JP2007525017A - 交差流れライナを有する熱処理システム - Google Patents
交差流れライナを有する熱処理システム Download PDFInfo
- Publication number
- JP2007525017A JP2007525017A JP2006528253A JP2006528253A JP2007525017A JP 2007525017 A JP2007525017 A JP 2007525017A JP 2006528253 A JP2006528253 A JP 2006528253A JP 2006528253 A JP2006528253 A JP 2006528253A JP 2007525017 A JP2007525017 A JP 2007525017A
- Authority
- JP
- Japan
- Prior art keywords
- liner
- wafer
- cross
- processing
- carrier
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010438 heat treatment Methods 0.000 title abstract description 122
- 239000000758 substrate Substances 0.000 claims abstract description 39
- 239000007789 gas Substances 0.000 claims description 86
- 238000002347 injection Methods 0.000 claims description 70
- 239000007924 injection Substances 0.000 claims description 70
- 238000001802 infusion Methods 0.000 claims description 10
- 238000012545 processing Methods 0.000 abstract description 188
- 238000004401 flow injection analysis Methods 0.000 abstract description 10
- 230000002829 reductive effect Effects 0.000 abstract description 6
- 235000012431 wafers Nutrition 0.000 description 197
- 238000000034 method Methods 0.000 description 86
- 230000008569 process Effects 0.000 description 70
- 239000000463 material Substances 0.000 description 23
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 14
- 239000010453 quartz Substances 0.000 description 12
- 238000010926 purge Methods 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 238000001816 cooling Methods 0.000 description 10
- 239000004065 semiconductor Substances 0.000 description 10
- 238000009413 insulation Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 238000011109 contamination Methods 0.000 description 7
- 239000012530 fluid Substances 0.000 description 7
- 238000000151 deposition Methods 0.000 description 6
- 238000009826 distribution Methods 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 239000000376 reactant Substances 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 5
- 239000006227 byproduct Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 230000008878 coupling Effects 0.000 description 5
- 238000010168 coupling process Methods 0.000 description 5
- 238000005859 coupling reaction Methods 0.000 description 5
- 230000008021 deposition Effects 0.000 description 5
- 238000011068 loading method Methods 0.000 description 5
- 229910052757 nitrogen Inorganic materials 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 239000010959 steel Substances 0.000 description 5
- 230000002745 absorbent Effects 0.000 description 4
- 239000002250 absorbent Substances 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000008901 benefit Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000009792 diffusion process Methods 0.000 description 4
- 238000002513 implantation Methods 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 230000001681 protective effect Effects 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000002019 doping agent Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 238000013459 approach Methods 0.000 description 2
- 230000001627 detrimental effect Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000035515 penetration Effects 0.000 description 2
- 238000012805 post-processing Methods 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 238000002310 reflectometry Methods 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 238000005382 thermal cycling Methods 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 239000013626 chemical specie Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 239000000112 cooling gas Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000001351 cycling effect Effects 0.000 description 1
- 230000006837 decompression Effects 0.000 description 1
- 239000012772 electrical insulation material Substances 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 229910000953 kanthal Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- -1 polytetrafluoroethylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 208000011580 syndromic disease Diseases 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/324—Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
- C23C16/4583—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
- C23C16/4584—Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally the substrate being rotated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45578—Elongated nozzles, tubes with holes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45587—Mechanical means for changing the gas flow
- C23C16/45591—Fixed means, e.g. wings, baffles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/46—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67109—Apparatus for thermal treatment mainly by convection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67115—Apparatus for thermal treatment mainly by radiation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
- H01L21/67739—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
- H01L21/67757—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber vertical transfer of a batch of workpieces
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Health & Medical Sciences (AREA)
- Toxicology (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
本発明は、キャリアに保持された基板又はウェーハを熱処理する熱処理装置に関する。熱処理装置(230)は、各ウェーハ(242)の表面を横切る気体流の均一性を改善するための本発明による交差流れライナ(232)を含む。交差流れライナ(232)は、交差流れ注入システム(250)を収容するための長手方向出っ張り部分(232)を含む。交差流れライナ(232)は、それがウェーハキャリア(240)に対して共形であるようなパターン及び大きさにされ、その結果、交差流れライナ(232)とウェーハキャリア(240)との間の隙間を減少させ、ウェーハキャリア(240)とライナ内壁との間の隙間領域の渦及び淀みを減少又は消失させる。
Description
本出願は、本明細書においてその開示内容が全体的に引用により組み込まれている、2003年9月24日出願の米国特許仮出願第60/505,833号の恩典及びそれに対する優先権を主張するものであり、米国特許仮出願出願番号第60/396,536号及び第60/428,526号に対する優先権を主張する「熱処理システムと構成可能な垂直チャンバ」という名称のPCT出願出願番号PCT/US03/21575に関連しており、これらの全ての開示内容は、本明細書において全体的に引用により組み込まれている。
本発明は、一般的に、基板等の物体を熱処理するためのシステム及び方法に関する。より詳細には、本発明は、加熱処理、焼なまし、及び半導体ウェーハ又は基板上への材料の層の堆積又はそれからの材料の層の除去を行うための装置及び方法に関する。
熱処理装置は、一般的に、半導体基板又はウェーハから集積回路(IC)又は半導体素子を製造するのに用いられる。半導体ウェーハの熱処理には、例えば、加熱処理、焼なまし、ドーパント材料の拡散又は打込み、材料の層の堆積又は成長、及び基板からの材料のエッチング又は除去が含まれる。これらの工程では、工程前及び工程中にウェーハを1300℃ほどの高さ及び300℃ほどの低さの温度まで加熱し、また、処理ガス又は反応物のような1又は2以上の流体をウェーハに送出することが必要であることが多い。更に、これらの工程では、処理ガスの温度又はそれが処理チャンバに導入される速度が変化しても、ウェーハが工程を通して一様な温度を維持することが一般的に必要である。
従来の熱処理装置は、一般的には、炉内に位置決めされるか又は炉に囲まれ且つ嵩張った処理チャンバから成る。熱処理される基板は、処理チャンバ内に密封され、これが、次に処理が行われる望ましい温度まで炉で加熱される。「化学気相堆積(CVD)」のような多くの工程に対して、最初に密封処理チャンバを排気し、処理チャンバが望ましい温度に達した状態で、反応ガス又は処理ガスを導入して基板上に反応種を形成又は堆積させる。
従来、一般的な熱処理装置、特に垂直熱処理装置において、製品ウェーハを処理する処理区域の上方又は下方に、処理チャンバの側壁に隣接した保護加熱器を配置することが必要であった。この配置は、減圧し、処理ガス又は蒸気を充填、再充填又はパージする必要がある大きなチャンバ容積を伴い、その結果、処理時間が増大するために望ましくない。更に、この構成では、加熱器からウェーハへの見通し状態が良好でないために極めて大きな空間及び電力を要する。
従来の熱処理装置の他の問題は、処理前に処理チャンバ及び処理するウェーハの温度を上昇させること及び処理後に温度を下降させる時間の両方に相当な時間が必要であることを含む。更に、処理を始めることができる前に、処理チャンバの温度を望ましい温度で確実に均一に安定させるのに付加的な時間が必要であることが多い。ウェーハを処理するのに必要な実際の時間は、30分又はそれ未満とすることができるが、前処理時間及び後処理時間には、一般的に1〜3時間又はそれよりも多くかかる。従って、処理チャンバの温度を均一な温度まで急速に上昇及び/又は下降させるのに必要な時間により、従来の熱処理装置の処理能力は相当に制限される。
上昇及び下降時間が比較的長いことの根本的な理由は、ウェーハを有効に加熱又は冷却する前に加熱又は冷却する必要がある従来の熱処理装置内の処理チャンバ及び/又は炉の熱量である。
この従来の熱処理装置の処理能力の制限的要素を最小にするか又は相殺する一般的な手法は、単一のサイクル又は実施で処理することができるウェーハの数を増大させることである。多数のウェーハを同時に処理することにより、単位ウェーハの有効処理時間が減少させ、装置の有効処理能力を最大にするのに役立つ。しかし、この手法では、処理中に万一問題が起これば、危険性の規模も大きくなる。すなわち、例えば、単一の処理サイクル中に機器又は工程の不具合があった場合に、単一の故障により多数のウェーハが破壊され又は損傷する可能性があると考えられる。これは、ウェーハのサイズが大きい場合及び単一のウェーハが処理の段階によっては$1,000〜$10,000の価値になる可能性がある更に複雑な集積回路の場合には特に懸念される。
この解決法での別の問題は、多数のウェーハを収容するように処理チャンバの大きさを増大させると、処理チャンバの熱量効果が増大し、それにより、ウェーハを加熱又は冷却することができる速度が遅くなることである。更に、ウェーハのより大きなバッチをより大きな処理チャンバで処理すると、チャンバに最初に装填されたウェーハが最後に除去されるウェーハでもある先入れ後出しシンドロームになるか又はそれを悪化させ、これらのウェーハが長時間高温に晒されて1バッチのウェーハにわたる均一性が減少させる。
上記手法の別の問題は、熱処理の前後の工程の多くに用いられるシステム及び装置が、多数のウェーハを同時に処理することに適さないことである。すなわち、熱処理装置の処理能力を増大させながら大きなバッチの又は多数のウェーハを熱処理しても、熱処理装置の前にウェーハを蓄積させることが必要であるか、又はその下流の他のシステム及び装置でウェーハによって障害が引き起こされることにより、半導体製作施設の全体的処理能力をほとんど改善することができず、実際にそれを低減させることもある。
上述した従来の熱処理装置の代替手段は、ウェーハを急速に熱処理するために開発された急速熱処理(RTP)システムである。従来の急速熱処理(RTP)システムは、小さく透明で通常は石英の処理チャンバ内の単一ウェーハ又は少数のウェーハを選択的に加熱するために、一般的に高強度ランプを用いている。急速熱処理(RTP)システムは、処理チャンバの熱量効果を最小にするか又は消失させ、かつ、ランプの熱量が極めて小さいために、ランプを瞬間的にオン又はオフにすることによってウェーハを急速に加熱及び冷却することができる。
残念ながら、従来の急速熱処理(RTP)システムには、ランプの配置を含む大きな欠点があり、システムは、従来、処理チャンバの側壁に隣接した多数のランプから各々が構成された区域又はバンクに配列されていた。この構成は、その見通し状態が良好でないため、有効であるためには極めて大きな空間及び電力量を要し、その全ては、半導体処理機器の最新の世代で必要な代償であるという問題がある。
従来の急速熱処理(RTP)システムの別の問題は、ウェーハの単一バッチ内の複数のウェーハにわたって及び単一ウェーハにわたってさえも均一な温度分布にすることができないことである。このように温度分布が不均一であることには、(i)1又は2以上のランプによる1又は2以上のウェーハへの見通し状態が不良であること、及び(ii)ランプからの出力パワーに変動があることを含むいくつかの理由がある。
更に、単一のランプの出力が不良であるか又は変動があると、ウェーハにわたる温度分布に悪影響を及ぼす可能性がある。このために、のランプをベースにしたシステムほとんどは、ランプ出力の変動による温度不均一性が処理中にウェーハに伝達しないことを保証するために、1つ又は複数のウェーハを回転させる。しかし、ウェーハを回転するのに必要な可動部品、特に処理チャンバ内への回転貫通体は、システムの費用及び複雑さを増大し、その全体的な信頼性を減少させる。
急速熱処理(RTP)システムの更に別の厄介な部分は、ウェーハの外縁及び中心にわたって均一な温度分布を維持することである。ほとんどの従来の急速熱処理(RTP)システムには、この種の温度不均一性を調節するための適切な手段がない。その結果、ウェーハの表面にわたって過渡的な温度の変動が起こり、これによって、ウェーハよりも直径が大きな黒体サセプタを用いなければ、ウェーハのずれ転移の形成が高温で引き起こされる可能性がある。
従来のランプベースの急速熱処理(RTP)システムには他の欠点もある。例えば、電気ノイズを生成する位相角の制御を用いなければ、ランプの電力オン及びオフ時のような過渡的期間中に均一な電力分布及び温度均一性をもたらす適切な手段が存在しない。各ランプが古くなると性能に変動が出る傾向があるために、通常、性能の再現性もランプベースのシステムの欠点である。ランプの交換もまた、特に所定のランプシステムが180を超えるランプを有する場合があることを考えると、費用及び時間がかかる可能性がある。電力要件もまた、ランプのピーク電力消費量が約250キロワットになる場合があるために、費用がかかる可能性がある。
従って、熱処理中にバッチ内の各基板の表面にわたって1又は2以上の基板のバッチを望ましい温度まで急速かつ一様に加熱するための装置及び方法に対する必要性が存在する。
本発明は、これら及び他の問題に対する解決法を提供すると共に、従来技術に優る他の利点を提供する。
本発明は、焼なまし、ドーパント材料の拡散又は打込み、材料の層の堆積又は成長、及びウェーハからの材料のエッチング又は除去のような工程を行うために、半導体基板又はウェーハのような被加工物を等温的に加熱するための装置及び方法を提供する。
熱処理装置は、キャリアに保持された基板を高温又は上昇した温度で処理するために設けられる。装置は、上部壁、側壁、及び下部壁を有する処理チャンバと、基板を熱処理するためにキャリアが位置決めされた処理区域に等温環境をもたらすために処理チャンバの上部壁、側壁、及び下部壁に近接した多数の加熱要素を有する加熱源とを含む。態様の1つによれば、処理チャンバの寸法は、キャリアを収容するのに必要な容積よりも実質的に大きくない容積を取り囲むように選択され、処理区域は、実質的に処理チャンバを通って延びている。好ましくは、処理チャンバの寸法は、キャリアを収容するのに必要な容積の実質的に125%よりも大きくない容積を包囲するように選択される。より好ましくは、装置は、処理圧力をかける前に処理チャンバを排気するためのポンプシステムと、処理が完了した後に処理チャンバを再充填するためのパージシステムとを更に含み、処理チャンバの寸法は、処理チャンバの急速な排気及び急速な再充填の両方を行うように選択される。
本発明の別の態様によれば、処理チャンバの下部壁は、少なくとも1つの加熱要素を有する可動基台が含まれ、可動基台は、基板を備えたキャリアを処理チャンバに挿入したり除去することができるように下降したり上昇したりする。一実施形態では、装置は、基台内の加熱要素とキャリアに保持された基板との間に挿入されるように構成された取外し可能な熱遮蔽体を更に含む。熱遮蔽体は、基台内の加熱要素からの熱エネルギを基台に反射して戻し、キャリア上の基板を基台内の加熱要素からの熱エネルギから遮蔽するように構成される。この実施形態の1つのバージョンでは、装置は、基台が下降した位置にある時にキャリアの上方の適所に移動して処理チャンバを隔離するように構成されたシャッタを更に含む。装置が、処理チャンバを排気するためのポンプシステムを含む場合、シャッタは、処理チャンバを密封するようになっており、それによって基台が下降した位置の時にポンプシステムが処理チャンバを排気することを可能にする。
更に別の実施形態では、装置は、基板の熱処理中にキャリアを再位置決めする磁気結合再位置決めシステムを更に含む。好ましくは、キャリアを再位置決めするために用いられる機械的エネルギは、処理チャンバ内への可動貫通体を用いることなしに、且つ、基台内の加熱要素を実質的に移動させることなしに、基台を通り越してキャリアに磁気的に結合される。より好ましくは、磁気結合再位置決めシステムは、基板の熱処理中に処理区域内のキャリアを回転させる磁気結合回転システムである。
本発明の別の態様によれば、装置は、各基板の表面にわたって気体の流れの均一性を改善するための交差流れライナを更に含む。本発明の交差流れライナは、交差流れ注入システムを収容する長手方向出っ張り部分を含む。ライナは、それがウェーハキャリアに対して共形であるようなパターン及び大きさを有し、ライナとウェーハキャリアの間の間隙を低減し、その結果、製造工程に有害な間隙領域の渦又は淀みが減少し又は消失する。
本発明のこれら及び様々な他の特徴及び利点は、以下に示す添付図面及び特許請求の範囲と共に以下の詳細説明を読むと明らかになるであろう。
本発明は、処理サイクル時間を低減すると共に処理均一性を改善するように、カセット又はボート等のキャリアに保持された比較的少数又はミニバッチの1又は2以上の被加工物、例えば、半導体基板又はウェーハを処理するための装置及び方法に関する。
本明細書で用いる場合、「ミニバッチ」という用語は、典型的なバッチシステムに見られる数百のウェーハよりも少ない多数のウェーハを意味し、好ましくは、1〜約53の範囲の半導体ウェーハを意味し、例えば、1〜50が製品ウェーハであり、残りが監視目的及びバッフルウェーハとして用いられる非製品ウェーハである。
熱処理は、被加工物又はウェーハが望ましい温度、一般的には約350℃〜1300℃の範囲の温度まで加熱される工程を意味する。半導体ウェーハの熱処理は、例えば、加熱処理、焼なまし、ドーパント材料の拡散又は打込み、化学気相堆積又はCVD等の材料の層の堆積又は成長、及びウェーハからの材料のエッチング又は除去を含む。
ここで、図1を参照して、実施形態による熱処理装置を以下に説明する。明瞭にするために、公知であるか又は当業者に公知である熱処理装置の詳細の多くを省略している。このような詳細は、本明細書において引用により組み込まれている、例えば、本出願人に譲渡された米国特許第4,770,590号により詳細に説明されている。
図1は、1バッチの半導体ウェーハを熱処理するための熱処理装置の実施形態の断面図である。図示のように、熱処理装置100は、一般的には、処理チャンバ102を形成するための容積を包囲する容器101を有し、処理チャンバ102は、1バッチのウェーハ108を保持するキャリア又はボート106を受入れるように構成された支持体104を有し、熱処理装置100は、更に、熱源又は炉110を有し、この熱源又は炉110は、熱処理のためにウェーハの温度を望ましい温度まで上昇させるための多数の加熱要素112−1、112−2、112−3(以下、集合的に加熱要素112と呼ぶ)を有している。熱処理装置100は、処理チャンバ102内の温度を監視するために及び/又は加熱要素112の作動を制御するために、抵抗温度計(RTD)又は熱伝対(T/C)等の1又は2以上の光学的又は電気的温度検知要素を更に有している。ここに示す実施形態では、温度検知要素は、処理チャンバ102内の複数の部位の温度を検出するための複数の独立した温度感知ノード又はポイント(図示せず)を有するプロファイル熱電対(T/C)114である。また、熱処理装置100は、ウェーハ108を処理及び/又は冷却する気体又は蒸気等の流体を処理チャンバ102内に導入するための1又は2以上の注入器116(その1つのみを示す)と、処理チャンバをパージし及び/又はウェーハを冷却する気体を導入するための1又は2以上のパージポート又は通気口118(そのうち1つのみを示す)を有している。ライナ120により、ウェーハを処理する領域又は処理区域128内におけるウェーハ108の近くの処理ガス又は蒸気の濃度を増大させ、処理チャンバ102の内面に形成される可能性がある堆積物の剥がれ落ち又は剥離によるウェーハの汚染を減少させる。処理ガス又は蒸気は、チャンバライナ120の排気ポート又はスロット121を通って処理区域から出る。
一般的に、容器101は、Oリング122等のシールによりプラットフォーム又は底板124に対して密封され、熱処理中のウェーハ108を完全に包囲する処理チャンバ102を形成する。処理チャンバ102及び底板124の寸法は、処理チャンバを急速に排気し、急速に加熱し、急速に再充填するように選択される。有利な態様では、容器101及び底板124は、ウェーハ108を保持するキャリア106を収容するのに必要な容積よりも実質的に大きくない容積を包囲するように選択された寸法を有する処理チャンバ102を構成するように寸法決めされる。好ましくは、容器101及び底板124は、ウェーハ108を保持するキャリア106を収容するのに必要な寸法の約125〜約150%の寸法を有する処理チャンバ102を構成するように寸法決めされ、より好ましくは、処理チャンバは、チャンバの容積を最小にして減圧及び再充填に必要な時間に役立てるために、キャリア及びウェーハを収容するのに必要な寸法の約125%を超えない寸法を有している。
注入器116、熱電対(T/C)114、及び通気口118のための開口部は、Oリング、「VCR(登録商標)」又は「CF(登録商標)」取付け具のようなシールを用いて密封される。処理中に放出又は導入される気体又は蒸気は、図1に示すように処理チャンバ102の側壁(図示せず)又は底板124のプレナム127に形成されたフォアライン又は排気ポート126をから排気される。処理チャンバ102は、熱処理中、大気圧に維持されてもよいし、1又は2以上の粗ポンプ、送風器、高真空ポンプ、粗絞り、及びフォアラインバルブを含むポンプシステム(図示せず)を用いて5ミリトル程度の低さの真空になるまで排気されてもよい。
図2に示す別の実施形態では、底板124は、更に、注入器116を受入れて支持するように構成された実質的に環状の流れチャンネル129を有し、注入器116は、多数の垂直注入器管又は注入器116Aが延びるリング131を含んでいる。注入器116Aは、以下に説明するように、上向き流、下向き流、又は交差流の流れパターンを形成する寸法及び形状にすることができる。リング131及び注入器116Aは、ボート106と容器101の間の処理チャンバ102に気体を注入するように配置される。また、注入器116Aは、処理ガス又は蒸気を処理チャンバ102内に均一に導入するように、リング131の周りに間隔をおいて配置され、必要に応じて、パージ気体を処理チャンバに導入するためにパージ又は再充填中に用いられてもよい。底板124は、外向きに延びる上側フランジ133、側壁135、及び内向きに延びる基部137を備えた短い円筒形の形態をなすように寸法決めされている。上側フランジ133は、容器101を受入れて支持するように構成され、容器101を上側フランジに対して密封するためのOリング122を収容している。基部137は、注入器116のリング131が支持される箇所の外側においてライナ120を受入れて支持するように構成されている。
更に、図2に示す底板124は、再充填/パージ気体入口ポート139及び143と、底板124に冷却流体を循環させるために設けられた冷却ポート145及び147と、処理チャンバ102内の圧力を監視するための圧力モニタポート149とを含む様々なポートを有している。処理ガス入口ポート151及び161により、供給源(図示せず)からの気体が注入器116に導入される。再充填/パージポート139及び143は、原則的には、気体を通気/パージ気体供給源(図示せず)から通気口118まで導入するために、底板124の側壁135に設けられる。処理チャンバ102に入る気体流を制御するために、質量流コントローラ(図示せず)又はいずれかの他の適切な流量コントローラが、気体供給源とポート139、143、151、161との間にインラインで配置されている。
容器101及びライナ120は、高温及び高真空作動の熱及び機械的応力に耐えることができ、処理中に用いられ又は放出される気体及び蒸気による侵食に抵抗性を有する任意の金属、セラミック、水晶又はガラス材料で作られる。好ましくは、容器101及びライナ120は、機械的応力に耐えるのに十分な厚さを有し、処理副産物が堆積することに抵抗性がある不透明、半透明、又は透明の石英ガラスで作られ、それにより、処理環境の汚染の可能性を低減する。より好ましくは、容器101及びライナ120は、ウェーハ108を処理する領域又は処理区域128からの熱伝導を低減するか又は消失させる石英で作られる。
1バッチのウェーハ108を、ロードロック又はロードポート(図示せず)を通して熱処理装置100に導入し、次いで、処理チャンバ102との気密シールを形成することができる処理チャンバ又は底板124の出入り口又は開口部を通して処理チャンバ102に導入する。図1に示す構成では、処理チャンバ102は、垂直反応器であり、出入り口に可動基台130が利用され、可動基台130は、処理中、上昇することにより、底板124上のOリング132等のシールを用いて密封し、また、オペレータ又はボートハンドリングユニット(BHU)(図示せず)等の自動ハンドリングシステムがキャリア又はボート106を、可動基台に固定された支持体104上に位置決めすることを可能にするために下降する。
加熱要素112は、処理チャンバ102の上部134(加熱要素112−3)、側部136(加熱要素112−2)、及び底部138(加熱要素112−1)の近くに位置決めされた要素を有している。ウェーハを良く見えるようにする状態を達成し、それにより、ウェーハ108を処理する処理チャンバ内に等温制御容積又は処理区域128を設けるために、加熱要素112はウェーハを包囲していることが有利である。処理チャンバ102の底部138に近接する加熱要素112−1は、基台130の中に配置されてもよいし、その上に配置されてもよい。必要に応じて、底板124内又はその上に付加的な加熱要素を配置し、加熱要素112−1からの熱を補足するのがよい。
図1に示す実施形態では、好ましくは、処理チャンバの底部に近接する加熱要素112−1は、可動基台130の中に収容されている。基台130は、電気抵抗加熱要素112−1が内部に埋め込まれていてもよいし又はそれに固定された熱的及び電気的断熱材料又は断熱ブロック140で作られてもよい。基台130は、加熱要素112−1を制御するために用いられる1又は2以上のフィードバックセンサ又は熱電対(T/C)141を更に有している。ここに示す構成では、熱電対(T/C)141は、断熱ブロック140の中心に埋め込まれている。
側部加熱要素112−2及び上部加熱要素112−3は、容器101の周りの断熱ブロック110の中又はその上に配置されるのがよい。好ましくは、側部加熱要素112−2及び上部加熱要素112−3は、断熱ブロック110内に収容される。
加熱要素112及び断熱ブロック110及び140は、任意の様々な方法で構成され、様々な任意の方法を用いて任意の様々な材料で作られる。
好ましくは、1150℃までの望ましい処理温度を達成するために、処理チャンバ102の底部138に近接する加熱要素112−1の最大出力は、約0.1kW〜約10kWであり、最高処理温度は、少なくとも1150℃である。より好ましくは、これらの底部加熱要素112−1の出力は、少なくとも約3.8kWであり、最高処理温度は少なくとも950℃である。一実施形態では、側部加熱要素112−2は、基台130の近くの下側区域及び上側区域を含む複数の区域に機能的に分けられ、その各々は、互いに且つ上部加熱要素112−3及び底部加熱要素112−1と異なる電力レベル及び負荷サイクルで独立に作動されるのがよい。
加熱要素112は、当業技術で公知の種類の制御技術を用い、任意の適切な仕方で制御される。
断熱ブロック140及び底部加熱要素112−1からの汚染は、加熱要素及び断熱ブロックと処理チャンバ102との間の障壁として働く逆さ石英るつぼ142に加熱要素及び断熱ブロックを収容することによって、なくならないけれども減少する。また、るつぼ142は、ロードポート及びボートハンドリングユニット(BHU)環境に対しても密封され、処理環境の汚染を更に減少させ又はなくす。一般的に、るつぼ142の内部は標準大気圧であるため、るつぼ142は、その全体にわたって、処理チャンバ102と基台130の間の1気圧程度の大きさの差圧に耐えるのに十分な強さである必要がある。
ウェーハ108を装填する間又はそれを取出す間、すなわち、基台130が下側位置(図3)にある間、底部加熱要素112−1に電力を供給して、底部加熱要素112−1を望ましい処理温度よりも低いアイドル温度に維持する。例えば、底部加熱要素に対する望ましい処理温度が950℃である工程では、アイドル温度は、50〜150°である。望ましい処理温度が高い工程及び/又は望ましい上昇率が大きい工程等の特定の工程に対して、又は、底部加熱要素112−1への熱サイクル効果を低減することにより要素寿命を延ばすために、アイドル温度をより高く設定するのがよい。
処理時間、すなわち、熱処理装置100を処理のために準備するのに必要な時間を更に短くするために、押入れ中又は装填中、すなわち、ウェーハ108のボート106を位置決めした基台130が上昇している間、底部加熱要素112−1を、望ましい処理温度又はそれよりも低い温度まで上昇させるのがよい。しかしながら、ウェーハ108及び熱処理装置100の構成要素に作用する熱応力を最小にするために、底部加熱要素112−1を、処理チャンバ102の上部134及び側部136それぞれの近く配置された加熱要素112−3及び112−2と同時に望ましい処理温度に到達させることが好ましい。従って、望ましい処理温度を高くすることが必要な工程等のいくつかの工程では、底部加熱要素112−1の温度は、1バッチのうちの最後のウェーハ108が装填される間のうちの基台130が上昇され始める前、上昇し始めるのがよい。
同様に、ウェーハ108を冷却してボートハンドリングユニット(BHU)によって取出すための準備の際、処理後及び引出し又は取出しサイクル中、すなわち、基台130が下降している間、底部加熱要素112−1への電力を低減し又は完全に除去し、基台130をアイドル温度まで下降させ始めるのがよいことが認められる。
引出し又は取出しサイクルの前に、基台130を引出し温度まで冷却するのを助けるために、空気又は窒素等の不活性パージ気体のためのパージラインが、断熱ブロック140を貫くように設けられるのがよい。好ましくは、窒素を、断熱ブロック140の中心を通る通路144から注入し、断熱ブロック140の上部とるつぼ142の内部との間をその周囲まで流すことを可能にする。次に、高温窒素は、「高性能粒子状空気(HEPA)」フィルタ(図示せず)を通して周囲又は施設排気装置(図示せず)に排気される。この中心注入構成により、ウェーハ108の中心を迅速に冷却することが容易になり、従って、1つ又は複数の底部ウェーハの中心/縁部温度差を最小にするのに理想的であり、そうでなければ、結晶格子構造のずれ転移による損傷を招く可能性がある。
上述のように、底部加熱要素112−1の寿命を増大又は延ばすために、アイドル温度を、熱サイクルの効果を低減するように高くし、望ましい処理温度に近く設定するのがよい。また、高酸素環境で加熱要素112−1を周期的に焼き出し、保護酸化物表面コーティングの形成を促進することも望ましい。例えば、抵抗加熱要素が「Kanthal(登録商標)」等のアルミニウム含有合金で形成される場合、高酸素環境で加熱要素112−1を焼き出しすると、アルミナ酸化物の表面増加が促進される。従って、断熱ブロック140は、加熱要素112−1の焼出し中に保護酸化物表面コーティングの形成を促進するための酸素ライン(図示せず)を更に有するのがよい。変形例として、焼出しのための酸素が、処理中に用いられるパージラインを通して導入され、3方バルブを通じて冷却窒素を供給されてもよい。
図3は、熱処理装置100の一部分の断面図である。図3は、ウェーハ108が装填され又は取出される間、すなわち、基台130が下側位置にある間における熱処理装置100を示している。この作動モードでは、熱処理装置100は、熱遮蔽体146を更に有し、熱遮蔽体146は、基台130及びボート106の下側ウェーハ108の上方の適所に回転又は摺動させられるのがよい。熱遮蔽体146の性能を向上させるために、一般的に、熱遮蔽体は、加熱要素112−1に面する側が反射性であり、ウェーハ108に面する側が吸収性である。熱遮蔽体146の目的は、ボート106内の下方のウェーハ108を冷却する速度を増大させること、及び基台130及び底部加熱要素112−1のアイドル温度を維持し、処理チャンバ102が望ましい処理温度まで上昇するのに必要な時間を短くすることを含む。図3〜図6を参照して、熱遮蔽体を有する熱処理装置の実施形態をここでより詳細に以下に説明する。
図3はまた、基台加熱要素112−1及び熱遮蔽体146を有する熱処理装置100の実施形態を示している。ここに示す実施形態では、熱遮蔽体146は、腕148を通じて回転可能なシャフト150に取付けられ、シャフト150を電気的、空気式、又は液圧式アクチュエータによって回転させて、熱遮蔽体146を回転させることにより、引出し又は取外しサイクル中、熱遮蔽体146をボート106内の加熱基台130と一番下のウェーハ108との間の第1の位置に入れ、押入れ又は装填サイクルの少なくとも最終部分又は最後の間、ボート106の底部がチャンバ102に入る直前に、熱遮蔽体146を取除き又は基台とウェーハとの間ではない第2の位置まで回転させる。好ましくは、回転可能なシャフト150は、基台130を上昇させたり下降させたりするのに用いられる機構(図示せず)に装着又は固定され、それにより、基台の上部が処理チャンバ102を通過すると直ぐに熱遮蔽体146が回転して適所に位置させることが可能である。遮蔽体146が装填サイクル中に適所にあれば、加熱要素112−1を望ましい温度まで、その他の方法で可能である速さよりも急速に加熱することができる。同様に、取外しサイクル中、遮蔽体146は、基台加熱要素112−1から放射される熱を反射することにより、ウェーハ、特に基台に近いウェーハを冷却するのに役立つ。
変形例として、回転可能シャフト150は、熱処理装置100の別の部分に装着又は固定されてもよいし、基台130と同期して軸線方向に移動してもよいし、基台が完全に下降した時に熱遮蔽体146を回転させて適所に位置させてもよい。
図4は、図3の基台加熱要素112−1及び熱遮蔽体146の概略図であり、底部加熱要素から放射される熱エネルギ又は熱が反射されて基台130に戻り、1バッチ又はスタックの下方のウェーハ108から放射される熱エネルギ又は熱が吸収される様子を示している。望ましい特性である高反射性及び高吸収性は、金属、セラミック、ガラス、又はポリマーコーティングのようないくつかの異なる材料を個々に又は組み合わせて用いて得られることが確認されている。例示として、以下の表は、様々な適切な材料及び対応するパラメータを列挙している。
一実施形態によれば、熱遮蔽体146は、片側が研磨され、もう片側がすり減らされ、摩耗され又は粗面にされた単一の材料、例えば、炭化珪素(SiC)、不透明石英、ステンレス鋼で作られる。熱遮蔽体146の表面を粗面にすると、その伝熱性、特にその反射性が相当に変化する可能性がある。
別の実施形態では、熱遮蔽体146は、2つの異なる材料層で作られる。図5は、SiC又は不透明石英等の材料の高吸収性の上層152と、研磨されたステンレス鋼又は研磨されたアルミニウム等の材料又は金属の高反射性の下層154とを有する熱遮蔽体146の概略図である。上層152又は下層154は、ほぼ等しい厚さを有するように示されているが、熱膨張係数の差による層間の熱応力を最小にするなどの熱遮蔽体146の特定の要件に応じて、その何れかの厚さをより厚くするのがよいことが認められる。例えば、特定の実施形態では、下層154は、上層152を形成する石英板上に堆積され、形成され又はメッキされて研磨された金属の極めて薄い層又はフィルムであるのがよい。材料は、一体的に形成されてもよいし、互いに結合されてもよいし、又は接着又は締結等の従来の手段によって接合されてもよい。
更に別の実施形態では、熱遮蔽体146は、内部冷却チャンネル156を更に有し、ウェーハ108を底部加熱要素112−1から更に断熱する。図6に示すこの実施形態の1つの形態では、冷却チャンネル156は、2つの異なる材料層152、154の間に形成される。例えば、冷却チャンネル156は、高吸収性の不透明石英層152にフライス削り又はその他の任意適切な技術によって形成され、金属層又はチタン又はアルミニウムコーティング等のコーティング154によって被覆される。変形例として、冷却チャンネル156は、金属層154に形成されてもよいし、金属層154と石英層152の両方に形成されてもよい。
図7は、熱遮蔽体146、腕148、回転可能なシャフト150、及びアクチュエータ155を有する熱遮蔽体アセンブリ153の実施形態の斜視図である。
図8に示すように、熱処理装置100は、更に、シャッタ158を有し、シャッタ158は、基台130が完全に下降した位置のとき、処理チャンバ102を外側又はロードポート環境から隔離するように、ボート106の上方の適所に回転、摺動又はその他の方法で移動させられる。例えば、シャッタ158は、基台130が下側位置にあるとき、摺動してキャリア106の上方の適所に配置され、次いで、処理チャンバ102を隔離するために上昇する。変形例として、シャッタ158は、基台130が下側位置にあるとき、回転し又は前後に揺動してキャリア106の上方の適所に配置され、その後、処理チャンバ102を隔離する上昇する。選択的に、シャッタ158は、ネジ切りしたネジ又はロッドを中心に又はそれに対して回転することにより、前後に揺動してキャリア106の上方の適所に配置されるのと同時にシャッタを上昇させて、処理チャンバ102を隔離する。
CVDシステムのように通常は真空下で作動する処理チャンバ102では、シャッタ158は、底板124に対する真空シールを形成し、処理圧力又は真空まで処理チャンバ102をポンプダウン又は減圧することを可能にする。例えば、ウェーハの連続バッチの間に処理チャンバ102を減圧することにより、処理環境を汚染する可能性を低減させ又はなくすことが望ましい場合がある。真空シールの形成は、Oリング等の直径の大きなシールで行われることが好ましく、従って、シャッタ158は、シールを冷却するためにいくつかの水チャンネル160を有することが望ましい。図8に示す実施形態では、シャッタ158は、基台130が上昇した位置にあるときにるつぼ142を密封するのに用いられたOリングと同じOリング132で密封される。
処理チャンバ102が通常は大気圧で作動する熱処理装置130では、シャッタ158は、処理チャンバの底部からの熱損失を低減するように設計された単なる断熱プラグである。これを達成するための一実施形態では、不透明石英板を利用するのがよく、不透明石英板は、シャッタ158の下又はその内部にいくつかの冷却チャンネルを更に有していてもよいし、それらを有していなくてもよい。
基台130が完全に下降した位置にあるとき、シャッタ158は、処理チャンバ102の下方の位置に移動し、次いで、1又は2以上の電気的、液圧式、又は空気式アクチュエータ(図示せず)によって上昇して、処理チャンバを隔離する。好ましくは、アクチュエータは、ゲージ圧で約15〜60ポンド/平方インチ(PSIG)の空気を用いる空気式アクチュエータであり、これは、一般的に、空気式バルブを作動させるための熱処理装置100に利用可能である。例えば、この実施形態の1つの形態では、シャッタ158は、いくつかのホイールが短い腕又は片持ち梁を介してシャッタの2つの側部に取付けられた板を含むのがよい。板又はシャッタ158は、作動時、2つの平行なガイドレール上を転がって処理チャンバ102の下の適所に位置する。次いで、片持ち梁がガイドレール上のストッパによって回動し、シャッタ158の移動が上向き方向に変換して、処理チャンバ102を密封する。
図9に示すように、熱処理装置100は、更に、処理中、支持体104及びボート106をその上に支持されたウェーハ108と共に回転させる磁気結合ウェーハ回転システム162を有している。処理中にウェーハ108を回転させると、加熱要素112内及び処理ガス流中のいかなる不均一性も平均され、ウェーハ上の温度及び化学種反応の性質が均一になることにより、ウェーハ内(WIW)の均一性を改善する。一般的には、ウェーハ回転システム162は、約0.1〜約10回転/分(RPM)の速度でウェーハ108を回転させるのがよい。
ウェーハ回転システム162は、電気又は空気式モータ等の回転モータ166と、ポリテトラフルオロエチレン又は焼きなましたステンレス鋼等の化学的耐性の容器に入れられた磁石168とを有する駆動アセンブリ又は回転機構164を有している。基台130の断熱ブロック140の直ぐ下に配置された鋼鉄リング170と、断熱ブロックと一体の駆動シャフト172とにより、回転エネルギを基台の上面部分の断熱ブロックの上に配置された別の磁石174に伝達する。また、鋼鉄リング170、駆動シャフト172及び第2の磁石174も化学的耐性容器複合体に入れられる。基台130の側に配置された磁石174は、処理チャンバ102の支持体104に埋め込まれ又は固定された鋼鉄リング又は磁石176に、磁気的にるつぼ142を通り越して結合される。
回転機構164を磁気的に基台130を通り越して結合させることにより、回転機構164を処理環境内に配置する必要、又は、機械的な貫通体を有する必要がなくなり、それにより、漏れ及び汚染を引き起こす可能性がある原因がなくなる。更に、回転機構164を処理部分の外側でそれから多少距離をおいて配置すると、回転機構164が晒される最高温度を最低にし、それにより、ウェーハ回転システム162の信頼性が向上し且つ作動寿命が延びる。
上述したことに加えて、ウェーハ回転システム162は、ボート106の位置を適正にし、且つ、処理チャンバ102内の鋼鉄リング又は磁石176と基台130内の磁石174との間の適正な磁気的結合を保証するために、1又は2以上のセンサ(図示せず)を更に有している。ボート106の相対位置を判断するセンサ、すなわち、ボート位置確認センサは特に有用である。一実施形態では、ボート位置確認センサは、ボート106上のセンサ突起(図示せず)と、底板124の下に配置される光又はレーザセンサとを有している。作動時、ウェーハ108を処理した後、基台130を底板124から約3インチ下方に下降させる。この際、ウェーハ回転システム162に、ボートセンサ突起を検出することができるまでボート106を回転させる指令を出す。次に、ウェーハ回転システム162を作動させ、ウェーハ108を取出すことができるようにボートを位置合わせする。これを行った後、ボートを、装填/取出しの高さまで下げる。初期検査後、フラグセンサからのボート部位を確認することだけが可能である。
図10に示すように、改良型注入器216を熱処理装置100に用いることが好ましい。注入器216は、分配又は交差(X字形)流れ注入器216−1であり、処理ガス又は蒸気がウェーハ108及びボート106の片側の注入器開口部又はオリフィス180から導入され、層流をなしてウェーハの表面を横切って流れ、反対側のチャンバライン120の排気ポート又はスロット182から出る。X字形流れ注入器116−1では、処理ガス又は蒸気の分布が以前の上向き流れ又は下向き流れの構成よりも改良され、1バッチのウェーハ108内のウェーハ均一性に関して、ウェーハ108を改善する。
更に、X字形流れ注入器216は、ウェーハ108間を強制対流冷却するための冷却用気体(例えば、ヘリウム、窒素、水素)の注入を含む他の目的に役立てることができる。X字形流れ注入器216を用いると、以前の上向き流又は下向き流の構成と比較して、1つのスタック又はバッチの底部又は上部に配置されたウェーハ108とその中間に配置されたウェーハとの間を更に均一に冷却する。好ましくは、注入器216のオリフィス180は、ウェーハ全体にわたって大きな温度勾配が生じないように、ウェーハ108間の強制対流冷却を促進するスプレーパターンを形成するように寸法、形状及び位置が定められるのがよい。
図11は、図10の熱処理装置100の一部分の断面側面図であり、チャンバライナ120に関連した注入器オリフィス180及びウェーハ108に関連した排気スロット182の例示的な一部分を示している。
図12は、図10の線A−Aにおける図10の熱処理装置100の一部分の平面図であり、一実施形態による1次注入器184及び2次注入器186それぞれのオリフィス180−1及び180−2からウェーハ108の例示の1つを横切って排気スロット182−1及び182−2まで層をなして流れる気体流を示している。図10に示す排気スロット182の位置は、図12に示す排気スロット182−1及び182−2の位置からずらされ、熱処理装置の単一の断面図に排気スロット及び注入器116−1を示すようにしていることに注意すべきである。また、ウェーハ108及びチャンバライナ120に対する注入器184、186及び排気スロット182−1、182−2の寸法は、注入器から排気スロットまでの気体流を明確に示すために誇張されていることにも注意すべきである。
また、図12に示すように、処理ガス又は蒸気は、最初にウェーハ108から離れてライナ120に向かうように差し向けられ、ウェーハに到達する前に処理ガス又は蒸気が混合されることを促進する。オリフィス180−1、180−2のこの構成は、例えば、多成分フィルム又は層を形成するために異なる反応物が1次注入器184及び2次注入器186の各々から導入される工程又は方法に特に有用である。
図13は、図10の線A−Aにおける図10の熱処理装置100の一部分の別の平面図であり、別の実施形態による1次注入器184及び2次注入器186のオリフィス180からウェーハ108の例示的な1つを横切って排気スロット182まで進む変形例の気体流路を示している。
図14は、図10の線A−Aにおける図10の熱処理装置100の一部分の別の平面図であり、更に別の実施形態による1次注入器184及び2次注入器186のオリフィス180からウェーハ108の例示的な1つを横切って排気スロット182まで進む変形例の気体流路を示している。
図15は、図10の線A−Aにおける図10の熱処理装置100の一部分の別の平面図であり、更に別の実施形態による1次注入器184及び2次注入器186のオリフィス180からウェーハ108の例示的な1つを横切って排気スロット182まで進む変形例の気体流路を示している。
図16は、変形実施形態による2つ又は3つ以上の上向き流れ注入器116−1、116−2を有する熱処理装置100の断面図である。この実施形態では、処理チャンバ102の低位置にそれぞれの出口オリフィスを有する処理注入器116−1、116−2から入れられた処理ガス又は蒸気が、上向きにウェーハ108を横切って流れ、消費された気体がライナ120の上面の排気スロット182から出る。上向き流れ注入器システムは、図1にも示されている。
図17は、変形実施形態による下向き流れ注入器システムを有する熱処理装置100の断面図である。この実施形態では、処理チャンバ102の高位置にそれぞれ出口オリフィスを有する処理注入器116−1、116−2から入れられた処理ガス又は蒸気が、下向きにウェーハ108を横切って流れ、消費された気体が、ライナ120の下側区域の排気スロット182から出る。
有利な態様においては、注入器116、216及び/又はライナ120は、処理ガスを注入するための異なる箇所及び処理区域128から排気するための異なる箇所を有する他の注入器及びライナと、迅速かつ簡単に置換又は交換されるのがよい。図10に示すX字形流れ注入器216の実施形態では、処理チャンバ102内の流れパターンを、図10に示すような交差流形態から図1及び図16に示すような上向き流れ形態又は図17に示すような下向き流れ形態に迅速かつ容易に変化させることを可能にすれば、工程の柔軟性の程度が増大することが当業者によって認められる。これは、流れの幾何学形状を交差流れから上向き流れ又は下向き流れに変換するために、容易に導入可能な注入器アセンブリ216及びライナ120を用いることによって達成される。
注入器116、216及びライナ120は、別々の構成要素であってもよいし、注入器がライナと一体的に単一部品として形成されてもよい。後者の実施形態は、処理チャンバ102構成を頻繁に変えることが望ましい用途で特に有用である。
図18を参照して熱処理装置100を作動させるための例示的な方法又は工程を説明する。図18は、1バッチのウェーハの各ウェーハを望ましい温度まで迅速かつ均一に加熱するために、1バッチのウェーハ108を熱処理する方法の段階を示す流れ図である。本方法では、基台130を下降させ、基台130を下降させている間、熱遮蔽体142を一定の位置に移動させ、底部加熱要素112−1からの熱を基台130に反射させて戻すことにより、基台130の温度を維持すると共に、完成ウェーハ108を断熱する(段階190)。選択的に、シャッタ158を適所に移動させて、処理チャンバ102を密封又は隔離し(段階192)、加熱要素112−2、112−3に電力を供給して、処理チャンバ102の予備加熱を開始し、又は、中間又はアイドル温度を維持する(段階194)。新しいウェーハ108が装填されたキャリア又はボート106を基台130に位置決めする(段階196)。基台130を上昇させて、ボート106を処理区域128に位置決めし、同時にシャッタ158及び熱遮蔽体142を取外し、底部加熱要素112−1を作動させて、ウェーハを中間温度まで予備加熱する(段階197)。熱遮蔽体142を、ボート106が処理区域128に位置決めされる直前に除去することが好ましい。処理ガス又は蒸気等の流体を、複数の注入ポート180からウェーハ108の一方の側に導入する(段階198)。流体は、注入ポート180からウェーハ108の表面を横切り、注入ポートに対してウェーハの反対側のライナ120に位置決めされた排気ポート182まで流れる(段階199)。選択的に、ウェーハを熱処理する間、機械エネルギをキャリア又はボート106まで基台130を通り越して磁気的に結合してボート106を再位置決めすることによって、1バッチのウェーハ108sを熱処理する間、ボート106を処理区域128内で回転させ、熱処理の均一性を更に向上させる(段階200)。
図19を参照して別の実施形態による熱処理装置100の方法又は工程をここで以下に説明する。図19は、キャリア内の1バッチのウェーハ108を熱処理する方法の実施形態の段階を示す流れ図である。本方法では、ウェーハ108を保持したキャリア106を収容するのに必要とされるよりも実質的に大きくない寸法及び容積の処理チャンバ102を有し且つ保護加熱器を有していない装置100を準備する。基台130を下降させ、ウェーハ108を保持したボート106を基台130の上に位置決めする(段階202)。基台130を上昇させ、ボートを処理チャンバ102に装填し、同時にウェーハ108を中間温度まで予備加熱する(段階204)。処理チャンバ102の上壁134、側壁136及び下壁138の少なくとも1つの近くに配置された各加熱要素112−1、112−2、112−3に電力を供給し、処理チャンバの加熱を開始する(段階206)。選択的に、加熱要素の少なくとも1つへの電力を独立に調節し、処理チャンバ102の処理区域128内を、望ましい温度で実質的に等温の環境にする(段階208)。ウェーハ108を熱処理するとき、及び、処理区域128内を望ましい温度に維持する間、基台130を下降させ、熱遮蔽体142を適所に移動させて、完成ウェーハ108を断熱し、底部加熱要素112−1からの熱を基台130に反射させて戻し、基台130の温度を維持する(段階210)。また、選択的に、シャッタ158を適所に移動させて、処理チャンバ102及び加熱要素112−2、112−3に与えた電力を密封又は隔離し、処理チャンバの温度を維持する(段階212)。次に、ボート106を基台130から取外し(段階214)、処理すべき新しいバッチのウェーハを装填した別のボートを基台に位置決めする(段階216)。シャッタ158を再位置決めし又は除去し(段階218)、熱遮蔽体を引込め又は再位置決めし、ボート106内のウェーハ108を中間温度まで予備加熱し、それと同時に基台130を上昇させ、ボートを処理チャンバ102に装填し、新しいバッチのウェーハを熱処理する(段階220)。
上述したように構成され且つ作動させる熱処理装置100が、従来のシステムよりも約75%の処理又はサイクル時間を減少させることが確定している。例えば、従来の大量のバッチ用の熱処理装置は、100の製品ウェーハを、前処理及び後処理時間を含んで約232分で処理することができる。本発明の熱処理装置100は、ミニバッチの25の製品ウェーハ108の同じ処理を、約58分で行うものである。
図20〜図42を参照して、本発明の一実施形態による交差流れ(X字形流れ)ライナを以下に説明する。
従来の上向き流れ垂直炉は、一般的には、段付ライナを用い、処理ガス速度及び拡散制御を増大させている。また、これらは、ウェーハ内の均一性を改善するのを助けるためにも用いられる。残念なことに、段付ライナは、全ての注入気体がスタック下方の全ての表面を越えるように流れることを強制する反応気体の単一注入点のために起こるスタック下方枯渇問題を是正しない。従来技術の垂直交差流れ炉では、スタック下方枯渇問題は解決されている。しかし、抵抗の最も小さい流路は、ウェーハ間ではなく、ウェーハキャリアとライナ内壁との間の間隙領域に生じる可能性がある。抵抗の最も小さい流路により、製造工程に有害な渦又は淀みが生じる場合がある。炉内の渦及び淀みは、工程に用いる化学種によっては、ウェーハにわたって不均一問題を生じさせる場合がある。
本発明は、キャリアに支持された各基板の表面にわたって均一な気体流を生じさせることにより、ウェーハ内の均一性を大幅に改善する交差流れライナを提供する。一般的に、本発明の交差流れライナは、交差流れ注入システムを収容するための長手方向出っ張り部分を含み、それにより、ライナをウェーハキャリアと適合するパターン及び寸法にすることができる。ライナとウェーハキャリアの間の間隙は大幅に減少し、その結果、従来技術の炉で起こるような渦及び淀みを低減し又は回避することができる。
図20は、本発明の一実施形態による交差流れライナ232を含む熱処理装置230を示している。本発明を簡単に説明するために、本発明に密接な関係がない要素は、図面に示して説明はしない。一般的に、装置230は、処理チャンバ236を形成する容器234を有し、処理チャンバ236は、1バッチのウェーハ242を保持するキャリア240を受入れるように構成された支持体238を有している。熱処理装置230は、ウェーハ242の温度を熱処理に望ましい温度まで上昇させるための熱源又は炉244を有している。交差流れライナ232は、ウェーハ242の近くの処理ガス又は蒸気の濃度を上昇させるように、且つ、処理チャンバ236の内面上に形成される可能性がある堆積物が剥がれ落ちたり剥離したりすることによるウェーハ242の汚染を減少させるように設けられている。ライナ232は、ウェーハキャリア240の輪郭に適合するパターン又は形状を有し、ウェーハキャリア240とライナ壁との間の間隙を低減する大きさを有している。ライナ232は、底板246に装着されて密封されている。交差流れ注入システム250は、ライナ232とウェーハキャリア240との間に配置される。以下に説明するように、気体が、ウェーハの表面を横切る層流をなすように、複数の注入ポート又はオリフィス252からウェーハ242及びキャリア240の一方の側に導入される。複数のスロット254がライナ232の反対側に形成され、気体又は反応副生成物が排気される。
交差流れライナは、高温及び高真空作動の熱及び機械的応力に耐えることができ、処理中に用いられ又は放出される気体及び蒸気による腐食に抵抗性を有する任意の金属、セラミック、水晶又はガラス材料で作られる。好ましくは、交差流れライナは、機械的応力に耐えるのに十分な厚さを有し、処理副産物が堆積することに対する抵抗性があり、それにより、処理環境が汚染される可能性を低減する不透明、半透明又は透明の石英ガラスから作られる。一実施形態では、ライナは、ウェーハを処理する領域又は処理区域から放出される熱伝導を減少させ又はなくす石英で作られるのがよい。
図21及び図22は、本発明の一実施形態による交差流れライナ232の外観図を示している。一般的に、交差流れライナ232は、閉鎖端部258及び開放端部260を含むシリンダ256を有している。シリンダ256には、交差流れ注入システムを収容する長手方向出っ張り部分262が設けられている(図示せず)。好ましくは、出っ張り部分262は、シリンダ256の実質的に長さ方向全体にわたって延びている。シリンダ256の出っ張り部分262に対する反対側に、気体及び反応副生成物を排気する複数の横方向スロット254が長手方向に設けられている。
交差流れライナ232は、ウェーハキャリア240及びキャリア支持体238の輪郭と適合する寸法及びパターンを有している。一実施形態では、ライナ232は、ウェーハキャリア240に適合する寸法を有する第1の部分261と、キャリア支持体238に適合する寸法を有する第2の部分263とを含んでいる。第1の部分261の直径は、第2の部分263の直径と異なり、すなわち、ライナ232は「段付」であり、ウェーハキャリア240及びキャリア支持体238のそれぞれに一致させることができる。一実施形態では、ライナ232の第1の部分261の内径は、キャリア外径の約104〜110%である。別の実施形態では、ライナ232の第2の部分263の内径は、キャリア支持体238の外径の約115〜120%である。第2の部分263は、1又は2以上の熱遮蔽体264を有し、Oリング等のシールが加熱要素によってオーバーヒートしないように保護する。
図23は、交差流れライナ232の側面図であり、第1の部分261と第2の部分263との間の段付き部を示している。長手方向出っ張り部分262は、第1の部分261の長さだけ延びている。注入システム(図示せず)は、出っ張り部分232に収容され、各1又は2以上の気体を基板242の表面を横切るように導入する。1又は2以上の熱遮蔽体264は、第2の部分263に設けられるのがよい。
図24は、交差流れライナ232の上面図であり、交差流れ阻止システムを受入れるための開口部266を有するシリンダ256の閉鎖端部258を示している。図25に詳細に示すように、閉鎖端部258の開口部266は、交差流れ注入システムの方向を定めて安定させるためのノッチ268を有している。説明のために、開口部266に3つのノッチが示されているが、必要に応じて、注入システム内の注入ポートを任意の方向に向けることができる任意の数のノッチが形成されてもよいことに注目すべきである。
交差流れ注入システム250は、軸線の周りを360度回転可能な1又は2以上の細長い管を含むよがよい。本出願と同時に出願した米国特許出願出願番号第_____号(代理人整理番号33606/US/2)には、注入システムの一実施形態が説明されており、その開示内容は、本明細書においてその全内容を援用する。好ましい実施形態では、細長い管は、反応物及びその他の気体を各基板の表面を横切る方向に差し向けるために管内に長手方向に分配された複数の注入ポート又はオリフィス252を有している。一実施形態では、細長い管は、閉鎖端部258の開口部266のノッチ268の1つに固定するためのインデックスピン(図示せず)を有している。一実施形態では、管内の注入ポート又はオリフィス252は、インデックスピンと整列して形成されている。従って、細長い管を導入すると、インデックスピンは、ノッチ268の1つに固定され、管の注入ポート252は、ノッチに固定されたインデックスピンによって定められる方向に向けられる。
有利なことには、本発明の交差流れライナは、出っ張り部分を有し、それにより、ライナとウェーハキャリアの間の間隙を低減することができ、出っ張り部分は、その内部に交差流れ注入システムを収容し、ライナがウェーハキャリアの輪郭に適合するように作られる。それにより、ライナ内壁とウェーハキャリアとの間の間隙領域の渦及び淀みが減少し、従って、流れ均一性が改善され、これは次に、堆積されるフィルムの品質、均一性、及び再現性を改善するのに役立つ。
図23〜図25に示す一実施形態では、出っ張り部分262に2つの細長い注入管(図示せず)が設けられる。2つの細長い注入管を受入れるために、2つの開口部266がライナ232の閉鎖端部258に形成される。注入ポート252を特定の方向に向けるために、開口部266にノッチ268が形成される。必要に応じて注入ポート252を任意の方向に向けることができるように、任意の数のノッチを形成して細長い注入管を360度調節することができる。一実施形態では、細長い管内のインデックスピンは、注入ポート252がライナ232の内面に向く方向になるようにノッチ268Aに受入れられる。図26に示すように、注入ポート252を出た気体は、ライナ壁270に衝突した後、各基板242の表面を横切って流れる前、出っ張り部分262で混合される。別の実施形態では、細長い管のインデックスピンは、各注入管の注入ポート252が互いに対向する向きに置かれるようにノッチ268Bに受入れられる。図27に示すように、注入ポート252から出た気体は、互いに衝突した後、各基板の表面を横切って流れる前、出っ張り部分262で混合される。更に別の実施形態では、細長い管のインデックスピンは、図28に示すように、注入ポート252が基板242の中心に向く方向に置かれるようにノッチ268Cに受入れられる。
図29〜図34は、チャンバ内部の基板の表面を横切る気体流線を示す「粒子軌跡」グラフである。これらの図は、高度に不均衡な流れ状態をなして注入器ポートから排気スロットまで進む粒子の軌跡272を示している。第1(左端)の注入器ポートからの流れの運動量は、第2(右端)の注入器ポートの流れの運動量よりも10倍大きい。図29、図31、及び図33に実際に示すように、本発明の交差流ライナは、従来技術のライナに比較して、基板の表面を横切る均一な気体流を生じさせるという大きな利点を有している。本発明の交差流れライナの出っ張り部分は、基板の表面を横切って流れる前、注入ポートから出た気体のための混合チャンバになり、従って、気体の「衝撃混合」の運動量移送を容易にする。これとは対照的に、本発明の出っ張り部分を備えてない従来技術ライナを含むチャンバでは、基板の表面を横切る気体流は、図30、図32、及び図34に示すように不規則で不均一である。
図35は、交差流れライナ232の外面側面図であり、ライナシリンダの壁を貫く複数の横方向スロット254を示している。スロット254の大きさ及びパターンは、予め決定され、出っ張り部分262の反対側に長手方向に設けられている。一実施形態では、ライナのスロット間の間隔及びその数は、注入管の注入ポート間の間隔及びその数と協働して気体の排気を容易にする。図36及び図37は、ライナ232の第2の部分の熱遮蔽体264と、ライナの第2の部分において細長い管を受入れて安定させるための2つのノッチ274とを示す断面図である。
図38〜図39は、本発明の別の実施形態を示す。1つの細長い注入管276が出っ張り部分262に収容されている。T字管278が、ライナ232の第2の部分263の細長い管276に結合される。2つの気体が、細長い管276及びT字管278にそれぞれ導入され、注入ポートを出る前に細長い管276内で予備混合される。
作動時、真空システムは、反応チャンバ236内に真空圧を生成する。真空圧は、容器234が延びる方向に作用する。交差流れライナ232は、真空圧に応答して作動し、交差流れライナ232内に第2の真空を生成する。第2の真空圧は、容器234が延びる方向を横切り、各基板242の表面を横切る方向に作用する。2つの気体、例えば、第1の気体及び第2の気体は、2つの異なる気体供給源から注入システムの2つの細長い管に導入される。気体は、ウェーハ242の一方の側の注入ポート252から出て、層流をなし、2つの隣接したウェーハ間に形成された通路内をウェーハ242を横切って運ばれる。過剰な気体又は反応副生成物は、細長い管の注入ポート252と協働するライナ壁の横スロット254から排気される。
図40は、本発明の一実施形態による交差流れライナを含む熱処理装置に対する「計算流体力学(CFD)」的実証である。交差流れライナの直径は小さくされており、ウェーハキャリアに合致している。交差流れ注入システムは、ライナの出っ張り部分に収容されている。注入システムは、反応物又は他の気体を各基板の表面を横切って導入する2つの細長い注入管を有し、各注入管は、複数の注入ポートを有している。注入ポートは、ライナ内面に向く方向に配置され、注入ポートを出た気体がライナ壁に衝突し、各基板の表面を横切って流れる前に出っ張り部分で混合されるように構成されている。一例では、2つの注入管に導入された気体はそれぞれ、75sccmのBTBAS(ビステトラブチルアミノシラン)及びNH3である。図40は、良好な交差ウェーハ速度を明らかにしている。
図41は、本発明の一実施形態による交差流れライナを含む熱処理装置に対する「計算流体力学(CFD)」的実証である。交差流れライナの直径は小さくされており、ウェーハキャリアに合致している。交差流れ注入システムは、ライナの出っ張り部分に収容されている。注入システムは、反応物又は他の気体を各基板の表面を横切って導入する2つの細長い注入管を有し、各注入管は、複数の注入ポートを有している。注入ポートは、基板の中心に向く方向に配置されている。一例では、2つの注入管に導入された気体はそれぞれ、75sccmのBTBAS(ビステトラブチルアミノシラン)及びNH3である。図41は、良好な交差ウェーハ速度を明らかにしている。
図42は、本発明の一実施形態による交差流れライナを含む熱処理装置に対する「計算流体力学(CFD)」的実証である。交差流れライナの直径は小さくされており、ウェーハキャリアに合致している。交差流れ注入システムは、ライナの出っ張り部分に収容されている。注入システムは、反応物又は他の気体を各基板の表面を横切って導入する2つの細長い注入管を有し、各注入管は、複数の注入ポートを有している。各注入管の注入ポートは、互いに向き合う方向に配置され、注入ポートを出た気体が互いに衝突し、各基板の表面を横切って流れる前に混合されるように構成されている。一例では、2つの注入管に導入された気体はそれぞれ、75sccmのBTBAS(ビステトラブチルアミノシラン)及びNH3である。図42は、良好な交差ウェーハ速度を明らかにしている。
本発明の特定的な実施形態及び実施例の以上の説明は、例示及び説明のために示されたものであり、本発明を先の実施例のいくつかによって説明して示したが、それによって限定されるように解釈されるものではない。これらは、網羅的ではなく、本発明を開示した正確な形態に限定するようにも意図されておらず、以上の教示に照らして本発明の範囲内の多くの修正、改良、及び変形が可能である。本発明の範囲は、本明細書に開示され、かつ特許請求の範囲及びその均等物による包括的領域を包含するものとする。
Claims (13)
- キャリア内に保持された複数の基板を熱処理するための装置であって、
キャリアを包囲するライナを有し、
前記ライナは、シリンダを有し、このシリンダは、各基板の表面を横切って1又は2以上の気体を導入するための注入システムを収容する長手方向出っ張り部分を有する、装置。 - 前記ライナは、前記キャリアに適合するパターン及び寸法を有し、
前記ライナの内径は、前記キャリアの直径の約104〜110パーセントである、請求項1に記載の装置。 - 前記シリンダは、気体を排気するために前記シリンダの長手方向に沿って設けられた複数のスロットを有する、請求項1に記載の装置。
- 前記シリンダは、閉鎖端部及び開放端部を有し、
前記閉鎖端部は、前記注入システムを受入れる1又は2以上の開口部を有する、請求項1に記載の装置。 - 前記シリンダは、第1の部分及び第2の部分を有し、
前記第1の部分は、前記キャリアに適合するパターン及び寸法を有し、且つ、前記キャリアの直径の約104〜110パーセントである第1の直径を有し、
前記第2の部分は、前記キャリアのための支持体に適合するパターン及び寸法を有し、且つ、前記支持体の直径の約115〜120パーセントである直径を有する、請求項1に記載の装置。 - 前記ライナは、更に、前記シリンダの前記第2の部分の周囲部の周りに配置された1又は2以上の熱遮蔽体を有する、請求項5に記載の装置。
- 前記注入システムは、1又は2以上の細長い管を有し、この細長い管は、複数の注入ポートを有する、請求項1に記載の装置。
- 前記1又は2以上の細長い管は、軸線の周りに360度回転可能である、請求項7に記載の装置。
- 交差流れライナであって、
閉鎖端部及び開放端部を有するシリンダを有し、
前記シリンダは、注入システムを収容するための長手方向出っ張り部分を有する、交差流ライナ。 - 前記シリンダは、前記出っ張り部分の反対側に複数の横方向スロットを有する、請求項9に記載の交差流れライナ。
- 前記閉鎖端部は、前記注入システムを受入れるように寸法決めされた1又は2以上の開口を有する、請求項9に記載の交差流れライナ。
- 前記1又は2以上の開口は、1又は2以上のノッチを有する、請求項11に記載の交差流れライナ。
- 前記シリンダは、第1の直径を有する第1の部分と、第2の直径を有する第2の部分とを有し、
前記第1の部分は、前記出っ張り部分の反対側に複数の横方向スロットを有し、
前記第2の部分は、その周囲部の周りに1又は2以上の熱遮蔽体を有する、請求項12に記載の交差流れライナ。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US50583303P | 2003-09-24 | 2003-09-24 | |
US10/947,426 US20050098107A1 (en) | 2003-09-24 | 2004-09-21 | Thermal processing system with cross-flow liner |
PCT/US2004/031484 WO2005031233A2 (en) | 2003-09-24 | 2004-09-23 | Thermal processing system with cross-flow liner |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007525017A true JP2007525017A (ja) | 2007-08-30 |
Family
ID=34396274
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006528253A Pending JP2007525017A (ja) | 2003-09-24 | 2004-09-23 | 交差流れライナを有する熱処理システム |
Country Status (6)
Country | Link |
---|---|
US (1) | US20050098107A1 (ja) |
EP (1) | EP1682693A2 (ja) |
JP (1) | JP2007525017A (ja) |
KR (1) | KR20060098373A (ja) |
IL (1) | IL174518A0 (ja) |
WO (1) | WO2005031233A2 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101745970B1 (ko) * | 2010-03-26 | 2017-06-12 | 고요 써모 시스템 가부시끼 가이샤 | 열처리장치 |
KR101778601B1 (ko) | 2010-12-27 | 2017-09-15 | 재단법인 포항산업과학연구원 | 워터씰형 열처리로 |
CN111455341A (zh) * | 2020-06-18 | 2020-07-28 | 上海陛通半导体能源科技股份有限公司 | 基于磁耦合旋转的物理气相沉积设备 |
Families Citing this family (336)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070137794A1 (en) * | 2003-09-24 | 2007-06-21 | Aviza Technology, Inc. | Thermal processing system with across-flow liner |
JP4899744B2 (ja) * | 2006-09-22 | 2012-03-21 | 東京エレクトロン株式会社 | 被処理体の酸化装置 |
US20080210168A1 (en) | 2007-01-18 | 2008-09-04 | May Su | Single chamber, multiple tube high efficiency vertical furnace system |
US7928019B2 (en) * | 2007-08-10 | 2011-04-19 | Micron Technology, Inc. | Semiconductor processing |
US20090197424A1 (en) * | 2008-01-31 | 2009-08-06 | Hitachi Kokusai Electric Inc. | Substrate processing apparatus and method for manufacturing semiconductor device |
US10378106B2 (en) | 2008-11-14 | 2019-08-13 | Asm Ip Holding B.V. | Method of forming insulation film by modified PEALD |
US9068263B2 (en) * | 2009-02-27 | 2015-06-30 | Sandvik Thermal Process, Inc. | Apparatus for manufacture of solar cells |
US9394608B2 (en) | 2009-04-06 | 2016-07-19 | Asm America, Inc. | Semiconductor processing reactor and components thereof |
US8802201B2 (en) | 2009-08-14 | 2014-08-12 | Asm America, Inc. | Systems and methods for thin-film deposition of metal oxides using excited nitrogen-oxygen species |
US20130192522A1 (en) * | 2010-12-30 | 2013-08-01 | Poole Ventura, Inc. | Thermal diffusion chamber with convection compressor |
US20130153202A1 (en) * | 2010-12-30 | 2013-06-20 | Poole Ventura, Inc. | Thermal diffusion chamber with convection compressor |
JP2012195565A (ja) * | 2011-02-28 | 2012-10-11 | Hitachi Kokusai Electric Inc | 基板処理装置、基板処理方法及び半導体装置の製造方法 |
US9312155B2 (en) | 2011-06-06 | 2016-04-12 | Asm Japan K.K. | High-throughput semiconductor-processing apparatus equipped with multiple dual-chamber modules |
US10364496B2 (en) | 2011-06-27 | 2019-07-30 | Asm Ip Holding B.V. | Dual section module having shared and unshared mass flow controllers |
US10854498B2 (en) | 2011-07-15 | 2020-12-01 | Asm Ip Holding B.V. | Wafer-supporting device and method for producing same |
US20130023129A1 (en) | 2011-07-20 | 2013-01-24 | Asm America, Inc. | Pressure transmitter for a semiconductor processing environment |
US9017481B1 (en) | 2011-10-28 | 2015-04-28 | Asm America, Inc. | Process feed management for semiconductor substrate processing |
US9659799B2 (en) | 2012-08-28 | 2017-05-23 | Asm Ip Holding B.V. | Systems and methods for dynamic semiconductor process scheduling |
JP6080451B2 (ja) | 2012-09-25 | 2017-02-15 | 株式会社日立国際電気 | 基板処理装置、半導体装置の製造方法、及び熱電対支持体 |
JP6196833B2 (ja) * | 2012-09-26 | 2017-09-13 | 株式会社日立国際電気 | 半導体装置の製造方法、基板処理装置およびプログラム |
US10714315B2 (en) | 2012-10-12 | 2020-07-14 | Asm Ip Holdings B.V. | Semiconductor reaction chamber showerhead |
US20160376700A1 (en) | 2013-02-01 | 2016-12-29 | Asm Ip Holding B.V. | System for treatment of deposition reactor |
US9484191B2 (en) | 2013-03-08 | 2016-11-01 | Asm Ip Holding B.V. | Pulsed remote plasma method and system |
US9589770B2 (en) | 2013-03-08 | 2017-03-07 | Asm Ip Holding B.V. | Method and systems for in-situ formation of intermediate reactive species |
US9605345B2 (en) * | 2013-08-23 | 2017-03-28 | Taiwan Semiconductor Manufacturing Co., Ltd. | Vertical furnace for improving wafer uniformity |
US9240412B2 (en) | 2013-09-27 | 2016-01-19 | Asm Ip Holding B.V. | Semiconductor structure and device and methods of forming same using selective epitaxial process |
JP6326210B2 (ja) * | 2013-09-30 | 2018-05-16 | テクノクオーツ株式会社 | 石英ガラス部品及び石英ガラス部品の製造方法 |
KR102162366B1 (ko) * | 2014-01-21 | 2020-10-06 | 우범제 | 퓸 제거 장치 |
US10683571B2 (en) | 2014-02-25 | 2020-06-16 | Asm Ip Holding B.V. | Gas supply manifold and method of supplying gases to chamber using same |
US10167557B2 (en) | 2014-03-18 | 2019-01-01 | Asm Ip Holding B.V. | Gas distribution system, reactor including the system, and methods of using the same |
US11015245B2 (en) | 2014-03-19 | 2021-05-25 | Asm Ip Holding B.V. | Gas-phase reactor and system having exhaust plenum and components thereof |
US10858737B2 (en) | 2014-07-28 | 2020-12-08 | Asm Ip Holding B.V. | Showerhead assembly and components thereof |
US9890456B2 (en) | 2014-08-21 | 2018-02-13 | Asm Ip Holding B.V. | Method and system for in situ formation of gas-phase compounds |
US10941490B2 (en) | 2014-10-07 | 2021-03-09 | Asm Ip Holding B.V. | Multiple temperature range susceptor, assembly, reactor and system including the susceptor, and methods of using the same |
US9657845B2 (en) | 2014-10-07 | 2017-05-23 | Asm Ip Holding B.V. | Variable conductance gas distribution apparatus and method |
KR102263121B1 (ko) | 2014-12-22 | 2021-06-09 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자 및 그 제조 방법 |
US10529542B2 (en) | 2015-03-11 | 2020-01-07 | Asm Ip Holdings B.V. | Cross-flow reactor and method |
US10276355B2 (en) | 2015-03-12 | 2019-04-30 | Asm Ip Holding B.V. | Multi-zone reactor, system including the reactor, and method of using the same |
US10458018B2 (en) | 2015-06-26 | 2019-10-29 | Asm Ip Holding B.V. | Structures including metal carbide material, devices including the structures, and methods of forming same |
US10600673B2 (en) | 2015-07-07 | 2020-03-24 | Asm Ip Holding B.V. | Magnetic susceptor to baseplate seal |
US9960072B2 (en) | 2015-09-29 | 2018-05-01 | Asm Ip Holding B.V. | Variable adjustment for precise matching of multiple chamber cavity housings |
US10211308B2 (en) | 2015-10-21 | 2019-02-19 | Asm Ip Holding B.V. | NbMC layers |
US10322384B2 (en) | 2015-11-09 | 2019-06-18 | Asm Ip Holding B.V. | Counter flow mixer for process chamber |
US11139308B2 (en) | 2015-12-29 | 2021-10-05 | Asm Ip Holding B.V. | Atomic layer deposition of III-V compounds to form V-NAND devices |
US20170207078A1 (en) * | 2016-01-15 | 2017-07-20 | Taiwan Semiconductor Manufacturing Co., Ltd. | Atomic layer deposition apparatus and semiconductor process |
KR102466140B1 (ko) * | 2016-01-29 | 2022-11-11 | 삼성전자주식회사 | 가열 장치 및 이를 갖는 기판 처리 시스템 |
US10529554B2 (en) | 2016-02-19 | 2020-01-07 | Asm Ip Holding B.V. | Method for forming silicon nitride film selectively on sidewalls or flat surfaces of trenches |
US10468251B2 (en) | 2016-02-19 | 2019-11-05 | Asm Ip Holding B.V. | Method for forming spacers using silicon nitride film for spacer-defined multiple patterning |
US10501866B2 (en) | 2016-03-09 | 2019-12-10 | Asm Ip Holding B.V. | Gas distribution apparatus for improved film uniformity in an epitaxial system |
US10343920B2 (en) | 2016-03-18 | 2019-07-09 | Asm Ip Holding B.V. | Aligned carbon nanotubes |
US9892913B2 (en) | 2016-03-24 | 2018-02-13 | Asm Ip Holding B.V. | Radial and thickness control via biased multi-port injection settings |
US10190213B2 (en) | 2016-04-21 | 2019-01-29 | Asm Ip Holding B.V. | Deposition of metal borides |
US10865475B2 (en) | 2016-04-21 | 2020-12-15 | Asm Ip Holding B.V. | Deposition of metal borides and silicides |
US10032628B2 (en) | 2016-05-02 | 2018-07-24 | Asm Ip Holding B.V. | Source/drain performance through conformal solid state doping |
US10367080B2 (en) | 2016-05-02 | 2019-07-30 | Asm Ip Holding B.V. | Method of forming a germanium oxynitride film |
KR102592471B1 (ko) | 2016-05-17 | 2023-10-20 | 에이에스엠 아이피 홀딩 비.브이. | 금속 배선 형성 방법 및 이를 이용한 반도체 장치의 제조 방법 |
US11453943B2 (en) | 2016-05-25 | 2022-09-27 | Asm Ip Holding B.V. | Method for forming carbon-containing silicon/metal oxide or nitride film by ALD using silicon precursor and hydrocarbon precursor |
US10388509B2 (en) | 2016-06-28 | 2019-08-20 | Asm Ip Holding B.V. | Formation of epitaxial layers via dislocation filtering |
US10612137B2 (en) | 2016-07-08 | 2020-04-07 | Asm Ip Holdings B.V. | Organic reactants for atomic layer deposition |
US9859151B1 (en) | 2016-07-08 | 2018-01-02 | Asm Ip Holding B.V. | Selective film deposition method to form air gaps |
US10714385B2 (en) | 2016-07-19 | 2020-07-14 | Asm Ip Holding B.V. | Selective deposition of tungsten |
KR102354490B1 (ko) | 2016-07-27 | 2022-01-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 |
KR102532607B1 (ko) | 2016-07-28 | 2023-05-15 | 에이에스엠 아이피 홀딩 비.브이. | 기판 가공 장치 및 그 동작 방법 |
US9887082B1 (en) | 2016-07-28 | 2018-02-06 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US10395919B2 (en) | 2016-07-28 | 2019-08-27 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
US9812320B1 (en) | 2016-07-28 | 2017-11-07 | Asm Ip Holding B.V. | Method and apparatus for filling a gap |
KR102613349B1 (ko) | 2016-08-25 | 2023-12-14 | 에이에스엠 아이피 홀딩 비.브이. | 배기 장치 및 이를 이용한 기판 가공 장치와 박막 제조 방법 |
US10410943B2 (en) | 2016-10-13 | 2019-09-10 | Asm Ip Holding B.V. | Method for passivating a surface of a semiconductor and related systems |
KR20180045434A (ko) * | 2016-10-25 | 2018-05-04 | 삼성전자주식회사 | 웨이퍼 보트 어셈블리 및 이를 포함하는 기판 처리 장치 |
US10643826B2 (en) | 2016-10-26 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for thermally calibrating reaction chambers |
US11532757B2 (en) | 2016-10-27 | 2022-12-20 | Asm Ip Holding B.V. | Deposition of charge trapping layers |
US10643904B2 (en) | 2016-11-01 | 2020-05-05 | Asm Ip Holdings B.V. | Methods for forming a semiconductor device and related semiconductor device structures |
US10435790B2 (en) | 2016-11-01 | 2019-10-08 | Asm Ip Holding B.V. | Method of subatmospheric plasma-enhanced ALD using capacitively coupled electrodes with narrow gap |
US10229833B2 (en) | 2016-11-01 | 2019-03-12 | Asm Ip Holding B.V. | Methods for forming a transition metal nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10714350B2 (en) | 2016-11-01 | 2020-07-14 | ASM IP Holdings, B.V. | Methods for forming a transition metal niobium nitride film on a substrate by atomic layer deposition and related semiconductor device structures |
US10134757B2 (en) | 2016-11-07 | 2018-11-20 | Asm Ip Holding B.V. | Method of processing a substrate and a device manufactured by using the method |
KR102546317B1 (ko) | 2016-11-15 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | 기체 공급 유닛 및 이를 포함하는 기판 처리 장치 |
US10340135B2 (en) | 2016-11-28 | 2019-07-02 | Asm Ip Holding B.V. | Method of topologically restricted plasma-enhanced cyclic deposition of silicon or metal nitride |
KR20180068582A (ko) | 2016-12-14 | 2018-06-22 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US11581186B2 (en) | 2016-12-15 | 2023-02-14 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus |
US11447861B2 (en) | 2016-12-15 | 2022-09-20 | Asm Ip Holding B.V. | Sequential infiltration synthesis apparatus and a method of forming a patterned structure |
KR102700194B1 (ko) | 2016-12-19 | 2024-08-28 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US10269558B2 (en) | 2016-12-22 | 2019-04-23 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US10867788B2 (en) | 2016-12-28 | 2020-12-15 | Asm Ip Holding B.V. | Method of forming a structure on a substrate |
US11390950B2 (en) | 2017-01-10 | 2022-07-19 | Asm Ip Holding B.V. | Reactor system and method to reduce residue buildup during a film deposition process |
US10655221B2 (en) | 2017-02-09 | 2020-05-19 | Asm Ip Holding B.V. | Method for depositing oxide film by thermal ALD and PEALD |
US10468261B2 (en) | 2017-02-15 | 2019-11-05 | Asm Ip Holding B.V. | Methods for forming a metallic film on a substrate by cyclical deposition and related semiconductor device structures |
JP6703496B2 (ja) | 2017-03-27 | 2020-06-03 | 株式会社Kokusai Electric | 基板処理装置、半導体装置の製造方法およびプログラム |
US10283353B2 (en) | 2017-03-29 | 2019-05-07 | Asm Ip Holding B.V. | Method of reforming insulating film deposited on substrate with recess pattern |
US10529563B2 (en) | 2017-03-29 | 2020-01-07 | Asm Ip Holdings B.V. | Method for forming doped metal oxide films on a substrate by cyclical deposition and related semiconductor device structures |
KR102457289B1 (ko) | 2017-04-25 | 2022-10-21 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 및 반도체 장치의 제조 방법 |
US10892156B2 (en) | 2017-05-08 | 2021-01-12 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film on a substrate and related semiconductor device structures |
US10770286B2 (en) | 2017-05-08 | 2020-09-08 | Asm Ip Holdings B.V. | Methods for selectively forming a silicon nitride film on a substrate and related semiconductor device structures |
US10446393B2 (en) | 2017-05-08 | 2019-10-15 | Asm Ip Holding B.V. | Methods for forming silicon-containing epitaxial layers and related semiconductor device structures |
US10504742B2 (en) | 2017-05-31 | 2019-12-10 | Asm Ip Holding B.V. | Method of atomic layer etching using hydrogen plasma |
US10886123B2 (en) | 2017-06-02 | 2021-01-05 | Asm Ip Holding B.V. | Methods for forming low temperature semiconductor layers and related semiconductor device structures |
US12040200B2 (en) | 2017-06-20 | 2024-07-16 | Asm Ip Holding B.V. | Semiconductor processing apparatus and methods for calibrating a semiconductor processing apparatus |
US11306395B2 (en) | 2017-06-28 | 2022-04-19 | Asm Ip Holding B.V. | Methods for depositing a transition metal nitride film on a substrate by atomic layer deposition and related deposition apparatus |
US10685834B2 (en) | 2017-07-05 | 2020-06-16 | Asm Ip Holdings B.V. | Methods for forming a silicon germanium tin layer and related semiconductor device structures |
KR20190009245A (ko) | 2017-07-18 | 2019-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자 구조물 형성 방법 및 관련된 반도체 소자 구조물 |
US11374112B2 (en) | 2017-07-19 | 2022-06-28 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US11018002B2 (en) | 2017-07-19 | 2021-05-25 | Asm Ip Holding B.V. | Method for selectively depositing a Group IV semiconductor and related semiconductor device structures |
US10541333B2 (en) | 2017-07-19 | 2020-01-21 | Asm Ip Holding B.V. | Method for depositing a group IV semiconductor and related semiconductor device structures |
US10590535B2 (en) | 2017-07-26 | 2020-03-17 | Asm Ip Holdings B.V. | Chemical treatment, deposition and/or infiltration apparatus and method for using the same |
US10605530B2 (en) * | 2017-07-26 | 2020-03-31 | Asm Ip Holding B.V. | Assembly of a liner and a flange for a vertical furnace as well as the liner and the vertical furnace |
US10312055B2 (en) | 2017-07-26 | 2019-06-04 | Asm Ip Holding B.V. | Method of depositing film by PEALD using negative bias |
US10692741B2 (en) | 2017-08-08 | 2020-06-23 | Asm Ip Holdings B.V. | Radiation shield |
US10770336B2 (en) | 2017-08-08 | 2020-09-08 | Asm Ip Holding B.V. | Substrate lift mechanism and reactor including same |
US10249524B2 (en) | 2017-08-09 | 2019-04-02 | Asm Ip Holding B.V. | Cassette holder assembly for a substrate cassette and holding member for use in such assembly |
US11139191B2 (en) | 2017-08-09 | 2021-10-05 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
US11769682B2 (en) | 2017-08-09 | 2023-09-26 | Asm Ip Holding B.V. | Storage apparatus for storing cassettes for substrates and processing apparatus equipped therewith |
USD900036S1 (en) | 2017-08-24 | 2020-10-27 | Asm Ip Holding B.V. | Heater electrical connector and adapter |
US11830730B2 (en) | 2017-08-29 | 2023-11-28 | Asm Ip Holding B.V. | Layer forming method and apparatus |
US11295980B2 (en) | 2017-08-30 | 2022-04-05 | Asm Ip Holding B.V. | Methods for depositing a molybdenum metal film over a dielectric surface of a substrate by a cyclical deposition process and related semiconductor device structures |
US11056344B2 (en) | 2017-08-30 | 2021-07-06 | Asm Ip Holding B.V. | Layer forming method |
KR102491945B1 (ko) | 2017-08-30 | 2023-01-26 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
KR102401446B1 (ko) | 2017-08-31 | 2022-05-24 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US10607895B2 (en) | 2017-09-18 | 2020-03-31 | Asm Ip Holdings B.V. | Method for forming a semiconductor device structure comprising a gate fill metal |
KR102630301B1 (ko) | 2017-09-21 | 2024-01-29 | 에이에스엠 아이피 홀딩 비.브이. | 침투성 재료의 순차 침투 합성 방법 처리 및 이를 이용하여 형성된 구조물 및 장치 |
US10844484B2 (en) | 2017-09-22 | 2020-11-24 | Asm Ip Holding B.V. | Apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
US10658205B2 (en) | 2017-09-28 | 2020-05-19 | Asm Ip Holdings B.V. | Chemical dispensing apparatus and methods for dispensing a chemical to a reaction chamber |
US10403504B2 (en) | 2017-10-05 | 2019-09-03 | Asm Ip Holding B.V. | Method for selectively depositing a metallic film on a substrate |
US10319588B2 (en) | 2017-10-10 | 2019-06-11 | Asm Ip Holding B.V. | Method for depositing a metal chalcogenide on a substrate by cyclical deposition |
US10923344B2 (en) | 2017-10-30 | 2021-02-16 | Asm Ip Holding B.V. | Methods for forming a semiconductor structure and related semiconductor structures |
KR102443047B1 (ko) | 2017-11-16 | 2022-09-14 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 방법 및 그에 의해 제조된 장치 |
US10910262B2 (en) | 2017-11-16 | 2021-02-02 | Asm Ip Holding B.V. | Method of selectively depositing a capping layer structure on a semiconductor device structure |
US11022879B2 (en) | 2017-11-24 | 2021-06-01 | Asm Ip Holding B.V. | Method of forming an enhanced unexposed photoresist layer |
WO2019103610A1 (en) | 2017-11-27 | 2019-05-31 | Asm Ip Holding B.V. | Apparatus including a clean mini environment |
JP7214724B2 (ja) | 2017-11-27 | 2023-01-30 | エーエスエム アイピー ホールディング ビー.ブイ. | バッチ炉で利用されるウェハカセットを収納するための収納装置 |
US10290508B1 (en) | 2017-12-05 | 2019-05-14 | Asm Ip Holding B.V. | Method for forming vertical spacers for spacer-defined patterning |
JP6952595B2 (ja) * | 2017-12-20 | 2021-10-20 | 東京エレクトロン株式会社 | 縦型熱処理装置 |
US10872771B2 (en) | 2018-01-16 | 2020-12-22 | Asm Ip Holding B. V. | Method for depositing a material film on a substrate within a reaction chamber by a cyclical deposition process and related device structures |
CN111630203A (zh) | 2018-01-19 | 2020-09-04 | Asm Ip私人控股有限公司 | 通过等离子体辅助沉积来沉积间隙填充层的方法 |
TWI799494B (zh) | 2018-01-19 | 2023-04-21 | 荷蘭商Asm 智慧財產控股公司 | 沈積方法 |
USD903477S1 (en) | 2018-01-24 | 2020-12-01 | Asm Ip Holdings B.V. | Metal clamp |
US11018047B2 (en) | 2018-01-25 | 2021-05-25 | Asm Ip Holding B.V. | Hybrid lift pin |
US10535516B2 (en) | 2018-02-01 | 2020-01-14 | Asm Ip Holdings B.V. | Method for depositing a semiconductor structure on a surface of a substrate and related semiconductor structures |
USD880437S1 (en) | 2018-02-01 | 2020-04-07 | Asm Ip Holding B.V. | Gas supply plate for semiconductor manufacturing apparatus |
US11081345B2 (en) | 2018-02-06 | 2021-08-03 | Asm Ip Holding B.V. | Method of post-deposition treatment for silicon oxide film |
JP7124098B2 (ja) | 2018-02-14 | 2022-08-23 | エーエスエム・アイピー・ホールディング・ベー・フェー | 周期的堆積プロセスにより基材上にルテニウム含有膜を堆積させる方法 |
US10896820B2 (en) | 2018-02-14 | 2021-01-19 | Asm Ip Holding B.V. | Method for depositing a ruthenium-containing film on a substrate by a cyclical deposition process |
US10731249B2 (en) | 2018-02-15 | 2020-08-04 | Asm Ip Holding B.V. | Method of forming a transition metal containing film on a substrate by a cyclical deposition process, a method for supplying a transition metal halide compound to a reaction chamber, and related vapor deposition apparatus |
KR102636427B1 (ko) | 2018-02-20 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 및 장치 |
US10658181B2 (en) | 2018-02-20 | 2020-05-19 | Asm Ip Holding B.V. | Method of spacer-defined direct patterning in semiconductor fabrication |
US10975470B2 (en) | 2018-02-23 | 2021-04-13 | Asm Ip Holding B.V. | Apparatus for detecting or monitoring for a chemical precursor in a high temperature environment |
US11473195B2 (en) | 2018-03-01 | 2022-10-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus and a method for processing a substrate |
US11629406B2 (en) | 2018-03-09 | 2023-04-18 | Asm Ip Holding B.V. | Semiconductor processing apparatus comprising one or more pyrometers for measuring a temperature of a substrate during transfer of the substrate |
US11114283B2 (en) | 2018-03-16 | 2021-09-07 | Asm Ip Holding B.V. | Reactor, system including the reactor, and methods of manufacturing and using same |
KR102646467B1 (ko) | 2018-03-27 | 2024-03-11 | 에이에스엠 아이피 홀딩 비.브이. | 기판 상에 전극을 형성하는 방법 및 전극을 포함하는 반도체 소자 구조 |
US10510536B2 (en) | 2018-03-29 | 2019-12-17 | Asm Ip Holding B.V. | Method of depositing a co-doped polysilicon film on a surface of a substrate within a reaction chamber |
US11088002B2 (en) | 2018-03-29 | 2021-08-10 | Asm Ip Holding B.V. | Substrate rack and a substrate processing system and method |
US11230766B2 (en) * | 2018-03-29 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102501472B1 (ko) | 2018-03-30 | 2023-02-20 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 |
JP2019186335A (ja) * | 2018-04-06 | 2019-10-24 | 東京エレクトロン株式会社 | 基板処理装置と基板処理方法 |
US12025484B2 (en) | 2018-05-08 | 2024-07-02 | Asm Ip Holding B.V. | Thin film forming method |
TWI843623B (zh) | 2018-05-08 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | 藉由循環沉積製程於基板上沉積氧化物膜之方法及相關裝置結構 |
KR20190129718A (ko) | 2018-05-11 | 2019-11-20 | 에이에스엠 아이피 홀딩 비.브이. | 기판 상에 피도핑 금속 탄화물 막을 형성하는 방법 및 관련 반도체 소자 구조 |
KR102596988B1 (ko) | 2018-05-28 | 2023-10-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 및 그에 의해 제조된 장치 |
US11718913B2 (en) | 2018-06-04 | 2023-08-08 | Asm Ip Holding B.V. | Gas distribution system and reactor system including same |
TWI840362B (zh) | 2018-06-04 | 2024-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 水氣降低的晶圓處置腔室 |
US11286562B2 (en) | 2018-06-08 | 2022-03-29 | Asm Ip Holding B.V. | Gas-phase chemical reactor and method of using same |
KR102568797B1 (ko) | 2018-06-21 | 2023-08-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 시스템 |
US10797133B2 (en) | 2018-06-21 | 2020-10-06 | Asm Ip Holding B.V. | Method for depositing a phosphorus doped silicon arsenide film and related semiconductor device structures |
WO2020003000A1 (en) | 2018-06-27 | 2020-01-02 | Asm Ip Holding B.V. | Cyclic deposition methods for forming metal-containing material and films and structures including the metal-containing material |
TW202409324A (zh) | 2018-06-27 | 2024-03-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於形成含金屬材料之循環沉積製程 |
US10612136B2 (en) | 2018-06-29 | 2020-04-07 | ASM IP Holding, B.V. | Temperature-controlled flange and reactor system including same |
KR102686758B1 (ko) | 2018-06-29 | 2024-07-18 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 및 반도체 장치의 제조 방법 |
US10755922B2 (en) | 2018-07-03 | 2020-08-25 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10388513B1 (en) | 2018-07-03 | 2019-08-20 | Asm Ip Holding B.V. | Method for depositing silicon-free carbon-containing film as gap-fill layer by pulse plasma-assisted deposition |
US10767789B2 (en) | 2018-07-16 | 2020-09-08 | Asm Ip Holding B.V. | Diaphragm valves, valve components, and methods for forming valve components |
US10483099B1 (en) | 2018-07-26 | 2019-11-19 | Asm Ip Holding B.V. | Method for forming thermally stable organosilicon polymer film |
KR102501650B1 (ko) * | 2018-08-03 | 2023-02-21 | 가부시키가이샤 코쿠사이 엘렉트릭 | 기판 처리 장치 및 반도체 장치의 제조 방법 |
US11053591B2 (en) | 2018-08-06 | 2021-07-06 | Asm Ip Holding B.V. | Multi-port gas injection system and reactor system including same |
US10883175B2 (en) * | 2018-08-09 | 2021-01-05 | Asm Ip Holding B.V. | Vertical furnace for processing substrates and a liner for use therein |
US10829852B2 (en) | 2018-08-16 | 2020-11-10 | Asm Ip Holding B.V. | Gas distribution device for a wafer processing apparatus |
US11430674B2 (en) | 2018-08-22 | 2022-08-30 | Asm Ip Holding B.V. | Sensor array, apparatus for dispensing a vapor phase reactant to a reaction chamber and related methods |
KR102707956B1 (ko) | 2018-09-11 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | 박막 증착 방법 |
US11024523B2 (en) * | 2018-09-11 | 2021-06-01 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
US11049751B2 (en) | 2018-09-14 | 2021-06-29 | Asm Ip Holding B.V. | Cassette supply system to store and handle cassettes and processing apparatus equipped therewith |
US10998205B2 (en) * | 2018-09-14 | 2021-05-04 | Kokusai Electric Corporation | Substrate processing apparatus and manufacturing method of semiconductor device |
TWI844567B (zh) | 2018-10-01 | 2024-06-11 | 荷蘭商Asm Ip私人控股有限公司 | 基材保持裝置、含有此裝置之系統及其使用之方法 |
US11232963B2 (en) | 2018-10-03 | 2022-01-25 | Asm Ip Holding B.V. | Substrate processing apparatus and method |
KR102592699B1 (ko) | 2018-10-08 | 2023-10-23 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 유닛 및 이를 포함하는 박막 증착 장치와 기판 처리 장치 |
US10847365B2 (en) | 2018-10-11 | 2020-11-24 | Asm Ip Holding B.V. | Method of forming conformal silicon carbide film by cyclic CVD |
US10811256B2 (en) | 2018-10-16 | 2020-10-20 | Asm Ip Holding B.V. | Method for etching a carbon-containing feature |
KR102546322B1 (ko) | 2018-10-19 | 2023-06-21 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 및 기판 처리 방법 |
KR102605121B1 (ko) | 2018-10-19 | 2023-11-23 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 및 기판 처리 방법 |
USD948463S1 (en) | 2018-10-24 | 2022-04-12 | Asm Ip Holding B.V. | Susceptor for semiconductor substrate supporting apparatus |
US10381219B1 (en) | 2018-10-25 | 2019-08-13 | Asm Ip Holding B.V. | Methods for forming a silicon nitride film |
US11087997B2 (en) | 2018-10-31 | 2021-08-10 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
KR20200051105A (ko) | 2018-11-02 | 2020-05-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 지지 유닛 및 이를 포함하는 기판 처리 장치 |
US11572620B2 (en) | 2018-11-06 | 2023-02-07 | Asm Ip Holding B.V. | Methods for selectively depositing an amorphous silicon film on a substrate |
US11031242B2 (en) | 2018-11-07 | 2021-06-08 | Asm Ip Holding B.V. | Methods for depositing a boron doped silicon germanium film |
US10847366B2 (en) | 2018-11-16 | 2020-11-24 | Asm Ip Holding B.V. | Methods for depositing a transition metal chalcogenide film on a substrate by a cyclical deposition process |
US10818758B2 (en) | 2018-11-16 | 2020-10-27 | Asm Ip Holding B.V. | Methods for forming a metal silicate film on a substrate in a reaction chamber and related semiconductor device structures |
US10559458B1 (en) | 2018-11-26 | 2020-02-11 | Asm Ip Holding B.V. | Method of forming oxynitride film |
US12040199B2 (en) | 2018-11-28 | 2024-07-16 | Asm Ip Holding B.V. | Substrate processing apparatus for processing substrates |
US11217444B2 (en) | 2018-11-30 | 2022-01-04 | Asm Ip Holding B.V. | Method for forming an ultraviolet radiation responsive metal oxide-containing film |
KR102636428B1 (ko) | 2018-12-04 | 2024-02-13 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치를 세정하는 방법 |
US11158513B2 (en) | 2018-12-13 | 2021-10-26 | Asm Ip Holding B.V. | Methods for forming a rhenium-containing film on a substrate by a cyclical deposition process and related semiconductor device structures |
JP7504584B2 (ja) | 2018-12-14 | 2024-06-24 | エーエスエム・アイピー・ホールディング・ベー・フェー | 窒化ガリウムの選択的堆積を用いてデバイス構造体を形成する方法及びそのためのシステム |
TWI819180B (zh) | 2019-01-17 | 2023-10-21 | 荷蘭商Asm 智慧財產控股公司 | 藉由循環沈積製程於基板上形成含過渡金屬膜之方法 |
KR20200091543A (ko) | 2019-01-22 | 2020-07-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
CN111524788B (zh) | 2019-02-01 | 2023-11-24 | Asm Ip私人控股有限公司 | 氧化硅的拓扑选择性膜形成的方法 |
JP2020136678A (ja) | 2019-02-20 | 2020-08-31 | エーエスエム・アイピー・ホールディング・ベー・フェー | 基材表面内に形成された凹部を充填するための方法および装置 |
KR20200102357A (ko) | 2019-02-20 | 2020-08-31 | 에이에스엠 아이피 홀딩 비.브이. | 3-d nand 응용의 플러그 충진체 증착용 장치 및 방법 |
KR102626263B1 (ko) | 2019-02-20 | 2024-01-16 | 에이에스엠 아이피 홀딩 비.브이. | 처리 단계를 포함하는 주기적 증착 방법 및 이를 위한 장치 |
TWI845607B (zh) | 2019-02-20 | 2024-06-21 | 荷蘭商Asm Ip私人控股有限公司 | 用來填充形成於基材表面內之凹部的循環沉積方法及設備 |
TWI842826B (zh) | 2019-02-22 | 2024-05-21 | 荷蘭商Asm Ip私人控股有限公司 | 基材處理設備及處理基材之方法 |
US11742198B2 (en) | 2019-03-08 | 2023-08-29 | Asm Ip Holding B.V. | Structure including SiOCN layer and method of forming same |
KR20200108243A (ko) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | SiOC 층을 포함한 구조체 및 이의 형성 방법 |
KR20200108242A (ko) | 2019-03-08 | 2020-09-17 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 질화물 층을 선택적으로 증착하는 방법, 및 선택적으로 증착된 실리콘 질화물 층을 포함하는 구조체 |
KR20200116033A (ko) | 2019-03-28 | 2020-10-08 | 에이에스엠 아이피 홀딩 비.브이. | 도어 개방기 및 이를 구비한 기판 처리 장치 |
KR20200116855A (ko) | 2019-04-01 | 2020-10-13 | 에이에스엠 아이피 홀딩 비.브이. | 반도체 소자를 제조하는 방법 |
KR20200123380A (ko) | 2019-04-19 | 2020-10-29 | 에이에스엠 아이피 홀딩 비.브이. | 층 형성 방법 및 장치 |
KR20200125453A (ko) | 2019-04-24 | 2020-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 기상 반응기 시스템 및 이를 사용하는 방법 |
KR20200130121A (ko) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | 딥 튜브가 있는 화학물질 공급원 용기 |
KR20200130118A (ko) | 2019-05-07 | 2020-11-18 | 에이에스엠 아이피 홀딩 비.브이. | 비정질 탄소 중합체 막을 개질하는 방법 |
KR20200130652A (ko) | 2019-05-10 | 2020-11-19 | 에이에스엠 아이피 홀딩 비.브이. | 표면 상에 재료를 증착하는 방법 및 본 방법에 따라 형성된 구조 |
JP2020188255A (ja) | 2019-05-16 | 2020-11-19 | エーエスエム アイピー ホールディング ビー.ブイ. | ウェハボートハンドリング装置、縦型バッチ炉および方法 |
JP2020188254A (ja) | 2019-05-16 | 2020-11-19 | エーエスエム アイピー ホールディング ビー.ブイ. | ウェハボートハンドリング装置、縦型バッチ炉および方法 |
USD975665S1 (en) | 2019-05-17 | 2023-01-17 | Asm Ip Holding B.V. | Susceptor shaft |
USD947913S1 (en) | 2019-05-17 | 2022-04-05 | Asm Ip Holding B.V. | Susceptor shaft |
USD935572S1 (en) | 2019-05-24 | 2021-11-09 | Asm Ip Holding B.V. | Gas channel plate |
USD922229S1 (en) | 2019-06-05 | 2021-06-15 | Asm Ip Holding B.V. | Device for controlling a temperature of a gas supply unit |
KR20200141003A (ko) | 2019-06-06 | 2020-12-17 | 에이에스엠 아이피 홀딩 비.브이. | 가스 감지기를 포함하는 기상 반응기 시스템 |
KR20200143254A (ko) | 2019-06-11 | 2020-12-23 | 에이에스엠 아이피 홀딩 비.브이. | 개질 가스를 사용하여 전자 구조를 형성하는 방법, 상기 방법을 수행하기 위한 시스템, 및 상기 방법을 사용하여 형성되는 구조 |
USD944946S1 (en) | 2019-06-14 | 2022-03-01 | Asm Ip Holding B.V. | Shower plate |
USD931978S1 (en) | 2019-06-27 | 2021-09-28 | Asm Ip Holding B.V. | Showerhead vacuum transport |
KR20210005515A (ko) | 2019-07-03 | 2021-01-14 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치용 온도 제어 조립체 및 이를 사용하는 방법 |
JP7499079B2 (ja) | 2019-07-09 | 2024-06-13 | エーエスエム・アイピー・ホールディング・ベー・フェー | 同軸導波管を用いたプラズマ装置、基板処理方法 |
CN112216646A (zh) | 2019-07-10 | 2021-01-12 | Asm Ip私人控股有限公司 | 基板支撑组件及包括其的基板处理装置 |
US11032945B2 (en) * | 2019-07-12 | 2021-06-08 | Applied Materials, Inc. | Heat shield assembly for an epitaxy chamber |
KR20210010307A (ko) | 2019-07-16 | 2021-01-27 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
KR20210010820A (ko) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 게르마늄 구조를 형성하는 방법 |
KR20210010816A (ko) | 2019-07-17 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 라디칼 보조 점화 플라즈마 시스템 및 방법 |
US11643724B2 (en) | 2019-07-18 | 2023-05-09 | Asm Ip Holding B.V. | Method of forming structures using a neutral beam |
KR20210010817A (ko) | 2019-07-19 | 2021-01-28 | 에이에스엠 아이피 홀딩 비.브이. | 토폴로지-제어된 비정질 탄소 중합체 막을 형성하는 방법 |
TWI839544B (zh) | 2019-07-19 | 2024-04-21 | 荷蘭商Asm Ip私人控股有限公司 | 形成形貌受控的非晶碳聚合物膜之方法 |
CN112309843A (zh) | 2019-07-29 | 2021-02-02 | Asm Ip私人控股有限公司 | 实现高掺杂剂掺入的选择性沉积方法 |
CN112309900A (zh) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | 基板处理设备 |
CN112309899A (zh) | 2019-07-30 | 2021-02-02 | Asm Ip私人控股有限公司 | 基板处理设备 |
US11587815B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11587814B2 (en) | 2019-07-31 | 2023-02-21 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
US11227782B2 (en) | 2019-07-31 | 2022-01-18 | Asm Ip Holding B.V. | Vertical batch furnace assembly |
CN118422165A (zh) | 2019-08-05 | 2024-08-02 | Asm Ip私人控股有限公司 | 用于化学源容器的液位传感器 |
USD965524S1 (en) | 2019-08-19 | 2022-10-04 | Asm Ip Holding B.V. | Susceptor support |
USD965044S1 (en) | 2019-08-19 | 2022-09-27 | Asm Ip Holding B.V. | Susceptor shaft |
JP2021031769A (ja) | 2019-08-21 | 2021-03-01 | エーエスエム アイピー ホールディング ビー.ブイ. | 成膜原料混合ガス生成装置及び成膜装置 |
USD930782S1 (en) | 2019-08-22 | 2021-09-14 | Asm Ip Holding B.V. | Gas distributor |
KR20210024423A (ko) | 2019-08-22 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | 홀을 구비한 구조체를 형성하기 위한 방법 |
USD949319S1 (en) | 2019-08-22 | 2022-04-19 | Asm Ip Holding B.V. | Exhaust duct |
USD940837S1 (en) | 2019-08-22 | 2022-01-11 | Asm Ip Holding B.V. | Electrode |
USD979506S1 (en) | 2019-08-22 | 2023-02-28 | Asm Ip Holding B.V. | Insulator |
US11286558B2 (en) | 2019-08-23 | 2022-03-29 | Asm Ip Holding B.V. | Methods for depositing a molybdenum nitride film on a surface of a substrate by a cyclical deposition process and related semiconductor device structures including a molybdenum nitride film |
KR20210024420A (ko) | 2019-08-23 | 2021-03-05 | 에이에스엠 아이피 홀딩 비.브이. | 비스(디에틸아미노)실란을 사용하여 peald에 의해 개선된 품질을 갖는 실리콘 산화물 막을 증착하기 위한 방법 |
KR20210029090A (ko) | 2019-09-04 | 2021-03-15 | 에이에스엠 아이피 홀딩 비.브이. | 희생 캡핑 층을 이용한 선택적 증착 방법 |
KR20210029663A (ko) | 2019-09-05 | 2021-03-16 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
US11562901B2 (en) | 2019-09-25 | 2023-01-24 | Asm Ip Holding B.V. | Substrate processing method |
CN112593212B (zh) | 2019-10-02 | 2023-12-22 | Asm Ip私人控股有限公司 | 通过循环等离子体增强沉积工艺形成拓扑选择性氧化硅膜的方法 |
KR20210042810A (ko) | 2019-10-08 | 2021-04-20 | 에이에스엠 아이피 홀딩 비.브이. | 활성 종을 이용하기 위한 가스 분배 어셈블리를 포함한 반응기 시스템 및 이를 사용하는 방법 |
TWI846953B (zh) | 2019-10-08 | 2024-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理裝置 |
KR20210043460A (ko) | 2019-10-10 | 2021-04-21 | 에이에스엠 아이피 홀딩 비.브이. | 포토레지스트 하부층을 형성하기 위한 방법 및 이를 포함한 구조체 |
US12009241B2 (en) | 2019-10-14 | 2024-06-11 | Asm Ip Holding B.V. | Vertical batch furnace assembly with detector to detect cassette |
TWI834919B (zh) | 2019-10-16 | 2024-03-11 | 荷蘭商Asm Ip私人控股有限公司 | 氧化矽之拓撲選擇性膜形成之方法 |
US11637014B2 (en) | 2019-10-17 | 2023-04-25 | Asm Ip Holding B.V. | Methods for selective deposition of doped semiconductor material |
KR20210047808A (ko) | 2019-10-21 | 2021-04-30 | 에이에스엠 아이피 홀딩 비.브이. | 막을 선택적으로 에칭하기 위한 장치 및 방법 |
KR20210050453A (ko) | 2019-10-25 | 2021-05-07 | 에이에스엠 아이피 홀딩 비.브이. | 기판 표면 상의 갭 피처를 충진하는 방법 및 이와 관련된 반도체 소자 구조 |
US11646205B2 (en) | 2019-10-29 | 2023-05-09 | Asm Ip Holding B.V. | Methods of selectively forming n-type doped material on a surface, systems for selectively forming n-type doped material, and structures formed using same |
KR20210054983A (ko) | 2019-11-05 | 2021-05-14 | 에이에스엠 아이피 홀딩 비.브이. | 도핑된 반도체 층을 갖는 구조체 및 이를 형성하기 위한 방법 및 시스템 |
US11501968B2 (en) | 2019-11-15 | 2022-11-15 | Asm Ip Holding B.V. | Method for providing a semiconductor device with silicon filled gaps |
KR20210062561A (ko) | 2019-11-20 | 2021-05-31 | 에이에스엠 아이피 홀딩 비.브이. | 기판의 표면 상에 탄소 함유 물질을 증착하는 방법, 상기 방법을 사용하여 형성된 구조물, 및 상기 구조물을 형성하기 위한 시스템 |
CN112951697A (zh) | 2019-11-26 | 2021-06-11 | Asm Ip私人控股有限公司 | 基板处理设备 |
KR20210065848A (ko) | 2019-11-26 | 2021-06-04 | 에이에스엠 아이피 홀딩 비.브이. | 제1 유전체 표면과 제2 금속성 표면을 포함한 기판 상에 타겟 막을 선택적으로 형성하기 위한 방법 |
CN112885693A (zh) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | 基板处理设备 |
CN112885692A (zh) | 2019-11-29 | 2021-06-01 | Asm Ip私人控股有限公司 | 基板处理设备 |
JP7527928B2 (ja) | 2019-12-02 | 2024-08-05 | エーエスエム・アイピー・ホールディング・ベー・フェー | 基板処理装置、基板処理方法 |
KR20210070898A (ko) | 2019-12-04 | 2021-06-15 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
TW202125596A (zh) | 2019-12-17 | 2021-07-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成氮化釩層之方法以及包括該氮化釩層之結構 |
US11527403B2 (en) | 2019-12-19 | 2022-12-13 | Asm Ip Holding B.V. | Methods for filling a gap feature on a substrate surface and related semiconductor structures |
KR20210089079A (ko) | 2020-01-06 | 2021-07-15 | 에이에스엠 아이피 홀딩 비.브이. | 채널형 리프트 핀 |
TW202140135A (zh) | 2020-01-06 | 2021-11-01 | 荷蘭商Asm Ip私人控股有限公司 | 氣體供應總成以及閥板總成 |
US11993847B2 (en) | 2020-01-08 | 2024-05-28 | Asm Ip Holding B.V. | Injector |
KR102675856B1 (ko) | 2020-01-20 | 2024-06-17 | 에이에스엠 아이피 홀딩 비.브이. | 박막 형성 방법 및 박막 표면 개질 방법 |
TW202130846A (zh) | 2020-02-03 | 2021-08-16 | 荷蘭商Asm Ip私人控股有限公司 | 形成包括釩或銦層的結構之方法 |
TW202146882A (zh) | 2020-02-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 驗證一物品之方法、用於驗證一物品之設備、及用於驗證一反應室之系統 |
US11776846B2 (en) | 2020-02-07 | 2023-10-03 | Asm Ip Holding B.V. | Methods for depositing gap filling fluids and related systems and devices |
US11781243B2 (en) | 2020-02-17 | 2023-10-10 | Asm Ip Holding B.V. | Method for depositing low temperature phosphorous-doped silicon |
TW202203344A (zh) | 2020-02-28 | 2022-01-16 | 荷蘭商Asm Ip控股公司 | 專用於零件清潔的系統 |
KR20210116240A (ko) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | 조절성 접합부를 갖는 기판 핸들링 장치 |
KR20210116249A (ko) | 2020-03-11 | 2021-09-27 | 에이에스엠 아이피 홀딩 비.브이. | 록아웃 태그아웃 어셈블리 및 시스템 그리고 이의 사용 방법 |
CN113394086A (zh) | 2020-03-12 | 2021-09-14 | Asm Ip私人控股有限公司 | 用于制造具有目标拓扑轮廓的层结构的方法 |
KR20210124042A (ko) | 2020-04-02 | 2021-10-14 | 에이에스엠 아이피 홀딩 비.브이. | 박막 형성 방법 |
TW202146689A (zh) | 2020-04-03 | 2021-12-16 | 荷蘭商Asm Ip控股公司 | 阻障層形成方法及半導體裝置的製造方法 |
TW202145344A (zh) | 2020-04-08 | 2021-12-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於選擇性蝕刻氧化矽膜之設備及方法 |
US11821078B2 (en) | 2020-04-15 | 2023-11-21 | Asm Ip Holding B.V. | Method for forming precoat film and method for forming silicon-containing film |
KR20210128343A (ko) | 2020-04-15 | 2021-10-26 | 에이에스엠 아이피 홀딩 비.브이. | 크롬 나이트라이드 층을 형성하는 방법 및 크롬 나이트라이드 층을 포함하는 구조 |
US11996289B2 (en) | 2020-04-16 | 2024-05-28 | Asm Ip Holding B.V. | Methods of forming structures including silicon germanium and silicon layers, devices formed using the methods, and systems for performing the methods |
KR20210132600A (ko) | 2020-04-24 | 2021-11-04 | 에이에스엠 아이피 홀딩 비.브이. | 바나듐, 질소 및 추가 원소를 포함한 층을 증착하기 위한 방법 및 시스템 |
TW202146831A (zh) * | 2020-04-24 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 垂直批式熔爐總成、及用於冷卻垂直批式熔爐之方法 |
JP2021172884A (ja) | 2020-04-24 | 2021-11-01 | エーエスエム・アイピー・ホールディング・ベー・フェー | 窒化バナジウム含有層を形成する方法および窒化バナジウム含有層を含む構造体 |
KR20210134226A (ko) | 2020-04-29 | 2021-11-09 | 에이에스엠 아이피 홀딩 비.브이. | 고체 소스 전구체 용기 |
KR20210134869A (ko) | 2020-05-01 | 2021-11-11 | 에이에스엠 아이피 홀딩 비.브이. | Foup 핸들러를 이용한 foup의 빠른 교환 |
TW202147543A (zh) | 2020-05-04 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 半導體處理系統 |
KR20210141379A (ko) | 2020-05-13 | 2021-11-23 | 에이에스엠 아이피 홀딩 비.브이. | 반응기 시스템용 레이저 정렬 고정구 |
TW202146699A (zh) | 2020-05-15 | 2021-12-16 | 荷蘭商Asm Ip私人控股有限公司 | 形成矽鍺層之方法、半導體結構、半導體裝置、形成沉積層之方法、及沉積系統 |
KR20210143653A (ko) | 2020-05-19 | 2021-11-29 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 장치 |
KR20210145078A (ko) | 2020-05-21 | 2021-12-01 | 에이에스엠 아이피 홀딩 비.브이. | 다수의 탄소 층을 포함한 구조체 및 이를 형성하고 사용하는 방법 |
KR102702526B1 (ko) | 2020-05-22 | 2024-09-03 | 에이에스엠 아이피 홀딩 비.브이. | 과산화수소를 사용하여 박막을 증착하기 위한 장치 |
TW202201602A (zh) | 2020-05-29 | 2022-01-01 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
TW202212620A (zh) | 2020-06-02 | 2022-04-01 | 荷蘭商Asm Ip私人控股有限公司 | 處理基板之設備、形成膜之方法、及控制用於處理基板之設備之方法 |
TW202218133A (zh) | 2020-06-24 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成含矽層之方法 |
TW202217953A (zh) | 2020-06-30 | 2022-05-01 | 荷蘭商Asm Ip私人控股有限公司 | 基板處理方法 |
KR102707957B1 (ko) | 2020-07-08 | 2024-09-19 | 에이에스엠 아이피 홀딩 비.브이. | 기판 처리 방법 |
TW202219628A (zh) | 2020-07-17 | 2022-05-16 | 荷蘭商Asm Ip私人控股有限公司 | 用於光微影之結構與方法 |
TW202204662A (zh) | 2020-07-20 | 2022-02-01 | 荷蘭商Asm Ip私人控股有限公司 | 用於沉積鉬層之方法及系統 |
US12040177B2 (en) | 2020-08-18 | 2024-07-16 | Asm Ip Holding B.V. | Methods for forming a laminate film by cyclical plasma-enhanced deposition processes |
KR20220027026A (ko) | 2020-08-26 | 2022-03-07 | 에이에스엠 아이피 홀딩 비.브이. | 금속 실리콘 산화물 및 금속 실리콘 산질화물 층을 형성하기 위한 방법 및 시스템 |
TW202229601A (zh) | 2020-08-27 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 形成圖案化結構的方法、操控機械特性的方法、裝置結構、及基板處理系統 |
USD990534S1 (en) | 2020-09-11 | 2023-06-27 | Asm Ip Holding B.V. | Weighted lift pin |
USD1012873S1 (en) | 2020-09-24 | 2024-01-30 | Asm Ip Holding B.V. | Electrode for semiconductor processing apparatus |
US12009224B2 (en) | 2020-09-29 | 2024-06-11 | Asm Ip Holding B.V. | Apparatus and method for etching metal nitrides |
KR20220045900A (ko) | 2020-10-06 | 2022-04-13 | 에이에스엠 아이피 홀딩 비.브이. | 실리콘 함유 재료를 증착하기 위한 증착 방법 및 장치 |
CN114293174A (zh) | 2020-10-07 | 2022-04-08 | Asm Ip私人控股有限公司 | 气体供应单元和包括气体供应单元的衬底处理设备 |
TW202229613A (zh) | 2020-10-14 | 2022-08-01 | 荷蘭商Asm Ip私人控股有限公司 | 於階梯式結構上沉積材料的方法 |
KR20220053482A (ko) | 2020-10-22 | 2022-04-29 | 에이에스엠 아이피 홀딩 비.브이. | 바나듐 금속을 증착하는 방법, 구조체, 소자 및 증착 어셈블리 |
TW202223136A (zh) | 2020-10-28 | 2022-06-16 | 荷蘭商Asm Ip私人控股有限公司 | 用於在基板上形成層之方法、及半導體處理系統 |
TW202235649A (zh) | 2020-11-24 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | 填充間隙之方法與相關之系統及裝置 |
TW202235675A (zh) | 2020-11-30 | 2022-09-16 | 荷蘭商Asm Ip私人控股有限公司 | 注入器、及基板處理設備 |
US11946137B2 (en) | 2020-12-16 | 2024-04-02 | Asm Ip Holding B.V. | Runout and wobble measurement fixtures |
TW202231903A (zh) | 2020-12-22 | 2022-08-16 | 荷蘭商Asm Ip私人控股有限公司 | 過渡金屬沉積方法、過渡金屬層、用於沉積過渡金屬於基板上的沉積總成 |
USD1023959S1 (en) | 2021-05-11 | 2024-04-23 | Asm Ip Holding B.V. | Electrode for substrate processing apparatus |
USD980813S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas flow control plate for substrate processing apparatus |
USD981973S1 (en) | 2021-05-11 | 2023-03-28 | Asm Ip Holding B.V. | Reactor wall for substrate processing apparatus |
USD980814S1 (en) | 2021-05-11 | 2023-03-14 | Asm Ip Holding B.V. | Gas distributor for substrate processing apparatus |
USD990441S1 (en) | 2021-09-07 | 2023-06-27 | Asm Ip Holding B.V. | Gas flow control plate |
Family Cites Families (52)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3297501A (en) * | 1963-12-31 | 1967-01-10 | Ibm | Process for epitaxial growth of semiconductor single crystals |
US3637434A (en) * | 1968-11-07 | 1972-01-25 | Nippon Electric Co | Vapor deposition apparatus |
US3675619A (en) * | 1969-02-25 | 1972-07-11 | Monsanto Co | Apparatus for production of epitaxial films |
US4108106A (en) * | 1975-12-29 | 1978-08-22 | Tylan Corporation | Cross-flow reactor |
DE2638270C2 (de) * | 1976-08-25 | 1983-01-27 | Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH, 8263 Burghausen | Verfahren zur Herstellung großflächiger, freitragender Platten aus Silicium |
GB1597825A (en) * | 1976-12-23 | 1981-09-09 | Planer Ltd G V | Chemical synthesis apparatus |
JPS5518403A (en) * | 1978-07-25 | 1980-02-08 | Toshiba Corp | Formation of organic thin film |
US4232063A (en) * | 1978-11-14 | 1980-11-04 | Applied Materials, Inc. | Chemical vapor deposition reactor and process |
US4401689A (en) * | 1980-01-31 | 1983-08-30 | Rca Corporation | Radiation heated reactor process for chemical vapor deposition on substrates |
US4309240A (en) * | 1980-05-16 | 1982-01-05 | Advanced Crystal Sciences, Inc. | Process for chemical vapor deposition of films on silicon wafers |
FR2490246A1 (fr) * | 1980-09-17 | 1982-03-19 | Cit Alcatel | Dispositif de deposition chimique activee sous plasma |
US4545327A (en) * | 1982-08-27 | 1985-10-08 | Anicon, Inc. | Chemical vapor deposition apparatus |
US4547404A (en) * | 1982-08-27 | 1985-10-15 | Anicon, Inc. | Chemical vapor deposition process |
US4696833A (en) * | 1982-08-27 | 1987-09-29 | Hewlett-Packard Company | Method for applying a uniform coating to integrated circuit wafers by means of chemical deposition |
JPS59129772A (ja) * | 1983-01-18 | 1984-07-26 | Ushio Inc | 光化学蒸着装置 |
US4573431A (en) * | 1983-11-16 | 1986-03-04 | Btu Engineering Corporation | Modular V-CVD diffusion furnace |
US4615294A (en) * | 1984-07-31 | 1986-10-07 | Hughes Aircraft Company | Barrel reactor and method for photochemical vapor deposition |
FR2573325B1 (fr) * | 1984-11-16 | 1993-08-20 | Sony Corp | Appareil et procede pour faire des depots de vapeur sur des plaquettes |
US4807562A (en) * | 1987-01-05 | 1989-02-28 | Norman Sandys | Reactor for heating semiconductor substrates |
US4992301A (en) * | 1987-09-22 | 1991-02-12 | Nec Corporation | Chemical vapor deposition apparatus for obtaining high quality epitaxial layer with uniform film thickness |
US4778561A (en) * | 1987-10-30 | 1988-10-18 | Veeco Instruments, Inc. | Electron cyclotron resonance plasma source |
US4854266A (en) * | 1987-11-02 | 1989-08-08 | Btu Engineering Corporation | Cross-flow diffusion furnace |
US4793283A (en) * | 1987-12-10 | 1988-12-27 | Sarkozy Robert F | Apparatus for chemical vapor deposition with clean effluent and improved product yield |
JP2654996B2 (ja) * | 1988-08-17 | 1997-09-17 | 東京エレクトロン株式会社 | 縦型熱処理装置 |
JP2662722B2 (ja) * | 1990-01-12 | 1997-10-15 | 東京エレクトロン株式会社 | バッチ式熱処理装置 |
US5146869A (en) * | 1990-06-11 | 1992-09-15 | National Semiconductor Corporation | Tube and injector for preheating gases in a chemical vapor deposition reactor |
JP3040212B2 (ja) * | 1991-09-05 | 2000-05-15 | 株式会社東芝 | 気相成長装置 |
JP3250628B2 (ja) * | 1992-12-17 | 2002-01-28 | 東芝セラミックス株式会社 | 縦型半導体熱処理用治具 |
US5427625A (en) * | 1992-12-18 | 1995-06-27 | Tokyo Electron Kabushiki Kaisha | Method for cleaning heat treatment processing apparatus |
JP3348936B2 (ja) * | 1993-10-21 | 2002-11-20 | 東京エレクトロン株式会社 | 縦型熱処理装置 |
US5409539A (en) * | 1993-05-14 | 1995-04-25 | Micron Technology, Inc. | Slotted cantilever diffusion tube system with a temperature insulating baffle system and a distributed gas injector system |
US5445521A (en) * | 1993-05-31 | 1995-08-29 | Tokyo Electron Kabushiki Kaisha | Heat treating method and device |
JPH0710935U (ja) * | 1993-07-24 | 1995-02-14 | ヤマハ株式会社 | 縦型熱処理炉 |
TW273574B (ja) * | 1993-12-10 | 1996-04-01 | Tokyo Electron Co Ltd | |
US5441568A (en) * | 1994-07-15 | 1995-08-15 | Applied Materials, Inc. | Exhaust baffle for uniform gas flow pattern |
JP2732224B2 (ja) * | 1994-09-30 | 1998-03-25 | 信越半導体株式会社 | ウエーハ支持ボート |
US5902103A (en) * | 1995-12-29 | 1999-05-11 | Kokusai Electric Co., Ltd. | Vertical furnace of a semiconductor manufacturing apparatus and a boat cover thereof |
JP3270730B2 (ja) * | 1997-03-21 | 2002-04-02 | 株式会社日立国際電気 | 基板処理装置及び基板処理方法 |
NL1005963C2 (nl) * | 1997-05-02 | 1998-11-09 | Asm Int | Verticale oven voor het behandelen van halfgeleidersubstraten. |
US20030049372A1 (en) * | 1997-08-11 | 2003-03-13 | Cook Robert C. | High rate deposition at low pressures in a small batch reactor |
US5800616A (en) * | 1997-12-15 | 1998-09-01 | Sony Corporation | Vertical LPCVD furnace with reversible manifold collar and method of retrofitting same |
US6449428B2 (en) * | 1998-12-11 | 2002-09-10 | Mattson Technology Corp. | Gas driven rotating susceptor for rapid thermal processing (RTP) system |
JP4045689B2 (ja) * | 1999-04-14 | 2008-02-13 | 東京エレクトロン株式会社 | 熱処理装置 |
KR100347379B1 (ko) * | 1999-05-01 | 2002-08-07 | 주식회사 피케이엘 | 복수매 기판의 박막 증착 공정이 가능한 원자층 증착장치 |
KR100394571B1 (ko) * | 1999-09-17 | 2003-08-14 | 삼성전자주식회사 | 화학기상증착용 튜브 |
JP4357715B2 (ja) * | 2000-07-24 | 2009-11-04 | 東京エレクトロン株式会社 | 熱処理装置の温度校正方法 |
KR100458982B1 (ko) * | 2000-08-09 | 2004-12-03 | 주성엔지니어링(주) | 회전형 가스분사기를 가지는 반도체소자 제조장치 및 이를이용한 박막증착방법 |
KR100345304B1 (ko) * | 2000-10-12 | 2002-07-25 | 한국전자통신연구원 | 수직형 초고진공 화학증착장치 |
FR2829707B1 (fr) * | 2001-09-19 | 2003-12-12 | Air Liquide | Procede et dispositif de melange de deux gaz reactifs |
US20070137794A1 (en) * | 2003-09-24 | 2007-06-21 | Aviza Technology, Inc. | Thermal processing system with across-flow liner |
US20050121145A1 (en) * | 2003-09-25 | 2005-06-09 | Du Bois Dale R. | Thermal processing system with cross flow injection system with rotatable injectors |
TW200619416A (en) * | 2004-09-30 | 2006-06-16 | Aviza Tech Inc | Method and apparatus for low temperature dielectric deposition using monomolecular precursors |
-
2004
- 2004-09-21 US US10/947,426 patent/US20050098107A1/en not_active Abandoned
- 2004-09-23 EP EP04809797A patent/EP1682693A2/en not_active Withdrawn
- 2004-09-23 JP JP2006528253A patent/JP2007525017A/ja active Pending
- 2004-09-23 KR KR1020067007888A patent/KR20060098373A/ko not_active Application Discontinuation
- 2004-09-23 WO PCT/US2004/031484 patent/WO2005031233A2/en active Application Filing
-
2006
- 2006-03-23 IL IL174518A patent/IL174518A0/en unknown
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101745970B1 (ko) * | 2010-03-26 | 2017-06-12 | 고요 써모 시스템 가부시끼 가이샤 | 열처리장치 |
KR101778601B1 (ko) | 2010-12-27 | 2017-09-15 | 재단법인 포항산업과학연구원 | 워터씰형 열처리로 |
CN111455341A (zh) * | 2020-06-18 | 2020-07-28 | 上海陛通半导体能源科技股份有限公司 | 基于磁耦合旋转的物理气相沉积设备 |
Also Published As
Publication number | Publication date |
---|---|
WO2005031233A2 (en) | 2005-04-07 |
US20050098107A1 (en) | 2005-05-12 |
IL174518A0 (en) | 2006-08-01 |
EP1682693A2 (en) | 2006-07-26 |
KR20060098373A (ko) | 2006-09-18 |
WO2005031233A3 (en) | 2006-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2007525017A (ja) | 交差流れライナを有する熱処理システム | |
JP2007515054A (ja) | 回転可能な注入器を含む交差流れ注入システムを備えた熱処理システム | |
JP2005533378A (ja) | 熱処理装置及び設定可能な垂直チャンバ | |
JP2007243201A (ja) | 横断流ライナを備えた熱加工装置 | |
US20070243317A1 (en) | Thermal Processing System and Configurable Vertical Chamber | |
US5938850A (en) | Single wafer heat treatment apparatus | |
US6753506B2 (en) | System and method of fast ambient switching for rapid thermal processing | |
US7700376B2 (en) | Edge temperature compensation in thermal processing particularly useful for SOI wafers | |
US7479619B2 (en) | Thermal processing unit | |
KR102072525B1 (ko) | 반도체 장치의 제조 방법, 기판 처리 장치 및 프로그램 | |
JP7018882B2 (ja) | 処理チャンバのための高温ヒータ | |
JP4971954B2 (ja) | 基板処理装置、半導体装置の製造方法、および加熱装置 | |
US8172950B2 (en) | Substrate processing apparatus and semiconductor device producing method | |
JP3129777B2 (ja) | 熱処理装置及び熱処理方法 | |
KR20050020757A (ko) | 써멀 프로세싱 시스템 및 수직 가변 챔버 | |
JP2005259902A (ja) | 基板処理装置 | |
JP2005032883A (ja) | 基板処理装置 | |
KR20050058842A (ko) | 반도체 제조장치 | |
JP2006186049A (ja) | 基板処理装置 | |
JP2001257167A (ja) | 半導体製造装置 | |
JP2000077346A (ja) | 熱処理装置 | |
JP2004095940A (ja) | 半導体装置の製造方法 | |
JPH09153485A (ja) | 気相成長装置 | |
KR200365533Y1 (ko) | 저압 화상기상증착 장치의 반응로 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090310 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090420 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20091026 |