WO2019180960A1 - レーザ加工ヘッド及びレーザ加工装置並びにレーザ加工ヘッドの調整方法 - Google Patents
レーザ加工ヘッド及びレーザ加工装置並びにレーザ加工ヘッドの調整方法 Download PDFInfo
- Publication number
- WO2019180960A1 WO2019180960A1 PCT/JP2018/011894 JP2018011894W WO2019180960A1 WO 2019180960 A1 WO2019180960 A1 WO 2019180960A1 JP 2018011894 W JP2018011894 W JP 2018011894W WO 2019180960 A1 WO2019180960 A1 WO 2019180960A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical system
- laser
- moving
- condensing
- collimating
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
- B23K26/0643—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/062—Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
- B23K26/0626—Energy control of the laser beam
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/064—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
- B23K26/0648—Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
- B23K26/073—Shaping the laser spot
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/38—Removing material by boring or cutting
Definitions
- the present disclosure relates to a laser processing head, a laser processing apparatus, and a laser processing head adjustment method.
- a laser processing apparatus including a laser processing head for irradiating a workpiece with laser light from a laser oscillator is used.
- Patent Document 1 includes a cutting head including a laser incident portion to which an optical fiber that transmits laser light from a laser oscillator is fixed, and a lens through which the laser light emitted from the laser incident portion passes.
- a laser processing apparatus is disclosed.
- the workpiece is cut by condensing the laser beam from the laser incident portion with a lens and increasing the energy density of the laser beam.
- the positional relationship between the laser incident portion and the lens can be adjusted by moving or tilting the laser incident portion and the optical fiber with respect to the lens. The energy intensity distribution of the laser beam at the position where the workpiece is cut can be changed.
- the processing quality may be affected by the energy intensity distribution of the laser light focused on the processing position of the workpiece.
- the location where the energy density of the laser beam is relatively small compared to the location where the energy density is relatively large The roughness of the cut surface of the workpiece tends to be rough.
- the energy intensity distribution at the processing position of the workpiece can be appropriately changed to a desired distribution by adjusting the positional relationship between the laser incident portion and the lens. It is thought that processing quality can be obtained.
- the irradiation position (condensing position) of the laser beam on the workpiece usually changes accordingly.
- the laser beam irradiation position on the workpiece is deviated from the original processing point (that is, the irradiation position before changing the positional relationship between the laser incident portion and the lens), so that laser processing including the laser incident portion is performed. It is necessary to adjust the irradiation position of the laser beam by changing the positional relationship between the head and the workpiece.
- the laser The light irradiation position may overlap the attached device.
- the energy intensity distribution of the laser beam irradiated to the workpiece can be adjusted, and the relative position relationship between the laser processing head and the workpiece or the accessory device can be adjusted without adjusting the relative positional relationship between the laser processing head and the workpiece or the accessory device. It is desirable to be able to adjust the laser irradiation position (condensing position).
- At least one embodiment of the present invention is a laser capable of both adjusting the energy intensity distribution of the laser light irradiated to the workpiece and adjusting the laser irradiation position on the workpiece. It is an object of the present invention to provide a machining head, a laser machining apparatus, and a laser machining head adjustment method.
- a laser processing head includes: A laser irradiation unit; A collimating optical system for collimating the laser light from the laser irradiation unit; A condensing optical system for condensing laser light that has passed through the collimating optical system, and a laser processing head comprising: The optical system including the collimating optical system and the condensing optical system is configured such that coma aberration can occur in the laser light that has passed through the condensing optical system, At least one of the laser irradiation unit or the collimating optical system is changed so as to change a relative position of the collimating optical system with respect to the laser irradiation unit in a first direction orthogonal to a central axis of the laser irradiation unit or the collimating optical system.
- a laser processing head and a laser processing capable of simultaneously adjusting the energy intensity distribution of laser light irradiated to a workpiece and adjusting the laser irradiation position on the workpiece.
- An apparatus and a method for adjusting a laser processing head are provided.
- FIG. 1 is a schematic diagram of a laser processing apparatus according to an embodiment.
- the laser processing apparatus 1 includes a laser oscillator 2 for oscillating a laser beam, an optical fiber 4, a laser processing head 6, and a processing stage 8.
- the laser oscillator 2 may be, for example, a fiber laser oscillator that uses the optical fiber 4 as a medium. In the case of a fiber laser oscillator, laser light having a wavelength of 1070 nm to 1080 nm can be obtained. The laser light generated by the laser oscillator 2 is transmitted to the optical fiber 4.
- the laser oscillator 2 is not limited to a fiber laser. In some embodiments, the laser oscillator 2 may be, for example, a CO2 laser oscillator or a YAG laser oscillator.
- the optical fiber 4 is connected to the laser oscillator 2 on one end side and connected to the laser processing head 6 on the other end side.
- the optical fiber 4 is configured to transmit laser light from the laser oscillator 2 to the laser processing head 6.
- the laser light oscillated by the laser oscillator 2 is sent to the laser processing head 6 through the optical fiber 4.
- the laser processing head 6 has a condensing lens, and the laser light from the laser oscillator 2 is condensed by the condensing lens to increase the energy density.
- the workpiece 100 placed on the processing stage 8 is irradiated.
- the workpiece 100 is processed (for example, cut or welded) by the laser light thus irradiated.
- the workpiece 100 may be formed from a metal or an alloy.
- the processing is performed by moving the processing position (that is, the laser irradiation position) of the workpiece 100 by the laser irradiation from the laser processing head 6. .
- the laser processing head 6 is fixed, and the processing stage 8 on which the workpiece 100 is placed is a laser irradiated to the laser processing head 6 from the optical fiber 4.
- a plane (XY plane; see FIG. 1) perpendicular to the light incident axis is configured to be movable.
- the workpiece 100 placed on the processing stage 8 is movable with respect to the laser processing head 6 and the laser beam in the XY plane described above.
- the processing stage 8 and the workpiece 100 are fixed, and the laser processing head 6 may be provided so as to be movable in the above-described XY plane. .
- the workpiece 100 can be moved relative to the laser processing head 6 to cut or weld the workpiece 100 linearly or curvedly.
- the laser processing head 6 performs laser irradiation for irradiating the workpiece 100 with the laser light L from the optical fiber 4 (see FIG. 1). And a collimating lens 16 as a collimating optical system, and a condensing lens 18 as a condensing optical system.
- the laser irradiation unit 14, the collimator lens 16, and the condenser lens 18 are arranged in this order in the direction of the central axis O3 of the condenser lens.
- the laser irradiation unit 14 is held by the holding unit 21 so that the central axis O1 of the laser irradiation unit 14 is not shaken.
- the collimating lens 16 and the condensing lens 18 are provided inside the housing 12 and are supported by the housing 12 via the first lens holding portion 22 and the second lens holding portion 25, respectively, or directly.
- the holding unit 21 that holds the laser irradiation unit 14 is provided separately from the housing 12. Further, the collimating lens 16 is fixed to the housing 12 as the first lens holding portion 22, and the condenser lens 18 is supported by the housing 12 via the second lens holding portion 25.
- the housing 12 that houses the optical system functions as a holding unit 21 that holds the laser irradiation unit 14.
- the collimating lens 16 is supported on the housing 12 via the first lens holding portion 22, and the condenser lens 18 is supported on the housing 12 via the second lens holding portion 25.
- the collimating lens 16 (collimating optical system) is configured to collimate the laser light emitted from the laser irradiation unit 14 with a divergence angle, that is, to adjust the laser light to be in a parallel state. Yes.
- the condensing lens 18 (condensing optical system) is configured to condense the laser light that has passed through the collimating lens 16 (collimating optical system). As described above, the work piece is processed by irradiating the work piece with laser light having a high energy density that is condensed by the condenser lens 18.
- the laser processing head 6 shown in FIGS. 2 and 3 is a laser cutting head provided with an assist gas nozzle 26 for blowing the cutting assist gas G toward the processing position during laser processing.
- the assist gas nozzle 26 has a gas supply port 28 and a gas outlet 30, and blows the cutting assist gas G supplied from the gas supply port 28 toward the processing position from the gas outlet 30 during laser processing. It comes out.
- the laser processing head 6 may be a laser welding head used for laser welding.
- the laser processing head 6 may be provided with a welding wire supply device for supplying a welding wire to the processing position and an assist gas nozzle for blowing a welding assist gas toward the processing position.
- the optical system including the collimating lens 16 (collimating optical system) and the condensing lens 18 (condensing optical system) passes through the condensing lens 18 (condensing optical system).
- the laser processing head 6 moves the first moving unit 20 for moving at least one of the laser irradiation unit 14 or the collimating lens 16 (collimating optical system) and the condensing lens 18 (condensing optical system). And a second moving part 24 for the purpose.
- the first moving unit 20 is a laser in a first direction (direction D1 or D2 in FIGS. 2 and 3) orthogonal to the central axis O1 of the laser irradiation unit 14 or the central axis O2 of the collimating lens 16 (collimating optical system).
- At least one of the laser irradiation unit 14 and the collimating lens 16 is moved so as to change the relative position of the collimating lens 16 (collimating optical system) with respect to the irradiation unit 14.
- the second moving unit condenses light on the collimating lens 16 (collimating optical system) in a second direction (direction D3 in FIGS. 2 and 3) orthogonal to the central axis O3 of the condensing lens 18 (condensing optical system).
- the condensing lens 18 (condensing optical system) is moved so as to change the relative position of the lens 18 (condensing optical system).
- the holding unit 21 that holds the laser irradiation unit 14 functions as the first moving unit 20, and the second lens holding unit 25 that holds the condenser lens 18 is the second moving unit 24. It is supposed to function as. That is, the holding part 21 is movable in a plane orthogonal to the central axis O2 of the collimating lens 16 (collimating optical system). Thereby, the relative position of the collimating lens 16 (collimating optical system) with respect to the laser irradiation unit 14 changes in the first direction orthogonal to the central axis O2 of the collimating lens 16 (collimating optical system).
- the second lens holding part 25 is movable in a plane orthogonal to the central axis O3 of the condenser lens 18.
- the relative position of the condensing lens 18 (condensing optical system) with respect to the collimating lens 16 (collimating optical system) changes in the second direction orthogonal to the central axis O3 of the condensing lens 18 (condensing optical system). It is like that.
- the first lens holding unit 22 that holds the collimating lens 16 functions as the first moving unit 20
- the second lens holding unit 25 that holds the condenser lens 18 is the first. 2 functions as a moving unit 24. That is, the first lens holding unit 22 is movable in a plane orthogonal to the central axis O2 of the collimating lens 16 (collimating optical system). Thereby, the relative position of the collimating lens 16 (collimating optical system) with respect to the laser irradiation unit 14 changes in the first direction orthogonal to the central axis O2 of the collimating lens 16 (collimating optical system).
- the second lens holding part 25 is movable in a plane orthogonal to the central axis O3 of the condenser lens 18.
- the relative position of the condensing lens 18 (condensing optical system) with respect to the collimating lens 16 (collimating optical system) changes in the second direction orthogonal to the central axis O3 of the condensing lens 18 (condensing optical system). It is like that.
- the central axes O1 to O3 extend in the same direction. Therefore, the planes orthogonal to the central axes O1 to O3 are parallel to each other. Further, the planes orthogonal to the central axes O1 to O3 may be planes parallel to the XY plane in the coordinates shown in FIG.
- known means can be used as means for moving the laser irradiation unit 14, the collimating lens 16 or the condenser lens 18.
- an XY stage that can move the holding object in two directions orthogonal to each other can be used as the first moving unit 20 or the second moving unit 24.
- each of the collimating optical system and the condensing optical system is configured by one lens (collimating lens 16 and condensing lens 18).
- each of the collimating optical system and the condensing optical system may include two or more lenses.
- one or more reflecting mirrors may be provided between the collimating optical system and the condensing optical system.
- the optical path of the laser light traveling from the collimating optical system to the condensing optical system can be bent into, for example, an L shape or an N shape by reflection on the reflecting mirror, and laser irradiation
- the laser processing head 6 can be made compact compared to the case where the portion 14, the collimating optical system, and the condensing optical system are linearly arranged.
- FIG. 4 is a flowchart showing an outline of a method for adjusting the laser processing head 6 according to an embodiment.
- FIGS. 5 to 18 are diagrams showing an example of the adjustment process of the laser processing head 6 shown in FIG. 2 or FIG. 3, and in the order of (A), (B), and (C), the laser irradiation unit 14 and the collimating lens. It shows that either 16 or the condensing lens 18 is moved.
- the arrow in a figure shows the moving direction of these members.
- FIG. 5 shows the initial state before adjustment of the laser processing head 6
- (B) shows the state after the laser irradiation unit 14 is moved from the initial position (indicated by a two-dot chain line).
- FIGS. 5A to 18B show the position of the light beam on the XY plane at the irradiation position P on the workpiece 100, and the position P1 indicates the light near the center of the light beam.
- the position which condenses is shown, and the position P2 shows the position where the light outside a light beam condenses.
- the illustration is simplified and only main components of the laser processing head 6 are shown.
- the laser processing head 6 shown in FIG. 2 or 3 can adjust the energy intensity distribution and the irradiation position P according to the procedure described below (that is, the laser processing head 6 is adjusted). be able to).
- the energy intensity of the laser beam output from the laser processing head 6 on the processing surface of the workpiece 100 is adjusted to a desired distribution (first adjusting step; S2).
- the irradiation position P on the processing surface of the workpiece 100 is adjusted (second adjusting step; S4).
- First adjustment step S2 In the first adjustment step, either the following first movement step or second movement step is performed. That is, in the first movement step, the collimating lens 16 is moved relative to the laser irradiation unit 14 in the first direction perpendicular to the central axis O1 of the laser irradiation unit 14 or the central axis O2 of the collimating lens 16 by the first moving unit 20 described above. At least one of the laser irradiation unit 14 and the collimating lens 16 is moved so as to change the relative position.
- the condensing lens is changed by the above-described second moving unit 24 so that the relative position of the condensing lens 18 with respect to the collimating lens 16 is changed in the second direction orthogonal to the central axis O3 of the condensing lens 18. 18 is moved.
- the first adjustment step one of the first movement step and the second movement step described above in which the amount of change in coma aberration is greater is executed. That is, the change amount of the coma aberration with respect to the movement amount of the collimating lens 16 with respect to the laser irradiation unit 14 in the first direction by the first moving unit 20 and the condensing lens with respect to the collimating lens 16 in the second direction by the second moving unit 24.
- the coma aberration change amount with respect to the movement amount of 18 is compared, and the larger one is executed.
- the energy intensity of the laser beam output from the laser processing head 6 on the processing surface of the workpiece 100 is adjusted to a desired distribution.
- the amount of change in coma aberration described above refers to the position P1 (see FIG. 5 and the like) where light near the center of the light beam at the irradiation position P on the workpiece 100 and the light outside the light beam collect. It may be the amount of change in the distance from the lighted position P2 (see FIG. 5 etc.).
- Step S4 After the first adjustment step S2 described above, in the second adjustment step S4, the other of the first movement step or the second movement step (that is, coma aberration) so as to adjust the irradiation position P on the processing surface of the workpiece 100. ) Is performed while the amount of change is smaller. In this way, in the second adjustment step, the irradiation position P on the processing surface of the workpiece 100 is adjusted.
- the laser processing head 6 in FIG. 5 corresponds to the laser processing head 6 shown in FIG. That is, in the laser processing head 6 in FIG. 5, the optical system including the collimating lens 16 and the condensing lens 18 is configured so that coma aberration occurs in the laser light that has passed through the condensing lens 18. Further, in the laser processing head 6 in FIG. 5, the laser irradiation unit 14 can be moved by the first moving unit 20, and the condenser lens 18 can be moved by the second moving unit 24. Further, the laser processing head 6 in FIG. 5 is configured such that the amount of change in coma aberration is greater when the first moving unit 20 is operated than when the second moving unit 24 is operated. ing.
- the laser irradiation unit 14 the collimating lens 16, and the condensing lens 18 are arranged on the same axis, the optical axes of the collimating lens 16 and the condensing lens 18, and the laser irradiation.
- the optical axis of the incident light from the section 14 is coincident with the axis Q.
- the energy intensity distribution in the X direction at the irradiation position P is biased, the energy density is high at one end in the X direction, and the energy density decreases toward the other end. .
- the first adjustment step S2 is performed to adjust the energy intensity distribution. Specifically, from the state shown in FIG. 5A, the first moving unit 20 in which the amount of change in coma aberration is larger is activated among the first moving unit 20 and the second moving unit 24, and the laser irradiation unit. 14 is moved in the first direction to change the relative position of the collimating lens 16 with respect to the laser irradiation unit 14 (see FIG. 5B). As a result, the laser light from the condensing lens 18 is displaced from the position P1 where the light near the center of the light beam is condensed and the position P2 where the outside light is condensed (coma aberration occurs; FIG. 5B). ) (B)).
- the energy intensity distribution can be changed by utilizing the occurrence of such coma aberration.
- the energy intensity distribution in the X direction is compared with that in FIGS. 5A and 5A by moving the laser irradiation unit 14 in the X direction by the first moving unit 20. They are flattened (see FIGS. 5B and 5A).
- the first adjustment step S2 one of the first moving unit 20 and the second moving unit 24 in which the change amount of the coma aberration is larger (the first moving unit 20 in FIG. 5) is operated.
- the energy intensity distribution at the laser irradiation position P can be effectively changed. Therefore, it is possible to appropriately adjust the energy intensity distribution at the laser irradiation position P by appropriately operating one of the first moving unit 20 and the second moving unit 24 (the first moving unit 20 in the case of FIG. 5). it can.
- the laser beam has a certain extent at the laser irradiation position P (in the figure, it is circular, but it may be elliptical), and the front and both sides of the laser beam traveling direction with respect to the workpiece are It has a dominant influence on the roughness of the cut surface. For example, when a workpiece is hollowed out, the laser beam contributes to cutting over the entire circumference. Therefore, if the energy intensity distribution at the laser irradiation position P is flattened, the degree of roughness of the cut surface can be made uniform regardless of the cutting location.
- the energy intensity distribution at the laser irradiation position P can be adjusted appropriately.
- the irradiation position P (or condensing position) of the laser beam on the workpiece 100 is deviated from the axis Q of the initial position (see FIG. 5A) that is the processing point (see FIG. 5B). .
- the second adjustment step S4 is performed to move the irradiation position P shifted as a result of the first adjustment step S2 to the initial processing point.
- the second moving unit 24 in which the amount of change in coma aberration is smaller is operated among the first moving unit 20 and the second moving unit 24, and the condensing lens. 18 is moved in the X-axis direction (second direction), and the relative position of the condenser lens 18 with respect to the collimating lens 16 is changed in the second direction (see FIG. 5C).
- the irradiation position P (condensing position) of the laser light from the condensing lens 18 is moved in the second direction (X direction), for example, as shown in FIG.
- the position of the axis Q which is the position).
- the laser is appropriately operated.
- the light irradiation position P can be adjusted appropriately. Accordingly, it is possible to correct the deviation of the laser irradiation position P that occurs when the energy intensity distribution is adjusted in the first adjustment step S2.
- FIG. 19 is a diagram showing a typical adjustment process of the laser processing head, and any one of the laser irradiation unit 14, the collimating lens 16 and the condenser lens 18 is moved in the order of (A) and (B). Indicates that
- the optical system including the collimating lens 16 and the condensing lens 18 has a coma.
- the aberration is corrected so that the coma aberration does not occur in the laser light that has passed through the condenser lens 18 or becomes very small.
- the laser irradiation unit 14 the collimating lens 16, and the condensing lens 18 are arranged on the same axis.
- the optical axis of the optical lens 18 and the optical axis of the incident light from the laser irradiation unit 14 coincide with each other at the axis Q.
- the energy intensity distribution in the X direction at the irradiation position P is biased, the energy density is high at one end in the X direction, and the energy density decreases toward the other end. .
- the laser is started from the initial state shown in FIG. Even if the irradiation unit 14 is moved to change the relative position of the collimating lens 16 with respect to the laser irradiation unit 14 (see FIG. 19B), the coma aberration of the optical system described above is corrected.
- the laser beam is focused at one point at the condensing position by the lens 18 (that is, the laser irradiation position P on the workpiece 100). For this reason, the energy intensity distribution at the laser irradiation position P (see FIGS. 19B and 19A) is not significantly different from that before the change in the relative position (see FIGS. 19A and 19A). Therefore, with such a laser processing head, it is difficult to effectively adjust the energy intensity distribution.
- the amount of change in coma aberration is larger in the first moving unit 20 and the second moving unit 24.
- the energy intensity distribution at the laser irradiation position P can be effectively changed by operating one that occurs (for example, the first moving unit 20 in FIG. 5). Therefore, it is possible to appropriately adjust the energy intensity distribution at the laser irradiation position P by appropriately operating one of the first moving unit 20 and the second moving unit 24 (the first moving unit 20 in the case of FIG. 5). it can.
- the second adjustment step one of the first moving unit 20 and the second moving unit 24 in which the amount of change in coma aberration is smaller (the second moving unit 24 in the case of FIG. 5) is appropriately operated.
- the irradiation position P of the laser beam can be adjusted appropriately. Accordingly, it is possible to correct the deviation of the laser irradiation position P that occurs when the energy intensity distribution is adjusted in the first adjustment step S2.
- the adjustment of the energy intensity distribution of the laser light irradiated to the workpiece 100 and the adjustment of the laser irradiation position P on the workpiece 100 are independent. Can be performed at the same time.
- the adjustment of the energy intensity distribution in the first adjustment step S2 will be described mainly with respect to flattening the energy intensity distribution, but the present invention is not limited to this, and the desired energy intensity is described. Includes those that adjust the distribution. For example, when dividing a workpiece into two parts and discarding one as a product and the other as scrap, there is no problem even if the scraped surface is rough, so the laser that contacts the workpiece on the scrap side It is not necessary for the light region to have a strong energy distribution. In other words, since it is sufficient to make the laser beam region in contact with the workpiece on the product side a strong energy distribution, it is also possible to adjust the energy distribution so that the energy intensity distribution has a certain degree of bias. It is included in the present invention.
- the laser processing head 6 in FIG. 6 corresponds to the laser processing head shown in FIG. 2 as in the example shown in FIG. That is, in the laser processing head 6 shown in FIG. 6, the optical system including the collimating lens 16 and the condensing lens 18 is configured so that coma aberration occurs in the laser light that has passed through the condensing lens 18.
- the laser irradiation unit 14 can be moved by the first moving unit 20, and the condenser lens 18 can be moved by the second moving unit 24, as in FIG. 5. It has become.
- the change in coma aberration is greater when the second moving unit 24 is operated than when the first moving unit 20 is operated. The amount is configured to be larger.
- the moving part (the first moving part 20 or the second moving part 24) to be operated in the first adjustment step S2 and the second adjustment step S4 is the case in FIG. Different. That is, in the laser processing head 6 shown in FIG. 6, the first moving unit 20 and the second moving unit 24 of the first moving unit 20 and the second moving unit 24 are operated in the first adjustment step S ⁇ b> 2. Then, the collimating lens 16 is moved in the second direction described above. Thereby, the relative position of the condensing lens 18 with respect to the collimating lens 16 can be moved in the second direction, and the energy intensity distribution at the laser irradiation position P can be effectively changed.
- the energy intensity distribution at the laser irradiation position P can be adjusted appropriately (see FIG. 6B).
- the first moving unit 20 and the second moving unit 24 of the first moving unit 20 in which the change amount of the coma aberration is smaller are appropriately operated to move the laser irradiation unit 14.
- the relative position of the collimating lens 16 with respect to the laser irradiation unit 14 in the first direction described above can be moved to appropriately adjust the irradiation position P of the laser light (see FIG. 6C).
- difference (refer FIG. 6 (B)) of the laser irradiation position which arises when adjusting energy intensity distribution in 1st adjustment step S2 can be correct
- FIGS. 7 and 8 corresponds to the laser processing head 6 shown in FIG. 3, but the other points are the same as the examples shown in FIGS. That is, in the laser processing head 6 shown in FIGS. 7 and 8, the optical system including the collimating lens 16 and the condensing lens 18 is configured so that coma aberration occurs in the laser light that has passed through the condensing lens 18. Further, in the laser processing head 6 shown in FIGS. 7 and 8, the collimating lens 16 can be moved by the first moving unit 20, and the condenser lens 18 can be moved by the second moving unit 24. Further, in the laser processing head 6 shown in FIG. 7, as in the case shown in FIG.
- the change in coma aberration is greater when the first moving unit 20 is operated than when the second moving unit 24 is operated.
- the first moving unit 20 is operated when the second moving unit 24 is operated as in the case shown in FIG. 6.
- the change amount of the coma aberration is larger.
- the first movement unit 20 in which the change amount of the coma aberration is larger among the first movement unit 20 and the second movement unit 24. Is operated to move the collimating lens 16. Accordingly, the energy intensity distribution at the laser irradiation position P can be effectively changed by moving the relative position of the collimating lens 16 with respect to the laser irradiation unit 14 in the first direction (see FIG. 7B). .
- the collimating lens 16 is moved by appropriately operating the second moving unit 24 in which the amount of change in coma aberration is smaller, out of the first moving unit 20 and the second moving unit 24. Move in the second direction. Thereby, the relative position of the condensing lens 18 with respect to the collimating lens 16 can be moved in the second direction to appropriately adjust the irradiation position P of the laser light (see FIG. 7C).
- the second moving unit 24 in which the change amount of the coma aberration is larger among the first moving unit 20 and the second moving unit 24. Is appropriately operated to move the collimating lens 16 in the second direction.
- the collimator lens 16 is moved by operating the first moving unit 20 in which the change amount of the coma aberration is smaller, out of the first moving unit 20 and the second moving unit 24.
- the relative position of the collimating lens 16 with respect to the laser irradiation unit 14 in the first direction described above can be moved to appropriately adjust the irradiation position P of the laser light (see FIG. 8C).
- FIGS. 9 and 10 correspond to the laser processing head 6 shown in FIG. 2, and are similar to the examples shown in FIGS.
- the difference from FIGS. 5 and 6 is that the energy intensity distribution at the laser irradiation position P is already in the initial state (see FIGS. 9A and 10A). That is, the laser beam irradiation position P (condensing position) is deviated from the axis Q indicating the processing point in the X direction (first direction, second direction).
- the first adjustment step S2 is performed in a state where the energy distribution in the initial state is flattened, and the deviation of the irradiation position P caused by this adjustment is performed by performing the second adjustment step S4. Correct it.
- the second adjustment step S4 in the example shown in FIG. 9 is the same as the second adjustment step S4 in the example shown in FIG. 5, and the second adjustment step S4 in the example shown in FIG. 10 is the same as in the example shown in FIG. Since it is the same as 2nd adjustment step S4, description is abbreviate
- FIGS. 11 and 12 correspond to the laser processing head 6 shown in FIG. 2, respectively, and are similar to the examples shown in FIGS. 11 and 12 differs from FIGS. 5 and 6 in the initial state (see FIGS. 11A and 12A) in the irradiation position P (condensing position) of the laser beam. ) Is shifted from the axis Q indicating the processing point in the X direction (first direction, second direction).
- the energy intensity distribution can be adjusted by performing the first adjustment step S2 as in the examples shown in FIGS. 5 and 6 (FIG. 11B).
- the irradiation position P of the laser beam can be adjusted by performing the second adjustment step S4 (see FIG. 12B) (see FIGS. 11C and 12C).
- the irradiation position P (condensing position) of the laser beam is shifted from the axis Q indicating the processing point in the X direction (first direction, second direction).
- FIGS. 13 and 14 correspond to the laser processing head 6 shown in FIG. 2, and are similar to the examples shown in FIGS.
- the difference from FIGS. 11 and 12 is that the laser beam irradiation position P (condensing position) in the initial state (see FIGS. 13A and 14A).
- the X direction first direction, second direction
- the processing point on the opposite side across the axis Q indicating the processing point.
- the energy intensity is obtained by performing the first adjustment step S2 in the same manner as in the examples shown in FIGS. 11 and 12 (that is, as in the examples shown in FIGS. 5 and 6).
- the distribution can be adjusted (see FIGS. 13B and 14B),
- the second adjustment step S4 the irradiation position P of the laser beam can be adjusted (see FIGS. 13C and 14C).
- the irradiation position of the laser beam. P moved from the initial position to the opposite side across the axis Q indicating the machining point.
- the irradiation position P can be adjusted appropriately by moving the first moving unit 20 or the second moving unit 24 in the same direction as the example shown in FIGS.
- FIGS. 15 and 16 correspond to the laser processing head 6 shown in FIG. 2 and are similar to the examples shown in FIGS. 13 and 14.
- the difference from FIGS. 13 and 14 is that the laser beam irradiation position P (condensing position) in the initial state (see FIGS. 15A and 16A).
- the X direction first direction, second direction
- the amount of shift is larger.
- the energy intensity is obtained by performing the first adjustment step S2 in the same manner as in the examples shown in FIGS. 13 and 14 (that is, in the same manner as in the examples shown in FIGS. 5 and 6).
- the distribution can be adjusted (see FIGS. 15B and 16B), and the irradiation position P of the laser beam can be adjusted by performing the second adjustment step S4 (FIG. 15 ( C) and FIG. 16 (C)).
- the irradiation position P of the laser beam is From the position in the initial state, it moved in the X direction so as to approach the axis Q (machining point), but within a range not exceeding the machining point.
- the irradiation position P is appropriately adjusted by moving the first moving unit 20 or the second moving unit 24 in the opposite direction in the X direction to the example shown in FIGS. (See FIGS. 15C and 16C).
- FIGS. 17 and 18 are diagrams showing an example of the adjustment process of the laser processing head 6 when viewed from the same position as (A2).
- the examples shown in FIGS. 17 and 18 correspond to the laser processing head 6 shown in FIG. 2, and are similar to the examples shown in FIGS.
- the difference from FIGS. 15 and 16 is that the laser beam irradiation position P (condensing position) in the initial state (see FIGS. 17A and 18A).
- P condensing position in the initial state (see FIGS. 17A and 18A).
- the energy intensity distribution biased in the X direction in the initial state is flattened.
- the first adjustment step S2 one of the first moving unit 20 and the second moving unit 24 in which the amount of change in coma aberration is larger is activated to move the laser irradiation unit 14 or the condenser lens 18 in the X direction.
- the energy intensity distribution in the X direction at the laser irradiation position P is adjusted (see FIGS. 17B and 18B).
- one of the first moving unit 20 and the second moving unit 24 in which the change amount of the coma aberration is smaller is activated to move the condenser lens 18 or the laser irradiation unit 14 in the X direction. And appropriately move in the Y direction.
- the relative position of the collimating lens 16 with respect to the laser irradiation unit 14 or the relative position of the condensing lens 18 with respect to the collimating lens 16 in the X direction and the Y direction can be moved to appropriately adjust the irradiation position P of the laser light. (See FIGS. 17C and 18C).
- the first moving unit 20 in the XY plane, is moved so as to move the laser irradiation unit 14 along a direction from a position where the energy intensity is low to a high position. Activate (ie, perform the first movement step). For example, in the examples shown in FIGS. 5, 11, 13, 15, and 17, in the initial state (see (A) in each figure), there is a bias in the energy intensity distribution in the X direction, and the first adjustment step In S2, the energy intensity distribution is adjusted to be flattened by moving the laser irradiation unit 14 along the direction from the position where the energy intensity is low to the position where the energy intensity is high in the X direction (( B)).
- the first moving unit 20 is configured to move the collimating optical system along the direction from the position where the energy intensity is high to the position where it is low in the XY plane. Is activated (ie, the first movement step is performed).
- the first movement step is performed.
- the energy intensity is high in the X direction.
- the energy intensity distribution is adjusted so as to be flattened by moving the collimating lens 16 along the direction from low to low (see (B) of each figure).
- the second moving unit in the first adjustment step S2, in the XY plane, is configured to move the condensing optical system along a direction from a position where the energy intensity is high to a position where the energy intensity is low. 24 is activated (ie, the second movement step is performed).
- the energy intensity distribution in the examples shown in FIGS. 6, 8, 12, 14, 16, and 18, in the initial state (see (A) in each figure), there is a bias in the energy intensity distribution in the X direction.
- the energy intensity distribution in 1 adjustment step S2, in the X direction, the energy intensity distribution is adjusted to be flattened by moving the condenser lens 18 along the direction from the position where the energy intensity is high to the position where the energy intensity is low (each (See (B) in the figure).
- the first moving unit 20 or the second moving unit 24 is appropriately operated according to the direction of the energy intensity distribution, and the laser irradiation unit 14, the collimating lens 16 or the condenser lens 18 is appropriately moved.
- the energy intensity distribution can be flattened.
- the condensing optical system in the second adjustment step S4, is moved along the direction from the irradiation position P after the first adjustment step S2 toward the processing point on the processing surface of the workpiece 100.
- the second moving unit 24 is operated so that the second moving step is performed.
- the irradiation position P after the first adjustment step S ⁇ b> 2 on the processing surface of the workpiece 100 By operating the second moving unit 24 so as to move the condenser lens 18 along the direction toward the processing point (axis Q) described above, the irradiation position P approaches the processing point. P is adjusted.
- the laser irradiation unit 14 is moved along the direction from the processing point toward the irradiation position P after the first adjustment step S2 on the processing surface of the workpiece 100.
- the 1st moving part 20 is operated so that it may move (namely, a 1st movement step is performed).
- the first adjustment step from the above processing point (axis Q) on the processing surface of the workpiece 100.
- the irradiation position P is adjusted so that the irradiation position P approaches the processing point by operating the first moving unit 20 so as to move the laser irradiation unit 14 along the direction toward the irradiation position P after S2. It is carried out.
- a collimating optical system is formed on the processing surface of the workpiece 100 along the direction from the irradiation position P after the first adjustment step S2 toward the processing point.
- the first moving unit 20 is actuated so as to move (i.e., the first moving step is executed).
- the first moving unit 20 in the second adjustment step S ⁇ b> 4, along the direction from the irradiation position P after the first adjustment step S ⁇ b> 2 toward the processing point (axis Q) on the processing surface of the workpiece 100.
- the second adjustment step S4 by moving the condenser lens 18 or the collimating lens 16 along the direction from the laser irradiation position P after the first adjustment step S2 toward the processing point (axis Q), or By moving the laser irradiation unit 14 along the direction from the processing point (axis Q) toward the irradiation position P after the first adjustment step S2, the laser irradiation position P on the processing surface is changed to a desired position (that is, the processing point). ) Can be moved appropriately.
- the direction of the moving direction of the condensing optical system with respect to the collimating optical system according to is opposite.
- the laser by the operation of the first moving unit 20 that is, in the first moving step.
- the energy intensity is obtained by performing the first movement step as described above. It is possible to flatten the distribution and correct the deviation of the irradiation position P.
- the energy intensity distribution on the processing surface of the workpiece 100 is measured, and based on the measurement result of the energy intensity distribution, the laser irradiation unit 14, the collimating lens 16 or the collecting lens.
- the moving direction or moving amount of the optical lens 18 may be determined.
- the energy intensity distribution of the laser beam at the processing point may be measured by, for example, a beam mode measuring device (beam profiler).
- a laser processing apparatus 1 measures an energy intensity distribution on the processing surface of the workpiece 100 of the laser processing head 6 and the laser beam output from the laser processing head 6 described above.
- You may provide the measurement part (not shown) comprised so that, and a control part (not shown).
- the control unit is configured to determine the moving direction or the moving amount of the laser irradiation unit 14, the collimating lens 16, or the condenser lens 18 based on the measurement result of the energy intensity distribution by the measuring unit.
- the measurement unit may be, for example, the above-described beam mode measurement device.
- the moving direction or moving amount of the laser irradiation unit 14, the collimating lens 16, or the condenser lens 18 is determined based on the observation result of the processing trace of the workpiece 100. You may do it.
- the measurement result of the energy intensity distribution at the processing point of the workpiece 100 or the observation result of the processing trace of the workpiece 100 is obtained.
- the energy intensity distribution at the laser irradiation position P can be adjusted more accurately by determining the moving direction or moving amount of the laser irradiation unit 14, the collimating lens 16 or the condenser lens 18.
- a laser processing head includes: A laser irradiation unit; A collimating optical system for collimating the laser light from the laser irradiation unit; A condensing optical system for condensing laser light that has passed through the collimating optical system, and a laser processing head comprising: The optical system including the collimating optical system and the condensing optical system is configured such that coma aberration can occur in the laser light that has passed through the condensing optical system, At least one of the laser irradiation unit or the collimating optical system is changed so as to change a relative position of the collimating optical system with respect to the laser irradiation unit in a first direction orthogonal to a central axis of the laser irradiation unit or the collimating optical system.
- the relative position of the collimating optical system with respect to the laser irradiation unit or the collimating optical system Even if the relative position of the condensing optical system is changed, since the laser beam is focused at one point at the condensing position by the condensing optical system (that is, the laser irradiation position on the workpiece), the energy intensity at the condensing position The distribution does not change much compared to before the change in the relative position described above.
- the optical system including the collimating optical system and the condensing optical system is configured so that coma aberration can occur in the laser light that has passed through the condensing optical system.
- the laser beam from the condensing optical system is changed by changing the relative position of the collimating optical system with respect to the laser irradiation unit by the unit, or by changing the relative position of the condensing optical system with respect to the collimating optical system by the second moving unit.
- the position where the light near the center of the light beam collects is shifted from the position where the outside light collects (coma aberration occurs).
- the energy intensity distribution at the laser irradiation position can be effectively changed by operating one of the first moving unit and the second moving unit, which produces a larger amount of change in coma aberration. Therefore, by appropriately operating one of the first moving unit and the second moving unit, the energy intensity distribution at the laser irradiation position can be adjusted appropriately.
- the other of the first moving unit and the second moving unit (one of which the amount of change in coma aberration is smaller) is independent of the one of the first moving unit and the second moving unit. Therefore, by operating the other, it is possible to adjust the laser irradiation position without greatly changing the energy intensity distribution at the laser irradiation position.
- Each of the collimating optical system and the condensing optical system includes at least one lens, The laser irradiation unit, the collimating optical system, and the condensing optical system are arranged in this order in a direction along the central axis of the condensing optical system.
- each of the collimating optical system and the condensing optical system includes at least one lens, and the laser irradiation unit, the collimating optical system, and the condensing optical system are connected to the condensing optical system. Since they are arranged in this order in the direction along the central axis, the configuration (1) can be realized with a compact configuration.
- a laser processing apparatus includes: The laser processing head according to (1) or (2) above; A measurement unit configured to measure an energy intensity distribution on a processing surface of a workpiece of laser light output from the laser processing head; A control unit configured to determine a moving direction or a moving amount of the laser irradiation unit, the collimating optical system or the condensing optical system based on a measurement result by the measuring unit; Is provided.
- the laser irradiation unit, the collimating optical system, or the condensing optical system is moved by the first moving unit or the second moving unit based on the measurement result of the energy intensity distribution by the measuring unit. Since the direction or amount of movement is determined, the energy intensity distribution at the laser irradiation position can be changed more accurately.
- a method for adjusting a laser processing head includes: A laser processing head comprising: a laser irradiation unit; a collimating optical system for collimating laser light from the laser irradiation unit; and a condensing optical system for condensing the laser light that has passed through the collimating optical system.
- the optical system including the collimating optical system and the condensing optical system is configured such that coma aberration can occur in the laser light that has passed through the condensing optical system, At least one of the laser irradiation unit or the collimating optical system is changed so as to change a relative position of the collimating optical system with respect to the laser irradiation unit in a first direction orthogonal to a central axis of the laser irradiation unit or the collimating optical system.
- the optical system including the collimating optical system and the condensing optical system is configured so that coma aberration can occur in the laser light that has passed through the condensing optical system.
- the energy intensity distribution at the laser irradiation position can be appropriately adjusted by appropriately performing one of the first movement step and the second movement step.
- the other of the first movement step and the second movement step (one of which the coma aberration change amount is smaller) is made independent of the one of the first movement step and the second movement step. Therefore, by performing the other, it is possible to adjust the laser irradiation position without largely changing the energy intensity distribution at the laser irradiation position. Therefore, by appropriately performing the other of the first movement step and the second movement step, it is possible to correct a laser irradiation position shift that occurs when adjusting the energy intensity distribution. Therefore, according to the method (4), it is possible to achieve both adjustment of the energy intensity distribution of the laser light applied to the workpiece and adjustment of the laser irradiation position on the workpiece.
- Each of the collimating optical system and the condensing optical system includes at least one lens, The laser irradiation unit, the collimating optical system, and the condensing optical system are arranged in this order in a direction along the central axis of the condensing optical system.
- each of the collimating optical system and the condensing optical system includes at least one lens, and the laser irradiation unit, the collimating optical system, and the condensing optical system are connected to the condensing optical system. Since they are arranged in this order in the direction along the central axis, the method (5) can be realized with a compact configuration.
- the first adjustment step one of the first movement step and the second movement step in which the amount of change in coma aberration is larger is performed, and the processed surface of the workpiece is processed. Since the adjustment of the energy intensity distribution of the laser beam at is performed, the energy intensity distribution at the laser irradiation position can be effectively changed using a larger amount of coma aberration change.
- the laser irradiation position is adjusted by performing the other of the first movement step and the second step (one of which the coma aberration change amount is smaller). The laser irradiation position can be adjusted without greatly changing the energy intensity distribution at the laser irradiation position. Therefore, according to the method (6), it is easy to achieve both adjustment of the energy intensity distribution of the laser light irradiated to the workpiece and adjustment of the laser irradiation position on the workpiece.
- the energy intensity distribution is measured, and a moving direction or moving amount of the laser irradiation unit, the collimating optical system, or the condensing optical system is determined based on the measurement result of the energy intensity distribution. .
- the laser irradiation unit, the collimating optical system, or the condensing optical system is based on the measurement result of the energy intensity distribution. Since the moving direction or moving amount is determined, the energy intensity distribution at the laser irradiation position can be changed more accurately.
- the moving direction or moving amount of the laser irradiation unit, the collimating optical system or the condensing optical system is determined based on the observation result of the processing trace of the workpiece.
- the laser irradiation unit, the collimating optical system, or the light condensing is performed based on the observation result of the processing trace of the workpiece. Since the moving direction or moving amount of the optical system is determined, the energy intensity distribution at the laser irradiation position can be changed more accurately.
- the other of the first moving step or the second moving step is executed so that the irradiation position approaches a processing point on the processing surface.
- the laser irradiation unit, the collimating optical system or the collecting unit is arranged so that the laser irradiation position approaches the processing point on the processing surface of the workpiece. Since the optical optical system is moved, the workpiece can be appropriately processed at a predetermined processing point.
- the second moving step is executed on the processing surface so as to move the condensing optical system along a direction from the irradiation position after the first adjusting step toward the processing point.
- the first movement step is executed on the processing surface so as to move the laser irradiation unit along a direction from the processing point toward an irradiation position after the first adjustment step.
- the first moving step is executed on the processing surface so as to move the collimating optical system along a direction from the irradiation position after the first adjusting step toward the processing point.
- the condensing optical system or the collimating optical system is moved along the direction from the laser irradiation position after the first adjustment step toward the processing point.
- the laser irradiation position on the processing surface is moved to a desired position (that is, the processing point) by moving the laser irradiation unit along the direction from the processing point toward the irradiation position after the first adjustment step. Can do.
- an expression representing a relative or absolute arrangement such as “in a certain direction”, “along a certain direction”, “parallel”, “orthogonal”, “center”, “concentric” or “coaxial”. Represents not only such an arrangement strictly but also a state of relative displacement with tolerance or an angle or a distance to obtain the same function.
- an expression indicating that things such as “identical”, “equal”, and “homogeneous” are in an equal state not only represents an exactly equal state, but also has a tolerance or a difference that can provide the same function. It also represents the existing state.
- expressions representing shapes such as quadrangular shapes and cylindrical shapes not only represent shapes such as quadrangular shapes and cylindrical shapes in a strict geometric sense, but also within a range where the same effects can be obtained.
- a shape including an uneven portion or a chamfered portion is also expressed.
- the expression “comprising”, “including”, or “having” one constituent element is not an exclusive expression for excluding the existence of another constituent element.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Laser Beam Processing (AREA)
Abstract
Description
また、特許文献1のレーザ加工装置の切断ヘッドでは、レンズに対してレーザ入射部及び光ファイバを移動又は傾斜させて、レーザ入射部とレンズの位置関係を調整可能になっており、これにより、被加工物を切断する位置でのレーザ光のエネルギー強度分布を変更できるようになっている。
この点、例えば特許文献1の切断ヘッドでは、レーザ入射部とレンズの位置関係を調整することによって、被加工物の加工位置におけるエネルギー強度分布を所望の分布に適宜変化させることができ、適切な加工品質を得ることができると考えられる。
レーザ照射部と、
前記レーザ照射部からのレーザ光をコリメートするためのコリメート光学系と、
前記コリメート光学系を通過したレーザ光を集光するための集光光学系と、を備えるレーザ加工ヘッドであって、
前記コリメート光学系及び前記集光光学系を含む光学系は、前記集光光学系を通過したレーザ光にコマ収差が生じ得るように構成され、
前記レーザ照射部又は前記コリメート光学系の中心軸に直交する第1方向において、前記レーザ照射部に対する前記コリメート光学系の相対位置を変化させるように前記レーザ照射部又は前記コリメート光学系の少なくとも一方を移動させるための第1移動部と、
前記集光光学系の中心軸に直交する第2方向において、前記コリメート光学系に対する前記集光光学系の相対位置を変化させるように前記集光光学系を移動させるための第2移動部と、
をさらに備える。
図1は、一実施形態に係るレーザ加工装置の概略図である。同図に示すように、レーザ加工装置1は、レーザ光を発振するためのレーザ発振器2と、光ファイバ4と、レーザ加工ヘッド6と、加工ステージ8と、を備えている。
なお、レーザ発振器2は、ファイバレーザに限定されない。幾つかの実施形態では、レーザ発振器2は、例えば、CO2レーザ発振器、又はYAGレーザ発振器等であってもよい。
なお、被加工物100は、金属又は合金から形成されていてもよい。
図2及び図3は、それぞれ、一実施形態に係るレーザ加工ヘッド6の概略断面図である。図2及び図3に示すように、幾つかの実施形態に係るレーザ加工ヘッド6は、光ファイバ4(図1参照)からのレーザ光Lを被加工物100に向けて照射するためのレーザ照射部14と、コリメート光学系としてのコリメートレンズ16と、集光光学系としての集光レンズ18と、を備えている。
レーザ照射部14と、コリメートレンズ16と、集光レンズ18とは、集光レンズの中心軸O3の方向において、この順に配列されている。
第1移動部20は、レーザ照射部14の中心軸O1又はコリメートレンズ16(コリメート光学系)の中心軸O2に直交する第1方向(図2及び図3におけるD1又はD2の方向)において、レーザ照射部14に対するコリメートレンズ16(コリメート光学系)の相対位置を変化させるように、レーザ照射部14又はコリメートレンズ16(コリメート光学系)の少なくとも一方を移動させるように構成される。
第2移動部は、集光レンズ18(集光光学系)の中心軸O3に直交する第2方向(図2及び図3におけるD3の方向)において、コリメートレンズ16(コリメート光学系)に対する集光レンズ18(集光光学系)の相対位置を変化させるように集光レンズ18(集光光学系)を移動させるように構成されている。
すなわち、保持部21は、コリメートレンズ16(コリメート光学系)の中心軸O2に直交する面内を移動可能になっている。これにより、コリメートレンズ16(コリメート光学系)の中心軸O2に直交する第1方向において、レーザ照射部14に対するコリメートレンズ16(コリメート光学系)の相対位置が変化するようになっている。
また、第2レンズ保持部25は、集光レンズ18の中心軸O3に直交する面内を移動可能になっている。これにより、集光レンズ18(集光光学系)の中心軸O3に直交する第2方向において、コリメートレンズ16(コリメート光学系)に対する集光レンズ18(集光光学系)の相対位置が変化するようになっている。
すなわち、第1レンズ保持部22は、コリメートレンズ16(コリメート光学系)の中心軸O2に直交する面内を移動可能になっている。これにより、コリメートレンズ16(コリメート光学系)の中心軸O2に直交する第1方向において、レーザ照射部14に対するコリメートレンズ16(コリメート光学系)の相対位置が変化するようになっている。
また、第2レンズ保持部25は、集光レンズ18の中心軸O3に直交する面内を移動可能になっている。これにより、集光レンズ18(集光光学系)の中心軸O3に直交する第2方向において、コリメートレンズ16(コリメート光学系)に対する集光レンズ18(集光光学系)の相対位置が変化するようになっている。
また、図5~図18は、図2又は図3に示すレーザ加工ヘッド6の調整過程の一例を示す図であり、(A)(B)(C)の順に、レーザ照射部14、コリメートレンズ16又は集光レンズ18の何れかを移動させていることを示す。なお、図中の矢印は、これらの部材の移動方向を示す。例えば、図5において、(A)がレーザ加工ヘッド6の調整前の初期状態を示し、(B)は、レーザ照射部14を初期状態の位置(二点鎖線で示す)から移動させた後の状態を示し、(C)は、集光レンズ18を(B)の位置(二点鎖線で示す)から移動させた後の状態を示す。
また、図5~図18の(A)~(C)の(a)は、被加工物100上の照射位置PでのX方向におけるエネルギー強度分布(以下、単にエネルギー強度分布ともいう。)を表す。
図5~図18の(A)~(C)の(b)は、被加工物100上の照射位置PでのXY平面上における光線位置を示し、位置P1は、光線の中心付近の光が集光する位置を示し、位置P2は、光線の外側の光が集光する位置を示す。
なお、図5~図18では、図示を簡略化し、レーザ加工ヘッド6のうち主要な構成要素のみが示されている。
第1調節ステップでは、以下の第1移動ステップ又は第2移動ステップの何れかを行う。
すなわち、第1移動ステップでは、上述の第1移動部20により、レーザ照射部14の中心軸O1又はコリメートレンズ16の中心軸O2に直交する第1方向において、レーザ照射部14に対するコリメートレンズ16の相対位置を変化させるように、レーザ照射部14又はコリメートレンズ16の少なくとも一方を移動させる。第2移動ステップでは、上述の第2移動部24により、集光レンズ18の中心軸O3に直交する第2方向において、コリメートレンズ16に対する集光レンズ18の相対位置を変化させるように集光レンズ18を移動させる。
上述の第1調節ステップS2の後、第2調節ステップS4では、被加工物100の加工面における照射位置Pを調節するように、第1移動ステップ又は第2移動ステップの他方(すなわち、コマ収差の変化量がより小さく生じる一方)を実行する。
このようにして、第2調節ステップでは、被加工物100の加工面における照射位置Pを調節する。
また、第2調節ステップにおいて、第1移動部20と第2移動部24のうち、コマ収差の変化量がより小さく生じる一方(図5の場合は第2移動部24)を適切に作動させることにより、レーザ光の照射位置Pを適切に調節することができる。よって、第1調節ステップS2においてエネルギー強度分布を調整する際に生じるレーザ照射位置Pのずれを補正することができる。
すなわち、図6に示すレーザ加工ヘッド6では、第1調節ステップS2において、第1移動部20及び第2移動部24のうち、コマ収差の変化量がより大きく生じる第2移動部24を作動させて、コリメートレンズ16を上述の第2方向において移動させる。これにより、該第2方向においてコリメートレンズ16に対する集光レンズ18の相対位置を移動させて、レーザ照射位置Pにおけるエネルギー強度分布を効果的に変化させることができる。よって、第2移動部24を適切に作動させることにより、レーザ照射位置Pにおけるエネルギー強度分布を適切に調節することができる(図6(B)参照)。
また、第2調節ステップS4において、第1移動部20と第2移動部24のうち、コマ収差の変化量がより小さく生じる第1移動部20を適切に作動させて、レーザ照射部14を移動させる。これにより、上述の第1方向においてレーザ照射部14に対するコリメートレンズ16の相対位置を移動させて、レーザ光の照射位置Pを適切に調節することができる(図6(C)参照)。これにより、第1調節ステップS2においてエネルギー強度分布を調整する際に生じるレーザ照射位置Pのずれ(図6(B)参照)を補正することができる。
すなわち、図7及び図8に示すレーザ加工ヘッド6では、コリメートレンズ16及び集光レンズ18を含む光学系は、集光レンズ18を通過したレーザ光にコマ収差が生じるように構成されている。また、図7及び図8に示すレーザ加工ヘッド6では、第1移動部20によってコリメートレンズ16が移動可能になっており、第2移動部24によって集光レンズ18が移動可能になっている。さらに、図7に示すレーザ加工ヘッド6では、図5に示す場合と同様、第1移動部20を作動させた場合のほうが、第2移動部24を作動させた場合に比べ、コマ収差の変化量がより大きく生じるように構成され、図8に示すレーザ加工ヘッド6では、図6に示す場合と同様、第2移動部24を作動させた場合のほうが、第1移動部20を作動させた場合に比べ、コマ収差の変化量がより大きく生じるように構成されている。
また、第2調節ステップS4では、第1移動部20と第2移動部24のうち、コマ収差の変化量がより小さく生じる第2移動部24を適切に作動させて、コリメートレンズ16を上述の第2方向において移動させる。これにより、該第2方向においてコリメートレンズ16に対する集光レンズ18の相対位置を移動させて、レーザ光の照射位置Pを適切に調節することができる(図7(C)参照)。
また、第2調節ステップS4では、第1移動部20と第2移動部24のうち、コマ収差の変化量がより小さく生じる第1移動部20を作動させて、コリメートレンズ16を移動させる。これにより、上述の第1方向においてレーザ照射部14に対するコリメートレンズ16の相対位置を移動させて、レーザ光の照射位置Pを適切に調節することができる(図8(C)参照)。
図9及び図10に示す例において、図5及び図6と異なっているのは、初期状態(図9(A)、図10(A)参照)において、レーザ照射位置Pにおけるエネルギー強度分布が既に平坦化されていること、及び、レーザ光の照射位置P(集光位置)が、X方向(第1方向、第2方向)において、加工点を示す軸Qからずれていることである。
あえてエネルギー分布を偏らせる場合は、初期状態のエネルギー分布が平坦化されている状態で第1調節ステップS2を行い、この調節により生じた照射位置Pのずれを、第2調節ステップS4を行って是正すればよい。
なお、図9に示す例における第2調節ステップS4は、図5に示す例における第2調節ステップS4と同じであり、図10に示す例における第2調節ステップS4は、図6に示す例における第2調節ステップS4と同じであるから、説明を省略する。
初期状態において照射位置Pがずれている場合であって、エネルギー強度分布を調節する場合も、先にエネルギー強度分布を調節してから照射位置Pを調節する。上述したように、エネルギー強度分布を調節すると照射位置Pがずれるため、先に調節した照射位置Pを再度調節する必要があり、二度手間となるからである。
図11及び図12に示す例において、図5及び図6と異なっているのは、初期状態(図11(A)、図12(A)参照)において、レーザ光の照射位置P(集光位置)が、X方向(第1方向、第2方向)において、加工点を示す軸Qからずれていることである。
ただし、図11及び図12に示す例では、初期状態において、レーザ光の照射位置P(集光位置)が、X方向(第1方向、第2方向)において、加工点を示す軸Qからずれているのに加え、第1調節ステップS2を行ってエネルギー強度分布の調節をしたときに、さらに照射位置Pの軸Q(加工点)からのずれが大きくなっている(図11(B)、図12(B)参照)。このため、第2調節ステップS4でレーザ光の照射位置Pを軸Q(加工点)の位置まで移動させるために、第1移動部20又は第2移動部24の移動量をより大きくする必要がある。
図13及び図14に示す例において、図11及び図12と異なっているのは、初期状態(図13(A)、図14(A)参照)において、レーザ光の照射位置P(集光位置)が、X方向(第1方向、第2方向)において、加工点を示す軸Qを挟んで反対側に、該加工点からずれていることである。
第2調節ステップS4を行うことでレーザ光の照射位置Pの調節をすることができる(図13(C)、図14(C)参照)。
図15及び図16に示す例において、図13及び図14と異なっているのは、初期状態(図15(A)、図16(A)参照)において、レーザ光の照射位置P(集光位置)が、X方向(第1方向、第2方向)において、加工点を示す軸Qを挟んで反対側に、該加工点からずれており、そのずれ量がより大きいことである。
図17及び図18に示す例は、それぞれ、図2に示すレーザ加工ヘッド6に対応したものであり、図15及び図16に示す例と類似している。
図17及び図18に示す例において、図15及び図16と異なっているのは、初期状態(図17(A)、図18(A)参照)において、レーザ光の照射位置P(集光位置)が、X方向(第1方向、第2方向)のみならず、X方向に直交するY方向にも、加工点を示す軸Qからずれていることである。
また、第2調節ステップS4では、第1移動部20と第2移動部24のうち、コマ収差の変化量がより小さく生じる一方を作動させて、集光レンズ18又はレーザ照射部14をX方向及びY方向に適宜移動させる。これにより、X方向及びY方向においてレーザ照射部14に対するコリメートレンズ16の相対位置又はコリメートレンズ16に対する集光レンズ18の相対位置を移動させて、レーザ光の照射位置Pを適切に調節することができる(図17(C)、図18(C)参照)。
例えば、図5、図11、図13、図15及び図17に示す例では、初期状態(各図の(A)参照)において、X方向にエネルギー強度分布の偏りが存在し、第1調節ステップS2では、X方向において、エネルギー強度が低い位置から高い位置へ向かう方向に沿って、レーザ照射部14を移動させることにより、エネルギー強度分布を平坦化するように調節している(各図の(B)参照)。
例えば、図7に示す例では、初期状態(各図の(A)参照)において、X方向にエネルギー強度分布の偏りが存在し、第1調節ステップS2では、X方向において、エネルギー強度が高い位置から低い位置へ向かう方向に沿って、コリメートレンズ16を移動させることにより、エネルギー強度分布を平坦化するように調節している(各図の(B)参照)。
例えば、図6、図8、図12、図14、図16及び図18に示す例では、初期状態(各図の(A)参照)において、X方向にエネルギー強度分布の偏りが存在し、第1調節ステップS2では、X方向において、エネルギー強度が高い位置から低い位置へ向かう方向に沿って、集光レンズ18を移動させることにより、エネルギー強度分布を平坦化するように調節している(各図の(B)参照)。
例えば、図5、図7、図11、図13、図15及び図17に示す例では、第2調節ステップS4では、被加工物100の加工面において、第1調節ステップS2後の照射位置Pから上述の加工点(軸Q)に向かう方向に沿って集光レンズ18を移動させるように、第2移動部24を作動させることにより、照射位置Pが加工点に近づくように、該照射位置Pの調節を行っている。
例えば、図6、図12、図14、図16及び図18に示す例では、第2調節ステップS4では、被加工物100の加工面において、上述の加工点(軸Q)から第1調節ステップS2後の照射位置Pに向かう方向に沿ってレーザ照射部14を移動させるように、第1移動部20を作動させることにより、照射位置Pが加工点に近づくように、該照射位置Pの調節を行っている。
例えば、図8に示す例では、第2調節ステップS4では、被加工物100の加工面において、第1調節ステップS2後の照射位置Pから上述の加工点(軸Q)に向かう方向に沿ってコリメートレンズ16を移動させるように、第1移動部20を作動させることにより、照射位置Pが加工点に近づくように、該照射位置Pの調節を行っている。
例えば、図5、図6、図7、図8、図11、図12、図13、図14及び図17に示す例では、第1移動部20の作動による(すなわち第1移動ステップにおける)レーザ照射部14に対するコリメートレンズ16の移動方向において、該移動方向の向きと、第2移動部24の作動による(すなわち第2移動ステップにおける)コリメートレンズ16に対する集光レンズ18の移動方向の向きとが反対である。
なお、加工点におけるレーザ光のエネルギー強度分布は、例えば、ビームモード計測器(ビームプロファイラ)により測定してもよい。
制御部は、計測部によるエネルギー強度分布の計測結果に基づいて、レーザ照射部14、コリメートレンズ16又は集光レンズ18の移動方向又は移動量を決定するように構成される。
なお、計測部は、例えば、上述のビームモード計測器であってもよい。
レーザ照射部と、
前記レーザ照射部からのレーザ光をコリメートするためのコリメート光学系と、
前記コリメート光学系を通過したレーザ光を集光するための集光光学系と、を備えるレーザ加工ヘッドであって、
前記コリメート光学系及び前記集光光学系を含む光学系は、前記集光光学系を通過したレーザ光にコマ収差が生じ得るように構成され、
前記レーザ照射部又は前記コリメート光学系の中心軸に直交する第1方向において、前記レーザ照射部に対する前記コリメート光学系の相対位置を変化させるように前記レーザ照射部又は前記コリメート光学系の少なくとも一方を移動させるための第1移動部と、
前記集光光学系の中心軸に直交する第2方向において、前記コリメート光学系に対する前記集光光学系の相対位置を変化させるように前記集光光学系を移動させるための第2移動部と、
をさらに備える。
また、上記(1)の構成では、第1移動部及び第2移動部の他方(コマ収差の変化量がより小さく生じる一方)を、第1移動部及び第2移動部の前記一方とは独立して作動可能にしたので、該他方を作動させることにより、レーザ照射位置におけるエネルギー強度分布を大きく変えずにレーザ照射位置を調節することができる。よって、第1移動部及び第2移動部の前記他方を適切に作動させることにより、エネルギー強度分布を調整する際に生じるレーザ照射位置のずれを補正することができる。
よって、上記(1)の構成によれば、被加工物に照射されるレーザ光のエネルギー強度分布の調節と、被加工物上でのレーザ照射位置の調節とを両立することができる。
前記コリメート光学系及び前記集光光学系は、それぞれ、少なくとも1つのレンズを含み、
前記レーザ照射部、前記コリメート光学系及び前記集光光学系は、前記集光光学系の中心軸に沿った方向においてこの順に配列されている。
上記(1)又は(2)に記載のレーザ加工ヘッドと、
前記レーザ加工ヘッドから出力されるレーザ光の被加工物の加工面におけるエネルギー強度分布を計測するように構成された計測部と、
前記計測部による計測結果に基づいて、前記レーザ照射部、前記コリメート光学系又は前記集光光学系の移動方向又は移動量を決定するように構成された制御部と、
を備える。
レーザ照射部と、前記レーザ照射部からのレーザ光をコリメートするためのコリメート光学系と、前記コリメート光学系を通過したレーザ光を集光するための集光光学系と、を含むレーザ加工ヘッドの調整方法であって、
前記コリメート光学系及び前記集光光学系を含む光学系は、前記集光光学系を通過したレーザ光にコマ収差が生じ得るように構成され、
前記レーザ照射部又は前記コリメート光学系の中心軸に直交する第1方向において、前記レーザ照射部に対する前記コリメート光学系の相対位置を変化させるように前記レーザ照射部又は前記コリメート光学系の少なくとも一方を移動させる第1移動ステップと、
前記集光光学系の中心軸に直交する第2方向において、前記コリメート光学系に対する前記集光光学系の相対位置を変化させるように前記集光光学系を移動させる第2移動ステップと、
を備える。
また、上記(4)の方法では、第1移動ステップ及び第2移動ステップの他方(コマ収差の変化量がより小さく生じる一方)を、第1移動ステップ及び第2移動ステップの前記一方とは独立して行うようにしたので、該他方を行うことにより、レーザ照射位置におけるエネルギー強度分布を大きく変えずにレーザ照射位置を調節することができる。よって、第1移動ステップ及び第2移動ステップの前記他方を適切に行うことにより、エネルギー強度分布を調整する際に生じるレーザ照射位置のずれを補正することができる。
よって、上記(4)の方法によれば、被加工物に照射されるレーザ光のエネルギー強度分布の調節と、被加工物上でのレーザ照射位置の調節とを両立することができる。
前記コリメート光学系及び前記集光光学系は、それぞれ、少なくとも1つのレンズを含み、
前記レーザ照射部、前記コリメート光学系及び前記集光光学系は、前記集光光学系の中心軸に沿った方向においてこの順に配列されている。
前記レーザ加工ヘッドから出力されるレーザ光の被加工物の加工面におけるエネルギー強度を所望の分布に調節するように前記第1移動ステップ又は前記第2移動ステップの一方を実行する第1調節ステップと、
前記第1調節ステップの後、前記加工面における照射位置を調節するように、前記第1移動ステップ又は前記第2移動ステップの他方を実行する第2調節ステップと、
を備え、
前記第1調節ステップでは、前記第1移動ステップ又は前記第2移動ステップのうち、前記第1方向における前記レーザ照射部に対する前記コリメート光学系の移動量又は前記第2方向における前記コリメート光学系に対する前記集光光学系の移動量に対する前記コマ収差の変化量が大きい一方を実行する。
よって、上記(6)の方法によれば、被加工物に照射されるレーザ光のエネルギー強度分布の調節と、被加工物上でのレーザ照射位置の調節との両立がしやすくなる。
前記第1調節ステップでは、前記エネルギー強度分布を計測し、該エネルギー強度分布の計測結果に基づいて、前記レーザ照射部、前記コリメート光学系又は前記集光光学系の移動方向又は移動量を決定する。
前記第1調節ステップでは、前記被加工物の加工痕の観察結果に基づいて、前記レーザ照射部、前記コリメート光学系又は前記集光光学系の移動方向又は移動量を決定する。
前記第2調節ステップでは、前記照射位置が前記加工面上の加工点に近づくように前記第1移動ステップ又は前記第2移動ステップの他方を実行する。
前記第2調節ステップでは、前記加工面において、前記第1調節ステップ後の照射位置から前記加工点に向かう方向に沿って、前記集光光学系を移動させるように前記第2移動ステップを実行する。
前記第2調節ステップでは、前記加工面において、前記加工点から前記第1調節ステップ後の照射位置に向かう方向に沿って、前記レーザ照射部を移動させるように前記第1移動ステップを実行する。
前記第2調節ステップでは、前記加工面において、前記第1調節ステップ後の照射位置から前記加工点に向かう方向に沿って、前記コリメート光学系を移動させるように前記第1移動ステップを実行する。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
また、本明細書において、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
また、本明細書において、一の構成要素を「備える」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
2 レーザ発振器
4 光ファイバ
6 レーザ加工ヘッド
8 加工ステージ
12 ハウジング
14 レーザ照射部
16 コリメートレンズ
18 集光レンズ
20 第1移動部
21 保持部
22 第1レンズ保持部
24 第2移動部
25 第2レンズ保持部
26 アシストガスノズル
28 ガス供給口
30 ガス吹出口
100 被加工物
O1~O3 中心軸
P 照射位置
Claims (12)
- レーザ照射部と、
前記レーザ照射部からのレーザ光をコリメートするためのコリメート光学系と、
前記コリメート光学系を通過したレーザ光を集光するための集光光学系と、を備えるレーザ加工ヘッドであって、
前記コリメート光学系及び前記集光光学系を含む光学系は、前記集光光学系を通過したレーザ光にコマ収差が生じ得るように構成され、
前記レーザ照射部又は前記コリメート光学系の中心軸に直交する第1方向において、前記レーザ照射部に対する前記コリメート光学系の相対位置を変化させるように前記レーザ照射部又は前記コリメート光学系の少なくとも一方を移動させるための第1移動部と、
前記集光光学系の中心軸に直交する第2方向において、前記コリメート光学系に対する前記集光光学系の相対位置を変化させるように前記集光光学系を移動させるための第2移動部と、
をさらに備える
ことを特徴とするレーザ加工ヘッド。 - 前記コリメート光学系及び前記集光光学系は、それぞれ、少なくとも1つのレンズを含み、
前記レーザ照射部、前記コリメート光学系及び前記集光光学系は、前記集光光学系の中心軸に沿った方向においてこの順に配列されている、
ことを特徴とする請求項1に記載のレーザ加工ヘッド。 - 請求項1又は2に記載のレーザ加工ヘッドと、
前記レーザ加工ヘッドから出力されるレーザ光の被加工物の加工面におけるエネルギー強度分布を計測するように構成された計測部と、
前記計測部による計測結果に基づいて、前記レーザ照射部、前記コリメート光学系又は前記集光光学系の移動方向又は移動量を決定するように構成された制御部と、
を備えることを特徴とするレーザ加工装置。 - レーザ照射部と、前記レーザ照射部からのレーザ光をコリメートするためのコリメート光学系と、前記コリメート光学系を通過したレーザ光を集光するための集光光学系と、を含むレーザ加工ヘッドの調整方法であって、
前記コリメート光学系及び前記集光光学系を含む光学系は、前記集光光学系を通過したレーザ光にコマ収差が生じ得るように構成され、
前記レーザ照射部又は前記コリメート光学系の中心軸に直交する第1方向において、前記レーザ照射部に対する前記コリメート光学系の相対位置を変化させるように前記レーザ照射部又は前記コリメート光学系の少なくとも一方を移動させる第1移動ステップと、
前記集光光学系の中心軸に直交する第2方向において、前記コリメート光学系に対する前記集光光学系の相対位置を変化させるように前記集光光学系を移動させる第2移動ステップと、
を備える
ことを特徴とするレーザ加工ヘッドの調整方法。 - 前記コリメート光学系及び前記集光光学系は、それぞれ、少なくとも1つのレンズを含み、
前記レーザ照射部、前記コリメート光学系及び前記集光光学系は、前記集光光学系の中心軸に沿った方向においてこの順に配列されている
ことを特徴とする請求項4に記載のレーザ加工ヘッドの調整方法。 - 前記レーザ加工ヘッドから出力されるレーザ光の被加工物の加工面におけるエネルギー強度分布を所望の分布に調節するように前記第1移動ステップ又は前記第2移動ステップの一方を実行する第1調節ステップと、
前記第1調節ステップの後、前記加工面における照射位置を調節するように、前記第1移動ステップ又は前記第2移動ステップの他方を実行する第2調節ステップと、
を備え、
前記第1調節ステップでは、前記第1移動ステップ又は前記第2移動ステップのうち、前記第1方向における前記レーザ照射部に対する前記コリメート光学系の移動量又は前記第2方向における前記コリメート光学系に対する前記集光光学系の移動量に対する前記コマ収差の変化量が大きい一方を実行する
ることを特徴とする請求項4又は5に記載のレーザ加工ヘッドの調整方法。 - 前記第1調節ステップでは、前記エネルギー強度分布を計測し、該エネルギー強度分布の計測結果に基づいて、前記レーザ照射部、前記コリメート光学系又は前記集光光学系の移動方向又は移動量を決定する
ことを特徴とする請求項6に記載のレーザ加工ヘッドの調整方法。 - 前記第1調節ステップでは、前記被加工物の加工痕の観察結果に基づいて、前記レーザ照射部、前記コリメート光学系又は前記集光光学系の移動方向又は移動量を決定する
ことを特徴とする請求項6又は7に記載のレーザ加工ヘッドの調整方法。 - 前記第2調節ステップでは、前記照射位置が前記加工面上の加工点に近づくように前記第1移動ステップ又は前記第2移動ステップの他方を実行する
ことを特徴とする請求項6乃至8の何れか一項に記載のレーザ加工ヘッドの調整方法。 - 前記第2調節ステップでは、前記加工面において、前記第1調節ステップ後の照射位置から前記加工点に向かう方向に沿って、前記集光光学系を移動させるように前記第2移動ステップを実行する
ことを特徴とする請求項9に記載のレーザ加工ヘッドの調整方法。 - 前記第2調節ステップでは、前記加工面において、前記加工点から前記第1調節ステップ後の照射位置に向かう方向に沿って、前記レーザ照射部を移動させるように前記第1移動ステップを実行する
ことを特徴とする請求項9に記載のレーザ加工ヘッドの調整方法。 - 前記第2調節ステップでは、前記加工面において、前記第1調節ステップ後の照射位置から前記加工点に向かう方向に沿って、前記コリメート光学系を移動させるように前記第1移動ステップを実行する
ことを特徴とする請求項9に記載のレーザ加工ヘッドの調整方法。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020507281A JP6920540B2 (ja) | 2018-03-23 | 2018-03-23 | レーザ加工ヘッド及びレーザ加工装置並びにレーザ加工ヘッドの調整方法 |
PCT/JP2018/011894 WO2019180960A1 (ja) | 2018-03-23 | 2018-03-23 | レーザ加工ヘッド及びレーザ加工装置並びにレーザ加工ヘッドの調整方法 |
KR1020207019030A KR102288791B1 (ko) | 2018-03-23 | 2018-03-23 | 레이저 가공 헤드 및 레이저 가공 장치 그리고 레이저 가공 헤드의 조정 방법 |
US16/977,420 US11597033B2 (en) | 2018-03-23 | 2018-03-23 | Laser processing head, laser processing device, and method for adjusting laser processing head |
EP18910395.5A EP3744468B1 (en) | 2018-03-23 | 2018-03-23 | Laser processing device, and method for adjusting a laser processing head |
CN201880085173.4A CN111565881B (zh) | 2018-03-23 | 2018-03-23 | 激光加工头、激光加工装置以及激光加工头的调整方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/011894 WO2019180960A1 (ja) | 2018-03-23 | 2018-03-23 | レーザ加工ヘッド及びレーザ加工装置並びにレーザ加工ヘッドの調整方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019180960A1 true WO2019180960A1 (ja) | 2019-09-26 |
Family
ID=67986986
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/011894 WO2019180960A1 (ja) | 2018-03-23 | 2018-03-23 | レーザ加工ヘッド及びレーザ加工装置並びにレーザ加工ヘッドの調整方法 |
Country Status (6)
Country | Link |
---|---|
US (1) | US11597033B2 (ja) |
EP (1) | EP3744468B1 (ja) |
JP (1) | JP6920540B2 (ja) |
KR (1) | KR102288791B1 (ja) |
CN (1) | CN111565881B (ja) |
WO (1) | WO2019180960A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7561676B2 (ja) | 2021-04-16 | 2024-10-04 | 三菱電機株式会社 | レーザ加工装置、溶接方法、給湯器の製造方法、圧縮機の製造方法、及びレーザ加工方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111565881B (zh) * | 2018-03-23 | 2022-06-14 | 普锐特冶金技术日本有限公司 | 激光加工头、激光加工装置以及激光加工头的调整方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01228688A (ja) * | 1988-03-09 | 1989-09-12 | Mitsubishi Electric Corp | レーザ加工機の加工ヘッド |
JP2012086229A (ja) * | 2010-10-15 | 2012-05-10 | Mitsubishi Heavy Ind Ltd | レーザ加工装置及びレーザ加工方法 |
JP2012143787A (ja) * | 2011-01-12 | 2012-08-02 | Hitachi High-Technologies Corp | 薄膜レーザパターニング方法及び装置 |
JP2014097523A (ja) | 2012-11-14 | 2014-05-29 | Mitsubishi Heavy Ind Ltd | レーザ切断装置及びレーザ切断方法 |
Family Cites Families (60)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4772122A (en) * | 1986-08-18 | 1988-09-20 | Westinghouse Electric Corp. | Alignment technique for laser beam optics |
US5156943A (en) * | 1987-10-25 | 1992-10-20 | Whitney Theodore R | High resolution imagery systems and methods |
US4937440A (en) * | 1989-08-29 | 1990-06-26 | Hewlett-Packard Company | System and method for beam farfield shift focus compensation |
US6967710B2 (en) * | 1990-11-15 | 2005-11-22 | Nikon Corporation | Projection exposure apparatus and method |
US6897942B2 (en) * | 1990-11-15 | 2005-05-24 | Nikon Corporation | Projection exposure apparatus and method |
DE19840926B4 (de) * | 1998-09-08 | 2013-07-11 | Hell Gravure Systems Gmbh & Co. Kg | Anordnung zur Materialbearbeitung mittels Laserstrahlen und deren Verwendung |
US20060249491A1 (en) * | 1999-09-01 | 2006-11-09 | Hell Gravure Systems Gmbh | Laser radiation source |
JP3857021B2 (ja) * | 2000-06-07 | 2006-12-13 | 富士通株式会社 | レーザスポット溶接装置 |
US6639177B2 (en) * | 2001-03-29 | 2003-10-28 | Gsi Lumonics Corporation | Method and system for processing one or more microstructures of a multi-material device |
US7016117B2 (en) * | 2003-04-10 | 2006-03-21 | Hitachi Via Mechanics, Ltd. | Radially non-symmetric beam forming elements for correction of energy profile distortion due to lateral beam drift |
JP4038724B2 (ja) * | 2003-06-30 | 2008-01-30 | トヨタ自動車株式会社 | レーザクラッド加工装置およびレーザクラッド加工方法 |
US7800014B2 (en) * | 2004-01-09 | 2010-09-21 | General Lasertronics Corporation | Color sensing for laser decoating |
TWI348408B (en) * | 2004-04-28 | 2011-09-11 | Olympus Corp | Laser processing device |
US8148211B2 (en) * | 2004-06-18 | 2012-04-03 | Electro Scientific Industries, Inc. | Semiconductor structure processing using multiple laser beam spots spaced on-axis delivered simultaneously |
US7820941B2 (en) * | 2004-07-30 | 2010-10-26 | Corning Incorporated | Process and apparatus for scoring a brittle material |
JP2008524662A (ja) * | 2004-12-22 | 2008-07-10 | カール・ツアイス・レーザー・オプティクス・ゲーエムベーハー | 線ビームを生成するための光学照射系 |
DE102005013949A1 (de) * | 2005-03-26 | 2006-09-28 | Carl Zeiss Meditec Ag | Scanvorrichtung |
US20070106285A1 (en) * | 2005-11-09 | 2007-05-10 | Ferenc Raksi | Laser scanner |
EP2016620A2 (en) * | 2006-04-17 | 2009-01-21 | Omnivision Cdm Optics, Inc. | Arrayed imaging systems and associated methods |
US9044824B2 (en) * | 2006-10-30 | 2015-06-02 | Flemming Ove Olsen | Method and system for laser processing |
GB0809003D0 (en) * | 2008-05-17 | 2008-06-25 | Rumsby Philip T | Method and apparatus for laser process improvement |
US7947968B1 (en) * | 2009-01-29 | 2011-05-24 | Ultratech, Inc. | Processing substrates using direct and recycled radiation |
JP5172041B2 (ja) * | 2009-07-20 | 2013-03-27 | プレシテック カーゲー | レーザ加工ヘッドおよびレーザ加工ヘッドの焦点位置の変化を補償するための方法 |
US9346126B2 (en) * | 2011-05-30 | 2016-05-24 | Mitsubishi Heavy Industries, Ltd. | Laser processing head, laser processing apparatus, optical system of laser processing apparatus, laser processing method, and laser focusing method |
JP2013248624A (ja) * | 2012-05-30 | 2013-12-12 | Disco Corp | レーザー加工装置 |
JP5364856B1 (ja) * | 2013-02-27 | 2013-12-11 | 三菱重工業株式会社 | 加工装置、加工方法 |
JP6048255B2 (ja) * | 2013-03-22 | 2016-12-21 | オムロン株式会社 | レーザ加工装置 |
CN103207530B (zh) * | 2013-03-22 | 2014-12-17 | 中国科学院上海光学精密机械研究所 | 光刻机光瞳整形光学系统及产生离轴照明模式的方法 |
US9067278B2 (en) * | 2013-03-29 | 2015-06-30 | Photon Automation, Inc. | Pulse spread laser |
US20160016261A1 (en) * | 2013-03-29 | 2016-01-21 | Photon Automation, Inc. | Laser welding system and method |
KR101547806B1 (ko) | 2013-07-29 | 2015-08-27 | 에이피시스템 주식회사 | 멀티 초점을 가지는 비구면 렌즈를 이용한 취성 기판 가공 장치 |
JP5595568B1 (ja) * | 2013-08-28 | 2014-09-24 | 三菱重工業株式会社 | レーザ加工装置 |
EP2876499B1 (en) * | 2013-11-22 | 2017-05-24 | Carl Zeiss SMT GmbH | Illumination system of a microlithographic projection exposure apparatus |
EP3079912B1 (en) * | 2013-12-17 | 2020-03-25 | EOS GmbH Electro Optical Systems | Laser printing system |
US9878400B1 (en) * | 2013-12-20 | 2018-01-30 | Gentex Corporation | Device for controlling the direction of a laser beam |
CN106537224B (zh) * | 2014-04-15 | 2019-11-26 | 荷兰应用科学研究会(Tno) | 曝光头、曝光装置及用于操作曝光头的方法 |
DE102014210119A1 (de) * | 2014-05-27 | 2015-12-03 | Siemens Aktiengesellschaft | Optik zum Schweißen mit oszillierender Erstarrungsfront und Schweißverfahren |
US9914985B2 (en) * | 2014-09-09 | 2018-03-13 | G.C. Laser Systems, Inc. | Laser ablation and processing methods and systems |
KR20170083565A (ko) * | 2014-11-10 | 2017-07-18 | 코닝 인코포레이티드 | 다중 초점을 이용한 투명 제품의 레이저 가공 |
DE102014116958B9 (de) * | 2014-11-19 | 2017-10-05 | Trumpf Laser- Und Systemtechnik Gmbh | Optisches System zur Strahlformung eines Laserstrahls, Laserbearbeitungsanlage, Verfahren zur Materialbearbeitung und Verwenden einer gemeinsamen langgezogenen Fokuszone zur Lasermaterialbearbeitung |
WO2016116147A1 (de) * | 2015-01-21 | 2016-07-28 | Trumpf Lasersystems For Semiconductor Manufacturing Gmbh | Strahlführungseinrichtung, euv-strahlungserzeugungsvorrichtung und verfahren zum einstellen eines strahldurchmessers und eines öffnungswinkels eines laserstrahls |
DE102015001421B4 (de) * | 2015-02-06 | 2016-09-15 | Primes GmbH Meßtechnik für die Produktion mit Laserstrahlung | Vorrichtung und Verfahren zur Strahldiagnose an Laserbearbeitungs-Optiken (PRl-2015-001) |
JP6605278B2 (ja) * | 2015-09-29 | 2019-11-13 | 浜松ホトニクス株式会社 | レーザ加工方法 |
US20170225393A1 (en) * | 2016-02-04 | 2017-08-10 | Global Filtration Systems, A Dba Of Gulf Filtration Systems Inc. | Apparatus and method for forming three-dimensional objects using two-photon absorption linear solidification |
IT201600070441A1 (it) | 2016-07-06 | 2018-01-06 | Adige Spa | Procedimento di lavorazione laser di un materiale metallico con controllo ad alta dinamica degli assi di movimentazione del fascio laser lungo una predeterminata traiettoria di lavorazione, nonché macchina e programma per elaboratore per l'attuazione di un tale procedimento. |
KR102363273B1 (ko) * | 2016-07-25 | 2022-02-15 | 엠플리튜드 | 다중 빔 펨토초 레이저에 의해 재료를 절단하는 방법 및 장치 |
JP2020500137A (ja) * | 2016-10-13 | 2020-01-09 | コーニング インコーポレイテッド | ガラス基板における穴およびスロットの作製 |
US10451890B2 (en) * | 2017-01-16 | 2019-10-22 | Cymer, Llc | Reducing speckle in an excimer light source |
US11950026B2 (en) * | 2017-04-14 | 2024-04-02 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Methods and apparatus employing angular and spatial modulation of light |
JP6831302B2 (ja) * | 2017-06-21 | 2021-02-17 | トヨタ自動車株式会社 | レーザ加工品の製造方法および電池の製造方法 |
DE102017213511A1 (de) * | 2017-08-03 | 2019-02-07 | Trumpf Werkzeugmaschinen Gmbh + Co. Kg | Verfahren zur Lasermaterialbearbeitung und Lasermaschine |
US10906832B2 (en) * | 2017-08-11 | 2021-02-02 | Corning Incorporated | Apparatuses and methods for synchronous multi-laser processing of transparent workpieces |
JP2020531392A (ja) * | 2017-08-25 | 2020-11-05 | コーニング インコーポレイテッド | アフォーカルビーム調整アセンブリを用いて透明被加工物をレーザ加工するための装置及び方法 |
US10118250B1 (en) * | 2017-09-15 | 2018-11-06 | International Business Machines Corporation | In-situ laser beam position and spot size sensor and high speed scanner calibration, wafer debonding method |
US10620430B2 (en) * | 2018-01-12 | 2020-04-14 | Microsoft Technology Licensing, Llc | Geometrically multiplexed RGB lasers in a scanning MEMS display system for HMDS |
US10814429B2 (en) * | 2018-01-26 | 2020-10-27 | General Electric Company | Systems and methods for dynamic shaping of laser beam profiles for control of micro-structures in additively manufactured metals |
CN111565881B (zh) * | 2018-03-23 | 2022-06-14 | 普锐特冶金技术日本有限公司 | 激光加工头、激光加工装置以及激光加工头的调整方法 |
US11378808B2 (en) * | 2018-07-18 | 2022-07-05 | Idex Health & Science Llc | Laser systems and optical devices for laser beam shaping |
JP7262081B2 (ja) * | 2019-08-29 | 2023-04-21 | パナソニックIpマネジメント株式会社 | レーザ加工装置および光学調整方法 |
US11646228B2 (en) * | 2019-09-11 | 2023-05-09 | Chongqing Institute Of East China Normal University | Stealth dicing method including filamentation and apparatus thereof |
-
2018
- 2018-03-23 CN CN201880085173.4A patent/CN111565881B/zh active Active
- 2018-03-23 KR KR1020207019030A patent/KR102288791B1/ko active IP Right Grant
- 2018-03-23 EP EP18910395.5A patent/EP3744468B1/en active Active
- 2018-03-23 WO PCT/JP2018/011894 patent/WO2019180960A1/ja unknown
- 2018-03-23 JP JP2020507281A patent/JP6920540B2/ja active Active
- 2018-03-23 US US16/977,420 patent/US11597033B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01228688A (ja) * | 1988-03-09 | 1989-09-12 | Mitsubishi Electric Corp | レーザ加工機の加工ヘッド |
JP2012086229A (ja) * | 2010-10-15 | 2012-05-10 | Mitsubishi Heavy Ind Ltd | レーザ加工装置及びレーザ加工方法 |
JP2012143787A (ja) * | 2011-01-12 | 2012-08-02 | Hitachi High-Technologies Corp | 薄膜レーザパターニング方法及び装置 |
JP2014097523A (ja) | 2012-11-14 | 2014-05-29 | Mitsubishi Heavy Ind Ltd | レーザ切断装置及びレーザ切断方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3744468A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7561676B2 (ja) | 2021-04-16 | 2024-10-04 | 三菱電機株式会社 | レーザ加工装置、溶接方法、給湯器の製造方法、圧縮機の製造方法、及びレーザ加工方法 |
Also Published As
Publication number | Publication date |
---|---|
EP3744468B1 (en) | 2024-03-06 |
EP3744468C0 (en) | 2024-03-06 |
JPWO2019180960A1 (ja) | 2021-03-11 |
KR20200091908A (ko) | 2020-07-31 |
CN111565881B (zh) | 2022-06-14 |
US20210046582A1 (en) | 2021-02-18 |
JP6920540B2 (ja) | 2021-08-18 |
KR102288791B1 (ko) | 2021-08-10 |
EP3744468A1 (en) | 2020-12-02 |
EP3744468A4 (en) | 2021-04-07 |
US11597033B2 (en) | 2023-03-07 |
CN111565881A (zh) | 2020-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5033693B2 (ja) | ファイバレーザ加工機における集光直径の変換制御方法及びその装置 | |
US7151788B2 (en) | Laser processing device | |
RU2750313C2 (ru) | Способ лазерной обработки металлического материала с высоким уровнем динамического управления осями движения лазерного луча по заранее выбранной траектории обработки, а также станок и компьютерная программа для осуществления указанного способа | |
TWI392552B (zh) | Laser irradiation device and laser processing method | |
US9346126B2 (en) | Laser processing head, laser processing apparatus, optical system of laser processing apparatus, laser processing method, and laser focusing method | |
CN111954584B (zh) | 激光焊接方法以及激光焊接装置 | |
US10814423B2 (en) | Optical processing apparatus, method for optical processed object | |
WO2019180960A1 (ja) | レーザ加工ヘッド及びレーザ加工装置並びにレーザ加工ヘッドの調整方法 | |
JP7262081B2 (ja) | レーザ加工装置および光学調整方法 | |
JP7308439B2 (ja) | レーザ加工装置および光学調整方法 | |
EP3865244B1 (en) | Laser processing machine and laser processing method | |
WO2022209929A1 (ja) | レーザ加工ヘッド及びレーザ加工システム | |
JP2008296256A (ja) | レーザ加工装置 | |
KR20220045806A (ko) | 레이저 가공 장치 | |
JP2012237796A (ja) | 曲率可変ユニットおよびレーザ加工装置 | |
JP2016221545A (ja) | レーザ加工装置、及び、レーザ加工装置の集光角設定方法 | |
JP2019181538A (ja) | レーザ溶接装置及びレーザ溶接方法 | |
JP5943812B2 (ja) | レーザ切断装置及びレーザ切断方法 | |
JP7509820B2 (ja) | 金属部品の製造方法 | |
KR20120056605A (ko) | 사각단면형태의 레이저를 이용하는 레이저 스캐닝 장치 | |
JPH05305473A (ja) | レーザ加工装置 | |
JP2004207390A (ja) | レーザ発振器 | |
JPWO2023135860A5 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18910395 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20207019030 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018910395 Country of ref document: EP Effective date: 20200826 |
|
ENP | Entry into the national phase |
Ref document number: 2020507281 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |