединения требуют материального разделения функциональных объектов. Компактный узел соединения, описываемый в данном документе, должен быть недорогим и простым в изготовлении и предназначаться для компактной многоячеистой структуры.
Некоторые особенно эффективные отличительные признаки и способы конкретных примеров осуществления изобретения, описываемого дополнительно ниже, включают в себя выбор толщины твердого припоя и изолирующего материала, обеспечивающий приближение общего коэффициента теплового расширения композитного изолирующего элемента (содержащего припой и изолирующий материал, как показано на фиг.2) к коэффициенту теплового расширения компонентов ячейки. Кроме того, придание шероховатости поверхности металлического кожуха узла соединения, контактирующей с изолирующим элементом (D) узла соединения, может повысить прочность узла соединения. А в некоторых случаях эффект может иметь замена пайки твердым припоем в структуре узла соединения на спекание металла с металлом.
Подходящая конфигурация узла соединения для электрохимического устройства имеет металлический кожух узла соединения, первый пористый электрод, второй пористый электрод, отделенный от первого пористого электрода твердым электролитом, и изолирующий элемент, размещенный между металлическим кожухом узла соединения и электролитом и между металлическим кожухом узла соединения и вторым электродом. Один или более участков твердого припоя структурно и электрически соединяет первый электрод с металлическим кожухом узла соединения и образует газонепроницаемое уплотнение между первым электродом и вторым электродом.
Краткое описание чертежей
Фиг.1 иллюстрирует общие отличительные признаки уплотненного узла соединения согласно настоящему изобретению при использовании в сборке из твердооксидных топливных элементов.
Фиг.2 и 3 - поперечные сечения уплотненных узлов соединения согласно альтернативным примерам осуществления настоящего изобретения при использовании в сборке из твердооксидных топливных элементов.
Фиг.4 - микрофотография поперечного сечения плотного изолятора, закрепленного твердым припоем, согласно одной особенности настоящего изобретения, полученная с помощью оптического микроскопа.
Описание изобретения
Далее подробные ссылки будут делаться на конкретные примеры осуществления изобретения. Примеры конкретных примеров осуществления иллюстрированы прилагаемыми чертежами. Описание изобретения будет вестись применительно к конкретным примерам осуществления, однако очевидно, что это изобретение не ограничено такими конкретными примерами осуществления. Напротив, предполагается, что оно распространяется на варианты, изменения и эквиваленты, которые могут быть включены в изобретение в пределах объема притязаний прилагаемой формулы изобретения. В приводимом ниже описании рассмотрены многочисленные специальные детали с целью обеспечения полного понимания настоящего изобретения. Настоящее изобретение может быть осуществлено без некоторых или всех этих специальных деталей. В других случаях известные технологические операции не рассматриваются подробно в описании, чтобы не затруднять понимания настоящего изобретения.
Изобретение включает в себя несколько элементов, образующих узел соединения, причем различные элементы выполняют различные функции. Узел соединения является эффективным для соединения множества ячеек (как правило, трубчатых модулей) электрохимического устройства при создании, например, сборки из последовательно соединенных многоячейковых сегментов. Узел соединения будет описан в контексте этого примера осуществления, однако предполагается, что этот пример является иллюстративным и не ограничивает объема применимости изобретения.
Подходящая конфигурация узла соединения для электрохимического устройства в соответствии с настоящим изобретением имеет металлический кожух узла соединения, первый пористый электрод, второй пористый электрод, отделенный от первого пористого электрода твердым электролитом, и изолирующий элемент, размещенный между металлическим кожухом узла соединения и электролитом и между металлическим кожухом узла соединения и вторым электродом. Один или более участков твердого припоя структурно и электрически соединяют первый электрод с металлическим кожухом узла соединения и образуют газонепроницаемое уплотнение между первым электродом и вторым электродом.
Фиг.1 иллюстрирует несколько общих отличительных признаков узла соединения в соответствии с настоящим изобретением. Функции узла соединения включают в себя обеспечение механического соединения соседних ячеек, уплотнения ячеек, предотвращающего смешивание атмосферы 1 и атмосферы 2, электрического соединения между соседними ячейками и электрической изоляции электродов одной ячейки одного от другого. Одна предпочтительная конфигурация для узла соединения представлена на фиг.1, однако и другие конфигурации, выполняющие те же самые функции, не выходят за пределы объема изобретения. Фиг.2, 3 и 4 обеспечивают дополнительное иллюстрирование конкретных особенностей узлов соединения в соответствии с настоящим изобретением. Функции и отличительные признаки различных элементов узла соединения рассматривается ниже.
Применяемые в топливных элементах электрохимические ячейки, как правило, содержат ионопроводящий электролит, размещенный между пористым анодом и катодом. Топливный элемент использован в качестве примера электрохимической ячейки в иллюстративных целях, однако очевидно, что электрохимическая ячейка может быть генератором кислорода, генератором синтез-газа или устройством для отделения газообразного водорода и подобными устройствами.
Электрохимические ячейки могут быть выполнены с несущим анодом, с несущим катодом или с несущим электролитом. Электрохимические ячейки с несущими электродами могут иметь электродные подложки, представляющие собой керамику, керамико-металлический композиционный материал (кермет) или сплав металлов. В одном примере осуществления ячейки изготовлены в виде двойных слоев типа Ni-YSZ/YSZ или LSM/YSZ и противоэлектрода, нанесенного после высокотемпературного спекания двойного слоя. В другом примере осуществления наносят все три слоя, а затем подвергают их спеканию путем высокотемпературной обработке в один этап. Например, тройные слои LSM/YSZ/LSM или LSM/YSZ/Ni-YSZ могут быть подвергнуты спеканию в один этап.
Кроме того, должно быть очевидно то, что структуры с несущими электродами могут также быть многослойными или структурами с плавно изменяющимся профилем распределения примеси, составленными из различных материалов и/или микроструктур и не представлять собой просто однородный электрод. Например, конструкция с несущим катодом может представлять собой подложку из пористого LSM, полученную в результате формования экструдированием или под давлением, на которую нанесен слой пористого LSM+YSZ, и на этот слой нанесены электролитная пленка YSZ и противоэлектрод. В другом варианте изобретения пористый каталитический слой типа Ni-YSZ может быть размещен между пористым слоем сплава типа ферритной стали и электролитным слоем типа YSZ.
Предпочтительная высота электрохимического элемента определяется удельной проводимостью электродных слоев. Для структур с керамической подложкой предпочтительная высота электрохимической ячейки варьируется между приблизительно 1 см и приблизительно 5 см. Для структур электрохимических ячеек с металлической подложкой предпочтительная высота ячеек варьируется между приблизительно 2 см и приблизительно 10 см.
В примерах осуществления с несущим катодом катодный электрод в предпочтительном варианте представляет собой цилиндрическую или прямоугольную трубку с толщиной в диапазоне от приблизительно 100 мкм до приблизительно 3000 мкм.
Однако особенно предпочтительными являются катодные слои с толщиной, варьирующейся между приблизительно 150 мкм и приблизительно 2000 мкм. В электрохимических ячейках с несущим анодом предпочтительным является катод, нанесенный в виде тонкой пленки на одну поверхность и образующий в результате сцепления катодный электрод с толщиной, варьирующейся между приблизительно 50 мкм и приблизительно 1500 мкм. Очевидно, что выбранная толщина электродных трубок и электролита может изменяться в зависимости от теплового расширения, а также от характеристик электронной проводимости и ионной проводимости материалов электролита и электродов.
Среди подходящих материалов катодных электродов согласно настоящему изобретению можно назвать керметы, керамики и металлы. Например, подходящие керамические компоненты включают в себя: La1-xSrxMnyO3-δ (1≥X≥0,05) (0,95≤у≤1,15) ("LSM") (δ определяется как значение, выражающее малое отклонение от точной стехиометрии), La1-xSrxCoO3-δ. (1≥Х≥0,10) ("LSC"), La1-xSrxFeyO3-δ (1≥X≥0,05) (0,95≤у≤1,15) ("LSF"), SrCo1-xFexO3-δ (0,30≥X≥0,20), La0,6Sr0,4Co0,6Fe0,4O3-δ, Sr0,7Се0,3MnO3-δ, LaNi0,6Fe0,4O3-δ, Sm0,5Sr0,5СоО3-δ, диоксид циркония, стабилизированный оксидом иттрия (YSZ), диоксид циркония, стабилизированный оксидом скандия (SSZ), (CeO2)0,8(Gd2O3)0,2(CGO), LaO0,8Sr0,2Ga0,85Mg0,15O2,825 (LSGM20-15), (Bi2O3)0,75(Y2O3)0,25 `и оксид алюминия.
Предпочтительные материалы LSM включают в себя La0,8Sr0,2MnO3, La0,65Sr0,30MnO3-δ и La0,45Sr0,55MnO3-δ. Подходящие металлические компоненты, в том числе для керметов, являются переходными металлами, Cr, Fe, Ag и/или сплавами, такими как низкохромистые ферритные стали типа 405 и 409 (с 11-15% Cr), ферритные стали с промежуточным содержанием хрома типа 430 и 434 (с 16-18% Cr), высокохромистые ферритные стали типа 442, 446 и E-Brite (с 19-30% Cr), сплавы на основе хрома типа Cr5FelY и хромсодержащие сплавы на основе никеля типа Ni20Cr и сплавы Inconel, в том числе Inconel 600 (с 76% Ni, 15,5% Cr, 8% Fe, 0,2% Сu, 0,2% Si, 0,5% Mn и 0,08% С).
Очень тонкий слой электролита в предпочтительном варианте наносят на катодную трубку. Было показано, что рабочую температуру электрохимической ячейки можно снизить путем использования тонкопленочных керамических электролитов и электродов в результате снижения омических потерь в ионных и ионно-электронных проводящих материалах, осажденных в виде тонких пленок. Затем в одном примере осуществления двойной слой подвергают совместному обжигу для получения свободной от точечных проколов плотной пленки электролита с хорошим сцеплением с пористой структурой электрода. При выборе материалов электролита и электродов нужно также учитывать режим спекания материалов и пленки и подложки. Например, в зависимости от природы выбранного материала электрода может возникнуть необходимость в осуществлении обжига второго электрода при температуре, отличной от используемой для придания достаточной плотности электролиту с целью предотвращения прохождения газов через электролитные слои, или от температуры, используемой для обработке первого электрода.
Среди несколько технологий получения тонких пленок, известных специалистам в данной области техники, можно назвать методы физического осаждения из паровой фазы, каландрирования, золь-гельного осаждения, распыления, коллоидного осаждения, центробежного литья, шликерного литья, пленочного литья, экструзии, трафаретной печати, нанесения покрытий с помощью кисти, переноса пленок, совместной экструзии, электрофорезного осаждения, нанесения покрытий погружением, распыления аэрозолей, вакуумной инфильтрации, плазменного осаждения, электрохимического осаждения и много других способов, известных специалистам в данной области техники. Предпочтительными являются нанесение покрытий методом погружения, распылением аэрозолей и трафаретной печати. Обычно для обеспечения сцепления с пористой подложкой и уплотнения электролита требуется нагревание слоев до достаточной температуры.
Существует много способов создания тонких пленок, однако предпочтительным является коллоидный способ осаждения. В этом примере осуществления материал электролита, как правило, подготавливают в виде суспензии порошкового материала в жидких средах типа воды, изопропилового спирта и других подходящих органических растворителях. Суспензия может быть нанесена на поверхность электродного слоя множеством способов; например, распылением аэрозолей, нанесением покрытий методом погружения, электрофорезным осаждением, вакуумной инфильтрацией или пленочным литьем. Как правило, необожженные пленки целевого оксида осаждают в виде коллоидных частиц на обожженные или частично обожженные подложки. Кроме того, пленка должна обладать хорошим сцеплением с поверхностью подложки без чрезмерной инфильтрации в поры электрода, и поляризация на поверхности раздела между электролитом и электродом должна быть минимальной.
Предпочтительность коллоидного процесса объясняется тем, что он является недорогим и масштабируемым и позволяет изготавливать устройства с высокой эффективностью при пониженных температурах. Однако коллоидное осаждение плотных электролитных слоев на пористые подложки требует химической совместимости материалов при температуре обработки и достаточного согласования коэффициентов теплового расширения между слоями.
Для гарантии низкого сверхпотенциала в процессе работы устройства, как правило, предпочтительными являются свободный от точечных проколов и трещин плотный слой электролита 30, толщина которого варьируется в пределах от приблизительно 1 мкм до приблизительно 50 мкм, на электродных подложках высокой пористости и подходящая микроструктура. Предпочтительная толщина электролитного слоя для типичных топливных элементов варьируется в пределах от приблизительно 10 мкм до приблизительно 30 мкм.
Материал электролита в предпочтительном варианте представляет собой тонкий слой порошка оксида металла (керамики) типа диоксида циркония, стабилизированного оксидом иттрия (YSZ), например, (ZrO2)х(Y2O3)у, где (0,88≥Х≥0,97) и (0,03≤У≤0,12). Предпочтительным материалом является (ZrO2)0,92(Y2O3)0,08 или (ZrO2)0,90(Y2O3)0,10, имеющиеся на рынке. Другие возможные материалы электролита включают в себя (Z rO2)0,9(Sc2O3)0,1 - диоксид циркония, стабилизированный оксидом скандия (SSZ), (CeO2)0,8(Gd2O3)0,2 (CGO), La0,8Sr0,2Ga0,85Mg0,15O2,825 (LSGM20-15) и (Bi2O3)0,75(Y2O3)0,25. В другом варианте изобретения материал электролита может представлять собой смешанный ионно-электронный проводник, например SrCo1-xFeXO3-δ (0,30≥X≥0,20), La0,6Sr0,4Co0,6Fe0,4O3-δ, Sm0,5Sr0,5CoO3 и La1-xSrxCoO3-δ. Такие структуры могут быть также использованы, например, в устройствах для отделения кислорода.
Анодный электрод электрохимической ячейки с несущим катодом в предпочтительном варианте представляет собой тонкую пленку толщиной приблизительно от 50 мкм до 500 мкм. Однако предпочтительными являются электродные слои с толщиной, варьирующейся между приблизительно 150 мкм и приблизительно 300 мкм. В электрохимических ячейках с несущим анодом предпочтительной является анодная трубка с толщиной, варьирующейся между приблизительно 250 мкм и приблизительно 2500 мкм.
Материалы электродов и электролита в предпочтительном варианте являются согласованными и толщина применяемых материалов может быть выбрана на основе характеристик теплового расширения, электронной проводимости и ионной проводимости материалов электродов и электролита, а также материалов межсоединений. Кроме того, толщина пленки электролита может зависеть от газонепроницаемости материала электролита и возможности сохранять свою механическую целостность, например, противостоять растрескиванию при воздействии температур в диапазоне между рабочим и нерабочим состояниями.
Металлический кожух узла соединения может быть выполнен из недорогих ферритных сталей, коэффициент теплового расширения которых согласован с типичными материалами электродов и электролита. Среди металлов, используемых для металлического кожуха узла соединения можно назвать: Ni, Сu, сплавы, содержащие Ni, суперсплавы на основе Ni, сплавы, содержащие Сu, сплавы, содержащие Fe, нержавеющую сталь, сплавы на основе Fe, содержащие Cr, сплавы Fe-Cr, содержащие химически активный элемент типа Y или La, аустенитные стали типа AISI 304 или 316, ферритные стали типа AISI 430 или 446, сплавы, содержащие Al, сплавы Fe-Cr, содержащие А1 и химически активный элемент типа Y, сплавы Fe-Cr, содержащие 0,1-3,0 мас.% Mn, сплавы Fe-Cr, содержащие 12-30 мас.% Cr, сплавы Fe-Cr, содержащие 16-26 мас.% Cr, сплавы на основе Fe, содержащие 18-22 мас.% Cr, с 0,5-2,0 мас.% Mn и 0,1-1,0 мас.% Y и другие. Возможна также модификация части или всей поверхности металла путем золь-гельного осаждения, осаждения из паровой фазы, плазменного распыления, металлизации или любым другим способом, известным специалистам в данной области техники.
Как показано на фиг.1, одна ячейка содержит электрод 1, электрод 2 и электролит. Электроды 1 и 2 должны быть электрически изолированы один от другого. Электрод 1 электрически соединен с электродом 2 предыдущей ячейки; электрод 2 электрически соединен с электродом 1 следующей ячейки. Узел соединения, изображенный на фиг.1, также включает в себя следующие признаки:
Металлический кожух узла соединения: образует несущую конструкцию для узла соединения, а также обеспечивает электрическое соединение между соседними ячейками, как описывалось выше. Придание шероховатости поверхность металлического кожуха, контактирующей с изолирующим элементом (D), позволяет повысить прочность узла соединения в определенных примерах осуществления (например, в случаях, когда изолятор представляет собой адгезив). Не требуется шероховатости поверхности для изолятора, закрепляемого твердым припоем.
А. Среди различных способов придания шероховатости можно назвать пескоструйную очистку, химическое травление, напекание металлического порошка и накатку.
В. Твердый припой: обеспечивает сцепление и электрическое соединение между электродом 1 и металлическим кожухом (А), а также уплотнение, позволяющее предотвратить смешивание атмосферы 1 (на электроде 1) и атмосферы 2 (на электроде 2). Предпочтительными являются твердые припои на основе сплавов Ar, Au, Cu или Ni или в смеси с керамиками типа оксида алюминия, диоксида кремния или диоксида титана или с более предпочтительным дисперсным или волокнистым наполнителем твердого припоя, имеющим коэффициент теплового расширения, не превышающий 6×10-6 1/К (например, титанитом алюминия/магния или вольфрамитом циркония). Твердые припои могут быть применены в виде заготовок типа проволоки или фольги или в виде паст или красок. Нанесение паст или красок обычно осуществляется шприцем, пульверизатором, кистью, валиком, путем заливки или трафаретной печати.
С.Защитное покрытие для твердого припоя: снижает воздействие атмосферы 1 на твердый припой (В). Особое значение это имеет в случае, когда атмосфера 1 является окислительной или коррозионной. Защитное покрытие для твердого припоя может быть выполнено из керамического адгезива, стеклоприпоя и т.д. В случае устойчивости твердого припоя (В) в атмосфере 1 защитного покрытия для твердого припоя не требуется.
D. Изолирующий элемент: предотвращает короткое замыкание путем обеспечения изоляции между электродом 2 и металлическим кожухом (А) узла соединения. Использование непористого изолирующего элемента позволяет предотвратить смешивание атмосферы 1 и атмосферы 2. Сцепление изолирующего элемента с металлическим кожухом (А) узла соединения и электродом 2 и/или электролитом облегчает механическое соединение элемента с металлическим кожухом (А) узла соединения. В качестве изолирующего элемента могут быть использованы различные материалы, в том числе: адгезив на основе керамики или стекла, плотный или пористый керамический элемент, который может быть закреплен путем посадки или твердым припоем, или стеклянный элемент.
Металлический кожух узла соединения одной ячейки может быть соединен с предыдущей ячейкой, то есть припаян твердым припоем, для создания множества последовательно соединенных ячеек (конструкции из последовательно соединенных сегментов). Как показано на фиг.1, в случае пористого изолирующего элемента только твердый припой (В) обеспечивает газонепроницаемость. В случае плотного изолирующего элемента сам изолятор также участвует в обеспечении газонепроницаемости. Например, стеклянный изолятор (например, из стекол на основе SiO2 или Al2O3/SiO2) может быть приклеен к ячейке и металлическому кожуху (А) узла соединения или керамический изолятор (например, из Al2O3) может быть припаян твердым припоем к металлическому кожуху узла соединения и ячейке, как показано на фиг.2 и 4.
В этом примере осуществления электролит контактирует твердым припоем. Это может быть источником непрочности, так как рассогласование коэффициентов теплового расширения между твердым припоем и электролитом может привести к растрескиванию электролита и смешиванию атмосфер 1 и 2. Возможна модификация состава электролитного слоя с целью упрочнения или его полная замена слоем из более прочного материала вблизи узла соединения. Например, в случае электролита из диоксида циркония, стабилизированного оксидом иттрия (YSZ), некоторое количество Al2O3 может быть смешано с электролитом в процессе формирования ячейки. Это несколько снижает удельную проводимость электролита, но может значительно повысить его сопротивление растрескиванию. В другом варианте изобретения состав электролита может варьироваться от обогащенного YSZ внутри ячейки до обогащенного Al2O3 вблизи участка твердого припоя.
Компоненты ячейки и металлического кожуха (А) узла соединения выбраны такими, что имеют близкие коэффициенты теплового расширения (КТР). Это приводит к снижению тепловых напряжений в устройстве, особенно при резких колебаниях температуры, таких как при включении и выключении. Например, в SOFC (в твердооксидных топливных элементах) все компоненты согласованы по КТР с электролитом (то есть 10,5×10-6 1/К для YSZ). Многие подходящие изолирующие материалы типа Al2O3 имеют КТР ниже, чем у YSZ, тогда как большинство материалов для пайки твердым припоем имеет более высокий КТР. Поэтому предпочтительно выбирать толщину участка твердого припоя и изолирующего материала такой, чтобы общий КТР композитного изолирующего элемента (содержащего твердый припой и изоляционный материал, как показано на фиг.2 и 4) приближался к КТР компонентов ячейки. Например, пайка изолирующего элемента из оксида алюминия толщиной 0,5 мм может быть осуществлена твердым припоем, образующим участок толщиной 0,2 мм.
В случае, когда изолирующий элемент содержит адгезив, то для улучшения сцепления предпочтительно, чтобы поверхности, соединяемые с помощью адгезива были шероховатыми, пористыми, оксидированными или покрыты грунтовкой. Было проведено исследование влияния поверхностной обработки на сопротивление срезу соединения внахлест, полученного путем соединения полос из нержавеющей стали 430 с помощью клея на основе фосфата с использованием наполнителя виде изолирующих частиц. Результаты исследования представлены в приводимой ниже таблице. Из таблицы следует, что все виды обработки повышают сопротивление срезу. Поверхность электрода на подложке из пористого металла (например, электрода 2) естественно подобна спеченной поверхности. Поэтому сцепление изолирующего адгезива с электродом 2 должно быть прочным. Повышение прочности узла соединения для геометрии, представленной на фиг.1, должно обеспечиваться путем обработки металлического кожуха узла соединения. Среди подходящих видов обработки можно назвать: химическое травление или окисление, шлифовку, пескоструйную очистку, скрайбирование или накатку и др.
Наполнитель адгезива Поверхностная обработка стальной полосы Сопротивление срезу (кПа)
Al2O3 Не проводилась 1700
Al2O3 Придание шероховатости пескоструйной очисткой 3000
ZrO2 He проводилась 1400
ZrO2 Напекание частиц FeCR для получения пористой поверхности 2900
ZrO2 Грунтовка адгезивом с серебряным наполнением 4300
MgO/Al2O3 Не проводилась 1000
MgO/Al2O3 Окисление в течение 1 ч при температуре 900°С на воздухе 1700
На фиг.2 и 3 представлены дополнительные иллюстрации примеров осуществления настоящего изобретения, описанного в целом со ссылками на фиг.1, включающие многие из его общих особенностей, описанных выше. На фиг.2 первый электрод (второй электрохимической ячейки) структурно и электрически соединен с металлическим кожухом узла соединения твердым припоем 1, а газонепроницаемое уплотнение между электродами 1 и 2 создается парой участков твердого припоев (участков твердого припоя 2 и 3) с обеих сторон изолирующего элемента.
На фиг.3 первый электрод также структурно и электрически соединен с металлическим кожухом узла соединения твердым припоем 1. Однако в этом примере осуществления участок твердого припоя расширен, чтобы обеспечить контакт с электролитом и также создать газонепроницаемое уплотнение между электродами 1 и 2, независимо от наличия или отсутствия участков твердого припоя 2 и 3 с обеих сторон изолирующего элемента. При отсутствии участков твердого припоя, создающих уплотнение между изолирующим элементом и электролитом и между изолирующим элементом и металлическим кожухом, изолирующий элемент может смещаться и проблем рассогласования КТР между изолирующим элементом и электролитом не возникает.
SOFC на металлической подложке, включающий в себя узел соединения согласно настоящему изобретению, может быть собран следующим образом:
Сборка частей ячейки
1. Сборка необожженной (неспеченной) заготовки для электрода 2
- формирование металлической подложки
- нанесение пористого промежуточного слоя из YSZ
2. Распыление заготовки для электролита на электрод 2
3. Совместное спекание электрода 2 и электролита в восстановительной атмосфере при температуре 1100-1400°С (обычно при температуре 1300°С)
4. Нанесение необожженной заготовки для электрода 1 на электролит
- нанесение пористый промежуточного слоя из YSZ
- нанесение токового коллектора (в виде декорированного металла)
5. Спекание всей структуры ячейки в восстановительной атмосфере при температуре 1100-1400°С (обычно при температуре 1300°С)
Структура ячейки создана (инфильтрация катализаторов будет осуществлена позже). Дополнительные подробности по сборке частей ячейки, описываемой в данном документе, можно найти в переданном в общее пользование патенте США №6605316, включенном в данный документ путем ссылки полностью и для всех целей.
Замечание: Этап 3 является необязательным (то есть все 5 слоев могут быть подвергнуты совместному спеканию в один этап). Этап 3 позволяет осуществлять проверку/контроль качества электролитного слоя перед нанесением электрода 1.
Сборка частей узла соединения
6. Соединение металлического кожуха С с ячейкой с помощью изолирующего элемента D
- размещение элемента
- если элемент D представляет собой адгезив: отверждение (на воздухе, различные технологические операции при температуре в диапазоне 20-350°С)
- если элемент D представляет собой плотную распорку, закрепляемую твердым припоем: этап отверждения является ненужным и соединение будет осуществлено позже на этапе 8 пайки твердым припоем
7. Размещение пасты/порошка/таблетки твердого припоя
Этап 7 может быть также выполнен во время этапа 6 сборки
8. Пайка твердым припоем в обычно инертной/восстановительной, возможно окислительной атмосфере при температуре на 5-150°С выше точки плавления твердого припоя (то есть при температуре 800-1100°С для твердых припоев на основе серебра)
9. Нанесение защитного покрытия (необязательный этап, в зависимости от природы материала твердого припоя, как было отмечено выше)
Пайка твердым припоем может быть заменена на спекание металла с металлом для соединения электрода 2 с металлическим кожухом узла (А) соединения в следующей ячейке сегмента в последовательной структуре; электрод 2 может быть соединен с изолирующим элементом (D) в той же самой ячейке с использованием методов декорирования и спекания типа описанных в совместно рассматриваемой международной заявкой на патент PCT/US2005/043109, поданной 29 ноября 2005 г.под названием "СОЕДИНЕНИЕ РАЗНОРОДНЫХ МАТЕРИАЛОВ" ("JOINING OF DISSIMILAR MATERIALS"), притязающей на приоритет предварительной заявки на патент США №60/632030, поданной 30 ноября 2004 г. под названием "СОЕДИНЕНИЕ РАЗНОРОДНЫХ МАТЕРИАЛОВ" ("JOINING OF DISSIMILAR MATERIALS"), которые включены в данный документ путем ссылки. Этапы 7, 8 заменены другим этапом спекания, подобным этапу 5. Возможно включение этого этапа в число этапов сборки частей ячейки.
Порядок требуемых этапов является необязательным и может регулироваться для конкретного набора материалов.
Подготовка катализатора
Катализаторы могут быть подвергнуты инфильтрации или введены в состав ячейки в процессе сборки ее частей.
Приводимое ниже описание обеспечивает информацию относительно подготовки катализаторов в соответствии с конкретным примером осуществления: катализаторы (катод/электрод 1, в частности) не могут, как правило, быть подвергнуты обработке в жестких условиях, требуемых для пайки твердым припоем или спекания металла с металлом, так что они добавляются после завершения этих этапов.
10. Инфильтрация исходного материала катализатора в пористый YSZ и подложку/токовый коллектор
11. Формирование катализатора (обычно при температуре 600-800°С на воздухе)
- формирование катализатора может быть отдельным этапом или может происходить во время первого цикла эксплуатации ячейки.
Кроме того, детали, касающиеся подготовки катализатора, описываемой в данном документе, можно найти в переданном в общее пользование патенте США №6,682,842, включенном в данный документ путем ссылки полностью и для всех целей.
Узел соединения согласно настоящему изобретению может без ограничения найти следующее применение:
1) обеспечение уплотнения/соединения в электрохимических устройствах;
2) обеспечение уплотнения/соединения в электронных приборах;
3) обеспечение уплотнения/соединения в устройствах транспортировки жидкостей и газов (например, в теплообменниках, устройствах для отделения газов, устройствах для опреснения воды и газовых манифолдах).
Заключение
Таким образом, изобретение охватывает комбинацию материалов в компактной структуре для обеспечения всех необходимых функций узла соединения для высокотемпературных электрохимических устройств. Предлагается также способ образования узла соединения. Узел соединения обеспечивает уплотнение, структурную целостность, а также электрическое соединение и изоляцию.
Выше было приведено подробное описание изобретения в целях обеспечения ясности его понимания, однако очевидно, что в него могут быть внесены определенные изменения и дополнения, не выходящие за пределы объема притязаний прилагаемой формулы изобретения. Следует отметить то, что существует множество альтернативных способов реализации как технологии, так и составов согласно настоящему изобретению. Следовательно, приведенные примеры осуществления нужно рассматривать как иллюстративные, а не ограничительные, и изобретение не должно быть ограничено приведенными в данном документе деталями.
Все документы, цитируемые в данном документе, включены в качестве ссылки для всех целей.

Claims (21)

1. Узел соединения для электрохимического устройства, содержащий: металлический кожух узла соединения; первый пористый электрод; второй пористый электрод, отделенный от первого пористого электрода твердым электролитом; и изолирующий элемент, размещенный между металлическим кожухом узла соединения и электролитом и вторым электродом; и один или более участков твердого припоя, структурно и электрически соединяющих первый электрод с металлическим кожухом узла соединения и формирующих газонепроницаемое уплотнение между первым электродом и вторым электродом.
2. Узел соединения по п.1, отличающийся тем, что структурное и электрическое соединение между первым электродом и металлическим кожухом узла соединения и газонепроницаемое уплотнение между первым электродом и вторым электродом - оба обеспечены одним участком твердого припоя, соединяющим первый электрод, металлический кожух узла соединения и электролит.
3. Узел соединения по п.1, отличающийся тем, что изолирующий элемент является плотным.
4. Узел соединения по п.1 или 3, отличающийся тем, что структурное и электрическое соединение между первым электродом и металлическим кожухом узла соединения обеспечено первым участком твердого припоя, а газонепроницаемое уплотнение между первым электродом и вторым электродом обеспечено вторым участком твердого припоя, соединяющим изолирующий элемент с электролитом, и третьим участком твердого припоя, соединяющим изолирующий элемент с металлическим кожухом узла соединения.
5. Узел соединения по п.4, отличающийся тем, что второй участок твердого припоя также соединяет второй электрод.
6. Узел соединения по п.1, отличающийся тем, что первый электрод содержит металл.
7. Узел соединения по п.1, отличающийся тем, что второй электрод содержит металл.
8. Узел соединения по п.6 или 7, отличающийся тем, что металл первого и/или второго электрода содержит токовый коллектор из нержавеющей стали или Ag.
9. Узел соединения по п.8, отличающийся тем, что токовый коллектор выполнен из нержавеющей стали.
10. Узел соединения по п.1, отличающийся тем, что изолирующий элемент содержит материал, выбранный из группы, состоящей из плотной керамики, пористой керамики, адгезива на основе керамики, адгезива на основе стекла или стеклянного элемента.
11. Узел соединения по п.1, отличающийся тем, что узел соединяет соседние ячейки электрохимического устройства, образуя сборку из последовательно соединенных ячеек, а металлический кожух узла соединения соединен также с соседней ячейкой.
12. Узел соединения по п.1, отличающийся тем, что один или более участков твердого припоя состоят из материала, выбранного из группы, состоящей из сплавов Ag, Au, Cu, Ni и твердых припоев, смешанных с одним или более керамическими наполнителями.
13. Узел соединения по п.12, отличающийся тем, что один или более керамических наполнителей твердого припоя имеют коэффициент теплового расширения, не превышающий 6×10-6 1/К.
14. Узел соединения по п.13, отличающийся тем, что наполнитель выбран из группы, состоящей из титаната алюминия/магния, вольфрамата циркония или их смеси.
15. Узел соединения по п.1, отличающийся тем, что состав электролита модифицирован с целью его упрочнения или полностью заменен на более прочный материал вблизи узла соединения.
16. Узел соединения по п.15, отличающийся тем, что электролит содержит диоксид циркония, стабилизированный оксидом иттрия (YSZ), модифицированный Al2O3.
17. Узел соединения по п.10, отличающийся тем, что изолирующий элемент представляет собой адгезив, а поверхности металлического кожуха узла соединения, контактирующей с изолирующим элементом, придана шероховатость.
18. Узел соединения по п.1, отличающийся тем, что электрохимическое устройство представляет собой твердооксидный топливный элемент.
19. Узел соединения по п.1, отличающийся тем, что электрохимическое устройство имеет трубчатую форму.
20. Способ изготовления узла соединения для высокотемпературного электрохимического устройства, содержащий этап создания металлического кожуха узла соединения, первого пористого электрода, второго пористого электрода, отделенного от первого пористого электрода твердым электролитом, и изолирующего элемента, размещенного между металлическим кожухом узла соединения и электролитом и вторым электродом; и этап формирования одного или более участков твердого припоя, структурно и электрически соединяющих первый электрод с металлическим кожухом узла соединения и образующих газонепроницаемое уплотнение между первым электродом и вторым электродом.
21. Способ по п.20, отличающийся тем, что один или более участков твердого припоя формируют в одну операцию пайки твердым припоем.
RU2007124483/09A 2004-11-30 2005-11-28 Структура уплотненного узла соединения для электрохимического устройства RU2389110C2 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US63201504P 2004-11-30 2004-11-30
US60/632,015 2004-11-30

Publications (2)

Publication Number Publication Date
RU2007124483A RU2007124483A (ru) 2009-01-10
RU2389110C2 true RU2389110C2 (ru) 2010-05-10

Family

ID=37452499

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007124483/09A RU2389110C2 (ru) 2004-11-30 2005-11-28 Структура уплотненного узла соединения для электрохимического устройства

Country Status (12)

Country Link
US (1) US8445159B2 (ru)
EP (1) EP1825541A4 (ru)
JP (1) JP2008522370A (ru)
KR (1) KR20070083893A (ru)
CN (1) CN100530766C (ru)
AU (1) AU2005332026B2 (ru)
CA (1) CA2627863A1 (ru)
MY (1) MY147808A (ru)
NO (1) NO20073309L (ru)
RU (1) RU2389110C2 (ru)
TW (1) TW200642142A (ru)
WO (1) WO2006127045A2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2779038C1 (ru) * 2021-12-29 2022-08-30 Общество с ограниченной ответственностью "Научно-исследовательский центр "ТОПАЗ" (ООО "НИЦ "ТОПАЗ") Способ изготовления батареи трубчатых твердооксидных топливных элементов и батарея, изготовленная заявленным способом

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6605316B1 (en) 1999-07-31 2003-08-12 The Regents Of The University Of California Structures and fabrication techniques for solid state electrochemical devices
CN100574953C (zh) * 2004-11-30 2009-12-30 加州大学评议会 热膨胀系数相匹配的钎焊体系
EP1825541A4 (en) 2004-11-30 2010-01-13 Univ California SEAL JOINT STRUCTURE FOR ELECTROCHEMICAL DEVICE
AU2005327925B2 (en) * 2004-11-30 2011-01-27 The Regents Of The University Of California Joining of dissimilar materials
WO2008016345A2 (en) 2006-07-28 2008-02-07 The Regents Of The University Of California Joined concentric tubes
JP5090800B2 (ja) * 2007-06-25 2012-12-05 日本電信電話株式会社 インターコネクタ及び固体酸化物形燃料電池
EP2210307A4 (en) * 2007-07-25 2011-09-28 Univ California INTERLOCKING STRUCTURE FOR HIGH TEMPERATURE ELECTROCHEMICAL DEVICE AND METHOD FOR MANUFACTURING SAME
CN101983250A (zh) * 2008-02-04 2011-03-02 加州大学评议会 用于高温燃料电池的Cu基金属陶瓷
DE102008013281A1 (de) * 2008-03-08 2009-09-17 Forschungszentrum Jülich GmbH Dichtungsanordnung für Hochtemperatur-Brennstoffzellenstapel
BRPI0822579A2 (pt) 2008-04-18 2015-06-23 Univ California Selo integrado para dispositivo eletroquímico de alta temperatura
DE102008049608A1 (de) * 2008-09-30 2010-04-01 Siemens Aktiengesellschaft Verfahren zur Herstellung eines Interkonnektors für Hochtemperatur-Brennstoffzellen, zugehörige Hochtemperatur-Brennstoffzelle sowie damit aufgebaute Brennstoffzellenanlage
FR2940857B1 (fr) 2009-01-07 2011-02-11 Commissariat Energie Atomique Procede de fabrication d'un electrolyseur haute temperature ou d'une pile a combustible haute temperature comprenant un empilement de cellules elementaires
US7855030B2 (en) * 2009-05-01 2010-12-21 Delphi Technologies, Inc. Inhibitor for prevention of braze migration in solid oxide fuel cells
KR101109233B1 (ko) * 2009-08-04 2012-01-30 삼성전기주식회사 집전가능한 매니폴드를 구비한 연료전지
US20110065019A1 (en) * 2009-09-15 2011-03-17 Shunsuke Taniguchi Combined cell module for solid oxide fuel cell
US20110111309A1 (en) * 2009-11-10 2011-05-12 Point Source Power, Inc. Fuel cell system
JP5732798B2 (ja) * 2010-09-29 2015-06-10 住友大阪セメント株式会社 セラミック部材
JP4872027B1 (ja) * 2010-11-01 2012-02-08 日本碍子株式会社 固体酸化物型燃料電池
CN102534297A (zh) * 2010-12-16 2012-07-04 北京有色金属研究总院 一种热膨胀系数呈梯度变化的合金材料及其制备方法
CN102290555A (zh) * 2011-07-18 2011-12-21 深圳市豪鹏科技有限公司 正极帽、钢壳及电池
US10105795B2 (en) 2012-05-25 2018-10-23 General Electric Company Braze compositions, and related devices
CN104604005B (zh) * 2012-08-31 2017-03-01 日本特殊陶业株式会社 带隔板的燃料电池单元及其制造方法和燃料电池堆
DE102013200594A1 (de) * 2013-01-16 2014-07-31 Siemens Aktiengesellschaft Verfahren zur Herstellung einer Elektroden-Elektrolyt-Einheit für einen wiederaufladbaren elektrischen Energiespeicher, insbesondere einen Metalloxid-Luft-Energiespeicher, mit einem zwischen zwei Elektroden angeordneten Elektrolyten
US9786043B2 (en) * 2014-12-03 2017-10-10 Bloom Energy Corporation Inspection method for the effect of composition on the bond strength of a metallized alumina ceramic
WO2023128812A1 (ru) * 2021-12-29 2023-07-06 Общество с ограниченной ответственностью "Научно-исследовательский центр "ТОПАЗ" (ООО "НИЦ "ТОПАЗ") Способ изготовления трубчатых твердооксидных топливных элементов и батарея

Family Cites Families (162)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126311A (en) * 1964-03-24 Laminated plastic article and method wherein
US3324543A (en) * 1965-03-26 1967-06-13 Charles I Mcvey Pressure bonded ceramic-to-metal gradient seals
US3402230A (en) 1965-06-21 1968-09-17 Gen Electric Method of producing tubular fuel cell stack
US3526646A (en) 1968-02-12 1970-09-01 American Home Prod 5,5'-disulfamoylbenzophenones
FR1585403A (ru) 1968-04-19 1970-01-23
ZA702110B (en) 1969-04-18 1971-11-24 Nat Standard Co Metal bonding
CH515623A (fr) * 1969-05-16 1971-11-15 Comp Generale Electricite Pile à combustible à électrolyte solide fonctionnant à haute température
CA941643A (en) 1971-03-25 1974-02-12 Union Carbide Corporation Metal porous abradable seals
BE792075A (fr) 1971-11-30 1973-05-29 Union Carbide Corp Elements metalliques poreux a revetement ceramique et leur procede de realisation
US4035547A (en) * 1974-02-26 1977-07-12 William C. Heller Bonding element having separate heating and agitating particles
JPS5916695A (ja) * 1982-07-20 1984-01-27 Toyota Motor Corp セラミツク繊維を含有するろう付用溶加材
JPS59100854A (ja) * 1982-12-01 1984-06-11 Mazda Motor Corp 広域空燃比センサ−
JPS59232693A (ja) 1983-06-17 1984-12-27 Ngk Spark Plug Co Ltd セラミツクと金属等との接合用クラツドろう材及びこれを用いたセラミツクと金属等との複合体
GB8332639D0 (en) 1983-12-07 1984-01-11 Atomic Energy Authority Uk Steel:ceramic seals
JPS60131875A (ja) * 1983-12-20 1985-07-13 三菱重工業株式会社 セラミツクと金属の接合法
US4578214A (en) * 1984-02-06 1986-03-25 C F Braun & Co. Process for ammonia syngas manufacture
US4560607A (en) 1984-06-07 1985-12-24 The Duriron Company, Inc. Method of joining materials by mechanical interlock and article
JPS61158839A (ja) 1984-12-28 1986-07-18 Okuno Seiyaku Kogyo Kk ガラス組成物
US4562124A (en) 1985-01-22 1985-12-31 Westinghouse Electric Corp. Air electrode material for high temperature electrochemical cells
DE3505739A1 (de) * 1985-02-20 1986-08-21 Th. Kieserling & Albrecht Gmbh & Co, 5650 Solingen Vorrichtung zum rundbiegen von konischen draehten
US5633081A (en) * 1986-03-24 1997-05-27 Ensci Inc. Coated porous substrates
US4687717A (en) * 1986-07-08 1987-08-18 The United States Of America As Represent By The United States Department Of Energy Bipolar battery with array of sealed cells
EP0261343A3 (de) * 1986-08-23 1989-04-26 Blome GmbH & Co. Kommanditgesellschaft Verfahren zur Schaffung von Profilierungsvorsprüngen auf kunststoffummantelten Stahlteilen sowie mit Profilierungsvorsprüngen versehene, kunststoffummantelte Stahlteile
SU1407675A1 (ru) 1987-01-19 1988-07-07 Предприятие П/Я В-8402 Способ изготовлени составных изделий из порошка
US5306411A (en) * 1989-05-25 1994-04-26 The Standard Oil Company Solid multi-component membranes, electrochemical reactor components, electrochemical reactors and use of membranes, reactor components, and reactor for oxidation reactions
US4942999A (en) * 1987-08-31 1990-07-24 Ngk Insulators, Inc. Metal-ceramic joined composite bodies and joining process therefor
US4847172A (en) * 1988-02-22 1989-07-11 Westinghouse Electric Corp. Low resistance fuel electrodes
US5013612A (en) * 1989-11-13 1991-05-07 Ford Motor Company Braze material for joining ceramic to metal and ceramic to ceramic surfaces and joined ceramic to metal and ceramic to ceramic article
US5085720A (en) * 1990-01-18 1992-02-04 E. I. Du Pont De Nemours And Company Method for reducing shrinkage during firing of green ceramic bodies
DE4002951A1 (de) * 1990-02-01 1991-08-08 Medicoat Ag Niederrohrdorf Festelektrolyt - brennstoffzelle und verfahren zu ihrer herstellung
US5127969A (en) * 1990-03-22 1992-07-07 University Of Cincinnati Reinforced solder, brazing and welding compositions and methods for preparation thereof
US5366770A (en) 1990-04-17 1994-11-22 Xingwu Wang Aerosol-plasma deposition of films for electronic cells
US5043229A (en) * 1990-06-14 1991-08-27 Gte Products Corporation Brazed ceramic-metal composite
EP0482777B1 (en) * 1990-10-01 1996-12-11 Sharp Kabushiki Kaisha Method for fabricating oxide superconducting coatings
RU1822388C (ru) 1990-10-23 1993-06-15 Тсоо "Уникум" Способ изготовлени биметаллических труб
DE4203245C2 (de) 1991-02-07 1994-03-24 Yoshida Kogyo Kk Festelektrolytbrennstoffzelle
US5236787A (en) * 1991-07-29 1993-08-17 Caterpillar Inc. Thermal barrier coating for metallic components
US5750279A (en) * 1992-02-28 1998-05-12 Air Products And Chemicals, Inc. Series planar design for solid electrolyte oxygen pump
US5338623A (en) 1992-02-28 1994-08-16 Ceramatec, Inc. Series tubular design for solid electrolyte oxygen pump
US5279909A (en) 1992-05-01 1994-01-18 General Atomics Compact multilayer ceramic-to-metal seal structure
US5616223A (en) * 1992-05-11 1997-04-01 Gas Research Institute Mixed ionic-electronic conducting composites for oxygen separation and electrocatalysis
US5240480A (en) * 1992-09-15 1993-08-31 Air Products And Chemicals, Inc. Composite mixed conductor membranes for producing oxygen
US5626914A (en) * 1992-09-17 1997-05-06 Coors Ceramics Company Ceramic-metal composites
US5735332A (en) * 1992-09-17 1998-04-07 Coors Ceramics Company Method for making a ceramic metal composite
JPH06103990A (ja) * 1992-09-18 1994-04-15 Ngk Insulators Ltd 固体電解質型燃料電池及びその製造方法
DE69422612T2 (de) 1993-03-20 2000-10-26 Univ Keele Keele Festoxidbrennstoffzellenstrukturen
DE4314323C2 (de) * 1993-04-30 1998-01-22 Siemens Ag Hochtemperaturbrennstoffzelle mit verbesserter Festelektrolyt/Elektroden-Grenzfläche und Verfahren zur Herstellung eines Mehrschichtaufbaus mit verbesserter Festelektrolyt/Elektroden-Grenzfläche
DE69431752T2 (de) * 1993-05-25 2003-07-10 Lord Corp Methode zum erreichen einer mechanischen verbindung zwischen oberflächen
US5409784A (en) * 1993-07-09 1995-04-25 Massachusetts Institute Of Technology Plasmatron-fuel cell system for generating electricity
US5589285A (en) 1993-09-09 1996-12-31 Technology Management, Inc. Electrochemical apparatus and process
JPH07202063A (ja) 1993-12-28 1995-08-04 Toshiba Corp セラミックス回路基板
US5441825A (en) 1994-01-24 1995-08-15 Westinghouse Electric Corporation Battery electrode compression mechanism
US5599383A (en) * 1995-03-13 1997-02-04 Air Products And Chemicals, Inc. Tubular solid-state membrane module
US5993986A (en) 1995-11-16 1999-11-30 The Dow Chemical Company Solide oxide fuel cell stack with composite electrodes and method for making
US5670270A (en) 1995-11-16 1997-09-23 The Dow Chemical Company Electrode structure for solid state electrochemical devices
US5753385A (en) 1995-12-12 1998-05-19 Regents Of The University Of California Hybrid deposition of thin film solid oxide fuel cells and electrolyzers
DK0788175T3 (da) * 1996-02-02 2000-07-10 Sulzer Hexis Ag Højtemperatur-brændstofcelle med en tyndfilmelektrolyt
US5686198A (en) 1996-02-29 1997-11-11 Westinghouse Electric Corporation Low cost stable air electrode material for high temperature solid oxide electrolyte electrochemical cells
US5741605A (en) * 1996-03-08 1998-04-21 Westinghouse Electric Corporation Solid oxide fuel cell generator with removable modular fuel cell stack configurations
US5787578A (en) * 1996-07-09 1998-08-04 International Business Machines Corporation Method of selectively depositing a metallic layer on a ceramic substrate
US5976216A (en) 1996-08-02 1999-11-02 Omg Americas, Inc. Nickel-containing strengthened sintered ferritic stainless steels
US5938822A (en) * 1997-05-02 1999-08-17 Praxair Technology, Inc. Solid electrolyte membrane with porous catalytically-enhancing constituents
US6296910B1 (en) * 1997-05-29 2001-10-02 Imperial College Of Science, Technology & Medicine Film or coating deposition on a substrate
US5908713A (en) * 1997-09-22 1999-06-01 Siemens Westinghouse Power Corporation Sintered electrode for solid oxide fuel cells
US6217732B1 (en) * 1997-09-23 2001-04-17 Abb Business Services Inc. Coated products
AU730602B2 (en) 1997-10-01 2001-03-08 Acumentrics Corporation Integrated solid oxide fuel cell and reformer
US6200541B1 (en) 1997-10-28 2001-03-13 Bp Amoco Corporation Composite materials for membrane reactors
CN1169252C (zh) * 1997-11-25 2004-09-29 日本电池株式会社 燃料电池用电极
JP3315919B2 (ja) * 1998-02-18 2002-08-19 日本碍子株式会社 2種類以上の異種部材よりなる複合部材を製造する方法
GB9807977D0 (en) 1998-04-16 1998-06-17 Gec Alsthom Ltd Improvements in or relating to coating
AU3952399A (en) * 1998-06-15 2000-01-05 Bi-Patent Holding Sa Brazing composition and seal for electrochemical cell
AU3952499A (en) * 1998-06-15 2000-01-05 Bi-Patent Holding Sa High temperature electrochemical cell including a seal
US7771547B2 (en) * 1998-07-13 2010-08-10 Board Of Trustees Operating Michigan State University Methods for producing lead-free in-situ composite solder alloys
US6188582B1 (en) * 1998-12-18 2001-02-13 Geoffrey Peter Flexible interconnection between integrated circuit chip and substrate or printed circuit board
US6358567B2 (en) * 1998-12-23 2002-03-19 The Regents Of The University Of California Colloidal spray method for low cost thin coating deposition
US6589680B1 (en) * 1999-03-03 2003-07-08 The Trustees Of The University Of Pennsylvania Method for solid oxide fuel cell anode preparation
US6368383B1 (en) * 1999-06-08 2002-04-09 Praxair Technology, Inc. Method of separating oxygen with the use of composite ceramic membranes
JP3792440B2 (ja) * 1999-06-25 2006-07-05 日本碍子株式会社 異種部材の接合方法、および同接合方法により接合された複合部材
US7163713B2 (en) * 1999-07-31 2007-01-16 The Regents Of The University Of California Method for making dense crack free thin films
US7553573B2 (en) * 1999-07-31 2009-06-30 The Regents Of The University Of California Solid state electrochemical composite
US6682842B1 (en) * 1999-07-31 2004-01-27 The Regents Of The University Of California Composite electrode/electrolyte structure
US6605316B1 (en) * 1999-07-31 2003-08-12 The Regents Of The University Of California Structures and fabrication techniques for solid state electrochemical devices
US6372078B1 (en) * 1999-09-09 2002-04-16 Ronnie L. Melchert Method for bonding polyester to plastic and resultant product
US6270642B1 (en) * 1999-09-30 2001-08-07 The Penn State Research Foundation Fabrication of zirconia electrolyte films by electrophoretic deposition
KR100344936B1 (ko) * 1999-10-01 2002-07-19 한국에너지기술연구원 연료극 지지체식 원통형 고체산화물 연료전지 및 그 제조방법
KR20010104686A (ko) * 1999-10-08 2001-11-26 추후기재 고체 전기화학장치용 복합전극
JP4367675B2 (ja) 1999-10-21 2009-11-18 日本碍子株式会社 セラミック製部材と金属製部材の接合用接着剤組成物、同組成物を用いた複合部材の製造方法、および同製造方法により得られた複合部材
JP3595223B2 (ja) 1999-10-29 2004-12-02 京セラ株式会社 固体電解質型燃料電池セル
JP2001233982A (ja) * 1999-12-14 2001-08-28 Tokuyama Corp 多孔質ポリオレフィンフィルム及びその製造方法
DK174654B1 (da) * 2000-02-02 2003-08-11 Topsoe Haldor As Faststofoxid brændselscelle og anvendelser heraf
US6428920B1 (en) * 2000-05-18 2002-08-06 Corning Incorporated Roughened electrolyte interface layer for solid oxide fuel cells
US7416802B2 (en) * 2000-05-22 2008-08-26 Acumentrics Corporation Electrode-supported solid state electrochemical cell
RU2197441C2 (ru) 2000-05-29 2003-01-27 Ермолаева Алевтина Ивановна Композиция легкоплавкого стеклокристаллического материала
CN1238097C (zh) 2000-09-08 2006-01-25 新日本制铁株式会社 陶瓷·金属复合体、氧化物离子输送用复合结构体及有密封性的复合体
US6767662B2 (en) * 2000-10-10 2004-07-27 The Regents Of The University Of California Electrochemical device and process of making
US7252883B2 (en) 2000-10-23 2007-08-07 Sekisui Chemical Co., Ltd. Coated particles
GB2368450B (en) * 2000-10-25 2004-05-19 Imperial College Fuel cells
US6541146B1 (en) * 2000-11-07 2003-04-01 Hybrid Power Generation Systems, Llc Composite sealant materials based on reacting fillers for solid oxide fuel cells
WO2002041424A1 (fr) * 2000-11-16 2002-05-23 Mitsubishi Materials Corporation Pile a combustible du type a electrolyte solide et collecteur a electrode oxydo-reductrice a utiliser dans cette pile
JP3736452B2 (ja) 2000-12-21 2006-01-18 株式会社日立製作所 はんだ箔
US6887361B1 (en) * 2001-03-22 2005-05-03 The Regents Of The University Of California Method for making thin-film ceramic membrane on non-shrinking continuous or porous substrates by electrophoretic deposition
JP5234554B2 (ja) 2001-03-22 2013-07-10 独立行政法人産業技術総合研究所 固体電解質型燃料電池スタック構造体
US6974516B2 (en) * 2001-04-05 2005-12-13 Presidio Components, Inc. Method of making laminate thin-wall ceramic tubes and said tubes with electrodes, particularly for solid oxide fuel cells
US6632554B2 (en) 2001-04-10 2003-10-14 Hybrid Power Generation Systems, Llc High performance cathodes for solid oxide fuel cells
US6677070B2 (en) * 2001-04-19 2004-01-13 Hewlett-Packard Development Company, L.P. Hybrid thin film/thick film solid oxide fuel cell and method of manufacturing the same
DE10119538C2 (de) * 2001-04-21 2003-06-26 Itn Nanovation Gmbh Verfahren zur Beschichtung von Substraten und deren Verwendungen
US20040219423A1 (en) * 2001-04-27 2004-11-04 Tunney Cathal Joseph Metal-supported solid electrolyte electrochemical cell and multi cell reactors incorporating same
US20030024611A1 (en) * 2001-05-15 2003-02-06 Cornie James A. Discontinuous carbon fiber reinforced metal matrix composite
US6656526B2 (en) 2001-09-20 2003-12-02 Hewlett-Packard Development Company, L.P. Porously coated open-structure substrate and method of manufacture thereof
US6653009B2 (en) * 2001-10-19 2003-11-25 Sarnoff Corporation Solid oxide fuel cells and interconnectors
US7055733B2 (en) * 2002-01-11 2006-06-06 Battelle Memorial Institute Oxidation ceramic to metal braze seals for applications in high temperature electrochemical devices and method of making
US6893762B2 (en) * 2002-01-16 2005-05-17 Alberta Research Council, Inc. Metal-supported tubular micro-fuel cell
GB2386126B (en) 2002-03-06 2006-03-08 Ceres Power Ltd Forming an impermeable sintered ceramic electrolyte layer on a metallic foil substrate for solid oxide fuel cell
JP2003288913A (ja) * 2002-03-27 2003-10-10 Toto Ltd 固体酸化物燃料電池
AU2003256251A1 (en) * 2002-04-24 2003-11-10 The Regents Of The University Of California Planar electrochemical device assembly
EP1504477A1 (en) 2002-05-07 2005-02-09 The Regents Of The University Of California Electrochemical cell stack assembly
JP2004039574A (ja) 2002-07-05 2004-02-05 Tokyo Gas Co Ltd 低温作動固体酸化物形燃料電池用シール材
RU2236331C2 (ru) 2002-07-09 2004-09-20 Кабардино-Балкарский государственный университет им. Х.М. Бербекова Способ композиционной пайки
JP2004047598A (ja) 2002-07-10 2004-02-12 Toyota Industries Corp 複合材及び接続構造
GB2390739B (en) 2002-07-10 2005-07-20 Thomas Gordon Lindsay A novel planar seal-less fuel cell stack
US7208246B2 (en) * 2002-07-23 2007-04-24 Hewlett-Packard Development Company, L.P. Fuel cell with integrated heater and robust construction
JP2004127761A (ja) 2002-10-03 2004-04-22 Kiyoshi Noshiro 固体酸化物形燃料電池用燃料極及び燃料極材料製造方法
JP2004142971A (ja) 2002-10-22 2004-05-20 Tokyo Gas Co Ltd セラミック材料とステンレス鋼の接合方法
CN1498877A (zh) 2002-11-04 2004-05-26 原效坤 纳米ZrO2(Y2O3)/Cu复合功能陶瓷材料的制备方法
JP2004164864A (ja) 2002-11-08 2004-06-10 Toyota Motor Corp 固体電解質型燃料電池用燃料極
US20040200187A1 (en) * 2002-11-27 2004-10-14 Warrier Sunil G. Compliant, strain tolerant interconnects for solid oxide fuel cell stack
US7799419B2 (en) 2002-12-24 2010-09-21 Versa Power Systems, Ltd. High temperature gas seals
JP2004207088A (ja) 2002-12-26 2004-07-22 Nissan Motor Co Ltd ガス透過性基体及びこれを用いた固体酸化物形燃料電池
JP3967278B2 (ja) 2003-03-07 2007-08-29 日本碍子株式会社 接合部材及び静電チャック
US7838166B2 (en) * 2003-03-31 2010-11-23 Tokyo Gas Co., Ltd. Method for fabricating solid oxide fuel cell module
US6984277B2 (en) * 2003-07-31 2006-01-10 Siemens Westinghouse Power Corporation Bond enhancement for thermally insulated ceramic matrix composite materials
US7527888B2 (en) * 2003-08-26 2009-05-05 Hewlett-Packard Development Company, L.P. Current collector supported fuel cell
US7445814B2 (en) * 2003-10-22 2008-11-04 Hewlett-Packard Development Company, L.P. Methods of making porous cermet and ceramic films
US7767329B2 (en) * 2003-11-17 2010-08-03 Adaptive Materials, Inc. Solid oxide fuel cell with improved current collection
US7476461B2 (en) 2003-12-02 2009-01-13 Nanodynamics Energy, Inc. Methods for the electrochemical optimization of solid oxide fuel cell electrodes
US7618731B2 (en) * 2003-12-17 2009-11-17 University Of Dayton Ceramic-ceramic nanocomposite electrolyte
JP4573525B2 (ja) * 2003-12-24 2010-11-04 本田技研工業株式会社 固体高分子電解質型燃料電池
US7732084B2 (en) 2004-02-04 2010-06-08 General Electric Company Solid oxide fuel cell with internal reforming, catalyzed interconnect for use therewith, and methods
JP2005288526A (ja) 2004-04-02 2005-10-20 Toshiba Corp はんだ材及び半導体装置
JP4440711B2 (ja) 2004-06-11 2010-03-24 トヨタ自動車株式会社 燃料電池用セルモジュール及びその製造方法、並びに燃料電池
US7588856B2 (en) * 2004-08-04 2009-09-15 Corning Incorporated Resistive-varying electrode structure
US20050037252A1 (en) * 2004-08-06 2005-02-17 Pham Ai Quoc Tubular solid oxide fuel cells
WO2006044313A2 (en) 2004-10-12 2006-04-27 The Trustrees Of The University Of Pennsylvania Preparation of solid oxide fuel cell electrodes by electrodeposition
EP1825541A4 (en) 2004-11-30 2010-01-13 Univ California SEAL JOINT STRUCTURE FOR ELECTROCHEMICAL DEVICE
CN100574953C (zh) * 2004-11-30 2009-12-30 加州大学评议会 热膨胀系数相匹配的钎焊体系
AU2005327925B2 (en) * 2004-11-30 2011-01-27 The Regents Of The University Of California Joining of dissimilar materials
US7288469B2 (en) * 2004-12-03 2007-10-30 Eastman Kodak Company Methods and apparatuses for forming an article
US6994884B1 (en) * 2004-12-16 2006-02-07 General Electric Company High performance fuel cell electrode and method for manufacturing same
ES2342489T3 (es) 2005-02-02 2010-07-07 Univ Denmark Tech Dtu Procedimiento para producir una pila de combustible de oxido solido reversible.
US7595019B2 (en) 2005-03-01 2009-09-29 Air Products And Chemicals, Inc. Method of making an ion transport membrane oxygen separation device
US7785747B2 (en) 2005-04-11 2010-08-31 Worldwide Energy, Inc. Of Delaware Stack configurations for tubular solid oxide fuel cells
BRPI0608374A2 (pt) 2005-04-21 2010-11-16 Univ California método para formar uma camada particulada nas paredes de poros de uma estrutura porosa, e, dispositivo eletroquìmico
US20070117006A1 (en) * 2005-11-22 2007-05-24 Zhongliang Zhan Direct Fabrication of Copper Cermet for Use in Solid Oxide Fuel Cell
WO2007097460A1 (ja) 2006-02-27 2007-08-30 Kyocera Corporation セラミック部材の製造方法、並びにセラミック部材、ガスセンサ素子、燃料電池素子、フィルタ素子、積層型圧電素子、噴射装置、及び燃料噴射システム
WO2008016345A2 (en) 2006-07-28 2008-02-07 The Regents Of The University Of California Joined concentric tubes
US20080254335A1 (en) 2007-04-16 2008-10-16 Worldwide Energy, Inc. Porous bi-tubular solid state electrochemical device
EP2210307A4 (en) 2007-07-25 2011-09-28 Univ California INTERLOCKING STRUCTURE FOR HIGH TEMPERATURE ELECTROCHEMICAL DEVICE AND METHOD FOR MANUFACTURING SAME
US20090148743A1 (en) * 2007-12-07 2009-06-11 Day Michael J High performance multilayer electrodes for use in oxygen-containing gases
CN101983250A (zh) 2008-02-04 2011-03-02 加州大学评议会 用于高温燃料电池的Cu基金属陶瓷
BRPI0822579A2 (pt) * 2008-04-18 2015-06-23 Univ California Selo integrado para dispositivo eletroquímico de alta temperatura
US20110269047A1 (en) 2008-09-11 2011-11-03 The Regents Of The University Of California Metal-supported, segmented-in-series high temperature electrochemical device
CN102917806A (zh) 2010-04-09 2013-02-06 加州大学评议会 制造具有多孔金属层的电化学装置的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EP 1255308 A2 (GREATBATCH W LTD), 06.11.2002. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2779038C1 (ru) * 2021-12-29 2022-08-30 Общество с ограниченной ответственностью "Научно-исследовательский центр "ТОПАЗ" (ООО "НИЦ "ТОПАЗ") Способ изготовления батареи трубчатых твердооксидных топливных элементов и батарея, изготовленная заявленным способом

Also Published As

Publication number Publication date
AU2005332026A1 (en) 2006-11-30
NO20073309L (no) 2007-08-28
CN101065860A (zh) 2007-10-31
WO2006127045A3 (en) 2007-03-01
MY147808A (en) 2013-01-31
TW200642142A (en) 2006-12-01
EP1825541A2 (en) 2007-08-29
KR20070083893A (ko) 2007-08-24
CA2627863A1 (en) 2006-11-30
AU2005332026B2 (en) 2011-06-09
US20080268323A1 (en) 2008-10-30
RU2007124483A (ru) 2009-01-10
US8445159B2 (en) 2013-05-21
EP1825541A4 (en) 2010-01-13
CN100530766C (zh) 2009-08-19
JP2008522370A (ja) 2008-06-26
WO2006127045A2 (en) 2006-11-30

Similar Documents

Publication Publication Date Title
RU2389110C2 (ru) Структура уплотненного узла соединения для электрохимического устройства
KR101083701B1 (ko) 가역 고형 산화물 연료전지 스택 및 이의 제조방법
EP1334528B1 (en) Fuel cells
US7740966B2 (en) Electrochemical cell stack assembly
US20110269047A1 (en) Metal-supported, segmented-in-series high temperature electrochemical device
US20070037031A1 (en) Cermet and ceramic interconnects for a solid oxide fuel cell
US20040219423A1 (en) Metal-supported solid electrolyte electrochemical cell and multi cell reactors incorporating same
US20030232230A1 (en) Solid oxide fuel cell with enhanced mechanical and electrical properties
US7632593B2 (en) Bipolar plate supported solid oxide fuel cell with a sealed anode compartment
KR20110112389A (ko) 기본단위 전지들의 스택을 포함하는 고온 전해조 또는 고온 연료전지의 제조방법
JPH1092446A (ja) 固体電解質型燃料電池
JP2002329511A (ja) 固体電解質型燃料電池用スタック及び固体電解質型燃料電池
JP5095878B1 (ja) 燃料電池
CN111244498A (zh) 燃料电池和燃料电池堆
JP2005216619A (ja) 燃料電池セル及び燃料電池
JP2005166527A (ja) 燃料電池セル及び燃料電池
RU2432230C2 (ru) Объединенные концентрические трубки
JP2002358976A (ja) 固体電解質型燃料電池
JP4557578B2 (ja) 燃料電池セル及びセルスタック並びに燃料電池
Jacobson et al. Structures for dense, crack free thin films

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20141129