JP2007275993A - 凸版またはフレキソ版用の微細構造を有する刷版の製造方法 - Google Patents

凸版またはフレキソ版用の微細構造を有する刷版の製造方法 Download PDF

Info

Publication number
JP2007275993A
JP2007275993A JP2007112127A JP2007112127A JP2007275993A JP 2007275993 A JP2007275993 A JP 2007275993A JP 2007112127 A JP2007112127 A JP 2007112127A JP 2007112127 A JP2007112127 A JP 2007112127A JP 2007275993 A JP2007275993 A JP 2007275993A
Authority
JP
Japan
Prior art keywords
laser
fiber
lens
mirror
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007112127A
Other languages
English (en)
Inventor
Heinrich Juergensen
ユルゲンゼン ハインリヒ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hell Gravure Systems GmbH and Co KG
Original Assignee
Hell Gravure Systems GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hell Gravure Systems GmbH and Co KG filed Critical Hell Gravure Systems GmbH and Co KG
Publication of JP2007275993A publication Critical patent/JP2007275993A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/02Engraving; Heads therefor
    • B41C1/04Engraving; Heads therefor using heads controlled by an electric information signal
    • B41C1/05Heat-generating engraving heads, e.g. laser beam, electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0608Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams in the same heat affected zone [HAZ]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0604Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams
    • B23K26/0613Shaping the laser beam, e.g. by masks or multi-focusing by a combination of beams having a common axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0622Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam by shaping pulses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0652Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/067Dividing the beam into multiple beams, e.g. multifocusing
    • B23K26/0676Dividing the beam into multiple beams, e.g. multifocusing into dependently operating sub-beams, e.g. an array of spots with fixed spatial relationship or for performing simultaneously identical operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/083Devices involving movement of the workpiece in at least one axial direction
    • B23K26/0853Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane
    • B23K26/0861Devices involving movement of the workpiece in at least in two axial directions, e.g. in a plane in at least in three axial directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • B23K26/0876Devices involving movement of the laser head in at least one axial direction in at least two axial directions
    • B23K26/0884Devices involving movement of the laser head in at least one axial direction in at least two axial directions in at least in three axial directions, e.g. manipulators, robots
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/142Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor for the removal of by-products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/14Working by laser beam, e.g. welding, cutting or boring using a fluid stream, e.g. a jet of gas, in conjunction with the laser beam; Nozzles therefor
    • B23K26/1462Nozzles; Features related to nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/36Electric or electronic devices
    • B23K2101/40Semiconductor devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26

Abstract

【課題】凸版またはフレキソ版用の微細構造を有する刷版の製造法を改良して、低廉な方式で、著しく高いパワー密度と高エネルギーが得られるようにし、刷版を高能率的に製造する。
【解決手段】少なくとも1つのレーザダイオードを使用し、当該の少なくとも1つのレーザダイオードのレーザビームを少なくとも1つのレーザファイバに導き、前記の少なくとも1つのレーザファイバから出射される少なくとも1つのレーザビームを、少なくとも1つの変調器34を含む少なくとも1つの光学系を介して被加工面81上に導き、刷版の被加工81面でのレーザビームパワーを、被加工点24の大きさが20μm以下の場合に連続波動作で少なくとも100Wに設定する。
【選択図】図4

Description

本発明は、少なくとも1つのレーザビームを刷版の被加工面に指向させ、被加工面に凹みを形成する、凸版またはフレキソ印刷用の微細構造を有する刷版の製造方法に関する。
例えば電子ビーム又はレーザビームのような集束エネルギービームを用いて材料を加工する場合、適用例によっては、集束されたエネルギービームの幾何学的照射形状及び集束に対して高い要求を課すことになるような構造が生産されねばならない。しかも大きな照射出力が同時に必要になる。
加工表面に極度に微細な構造を作成しなければならないような典型な1例として、凹版印刷、オフセット印刷、凸版印刷、スクリーン印刷又はフレキソ印刷のためであれ、或いはその他の印刷法のためであれ、刷版の製造が挙げられる。刷版製版の場合は、刷版表面に極度に微細な構造を作成することが必要である。それというのは刷版の表面によって、テキスト、ハーフトンスクリーン画像、グラフィックデザイン及び線画パターン(Linework)のような高解像度の画像情報が再現されねばならないからである。
往時の凹版印刷では刷版はエッチングによって製版され、優れた結果が得られたものの、エッチングは時の経過につれて、電磁駆動されるダイヤモンド・スタイラスによる環境に優しい彫刻に取って代わられた。凹版印刷で通常、刷版として版胴が使用され、該版胴の表面は銅製であり、この表面に、印刷のために必要な微細構造が微小セル(微小凹み)の形で、ダイヤモンド・スタイラスによって彫刻される。版胴は凹版印刷の場合、その製作後に印刷機に組込まれ、該印刷機において前記微小セルには印刷インキが充填される。次いで過剰インキがドクターブレードによって除去され、かつ残留印刷インキが印刷プロセス時に被印刷物に転移される。この場合銅製版胴が、印刷プロセスではその長い耐用寿命の故に使用される。例えば雑誌印刷又は包装印刷におけるように印刷部数が高い場合、長い耐用寿命が必要である。それというのは印刷プロセス中に刷版表面が、ドクターブレード及び被印刷物の作用に基づいて摩耗するからである。耐用寿命を更に長く延ばすために、版胴には銅層メッキが施され、或いは銅から全体を構成した版胴が使用されることもある。耐用寿命を更に引き延ばすための別の手段として、彫刻後に銅表面にクロムメッキが施されることもある。更に長い耐用寿命を得るために、電鍍プロセスを高い温度で行う、いわゆる「高熱クロムメッキ処理」が適用される。これによって、従来で最長の耐用寿命が得られる。その結果、銅が凹版印刷胴のための表面材料として最適であると判った。これまで銅以外の材料は、これまで高い印刷部数のためには不適格と見做されてきた。
微小セルを作成する場合、ダイヤモンド・スタイラスの駆動は、電気機械式に駆動される磁石系を介して、ダイヤモンド・スタイラスを固定した振動するアーマチュアによって行われる。このような電気機械式振動系は、微小セルの彫刻のために必要な力を発生させねばならないために、任意の速度にすることができない。従ってこの磁石系は、最高の彫刻周波数、つまり最速の彫刻速度に達し得るために、その共振周波数以上で運転される。彫刻速度をなお一層高めるために、当今の彫刻機では、このような彫刻系が銅製版胴の軸方向で複数並列配置されている。それにも拘わらず、今日版胴に対して要求されている短い彫刻時間は依然として得られていない。それというのは彫刻時間が、印刷の実績に対して直接影響を及ぼすからである。この理由に基づいて凹版印刷つまりグラビア印刷は、新聞印刷のためには使用されず、主として雑誌印刷のために使用される。
複数の彫刻系を使用する場合、印刷胴の表面には同時に複数の、いわゆるレーンが彫刻される。このようなレーンは例えば単数又は複数の全雑誌頁を含んでいる。その場合に発生する問題は、種々異なった彫刻系が、互いに無関係に作動制御される故に、彫刻すべき等しいトーン値の場合でも個々のレーンには異なった容積の微小セルが発生することであり、その結果、後の観察時に目視する個々のレーンに差異が生じることになる。この理由から、雑誌印刷では許容される前記誤差を発生させないために、例えば包装印刷の場合ただ1つの彫刻系で作業が行われる。
微小セルの彫刻時に微小セル容積は、印刷すべき原稿の画像内容に関連して変化される。この場合、原稿の各トーン値は印刷時にできるだけ精確に再現されねばならない。原稿走査時に画像信号処理(例えば階調調整)の理由からトーン値階調を認識するために、例えば12ビットの分解能を有するアナログ/デジタル変換器が使用され、この場合4096トーン値の分解能に相当する。この高分解能画像情報から、電磁式彫刻系を作動制御するための信号が得られ、該信号は通常のように8ビット信号であり、これは256トーン値階調への分解能に相当する。このトーン値範囲に達するために必要な相応の容積を発生するために、銅表面へのダイヤモンド・スタイラスの侵入深さは、磁石系の作動制御によって変化され、それに伴って微小セルの幾何学形状は、深さ40μmの場合の直径約120μmと深さ3μmの場合の直径約30μmとの間で変化する。微小セルの深さ40μmと3μmとの間の著しく小さなバリエーション範囲しか使用されないので、微小セルを彫刻するダイヤモンド・スタイラスの侵入深さは、所期のトーン値範囲を再現可能にするために、μmの数分の一に精確に制御されねばならない。この点からも明らかなように、微小セルの彫刻の場合、微小セルの所要の直径及び深さを発生するためには極度に高い精度が必要である。彫刻された微小セルの幾何学形状がダイヤモンド・スタイラスの形状に直接関連しているので、当然またダイヤモンド・スタイラスの幾何学形状に対しては極めて高い要求が課されることになり、この幾何学形状は自明のように、著しく高い経費をかけてしか、かつダイヤモンド・スタイラスの製作時には多数の不良品を出してしか得ることができない。その上にダイヤモンド・スタイラス自体も摩耗を受ける。それというのは、14本のレーンを有し円周1.8m、長さ3.6mの大形印刷胴に、4900微小セル/cm2の個数に相当する70ライン/cmを刻設する場合、1本のダイヤモンド・スタイラスによって約2000万個の微小セルが刻設されねばならないからである。1本の印刷胴の刻設中にダイヤモンド・スタイラスの1本が折損すると、当該印刷胴全体が使用不能になり、これは著しい経済的損害を惹起する一方、顕著な時間損失となる。それというのは新たな胴に刻設をし直さねばならないので、印刷開始が当然数時間遅れることになるからである。この理由から使用者はダイヤモンド・スタイラスをしばしば念のために前もって交換する。このことから当然判るように、ダイヤモンド・スタイラスの耐用強度の問題も高まることになる。
要するに電気機械式彫刻は、高い品質の凹版印刷胴を製作するのに好適ではあるが、一連の弱点を有し、著しく経費が嵩み、かつこれらの欠点を別の方法によって除去したくなるのは当然のことである。
後に印刷インキを収容することになる、このようにして作成された微小セルは更に、微細な規則的なスクリーン、つまり印刷スクリーンに相応して、刷版の表面に配置されており、しかも印刷インキ毎に別個の印刷胴が製作され、その場合それぞれ異なった角度及び異なったスクリーン幅を有する別のスクリーンが使用される。これらのラスターでは個々の微小セル間には細いウェブが残存しており、該ウェブは、印刷機での印刷時には、着肉後に過剰インキを掻き取るドクターブレードを支持する。この電気機械式彫刻の操業方式の更なる欠点は、テキスト及びラインもスクリーン化して再現されねばならず、その結果、文字符号及びラインの輪郭に、目障りな階段化(Vertreppung)が生じることである。これは、この階段化を1オーダー分だけ小さくすることのできる広く普及したオフセット印刷に対比した場合の1欠点である。なおオフセット印刷の場合には、前記階段化はもはや目障りにはならず、凹版印刷ではこれまで達成できなかった優れた品質が得られる。要するにこの点は凹版印刷法の顕著な欠点の1つである。
同じく凹版印刷彫刻の場合には、(ダイヤモンド・スタイラスによる刻設によっては不可能であるが)微小セルの大きさ及び微小セルの位置がトーン値に相応してランダムに分布されるような確率的スクリーンは製作することができない。このような確率的スクリーンはしばしば「周波数変調スクリーン」とも呼ばれ、細部が遥かに良く再現され、かつモアレが発生しないという利点を有し、これによって凹版印刷の場合よりも優れた画像品質が生じる。
更にまた、微小セルを作成するために、材料加工において適用される電子ビーム式彫刻法を使用することが公知である。該彫刻法は、電子ビームのエネルギーが高くかつビーム偏向及びビームの幾何学的形状が著しく精確であるので、極めて良好な成績を示した。
この方法は、刊行物 ”Schnelles Elektronenstrahlgravierverfahlen zur Gravur von Metallzylindern”, Optik 77 , No.2 (1987) pp.83〜92 , Wissenschaftliche Verlagsgesellschaft mbH Stuttgart に記載されている。ハードウェアと電子機器のために要する経費が著しく高くつくために、電子ビーム式彫刻法はこれまで凹版印刷用の銅製胴の彫刻のためには実用化されなかったが、ただ鋼産業分野では、テクスチャーが鋼薄板内へ圧延されている鋼薄板製造用のいわゆるテクスチャーロールの表面彫刻のために使用された。
専門文献及び特許文献では再三にわたって、銅製胴をレーザを用いて彫刻することが提案されている。しかし銅はレーザ照射にとって極めて優れた反射体であるので、銅内へ侵入してこれを溶融するためには、使用レーザにとって極めて高い出力及び特に著しく高い出力密度が必要である。しかしながら、凹版印刷用の銅製胴の銅表面に所要の微小セル構造を刻設できる、相応に高い出力密度及びエネルギーのレーザ照射源を備えたレーザ彫刻ユニットは依然として存在していない。
それにも拘わらず、銅以外の材料に目をそらすことによって、凹版印刷彫刻のためにレーザを使用する試みがなされている。例えば刊行物:ドイツ連邦共和国特許出願公開第19 27 323号明細書では、銅製胴の表面が、最大印刷密度に相当する容積の微小セルをすでに備えるように、化学的エッチングによって銅製胴を予め食刻することが提案されている。これらの微小セルは、固定的な充填材料、例えばプラスチック材料で充填される。ついでレーザによって前記充填材料から、所望の微小セル容積に達するまでの容積分が除去される。この方法は、電子ビーム式彫刻によって銅を溶融かつ蒸発させるのに要するよりも僅かなレーザ出力で充分である。しかしながら当該方法の場合には、印刷プロセス中に残留プラスチック材料が、印刷インキの溶剤によって侵蝕されて分解するので、僅かな印刷部数しか不可能である。この方法は、実地では地歩を得ず、実用化には至らなかった。
更にVDD Seminarreiheの刊行物 ”Direktes Lasergravierverfahren fuer metallbeschichtete Tiefdruckzylinder”(”Kolloquium von Verein Deutscher Druckingenieure e.V. u. dem Fachgebiet Druckmaschinen und Druckverfahren , Fachbereich Maschinenbau , Technische Hochschule Darmstadt” MDC Max Daetwyler , AG ,Darmstadt , 12. Dez. 1996 刊行)において Dr. phil. nat. Jakob. Frauchiger によって、亜鉛でコーティングされた凹版印刷胴を、アーク灯によってポンピングされるように良好に接続されたNd:YAG 高出力固体レーザによって彫刻することが提案されている。この方法によれば、微小セルの容積は、レーザの光学的出力によって決定される。彫刻のために必要なレーザ出力は、バリオ集束光学素子を通って出力を胴表面に結像させる光導波ファイバを介して、胴表面に伝播される。この場合、微小セルの正確に規定された直径を保証するために、集束光学素子を、表面に対して一定の間隔に正確に保持することが必要である。
この方法の欠点は、レーザをポンピングするために必要なアーク灯が比較的短い耐用寿命しか有せず、約500作動時間後には交換されねばならないことである。彫刻中にポンプ光源が欠落すると彫刻胴は使用不能になる。これは、電気機械式彫刻の場合のダイヤモンド・スタイラスの欠落に相当し、同等の欠点が生じる。アーク灯の前倒れ式の交換は、コスト高かつ作業経費高になり、殊に、アーク灯交換後にはレーザビーム位置の再調整が必要になることを当然予期せねばならない。このアーク灯によってポンピングされる固体レーザの効率は著しく不良である。それというのはレーザ活性材料が、ポンピング源(つまりここではアーク灯)から供与されるエネルギーの微々たる割合を吸収してレーザ光に変換するにすぎないからである。このことは特に高いレーザパワーの場合、高い電気的な接続負荷値、電気エネルギー及び冷却のための高い運転経費を意味し、特にレーザユニット及び冷却ユニットのサイズに基づく構造上の対策のために著しい経費が必要になることを意味している。所要スペースは、場所的な理由からレーザユニットを印刷機械の外部に位置させねばならないほど大きく、これに伴ってレーザパワーを印刷胴の表面に到達させる問題が生じる。
この方法の決定的な欠点は、亜鉛が銅よりも著しく軟質であり、印刷銅のための表面材料としては適していないことである。印刷機械における印刷前に過剰インキを掻き取るドクターブレードが鋼製ブレードであるので、亜鉛表面は、或る時間を経ると損傷を受け、かつ印刷胴は使用不能となる。従って表面が亜鉛から成る印刷胴は、表面が銅から成る印刷胴ほどの印刷耐用時間に殆ど達することもない。それ故に亜鉛表面を有する刷版は、高い印刷部数には適していない。
更に提案されているように、耐用寿命を高めるために彫刻後に亜鉛表面にクロムメッキを施す場合でも耐用強度は、普通の銅製胴のものに近づくことはない。クロムは亜鉛に対して、銅に対するほど良好に粘着することはなく、かつ、銅に対してクロムを最適に付着させるために銅製胴の場合に効果的に適用される所謂「高熱クロムメッキ」は、亜鉛の場合には亜鉛が溶融することになるので不可能である。クロム層は亜鉛面に極めて良好には付着しないので、やはりクロム層もドクターブレードによって損傷を受けるので、これによって印刷銅は比較的時期尚早に欠落することになる。これに対して本発明により銅製胴にこの方法でクロムメッキが施される場合、異常に高い印刷部数が可能になる。それというのは、クロムが銅表面に固定的に付着するので、該銅製胴は、クロムメッキの施された亜鉛製胴を遥かに凌駕するからである。
やはり前述の方法に関する刊行物:欧州特許第0 473 973号明細書に基づいて明らかなように、亜鉛に直径120μm、深さ30μmの微小セルを刻設する方法では6mWsecのエネルギーが必要である。銅については当該刊行物では165mWsecのエネルギーが表記されており、これは所要レーザ出力の27.5倍に相当する。従って印刷産業にとって妥当な速度で銅に微小セルを刻設するためには、良質ビームと相俟って数キロワットの連続波出力のレーザが必要である。しかしながらこのような出力は、前記のレーザユニットによっては発生させることができない。この理由から、亜鉛表面への刻設が可能になるにすぎない。
ただ1個の固体レーザから成るこのようなレーザユニットを用いれば成る程、亜鉛表面を有する凹版印刷胴を加工することは可能ではあるが、銅表面の利点を活用しかつ銅製胴に固執して該銅製胴にレーザによって刻設したい場合には、銅表面へ侵入するために必要な高いパワー密度と、銅を溶融するために必要な高いエネルギーとを発生させることは無条件に必要である。しかしながら、これまで固体レーザを用いてこれを達するするには至らなかった。
固体レーザの場合、ビーム品質つまり集束能が、出力の増大に伴って低下することは公知である。これによって固体レーザの出力を高く駆動しても、或いは複数の固体レーザを同一の微小セル又はその部分に方位づける場合でさえも、凹版印刷用の銅製胴を、このようなレーザで満足できるように彫刻することは不可能である。それというのは、微小構造を製作するために必要なレーザビームの精度が、電子ビームのようには得られないからである。この装置においてレーザ出力をより高く駆動した場合には更なる問題が発生することになる。すなわち光導波ファイバにおける高い照射出力の集束は周知のように困難である。高い出力の場合、入力結合部位における調節ずれに基づいてファイバは燃焼する。これを回避しようとすればファイバ直径を拡大せねばならないが、当然これによって、レーザ加工側ではファイバ直径を、一層強度に縮小して結像せねばならないという欠点が生じる。しかも縮小結像は、加工側における開口数の拡大化を生ぜしめ、従って被加工面における鮮鋭な深さを減退させることになる。提案されているように、被加工面に対する距離を一定にすることも可能ではあるが、ビームが素材表面に侵入する場合、所要のパワー密度及び正確な点サイズに不利な影響を及ぼす焦点ずれが自動的に生じることになる。しかし加工スポットの直径及びビームエネルギーが微小セルのサイズを決定するので、所期のトーン値が要求するように微小セルのサイズを正確に合致させることが困難になる。このためには又、レーザ出力が正確に一定であり、かつ胴彫刻に要する総時間にわたっても一定であることが必要である。そうでないと微小セルサイズは変動し、印刷胴は使用不能になる。これは、加工スポットのサイズを変化することによっては補償することができない。それというのは加工スポットの形状を申し分なく修正することは不可能だからである。
更にこのようなレーザユニットでは、高価な変調器が必要である。著しく高いレーザ出力のための変調器は周知のように緩慢に、変調周波数、ひいては彫刻周波数を減少させる。しかし彫刻周波数が過度に小さいと、エネルギーは、微小セルを刻設することなしに、被加工面上の加工スポット周辺に拡散する。従って刻設のための高いエネルギーと相俟って、高い出力を発生することが必要である。
Verlag W. Huelsbusch(Konstanz 在)刊行、Werner Huelbuch 著の刊行物”Der Laser in der Druckindustrie”の第540頁には、材料加工時には高いパワー密度が格別重要であることが記載されている。典型的には107〜108W/cm2以降のパワー密度の場合、総ての材料において、材料の自然蒸発が生じ、これは吸収の飛躍的な増大化を随伴し、その場合、レーザ出力が金属表面によって反射されないので格別有利である。例えば100Wのレーザ源を使用する場合には、加工スポットは、次式から明らかなように、10μmの範囲にするために、この値10μmよりも大である必要はない。すなわち:
100W:(0.001cm×0.001cm)=108W/cm2
ドイツ連邦共和国特許出願公開第19 27 323号明細書 欧州特許第0 473 973号明細書 国際特許出願公開第95/16294号明細書 米国特許第5,694,408号明細書 米国特許第5,084,882号明細書 英国特許第21 54 364号明細書 米国特許第5,430,816号明細書 ドイツ連邦共和国特許出願P 198 40 936.2号明細書 ドイツ連邦共和国特許出願197 23 267号明細書 "Schnelles Elektronenstrahlgravierverfahlen zur Gravur von Metallzylindern", Optik 77 , No.2 (1987) pp.83〜92 , Wissenschaftliche Verlagsgesellschaft mbH Stuttgart Jakob. Frauchiger, VDD Seminarreihe, "Direktes Lasergravierverfahren fuer metallbeschichtete Tiefdruckzylinder", Kolloquium von Verein Deutscher Druckingenieure e.V. u. dem Fachgebiet Druckmaschinen und Druckverfahren , Fachbereich Maschinenbau , Technische Hochschule Darmstadt "MDC Max Daetwyler , AG ,Darmstadt , 12. Dez. 1996 Werner Huelbuch, "Der Laser in der Druckindustrie", Verlag W. Huelsbusch(Konstanz 在),.431, 461, 523, 540, 562頁, 図890a Bergmann-Schaefer, "Lehrbuch der Experimentalphysik Band III, Optik" 第7版, De Gruyter 1978 , p.152 Schaefter & Kirchhoff社(ハンブルグ市セルシウスウェーク街 15,22761番在), カタログ1/97, A1〜A6頁,F16〜F33,K16〜K17頁 Holger Zellmer, ハノバー大学、物理学学位論文"Leistungsskalierung von Faserlasern"(20.06.96) R.W.Pohl:"Optik und Atomphysik" (第13版)第13頁,2.21図,Springer Verlag, 1976 "Lasers in Material Processing", 1997, SPIE Proceedings Vol.3097
本発明の課題は、凸版またはフレキソ版用の微細構造を有する刷版の製造法を改良して、低廉な方式で、著しく高いパワー密度と高エネルギーが得られるようにし、刷版を高能率的に製造することである。
前記課題は、請求項1の発明では、少なくとも1つのレーザビームを刷版の被加工面に指向させ、被加工面に凹みを形成する、凸版またはフレキソ印刷用の微細構造を有する刷版の製造方法において、少なくとも1つのレーザダイオードを使用し、当該の少なくとも1つのレーザダイオードのレーザビームを少なくとも1つのレーザファイバに導き、当該の少なくとも1つのレーザファイバから出射される少なくとも1つのレーザビームを、少なくとも1つの変調器を含む少なくとも1つの光学系を介して被加工面上に導き、刷版の被加工面でのレーザビームパワーを、被加工点の大きさが20μm以下の場合に連続波動作で少なくとも100Wに設定することを特徴とする方法によって解決される。
さらに請求項2の発明では、金属から成る刷版を使用することを特徴としている。
さらに請求項3の発明では、複数のレーザダイオードのレーザビームを少なくとも1つのレーザファイバに導き、前記の少なくとも1つのレーザファイバから出射される少なくとも1つのレーザビームを、少なくとも1つの変調器を含む少なくとも1つの光学系を介して被加工面上に導き、少なくとも1つの変調されたレーザビームを、少なくとも1つのレンズを用いて刷版にて集束して少なくとも1つの被加工点が形成されるようにしたことを特徴としている。
さらに請求項4の発明では、少なくとも1つのレーザダイオードと少なくとも1つのレーザファイバとを含む少なくとも1つのファイバレーザを直接変調することを特徴としている。
さらに請求項5の発明では、少なくとも1つのレーザファイバから出射され被加工面に導かれる少なくとも1つのレーザビームを電気光学式変調または音響光学式変調することを特徴としている。
さらに請求項6の発明では、複数のレーザファイバから出射されるレーザビームの束でありかつ統合されて被加工面に導かれるビームを電気光学式変調または音響光学式変調することを特徴としている。
さらに請求項7の発明では、レーザダイオードとしてマルチモードレーザダイオードを使用することを特徴としている。
さらに請求項8の発明では、複数のレーザダイオードに対して少なくとも1つのシングルモードレーザダイオードを使用することを特徴としている。
このレーザ照射源は、複数のダイオードポンピング式のファイバレーザから成り、該ファイバレーザの出力ビーム束は加工部位で互いに並列的に、かつ/又は上下に、或いは1点又は1束で的中し、従ってレーザ出力が極めて高くかつパワー密度が極度に高い場合でも、形状及び大きさを所期のように可変の加工スポットを発生することができる。このファイバレーザは本発明では、連続波レーザとして、或いはQスイッチ−レーザとして構成することができ、しかも有利なことに内部又は外部で変調され、かつ/又は付加的な変調器を有することができる。Qスイッチ−レーザはレーザ共振器の内部に、光学式変調器、例えば音響光学式変調器を有し、該変調器は開放状態で、ポンピング照射線が更に存在していてもレーザ効果を中断する。これによってレーザ共振器内部にエネルギーが蓄積され、該エネルギーは変調器の閉成時に、制御信号を形成するために高出力の短いレーザインパルスとして放出される。Qスイッチ−レーザは、高出力の短いパルスを送出し、これによって短時間で高いパワー密度を生ぜしめるという利点を有している。短時間の中断によるパルス作動において、加工工程中に、溶融かつ蒸発した材料を有利に導出することが可能になる。Qスイッチに依らないで、内部変調又は外部変調によってパルス作動を発生することも可能である。
異なった数のレーザを、加工スポットを成形するために接続することによって、加工スポットは、その形状及び大きさを所期のように変化させることができる。この場合特に有利なことは、除去される微小セルの深さを、微小セルの形状と大きさには無関係にレーザエネルギーによって特定できることである。更にまた個々のレーザのエネルギーを制御することによって、加工スポット内部に任意の照射ビームプロフィールを発生させ、ひいては微小セルの内部に任意のプロフィールを発生させることも可能である。
公知のレーザ照射源に対比して得られる本発明の更なる利点は、固体レーザからの照射出力を光導波ファイバへ入力結合する必要がなく、しかもファイバレーザの出力端子が、回折の制限された照射線を供給し、該照射線を本発明では10μm以下のスポット直径に集束することができ、これによって極度に高いパワー密度並びに最高に可能な鮮鋭な深度が得られることである。
固体レーザを備えた従来慣用の装置では加工スポットの大きさは、約100μmのオーダー範囲にある。要するに本発明では、係数100だけ改善されたパワー密度と、係数100だけ改善された成形可能性が加工スポットの面積内に生じる訳である。
高い精度と著しく精密に成形可能な加工スポットとによって、極めて微細なスクリーン、殊に確率的スクリーン、周波数変調スクリーン(FMスクリーンとも呼ばれる)が発生され、従ってライン画像及び文字画像において著しく滑らかなエッジが経済的に作成されるので、凹版印刷が、印刷品質の点でオフセット印刷よりももはや劣っていることはない。
更に本発明の凹版用の刷版製造方法によって、任意のスクリーン幅を任意のスクリーン角度と組合せて、同一の印刷胴の任意の部位に、任意に異なったスクリーン幅と任意に異なったスクリーン角度を生ぜしめることが可能である。またドクターブレードに充分な支持部位を許す限り、スクリーン印刷には無関係に、ラインパターン及びテキストを形成することも可能である。
本発明の利点は、凹版印刷とオフセット印刷との間で刷版を製作するためのデータ処理の違いが融合して最小限度になり、これに伴って顕著な経費削減及び時間削減が得られることである。従来では凹版印刷用のデータは、オフセット印刷のために既に存在しているデータの変換によって得られる。それというのは刻設系を作動制御するためには、1つの微小セル容積を特定する1つの信号が必要であり、その場合オフセット印刷では1つのスクリーンドットの面積が特定されるからである。本発明のレーザ照射源を用いれば、レーザの多重配置に基づいて、一定の深さの場合でも1つの微小セルの面積を変化することが可能であり、従ってオフセット印刷用のデータを、もはや凹版印刷用のデータにコンバートする必要はない。オフセット印刷用のデータは、凹版印刷用の刷版を彫刻するために直接使用することができる。
本発明の更なる利点は、本発明の凹版用刷版製造方法を用いれば、1つの微小セルの面積も深さも共に、互いに無関係に制御できるので、比較的多数のトーン値階調を再現可能に発生することができ、その結果、印刷胴の製作プロセスが一層安定的になりかつ印刷成績が一層改善されることである。
更に重要な利点は、エネルギーをファイバ、つまりファイバレーザ自体によって、或いはこれに溶着されたファイバ又は別の形式で接合されたファイバによって、ポンピング源から加工部位へ伝送することができ、これに伴って、格別単純な、所要スペースを節減する構造が得られることである。
本発明の更なる利点は、このようにファイバレーザを備えたレーザ照射源の効率が固体レーザの効率よりも著しく高いことである。それというのはファイバレーザの場合、60%以上の吸収効率が得られ、この吸収効率は、慣用のダイオードポンピング式固体レーザの場合ではほぼその半分であり、またランプポンピング式固体レーザの場合には更に遥かに低い。凹版印刷胴の効果的な刻設のために必要とする出力が数キロワットの場合、レーザの効率は、設備費及び運転費にとって著しく重要である。
更にレーザの多重配置の場合には1つのレーザの故障発生リスクが、レーザの単チャンネル配置の場合よりも遥かに低くなるという利点が生じる。単チャンネル配置の場合にただ1つしか存在しないレーザが、1本の印刷胴の彫刻中に故障が発生すると、該印刷胴全体が使用不能になる。しかし多重配置の場合に1つのレーザに故障が発生した場合、残存しているレーザの出力を、故障分を補償するために例えば僅かに高めることが可能である。その場合は刻設終了後に、故障したレーザを交換することができる。
ハノバー大学・物理学専攻 Dipl.- Phys. Holger Zellmer の学位論文”Leistungsskalierung von Faserlasern”(20.06.96)には、ファイバレーザは公知と記載されている。しかしこのレーザはすでに1963年に Snitzer 及び Koester によって提案されたものであるが、これまで高出力で材料加工のために使用されたことはない。前掲の学位論文に記載されているレーザを用いれば、原理的には最高100Wまでの出力が得られはするが、このレーザを本発明の目的に適用するために使用可能な構成は依然として公知にはなっていない。
刊行物たる国際特許出願公開第95/16294号明細書に基づいて、すでに位相結合式ファイバレーザが公知になってはいるが、該ファイバレーザは製作コストが著しく高くつき、産業用としては適していない。本発明の単純なタイプのレーザを、提案した単純な方式で高パワー密度及び高エネルギーにアップして材料の削出加工に使用することは、これまで公知になってはいなかった。
例えば個々のレーザの共振器長は、一定にマイクロメータの数分の一に正確に保たれねばならず、このために所謂”piezoelectric fiber stretchers”が使用される。しかし複雑な構造のために、レーザユニットをモジュール式に構成すること、つまり単純に組合せ可能で多種多様に使用可能な構成要素から構成すること、或いはフィールドで必要に応じて個々のレーザ構成要素を交換することは依然として不可能である。また1つの位相結合式レーザの内部に多数の光学素子が存在しているために光学的損失も著しく高く、かつレーザ活性媒質の、ポンピング照射線の吸収も僅かであるので、装置の効率は僅かになる。ファイバレーザ自体は、逆反射に対してそれほど敏感である訳ではないにも拘わらず、位相結合式レーザは原理的に逆反射に対する大きな感度を有している。すなわち出射した照射線部分が反射又は散乱によって逆にレーザ共振器に到達することは、材料加工時に回避することができない。この逆反射は、コントロール不能の出力振幅を惹起し、かつレーザを途切れさせることもある。このような逆反射を減衰する所謂「光アイソレータ」は公知ではあるが、実際には例えば光学的損失、高コスト及び不充分な減衰特性といった一連の欠点を付随している。本発明のように材料加工を目的とするレーザは、高いパワー密度を有しているだけでなく、微小セルを削出するのに必要なエネルギーを供給可能であり、出射照射線に対して極めて安定的であり、かつ著しく優れた効率を有するものでなければならない。
更に刊行物たる米国特許第5,694,408号明細書において提案されているレーザシステムでは、マスター発振器が、特定の波長で低出力の照射エネルギーを発生し、該照射エネルギーは光学的に増幅され、かつ更なる後増幅のために複数の後増幅器に分割され、次いで再び共通のビームに統合されるが、このためには、後増幅された個々の信号の精確な位相の再調整が、出力信号における混信を避けるために必要である。このことは複雑な測定・制御動作及び高価な調整素子を必要とし、このためには例えば電気光学式位相変調器が使用されねばならないが、該位相変調器は極めてコスト高であり、かつ著しく高い電圧で運転されねばならない。
更に刊行物たる米国特許第5,084,882号明細書に開示されている位相結合式レーザシステムは、複数のファイバもしくはファイバコアを1つのレーザ束内で使用し、該ファイバコアは一面において、位相結合を得るために、ファイバクラッドもしくはファイバ間隔に対して大きくなければならないが、他面において、これがシングルモードファイバである以上、数マイクロメータの直径を有することしか許されない。このレーザシステムは主として光学的な増幅器として設けられている。
複数の所謂「サブ発振器(”sub-oscillaters”)」から成る、やはり極めて複雑に構成された別の位相結合式レーザシステムが、すでに1984年に”レーザ−アッセンブリーズ(Laser assemblies)”という名称で英国特許第21 54 364号明細書に開示されてはいるが、このような位相結合式レーザシステムを用いた産業上の実用化はこれまで公知になっていない。
明細書冒頭で述べた形式の複数のファイバレーザを、複雑な位相結合なしに単純な方式で、材料加工用のコンパクトで堅牢なかつサービス作業の容易なレーザ照射源として纏めかつ例えば多トラック式記録のために適用することは依然として提案されていない。極めて低廉に量産可能な、このように単純なレーザを、複数のトラック及び平面に多重配置することは、本発明の目的を達成する上で顕著な利点を提供するものであり、この利点は、いかなる当業者といえども、本発明の解決手段を認識しない限り、容易に想到することのできなかったものである。
本発明の凹版の製造方法では、ファイバレーザの更なる利点は、エネルギーがレーザに逆行した場合に、レーザの発振傾向が著しく僅かになることである。従来慣用の固体レーザに対比してファイバレーザはその伝達関数において、共振のQ値は1オーダだけ低く、これは運転において極めてポジティブに働く。つまり材料加工時には、エネルギーが加工部位からレーザへ逆反射するのを常に防止できるとは限らない。それというのは加工部位で溶融する材料が、予測不能な方向へ爆発的に飛散され、かつレーザビームを通って飛翔するからである。ところで本発明では、かかる有害な溶融材料は、1実施形態において説明した特別の対策手段によって除去されかつ無害にされるのである。
位相結合なしにファイバレーザを多重配列することによって得られる重要な利点は、逆反射の場合に個々のレーザが異なった挙動を示すことである。これは、例えば若干のレーザが逆反射の作用を全く受けず、他のレーザが遅延をもって始めて逆反射の作用を受けることに関連している。従って個々のレーザの発振は、これが発生しても、刻設結果の品質にネガティブな影響を及ぼさないように重畳される公算が大である。
本発明の凹版用刷版の製造方法では、高パワー密度、高エネルギー及び高精度又は高い光学的分解能が問題になるような、その他すべての形式の材料加工又は材料転移のためにも有利に使用することができる。銅表面を有する凹版印刷胴の彫刻以外に、その他の材料、例えば全ての金属、セラミックス、ガラス、半導体材料、ゴム又はプラスチックも加工することが可能であり、かつ/又は特別に調製された支持体材料から材料を剥離してその他の材料に、高速度かつ高精度で転移させることも可能である。更にまた、コーティングの施されていない凹版印刷胴以外に、マスクで被覆された凹版印刷胴又は印刷プレートの印刷法のために高速度かつ高分解能で製作もしくは加工することが可能である。また同じく例えばオフセット印刷で著しく高部数の印刷のために使用される、金属コーティング薄膜を有するオフセット印刷プレート(バイメタルプレート)及び類似材料を、環境にやさしく加工することも可能である。このような加工は従来、エッチング食刻によってしか可能でなかった。
また磁化可能な表面を有する材料を加工することも可能であり、その場合、バイアス磁化法によって大面積に磁化された材料部分が、本発明のレーザ照射源によって、選択した加工点をキュリー点以上の温度に短時間加熱することによって減磁化される。印刷技術で適用する場合、このようにして加工された材料は、相応のトナーと相俟ってプリントマスタとして役立てることができる。
本発明の凹版用刷版の製造方法では、パワー密度が高いことに基づいて、クロムを直接加工することも可能である。従って例えば凹版印刷用の銅製印刷胴に、すでにレーザ彫刻前に、クロムメッキを施すことも可能であり、これは彫刻後の作業工程を1つ削減することになり、現実性に寄与する。また銅に直刻された微小セルの表出挙動は、後にクロムメッキを施した微小セルの表出挙動よりも良好であり、かつ微小セルの容積もより精確であるので、本発明の前記方法によって、残留するクロム層による高い耐用寿命及び現実性の改善以外に、更に良好な印刷結果が得られる。
本発明に用いられるレーザ照射源の適用は、印刷技術における適用に限定されるものではなく、本発明のレーザ照射源は、高分解能と高速度を伴うレーザを用いてエネルギー照射によって材料を削出したり材料特性を変化させることが問題になるようなすべての分野で使用することができる。例えば、すでに述べたテクスチュアドラムも、本発明に用いられるレーザ照射源によって製作することができる。更にプリント配線基板用、殊に多層プリント配線基板用の(電子素子用の孔を含めた)導体路のパターンを、銅ラミネートの削出及び導体路の残存処理によって、かつ孔部位における銅ラミネート及び支持体の削出によって作成することが可能である。また材料表面の表面構造を、部分的な加熱によって部分的に変化させることも可能である。例えばこのようにして、硬質材料表面に大面積にわたって著しく微細な構造が作成され、これは特に軸受面にとって有利である。それというのは、この微細表面構造の形成によって軸受特性に所期のように影響を及ぼすことが可能になるからである。また材料表面にエネルギー照射によって金属を晶出するような、非導電性のセラミック材料が存在しているが、これは、本発明に用いられるレーザ照射源と相俟って、高解像度を必要とするような適用例の場合に、例えば導体路を製作するために活用することができる。
その場合レーザビームは、種々の方式で加工スポットへ案内されかつ材料の上へ導かれ、例えば被加工材料は、回転するドラム上に位置し、該ドラムに沿って照射源が相対的に移動案内される。しかし又、被加工材料を1平面に位置し、該平面の上方をレーザ照射源又はその出射ビームを相対的に移動案内することも可能である。この目的のために例えば、前掲刊行物:W. Huelsbuch 著 ”Der Laser in der Druckindustrie”の第 431 頁、第 7〜28 図に図示されているようなフラットベッド(平床形)装置では、其処ではアルゴン−レーザ又はHeNe−レーザとして記載され、或いは前掲欧州特許出願公開明細書の第3図でレーザ光源(4)として図示された照射源は、本発明に用いるレーザ照射源の利点を利用するために、本発明に用いるレーザ照射源に取り替えることができる。更に被加工材料を中空円筒体(凹面円筒体)の内部に位置させ、その上をレーザ照射源又はその出射ビームを相対運動して掃引させることも可能である。
また本発明ではレーザ照射源の出力端子は、相互間隔を変化させることのできる可変本数のトラックをもって、殊に長いコーム(櫛)の形に構成され、該コームを被加工材料に対して相対運動させるようにすることもできる。このような配置構成は、刊行物たる米国特許第5,430,816号明細書に基づいて公知になっている。当該刊行物では、約50Wの強さのエキシマレーザの照射線を、直径50〜800μmの所謂「ステップ型光ファイバ」から成る1つの束に方位づけ、かつそれぞれ照射線の一部分を個々のファイバに入力結合することが提案されている。各ファイバの出口は次いで、夫々直径60mmの収斂レンズを介してワーク上に結像され、その場合個々の加工点間の間隔は少なくとも60mmでなければならず、かつ各収斂レンズ毎に、汚染物に対する防護装置が必要になる。これに伴う欠点は、レーザエネルギーの一部分しか各ファイバに到達せず、エネルギー分布が著しくまちまちになり、かつファイバの運動時には出力に変動が生じ、従ってこの出力変動を避けるためには、所謂「スクランブラ」を使用することが必要になるが、このスクランブラが装置の効率に不利な影響を及ぼしコストを高めることになることである。このような公知の装置を用いても、プラスチック内に、直径約130マイクロメータの比較的不正確な孔しか作成できない。レーザのパルス繰返し数は、同時に作成される全ての孔にとって等しいので、全ての孔は等サイズに形成されねばならない。その上に装置の作業動作は比較的緩慢である。それというのは1つの窄孔動作に1〜2秒はかかるからである。これに対してファイバレーザを備えた装置は顕著な利点をもたらす。すなわち速度は複数倍分高まり、かつ金属も加工でき、製作精度は著しく大である。それというのもファイバレーザは、レーザファイバの運動時にも安定した出力パワーを示すからであり、かつ直径10マイクロメータ以下の孔も問題なく形成することができる。各ファイバレーザを別々に変調できるので、種々異なった加工パターンが可能である。更にファイバレーザのターミネータは、直径2.5mm以下に問題なく形成することができ、これによって加工トラック間の間隔を著しく小さくすることが可能になる。その結果また、光学レンズの汚染に対する共通の防護装置を使用することも可能になる。
材料を殊に1平面に配置して本発明に用いられるレーザ照射源を適用する加工例は、半導体産業において、適当な半導体材料から大抵は円形にスライスされた所謂「ウェハ」を加工する場合に生じ、該ウェハは例えばスクラッチ加工又はカット加工を施され、或いは、考えられ得るあらゆるパターンを表面に有することができるが、これらのパターンはこれまで、時間のかかる、かつ環境を汚染する化学的なエッチング法によってしか製作することができなかった。
材料に多チャンネル式にカット加工又はスクラッチ加工を施す場合、本発明では同一出願人が「レーザビームによって材料に多チャンネル式にカット加工及びスクラッチ加工を施す装置」という発明の名称で出願したドイツ連邦共和国特許出願P 198 40 936.2号明細書に記載したような単純化されたレーザ照射源の実施形態を使用することが可能である。
レーザ照射源を用いる本発明による別の適用例は、モニタ及びディスプレイを製作する場合である。例えばカラー画像スクリーン用のシャドーマスク並びに所謂フラット画像スクリーンのマスク又はLCD(液晶表示)ディスプレイを、従来実施されていた化学的なエッチング法による加工の場合よりも、本発明の方法の場合の方が、環境にやさしく刷版を製作することが可能である。
本発明のレーザ照射源の顕著な利点は、レーザ照射源が僅かな体積を有し、かつフレキシブルな結合部、つまりポンピング源と加工部位における照射線の出射口との間にレーザファイバ或いは該レーザファイバに接続されたファイバを有しており、これによってレーザ照射源又はその照射線出射口の、考えられ得るすべての操作位置を可能にすることである。また被加工面の空間的配置についても、いかなる制限も存在しない。それというのは被加工面が任意の空間位置に配置できるからである。
本発明の更なる利点は、個々のレーザのビーム束が、ビーム径、ビーム発散、センタリング及び角度方向の点で規定値をもって正確かつ持続的にターミネータにおいて把捉され、これによって被加工面へレーザ照射線を伝送するための生産及びサービス作業に適合した配置・構成が作られる点にある。その場合ビーム束は本発明では適用例に応じて、例えばポンピングスポットとしてファイバ内へ入力結合され、かつ/又は平行なレーザビームとして出力結合され、出射部位では発散し、或いは例えば出射部位から或る所定の間隔をおいて集束することができる。その場合、ターミネータを可能な限り小さく形成し、かつレーザビームのアライメントのための単数又は複数の基準面として単数又は複数の嵌合部をターミネータに配備することが望まれる。
この要望を達成するために本発明では、光導波ファイバがターミネータ内に囲まれ、かつ光導波ファイバの位置及び/又は出射ビーム束の位置が正確に調節される。ターミネータの正確な調節と、本発明のように空間的に小さな構成とによって、しかも付加的に特別の賦形に基づいてこれらのターミネータを特に簡便に互いに並列させることによって、複数のファイバレーザのビーム束を纏めかつ結束することが可能になり、こうして夫々に課された目的が解決されると同時に、凹版用刷版の経済的な製造並びに低廉な保守が可能になる。
次に図1〜図44aに基づいて本発明の刷版を製造する方法について使用する装置と関連して詳説する。
図1に示したレーザ照射源1は、本発明の刷版の製造方法では殊に有利にはモジュールとして構成された複数のダイオードポンピング式のファイバレーザユニット(2)から成り、該ファイバレーザユニットは、殊に有利にはモジュール形の給電部32から電気エネルギーが供給され、該電気エネルギーの大部分はレーザ照射ビームに変換される。また制御装置33が設けられており、該制御装置を介して照射ビームの変調が行われ、かつ該制御装置は、レーザ照射源をその周辺素子と協働させるために働く。レーザの出射ビームは、入射口9で光学ユニット8へ入射し、かつ出射口10で前記光学ユニットから出射する。光学ユニット8の役割は、被加工面81における加工スポット24へのレーザビームを成形することであるが、光学ユニットなしに該レーザビームを被加工面へ直接指向することもできる。
図2及び図2aでは、ファイバレーザユニットとも呼ばれるファイバレーザユニット(2)の原理的な構成が図示されている。図2では、例えばレーザダイオードのようなポンピング源(ここではポンピング源18と呼ばれる)のエネルギーは、入力結合光学素子3を介して、適当なポンピングスポット4に成形されてレーザファイバ5内へ入力結合される。このようなポンピング源は、例えば同一出願人の出願によるドイツ連邦共和国特許出願第196 03 704号明細書に記載されている。レーザファイバの典型的なポンピング横断面は、開口数が約0.4の場合、直径約100μm〜600μmである。レーザファイバ5は入力結合側6に入力結合ミラー7を備え、該入力結合ミラーはポンピング照射線を妨げずに透過するが、レーザ照射線に対しては100%の反射能を有する。入力結合ミラー7は、適当な保持器によって、或いは接着によってファイバ端部に固着されているが、またレーザ用の入力結合ミラーの場合に使用されるような、適当な鏡面膜をファイバ端部に直接蒸着することによって、入力結合ミラーを実現することもできる。レーザファイバ5の出力結合側11には、レーザ照射線にとって部分透過性の出力結合ミラー12が装着されており、該出力結合ミラーによってレーザ照射線13は出力結合される。出力結合ミラーはポンピング照射線に対して100%の反射作用を有しているのが有利である。これによってポンピング照射線の残分は再び光導波ファイバ内へ逆に戻し反射される。これが有利なのは、ポンピングエネルギーが一層良く活用される一方、レーザ照射線の使用時の障害になることが無いからである。出力結合ミラーも、入力結合ミラーの場合と同様に蒸着によって製作することができる。
図2aでは、レーザファイバ5のポンピング横断面14におけるポンピング照射線の入力結合動作が詳細に図示されている。ポンピングスポット4におけるエネルギーはファイバを通る途上でレーザファイバ5のコア15においてレーザ照射線を励起する。ポンピングコア16はクラッド17によって包囲されている。約5μm〜10μmのレーザファイバのコアは主として希土類でドーピングされている。
比較的大きなポンピング横断面14は、ポンピングエネルギーの入力結合を単純にし、かつ図13及び図14に図示したように、ポンピング源とレーザファイバとの間の、簡単に着脱可能なコネクタの使用を可能にする。その場合レーザファイバの、ポンピング源寄りのターミネータは有利に、出力結合側のターミネータと等構造に形成することができるが、必ずしも等構造である必要はない。ポンピング源とレーザファイバとの間の精密な差込みコネクタは、ファイバの製作時及びサービス作業時に著しい利点を提供する。しかし又、レーザファイバはポンピング源と固定結合されて1つのレーザモジュールを形成することもできる。ファイバコア直径を所期のように著しく小さく製作することによって、ファイバレーザは出口で事実上回折の制限されたレーザ照射線13を供給する。
図3に、本発明の凹版用刷版の製造方法によるレーザ照射源1を備えた材料加工装置の本発明の1実施例が図示されている。ケーシング21内に刷版上にクロム層が形成された1本のドラム22が回転可能に軸支されており、かつ図示を省いた駆動装置によって回転させられる。同じく図示を省いた角柱体上に1つのレーザ銃23が位置し、該レーザ銃は軸方向で、図示を省いたキャリッジを介してドラムに沿って案内される。
レーザ銃23から出射するレーザ照射線は加工部位の加工スポット24でドラム表面に当たる。この場合ドラム表面を直接加工することも、ドラム表面に張設された材料を加工することも可能である。レーザ銃23内にファイバレーザが、本発明のターミネータ26,94を介して供給され、前記ファイバレーザのレーザファイバ5はその都度例えば空気通流コイル25として巻成されている。しかし又、図15及び図16で説明するように、前記ターミネータ26,94を装着する以前に、ファイバレーザには、受動的なシングルモードファイバ又はその他の受動的な光導波ファイバ(略してファイバ28)を溶着すること、或いはその他の形式で結合することも可能である。
ファイバレーザのポンピング源18は冷却体27上に装着されており、該冷却体は損失熱を冷却系31を介して導出する。冷却系31は、損失熱を周辺空気に放出する熱交換器であってもよく、また冷却ユニットであってもよい。またレーザ銃23は、図示は省いたが、冷却系に接続されていてもよい。冷却体上には、詳細な図示を省いた給電部32に所属するポンピング源18用の電子ドライバーが位置しているのが有利である。マシン制御装置が駆動のために設けられているが、図3では図示されていない。ポンピング源、ファイバレーザ及び所属の出力電子素子の構造は、有利にモジュール式に構成されているので、個々のファイバレーザには、相応のポンピング源、及び別々又はグループ毎に纏められた電子ドライバーの出力モジュールが所属し、これらの出力モジュールは、バス系を介して互いに接続されている。図13及び図14において詳細に説明するように、レーザファイバ5とポンピング源18は、着脱可能なコネクタを介して互いに結合しておくことができる。ポンピング照射線の僅かな部分を、例えばクラッド17を僅かに傷つけることによってレーザファイバ5から出力結合して、殊に1本の光導波ファイバを介して測定セルへ導き、それから1つの信号を形成し、該信号をポンピング照射線の制御もしくは調節のために使用することも可能である。
制御装置33においてレーザ照射線のための変調信号が発生され、かつレーザ照射源をマシン制御装置及びモジュール式供給部32と協働させるため、並びにキャリバー動作並びに制御・調節動作を経過させるために役立てられる。図示を省いた安全回路は例えば、リスク発生の恐れがある場合にポンピング源を持続的に遮断する。
図3では、水平に軸支されたドラムが図示されているが、本発明のレーザ照射源がその姿勢の点で方向には全く不感であり、構造の点で極めてコンパクトであり、更にファイバレーザのレーザファイバ5、或いは該レーザファイバに結合されたファイバ28を任意に布設することができるので、ドラムは任意の姿勢で配置することができ、例えばドラム軸を鉛直に軸支することも、或いは垂線に対して斜向させて軸支することも可能であり、これによって据付け底面積が格別小さくなる。更にこれによって、複数ユニットの運転或いは複数本のドラムの設置が、水平軸支されたドラムが必要とする場合と同一の据付け底面積上で可能になる。これによって刷版製版が一層迅速になり、かつカラー組のための総ての刷版を1回の平行パスで製版することが可能になり、これは、最終製品の均等化の点で特に有利である。また小さな据付け底面積上に設置された装置の場合、空間的に大きな装置の場合よりも、印刷部への刷版の自動供給が一層改善される。同一刷版の製版を促進するために、単数又は複数のレーザ照射源、また付加的に単数又は複数の別のレーザをこの同一の刷版に指向することが可能である。その場合著しく微細で精密なトラックを有する多トラック式加工ユニットによって得られる利点、すなわち場合によって生じる近接部位が、より太いトラックで表示される場合ほど邪魔に感じられることはない。更に図37で説明するように、トラックの位置が精密に調整されるので、残留エラーがトラック幅よりも著しく小さくなる。その場合、本発明のレーザ照射源を、より微細な輪郭を加工するために使用し、かつ単数又は複数の別のレーザを、より太い輪郭を加工するために使用するのが有利であり、これは、例えばプラスチック又はゴムから成る刷版の場合に特に適用される。
また設けられた1つ又は各ファイバレーザ2の代わりに、レーザ照射源にターミネータを有するレーザ系を設けて交互にレーザ銃23に供給することも可能であり、その場合、図2について詳説したファイバレーザが、より低廉な解決手段である。つまり材料加工時に、互いに結合されていない(勿論僅かな波長差で照射する)複数のレーザの照射出力を1つの加工スポットに指向する場合、個々のレーザの等位相化を省き、かつ、位相結合のための高価な、トラブル発生率の高い制御・調節技術を避けることが可能である。
例えば米国特許第5,694,408号出願明細書に開示されるようなレーザ系は後増幅光学装置から成り、かつ、1本のファイバから成る出射端子を有している。ターミネータは追って図5,図5a,図5b,図5c,図6,図6a,図7,図9,図9a,図10,図10a,図10b,図11,図11a又は図12に基づいて詳説する。
更に前掲の米国特許第5,694,408号出願明細書に基づいて公知のレーザ系に代えて、米国特許第5,084,882号出願明細書に記載の位相結合されたレーザ系を使用することも可能である。その場合、被加工面には、各加工スポットとしてファイバ束の結像が生じる。択一的にファイバ束の出口で各ファイバには、シングルモードファイバを溶着し、該シングルモードファイバに夫々ターミネータを設けてレーザ銃に供給することも可能である。勿論このような位相結合されたレーザ系を製作することは著しく困難かつ厄介であり、従ってコスト高になる。これまでは、このような位相結合されたレーザ系は市販されていない。
図4には、ターミネータ26を介して結合された16本のファイバレーザと2つの多チャンネル形音響光学式変調器34から成る変調ユニットとを備えたレーザ銃の適用例が断面図で図示されている。該レーザ銃は、光学ユニットを適合させるために多部構成の収容部から成っており、かつ、ターミネータ26を嵌合させるための嵌合面を有する受け座29(図4a)、個々のレーザビームを集合させる手段、変調ユニット、加工効果を惹起させねばならないレーザビームを被加工面に伝送する伝送ユニット、及び加工効果を惹起させてはならないレーザビームを無害にするユニットを含んでいる。レーザ銃には、被加工面から切削された素材を除去するユニットを配置することが可能であるが、該除去ユニットは、別の形式で被加工面の近傍に配置されていてもよい。
図4aは、図4の斜視図である。
図4bに図示した図4の変化態様では、個々のファイバレーザのビーム束は、図4の場合のように平面内で平行に延在するのではなく、互いに一平面内で角度を成して延在しているが、この延在形式は、図4bの断面図からは確認できないので、これについては図21,図22及び図24に基づいて追って詳説することにする。
図4cに図示した図4bの変化態様は、伝送ユニットを別様に構成したことに基づいて、著しくコンパクトな有利な構造が得られる。
先ず図4を、図4aを参照して詳説する。この説明は図4b及び図cについても相応に該当する。
ケーシング35の入射口9(図1)には夫々4本のファイバレーザFHD1〜FHD4,FVD1〜FVD4,FHR1〜FHR4,FVR1〜FVR4が、ターミネータ26を介して受入れ体29(図4a)を介して夫々4線のトラックで夫々1つのビーム束を形成するように互いに並列的に同一平面内に配置されている。図4で使用されるターミネータ26の実施形態は図9に示されている。該ターミネータは気密にケーシング35内に装嵌されるのが有利であり、このためにパッキン36(図4a)を使用することが可能である。図4及び図4aに図示したターミネータに代えて、相応の受入れ体29がケーシング35内に設けられている場合には、図5,図5a,図5b,図5c,図6,図6a,図7,図9,図9a,図10,図10a,図10b,図11,図11a及び図12で説明するように別の形に成形されたターミネータを使用することも可能である。しかし又、図3に基づいて説明したように、ターミネータ26を装着する前に、シングルモードファイバ又はその他のファイバ28をファイバレーザに装着することも可能である。図40,図40a,図40b,図40c,図40d及び図41に示したように、レーザファイバ5又はファイバ28の配列を適用することも可能である。ファイバレーザFHD1〜FHD4;FVR1〜FVR4は例えばファイバレーザFVD1〜FVD4;FHR1〜FHR4とは異なった波長を有していなければならない。例えばファイバレーザFHD1〜FHD4;FVR1〜FVR4は1100nmの波長を有しているのに対して、ファイバレーザFVD1〜FVD4;FHR1〜FHR4は1060nmの波長を有し、これは、レーザファイバ5のレーザ活性コア材料の適当なトーピングによって得られる。また全てのファイバレーザが、該ファイバレーザをそれ相応に構成する場合には、異なった波長を有することもできる。
図28及び図28aで詳説するように、集合させる手段としての、波長に関連したミラー37を介して、ファイバレーザFHD1〜FHD4のビーム束がファイバレーザFVD1〜FVD4のビーム束と合体されると共に、ファイバレーザFVR1〜FVR4のビーム束がファイバレーザFHR1〜FHR4のビーム束と合体されて、夫々1つのビーム束FD1〜FD4並びにFR1〜FR4(図4a)に形成される。ファイバレーザの波長に影響を及ぼす別の方法もあり、例えば入力結合ミラー7と出力結合ミラー12との間のレーザファイバ域内に、ブルースター偏光プレート、回折グリッド又は狭幅域フィルタのような波長選択素子を挿入することも可能である。前記の両レーザミラー7又は12の少なくとも一方に、所望の波長に対してのみ充分高い反射作用を有するようなミラー層を被着することも可能である。しかしビームを集合させる本発明の実施形態は、異なった波長のファイバレーザの使用のみに限定されるものではない。放出されたレーザ照射線の偏光に優先方向を有していないファイバレーザ以外に、偏光レーザ照射線を放出するファイバレーザを使用することも可能である。波長に関連したミラーに代えて、1つの偏光方向は透過させるが、別の偏光方向は反射させるように、偏光に関連したミラーを使用する場合には、2種の偏光レーザが、偏光に関連したミラーによって両偏光レーザを集合させるために使用されればよい。この場合、図9aに示したような正方形横断面を有するターミネータ26を使用するのが特に適している。それというのは、ケーシング35内へ組付ける前にターミネータを90゜転回することによって、その都度一方又は他方の偏光方向が同一のファイバレーザによって得られるからである。
複数のレーザを単一のスポットに、つまり各個の加工点B1〜Bn(例えば図20〜図22に示したB1〜B4)に集合させることの特別の利点は、被加工面81において規定されたスポットサイズに、より高いパワー密度が発生されることである。
また個々のファイバレーザのレーザ照射線を、図15に示すように、複数のターミネータに分配することも可能である。これが特に有利になるのは、僅かなレーザ出力で充分であるような素材を加工しようとする場合、或いは個々のファイバレーザの出力が充分に高い場合である。このような場合、1つのレーザ銃23には、このために4個のターミネータ例えばFHD1〜FHD4しか装備しないことも可能であり、その場合、例えば図15によればFHD1及びFHD2は1つのファイバレーザから供給され、かつFHD3及びFHD4は別のファイバレーザから供給される。図15について説明した原理が2度適用されると、前部で4本のトラックFHD1〜FHD4が1つのファイバレーザから供給され、これによって著しく低廉な装置が得られ、殊に、波長に関連したミラー及びストリップミラーのような別の構成素子を省くことができるので、格別コストに見合ったレーザ照射源の実施形態が得られる。
更に必要に応じてファイバレーザもしくはトラックを省略することによって、このような装置の購入費は削減され、後になって必要に応じてファイバレーザを補充装備することも可能である。例えば1本のファイバレーザと1線のトラックでもって作動を開始することも可能である。使用されないファイバレーザの欠如したターミネータは、このために貫通孔及びレーザファイバを全く有していない等構造のターミネータに置換され、その場合該ターミネータは、あたかも全てのターミネータを装備しているかのようにケーシング35を閉鎖する閉塞片としてのみ役立つ。
また複数本のファイバレーザのレーザ照射線を纏めて、1個のターミネータ内へ導入することも可能であり、これは図16に記載されている。例えば前記のように欠如したターミネータが、貫通孔及びレーザファイバを全く有していない等構造のターミネータに取って代わられ、しかも該ターミネータが、あたかも全てのターミネータを装備しているかのようにケーシング35を閉鎖する閉塞片として使用されるにすぎない場合には、このように纏められた複数本のファイバレーザを用いて1トラックで作業が行われる。
ビーム束が各ターミネータから出た直後に、図示は省いたビーム分配器を介して、レーザ照射線の一部分が出力結合され、かつ、やはり図示を省いた測定セルへ導かれ、これから測定量を発生させることも可能であり、該測定量は、各ファイバレーザの出力パワーを制御するための比較値として使用される。また図示は省いたが、測定量を取出すために、すでにターミネータの手前でレーザ照射線をレーザファイバから出力結合することも可能である。
ターミネータを配置した平面の数は、1平面に限定されるものではない。図29,図32,図33及び図41では、3平面による配列が例示されている。図38では2平面による配列が図示されている。
作用態様及び実施形態については図17,図18,図19及び図19aに示されている4チャンネル形音響光学式変調器34を介して、ファイバレーザの各ビーム束は変調される。原理的には偏向器であるところの音響光学式変調器34によって、図示例では所望されないエネルギーは、元の照射方向l0から照射方向l1へ偏向されるので(図4a)、該エネルギーは後に光路内で簡単に捕捉され、かつ無害にされる。変調はデジタル式に行われるのが有利であり、すなわち個々の変調器チャンネル内では2つの状態、つまり「オン」と「オフ」が区別されるにすぎない。これは特に簡単に制御することができるが、またレーザ出力を各変調器チャンネル内で任意の値に調整することによって、変調をアナログ式に行うこともできる。但し変調は、照射方向l0からのエネルギーを加工のために使用し、かつ照射方向l1からのエネルギーを無害にすることに限定されるものではない。図36,図36a,図36b,図36c及び図37には、回折された照射方向l1からのエネルギーを加工のために使用し、かつ照射方向l0からのエネルギーを無害にする場合が例示されている。また個々の変調器チャンネルの変調された照射出力の微量部分を、図示を省いたビーム分配器を介して夫々1つの測定セルへ供給して測定量を発生させ、該測定量を、被加工面における各トラックのレーザエネルギーを正確に制御するために制御回路の比較値として使用することも可能である。
多チャンネル形音響光学式変調器34は、図4aに図示したように、ケーシング35の開口48内に回動可能に支承された円筒形の変調器ケーシング41上に固着されているのが有利である。該変調器ケーシング41を所要のブラッグ角度(Bragg-Winkel)αBに調節した後に、変調器ケーシングは取付部材42によって位置固定される。パッキン43によって各変調器ケーシングはケーシング35に対して気密に密封される。変調器ケーシング41から、特別に実装されたプリント配線基板171が、ケーシング35の内室44(図4)へ突出し、該プリント配線基板を介して、圧電変換器45への電気的接続部が形成される。変調器の有利な実施形態は図19及び図19aに示されている。
音響光学式変調器を通過したのちビーム束FD1〜FD4及びFR1〜FR4は、図26,図26a,図27,図27a及び図27bで示したストリップミラー46へ導かれる。ビーム束FD1〜FD4はストリップミラー46に対して、ストリップミラーを支障なく通過できるように配置されている。ビーム束FR1〜FR4はビーム束FD1〜FD4に対して、トラック間隔の半値分だけずらされており、かつストリップミラーの縞状に配置されたストリップに部分的中する。これによってビーム束FR1〜FR4は方向を変向され、今度はレーザビーム束FD1〜FD4を有する同一平面内に位置することになる。これによって8線のトラック配列が生じ、この場合各トラックには更に、異なった波長の2本のレーザが重畳されているので、全部で16本のレーザが集合されて作用することになる。このビームl0の平面の上方には、音響光学式変調器34内で回折されたビームl1が位置している。音響光学式変調器34の異なった調節の場合には、図4b及び図cに図示したように、回折されたビームは、 ビームl0の平面の下方にも位置している。
本発明の構成によって得られる重要な利点は、ビーム束FHD1〜FHD4とビーム束FD1〜FD4の対称軸線が、孔47によって特定されたケーシング35の軸線上に位置し、かつ所属のビーム束の各ビーム軸線が前記ケーシング軸線に対して平行又は直角に位置しており、これによって製造が単純かつ正確になることである。しかし又、ビーム束を非対称的にかつ別の角度で配置することも可能である。更にビーム束位置の小差を、波長関連性ミラー37及びストリップミラー46の調節によって補正することも可能である。組付け後にターミネータの位置及び角度関係を、個別的なチャンネルにおけるブラッグ回折角度の個別的な最適化のために再調整することも可能であるが、これについての図示は省いた。
本発明ではトラック数を減少することができるが、例えばファイバレーザに接続された、4つのターミネータではなく、8つのターミネータを1本のビーム束に並列させることによって、トラック数の倍増化を計ることも可能である。このためには2個の8チャンネル形音響光学式変調器が使用されることになる。1個のクリスタル上に128線の別々のチャンネルを有する音響光学式変調器が入手可能である。
同じく本発明によれば、トラック当りのパワーを高めるためにファイバレーザを異なった平面内に配置し、かつそのパワーを被加工面で重畳させること(これについては図29,図31,図32,図33及び図41参照)、かつ/又は複数のファイバレーザを、そのエネルギーを被加工面で重畳させるために束に配置すること(これについては図30及び図31参照)も可能である。
トラック数を高める別の態様が図37に図示されている。
図23に図示したように、直接変調可能なファイバレーザを使用することも可能である。この場合は音響光学式変調器が省かれ、構造が格別単純になる。
レーザを複数のトラック対して用い、1つのトラックに複数のレーザを用いて作動することによって、レーザ銃とワークとの相対速度が僅かであるにも拘わらず、高い加工速度が可能になる。またこの手段によって、加工速度を素材の熱導出の時定数に最適に適合させることが可能である。つまり比較的長い加工時間の場合、過度に多量のエネルギーが無駄に周辺へ流出するからである。
ケーシング35は、蓋とパッキン(共に図示せず)によって気密に密閉されている。ケーシング35には、図4に示したように、孔47の領域で円筒管51がフランジ締結されており、かつパッキン52を介して密封されている。前記円筒管51は伝送ユニットとして光学手段、すなわち夫々1つの結像系を有する2本の鏡筒53,54を内蔵し、両鏡筒は、出射口10(図1)で8本のレーザビーム束FD1〜FD4及びFR1〜FR4を被加工面に正しい尺度で結像する。2つの光学結像系は相前後して配置されているのが有利であり、さもないと構造長が全体として著しく大きくなり、或いは対物レンズと被加工面との間の距離が著しく僅少になるからである。前記の両者が共に不利であるのは、長い光路がミラーによって回折されねばならないからであり、かつ対物レンズと被加工面との間隔が過度に僅かであると、対物レンズの汚染化のリスクが過度に大きくなるからである。
光路は図4では側面図で図示されている。図20では原理的な光路は、ビーム束FHD1〜FHD4の平面図として示されている。波長関連性ミラー、変調器及びストリップミラーは其処では図示されていない。図面では主として平凸レンズが図示されているが、全ての図面において、例えば両凸レンズ又は凹凸レンズのような別のレンズ形状、或いは非球面形状のレンズを使用することも可能である。
また夫々複数のレンズコンビネーションから成るレンズ系を使用することも可能である。
レーザエネルギーを、できるだけ効果的に伝送し、かつ光学素子の加熱を限度内に保つために、種々異なった実施形態のレーザ照射源で生じる全ての光学面は、当該波長域に対して最高度の品質で減反射されている。光学的な結像系はテレセントリック(telezentrisch)に構成されるのが有利である。
伝送ユニットの構造長を短縮し、それにも拘わらず対物レンズと被加工面との間に充分大きな間隔を得るために、殊に図4b及び図4cで追って説明するような、伝送ユニットの更に有利な解決手段がある。図4によればレンズ55及び56は、ねじ締結又は接合によって鏡筒53と結合することができるが、前記レンズの周縁に金属コーティングを施して鏡筒53に鑞接されるのが有利である。同等のことは、鏡筒54内のレンズ57,61についても当て嵌まる。これによってレンズの気密な封止及び、レンズから鏡筒への良好な熱伝達が得られる。鏡筒54はパッキン62によって、円筒管51に対して気密に密封されているのが有利である。円筒管51の内室63の気密性と清浄性については、内室44並びに鏡筒53,54の内室64,65の条件と同様の条件が当て嵌まる。円筒管51の内室66及び67は孔71を介して内室44と円筒管の内室63と連通しているのが有利である。鏡筒53,54は開口72を有しているのが有利である。
被加工面に加工効果を惹起させてはならないレーザ照射線を無害にし、かつ高反射性のミラー74及び発散レンズ(凹レンズ)75を有する捕捉ユニット73が内室63に侵入している。捕捉ユニット73の原理は図18で示されている。捕捉ユニット73はパッキン76を介して挿嵌されており、かつ、別の光学素子例えばガラス板と交換することもできる凹レンズ75は、捕捉ユニット73内に嵌入接着されており、或いは殊に有利には、周縁ゾーンに金属コーティングを施して、熱導出を改善するために捕捉ユニットに鑞接されている。従って内室63は周辺外気から気密に密封されている。前記の手段によってレーザ銃の全内室は、周辺外気から気密に遮蔽されていることになる。内室44,63,64,65及び内室66,67、要するにレーザ銃の全内室は有利に排気することができ、或いは不活性ガス(保護ガス)を充填することができる。前記の内室は、ガス又は粒子を分離するような成分からできるだけ自由でなければならない。さもないと高負荷される光学面に汚染物が沈着して、装置の早期故障が惹起されることになるからである。従って使用パッキンに対しても、粒子又はガスを分離しないという要件が課される。組付け時には、組付けるべき部品及び環境は、レーザ銃が閉鎖されるまで、最大限に清浄に保つことが重要である。レーザ銃23を閉鎖した後に、弁77を介して全内室の排気が行われ、或いは不活性ガスが充填される。内室への不活性ガス充填の利点は、作動中にガスボンベ(図示せず)を減圧弁を介して弁77に接続し、ガスボンベから必要に応じてガスをケーシング内へ再充填することによって、充填を簡単に更新できることである。更なる利点は、ファイバレーザの交換のためにターミネータをケーシングから除去して別のファイバレーザに取り換える場合、或いは何らかの理由で使用者がケーシング又は円筒管を開放する必要がある場合、その操作中、ケーシングを通して微量の保護ガスを絶えず流して、保護された空間内への汚染粒子の侵入を防止できることである。またケーシングに微量ガスを常時流入させ、殊に対物レンズの近傍で開口を介して逃がし、こうしてこのガス流によって、加工工程時に遊離するような汚染粒子による対物レンズの汚染化を防止することも可能である(図39a参照)。またレーザ照射源の耐用寿命が短縮化する点を甘受すれば、排気又は保護ガス充填を省くことも可能である。
図4に示した構成の利点は、音響光学式変調器の元の照射方向l0のビーム束と回折された照射方向l1のビーム束との成す角度が、レンズ55.56から成る結像系によって著しく拡大されるので、捕捉ユニット73における高反射性ミラー74によって、偏向された照射方向の不所望ビーム束を簡単に捕捉することが可能である。高反射性ミラー74は金属から製作され、かつ、吸収されたレーザエネルギーに基づく加熱を僅かにするために高反射層を有している。該高反射性ミラーは、熱導出を改善するために、捕捉ユニット73の強固なフランジを介して、円筒管51と結合されている。しかしまた高反射性ミラーに代えて、例えばレンズのような光学素子を用いる場合には、捕捉ユニットを省くことも可能であり、該光学素子は、捕捉した照射線の焦点が、素材加工に使用される照射線の焦点とは異なるように、捕捉すべきレーザ照射線の光学特性を僅かに変化させる。ところで、捕捉すべき照射線が一緒に被加工面へ導かれたとしても、捕捉すべき照射線は、加工素材を切除するのに要するだけのパワー密度を有しないことになり、むしろ無効に吸収されて反射されることになる。図4に図示した実施形態の利点は、両鏡筒内の光学素子に課される要求が僅かであるばかりでなく、両鏡筒を全く等しく構成できることである。更なる利点は、ターミネータ26の軸線が互いに平行に位置している点にある。対物レンズ61と被加工面81との間の距離は、素材表面から飛び去る粒子を対物レンズ61に到達させないために、過度に小さくてはならない。つまり対物レンズが汚染されると、対物レンズは、透過するレーザエネルギーを吸収して損壊し、ひいては使用不能になる。この汚染を防止するために、対物レンズ61と被加工面81との間には、図34に基づいて詳説する特別の口金82が配置されている。
レーザ照射源のレーザ銃23は、素材加工ユニット(図3)の内部の角柱体83上で、円筒管51,95の軸線に合致する光軸を中心として回動可能かつ光軸方向にシフト可能に支承されており、かつ1本の緊張ベルト85又は複数本の緊張ベルトによってその位置を確保されている。これによって被加工面81に対するレーザ銃の正確な調整が可能である。角柱体83の外部にプレート86が位置し、該プレートは、冷却媒体の圧送される複数の開口87を有している。前記プレート86の役目は、伝送ユニットの光路から捕捉されたレーザエネルギーを、図18に詳細に図示したように、捕集して導出することである。プレート86と円筒管51,95,113との間には、蓄熱部が介在しているが、図示されてはいない。プレート86は、絶縁性のフランジ91を介して円筒管51,95,113と結合されている。また前記フランジ91は、レーザ照射線の出射も防止する。
光軸を中心としてレーザ銃23を回動することによって、図35に詳細に図示するように、被加工面81におけるレーザトラックのトラック間隔を変化することが可能である。本発明によれば、トラック間隔を設定するためのレーザ銃の回動並びに、被加工面に対するレーザ銃間隔の調整は、手動式だけでなく、適当な、特に電子式の制御装置及び/又は調節装置を用いて実施することができる。このために本発明では、図示は省いたが適当な測定装置を設けることも可能であり、該測定装置は被加工面の近傍に位置し、かつレーザ銃の必要に応じて近接移動することができる。トラック間隔を調節する別の態様は、図36,図36a,図36b,図36c及び図37に図示されている。またトラック間隔調整及び最良の焦点調整のために、手動式又はモータ式に調整可能なバリオ集束光学素子を使用することも可能である。このようなバリオ集束光学素子は、固定配置されたレンズ以外に、2つの可動レンズ系を有利に有しており、しかも第1可動レンズ系の調節は主として、結像尺度の調節を生ぜしめて、トラック間隔に影響を及ぼすことができ、また第2可動レンズ系の調節は主として集束調節を生ぜしめる。トラック間隔を最適化しかつ最良の焦点を得るために反復調整を行うことが可能である。また殊にレンズ57と対物レンズ61との間に、図示は省いたがシフト可能な長焦点距離レンズを配置することも可能であり、該長焦点距離レンズを用いれば、被加工面における加工点の集束を微調整することが、照射源をシフトすることなしに可能になる。それというのは2個のレンズの合成焦点距離はその間隔に関連しているからである。
高いレーザ出力に基づいて、光路内の光学素子は加熱される。それというのは光学素子が、レーザエネルギーの一部分を(著しく僅かなエネルギー部分であっても)吸収するからである。従ってクリティカルな光学素子は、ガラスではなくて、良好な熱伝導性を有する材料、例えばサファイアから製作されるのが有利である。光学素子の接合面を鑞接継手によって金属コーティングする場合、損失熱はホルダー及びケーシングへ導出される。ケーシングには、放熱効果を改善するために冷却フィン92が設けられ、該冷却フィンは、図示を省いたファンによって冷却することができる。同じくケーシング35並びにレーザ照射源のその他の構成部品には、図8及び図39に図示したように、特にレンズホルダー及びターミネータ26用の受入れ体のクリティカル領域に孔を穿設して、該孔を通して冷却媒体を圧送することが可能である。
前述の通り素材加工時には、著しく高いレーザ出力を必要とするので、光学的損失及び、常に早期欠落を招来することになる光学素子の汚染リスクを、可能な限り僅かにするために、光路内における光学素子、特にレンズの個数を、可能な限り僅少にすることが、本発明を達成する上で重要である。また本発明では対物レンズ61,103,112は、稼働中に汚染したためであれ、或いは別の結合尺度を所望するためであれ、必要に応じてレーザ照射源の使用者によって迅速に交換できるようにするために、交換ホルダーを装備している。この場合、鏡筒54に貫通孔72を穿設しないのが有利である。
更に本発明では、レーザエネルギーを逆にレーザ内に到達せしめないようにするための対策が光路内に講じられる。図3に図示したように、レーザ照射線は垂直にではなく、被加工素材に対して角度を成して当たるので、素材表面で反射された照射線がレーザ照射源内へ戻ることはあり得ない。更に図4,図4b,図4c及び図18に図示したように、無効にすべきレーザ照射線は、傾斜させた凹レンズ75によって、冷却可能な傾斜プレート86から成るサンプへ導かれる。本発明では、凹レンズ75に代えて、別の光学素子、例えばプレート又は絞りを使用することも可能である。その場合、この光学素子の有効直径は、前記サンプ内へ導かれるレーザ照射線を直線的に通過させる一方、サンプによって逆反射又は逆散乱するような照射線を充分に抑制して、いかなるエネルギーもレーザ内へ戻ることがないように、設計されている。扁平表面として図示されている傾斜プレート86の表面は本発明では、球面状又は中空状に形成されてもよく、殊に、照射線を最大限に吸収しかつ照射線の反射又は散乱を最小限に抑えるために粗面化することもできる。
更に図38において2つの平面(平面1及び平面2)について図示されているように、ターミネータから出射するビーム束の光軸を平行に僅かにずらすことによって、全ての当該レンズ面に対する傾斜して当たる。これは単数又は複数の平面を有する実施形態についても該当する。音響光学式変調器34は、いずれにしても既にビーム束の軸線に対して角度αB分だけ回動されているが、更に付加的に、ビーム束の対称軸線に対して角度γ分だけ回動することができ、或いは、ターミネータから出射するビーム束の軸線を相互に同一角度を成して延在させるようにした図24の実施形態を使用することも可能である。実地において判明したことであるが、光学的表面に対して下ろした垂線とビーム束の軸線との間に1〜2度の角度差があれば、レーザ内へ逆反射されるビームを防止するのに充分である。
本発明では、図4に示した本発明の凹版用刷版製造方法に用いる装置の前記実施形態とは異なった光学的、機械的及び電気的な構成の実施形態を選択することができる。例えば、全てのビーム束FD1〜FD4及びFR1〜FR4を、図31に示したのに類似した1個の共通のレンズによって被加工面に集束することも可能であり、この構成は確かに著しく高い出力密度が得られるが、加工スポットの形状はそれほど良くはない。それというのは全ての加工点が互いに重なり合って1つの共通のスポットに合体されているからである。
図4bに図示した本発明の凹版刷版製造方法に用いるレーザ照射源用のレーザ銃は、ケーシング93、ターミネータ94、円筒管95、鏡筒96及び高反射性ミラー97の点で、図4に図示したレーザ銃とは相異している。
ケーシング93は、ターミネータ94に嵌合するホルダー29を有している。該ターミネータ94は、図10,図10a及び図10bのターミネータに相当するのが有利であり、各ビーム束の軸線は、当該ビーム束内で平行には延在せず、凹レンズ101のほぼセンタへ向かって延びており、この状態は図21に平面図で図示されている。またターミネータ用の受け座29が相応の角度をとって配置されていることを考慮した場合、図5,図5a,図5b,図5c;図6,図6a;図7;図9,図9a;図11,図11a及び図12に示したすべての別態様のターミネータを使用することも可能である。鏡筒96内には、3個のレンズ、すなわち1個の発散レンズ、つまり凹レンズ101と、2個の収束レンズ、つまり凸レンズ102,103とから成り、この場合、凸レンズ103は、交換可能な対物レンズとして構成されているのが有利である。レンズの組付けの場合には密封性と熱導出に関して、材質選択の場合には熱伝導性に関して、図4及び図4aで述べた事項が同じく該当する。
鏡筒96の、凹レンズ101と凸レンズ102との間の空間は排気され、又は該空間には保護ガス(不活性ガス)が充填されており、或いは前記鏡筒は孔104を介して内室105に連通されており、該内室105自体は孔106を介して内室107に連通されている。内室107は孔47を介して内室111に連通されており、該内室自体は、図4及び図4aについて説明したように気密に密封されている。凸レンズ102と対物レンズ103との間の空間は、図示を省いた孔を介して内室105に連通しておくことができ、これは特に、対物レンズのホルダーが気密に密封されているか、或いは図4について説明したように微量の保護ガス量が常時レーザ銃を通流し、かつ対物レンズの近傍で流出するようになっている場合であるが、但し図4bには図示されていない。内室111,105,107から成るレーザ銃の全内室は、図4及び図4aで詳説したように、排気され、又は保護ガスで充填され、もしくは前記の全内室を保護ガスが通流するようにするのが有利である。所望されないビーム束は、高反射性ミラー97によって捕捉されるが、図4に示した実施形態とは異なって、角度増大作用を有するレンズ系は設けられていないので、ビーム束l0とビーム束l1とを充分空間的に隔離するために、前記高反射性ミラー97と変調器との間の間隔は相応に大きく保持される。それにも拘わらず、図4bに示したレーザ銃の総構造長は、図4に示した実施形態の場合にほぼ等しい。図4bに示した伝送ユニットの光路は側面図で表されている。図21には、図4bの原理的な光路が平面図で表されている。凹レンズ101及び凸レンズ102の光路は、逆用ガリレイ望遠鏡の光路に相当しているが、短焦点距離凹レンズ101を凸レンズに交換する場合には、逆用ケプラー望遠鏡としても実施することができる。このような望遠鏡は、Klein & Furtak 共著、 Springer 1988 , p.140〜141 に記載されている。図4bに示した構成の利点は、伝送ユニットのために3個のレンズしか要しないことである。個々のターミネータのビーム束が平行でないという欠点は、図10,図10a及び図10bに示したターミネータによって除かれる。
またビーム束を、図20に図示したように所望の方向に偏向するためにレンズ55を使用することも可能である。その場合は個々のレーザビーム束は、ターミネータ26とレンズ55との間で互いに平行に延び(図4も参照)、かつケーシング及びターミネータもしくはその配置関係に関しては図4との相違点はない。しかしレンズ55は、偏向作用以外に収斂作用を個々のビーム束に対して及ぼすので、凹レンズ101の部位では、図21と同等の関係は生じなくなる。これは、しかしレンズ133に対するファイバ28もしくはレーザファイバ5の間隔を別様に調節することによって、或いはターミネータ26におけるレンズ133を変更することによって補正される。すなわち個々のターミネータから出射するレーザビーム束の円錐照射体は、被加工面上の加工点B1〜Bnの部位に夫々シャープな結像が生じるように、その都度調整される。
また本発明によれば、凸レンズ102,103を共通の単一レンズに纏めることも可能である。その場合には、ただ2個のレンズを有する伝送ユニットが生じる。更にまた、殊に凹レンズ101と凸レンズ102との間に、図示は省いたがシフト可能な長焦点距離レンズを配置し、該長焦点距離レンズによって、被加工面における加工点の集束を再微調整し、レーザ照射源をシフトしないようにすることも可能である。また図4で述べたようなバリオ集束光学素子を使用することもできる。
レーザ銃23には、対物レンズ112の汚染を防止するために特別な口金82が設けられており、該口金については図34に基づいて追って詳説する。
図4cに図示したレーザ銃は、図4及び図4aに示したレーザ銃よりも著しくコンパクトに構成されている。伝送ユニットとして対物レンズ112がミラーユニットと併用され、該対物レンズは、種々異なった結像尺度を得るために交換可能である。すでに図4に基づいて述べたようにバリオ集束光学素子を使用してもよいが、本発明では、付加的な対物レンズ112なしにミラーユニットのみによって結像を行うことも可能である。
図4cの実施形態は、図4bの実施形態とは次の点で相異している。すなわち:
円筒管95に代えて、図4cの実施形態では偏心円筒管113が使用される。鏡筒96に代えて、凹面ミラー115を有するプレート114及び対物レンズ112と高調質プレート117を有するホルダー116が使用されている。捕捉ユニット73は、高反射性ミラー97の上位に湾曲(凸面)ミラー121を保持している。偏心円筒管113は一方の側でケーシング93と結合されている。パッキン52は所要の密封性を得るために設けられている。偏心円筒管113内にプレート114が装嵌されており、該プレートはビーム束l0及びl1のための透過孔122を有しかつ凹面ミラー115を保持しており、従って凹面ミラーの損失熱は偏心円筒管に沿って良好に偏向される。偏心円筒管は2本の互いに平行な軸線を有し、つまり第1軸線は、凸面ミラー121に指向された方向l0を有する入射するビーム束の対称軸線であり、かつ第2軸線は、出射するレーザ照射線の光学的対称軸線と見做すことのできる、凹面ミラー115と対物レンズ112との間の軸線である。
本発明では光路は両ミラーによって、つまり凸面ミラー121と凹面ミラー115とによって回折されている。凸面ミラー121は殊に金属から製作され、かつ高反射性ミラー97と緊密に結合されており、かつ該高反射性ミラーと一体に製作されているのが有利である。凸面ミラー121の凸面は球面状又は非球面状に成形することができる。凹面ミラー115は凹面状に成形されており、要するに凹面ミラーである。その面は球面状に成形することができるが、非球面状に成形されており、かつ殊に金属から成っているのが有利である。金属は、損失熱の導出が良好という利点を有している。更にまた金属から製作する場合、非球面状の面(つまり球面と扁平面)の生産時に公知のダイヤモンド回転研磨法によって生産できるという顕著な利点が得られる。これによって高反射性ミラー97と凸面ミラー121を一体に製作でき、かつ殊に1回の作業工程で表面形状を等しく製作できると共に、一緒に鏡面反射することができ、このことは製作が特に簡便になり、かつ凸面ミラーの位置安定性にとって極めて有利である。音響光学的な変調器によってレーザエネルギーを変調する場合、レーザエネルギーは凸面ミラー121にか又は高反射性ミラー97に当たる。発生した損失熱は、如何なる場合でも等しく、凸面ミラーはその温度を維持すると共にその位置を保持し、これが極めて重要なのは、該凸面ミラーが殊に短い焦点距離を有するように構成されており、従って装置の結像の良否が著しく凸面ミラーの正確な位置如何に懸かっているからである。この場合凸面ミラー121は、有利なことに、高反射性ミラー97の機能を一緒に引き受けている。しかし高反射性ミラー97は、凸面ミラー121とは異なった形状の表面を有することもでき、例えば平面ミラーであってもよい。
光路は、図22で詳説したように、凸面ミラーの代わりに凸レンズを含むヘルシェル式の逆反射望遠鏡の光路に類似している。反射望遠鏡は、Bergmann-Schaefer 著の”Lehrbuch der Experimentalphysik Band III, Optik” 第7版, De Gruyter 1978 , p.152 に記載されている。また凸面ミラーに代えて短焦点距離凹面ミラーを使用することも可能である。これによって構造長は僅かに拡大し、かつこの場合、ターミネータから出射するビーム束の別の円錐照射は、結像平面においてシャープな結像を得るために調整されねばならなくなる。また凸面ミラーに代えて、短焦点距離凸レンズを使用することも可能である。その場合は、コンパクトな構造を得るために別の回折ミラーが使用されねばならない。偏心円筒管には捕捉ユニット73がパッキン76を介して気密に装着されており、該捕捉ユニットを介して、図4,図4b及び図18に基づいて説明したような、所望されないレーザエネルギーは、複数の開口87を有する冷却用傾斜プレート86へ導出されて無害にされる。すでにプレート114の部位で、所望されないレーザ照射線をビーム束l1から捕捉して無害にすることも可能である。
ケーシング93の内室111は透過孔122を介して中空室123と連通されている。内室111と中空室123は排気され、或いはすでに説明したように殊に有利には保護ガスを充填され、もしくは保護ガスを通流させられる。ケーシング93から離反した方の、偏心円筒管113の端部には、交換可能な対物レンズ112を収容するホルダー116が装着されている。パッキン124は前記中空室123を気密に密封している。また鏡筒116は、周縁に金属コーティングを施した高調質プレート117を収容することができ、かつ該高調質プレートは、ホルダー116に殊に気密に鑞接されている。この高調質プレートの役割は、対物レンズを浄化のために取り外した場合、或いは別の結像尺度を得るために異なった焦点距離の対物レンズを使用しようとする場合に、中空室123を気密に保つことである。対物レンズ112と高調質プレート117との間の空間は、特にレーザ銃全体に図4に基づいて説明したように保護ガスを常時通流させて、図39aに示したように対物レンズ112の近傍で流出させる場合には、図示を省いた孔を介して中空室123と連通しておくこともできる。しかし又、高調質プレート117は、装置の光学的結像品質を改善するために、光学文献に基づいて公知になっているシュミット光学に基づく光学的な補正機能を有することもできる。高調質プレートが光学的な補正機能を有さず、かつ対物レンズが気密に装嵌されている場合、或いは対物レンズ交換時に汚染ダストを中空室123内へ流入させないように保護ガスが通流する場合には特に、前記の高調質プレートを省くことも可能である。レーザ銃23には、図34に基づいて詳説したように、対物レンズ112の汚染を防止する特別の口金82が設けられている。
偏心円筒管は、損失熱を周辺外気に良好に放出するために、図示を省いたファンによって送風される冷却フィン92を装備することができる。図4に基づいて説明したように、トラック間隔を調整可能にし、かつ被加工面81に対して正しい間隔を調整するために、レーザ銃は角柱体内において、凹面ミラーと対物レンズとの間の軸線を中心として回動可能に支承されている。レーザ銃は1本の緊張ベルト85によって位置固定することができる。
殊に凹面ミラー115と対物レンズ112との間には、図示を省いたシフト可能な長焦点距離レンズを配置し、該長焦点距離レンズによって、被加工面における加工点の照準合わせを、レーザ銃のシフト無しに再微調整することが可能である。また図4に基づいて説明したように、バリオ集束光学素子を使用することも可能である。更にまた図4,図4a及び図4bについて行った説明は全て該当する。
図5には、ファイバ28又はレーザファイバ5のためのターミネータ26の有利な実施形態が図示されている。光学的な通信技術、センサ技術及び測定技術の分野では、低出力用の光導波ファイバのためのプラグ形コネクタが公知であるが、該プラグ形コネクタは高出力のためには適していない。それというのは過度に高い加熱が発生して、破損を惹起することになるからである。例えばハンブルグ市、セルシウスウェーク街 15,22761 番地在の Schaefter & Kirchhoff 社刊のカタログ 1/97 の A1〜A6 頁には、このようなレーザダイオード−コリメータシステム、ビーム成形光学素子及び結合光学素子が記載されている。勿論このシステムの出力は1000mWに制限されており、従って素材加工において適用しようとするための要件を係数100だけ下回っている。それというのは充分な熱導出が保証されていないからである。それのみならずこのシステムは直径が比較的大であるので、レーザ出力端子の高いビーム束密度は得られない。更に大きな欠点は、このシステムが充分には密封されていず、極めて急速に汚染し、かつレーザ照射の高い吸収によって燃焼する点にある。更に言及しておかねばならない点は、ファイバ及びレンズのためのホルダーの精度が、所期の適用のためには充分でないことである。従って本発明のターミネータは著しく有利である。このようなターミネータは、同一出願人の出願によるドイツ連邦共和国特許出願第198 40 935.4号明細書の「光導波ファイバ用のターミネータ」に記載されているように、ファイバ5,28から出射するレーザビームを出力結合するために有利に使用することができる。
このターミネータ26は基本的には、ファイバ5,28から出射するビーム束を、着脱可能なコネクタを介して精確に結合することが肝要であるような全ての適用例のために使用することができる。同様にこのターミネータを介して、その他の光学素子を有するファイバ5,28と着脱可能に精確に接続することも可能である。該ターミネータ26は細長いケーシング132から成り、該ケーシングは、軸方向に延在する連続的に一貫した円筒孔130を有している。ケーシングは、プレハブの、例えば引抜き成形された材料(例えばガラス)から製作されているのが有利である。ファイバレーザのレーザファイバ5は、殊にその終端で保護シースから露出され、かつ、ドイツ連邦共和国特許出願第197 23 267号明細書に記載されているように、その外面に粗面化処理を施されているので、残りのポンピング照射線は、ターミネータ内へレーザファイバの入る以前にレーザファイバから離脱する。ファイバ5,28は、なお付加的に単層又は多層の保護シース131によって包囲することもでき、該保護シースは、例えば接着剤142によってターミネータのケーシング132と接合することができる。ケーシング132は、該ケーシングをホルダー29(図5a,図7,図8,図14)内に正確に装嵌させる嵌合部134を有している。その場合この嵌合部はケーシング132の全長にわたることができるが(図5b,図9,図10)、またケーシングの制限領域内に装備されていてもよい(図5,図6,図7)。例えば接着剤142によってケーシング132に接合された単数又は複数のパッキン36を設けておくことが可能である。該パッキンの役目は、ターミネータとホルダー29との気密な接合を可能にすることである。ケーシングは、保護シース131とパッキン36の領域では、嵌合部134の領域とは異なった、例えばより小さな直径を有することができる。ケーシング132の一方の端部で、ファイバ28もしくはレーザファイバ5の端部が受容され、かつケーシング内部では円筒オリフィス130内を案内される。ケーシング132の他端には、短焦点距離のレンズ133が固着されており、この場合ケーシングは、レーザ照射線13を妨害しないために円錐拡張部139を有することができる。図5b,図5c,図6,図6a,図7,図9,図9a,図10a,図10b,図11,図11a及び図12に示したように、ターミネータの内部において、かつ嵌合部134を基準としてレンズ133に対するファイバの位置を調節するために、ターミネータの内部にはファイバ5,28の位置を調節する手段を設けることが可能である。またファイバ5,28の半径方向位置を円筒オリフィス130によって決定することが可能であり、しかもファイバは前記円筒オリフィス130の内部を軸方向でシフト可能である。レンズ133の位置は、組付け時に充分正確に設定され、或いは、図示を省いた適当な手段によってファイバ5,28及び嵌合部134に対して軸方向及び/又は半径方向で調節されかつ位置決めされ、その場合ファイバも軸方向にシフトすることが可能である(図5b)。この調節は測定兼調節装置によって行われるのが有利である。この調節によって、レンズ133から出射するビーム束144を円錐状拡大孔139を介して、設定された軸方向照準位置へもたらすことが達成されねばならない。ファイバ5,28をケーシング132の内部に位置決めし、かつレンズ133を該ケーシングに位置決めした後に、前記測定兼調節装置は取り外される。本発明によれば、調節の耐久性を一層改善するために、組付け前にターミネータ領域のファイバ5,28の端部には、適当なコーティング膜、例えば適当な肉厚で被着された金属コーティング膜141を施すことも可能である。ケーシング132の内部におけるファイバ5,28の位置決めは、接着、鑞接又は溶接のような適当な手段によって行われる。ケーシング132と保護シース131との間の移行部位には、ファイバの付加的な保護手段となる弾性コンパウンド138が設けられているのが有利である。本発明では又、レンズ133の、殊にファイバ端部寄りの側を、適当な薄膜の適当な成形・蒸着によって、ファイバレーザのための出力結合ミラー12の機能も兼備させるように構成することも可能である。
図5aには、図5に示したターミネータによるファイバレーザ出力端子の多重配列が図示されている。ケーシング145内には、2トラック用の2個のターミネータ26を収容するための孔150が設けられている。更にケーシング145の内部の孔の延長線上でそれぞれ3本のピン148,149が、ターミネータ用のホルダー29としてサイド制限部を形成すると共にターミネータの正確な案内と方位づけのために働くように2列に装備されている。一方の列のピン148の直径はd1で表示され、かつ殊に互いに等しい。他方の列のピン149の直径はd2で表示されており、かつ同じく相互に等しい。ピン148の直径がピン149の直径に等しいと、両トラックのビーム束の軸線は、ターミネータ26が円筒形の嵌合部134を有しているので、図平面で互いに平行に位置することになる。しかし図5aではピン149の直径がピン148の直径よりも大きく図示されており、従って両ビーム束の軸線は図平面で互いに角度を成して延びることになる。両ビーム束間の角度は直径差d2−d1及び両ピン列の中心距離Mに関連している。ターミネータは下面を同一平面内でケーシング145によって案内されており、かつ上面をケーシングのカバー(図示せず)によって案内されており、該カバーは、ケーシングに固着されており、かつ図示を省いたパッキンによって該ケーシングを気密に密封することができる。該ケーシング145は、レーザ照射線を成形する光学ユニット用の収容部の一部分を成していてもよい。ターミネータは添え板147とねじ(図示せず)とによってケーシング145に固着されており、その場合パッキン36が、気密な密封のために設けられている。本実施形態は、2トラックのみに限定されるものではなく、別の孔150を設け、かつ別のトラック用の別のターミネータを挿嵌するために別のピン148,149を使用することも可能である。本実施形態は前記の1平面のみに限定されるものではなく、ケーシング145に穿設される別の孔150を別のトラック内及び単数又は複数の別の平面内に設けることも可能であり、この場合前記の別の平面は、図平面の上方又は下方に位置し、しかもピン148,149は、全てのトラック及び全ての平面にとっての受け座29を形成するように延長される。本発明では、平面間に特定間隔を生ぜしめるために、やはりピン148,149が使用される。この場合、これらのピンはターミネータ間で水平に延在している。例えば水平に配列されたピン149は、孔150を内設したケーシング145の壁と、図示の垂直に配列されたピン149の列との間で延在している。水平に配置されたピン148は殊に有利には、中心距離Mを隔てて、水平に配列されたピン149に対して平行に延在している。水平に配列されたピンは図2aでは図示されていない。ピン148,149は、引抜き鋼線から製作されるのが有利であるが、別の材料、例えば引抜きガラスから成ることもできる。図示の形式で複数のトラック及び/又は複数の平面を有する実施形態の場合の利点は、ピン148,149が或る程度のフレキシビリティを有していることである。これによって、ターミネータの全体をトラックの方向及び平面の方向で緊縮させて、ターミネータ26をその嵌合部134と共に、間隔なくピンに当接することが可能であり、これは最高の精度を得るために所望されていることである。
図5bに図示したターミネータ26では、レンズ133に対して、かつ嵌合部134に対してターミネータの内部のファイバ5,28の位置を調節するために、ファイバ5,28の位置調節手段がターミネータ26の内部に設けられている。またレンズの位置を調節することも可能である。これらの調節は調節装置によって行われるのが有利である。この場合ケーシング132内のファイバ5,28の位置を調節するためには、調節ねじ135,136(図5b,図5c,図9,図9a,図10a,図10b,図11,図11a,図12)及び/又は球体137(図6,図6a,図7)を設けることが可能である。調節ねじ135,136又は球体137の内部でファイバ28もしくはレーザファイバ5は軸方向にシフトすることができる。レンズ133の位置は、組付け時に充分正確に位置決めされ、或いは、図示を省いた手段によってファイバ5,28及び嵌合部134に対して、軸方向及び/又は半径方向に調節されて位置決めされ、この場合もファイバは軸方向にシフトすることができる。この調節は測定兼調節装置によって行われるのが有利である。この調節によって、レンズ133から出射するビーム束144を、嵌合部134に対するレンズ133及びファイバ5,28の相対的な送り調整によって、特定の照射円錐体を伴う規定の軸方向・焦点位置へもたらすことが達成されねばならない。ファイバ5,28をケーシング132内部に位置決めしかつレンズ133をケーシングに位置決めした後に、前記の測定兼調節装置は取り外される。なお当該実施形態及びその他の実施形態についても、図5に基づいて述べた事項、例えば金属コーティング膜141及び弾性コンパウンド138についての説明及びレンズ133をレーザミラーとして使用することは相応に該当する。
図5cには、ターミネータ26が調節ねじの領域を横断面して図示されているが、該横断面図から判るように、殊に3本の調節ねじ135が全周に均等分配して設けられており、該調節ねじによって、ケーシング内のファイバ28もしくはレーザファイバ5が微調節可能である。またファイバ28もしくはレーザファイバ5が進入する方のターミネータ26の端部では該ターミネータの内部に、図5bに図示したように別の調節ねじ136を設けておくことも可能である。該調節ねじ136は、前記の調節ねじ135と同様に構成されている。1組の調節ねじ135しか使用しない場合にはファイバ28もしくはレーザファイバ5は角度に関してしか調節することができない。2組の調節ねじ135,136を使用する場合には、ファイバ28もしくはレーザファイバ5をその軸線に対して平行にもシフトすることも可能である。ケーシング132内部におけるファイバ5,28の位置決めは、接着、鑞接又は溶接のような適当な手段によって行うことができる。
図6に図示したターミネータ26の実施形態では、調節ねじに代えて、金属製又は殊に有利には金属コーティングの施されたガラス製の小さな球体137が使用され、該球体はケーシング内の所定位置へもたらされ、次いで接着又は鑞接される。また複数組の球体を装備することも可能である。
図6aにはターミネータが球体137の領域を横断面して図示されている。
光導波ファイバにおける光学面及び、光導波ファイバに面した方のレンズ133の光学面が、周辺外気中の粒子によって汚染されるのを防止するために、図5,図5b,図5c,図6,図6a,図7,図9,図10,図11,図11a及び図12では、レンズ133とケーシング132との間、並びに調節ねじ135,136もしくは球体137とケーシング132との間の接続部は気密に密封される。これは適当な接着接続部材又は鑞接接続部材142によって行うことができる。鑞接接続部材が賞用される場合には、ガラス部分の相応の部位(141)に予め金属コーティングが施される。より高い強度を得るためには、例えば図5に図示したように、ターミネータの近傍でファイバ28もしくはレーザファイバ5とケーシング132もしくは保護シース131との間に残留するギャップも完全に又は部分的に接着接続部材又は鑞接接続部材によって塞ぐことも可能である。またケーシング132の内室143を持続的に排気すること、或いは該内室に保護ガスを充填することも可能である。
図7に図示した別の実施形態によるターミネータ26は、受け座29を有するケーシング145内に装嵌されている。本実施形態では、前方外側の嵌合部134はレンズ133の領域において、封止と熱導出とを改善するために円錐形に形成されている。付加的にパッキン146を設けておくこともでき、該パッキンは、図示のようにではなく、ターミネータのレンズ寄り端部並びにターミネータのファイバ寄り端部に装着することができる。
図8では、図7に示した円錐形に形成されたターミネータ26を複数配設するために、ケーシング145内に設けた複数のホルダー29が図示されている。このようなホルダーは、ファイバもしくはファイバレーザの複数の出力端子を互いに並列配置しようとする場合、或いは並列並びに上下に配置しようとする場合に有利である。その場合、ホルダーの軸線は、互いに並列的及び/又は上下に位置するターミネータから出射するビーム束の軸線が互いに平行に又は角度を成して延びるように、配置することができる。損失熱を導出するために、本発明のケーシング145は、冷却媒体を導通させる複数の孔を有することができる。
図8aには、複数のターミネータ26の後部をケーシング145内に固定する状態が図示されている。複数のターミネータ26,94を位置決めするために複数の添え板147が設けられており、該添え板は、各ファイバがターミネータ26,94のケーシング内に侵入する部位で該ターミネータの端部を、ねじ151によってケーシング内に固着する。
図9には、正方形又は長方形の横断面を有するターミネータ26の1実施形態が図示されており、該ターミネータでは、互いに対向する外面は全て平行に延びておりかつ嵌合部134を形成していてもよい。図9aは、正方形横断面を有するターミネータ26の横断面図である。
図10には、長方形横断面を有するターミネータ94の1実施形態が図示されており、この場合2つの対向外面は互いに台形状に延び、かつ他の2つの対向外面は互いに平行に延びている。また全ての対向外面が互いに台形状に延びることもできる。またターミネータの外面は嵌合部134を形成していてもよい。
図10に示したターミネータが図10aでは縦断面図で、また図10bでは横断面図で図示されている。
図11には台形状横断面を有するターミネータ26が図示されており、従って複数のターミネータを並列させる場合、ターミネータを順次180゜転回することによって1列のターミネータが生じ、しかも複数のターミネータの各中心点は1本の中心線上に位置している。なお所望に応じて、図11に破線で示唆したように、前記のようなターミネータ列を上下に複数配列することも可能である。
図11aに示した三角形横断面を有するターミネータ26も同様に、破線で示唆したように複数列で互いに上下に配列することができる。
図12に図示した六角形横断面を有するターミネータ26は、実装密度を高めるためにハニカム状に配列することもできる。
本発明の凹版用の刷版製造方法を実施する装置に使用できるターミネータは、レーザ照射源を個別的なモジュールから構成することを可能にするので有利である。
図13には、両端にそれぞれ1個のターミネータを備えた1本のファイバ28もしくは1本のレーザファイバ5におけるターミネータ26もしくは94の適用例が図示されている。
本発明の凹版用刷版の製造方法を実施する装置に使用されるレンズ133の、殊にファイバ端部に面した方の側を、相応に成形しかつ相応の薄膜を蒸着することによって、出力結合ミラー12の機能を兼備させるように前記レンズ133を構成することが可能である。また本発明によれば、レンズ3,154を、相応の成形と相応の薄膜の蒸着とによって、入力結合ミラー7の機能を兼備させるように構成することも可能である。
基本的には、前述の複数のターミネータを、複数の並列したトラック内及び複数の上下平面内に纏めて1つのパケットとして形成することが可能である。
またターミネータの形状を、図示とは別様に形成すること、例えば図6に示した円筒形形状のターミネータが、図9又は図10に示した台形状又は長方形状の嵌合部を得るように構成することが可能である。
図14には、ケーシング152を介してターミネータ26によってレーザファイバ5をポンピング源に作用結合させる例が図示されており、前記ケーシング152の凹設部153内には、ポンピング源18が、殊に気密に収納されている。パッキング146によって、ターミネータ26を同じく気密に密封することが保証されているので、前記凹設部153内へ外部から汚染粒子が侵入することはなく、かつ前記凹設部153を必要に応じて排気したり、或いは該凹設部に保護ガスを充填することが可能である。またターミネータ26を一時的に取り外す場合には特に、前記凹設部153を通して保護ガス流を連続的に通流させることも可能である。レンズ154を介してポンピング源18の照射線は、レーザファイバ5のポンピング横断面に集束される。ポンピング源は、単数又は複数のレーザダイオードから成ることができるが、また単数又は複数のレーザ、特にファイバレーザの配列ユニットから成ることもでき、該レーザの出力照射線は適当な手段によって、適当なポンピングスポットを発生するように集合される。
図15には、ファイバ融合結合器(Faserschmelzkoppler)155によってファイバレーザのレーザファイバ5からの出力照射線の分岐が図示されている。このようなファイバ融合結合器は、図20に詳示されている、Spindler und Hoyer 社刊カタログの、シングルモードファイバについてのG16頁に記載されており、かつ相応に精密方位修正した後にレーザファイバ5の出力端子に直接融合される。ターミネータ26,94はこの場合、要するに受動的なシングルモードファイバもしくは他のファイバ28に接続されており、かつ能動的なレーザファイバ5を有するファイバレーザには直接に接続されていない訳である。また例えばビーム分割ミラー又はホログラフィック式ビーム分割器によってレーザビームを複数の部分ビームに分割する別の可能性もある。しかし前記のファイバ融合結合器の利点は、レーザビームが可能な限りファイバの内部を導かれて加工点へ接近させられ得ることであり、これによって装置の顕著な単純化が得られる。
図16には、2本のファイバレーザのレーザファイバ5から、ファイバ融合結合器156を介してビームを集合させる例が図示されている。ファイバ融合結合器156において、両入力ファイバの横断面は1本のファイバに統合される。例えばファイバ融合結合器の両入力端子におけるファイバの直径は6μmであり、かつ、融合すべき両レーザファイバのコア直径もやはり6μmである。従ってシングルモードファイバのコア直径は、ファイバ融合結合器の出力端子では9μmになり、これは当該波長にとってシングルモードの完璧な案内を可能にする。しかし又、ファイバ融合結合器の出力端子における直径は、9μmより大であってもよく、かつファイバレーザもしくはファイバの2つ以上の出力を合成させることも可能である。ターミネータ26,94はこの場合要するに受動的なシングルモードファイバ又はその他の受動的なファイバ28に接続されているのであり、能動的なレーザファイバ5を有するファイバレーザに接続されている訳ではない。
またその他全ての種類の光導波路をファイバレーザに溶接接合すること、或いはその他の形式で、例えば光学素子を介して作用結合することも可能である。
また図15に示した分波器又は図16に示した合波器を用いる代わりに、光学素子を介して個々のファイバレーザに、単数又は複数の受動的なシングルモードファイバもしくは単数又は複数の他の受動的なファイバ28を作用結合し、次いで前記のシングルモードファイバもしくは他のファイバをターミネータに接続することも可能である。
しかし又、複数のファイバレーザ又はシングルモードファイバ又はその他適当なファイバの出力端子をレーザ照射線内に入力結合し、波長関連式又は偏光式のビーム合波器又はその他適当な手段を介して統合し、かつ、一端又は両端にそれぞれ適当なターミネータを備えたシングルモードファイバ又はその他のファイバに再び入力結合することも可能である。
ファイバを分岐しかつ統合する前記の手段は、モジュール構造をレーザ照射源に適用する場合に、特に有利に使用することができる。
図17は、音響光学式偏向器の原理図である。クリスタルとも呼ばれる基板161上に圧電変換器45が装着されており、該圧電変換器には高周波源162から電気エネルギーが給電される。ブラッグ回折角度αBをとって入射するレーザビーム163は、クリスタル内部の超音波フィールド164との相互作用によって、高周波源162の周波数に比例してその方向を偏向される。後置のレンズ165によってレーザビーム163は被加工面81へ集束される。変調器を丁度通過する非偏向ビームをl0(零次ビーム)で表せば、周波数f1は方向l11のビーム(一次第1ビーム)を生ぜしめ、周波数f2は方向l12のビーム(一次第2ビーム)を生ぜしめる。両周波数は同時に印加され、かつ同時にビームl11,l12が同時に発生し、該ビームは高周波源の振幅の変化によって変調される。入力結合された照射線のための最適の伝送効率はその都度、ブラッグ回折角度がビーム束の方向l0と偏向ビーム束の方向との成す角度の1/2である場合に生じる。音響光学式変調器として使用するためには部分ビームの一部分だけが使用される。素材加工のためには、零次ビームが比較的大きなパワーを有しているので、該零次ビームを使用するのが最も効果的である。使用されないビームのエネルギーは、例えば冷却面で熱変換することによって無害にされる。図17ではただ1個の圧電変換器45しか設けられていず、従って1本のレーザビーム163しか偏向又は変調されない。しかし又、複数の圧電変換器を同一基板上に装着し、これによって複数のレーザビーム、つまり複数のチャンネルに同時に異なった偏向信号もしくは変調信号を与えることも可能である。個々のチャンネルはT1〜Tnで表される。図17に図示したように、音響光学式変調器を、レンズ165の1焦点に位置させ、かつ該音響光学式変調器によって光路をほぼ平行にとると、レンズ165の別の焦点ビームは、ここに配置された被加工面81で集束され、かつレンズ165と被加工面81との間の光軸は平行に延びて、該被加工面に対して垂直に的中する。このような配置構成はテレセントリック(telecentric)と呼ばれ、その利点は、被加工面の位置が変化しても、光軸間の距離が一定であることである。これは、素材の精密加工にとって極めて重要である。
図18には、使用されないビームを無害にする方策が図示されている。使用されないビームは、殊に有利には熱導出を改善するために金属から製作される高反射性ミラー166を介して捕捉・変向され、凹レンズ75によって拡散され、複数のチャネル孔87を有する斜向配置された傾斜プレート86へ導かれて、レーザ内へエネルギーを逆反射させないようにする。傾斜プレート86は(場合によっては高反射性ミラー166も)、ポンプ167によって運転される冷却系を介して冷却される。なお前記凹レンズに代えて、凸レンズ又はガラス板を使用することも可能である。これが可能になるのは特に、無害にすべきビーム束の散乱を別の手段によって、例えば図4cに基づいて説明したように高反射性ミラー166の特別の成形によって、無害にすべきビーム束を散乱できる場合である。またレーザ銃の完璧な封止という利点を放棄する場合には、凹レンズ75を省くことも可能である。傾斜プレート86は或る角度をとって扁平表面で図示されているが、湾曲面又は空洞を有するプレートを使用することも可能である。プレート表面は、レーザエネルギーを充分吸収して冷却媒体へ移送できるようにするために、粗面化しておくこともできる。
複数本のトラックを有する実施形態の場合には、複数のこのような変調器を、図19及び図19aに図示した共通のクリスタル34上に配置するのが有利である。個々の変調器は、過度に高い加熱の故に、任意に近接配置することは許されない。本発明の実施形態に特に適している変調器は、米国パロ・アルト市所在のCrystal Technologies Inc. 社製の、商品番号 MC 80 で販売され5本の偏向もしくは変調チャンネルを有する変調器である。この場合チャンネル間の間隔は2.5mmに設定されており、しかもビーム直径は0.6mm〜0.8mmと表示されている。同一社の類似製品は、2.5mmのチャンネル間隔を有する10本の変調チャンネルを備えている。2.5mmのチャンネル間隔は、ターミネータ26,94の直径もしくはエッジ長を2.5mmよりも小さく構成することを要求する。しかしターミネータ26,94の直径もしくはエッジ長が、音響光学式偏向器もしくは変調器におけるチャンネルの間隔よりも大である場合には、図25に図示したように中間結像によって適合を行うことが可能である。このような多チャンネル形偏向器もしくは変調器は、図4,図4a,図4b,図4c,図36,図36a及び図37に示した実施例でも使用することができる。適用の要件に応じて全てのチャンネルを使用する必要はない。図示の適用例では4チャンネルが図示されているにすぎない。
また音響光学式変調器に代えて、例えばいわゆる電気光学式変調器を使用することも可能である。電気光学式変調器は、ゲッチンゲン市在のLaser Spindler & Hoyer 社の注文番号650020の総カタログG3の頁F16〜F33 に”Lasermodulatoren”,”Phasen-Modulatoren”及び”Pockels-Zellen”なる概念で記載されている。また多チャンネル形電気光学式変調器を使用することも可能であり、これはコンスタンツ市在のW.Huelsbusch 出版社刊の刊行物:Werner Huelsbuch著 ”Der Laser in der Druckindustrie”の第523頁、第890a図に図示されている。単チャンネル形又は多チャンネル形電気光学式変調器を二重回折性素材との関連において使用する場合には、各レーザビームを2つのビームに分割し、両分割ビームを別の変調器を介して別々に変調することも可能である。このような装置は文献では、電気光学式偏向器とも呼ばれる。
図18aでは、電気光学式変調器168を備えた実施形態が図示されている。該電気光学式変調器では、例えば加工のためには望ましくないレーザビーム163の偏光方向が、的中するビーム束から偏向され(Pb)、次いで偏光に関連したビーム分割器(偏光関連ミラー169とも呼ばれる)において、加工のためには望ましくないレーザビームPbを分離して、サンプ、例えば冷却された傾斜プレート86から成ることもできる熱交換器、へ導入される。加工のために望ましいレーザビームPaは、偏光方向を偏向されず、レンズ165を介して被加工面に供給される。図4,図4b及び図4cに示した実施例では、単チャンネル形又は多チャンネル形音響光学式変調器に代えて、相応の単チャンネル形又は多チャンネル形電気光学式変調器を使用することが可能である。同じく図4,図4b及び図4cに示した装置では、高反射性ミラー74,97に代えて、偏光関連ミラー169(図18a)を使用することができ、これに基づいて捕捉ユニット78が生じ、しかも偏光関連ミラー169は、加工のために望ましい光路内に位置する。
しかし又、ファイバレーザを直接変調することも可能である。別個の変調入力端子を有するような直接変調可能なファイバレーザは、例えばブールバッハ市 D-57299在の IPG Laser GmbH 社によって”Modell YPLM Series”という商品名で提供される。その利点は、音響光学式変調器及び高周波源のための所属の電子素子を省けることである。そればかりでなく図23に図示したように、伝送ユニットが単純化される。
図19は、音響光学式偏向器もしくは変調器の平面図である。図4,図4b及び図4cの説明では、変調器を内設した図4,図4b及び図4cの内室44もしくは111から、粒子又はガスを分離するような素子を可能な限り隔離せねばならないことが述べられているが、それは、高負荷される光学面に粒子が沈着して装置の早期欠落を惹起するからである。この理由から図19及び図19aでは、装置電気的素子は、別個のプリント配線基板171に配置されており、該プリント配線基板は2本のアームのみでもって密封空間内にはいり圧電変換器45と電気的に接続されている。プリント配線基板171は変調器ケーシング172に対して、殊に鑞接部位173によって密封されている。該プリント配線基板171の端面側は、殊に内室44,111の領域を、図示を省いた鑞接された金属バンドによって封止されている。プリント配線基板は、個々の高周波チャンネルを接合コンパウンドの介在によって遮蔽するために多層に構成されている。プリント配線基板に代えて、別の導体装置を使用することも可能である。例えば各高周波チャンネルは、独自のシールドされた線路によって接続することができる。変調器ケーシング172は、電気素子への入口ポート174を有している。変調器クリスタル34はその基面に金属コーティングを施されており、かつ鑞接部位又は接着部位175によって変調器ケーシング上に固着されている。固着部位の直ぐ下方には、損失熱をチャネル孔87を介して冷却媒体によって排出するために冷却系への接続部176が位置することができる。変調器ケーシング172は殊にカバー177によって閉塞されており、該カバーは電気接続端子181を保持すると共に、冷却系用の接続部を有しているが、該接続部の図示は省かれている。パッキン43を介して、変調器ケーシング172は、図4,図4a,図4b及び図4cに示したケーシング35,93内に気密に装嵌され、かつ取付部材42によって固定される。
電気光学式変調器168を、類似の方式で変調器ケーシング172に固定してプリント配線基板171を介して接点接続(コンタクト形成)することも可能である。
図20は、図4に示したファイバレーザFHD1〜FHD4に所属するビーム束144のための照射光路の原理図である。ファイバレーザFHD1〜FHD4のビーム束は、図示の照射線と部分的に合致して延在しているが、本発明で別の波長を有し、かつ図4aから判るように、図20では図示を省いた波長関連性ミラー37を介してレーザビーム束FD1〜FD4に合体されている。更に図20ではファイバレーザFVR1〜FVR4のビーム束とファイバレーザFHR1〜FHR4のビーム束は図示されていない。該ビーム束は、図4aから判るように、同じく波長関連性ミラーを介してビーム束FR1〜FR4に合体されている。図4aのストリップミラー46の配置から判るように、図20ではビーム束FR1〜FR4は、図示の照射線に対してトラック間隔の1/2分だけずらされて延びている。従って完全な照射光路は、図示の4つのビーム束ではなくて、全部で8つのビーム束を含んでおり、該ビーム束によって、被加工面では全部で8つの別個のトラックが生じることになる。図20では、ファイバレーザFHD1〜FHD4の2本のビーム束144が図示されているにすぎない。図4に基づいて既に述べたように、より多数のトラックを配置することができ、例えば被加工面におけるトラックの本数は、別々に変調可能な16本のトラックに高めることもできる。この構成手段は、各レーザのデジタル式変調によって可能であり、すなわちレーザはオン・オフによって、ただ2つの状態でしか動作せず、かつ被加工面における加工スポットの、特に簡単な制御と優れた形状付与が得られる。このデジタル式変調方式は、特に単純な変調システムを必要とするにすぎない。
高級多色刷りでは、充分スムーズな色経過を得るためには100トーン値以上の階調差が要求され、最適には400トーン値以上の階調差が要求される。例えば、微小セルの容積が、被印刷物に被着されるインキ量を決定する凹版印刷において、1つの微小セルを8×8又は16×16の個別微細セルから構成しかつ微小セルの深さを一定に維持する場合には、被加工面を64〜256ステップに量子化することが可能である。しかし付加的なアナログ式又はデジタル式振幅変調によって或いはレーザエネルギーのパルス連続変調によって微小セルの深さを制御する場合には、トラック本数が僅かであっても微小セルの容積を任意に微量子化することができる。微小セルを例えばデジタル式に2ステップでしか制御しない場合、図28に基づいて詳説するように、8トラックで1つの微小セルを、それぞれ2種の異なった深さを有する8×8の個別微小セルから構成することができる。これは、微小セルの容積をこの場合、純デジタル式の変調方式の利点を失うことなしに128ステップに量子化できることを意味し、これによって方法の安定化のために顕著な利点が得られる。16トラック及び微小セルの深さを2ステップで制御する場合、デジタル式に可能な量子化ステップ数はすでに512になる。トーン値の階調数を高めるために微小セルを2回の加工パスで製作することも可能である。
変調器34並びにストリップミラー46は図20では図示されていない。図面を判り易くするために、ファイバレーザFHD1のターミネータから出射するビーム束144(波長関連性ミラーを通過した後にはビーム束FD1に合致するビーム束)の横断面はハッチングを施して図示されている。なお当該図面は、他の全ての図面も同様に、正確な尺度では図示されていない。図示の両ビーム束144は被加工面81に加工点B1及びB4を生ぜしめ、該加工点は加工スポット24の形成に寄与しかつ被加工面81に相応の加工トラックを発生する。ターミネータ26の軸線と、個々のファイバレーザのビーム束144の軸線は、図20では互いに平行に延びている。ターミネータの照射円錐体、つまりビーム束44の形状は、弱く発散するように図示されている。図面ではビームウエストはレンズ133の内部に位置を占める。発散角度は、所属のビームウエストにおけるビーム束直径に対して逆比例する。ビームウエストの位置及びその直径は、ターミネータ26,94のレンズ133を変化することによって、かつ/又はファイバ28又はレーザファイバ5に対する距離を変化することによって、影響を及ぼすことができる。光路の計算は公知の方式で行われる。ゲッチンゲン市在のLaser Spindler & Hoyer 社の注文番号650020の総カタログG3の頁K16及びK17の技術説明を参照されたい。その目的は、加工点で最高度のパワー密度を得るために、被加工面81における各加工点B1〜Bnがビームウエストになることである。両レンズ55,56によって、ビームウエスト及び、ターミネータ26のレンズ133の位置する対象平面182からのトラック距離が、レンズ55の焦点距離及びレンズ56の焦点距離の比率に応じて中間像平面183に縮尺結像される。この場合、ターミネータ26からのレンズ55の距離とクロスオーバー点184からのレンズ55の距離が該レンズの焦点距離に等しく、かつ中間像平面183からのレンズ56の距離が該レンズの焦点距離に等しくかつクロスオーバー点184からの該レンズの距離に等しい場合には、所謂テレセントリック結像が得られ、すなわち中間像平面において、個々のトラックに属するビーム束の軸線は再び平行に延びる。しかし発散度は著しく拡大される。殊にテレセントリック結像は、後置のレンズ57,61の直径が、1本のビーム束の直径よりもそれほど大である必要がないという利点を有している。レンズ57,61は第2ステップで中間像平面183からの像を被加工面81へ縮小する。殊にテレセントリック結像によって、つまり個々のビーム束の軸線が対物レンズ61と被加工面81との間で平行に延びることによって、ここでは被加工面とレーザ銃との間の間隔変化がトラック間隔に変化を生ぜしめないという利点が得られ、これは精密加工にとって極めて重要である。結像は、前記のように必ずしも2ステップで夫々2個のレンズを用いて行う必要はなく、図21及び図22に示すように、対物レンズと被加工面との間で平行なビーム軸線を生ぜしめる別の実施形態も存在する。また対物レンズ61と被加工面81との間でのビーム軸線の平行性に偏差があっても、これは、素材の加工成績が満足できる限り、許容可能である。
図21は、図4bに示した装置の光路の原理図である。図面は正確な尺度で図示されるものではない。図20の場合と同様に、ファイバレーザFHD1及びファイバレーザFHD4の両ビーム束は、原理を説明するための、存在している全てのファイバレーザのビーム束の部分量でしかない。しかし図20とは異なって図21では、ターミネータの個々のビーム束の軸線は平行ではなく、相互に角度を成すように配置されており、これは図24で詳説され、かつ有利には図10,図10a及び図10bに示したターミネータ94によって得られる。この実施形態によれば、レンズ55を必要とすることなしに個々のビーム束144は、図20に類似してクロスオーバーすることになる。仮想のクロスオーバー点の領域に短焦点距離の拡散レンズ、要するに凹レンズ101が挿入されており、該凹レンズは、到来するビームを図示のように回折してビーム束を発散させ、つまり拡散する。凸レンズ102が、殊にビーム軸線の交点に配置されており、かつ凹レンズ101と相俟って逆ガリレオ望遠鏡を形成する。これによって例えば平行な入射ビーム束は、凸レンズ102,103間で、拡径された平行な出射ビーム束に変換される。各入射ビーム束の所望の平行性は、既に説明したようにレンズ133の焦点距離及びターミネータ26,94におけるファイバ28もしくはレーザファイバ5に対する前記レンズ133の間隔を適当に選択することによって得ることができる。対物レンズ103は、拡大されたビーム束を被加工面81に集束して加工点B1〜Bnを形成し、該加工点は加工スポット24の形成に貢献し、かつ被加工面81上に相応の加工トラックを発生させる。対物レンズ103の焦点距離を変化することによって、結像尺度を簡単に変更することが可能である。従って対物レンズ103を、交換可能な対物レンズとして構成するのが有利である。しかし又、既に説明したようにバリオ集束光学素子を使用することも可能である。凸レンズ102と対物レンズ103との間の距離を対物レンズ103の焦点距離に等しくなるように対物レンズ103の位置を選択すれば、ビーム束の軸線は対物レンズ103と被加工面との間では平行であり、かつ、レーザ銃と被加工面との間の間隔が変化された場合でも被加工面におけるトラック間隔は一定になる。
図22は、図4cに示した装置の光路の原理図である。図面は、その他の全ての図面の場合と同様に、正確な尺度で図示されるものではない。当該光路は、図21の光路に著しく類似してはいるが、凹レンズ101に代えて凸面ミラー121を、また凸レンズ102に代えて凹面ミラー115を使用する点が相異している。回折の発生によって光路は著しく短くなる。光路は、逆反射望遠鏡の光路にほぼ等しい。反射望遠鏡は波長には無関係であるので、波長の異なったレーザを使用する場合に有利である。結像誤差は、非球面状の面の使用によって減少され、或いは、図22には図示されていないが、光学的な補正プレート117によって補正することができる。対物レンズ112の焦点距離は、凹面ミラー115に対する対物レンズの距離に等しいのが有利である。その場合対物レンズ112と被加工面81との間での光束の軸線は平行になり、かつ、レーザ銃と被加工面との間の距離が変化した場合でも、被加工面上におけるトラックの間隔は一定になる。更に対物レンズと被加工面との間に大きな距離が得られるので有利である。すでに述べたように、バリオ集束光学素子を使用することも可能である。
図23には、複数のレーザを備えた実施形態が図示されており、この場合個々のレーザ出力端子はターミネータ26の形で同一の円セグメント上に配置されており、かつ共通のクロスオーバー点185に照準されている。この実施形態は、発生経費が著しく僅かになるので、直接変調可能なレーザのために特に適している。このような実施形態では、被加工面81における結像をただ1個の対物レンズ186で行うことが可能である。しかし図4b又は図4cに示した実施形態を結像のために使用することも可能である。ターミネータから出射するビーム束の照射円錐体は、被加工面81上に全てのレーザのビームを細く狭めて、ひいてはシャープな像を生ぜしめるように、調整されている。クロスオーバー点185と対物レンズ186との間隔並びに対物レンズ186と被加工面81との間隔は等しく、かつ対物レンズ186の焦点距離に等しいのが有利である。この場合個々のビーム束の軸線は、対物レンズ186と被加工面81との間では平行であり、かつ、レーザ銃と被加工面との間の間隔が変化した場合でも加工トラック間に一定の間隔を生ぜしめる。図示は省いたが、レーザ照射源のパワー密度及び効率を高めるために、複数のレーザ平面を上下に重ねて配置することも可能である。レーザの複数の平面は、互いに平行に配置されているのが有利である。その場合、図29及び図31に図示したように、個々の平面を起点とする個々のビーム束が、被加工面81上の加工点では1つのスポットに的中することになるので、特に高いパワー密度が発生する。
図24には、図23に示した装置の変化態様が図示されている。4本のファイバレーザFHD1,FHD2,FHD3,FHD4が、図10,図10a及び図10bにおいて詳説した所属のターミネータ94でもって、同一の円セグメント上に並列されている。ターミネータ94は、その形状に基づいて相互並列に特に適している。この実施例では直接変調可能なファイバレーザは使用されないので、4チャンネル形音響光学式変調器34が挿入されている。圧電変換器45は、図24に示したように、やはり同一の円セグメント上に配列することができるが、また、ビーム束が圧電変換器45の音響フィールドによって充分捕捉される限り、図24aに示したように平行に配置することもできる。対物レンズ186に代えて、図4b及び図4cに基づいて説明したような伝送ユニットを使用するのも有利である。
図25では、レンズ191及び192によって縮小する中間結像が図示され、従って個々のターミネータ26,94間の間隔は、多チャンネル形音響光学式変調器34上の個々の変調チャンネルT1〜T4間の間隔よりも大であってもよい。結像比率は両レンズ191,192の焦点距離の比に相当する。中間結像は、ターミネータ26,94のレンズ133とクロスオーバー点193とに対するレンズ191の距離を該レンズ191の焦点距離に等しくすること、及びレンズ192に対するクロスオーバー点193の距離並びに変調器クリスタル34に対するレンズ192の距離を該レンズ192の焦点距離に等しくすることによって、殊にテレセントリックに形成される。また両レンズ191,192間の間隔を調整することによって、レンズ192から出射するビームがもはや平行に延びるのではなくて、互いに角度を成して延びて、図21又は図22に示したように1つの光路に接続することも可能である。図25に示した中間結像は、図23及び図24に示したように同一の円セグメント上にターミネータを配列することを併用して得ることもできる。
中間結像部(191,192)は図25では、ターミネータ(26,94)と変調器(34)との中間で示されている。しかし中間結像部の前方又は後方の光路内に波長関連性ミラー37又は偏光関連ミラーを配置することも可能である。また中間結像部(191,192)を、変調器後方の光路内、或いはストリップミラー46の前方又は後方の光路内に配置することもできる。中間結像部は、図4aに符号Eで示した光路部位で使用されるのが有利である。
図26及び図26aでは、加工平面におけるトラック間の間隔を減少させる手段が図示されている。図26は側面図であり、図26aは図26の平面図である。ターミネータ26,94から出射するビーム束144は、前記ターミネータのケーシングよりも小さな直径を有しているので、活用されない間隙が残存している。更にまたトラック間の最小間隔及びビーム束の最大直径は、多チャンネル形音響光学式変調器34によって規定される。トラック間の間隔を高めるためにストリップミラー46が設けられ、該ストリップミラーは縞(ストリップ)状に互い違いに透過部分と反射鏡面部分を有している。ストリップミラー46及び変調器は図26aでは図示されていない。図27及び図27aには前記のようなストリップミラー46が図示されており、しかも図27aは図27の側面図である。レーザビームを透過する適当な基板194上に高反射性ストリップ195が装着されている。間隙196並びに背面は、反射低減膜を有しているのが有利である。ファイバレーザFD1〜FD4のターミネータ26,94から出射するビーム束144は、ストリップミラー46の透過部分を支障なく透過する。ファイバレーザFR1〜FR4のターミネータ26,94から出射するビーム束144は、ストリップミラー46の高反射性ストリップ195で反射してファイバレーザFD1〜FD4のビーム束と同列に位置するように配置されている。これによってトラック間の間隔は二等分されている。
図27bに図示したストリップミラー46では、該ストリップミラーの基板は間隙196を切除されており、かつ残留表面全体は殊に高反射性に鏡面化されており、従って高反射性ストリップ195が生じる。この場合ストリップミラーは殊に金属から製作されているが、これは、高出力の場合、これに伴って加熱が生じる場合に特に有利である。
ストリップミラーを備えた実施形態は、例えば図4,図4a,図4b,図4cに示したように、波長関連性ミラーを備えた実施形態と極めて良好に組合せることができる。レンズ55を介して、図20に示した別の光路と接続することが可能である。また個々のターミネータ26,94の軸線は、図23及び図24に図示したように、角度を成して配置することもできる。この場合、図21又は図22に示したように別の光路を延在させかつレンズ55を省くことができる。
図28及び図28aには、異なった波長のファイバレーザ、例えば1060nmを有するNd:YAGレーザを、波長関連性ミラー37を介して、1100nmを有する別ドーピングのレーザと互いに合体させる手段が図示されている。波長差はより僅かであっても、より大であってもよい。
図28aでは変調器及び波長関連性ミラーは図示されていない。波長関連性ミラーは殊に有利には光学的な干渉フィルタ(Interferenzfilter)であり、該干渉フィルタは、当該波長を透過する基板上に適当な誘電薄膜を蒸着することによって製作され、かつ高域フィルタ又は低域フィルタとして極めて急勾配のフィルタエッジを有することができる。フィルタエッジまでの波長は透過され、フィルタエッジを超える波長は反射される。また帯域フィルタを使用することも可能である。同じく同一波長であるが異なった偏光方向のレーザを、偏光ビーム合波器、殊に偏光プリズムを介して集合させることも可能である。本発明によれば、偏光ビーム合波器と波長関連性ミラーとのコンビネーションも可能である。図28では、波長λ1を有するファイバレーザFHD1〜FHD4のターミネータ26,94から出射するビーム束144が波長関連性ミラー37を支障なく透過するのに対して、波長λ2を有するファイバレーザFVD1〜FVD4のビーム束144は、前記波長関連性ミラーで反射されるので、該波長関連性ミラーの後方では両ビーム束144は互いに統合されている。本発明では夫々1つの多チャンネル形音響光学式変調器34を介して各ビーム束を別々に変調することができる。被加工面ではその都度異なった波長の2つのレーザが同一の加工点で同一トラックを加工するので、従って例えば凹版印刷用刷版の製版時に微小セルの深さを制御するために、関与する両ビーム束を夫々オン又はオフに切換えれば、2ステップのデジタル式振幅変調が簡単に可能になる。しかし又、統合される両ビーム束のために共通の変調器を使用することも可能である。この場合は図4,図4a,図4b,図4cに図示したように、該変調器は波長関連性ミラー37とレンズ55との間に配置されている。レンズ55を介して、図20の伝播ユニットの別の光路が接続される。個々のターミネータ26,94の軸線は、図23及び図24に図示したように、互いに角度を成すように配置することもできる。この場合、別の光路は図21又は図22に示したように延びかつレンズ55は省かれる。
図29には、ファイバレーザを所属のターミネータ26.94と共に(図31)複数の平面内に配置する態様が図示されている。ファイバレーザに接続されたターミネータが3つの平面で上下に重なって位置している。第1平面の第1トラックは符号F1で、第2平面の第1トラックは符号F2で、第3平面の第1トラックは符号F3で表示されている。符号11,12,13は別のトラックの第1平面を表わす。ターミネータから出射するビーム束144の軸線は、個々の平面において互いに平行に方位づけられている。個々のトラックのビーム束軸線は、図20に示したように互いに平行に延び、或いは図23又は図24に示したように互いに角度を成して延びることもできる。
図30では、例えば7本のファイバレーザF1〜F7のターミネータ26,94(図31)は、ターミネータから出射するビーム束144が互いに平行になるように、六角形に配置されている。このためには図12に示したターミネータを使用するのが有利である。これによって、7本の個別的なビーム束から成る共通の照射線束の可能な限り小さな直径が得られる。
図31は、図29に示した第1トラックの3つの平面の断面図である。レンズ197は、入射する全ての平行なビームを、被加工面81上の焦点201に集束する。これによって出力及びパワー密度は、焦点で統合されたレーザの本数分だけ増倍され、要するに3平面では3倍になる。ターミネータ26,94から出射する、トラック及び平面のビーム束の軸線が互いに平行に延びる場合、やはり付加的に全てのトラックのビーム束は前記焦点で統合され、かつ被加工面において、1つの加工トラックを発生する共通の加工点が生じることになる。ターミネータ26,94から出射するビーム束の軸線が各トラック毎に、図23又は図24のように互いに角度を成して延びる場合、被加工面では、ターミネータもしくはそのビーム束の各トラック毎に1つの加工点が発生され、該加工点は1つの加工トラックを発生する。要するに、配置されたターミネータのトラック数に等しい数の加工トラックが互いに並列的に配置される。異なった平面のビーム束の出力は各加工点で重畳され、かつ図示の例ではパワー密度は3倍化される。その場合個々のファイバレーザを直接変調することができるが、また外部変調器を使用することもできる。図32及び図33では、異なった平面の全てのビーム束を同時に変調するために、トラックの本数に相応した多チャンネル形音響光学式変調器を使用するための構成手段が説明される。
更にまた図31は、図30に示したビーム束配列の断面図である。1つのレンズに入射する平行なビーム束が1つの共通な焦点を有していることは公知である。Springer Verlagから1976年に刊行されたR.W.Pohl著:”Optik und Atomphysik”(第13版)の第13頁,2.21図には、このような配列が図示されている。更にドイツ連邦共和国特許出願公開第196 03 111号明細書では、その図1から明らかなように、複数のレーザダイオードからの照射線をその都度1本のシングルモードファイバに入力結合し、各ファイバの出口で照射線を、夫々平行なビーム束に視準し、かつ全ての平行なビーム束を共通のレンズによって、共通のスポットに指向して、増強されたパワー密度を得るようにした構成手段が記載されている。しかしながらこの公知の構成手段は、図31に図示したファイバレーザによる構成手段に対比して顕著な欠点を有している。すなわち照射線を効果的なシングルモードファイバに入力結合しようとする場合、シングルモードファイバの開口が過充填されず、かつ全照射線をシングルモードファイバのコアに伝送できるようにするために、シングモードレーザダイオードが必要である。しかしシングルモードレーザダイオードは、著しく制限された出力のものしか製作できない。それというのは極小レーザミラーの耐負荷性の問題は技術的な障害になっているからである。それ故にシングルモードレーザダイオードは、約200mWの出力までしか使用できず、ワット当りにして、数キロワットまでの照射パワーを提供するマルチモードダイオードよりも遥かにコスト高になる。波長800nmのためのシングルモードファイバの場合コア直径と開口数との積が約5μm×0.11=0.55μmであるのに対して、ポンピングファイバの典型的な直径が300μm、開口数が0.4であるようなファイバレーザの場合は300μm×0.4=120μmであり、この場合の係数は220になる。両ファイバのアスペクトレシオを考察すれば(300/5)2=3600の係数が生じる。またファイバレーザにおいて、ポンピング照射線をレーザ照射線へ変換させる約0.6の吸収効率係数分だけレーザ照射線を縮小させると、1本のファイバレーザ出口において得られるレーザ照射線のパワーは、1本のシングルモードファイバの出口におけるパワーよりも、数オーダー分だけ高い。また著しく高い出力のシングルモードダイオード又はその他のレーザ照射源を使用したとしても、この出力を申し分なくシングルモードファイバに入力結合することは不可能である。それというのは調節エラーが極めて微々たるものであっても、ファイバはファイバ入口で燃焼することになるからである。ファイバレーザの場合この問題はない。それというのは、ポンピングのために比較的大きなファイバ直径が使用され、かつエネルギーがレーザファイバの内部で始めてレーザファイバのシングルモードコア内へ伝送されるからであり、この伝送はなんの問題もなく、かつ優れた効率をもって可能である。
図31のレンズ197は、被加工面81における加工スポット24としての焦点201において、相応ファイバレーザの全部で7本のビーム束F1〜F7の総出力を結集する。従って出力及び焦点でのパワー密度は、個々のビーム束よりも係数7の分だけ高くなる。被加工面において所要のパワー密度を発生させるために例えば100Wを要する場合、この場合7個のレーザは、夫々約15Wの照射出力で充分である。勿論また7個以上のレーザを配置することが可能である。レーザは直接変調可能であるのが有利ではあるが、全7本のビーム束を別々に又は全部一緒に1つの外部変調器で変調すること、或いは、各ビーム束に所属する収斂レンズ197の焦点に変調器チャンネルを配置するようにして、このような複数のビーム束を多チャンネル形変調器に供給することも可能である。また各ビーム束の増倍出力を変調器の前方又は後方でファイバへ入力結合することも可能である。更にまた、図4,図4a,図4b,図4cに示したレーザ銃において、このようなビーム束形成手段を使用するのが有利である。
個々のレーザを別々に変調するのが有利である。これは、高い個数のレーザを使用する場合に特に適している。その場合は例えば個々のレーザのデジタル変調によって、アナログ変調に類似した量子化変調、つまり統合されたレーザ照射線の準アナログ変調が可能になるからである。また全てのレーザのビーム束144を一緒に、例えば1つの音響光学式変調器によって変調することも可能である。この場合変調器セルの超音波フィールドは、図30に図示した全ビーム束を変調できるような大きさを有していなければならない。勿論このサイズのために音響光学式変調器の切換え時間は、被加工面を含むドラム(印刷胴)の回転運動に基づいて、刻設すべき微小セルの形状を乱すほど大きくなる。しかし偏向運動によってレーザビームを刻設中に、刻設すべき印刷胴の回転運動の方向に連動し、これによって、被加工面上に位置する加工スポット24を得ることが可能である。偏向運動は本発明によれば、振幅変調を行わせるのと同じ音響光学式変調器によって行われるが、偏向を行わせる別の音響光学式セルを使用することも可能である。
図32に示した本発明の刷版の製造方法に使用する装置の実施例では、ファイバレーザを所属させたターミネータ26,94を複数の平面内に配列することによって、被加工面におけるパワー密度を著しく高めると同時に、1本のトラックに所属する全てのビーム束144の変調を、トラック本数に相当する多チャンネル形の単一の音響光学式変調器34によって実施することが可能になる。本実施例ではターミネータは、上下に重なって位置する3つの平面内に、夫々n本のトラックずつ配置されている。全ての平面の全ビーム束144の出力は各トラック毎に被加工面では、高いパワー密度を得るために1つの加工点に申し分なく集束されねばならない。ターミネータ26,94を緊密に並列したことによって、該ターミネータ26,94は、トラック及び平面において例えば平行に配置されている。このために、図示のように円形横断面のターミネータを使用することができるが、図9及び図9aに示した正方形横断面のターミネータを使用するのも有利である。トラックを平行に配列する場合、円柱レンズ202,203を有する図示の結像系(円柱光学系とも呼ばれる)を、例えば図4の場合のように相応に装置に付加することが可能である。しかし個々のトラックを、図23又は図24のように角度を成して延在させようとする場合には、図10,図10a及び図10bに示したターミネータ94を使用するのが有利である。この実施形態でも個々の平面のビーム束は平行であり、このためにターミネータ94の嵌合部は、図10aの側面図で見て平行に延在することになる。各トラックのビーム束の軸線が互いに角度を成して延びる場合、円柱レンズ202,203を有する円柱光学系を、図4b又は図4cに示した実施形態に適当に付加することが可能である。ターミネータから出射するビーム束144は凸面状の円柱レンズ202に指向されており、該円柱レンズはビームをその焦点で、ビーム径の長さを有するラインの形に結集させている。長焦点距離の円柱レンズ202の焦点域には、該円柱レンズ202よりも短い焦点距離を有する凹面状の円柱レンズ203が、円柱レンズ202の焦点と焦点を合致するように装備されている。これによって円柱レンズ203を出射する照射線は再び平行になる。個々の平面間の間隔は、ターミネータ26,94の出射時にビーム束が有していた間隔に対比して、両円柱レンズの焦点距離比の分だけ縮小している。トラックの方向では、ビーム束間隔は不変のままである。それというのは、この方向では円柱レンズが回折作用を示さないからである。これによって変調器では楕円形のビーム横断面が生じる。この構成手段の目的は、音響光学式変調器のチャンネル内に、円形ビーム横断面の場合に類似した状態を形成するために楕円長軸にほぼ等しくなるように、上下に重なり合って位置する3つの楕円の全高を小さくして、例えば類似の短い切換え時間を得ることである。
図33には、両円柱レンズの間隔を幾分変化させて、変調器において全部で3つの楕円形ビーム束をオーバーラップさせ、これによって音響光学式変調器では、より僅かな切換え時間を生ぜしめるが、変調器クリスタルでは高いパワー密度とすることのできる実施形態が図示されている。この目的を達成するために円柱レンズ203を省くことも可能である。
前記円柱光学系(202,203)は図25では、ターミネータ(26,94)と変調器(34)との間に図示されている。しかし照射方向で見て円柱光学系の前方又は後方に波長関連性又は偏光関連性ミラー37を配置することも可能である。また光路内の円柱光学系(202,203)を、変調器の後方或いはストリップミラー46の前方又は後方に配置することも可能である。光路内の中間結像部は、図4aに符号Eで示した部位で使用されるのが有利である。
図34には、被加工面から切除された材料を除去するための口金82が図示されており、該口金の主たる役目は、除去流を方向付けることによって、対物レンズと被加工面81との間の光路内に、ガス及び/又は切除材料から成るクラウド(雲)をできるだけ形成させないようにすることである。このクラウドは、レーザエネルギーの一部分を吸収して被加工面に沈着し、こうして作業成績に悪い影響を与えることになる。
口金82は、その特別な賦形に基づいて前記の欠点を回避する。該口金は、有利には簡便に着脱可能なコネクション部材204によって、レーザ銃23に固着されているので、該口金は簡単に取り外して掃除することができ、かつ図示を省いた対物レンズ61,103,112の簡便なクリーニング並びに簡便な交換も可能にする。殊に有利には円筒形の基体205内には、対物レンズに適合するための円筒形孔206及びビーム束透過口としての円錐形孔207並びに加工空間211を形成する別の円筒形孔が位置している。被加工面81に対する基体205の間隔は、大き過ぎてはならない。加工スポット24内には、被加工素材上に個々の加工トラックを発生させる加工点(図示せず)が位置している。この基体205内には、有利に円環状の広幅の吸出孔212が形成されており、該吸出孔は、大きな横断面積を有する複数の吸出孔213を介して前記加工空間211に連通されている。3〜6本の吸出孔213を設けておくのが有利である。基体205内には、更に別の、殊に有利には円環状の、給気孔214が設けられており、該給気孔は、複数のノズル孔215を介して前記加工空間211に連通し、かつ比較的小さなバイパス孔216を介して前記円錐形孔207に連通している。3〜6個のノズル孔215及び3〜20個のバイパス孔216が給気孔214の円周に分配されているのが有利である。全ての孔は相互にかつ吸出孔213に対して円周上でずらして配置することができる。また別のバイパス孔を複数穿設して(但し図示せず)、対物レンズに向けて指向させることも可能である。基体205は、気密に装着されたリング217によって囲繞されており、該リングは、吸出孔212の領域に複数の吸出接続管221を有し、該吸出接続管には、吸出フィルタを介して真空ポンプに通じる吸出ホースが接続されている。吸出ホース、吸出フィルタ及び真空ポンプは図34では図示されていない。給気孔214の領域に前記リング217は少なくとも1つの給気接続管222を有し、該給気接続管を介して給気ホースによって、濾過された圧力空気が供給される。弁によって給気量は、加工空間211を充分掃気するのに足る量に調整され、かつ該給気量は、バイパス孔216を介して円錐形孔207に沿って僅かな空気流を発生させ、該空気流は、円錐形孔内への粒子の侵入を防止する。給気ホース、弁及びフィルタは図34では図示されていない。ノズル孔215は、加工時に発生するガス、固体物質及び溶融物質から成るクラウドを光路から淀みなく吹き払い、ひいてはクラウドによるレーザエネルギー吸収量を可能な限り少なくし、加工成績に悪い影響を及ぼすことがないように、加工スポット24に指向されている。給気と一緒に、加工動作にポジティブな作用を及ぼすような、酸化促進ガス又は酸化抑制ガス或いはその他のガスを吹き込むことも可能である。被加工面と基体205との間のギャップを介して、周辺から僅少量の外気が一緒に加工空間を通って吸出孔213へ流れるが、これは図示されていない。口金82の近傍では吸出導管内にフィルタが、容易にアプローチ可能に装備されており、かつ真空ポンプをクリーンに維持するために働く。また該フィルタを吸出孔212内に直接装備することも可能である。図39aに基づいて説明するように、付加的に保護ガスを対物レンズを介して案内するのも有利である。口金82が、被加工面から反射されたレーザビームによって過度に熱くなり、かつ通流空気が冷却には不充分である場合には、該口金に付加的な孔を穿設し、該孔を通して冷却媒体を圧送することも可能であるが、これは図面には図示されていない。また円筒形孔206の内部に、簡単に交換可能な、両面を高調質されたガラス板218を配置し、汚染粒子を対物レンズから遠ざけるように隔離し、該ガラス板自体を、必要に応じて或いは予防的に簡単に交換できるようにすることも可能である。口金の形状は、前記の図示した形状とは相異していてもよい。例えば孔は、前記のように円筒形又は円錐形に形成されるのではなくて、形状を変形することもできる。同じく例えばノズル孔及び吸出孔は任意の形状をとって、非対称的に配置されてもよい。例えば図34で見てノズル孔を、もっと図面の上方部分に配置し、これに対して吸出孔をもっと図面の下方部分に位置させることも可能である。例えばノズル孔及び/又はバイパス孔を省くことも可能である。また特に非加工面の形状及び該非加工面とレーザ照射源との間の相対運動形式が必要とする限り、口金の形状を変更することもできる。被加工素材が例えばドラム(胴)表面ではなくて扁平面上に位置し、かつレーザ照射線が行毎に該扁平面に沿って掃引される場合は、変更された形状の口金を使用することも当然考えられる。図43,図43a及び図43bにおいて詳説した「フラットベッド型−装置」とも呼ばれる当該事例での口金は、行長に相応して長く延びた形状に構成されており、かつその長さに相応して長く引延ばされた加工空間を有することになる。口金には片側又は両側からノズル孔及び吸出孔が装備されている。この場合ガラス板は長方形の形状を維持し、かつ装置の全長にわたって延在している。従って図34はこの場合、長く引延ばされた口金の横断面図と見做すこともできる。また被加工素材が、図44a及び図44bにおいて詳説したように、1つの中空円筒体内に位置している場合は、フラットベッド型−装置について説明した口金をその長手方向で前記中空円筒体の形状に適合させ、全長にわたって被加工面と口金との間に僅かなギャップが生じるようにすることによって、類似の口金が製作される。この場合ガラス板は長方形を維持し、かつ装置の全長にわたって湾曲されることになる。
口金の近傍には、それ自体公知の、図示を省いたスクレーパ装置が位置し、必ずという訳ではないが該口金又はレーザ銃と結合されている。前記スクレーパ装置の役目は例えば、凹版印刷用刷版の加工工程中に、微小セルのエッジに沿って生じる返りを掻き取ることである。更にまたレーザ銃の近傍には、刻設された微小セルをブラッシングして付着ダストを除去するブラシ装置(図示せず)を配置するのが有利である。また本発明ではレーザ銃に、微小セルの位置及び/又は容積をその製作直後に計測する測定装置を設けておくのが有利である。電気機械式刻設によって、又は個別的なレーザビームによって製作された微小セルとは異なって、本発明のレーザ照射源によって製作されかつ急勾配のエッジと一定の深さとを有する微小セルの容積は本発明では、特殊な高速度カメラで微小セルの面を検出し、これに基づいて容積を導出することによって、より精密に測定することができる。その場合測定誤差を減少させるために一連の微小セルを計測するのが有利である。本発明では、この目的を達成するために、モニタ測定及び/又はモニタ印刷のために設けられた、凹版印刷胴の領域内に、特別のモニタ領域が刻設される。製作された微小セルの測定量と、この部位のために設定された微小セルサイズとによって、目標値と実際値との比較を行うことが可能である。その成績は、次いで製作された微小セルの位置及び/又は容積を補正するために使用される。
図35には、被加工面上のビーム状態が図示されている。加工点は、図4,図4a,図4b及び図4cに示したファイバレーザの加工点発生ビーム束を示唆する記号で表されている。例えばファイバレーザFVR1及びFHR1のビーム束は一緒になって加工点ではBFVR1+FHR1を発生する。加工点の直径は符号Bで、また加工点の間隔は符号Aで表わされている。図19及び図19aに基づいて説明した多チャンネル形音響光学式変調器では、ビーム束144の許容直径は、変調器のチャンネル間隔よりも小である。またターミネータ26,94では、ビーム束144の直径は、多額の経費をかけること無しにターミネータの外径と同じ大きさにすることはできない。その結果、加工点の間隔Aは加工点の直径Bよりも大になる。それによって、被加工素材とレーザ銃との相対運動に基づいて生じる加工トラック224では、不都合な間隙が生じることになる。加工トラック224は、加工点の直径Bに等しいトラック幅Dを有し、かつ図35では符号1〜8で表示されている。前記の間隙を減少させるために、図4,図4a,図26及び図26aに基づいて説明したようにストリップミラーによって、2本のビーム束が、間隙を半分にするために互いに組合された(インターレースされた)。残留する間隙を尚一層減少させるため又は完全に避けるために、或いは加工トラック224をオーバーラップさせるためには、被加工素材とレーザ銃との間の相対的な運動方向とは逆向きにレーザ銃を回動して、図35に図示すようにトラック相互を接近させることが可能である。例えば加工点の直径Bに等しい加工トラック224の間隔Cを得るためには、レーザ銃は、関係式cosβ=B/Aに従って角度β分だけ回動されねばならない。レーザ銃の回動によって、被加工面上では画像情報の歪みが生じる。それというのは個々の加工トラックの始点が今や相互にシフトされているからである。しかし前記の歪みは、加工データの処理時にすでに補償される。またこの補償を、個々のデータチャンネル内で変調の直前に信号の調整可能な種々の遅延によって行うこと、或いは歪みを単純に甘受することも可能である。加工トラックの間隔を調整及び減少させるその他の可能手段は、図36,図36a,図36b,図36c及び図37に図示されている。
図36には、4つの別個のチャンネルを有する多チャンネル形音響光学変調器34において個々のチャンネルを異なった周波数f1〜f4で負荷する場合に、被加工面81上に加工点B1…B4を発生させる方式の原理図が示されている。その場合例えば変調器チャンネルT1(図36a)には周波数f1が供給され、しかも該周波数f1が変調器チャンネルT4(図36a)の周波数f4よりも高い周波数に設定されているので、加工トラック1のためには、加工トラック4のためよりも大きな間隔I0が生じる。変調器チャンネルT2及びT3は、加工トラック224の図示の配列を得るために、相応の周波数f2及びf3を有している。しかし周波数f1を周波数f4よりも小さくなるように、周波数を配列することも可能である。また個々の変調器チャンネルT1〜T4に周波数f1〜 f4を任意に配設することも可能である。この場合、図17及び図36aに図示したようなレンズ165は、必ずしも必要ではなく、ターミネータから出射するレーザビームは、被加工面の加工点において1つのシャープな結像を生ぜしめるように集束することできる。
図36aには、被加工面81が位置している回転ドラムの母線M上に、レンズ165によって集束されたビーム束を的中させる例が図示されているが、この場合の図示尺度は正確なものではない。その場合、レンズ165の平面とのビーム軸線の貫通点Pの位置は、図36の原理に相当する。その場合変調器チャンネルT1〜T4を有する多チャンネル形音響光学式変調器34は、ファィバレーザF1〜F4のビーム束144に対して相応に配置されている。周波数f1〜f4を適当に選択することによって、加工点B1〜B4を発生する部分ビームを母線Mの方向で所望の間隔をとって相互に位置させることが達成される。これによって得られる利点は、各加工点の位置、従って各加工トラック224の位置が、所属周波数を調節することによって個別に調整できることである。この構成手段の特別な利点は、図17に示したように多チャンネル形音響光学式変調器をほぼレンズ165の一方の焦点に配置し、かつ被加工面をほぼレンズ165の他方の焦点に配置し、かつファイバレーザF1〜F4のビーム束の軸線をほぼ平行な平面内に配置する場合に得られる。その場合、加工点B1〜B4は母線M(図36a)上に1列に位置し、かつ前記加工点を形成する部分ビームの軸線は平行でありかつ被加工面に直交する(図17)。この構成手段の更なる利点は、各変調器チャンネルのための効率を最適化するためにブラッグ回折角度を個別に調整できる(但し図示せず)点にある。この例では偏向ビームが素材加工のために使用されるのに対して、非偏向ビームI0は、ほぼ図18に図示したように捕捉ユニットによって阻止される。図18に示した構成手段とは異なって、この図36aでは、捕捉ユニットとして働く高反射性ミラー166を、レンズ165と被加工面との間に配置することもできることが図示されている。また図4に基づいて説明したように、非偏向ビームI0内に含まれた、加工のためには所望されないビームの焦点を対称的又は非対称的にずらすことによって、前記ビームが非加工面に方位づけられても加工効果を惹起させないように、該ビームのパワー密度が低下する場合には、捕捉ユニットを省くことも可能である。
図36bの側面図では、図36aを拡張した実施形態が図示されている。変調器チャンネルT1〜Tnを有する多チャンネル形変調器とレンズ165との間にはレンズ202,203が間挿され、該レンズは円柱レンズであるのが有利であり、かつ、図32及び図33に基づいて説明したように1つの円柱光学系を形成している。この円柱光学系は、レンズ165の部位で変調器チャンネルT1とTnとの間の間隔を縮小し、従ってレンズ165の焦点距離が設定されていても、個々の変調器チャンネルT1〜Tnのビームを被加工面に的中させる角度を減少させる。これはチャンネル数が多数の場合に特に重要であり、かつ光学系が複数のレンズから成っていても、レンズ165の経費が削減されると共に、実用化が著しく助成される。
図36cは図36bの平面図であり、該平面図で見れば、円柱光学系が実質的に作用を示していないことが判る。基板161で示した音響光学式変調器内へ入力結合されたビーム束F1〜Fnは、等しいブラッグ回折角度で図示されてはいるが、個別的には異なっていて夫々最適のブラッグ回折角度で入力結合することができる。
図37は、図36,図36a,図36b及び図36cに示した実施形態の更なる利点を示し、つまり各変調器チャンネルに2つの異なった周波数を同時に印加することによって、今までのように1つの加工点B1〜B4ではなくて、ここでは夫々2つの加工点B11,B12;B21,B22;B31,B32;B41,B42が発生される。従って4本の加工トラックではなくて、ここでは8本の、別々に変調可能な加工トラック224が、レーザ数及び/又は変調器チャンネル数を高めること無しに発生している。本発明では、各変調器当り2つ以上の周波数を使用することも可能である。類似の目的のためにただ1本の変調器チャンネルによって12の異なった周波数がすでに実現されている。音響光学式偏向によって加工点を発生する場合の更なる利点は、高い偏向速度で加工点をシフトすることができることである。印加周波数を変化することによって、個々の又は全ての加工トラック224を、これまでの位置に対して著しく迅速にずらすことができ、従って微小セルの位置及び形状に好ましい影響を及ぼす更なる可能性が得られる。この手段によって又、加工トラックの位置を特に著しく精確に目標値に相応に追従させることも可能になる。その場合、1つのトラック幅の数分の一の精度が可能である。本発明では、公知の干渉動作式測定系によって、個々の加工トラックの実際位置を精確に検出することが可能であり、その場合、例えばレーザ照射源の実際位置を加工動作中に検知しかつ加工トラックの目標位置と比較することによって、加工トラックのシフトと追従に要する補正信号が発生される。これが特に重要になるのは、既に存在している加工パターンにシームレスに接続させようとする場合、或いは既に存在しているパターンに後加工を施そうとする場合である。この構成手段の更に顕著な利点は、各変調器チャンネルの効率を最適化するためにブラッグ回折角度を個別に設定できる点にあるが、これは図面には図示されていない。複数の周波数を印加することによって1本のレーザビームから複数の部分ビームを発生させ、かつ全ての部分ビームについて1つの共通なブラッグ回折角度を有しているような音響光学式ユニットは、効率が低すぎるために、素材加工ではこれまで陽の目を見るには至っていない。しかし提案したように、夫々個別に設定されたブラッグ角度を有する複数のレーザビームと、各レーザビーム毎に音響光学式に発生された複数の部分ビームとのコンビネーションを選択すれば、著しく高い効率が得られるので、素材加工のために、同時に作用する多数の加工トラックを実現することが可能である。
図18及び図18aに基づいて説明したように、各レーザビームを2本のビームに分割するために、複屈折材に関連して単チャンネル形又は多チャンネル形電気光学式変調器を使用し、前記2本のビームを、更に別の電気光学式又は音響光学式変調器を介して別々に変調することも可能である。
図36,図36a,図36b,図36c及び図37においては、材料加工を偏向レーザビームによって行い、非偏向レーザビームに含まれた照射線は、加工効果を生ぜしめないために、無害にされねばならないことが強調された。しかしこれは必ずしも必要ではなく、むしろ正反対に作業する場合も考えられる。したがって構成手段の別の利点を挙げて、図36aについて説明することにする。すなわち:レーザビームI0中に含まれた照射線を素材加工のために使用しようとする場合には、高反射性ミラー166は除かれる。従って母線上の1つのスポットには、全部で4個のレーザF1〜F4から成る総照射パワーが生じる。これによって前記スポットには、これまでの加工点B1〜B4に対比して4倍以上のパワー密度が生じ、かつ特定の素材及びプロセスパラメータの場合には、加工点B1〜B4には全く加工効果が生じないことを出発点とすることができる。すなわち被加工面は、加工効果を惹起させることのない照射線のためのサンプとして同時に役立つ。これが有利なのは、何れにしても全レーザエネルギーが被加工面に供給されるので、被加工面に熱平衡が生じるからである。本発明では、変調器チャンネルを所属した4本以下又は4本以上のレーザが使用され、かつ各変調器チャンネル毎に、変調器チャンネル当りの周波数より多くの周波数を使用することによって、加工効果を惹起する照射線と、加工効果を全く惹起しない照射線との間のパワー密度差が拡大されることになる。更に本発明では、音響光学式変調器へ入射するレーザビームが、例えば、図31に図示した構成で音響光学式変調器を焦点201の近傍に配置する場合のように、大きな発散を有する場合に、前記の原理を有利に適用することが可能である。図31では例えば、レーザF2から出射するビーム束の軸線は、特定の周波数のために最適のブラッグ回折角度の位置を表すものでなければならない。この場合ビーム周波数のブラッグの条件は、例えばレーザF1,F3のビーム束のエッジでは、例えばレーザF2の中央ビームの場合よりも満たされるが遥かに不良で、照射線の僅少部分しか偏向されず、これは変調器にとってコントラストが僅かであることを意味する。しかし複数の周波数を同時に音響光学式変調器に印加し、かつ前記周波数を、外位で入射するビーム束にとっても中央位で入射するビーム束にとっても共にブラッグ回折角度が最適になるように選択すれば、最高度に可能なコントラストが生じ、かつ被加工面には、加工効果を惹起する照射線と加工効果を全く惹起しない照射線との間に、最高度のパワー密度差が生じる。
図38では、光路内に光学素子を巧みに配置して、レーザビーム束を光学面に直交させないようにする手段が図示されている。これによって、この光学面から照射線の一部分がレーザへ逆反射する事態が防止される。つまりエネルギーがレーザへ逆戻りすると、レーザ内に励起が起こり、かつレーザは、放出した照射線の振幅で振動し始める。従って出力パワーはもはや一定ではなく、加工された面には、加工結果を使用不能にする図柄が生成される。図38では、2つの平面のビーム軸線が図示されているが、図示の両ビーム軸線に対する対称軸線を使用しない限り、単数又は複数の平面にレーザを配置することも可能である。音響光学式変調器は、機能上の理由から、すでに角度αB分だけ回動されている。しかし超音波フィールドの変換に基づいてエネルギーをレーザ内へ逆反射させないことを確実にするために、前記音響光学式変調器を、図38に図示したように付加的に角度γ分だけ回動することが可能である。レーザの振動を回避するために、レーザ照射線を一方向にだけ伝播させる単数又は複数の光学素子を、光路の適当な部位に挿入することが可能である。例えば、図20に基づいて挙げた Spindler & Hoyer 社刊のカタログの F2 頁に記載されているような、いわゆるファラデーのアイソレータを使用することもできる。本図面ではこのようなアイソレータは図示されていない。
図39に図示したレンズ101のホルダーは、チャネル孔87を有し、該チャネル孔は殊に有利には複数回レンズを巻回包囲しかつ冷却媒体によって貫流されている。高い出力の装置の場合には、レンズの光学媒質の吸収は考慮することができない。更にまた各光学面から(最善に調質されていても)照射線の微量部分が拡散され、かつホルダー部分によって吸収される。それ故にレンズホルダーを冷却することが重要である。すでに述べたように、最高度の負荷を受けるレンズのためには、例えばサファイアのように高い熱伝導性と低い吸収性を有する材料が有利である。更にサファイアは、材料硬度が高いためにレンズ表面がクリーニング時に掻き傷を残さないという利点を有している。また枠に対する光学媒質の接触を良好にする。これは、光学素子の周縁ゾーンの金属コーテイング及びホルダーとのはんだリング223によって得られる。金属鑞の熱伝導性は、はんだガラスよりも良好である。
またレーザ銃23及びポンピング源18のクリティカルな構成部分は、刊行物SPIE Proceedings Vol.3097 , 1997年刊の論文”Lasers in Material Processing”に記載されているような、所謂マイクロチャンネル冷却器を用いて冷却することもできる。
図39aに断面図で図示した対物レンズ61,103,112のための発明のホルダー118は、例えばねじによって鏡筒65,96又は116に固着されかつパッキン125によって封止される。対物レンズは、ホルダー内に接着されるか、或いは有利にはレンズ周縁に金属コーティングを施してホルダー内に鑞接される。前記ホルダーは単数又は複数の孔120を有し、この孔を通して、光学ユニット8の内室から到来する保護ガスが流出し、かつ例えば溝119を介して、対物レンズ61,103,112の、被加工面寄りの側を導かれ、加工時に遊離される素材粒子又はガスによる対物レンズの汚染化を防止する。
図40には、ファイバレーザ又は光導波ファイバ、殊にシングルモードファイバを、複数のトラック及び平面に僅かな間隔で配置するための手段が示されている。ファイバ28もしくはレーザファイバ5は、その最終端部を全面的に研削されて、レーザ照射線13の出射点を、所要の僅かな間隔で位置させるように減少された辺長が生じるように形成されている。この場合ターミネータ26,94は省くことができ、これによって特に単純な構造が得られる。その場合、図9及び図10に基づいてターミネータについて既に説明したように、対向面は1対ずつ互いに平行にか又は互いに角度を成して延びているか、或いは一方の対向面対は平行に、かつ他方の対向面対は互いに角度を成して延びている。
図40aには、研削されたレーザファイバの平面図もしくは横断面図が図示されている。横断面は長方形又は正方形であるのが有利であるが、またその他あらゆる形状を有することができる。
図40bは、個々のレーザ照射線13の軸線をほぼ平行に延びるように図40に類似したファイバが加工されている、ファイバ束の側面図である。
図40cは、個々のレーザ照射線13の軸線をファイバ束の外部で交差させるようにファイバが楔形に加工されている、ファイバ束の側面図である。
図40dは、個々のファイバの軸線が平行に延びてはいるが、個々のファイバの出口面が、ファイバ軸線に対して種々異なった角度で配置されており、従って個々のレーザ照射線13の軸線がファイバ束の内部で交差するようにした、ファイバ束の側面図である。
図41は、図40の研削されたファイバから、或いは図40a,図40b,図40c,図40dに示したレーザファイバから、4トラックを受容する受容部の配置図である。複数の平面における受容部が図41では、2つの別の平面の形で破線で図示されている。しかし該受容部は4トラック及び3平面に限定されるものではなく、この原理に基づいてレーザ出射端子を、任意の数のトラック及び平面で配置することが可能である。ファイバを研削時に相応に賦形することによって、個々のレーザ照射線13の出射点間の間隔を特定することが可能である。例えば前記間隔は、被加工面81では個々の平面のレーザ照射線がオーバーラップしてトラックしか生じないように、或いは個々のトラックがオーバーラップして平面しか生じないように構成することができる。またレーザ照射線13の出射点間の間隔は、被加工面では全トラック及び全平面の照射線を1点でオーバーラップさせるように、選ぶこともできる。この目的を達成するためには、ファイバレーザ又は光導波ファイバを1束に配置することも可能である。
前記のように複数の平面又は複数のトラックに、或いは複数のトラックと複数の平面にレーザ出力端子を配列させるか、或いは又、1点でオーバーラップするように配列させる本発明の配列原理は、被加工面81に的中するレーザ照射線についても当て嵌まる。この配列原理に基づいて、被加工面においても同じくレーザ照射線の複数のトラック又は複数の平面或いは複数のトラックと複数の平面を配列すること、或いはレーザ照射線を1点でオーバーラップさせるように配列することが可能である。
図40,図40a,図40b,図40c,図40d及び図41に示したレーザ出射端の配列は、直接変調可能なレーザに特に適している。しかし外部変調器を使用することもできる。出射するビーム束は、公知の配列方式で被加工面に結像することもでき、或いはまた、ビーム束を直接に、つまり伝送ユニット無しに被加工面に照準するように受容部を構成することもでき、その場合例えば図41に示したレーザ照射源の出射端は被加工面に極めて近く近接されるか、或いは素材表面に滑動可能に載置され、これによって格別単純な配置構成が得られる。このような構成手段は例えば、エネルギー入射によって素材表面における転移を励起しようとする場合、或いは材料転移(Materialtransfer)を行おうとする場合に適用することができる。材料転移の例では、イラストすべき材料(これは例えば印刷胴、オフセットプレート、中間担体又は被印刷物自体であってもよい)に薄いフォイルが置かれ、イラストすべき材料に面した方の該フォイル裏面には薄膜が被着されており、該薄膜は、エネルギー照射によって溶融され、かつ、イラストすべき材料に転移される。
図42には、例えば半導体材料の多チャンネル式切断又はスクラッチングのために使用され、かつ本出願と同時に同一出願人によって「レーザビームによって材料に多チャンネル式に切断及びスクラッチングを施す装置」という発明の名称で並行出願されたドイツ連邦共和国特許出願P第198 40 936.2号明細書に記載されているような、レーザ照射源の別の実施形態が図示されている。ファイバもしくはファイバレーザFa〜Fnのターミネータ26,94はビーム束144を有し、該ビーム束はレンズ133によって、前記ターミネータから規定の間隔をおいて集束されている。加工点Ba〜Bnの直径は例えば20μmであるが、それ以下又はそれ以上であってもよい。更に前記ターミネータは、図42a,図42bにおいて詳説した成形レール256に沿って、ターミネータが相互に衝突するまでターミネータの相互間隔Aを任意の値に調整できるように配置されている。該成形レールは、ロボット(図42c)のアームに固着されかつ図42cに図示した調整駆動装置によって例えばテーブル225に対して座標軸x,y,zの方向に可動であるのが有利である。また前記成形レールは前記テーブルに対して角度φだけ軸線z′(図42c)を中心として回動することができ、この回動は、加工トラックの相互間隔を決定するために使用することもできる。図4,図4b,図4c,図43,図44に示した本発明の方法を実施する装置の実施例では、レーザ銃23は、加工トラック間の間隔を変化するために、円筒管51,95,113の軸線を中心として回動される。更にテーブル225は座標軸x,y,zの方向に可動であり、かつ座標軸zを中心として角度φだけ回動可能である。テーブル225上には、被加工素材、例えば引上げられた半導体インゴットからスライスされた単数又は複数の、いわゆる「ウェハ」が、図示を省いた締付け装置又はサッカーによって固定される。個々の加工点Ba〜Bnにおけるレーザエネルギーによって、半導体材料内には、例えば光起電力型セルを接点接続するために必要とされるような例えば微細平行レーンがスクラッチングされる。また半導体材料内には微細孔を穿設したり、或いは例えば電気接続回路を互いに分離するためにレーザによって切断することも可能である。被加工面81の近傍に、各加工トラック224毎に別々に、或いは複数の加工トラック223を1単位として、被加工面から削出された材料を除去する本発明の方法を実施する装置249(図42c)が装備されており、該材料除去装置の作用態様は図34で詳説した通りである。成形レール256がターミネータと共に、加工トラック間の間隔を変化するためにテーブル225に対して相対的に回動される場合、本発明では、相対回動によって生じる記録すべき図柄の像歪みを、発生すべき図柄にバイアス歪みをかけることによって、かつ/又はデータ流の時間的制御によって補償するのが有利である。また回動によって、x軸方向及びy軸方向の相対運動時に、所期の異なったライン間隔を表示することも可能である。例えば光起電力型セルを接点接続するためには、2種のラインパターンが必要である。スクラッチラインが、金属コーティングの後に半導体材料に接合されるような第1のパターンは、数ミリメートルの個々のライン間隔を有しかつ例えばx軸方向に延びなければならない。更にいわゆる導体レールが必要であり、該導体レールは接点ラインに対して直角に延びて、該接点ラインを互いに接続する。導体レールを形成する前記ラインは例えばy軸方向に延びて並列に近接して位置し、これによって金属コーテイングの後には、閉じたベルトのように作用する。本発明ではこのようなパターンは、成形レールをターミネータと共に、所望のパターンが生じるまで回動することによって極めて簡単に製作される。複数のファイバレーザ出力端子を並列に配置することによって、加工に要する時間が著しく削減され、例えば光起電力型素子のスクラッチング加工のためには10個のレーザ出力端子を平行に使用することが可能であるので、生産高は係数10だけ増大することになる。
前記の切断及びスクラッチング加工する前記装置は、単に半導体材料の加工に適しているばかりでなく、例えば刷版の製版の場合のように図柄の精密な生産が肝要であるような全ての材料に適用することができる。
図42a及びその断面図である図42bには、個々のファイバレーザFa〜Fnのターミネータ26の固定方式が図示されている。成形レール256は、複数の取付部材261によって支持桁260に固着されており、該支持桁は例えばロボットのアームであってもよい。ターミネータ26は受け座257内に収容されてねじ259によって位置決めされている。受け座257は、成形レール256に嵌合する成形部を有し、成形レール256上に配列され、相互に規定の間隔Aを隔てて設定され、かつねじ259によって位置決めされている。本発明ではターミネータ26及び受け座257が小形に構成されていることによって、著しく僅かな間隔Aが可能になる。材料加工のために成形レールはターミネータと共にロボットによって、図42に図示しかつ詳説したように、被加工面全体にわたって案内される。加工トラックを発生するのに必要な運動は、図42で説明したテーブル225によって行うことができ、またロボットのアームによって行うこともできる。ロボットのアームは、ターミネータの軸線に対してほぼ平行な装置の回転軸線z′を中心とする回転運動も行えるのが有利である。この回転運動並びにロボットのアームとテーブル225との間の相対的なシフト運動によって、被加工面81上に発生する加工トラックの間隔を変化させ、かつ設定された尺度Aよりも小さく調整することが可能である。
図42cには例えば郵便番号 1949 , 79509 Loerrach 在の Montech-DeutschlandGmdH 製のコンポーネントから構成できるようなロボットの1例が図示されている。支台システム”Qickset”上には水平方向リニアユニット263が装着されており、該水平方向リニアユニット自体は、回転駆動装置265を備えた鉛直方向リニアユニット264を取付けている。前記回転駆動装置265には、本来のロボット腕を形成する支持桁260が装着し、該支持桁には成形レール256が取付部材261によって固着されている。勿論、別構成の水平方向リニアユニットも使用可能であるが、図示されてはいない。
同等のエレメントによってテーブル225の種々の運動方向が実現されるが、その場合、該運動方向は部分的にはテーブル225の運動方向であり、また部分的には成形レール256の運動方向であることができる。図面では、個々のコンポーネントを収容するケーシング、冷却系、レーザ用の制御装置、ファイバレーザ用のポンピング源、被加工面から削出された材料を除去する装置及び駆動装置用の機械制御装置は図示されていない。但しファイバレーザのターミネータ26,94だけは視認することができる。
図43には、本発明の方法を実施する装置のレーザ照射源を装備したフラットベッド型−装置の別の実施形態が図示されている。被加工面81を有する加工すべき素材は、テーブル247上に位置し、該テーブルはガイド251上に支承されており、かつスピンドル252によって精確に送り方向uに運動することができる。前記スピンドル252は、電子制御装置255によって駆動制御されるモータ254から伝動装置253を介して回転させられる。レーザ銃23から出射するレーザ照射線は、本図面では図示を省いた中間像平面228(図44に例示)において加工点B1〜Bnを発生する。レーザ照射線は、偏向ミラー241と、光学ユニットに所属する光学素子242とを介して回転ミラー243へ導かれる。該回転ミラーは例えば単一鏡面を有することができるが、複数の鏡面を有する回転ミラーとしても構成することができ、かつ、電子制御装置255から駆動制御されるモータ244によって回転運動させられる。該回転ミラー243はレーザ照射線を、被加工面全体にわたって矢印vの方向に行毎に偏向する。回転ミラーと被加工面との間には、光学装置に所属する光学素子245が位置し、該光学素子の役割は、被加工面上に、全行長にわたってシャープな加工スポットを発生させることであり、該加工スポットは、図43bに示した複数の加工点B1′〜Bn′から成ることができる。該加工点は被加工面81上に、回転ミラー243の回転に基づいて、図35,図36及び図37に例示したような加工トラック224を発生させる。被加工面81と光学素子245との間には、コンパクトな構造を得るために1つの長い偏向ミラー246を設けておくのが有利である。レーザ銃23は、被加工面81上の加工トラックが、図35に図示したように所望の相互間隔を有するように、プリズム体248内で回動されるのが有利である。レーザ銃の位置決めは、図示を省いた緊張ベルトを用いて行うことができる。被加工面81の近傍には全行長にわたって、被加工面から削出された材料粒子を除去するための材料除去装置249が装備されており、該材料除去装置は、図43bに基づいて説明するように全長にわたってガラス板230を備えることができる。図43では、図4bに示した凸レンズ102,103を備えかつ図20に示した光路を発生するレーザ銃を設けることができるが、本発明ではその他あらゆる形式のレーザ銃を使用することも可能である。また、前記のようなフラット型−装置には、加工工程を促進するために複数のレーザ照射源を装備することが可能である。本発明では、被加工面上に別の加工トラックを生ぜしめるように、所属の光学系と、被加工面から削出された材料を除去するための材料除去装置249とを備えた第2のレーザ照射源を、図示のユニットに対向して装備することも可能である。
回転ミラーに代えて振動ミラーを使用することもでき、また回転ミラーに代えて2つの振動ミラーを使用することも可能であり、その場合、(ミラーuと呼ばれる)一方のミラーの振動方向は、被加工面81上では矢印uで示した方向に位置し、かつ(ミラーvと呼ばれる)他方のミラーの振動方向は、被加工面81上では矢印vで示した方向に位置している。
振動ミラーを備えた実施形態は、図42に基づいて詳説したように光起電力型セルを迅速にスクラッチング加工するのに格別適している。スクラッチングすべきセルは例えば、図43では図示を省いたローディング装置によってテーブル247上に搬入されて正しい位置にもたらさされる。レーザ銃23は、矢印uとvで示した両加工方向で加工トラックに所望の間隔が生じるように回動されている。第1の加工工程において例えばミラーuが接点ラインをプロットするのに対して、ミラーvは接点ライン束の正しい位置決めを行う。第2の加工工程においてミラーvが導体レールをプロットするのに対して、ミラーuはライン束の正しい位置決めを行う。この加工工程時には光起電力型セルは動かされない。本発明ではテーブル247に代えて、図示を省いたマガジンを使用することも可能であり、該マガジンには、特定数の光起電力型セルが加工のために供給され、各セルの加工が該マガジン内で直接行われ、かつ加工済みのセルは加工後に自動的に該マガジンから取出され、かつ第2のマガジンに転装され、未加工の次のセルが加工のために、取出されたセルの部位にシフトする。
回折制限式に動作するファイバレーザによって生じる、レーザ照射源の照射品質が著しく高いことに基づいて、図43で光学素子242と回転ミラー243との間に示すような、また図4でもレンズ57と対物レンズ61との間に示すような、ほぼ平行なレーザビーム束が発生される。従って図43では光学素子245、回転ミラー243及び偏向ミラー246を取り除き、かつ、光学素子242から出射する、ほぼ平行なレーザビーム束を被加工面81の方向に偏向させる偏向ミラー(図示せず)に取り替えて、対物レンズ61,103又は112にほぼ類似して形成された短焦点距離対物レンズに照準することも可能である。
偏向ミラーと対物レンズは1つのユニットとして互いに結合されており、かつ図示を省いたガイドレールに沿って矢印vの方向に往復摺動するので、被加工面(81)上には、複数の平行な加工トラックが、回転ミラー243及び光学素子245によるのとほぼ同様に、レーザ照射源のチャンネル数に相応してプロットされる。
ガイドレールは、摩擦の著しく低い支承体として、例えば空気軸受又は磁気軸受として構成されている。対物レンズと偏向ミラーとから成るユニットの、矢印vの方向及びその逆方向への駆動は、その都度相当方向への揺動によって行われ、例えば無接触式の電磁システムによって構成されるのが有利であり、その場合、可動ユニットの制動から得られたエネルギーが駆動のために再利用される。ガイドレールの一部分、偏向ミラー及び対物レンズは例えば閉鎖空間内に収容されており、該閉鎖空間は、レーザ照射線の入射及び出射するための窓を有し、かつ、摩擦損失を低下させるために排気することができる。駆動装置及びガイドレールは、対物レンズと偏向ミラーとから成るユニットのためのリニア駆動装置を形成している。
例えば補正目的のために光学的な基準トラックを介して可動ユニットのその都度の実際位置を検知することが可能である。材料除去装置249は、被加工面(81)から削出された材料粒子を除去するためのものである。このような実施形態の利点は、大きな行程長及び高い解像度を得る場合に極めて格安に実現することができ、かつ一方及び/又は他方の駆動装置をシフトすることによって異なったフォーマットに調整できることである。また加工速度を高めるために、このような実施形態を並列に複数配置することも可能である。
図43aには、レーザ銃から両凸レンズ102及び103を取り除くことによって達成される、図43に示した実施形態の単純化が図示されている。レーザ銃が偏向ミラー241から相応の距離を有している場合、凹レンズ101から出射する発散レーザビーム束144は、偏向ミラー241と光学素子245によって被加工面81に集束され、かつ、この場合は加工点B1′〜Bn′に合致した加工点B1〜Bnを発生する。
図43bには、被加工面から削出された材料を除去するための材料除去装置249が詳示されてている。そり作用態様は図34で詳説したとおりである。
図44には、本発明の刷版を製造するためのホローベッド型−装置が図示されている。ベッド型−装置は公知であり、例えばホローベッドを備えた2つの装置が、コンスタンツ市在のW.Huelsbusch 出版社刊の刊行物:Werner Huelsbuch 著 ”Der Laser in der Druckindustrie”の第461頁及び第562頁に記載されている。被加工面81を有する加工すべき材料は1つの円筒体内、又は半径Rを有する円筒体236の一部分内に位置している。この装置は、ホローベッド型と呼ばれ、該ホローベッドの軸線上には、回転ミラー233を備えた軸受229が配置されている。前記回転ミラーは例えば1つの鏡面を有しているが、また複数の鏡面を有するように構成することもでき、モータ234によって回転させられ、かつ、円筒軸線の方向に円筒体236に対して相対的にシフト可能なキャリッジ(図示せず)上に配置されている。更にまた、図示を省いたキャリッジ上には、被加工面81の近傍に、光学装置に所属するレンズ231とミラー232が配置されている。前記のレンズ231とミラー232は、反射光学素子を形成している。また前記キャリッジ上には偏向ミラー227とレーザ銃23が位置すると共に、被加工面81の近傍では、図34に基づいて詳説した被加工面から削出された材料を除去するための材料除去装置235が位置している。レーザ銃から出射するビーム束226は、中間像平面228内に加工点B1〜Bnを発生し、該加工点は、偏向ミラー227、反射光学素子231,232及び回転ミラー233を介して被加工面81へ伝播される。ビーム束226は該被加工面で加工点B1′〜Bn′を発生する。加工スポットを形成する加工点B1′〜Bn′は全行長を超えて加工トラック224を発生し(図35,図36及び図37)、該加工トラックは、ホローベッドの一定の半径に基づいて、全行長にわたってプロットされる。図示の装置の利点は、コンパクトな構造が得られる点にある。特に図示の装置は、回転ミラー233に入射するビーム束の軸線と、回転ミラーから被加工面へ反射されるビーム束の軸線との間の角度δを小さくすることを可能にする。この小さな角度δは、幾何学的な作図形状の点で描出エラーを僅かにする上で望ましいことである。レーザ銃は、ここでは図示を省いたプリズム体内に支承され、かつ、同じく図示を省いた緊張ベルトによって固定されるのが有利である。レーザ銃はその軸線を中心として回動され、かつ軸方向にシフトすることができる。回動によって加工トラック間の間隔が、図35に図示したように変化される。軸方向シフトによって、被加工面に対する距離を変化することができる。被加工面81の近傍には、被加工面から削出された材料を除去するための本発明の材料除去装置235が装備されており、該材料除去装置は、図43bの図示に類似の形状に構成することができるが、この場合は、円筒体236の半径Rに相応して湾曲構成されており、かつ全長にわたって、図示を省いた湾曲したガラス板237を備えることができ、かつ、該材料除去装置235の作用態様は、図34に基づいて詳説した通りである。図44のレーザ銃は、図4cに示した凸レンズ102,103及び図20に図示した光路を有するレーザ銃が設けられている。しかし又、あらゆる別の形式の本発明のレーザ銃を使用することが可能である。更に又、このようなホローベッド型−装置には、加工工程を促進するために複数のレーザ照射源を装備することができる。例えば図示の装置に対して、当該被加工面に別の加工トラックを生ぜしめるように、第2の回転ミラー及び第2のレーザ照射源並びに、被加工面から削出された材料を除去するための第2の材料除去装置235を装備することができる。
図44aでは、レーザ銃から両凸レンズ102,103を除去することによって、図44に示した装置を単純化する態様が図示されている。レーザ銃が偏向ミラー227から相応に隔たっている場合、レンズ101から出射して発散するレーザビーム束は、レンズ231によって被加工面81に集束されて加工点B1〜Bnを発生し、この場合の加工点は、前記の加工点B1′〜Bn′に等しい。
レーザ照射源の原理図である。 従来技術によるファイバレーザの原理図である。 従来技術によるファイバレーザのファイバの短縮図である。 本発明による刷版製造に使用するユニットの横断面図である。 ファイバレーザを多重配列した本発明による刷版の製造に使用できるレーザ銃の縦断面図である。 図4の斜視図である。 図4に示したレーザ銃の1変化態様の図4相当の縦断面図である。 図4及び図4bに示したレーザ銃の更に異なった実施態様の図4相当の縦断面図である。 ファイバレーザのファイバからの照射線の出力結合用のターミネータ(ターミネータ)の1例の概略断面図である。 複数のターミネータのための多重配列例の概略断面図である。 調節ねじを有するターミネータの1例の拡大縦断面図である。 図5bに示したターミネータの調節ねじ域の横断面図である。 球状調節子を有するターミネータの1例の拡大縦断面図である。 図6に示したターミネータの球状調節子域の横断面図である。 ソケット内に嵌装するために円錐嵌合部を有するターミネータの1実施例の縦断面図である。 複数のターミネータ用の多重ソケットの1実施例の断面斜視図である。 図8に示したターミネータの背面固定部を示す図である。 正方形横断面を有するターミネータの1実施形態の縦断面図である。 図9に示したターミネータの横断面図である。 横断面図で見て長方形かつ平面図で見て台形を有するターミネータの平面図である。 図10に示したターミネータの縦断面図である。 図10に示したターミネータの横断面図である。 台形横断面を有するターミネータの1実施例を示す図である。 三角形横断面を有するターミネータの1実施例を示す図である。 ハニカム形横断面を有するターミネータの1実施例を示す図である。 図1に示したファイバレーザのファイバのモジュール構造を示す図である。 図13に示したファイバレーザのファイバ内へポンピングエネルギーを入力結合する1例の縦断面図である。 2つの出力端子を有するファイバレーザの1例を示す図である。 2つのファイバレーザを集合させる1例を示す図である。 音響光学式の偏向子もしくは変調器を通る光路の概略図である。 音響光学式の偏向子もしくは変調器の所望されない部分ビームのシールド・アウトを示す概略図である。 電気・光学式の変調器を有するユニットの概略図である。 音響光学式4チャンネル変調器の平面図である。 図19に示した音響光学式4チャンネル変調器の断面図である。 図4に示したレーザ銃の光路の原理的な平面図である。 図4bに示したレーザ銃の光路の原理的な平面図である。 図4cに示したレーザ銃の光路の原理的な平面図である。 相互に角度をとって配置されたターミネータの光路の原理図である。 多チャンネル形の音響光学式変調器を含む図23のターミネータの変化態様の光路の原理図である。 図24の変化態様を示す図である。 ファイバレーザもしくはそのターミネータを例えば変調器に適合させるための中間結像を示す図である。 ターミネータから出射するビーム束の4線のトラックをストリップミラーユニットによって2回集合させる概略図である。 図26の平面図である。 ストリップミラーの側面図である。 図27に示したストリップミラーの断面図である。 ストリップミラーの別の実施例を示す図である。 ターミネータから出射するビーム束の4つのトラックを、波長に関連したミラーユニットによって2回集合させる概略図である。 図28の平面図である。 複数のトラック及び複数の平面に配置された複数のターミネータを示す図である。 1つの束に配置された複数のターミネータを示す図である。 図29又は図30に示したファイバレーザF1〜F3のターミネータから出射するビーム束の概略断面図である。 複数のトラック及び複数の平面に配置された複数のターミネータと例えば変調器に適合させるためのシリンダレンズ素子の配置構成図である。 図32の変化態様図である。 圧縮空気用の接続部と、ビームによって剥離された材料を吸出するための接続部とを有するレーザ銃のための口金の断面図である。 トラック間隔を調整するためのレーザ銃の回動を示す図である。 音響光学式の多重偏向子もしくは多重変調器を用いて4つのトラックを発生させる図である。 音響光学式の多重偏向子もしくは多重変調器の斜視図である。 図36aの拡張された実施形態を示す図である。 図36bの平面図である。 音響光学式の多重偏向子もしくは多重変調器を用いて多重トラックを発生させる図である。 レーザへの逆反射を避けるための有利な構成図である。 冷却媒体によって環流される1レンズの断面斜視図である。 対物レンズ用のレンズホルダーの断面図である。 ファイバレーザ又は、その出口端部の横断面積を著しく減少されたファイバの側面図である。 図40に示したファイバレーザ又はレーザの端部の端面図である。 出射するビーム束の軸線がほぼ平行に延びるファイバ端部の側面図である。 出射するビーム束の軸線がファイバ束の外部で交差するファイバ端部の側面図である。 出射するビーム束の軸線がファイバ束の内部で交差するファイバ端部の側面図である。 複数のトラックと平面とに配置された図40のファイバレーザ又はファイバの配置図である。 本発明の刷版製造に使用可能な装置の実施形態を示す概略斜視図である。 図42に示した装置の実施形態を示す概略図である。 図42aに示した装置の断面図である。 ロボットの斜視図である。 本発明の刷版製造に使用可能なレーザ照射源と共に示した扁平ベッドの配置構成図である。 図43の補充図である。 加工時に剥離された材料を除去するための装置の断面図である。 本発明の刷版製造に使用できる凹面ベッドの配置構成図である。 図44の補充図である。
符号の説明
1 レーザ照射源、 2 ファイバレーザユニット、 3 入力結合光学素子、 4 ポンピングスポット、 5 レーザファイバ、 6 入力結合側、 7 入力結合ミラー、 8 光学ユニット、 9 入射口、 10 出射口、 11 出力結合側、 12 出力結合ミラー、 13 レーザ照射線、 14 ポンピング横断面、 15 レーザファイバのコア、 16 ポンピングコア、 17 クラッド、 18 ポンピング源、 21 ケーシング、 22 ドラム、 23 レーザ銃、 24 加工スポット、 25 空気通流コイル、 26 ターミネータ、 27 冷却体、 28 受動的ファイバ、 29 受け座、 31 冷却系、 32 モジュール式供給部、 33 制御装置、 34 多チャンネル形音響光学式変調器、 35 ケーシング、 36 パッキン、 37 偏光関連性又は波長関連性ミラー、 41 変調器ケーシング、 42 取付部材、 43 パッキン、 44 内室、 45 圧電変換器、 46 ストリップミラー、 47 孔、 48 開口、 51 円筒管、 52 パッキン、 53,54 鏡筒、 55,56、57 レンズ、 61 対物レンズ、 62 パッキン、 63 円筒管の内室、 64,65 鏡筒の内室、 66,67 円筒管の内室、 72 貫通孔、 73 捕捉ユニット、 74 高反射性ミラー、 75 凹レンズとしての発散レンズ、 76 パッキン、 77 弁、 78 捕捉ユニット、 81 被加工面、 82 口金、 83 角柱体、 85 緊張ベルト、 86 傾斜プレート、 87 チャネル孔、 91 絶縁性のフランジ、 92 冷却フィン、 93 ケーシング、 94 ターミネータ、 95 円筒管、 96 鏡筒、 97 高反射性ミラー、 101 凹レンズ、 102 凸レンズ、 103 対物レンズとしての凸レンズ、 104 孔、 105 内室、 106 孔、 107 内室、 111 内室、 112 対物レンズ、 113 偏心円筒管、 114 プレート、 115 凹面ミラー、 116 鏡筒、 117 高調質プレート、 118 ホルダー、 119 溝、 120 孔、 121 凸面ミラー、 122 透過孔、 123 中空室、 124,125 パッキン、 130 円筒状貫通孔、 131 保護シース、 132 ターミネータのケーシング、 133 収斂レンズ、 134 外側嵌合部、 135,136 調節ねじ、 137 球体、 弾性コンパウンド、 139 円錐拡張部、 141 金属コーティング膜、 142 接着継手又は鑞接継手、 143 内室、 144 ビーム束、 145 ケーシング、 146 パッキン、 147 添え板、 148,149 ピン、 150 孔、 151 ねじ、 152 ケーシング、 153 凹設部、 154 レンズ、 155,156 繊維溶融結合器、 161 基板、 162 高周波源、 163 レーザビーム、 164 超音波フィールド、 165 レンズ、 166 高反射性ミラー、 167 ポンプ、 168 電気光学式変調器、 169 偏光関連性ミラー、 171 プリント配線基板、 172 変調器ケーシング、 173 鑞接部位、 174 入口ポート、 175 鑞接部位又は接着部位、 176 冷却系への接続部、 177 カバー、 181 電気接続端子、 182 対象平面、 183 中間像平面、 184 クロスオーバー点、 185 共通のクロスオーバー点、 186 対物レンズ、 187 クロスオーバー点、 191,192 レンズ、 193 クロスオーバー点、 194 基板、 195 高反射性ストリップ、 196 間隙、 197 レンズ、 201 焦点、 202,203 円柱レンズ、 204 継手、 205 円筒形の基体、 206 円筒形孔、 207 円錐形孔、 211 加工空間、 212 吸出孔、 213 吸出孔、 214 給気孔、 215 ノズル孔、 216 バイパス孔、 217 リング、 218 ガラス板、 221 吸出接続管、 222 給気接続管、 223 鑞接継手、 224 加工トラック、 225 テーブル、226 ビーム束、227 偏向ミラー、 228 中間像平面、 229 軸受、 230 ガラス板、 231 レンズ、 232 ミラー、 233 回転ミラー、 234 モータ、 235 材料除去装置、 236 円筒体又は凹面ベッド、 241 偏向ミラー、 242 光学素子、 243 回転ミラー、 244 モータ、 245 光学素子、 246 偏向ミラー、 247 テーブル、 248 プリズム体、 249 材料除去装置、 251 ガイド、 252 スピンドル、 253 伝動装置、 254 モータ、 255 電子制御装置、 256 成形レール、 257 受け座、 259 ねじ、 260 本来のロボット腕を形成する支持桁、 261 取付部材、 262 支台システム、 263 水平方向リニアユニット、 264 鉛直方向リニアユニット、 265 回転駆動装置

Claims (8)

  1. 少なくとも1つのレーザビームを刷版の被加工面に指向させ、被加工面に凹みを形成する、凸版またはフレキソ印刷用の微細構造を有する刷版の製造方法において、
    少なくとも1つのレーザダイオードを使用し、
    当該の少なくとも1つのレーザダイオードのレーザビームを少なくとも1つのレーザファイバに導き、
    前記の少なくとも1つのレーザファイバから出射される少なくとも1つのレーザビームを、少なくとも1つの変調器を含む少なくとも1つの光学系を介して被加工面上に導き、
    刷版の被加工面でのレーザビームパワーを、被加工点の大きさが20μm以下の場合に連続波動作で少なくとも100Wに設定することを特徴とする、
    刷版の製造方法。
  2. 金属から成る刷版を使用することを特徴とする、
    請求項1に記載の方法。
  3. 複数のレーザダイオードのレーザビームを少なくとも1つのレーザファイバに導き、
    前記の少なくとも1つのレーザファイバから出射される少なくとも1つのレーザビームを、少なくとも1つの変調器を含む少なくとも1つの光学系を介して被加工面上に導き、
    少なくとも1つの変調されたレーザビームを、少なくとも1つのレンズを用いて刷版にて集束して少なくとも1つの被加工点が形成されるようにしたことを特徴とする、
    請求項1または2に記載の方法。
  4. 少なくとも1つのレーザダイオードと少なくとも1つのレーザファイバとを含む少なくとも1つのファイバレーザを直接変調する、
    請求項1から3までのいずれか1項記載の方法。
  5. 少なくとも1つのレーザファイバから出射され被加工面に導かれる少なくとも1つのレーザビームを電気光学式変調または音響光学式変調する、
    請求項1から4までのいずれか1項に記載の方法。
  6. 複数のレーザファイバから出射されるレーザビームの束でありかつ統合されて被加工面に導かれるビームを電気光学式変調または音響光学式変調する、
    請求項1から5までのいずれか1項に記載の方法。
  7. レーザダイオードとしてマルチモードレーザダイオードを使用する、
    請求項1から6までのいずれか1項に記載の方法。
  8. 複数のレーザダイオードに対して少なくとも1つのシングルモードレーザダイオードを使用する、
    請求項1から7までのいずれか1項に記載の方法。
JP2007112127A 1998-09-08 2007-04-20 凸版またはフレキソ版用の微細構造を有する刷版の製造方法 Pending JP2007275993A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19840926A DE19840926B4 (de) 1998-09-08 1998-09-08 Anordnung zur Materialbearbeitung mittels Laserstrahlen und deren Verwendung

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000568629A Division JP4092080B2 (ja) 1998-09-08 1999-09-01 凸版またはフレキソ版用の微細構造を有する刷版の製造方法

Publications (1)

Publication Number Publication Date
JP2007275993A true JP2007275993A (ja) 2007-10-25

Family

ID=7880183

Family Applications (6)

Application Number Title Priority Date Filing Date
JP2000568629A Expired - Fee Related JP4092080B2 (ja) 1998-09-08 1999-09-01 凸版またはフレキソ版用の微細構造を有する刷版の製造方法
JP2004224831A Expired - Fee Related JP4146401B2 (ja) 1998-09-08 2004-07-30 凹版、凸版又はフレキソ版の刷版に微細構造を有する凹みを彫刻する装置
JP2004224830A Pending JP2004349721A (ja) 1998-09-08 2004-07-30 レーザ照射源、レーザ照射源による材料加工装置および該材料加工装置の運転法
JP2005288455A Pending JP2006103324A (ja) 1998-09-08 2005-09-30 凹版用刷版を製造する方法
JP2006274199A Pending JP2007125616A (ja) 1998-09-08 2006-10-05 レーザビームを用いて凹版、凸版又はフレキソ版に対する刷版に凹みを作製する方法および装置
JP2007112127A Pending JP2007275993A (ja) 1998-09-08 2007-04-20 凸版またはフレキソ版用の微細構造を有する刷版の製造方法

Family Applications Before (5)

Application Number Title Priority Date Filing Date
JP2000568629A Expired - Fee Related JP4092080B2 (ja) 1998-09-08 1999-09-01 凸版またはフレキソ版用の微細構造を有する刷版の製造方法
JP2004224831A Expired - Fee Related JP4146401B2 (ja) 1998-09-08 2004-07-30 凹版、凸版又はフレキソ版の刷版に微細構造を有する凹みを彫刻する装置
JP2004224830A Pending JP2004349721A (ja) 1998-09-08 2004-07-30 レーザ照射源、レーザ照射源による材料加工装置および該材料加工装置の運転法
JP2005288455A Pending JP2006103324A (ja) 1998-09-08 2005-09-30 凹版用刷版を製造する方法
JP2006274199A Pending JP2007125616A (ja) 1998-09-08 2006-10-05 レーザビームを用いて凹版、凸版又はフレキソ版に対する刷版に凹みを作製する方法および装置

Country Status (5)

Country Link
US (5) US6888853B1 (ja)
EP (8) EP1579944A3 (ja)
JP (6) JP4092080B2 (ja)
DE (1) DE19840926B4 (ja)
WO (1) WO2000013839A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009151166A (ja) * 2007-12-21 2009-07-09 Necディスプレイソリューションズ株式会社 光学装置及び投射型表示装置

Families Citing this family (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090281531A1 (en) * 1995-08-31 2009-11-12 Rizoiu Ioana M Interventional and therapeutic electromagnetic energy systems
DE19840926B4 (de) * 1998-09-08 2013-07-11 Hell Gravure Systems Gmbh & Co. Kg Anordnung zur Materialbearbeitung mittels Laserstrahlen und deren Verwendung
DE19840927B4 (de) * 1998-09-08 2009-07-02 Hell Gravure Systems Gmbh & Co. Kg Laserstrahlungsquelle hoher Leistungsdichte und hoher Energie zur Materialbearbeitung
DE19840936B4 (de) * 1998-09-08 2005-03-10 Hell Gravure Systems Gmbh Anordnung zum mehrkanaligen Schneiden und Ritzen von Materialien mittels Laserstrahlen
US20090168111A9 (en) * 1999-09-01 2009-07-02 Hell Gravure Systems Gmbh Printing form processing with fine and coarse engraving tool processing tracks
DE10014900A1 (de) * 2000-03-24 2001-09-27 Mahle Gmbh Kolben für Verbrennungsmotoren
DE20122783U1 (de) * 2000-06-17 2007-11-15 Leica Microsystems Cms Gmbh Anordnung zum Untersuchen mikroskopischer Präparate mit einem Scanmikroskop und Beleuchtungseinrichtung für ein Scanmikroskop
DE20122782U1 (de) * 2000-06-17 2007-11-15 Leica Microsystems Cms Gmbh Beleuchtungseinrichtung
DE10115590B4 (de) * 2000-06-17 2020-11-05 Leica Microsystems Cms Gmbh Scanmikroskop
DE10148759B8 (de) * 2000-10-02 2005-06-30 Laser 2000 Gmbh Verfahren zur Erzeugung einer Lasergravur in eine Oberfläche eines Substrates
EP1333976B1 (de) * 2000-11-15 2006-08-23 MDC Max Dätwyler AG Verfahren zur herstellung von rasternäpfchen in einer tiefdruckform und in dem verfahren verwendbarer grundkörper
DE10058990C2 (de) * 2000-11-28 2003-03-06 Heidelberger Druckmasch Ag Vorrichtung zur Bestrahlung eines Objektes für eine Aufzeichnung eines visuellen Produktes
DE10058999A1 (de) 2000-11-28 2002-05-29 Heidelberger Druckmasch Ag Verfahren und Vorrichtung zur Modulation von unpolarisiertem Licht
DE10105978B4 (de) * 2001-02-09 2011-08-11 HELL Gravure Systems GmbH & Co. KG, 24148 Mehrstrahl-Abtastvorrichtung zur Abtastung eines fotoempfindlichen Materials mit einem Multi-Spot-Array sowie Verfahren zur Korrektur der Position von Bildpunkten des Multi-Spot-Arrays
DE10109041A1 (de) * 2001-02-24 2002-09-05 Heidelberger Druckmasch Ag Verfahren und Mehrstrahl-Abtastvorrichtung zur Ablation von Flexo-Druckplatten durch Lasergravur
DE10123672B4 (de) * 2001-05-16 2006-12-21 Koenig & Bauer Ag Verfahren und System zum Bebildern in Druckmaschinen
DE10125598A1 (de) * 2001-05-25 2002-12-12 Combiflex Coating Gmbh Verfahren und Vorrichtung zum Herstellen einer Siebdruckschablone zum Aufbringen von Klebstoff
US6927359B2 (en) * 2001-06-14 2005-08-09 Advanced Cardiovascular Systems, Inc. Pulsed fiber laser cutting system for medical implants
DE10129874B4 (de) * 2001-06-21 2004-11-18 Heidelberger Druckmaschinen Ag Mehrstrahl-Abtastvorrichtung sowie Verfahren zu ihrer Justierung
JP2003039189A (ja) * 2001-07-27 2003-02-12 Hamamatsu Photonics Kk レーザ光照射装置及び表面処理方法
US7044583B2 (en) 2001-10-25 2006-05-16 Heidelberger Druckmaschinen Ag Method and device for exposing a printing form, printing unit and printing press having the device
KR100614108B1 (ko) * 2002-03-12 2006-08-22 미쓰보시 다이야몬도 고교 가부시키가이샤 취성재료의 가공방법 및 가공장치
EP1369230A1 (en) * 2002-06-05 2003-12-10 Kba-Giori S.A. Method of manufacturing an engraved plate
DE50212323D1 (de) * 2002-08-01 2008-07-10 Trumpf Werkzeugmaschinen Gmbh Laserbearbeitungsmaschine
DE10304474A1 (de) * 2003-02-04 2004-08-12 Linde Ag Verfahren zum Laserstrahlschweißen
US7763179B2 (en) * 2003-03-21 2010-07-27 Digimarc Corporation Color laser engraving and digital watermarking
DE20308097U1 (de) * 2003-05-23 2004-09-23 Kuka Schweissanlagen Gmbh Lasereinrichtung
US8233800B2 (en) * 2003-06-26 2012-07-31 Fujitsu Limited Method and system for upgrading a fiber optics network
DE10336097B3 (de) * 2003-08-06 2005-03-10 Testo Ag Visiereinrichtung für ein Radiometer sowie Verfahren
JP3753326B2 (ja) 2003-12-15 2006-03-08 セイコーエプソン株式会社 直進光制御部付きレンズ基板の製造方法、直進光制御部付きレンズ基板、透過型スクリーンおよびリア型プロジェクタ
DE202004013136U1 (de) * 2004-03-11 2005-07-21 Kuka Schweissanlagen Gmbh Modulare Lichtwellenoptik
JP2005303166A (ja) * 2004-04-15 2005-10-27 Fujikura Ltd 光ファイバ端面構造、光ファイバレーザ及びレーザ加工装置
EP1593493A1 (de) * 2004-05-05 2005-11-09 Hell Gravure Systems GmbH Vorrichtung zur Gravur von Näpfchen in Druckzylindern mittels Laserlichts
JP4791457B2 (ja) * 2004-06-07 2011-10-12 エレクトロ サイエンティフィック インダストリーズ インコーポレーテッド レーザシステム性能を改善するためのaom変調技術
US20060279793A1 (en) * 2004-07-30 2006-12-14 Hell Gravure Systems Gmbh Printing form processing with a plurality of engraving tool tracks forming lines
JP4660746B2 (ja) * 2004-08-03 2011-03-30 ソニー株式会社 レーザー照射装置
DK1953881T3 (da) 2004-08-18 2010-09-06 Arctos Showlasertechnik E K Laseranordning til frembringelse af en laserstråle
DE202004012992U1 (de) * 2004-08-19 2005-12-29 Storz Endoskop Produktions Gmbh Endoskopisches Video-Meßsystem
ATE438478T1 (de) * 2004-10-06 2009-08-15 Limo Patentverwaltung Gmbh Laseranordnung
WO2006037370A1 (de) * 2004-10-06 2006-04-13 Hentze-Lissotschenko Patentverwaltungs Gmbh & Co. Kg Laseranordnung
US20060186098A1 (en) * 2005-02-23 2006-08-24 Caristan Charles L Method and apparatus for laser processing
KR100672830B1 (ko) * 2005-03-21 2007-01-22 삼성전자주식회사 라벨 마킹 방법 및 이를 이용한 라벨 마킹 장치
JP2008545479A (ja) * 2005-05-25 2008-12-18 バイオレーズ テクノロジー インコーポレイテッド 増大したスポットサイズを有する電磁エネルギー放出装置
JP2009503610A (ja) * 2005-08-03 2009-01-29 コーニング インコーポレイテッド 軸対称複屈折素子及び極性直交偏極をもつ深uvテレセントリック結像光学系
JP2007190560A (ja) 2006-01-17 2007-08-02 Miyachi Technos Corp レーザ加工装置
US8066940B2 (en) 2006-06-30 2011-11-29 Zuvo Water, Llc Apparatus and method for removing arsenic and inorganic compositions from water
US8066941B2 (en) 2006-06-30 2011-11-29 Zuvo Water, Llc Apparatus and method for purifying water in a storage tank
JP2008055456A (ja) * 2006-08-30 2008-03-13 Sumitomo Electric Ind Ltd 半田付け方法および半田付け用レーザ装置
US8015878B2 (en) * 2006-10-05 2011-09-13 Delaware State University Foundation, Inc. Fiber optics sound detector
US8604381B1 (en) * 2006-10-12 2013-12-10 Purdue Research Foundation Integrated laser material processing cell
US7827912B2 (en) * 2006-12-22 2010-11-09 Eastman Kodak Company Hybrid optical head for direct engraving of flexographic printing plates
US7843633B2 (en) * 2007-01-15 2010-11-30 Sumitomo Electric Industries, Ltd. Laser processing apparatus
DE102007006330A1 (de) 2007-02-08 2008-08-14 Robert Bosch Gmbh Verfahren und Vorrichtung zum Laserschweißen
JP2008258323A (ja) * 2007-04-03 2008-10-23 Furukawa Electric Co Ltd:The パルスレーザ装置
US7717040B2 (en) 2007-06-05 2010-05-18 Eastman Kodak Company Plate cutting and imaging with same device
CN100465681C (zh) * 2007-06-21 2009-03-04 武汉凌云光电科技有限责任公司 激光加热装置
DE102007032903A1 (de) * 2007-07-14 2009-01-15 Schepers Gmbh + Co. Kg Verfahren zum Betreiben einer Lasergravureinrichtung
DE102007051294B4 (de) * 2007-07-20 2012-03-22 Lasos Lasertechnik Gmbh Optische Steckverbindung für Lichtwellenleiter
US20090029292A1 (en) 2007-07-23 2009-01-29 Haim Chayet Engraving with amplifier having multiple exit ports
JP5176853B2 (ja) * 2007-10-09 2013-04-03 住友電気工業株式会社 光学モジュール及びそれを含む光源装置
DE102007050339B4 (de) 2007-10-18 2009-10-08 Hell Gravure Systems Gmbh & Co. Kg Vorrichtung zur Bereitstellung von bebilderten oder von bebilderten und unbebilderten Flexodruckzylindern und / oder Flexodruckhülsen
JP5192213B2 (ja) * 2007-11-02 2013-05-08 株式会社ディスコ レーザー加工装置
JP2009195976A (ja) * 2008-02-25 2009-09-03 Sumitomo Electric Ind Ltd 戻り光測定方法、戻り光測定装置及びレーザ加工方法
CN101959637A (zh) * 2008-03-27 2011-01-26 松下电器产业株式会社 印字装置及使用印字装置的印字方法
US8126028B2 (en) * 2008-03-31 2012-02-28 Novasolar Holdings Limited Quickly replaceable processing-laser modules and subassemblies
US8423879B2 (en) 2008-05-14 2013-04-16 Honeywell International Inc. Method and apparatus for test generation from hybrid diagrams with combined data flow and statechart notation
JP5153483B2 (ja) * 2008-06-30 2013-02-27 三菱電機株式会社 レーザ光源装置
JPWO2010002003A1 (ja) * 2008-07-03 2011-12-22 株式会社フジクラ パルス光発生器及びパルスファイバレーザ
US8563892B2 (en) * 2008-09-24 2013-10-22 Standex International Corporation Method and apparatus for laser engraving
EP2182596A1 (de) 2008-10-31 2010-05-05 LFK-Lenkflugkörpersysteme GmbH Taktischer Strahler für gerichtete Energie
KR100982308B1 (ko) * 2008-12-12 2010-09-15 삼성모바일디스플레이주식회사 레이저 시스템
US8462391B2 (en) * 2009-03-13 2013-06-11 Heidelberger Druckmaschinen Ag Method for producing a pseudo-stochastic master surface, master surface, method for producing a cylinder cover, cylinder cover, machine processing printing material, method for producing printed products and method for microstamping printing products
JP5280919B2 (ja) * 2009-03-31 2013-09-04 富士フイルム株式会社 露光装置および製版装置
US20120055909A1 (en) * 2009-05-15 2012-03-08 Hideaki Miyake Method of laser-welding and method of manufacturing battery including the same
EP2428307B1 (de) * 2010-09-10 2016-03-16 ACSYS Lasertechnik GmbH Verfahren zur Erzeugung von rauen Oberflächenstrukturen
KR101204562B1 (ko) * 2010-11-24 2012-11-23 삼성전기주식회사 적층 세라믹 전자 부품 제조 방법
US8984488B2 (en) 2011-01-14 2015-03-17 Honeywell International Inc. Type and range propagation through data-flow models
DE102011013423A1 (de) * 2011-03-07 2012-09-13 abc packmedia GmbH & Co.KG Verfahren und Einrichtung zur Modellbildung von zu prägenden Objekten und Herstellung eines Prägewerkzeugs
WO2012119704A1 (de) 2011-03-09 2012-09-13 Hell Gravure Systems Gmbh & Co. Kg Verfahren und vorrichtung zur bearbeitung eines zylinders, insbesondere eines druck- oder prägezylinders
DK2565994T3 (en) 2011-09-05 2014-03-10 Alltec Angewandte Laserlicht Technologie Gmbh Laser device and method for marking an object
EP2564974B1 (en) * 2011-09-05 2015-06-17 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Marking apparatus with a plurality of gas lasers with resonator tubes and individually adjustable deflection means
EP2565996B1 (en) 2011-09-05 2013-12-11 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Laser device with a laser unit, and a fluid container for a cooling means of said laser unit
DK2565673T3 (da) 2011-09-05 2014-01-06 Alltec Angewandte Laserlicht Technologie Gmbh Indretning og fremgangsmåde til markering af et objekt ved hjælp af en laserstråle
EP2564975B1 (en) * 2011-09-05 2014-12-10 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Marking apparatus with a plurality of lasers and individually adjustable sets of deflection means
EP2564973B1 (en) * 2011-09-05 2014-12-10 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Marking apparatus with a plurality of lasers and a combining deflection device
ES2544034T3 (es) 2011-09-05 2015-08-27 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Aparato de marcado con al menos un láser de gas y un termodisipador
EP2564972B1 (en) * 2011-09-05 2015-08-26 ALLTEC Angewandte Laserlicht Technologie Gesellschaft mit beschränkter Haftung Marking apparatus with a plurality of lasers, deflection means and telescopic means for each laser beam
JP5496162B2 (ja) * 2011-09-26 2014-05-21 富士フイルム株式会社 凸版印刷版の製造方法、凸版印刷版作成装置、並びにプログラム
US9579750B2 (en) 2011-10-05 2017-02-28 Applied Materials, Inc. Particle control in laser processing systems
KR20130039955A (ko) * 2011-10-13 2013-04-23 현대자동차주식회사 용접용 레이저 장치
JP6006926B2 (ja) * 2011-10-17 2016-10-12 富士インパルス株式会社 シーリング方法、ヒートシール装置、被シール物、弾性体
JP5915071B2 (ja) * 2011-10-18 2016-05-11 株式会社村田製作所 グラビア印刷装置
DE102011085929C5 (de) * 2011-11-08 2014-06-12 Trumpf Laser Gmbh + Co. Kg Strahlweiche und Laserbearbeitungsanlage damit
CN103212862B (zh) * 2012-01-19 2015-09-30 昆山思拓机器有限公司 一种兼容干切和湿切的薄壁管材激光加工设备及方法
US8970455B2 (en) 2012-06-28 2015-03-03 Google Technology Holdings LLC Systems and methods for processing content displayed on a flexible display
JP6068859B2 (ja) * 2012-07-31 2017-01-25 株式会社ディスコ レーザー加工装置
JP6091832B2 (ja) * 2012-10-03 2017-03-08 株式会社東芝 吸光光度分析装置および方法
DE102012219249A1 (de) * 2012-10-22 2014-02-13 Bundesdruckerei Gmbh Vorrichtung zur Laserpersonalisierung von Sicherheitselementen
US9346122B1 (en) * 2013-01-08 2016-05-24 Universal Laser Systems, Inc. Multi-wavelength laser processing systems and associated methods of use and manufacture
PL222897B1 (pl) * 2013-01-27 2016-09-30 Inst Optyki Stosowanej Układ do detekcji sygnałów RF
KR20140118554A (ko) * 2013-03-29 2014-10-08 삼성디스플레이 주식회사 광학계 및 기판 밀봉 방법
US10307864B2 (en) * 2013-12-13 2019-06-04 Avonisys Ag Methods and systems to keep a work piece surface free from liquid accumulation while performing liquid-jet guided laser based material processing
CN103766317B (zh) * 2014-02-08 2015-11-18 江苏大学 一种基于热伤除草的全覆盖激光点阵结构和方法
US10074954B1 (en) * 2014-07-03 2018-09-11 Nlight, Inc. High efficiency, low cost, laser power supply
JP5941113B2 (ja) * 2014-09-30 2016-06-29 ファナック株式会社 集光径を拡大できるレーザ加工装置
US10912719B2 (en) 2014-10-20 2021-02-09 The Procter And Gamble Company Personal care composition and method of making
KR102309213B1 (ko) * 2015-03-06 2021-10-05 인텔 코포레이션 레이저 빔 조향용 음향 광학 편향기 및 거울
JP6495059B2 (ja) * 2015-03-18 2019-04-03 三菱重工業株式会社 レーザアレイデバイス
CN106735927A (zh) * 2015-11-24 2017-05-31 衡阳市维达胜电气自动化设备有限公司 一种激光自动数控切割机
US10945935B2 (en) 2016-06-27 2021-03-16 The Procter And Gamble Company Shampoo composition containing a gel network
US10401704B2 (en) * 2016-11-11 2019-09-03 Asml Netherlands B.V. Compensating for a physical effect in an optical system
DE102016121707A1 (de) 2016-11-14 2018-05-17 ECO Holding 1 GmbH Verfahren zur Bearbeitung einer Innenoberfläche einer Ventilbuchse, Ventilbuchse und Vorrichtung zur Bearbeitung einer Innenoberfläche einer Ventilbuchse
JP6496340B2 (ja) * 2017-03-17 2019-04-03 ファナック株式会社 スキャナ制御装置、ロボット制御装置及びリモートレーザ溶接ロボットシステム
US10471542B1 (en) * 2017-06-27 2019-11-12 United States Of America As Represented By The Administrator Of Nasa Cladding and freeform deposition for coolant channel closeout
JP6923158B2 (ja) * 2017-07-27 2021-08-18 三菱重工業株式会社 レーザービーム照射装置及びレーザービーム照射システム
US10665504B2 (en) 2017-07-28 2020-05-26 Veeco Instruments Inc. Laser-based systems and methods for melt-processing of metal layers in semiconductor manufacturing
US10005290B1 (en) 2017-11-17 2018-06-26 Capital One Services, Llc Laser assembly for a laser printer
JP6822385B2 (ja) * 2017-11-30 2021-01-27 ブラザー工業株式会社 レーザ加工装置
KR102269052B1 (ko) * 2018-01-23 2021-06-24 (주)엔피에스 레이저 절단 시스템
WO2019176953A1 (ja) * 2018-03-12 2019-09-19 古河電気工業株式会社 ビーム重ね機構を備えた光ファイババンドル
WO2019180960A1 (ja) * 2018-03-23 2019-09-26 Primetals Technologies Japan株式会社 レーザ加工ヘッド及びレーザ加工装置並びにレーザ加工ヘッドの調整方法
WO2019236646A1 (en) 2018-06-05 2019-12-12 The Procter & Gamble Company Clear cleansing composition
CN109551124B (zh) * 2018-12-06 2021-03-02 南京三乐集团有限公司 一种钛泵泵芯组件的激光焊工装及其焊接方法
MX2021005464A (es) 2018-12-14 2021-06-18 Procter & Gamble Composicion de champu que comprende microcapsulas de tipo lamina.
KR102131951B1 (ko) * 2019-04-19 2020-07-09 (주)인터체크 일체형 레이저 홀더를 구비한 레이저 어셈블리
US11896689B2 (en) 2019-06-28 2024-02-13 The Procter & Gamble Company Method of making a clear personal care comprising microcapsules
WO2021019704A1 (ja) * 2019-07-31 2021-02-04 三菱重工業株式会社 レーザー加工装置
RU2721244C1 (ru) * 2019-11-11 2020-05-18 федеральное государственное бюджетное образовательное учреждение высшего образования "Пермский национальный исследовательский политехнический университет" Способ контроля процесса лазерной обработки металла
TWI744794B (zh) * 2020-02-12 2021-11-01 財團法人工業技術研究院 掃描式光源模組
MX2022008714A (es) 2020-02-14 2022-08-08 Procter & Gamble Botella adaptada para almacenar una composicion liquida con un dise?o estetico suspendido en esta.
CN111455377B (zh) * 2020-05-19 2024-03-26 宝宇(武汉)激光技术有限公司 一种激光熔覆装置及方法
AU2021287783A1 (en) * 2020-06-10 2023-01-05 Vulcanforms Inc. Angled scanning of laser arrays in additive manufacturing
WO2022018146A1 (de) * 2020-07-21 2022-01-27 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum verlagern eines kontinuierlichen energiestrahls und fertigungseinrichtung
CN113573488A (zh) * 2021-07-01 2021-10-29 德中(天津)技术发展股份有限公司 激光和化学结合选择性活化绝缘材料制造导电图案的系统
US20230022699A1 (en) * 2021-07-20 2023-01-26 II-VI Delaware, Inc Dynamic beam deflection and shaping for high-power laser machining process
DE102022101347A1 (de) * 2022-01-21 2023-07-27 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zur Laserbearbeitung eines Werkstücks
WO2023186325A1 (en) * 2022-04-01 2023-10-05 SLM Solutions Group AG Method of operating an irradiation system, irradiation system and apparatus for producing a three-dimensional work piece
DE102022116486A1 (de) 2022-07-01 2024-01-04 Precitec Gmbh & Co. Kg Laserbearbeitungskopf mit einem zweiphasigen geschlossenen wärmetauscher

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4092080B2 (ja) * 1998-09-08 2008-05-28 ヘル グラビア システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 凸版またはフレキソ版用の微細構造を有する刷版の製造方法

Family Cites Families (127)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2149487A (en) * 1934-05-15 1939-03-07 Myron C Zilberman Half-tone engraving and apparatus for and method of making the same
US3471215A (en) * 1965-07-16 1969-10-07 American Optical Corp Fiber laser device provided with long flexible energy-directing probe-like structure
US3588439A (en) * 1967-05-12 1971-06-28 Rca Corp High resolution laser engraving apparatus
GB1229243A (ja) * 1968-05-29 1971-04-21
US3549733A (en) * 1968-12-04 1970-12-22 Du Pont Method of producing polymeric printing plates
GB1284809A (en) * 1970-06-11 1972-08-09 Mitsubishi Electric Corp A laser processing apparatus
DE2113351C3 (de) * 1971-03-19 1973-09-13 Mamiliano 8000 Muenchen Dini Verfahren zur Messung der Tiefe von in einer Flache ausgebildeten zel lenartigen Vertiefungen
DE2241850C3 (de) * 1972-08-25 1978-06-29 European Rotogravure Association, 8000 Muenchen Verfahren zur Herstellung von Druckformen mittels eines Energiestrahles
DE2413034C3 (de) * 1974-03-19 1983-11-17 Dr.-Ing. Rudolf Hell Gmbh, 2300 Kiel Verfahren und Anordnung zur Vermeidung von Fehlern bei der Reproduktion von Bildvorlagen
US3982201A (en) * 1975-01-24 1976-09-21 The Perkin-Elmer Corporation CW solid state laser
SE430968B (sv) * 1975-03-11 1983-12-27 Hell Rudolf Dr Ing Gmbh Forfarande och anordning for gravyr av rastertryckformar for djuptryck
US4128752A (en) * 1976-12-15 1978-12-05 Her Majesty The Queen In Right Of Canada, As Represented By The Minister Of National Defence Laser micromachining apparatus
DE2738167A1 (de) * 1977-08-24 1979-03-08 Siemens Ag Objektivschutzvorrichtung fuer bearbeitungslaser
US4427872A (en) * 1978-09-22 1984-01-24 Coherent, Inc. Precision machining apparatus and method utilizing a laser
JPS5581095A (en) * 1978-12-12 1980-06-18 Ricoh Co Ltd Ultra-fine hole processing method
DE3008176C2 (de) * 1979-03-07 1986-02-20 Crosfield Electronics Ltd., London Gravieren von Druckzylindern
DE3268379D1 (en) * 1982-06-04 1986-02-20 Hell Rudolf Dr Ing Gmbh Process and device for the preparation of coloured proofs in multicolour printing
DE3249518T1 (de) * 1982-08-23 1984-09-06 Gravure Research Institute, Inc. (n.d.Ges.d. Staates Illinois), Port Washington, N.Y. Verfahren und Vorrichtung zur Herstellung von Tiefdruckzellen in einem Tiefdruckzylinder
DE3240653A1 (de) * 1982-11-04 1984-05-10 Dr.-Ing. Rudolf Hell Gmbh, 2300 Kiel Verfahren zur kontrolle von mittels elektronenstrahlgravierten druckformoberflaechen
WO1984002296A1 (en) * 1982-12-17 1984-06-21 Inoue Japax Res Laser machining apparatus
GB2154364A (en) * 1984-02-15 1985-09-04 Hughes Technology Pty Ltd Laser assemblies
FR2585480B1 (fr) * 1985-07-24 1994-01-07 Ateq Corp Generateur de modeles a laser
US4710604A (en) * 1985-12-20 1987-12-01 Nippon Kogaku K. K. Machining apparatus with laser beam
DE3672609D1 (de) * 1986-04-30 1990-08-16 Hell Rudolf Dr Ing Gmbh Verfahren zur aufzeichnung von druckformen.
DE3617714A1 (de) * 1986-05-27 1987-12-03 Hell Rudolf Dr Ing Gmbh Volumen-messverfahren fuer oberflaechenvertiefungen
US4759285A (en) * 1987-07-14 1988-07-26 Hurletron, Inc. Rotogravure cylinder proofing method
FR2626511B1 (fr) * 1988-02-03 1990-05-18 Air Liquide Buse de decoupe laser, tete de decoupe comportant une telle buse et procede de decoupe les mettant en oeuvre
US5050173A (en) * 1988-05-03 1991-09-17 Phased Array Lasers Pty Ltd. Looped, phased array laser oscillator
US5096855A (en) * 1988-05-23 1992-03-17 U.S. Philips Corporation Method of dicing semiconductor wafers which produces shards less than 10 microns in size
EP0393163A4 (en) * 1988-07-04 1991-04-17 Phased Array Lasers Pty. Ltd. Face pumped, looped fibre bundle, phased-array laser oscillator
JPH0240631A (ja) * 1988-07-29 1990-02-09 Nec Corp 音響光学スイッチ
US4915981A (en) * 1988-08-12 1990-04-10 Rogers Corporation Method of laser drilling fluoropolymer materials
JP2663560B2 (ja) * 1988-10-12 1997-10-15 日本電気株式会社 レーザ加工装置
WO1990013158A1 (en) * 1989-04-18 1990-11-01 Phased Array Lasers Pty Ltd Close packed, end face, diode pumped, fibre laser bundle, phased-array laser oscillator
US5080463A (en) * 1989-06-21 1992-01-14 Minnesota Mining And Manufacturing Company Retroreflective security laminates with protective cover sheets
DE3923829A1 (de) * 1989-07-19 1991-01-31 Fraunhofer Ges Forschung Absauganlage
AT393979B (de) * 1989-11-07 1992-01-10 Kufstein Schablonentech Gmbh Vorrichtung zum bearbeiten von hohlzylindern mittels eines lasers
US5168288A (en) * 1989-12-18 1992-12-01 Eastman Kodak Company Thermal a scan laser printer
DE4000166A1 (de) * 1990-01-05 1991-07-11 Hell Rudolf Dr Ing Gmbh Verfahren und einrichtung zur korrektur von positionsfehlern eines abgelenkten lichtstrahls
US5656229A (en) * 1990-02-20 1997-08-12 Nikon Corporation Method for removing a thin film layer
US5020880A (en) * 1990-03-13 1991-06-04 United Technologies Corporation Low distortion window for use with high energy lasers
JPH0485978A (ja) * 1990-07-30 1992-03-18 Sony Corp 端面励起型固体レーザー発振器
KR100235340B1 (ko) * 1990-07-31 1999-12-15 이시야마 노리다까 박막 정밀 가공용 야그(yag) 레이저 가공기
DE59106977D1 (de) * 1990-09-04 1996-01-11 Daetwyler Ag Verfahren zum Bearbeiten von Tiefdruckformen.
US5639391A (en) * 1990-09-24 1997-06-17 Dale Electronics, Inc. Laser formed electrical component and method for making the same
GB9025517D0 (en) * 1990-11-23 1991-01-09 Zed Instr Ltd Laser engraving apparatus
DE4040201C2 (de) * 1990-12-15 1994-11-24 Hell Ag Linotype Verfahren zum wartungsarmen Betrieb einer Vorrichtung zur Herstellung einer Oberflächenstruktur und Vorrichtung zur Durchführung des Verfahrens
JP2685359B2 (ja) * 1991-01-22 1997-12-03 富士写真フイルム株式会社 光ビーム走査装置及び光ビーム走査方法
JPH04255280A (ja) * 1991-02-07 1992-09-10 Nippon Steel Corp 半導体レーザ励起固体レーザ装置
US5173441A (en) * 1991-02-08 1992-12-22 Micron Technology, Inc. Laser ablation deposition process for semiconductor manufacture
US6136375A (en) * 1991-04-26 2000-10-24 W. R. Chesnut Engineering Method of manufacturing a rotogravure printing medium
US5169707A (en) * 1991-05-08 1992-12-08 Minnesota Mining And Manufacturing Company Retroreflective security laminates with dual level verification
US5337325A (en) * 1992-05-04 1994-08-09 Photon Imaging Corp Semiconductor, light-emitting devices
US5798202A (en) * 1992-05-11 1998-08-25 E. I. Dupont De Nemours And Company Laser engravable single-layer flexographic printing element
US5373526A (en) * 1992-05-12 1994-12-13 Hughes Aircraft Company Apparatus and method for optical energy amplification using two-beam coupling
US5309178A (en) * 1992-05-12 1994-05-03 Optrotech Ltd. Laser marking apparatus including an acoustic modulator
JPH05327104A (ja) * 1992-05-21 1993-12-10 Sumitomo Electric Ind Ltd 光ファイバ増幅器
US5379698A (en) * 1992-07-20 1995-01-10 Presstek, Inc. Lithographic printing members for use with laser-discharge imaging
AU674518B2 (en) * 1992-07-20 1997-01-02 Presstek, Inc. Lithographic printing plates for use with laser-discharge imaging apparatus
US5351617A (en) 1992-07-20 1994-10-04 Presstek, Inc. Method for laser-discharge imaging a printing plate
US5719009A (en) * 1992-08-07 1998-02-17 E. I. Du Pont De Nemours And Company Laser ablatable photosensitive elements utilized to make flexographic printing plates
GB9217705D0 (en) * 1992-08-20 1992-09-30 Ici Plc Data-recordal using laser beams
US5430816A (en) * 1992-10-27 1995-07-04 Matsushita Electric Industrial Co., Ltd. Multiple split-beam laser processing apparatus generating an array of focused beams
CA2090795A1 (en) * 1992-11-19 1994-05-20 Donald Joseph Sanders Method and apparatus for sealing absorbent materials in an absorbent product
US5268978A (en) * 1992-12-18 1993-12-07 Polaroid Corporation Optical fiber laser and geometric coupler
US5691818A (en) * 1993-02-25 1997-11-25 Ohio Electronic Engravers, Inc. System and method for enhancing edges and the like for engraving
US5359176A (en) * 1993-04-02 1994-10-25 International Business Machines Corporation Optics and environmental protection device for laser processing applications
WO1994029069A1 (fr) * 1993-06-04 1994-12-22 Seiko Epson Corporation Appareil et procede d'usinage au laser, et panneau a cristaux liquides
US5363233A (en) * 1993-09-03 1994-11-08 Pernick Benjamin J Optical correlator using fiber optics lasers
US5374973A (en) * 1993-09-21 1994-12-20 Alcatel Network Systems, Inc. Optical amplifier
JPH0796382A (ja) * 1993-09-28 1995-04-11 Mitsui Petrochem Ind Ltd レーザ加工装置
DE4338337C1 (de) * 1993-11-10 1995-05-24 Bernd Dr Bolzmann Vorrichtung und Verfahren zum Gravieren von Tiefdruckformen
US5396506A (en) * 1993-12-09 1995-03-07 United Technologies Corporation Coupled multiple output fiber laser
DE4400609A1 (de) * 1994-01-12 1995-07-13 Haindl Papier Gmbh Dünndruckpapier und Verfahren zu dessen Herstellung
DE4402000C2 (de) * 1994-01-25 1996-04-11 Fraunhofer Ges Forschung Düsenanordnung für das Laserstrahlschneiden
US5611946A (en) * 1994-02-18 1997-03-18 New Wave Research Multi-wavelength laser system, probe station and laser cutter system using the same
US5400350A (en) * 1994-03-31 1995-03-21 Imra America, Inc. Method and apparatus for generating high energy ultrashort pulses
KR100353298B1 (ko) * 1994-04-19 2003-02-11 소니 가부시끼 가이샤 인쇄용판재,그의제조방법및인쇄용판재를이용한인쇄방법
DE4414270C2 (de) * 1994-04-23 1998-12-03 Manfred Neuberger Verfahren zur Herstellung von Transferdruckpapieren
JPH07299576A (ja) * 1994-05-10 1995-11-14 Mitsubishi Electric Corp 光加工装置
JP3305499B2 (ja) * 1994-06-06 2002-07-22 株式会社アマダ レーザ加工機
DE9411098U1 (de) * 1994-07-08 1995-11-09 Diamona Hermann Koch Gmbh & Co Kopfkissen
DE4424492C2 (de) * 1994-07-12 1996-07-11 Diehl Gmbh & Co Anordnung zur Werkstückbearbeitung mittels eines auf einen Brennfleck fokussierbaren Lasers
ATE151178T1 (de) * 1994-07-14 1997-04-15 Schablonentechnik Kufstein Ag Vorrichtung zur herstellung einer siebdruckschablone
US5533163A (en) * 1994-07-29 1996-07-02 Polaroid Corporation Optical fiber structure for efficient use of pump power
JP3203294B2 (ja) * 1994-09-30 2001-08-27 三菱電機株式会社 レーザ加工装置用レンズカバー
EP0708550A3 (en) * 1994-10-18 1998-01-14 Minnesota Mining And Manufacturing Company Ablation-transfer-imaging using zero order laser beams in a flat-field scanner
JPH08118056A (ja) * 1994-10-20 1996-05-14 Aida Eng Ltd レーザ加工装置
US5566196A (en) * 1994-10-27 1996-10-15 Sdl, Inc. Multiple core fiber laser and optical amplifier
DE19502054A1 (de) * 1995-01-13 1996-07-18 Ges Zur Foerderung Angewandter Optik Optoelektronik Quantenelektronik & Spektroskopie Ev Phasengekoppelter Laser mit mehrfach selbstabbildender Resonatorstruktur
US5675420A (en) * 1995-01-23 1997-10-07 Ohio Electronic Engravers, Inc. Intaglio engraving method and apparatus
GB9501412D0 (en) * 1995-01-25 1995-03-15 Lumonics Ltd Laser apparatus
DE19603704B4 (de) * 1995-02-15 2009-04-09 Carl Zeiss Optisch gepumpter Laser mit polarisationsabhängiger Absorption
JP3618008B2 (ja) * 1995-03-17 2005-02-09 富士通株式会社 光増幅器
DE19511393B4 (de) * 1995-03-28 2005-08-25 Carl Baasel Lasertechnik Gmbh Gerät zur Substratbehandlung, insbesondere zum Perforieren von Papier
US5654125A (en) 1995-05-01 1997-08-05 E. I. Du Pont De Nemours And Company Laser apparatus and process of use
CH689917A5 (de) * 1995-05-03 2000-01-31 Daetwyler Ag Verfahren und Vorrichtung zur Herstellung von Rasternäpfchen in der Oberfläche eines Tiefdruckzylinders.
US5530710A (en) * 1995-05-15 1996-06-25 At&T Corp. High-power pumping of three-level optical fiber laser amplifier
US5694408A (en) 1995-06-07 1997-12-02 Mcdonnell Douglas Corporation Fiber optic laser system and associated lasing method
US5767480A (en) * 1995-07-28 1998-06-16 National Semiconductor Corporation Hole generation and lead forming for integrated circuit lead frames using laser machining
US5744780A (en) * 1995-09-05 1998-04-28 The United States Of America As Represented By The United States Department Of Energy Apparatus for precision micromachining with lasers
JPH0985927A (ja) * 1995-09-25 1997-03-31 Dainippon Screen Mfg Co Ltd グラビア印刷版製造装置およびグラビア印刷版製造方法
JPH09118002A (ja) * 1995-10-25 1997-05-06 Sony Corp レーザ製版装置
US5641416A (en) * 1995-10-25 1997-06-24 Micron Display Technology, Inc. Method for particulate-free energy beam cutting of a wafer of die assemblies
US5867305A (en) * 1996-01-19 1999-02-02 Sdl, Inc. Optical amplifier with high energy levels systems providing high peak powers
DE19603111C2 (de) * 1996-01-29 2002-08-14 Deutsch Zentr Luft & Raumfahrt Lasersystem
DE19707003C2 (de) * 1996-02-24 1999-10-14 Foba Gmbh Elektronik & Lasersy Beschriftungslasersystem und Verfahren zur Beschriftung
US6106627A (en) * 1996-04-04 2000-08-22 Sigma Laboratories Of Arizona, Inc. Apparatus for producing metal coated polymers
GB9611942D0 (en) * 1996-06-07 1996-08-07 Lumonics Ltd Focus control of lasers in material processing operations
DE19624131A1 (de) * 1996-06-17 1997-12-18 Giesecke & Devrient Gmbh Verfahren zur Herstellung von Prägeplatten
EP0912308B1 (en) * 1996-06-19 2003-03-19 British Nuclear Fuels PLC Grout or mortar removal by laser
US5761234A (en) * 1996-07-09 1998-06-02 Sdl, Inc. High power, reliable optical fiber pumping system with high redundancy for use in lightwave communication systems
US5790575A (en) * 1996-07-15 1998-08-04 Trw Inc. Diode laser pumped solid state laser gain module
DE19635831A1 (de) * 1996-09-04 1998-03-05 Hell Ag Linotype Verfahren und Einrichtung zur Steuerung eines Gravierorgans
US5795202A (en) * 1996-09-04 1998-08-18 Williams; Carl F. Outboard motor support device
US6212310B1 (en) * 1996-10-22 2001-04-03 Sdl, Inc. High power fiber gain media system achieved through power scaling via multiplexing
JPH10157199A (ja) * 1996-11-27 1998-06-16 Dainippon Screen Mfg Co Ltd 画像記録装置
US5829881A (en) * 1997-04-25 1998-11-03 Eastman Kodak Company Wear resistant apparatus and method for translating a printing element relative to a frame
US5953036A (en) * 1997-04-25 1999-09-14 Eastman Kodak Company Image processing equipment having wear resistant elements for translation of the printhead
JPH10305551A (ja) * 1997-05-07 1998-11-17 Think Lab Kk 製版装置
JPH10307403A (ja) * 1997-05-07 1998-11-17 Think Lab Kk 製版装置
US6272155B1 (en) * 1997-06-30 2001-08-07 Hoya Corporation Fiber bundle and laser apparatus using the fiber bundle of manufacturing the same
US6283022B1 (en) * 1997-10-17 2001-09-04 Deco Patents, Inc. Apparatus and method for direct rotary screen printing radiation curable compositions onto cylindrical articles
US5949466A (en) * 1998-05-01 1999-09-07 Eastman Kodak Company Exposing imagesetter recording film to a dye collection sheet on a transfer apparatus
DE29816110U1 (de) * 1998-09-08 1998-11-26 Hell Gravure Systems Gmbh Anordnung zum mehrkanaligen Schneiden und Ritzen von Materialien mittels Laserstrahlen
DE19840936B4 (de) * 1998-09-08 2005-03-10 Hell Gravure Systems Gmbh Anordnung zum mehrkanaligen Schneiden und Ritzen von Materialien mittels Laserstrahlen
DE502004004634D1 (de) * 2004-02-27 2007-09-27 Hell Gravure Systems Gmbh & Co Verfahren zur direkten Gravur von Näpfchen zur Aufnahme von Druckfarbe für den Tiefdruck

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4092080B2 (ja) * 1998-09-08 2008-05-28 ヘル グラビア システムズ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 凸版またはフレキソ版用の微細構造を有する刷版の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009151166A (ja) * 2007-12-21 2009-07-09 Necディスプレイソリューションズ株式会社 光学装置及び投射型表示装置

Also Published As

Publication number Publication date
EP1579944A3 (de) 2006-06-07
WO2000013839A1 (de) 2000-03-16
US20050013328A1 (en) 2005-01-20
EP1637273A3 (de) 2006-06-07
JP2005025212A (ja) 2005-01-27
JP2006103324A (ja) 2006-04-20
EP1623789A3 (de) 2006-07-12
JP4092080B2 (ja) 2008-05-28
EP1595697A3 (de) 2006-06-07
EP1655098A3 (de) 2006-06-07
EP1112140B1 (de) 2012-12-12
EP1579944A2 (de) 2005-09-28
JP4146401B2 (ja) 2008-09-10
JP2007125616A (ja) 2007-05-24
EP1623789A2 (de) 2006-02-08
EP1655098A2 (de) 2006-05-10
DE19840926B4 (de) 2013-07-11
EP1666186A1 (de) 2006-06-07
DE19840926A1 (de) 2000-05-04
US20060249488A1 (en) 2006-11-09
EP1666187A1 (de) 2006-06-07
JP2004349721A (ja) 2004-12-09
JP2002524263A (ja) 2002-08-06
EP1595697A2 (de) 2005-11-16
EP1637273A2 (de) 2006-03-22
EP1112140A1 (de) 2001-07-04
US20060250658A1 (en) 2006-11-09
EP1623789B1 (de) 2015-06-24
US20060255023A1 (en) 2006-11-16
US6888853B1 (en) 2005-05-03

Similar Documents

Publication Publication Date Title
JP4146401B2 (ja) 凹版、凸版又はフレキソ版の刷版に微細構造を有する凹みを彫刻する装置
JP2005025212A5 (ja)
JP2004349721A5 (ja)
US20060279794A1 (en) Printing form processing with fine and coarse engraving tool processing tracks
US11780030B2 (en) Additive manufacture in metals with a fiber array laser source and adaptive multi-beam shaping
KR100615898B1 (ko) 합파 레이저광원 및 노광장치
JP4505190B2 (ja) レーザ切断装置
JP2723798B2 (ja) レーザ転写加工装置
CA2056358A1 (en) Laser machining
US5856648A (en) Method and apparatus for producing wells in the surface of a rotogravure cyclinder with a laser
US20060279793A1 (en) Printing form processing with a plurality of engraving tool tracks forming lines
KR20160096695A (ko) 파이버 어레이 라인 발생기
CN113579468B (zh) 一种线阵式激光3d打印装置及方法
JP3892711B2 (ja) レーザ切断装置
CN210937651U (zh) 基于多个光纤输出激光模块的激光加工头
JP2004098116A (ja) マスク転写式レーザ形状加工方法
JP3180806B2 (ja) レーザ加工方法
JP2001208941A (ja) 光ファイバ結合光学系
WO2000013838A1 (de) Laserstrahlungsquelle hoher leistungsdichte und hoher energie zur materialbearbeitung
Metev et al. Laser-Based Equipment for Microtechnology
IT1317703B1 (it) Apparecchiatura atta alla focalizzazione di un fascio laser persaldatura, particolarmente per il settore orafo.

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100428