EP1333976B1 - Verfahren zur herstellung von rasternäpfchen in einer tiefdruckform und in dem verfahren verwendbarer grundkörper - Google Patents

Verfahren zur herstellung von rasternäpfchen in einer tiefdruckform und in dem verfahren verwendbarer grundkörper Download PDF

Info

Publication number
EP1333976B1
EP1333976B1 EP01980111A EP01980111A EP1333976B1 EP 1333976 B1 EP1333976 B1 EP 1333976B1 EP 01980111 A EP01980111 A EP 01980111A EP 01980111 A EP01980111 A EP 01980111A EP 1333976 B1 EP1333976 B1 EP 1333976B1
Authority
EP
European Patent Office
Prior art keywords
layer
support layer
copper
radiation
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01980111A
Other languages
English (en)
French (fr)
Other versions
EP1333976A1 (de
Inventor
Jakob Frauchiger
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daetwyler Global Tec Holding AG
Original Assignee
MDC Max Daetwyler AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MDC Max Daetwyler AG filed Critical MDC Max Daetwyler AG
Publication of EP1333976A1 publication Critical patent/EP1333976A1/de
Application granted granted Critical
Publication of EP1333976B1 publication Critical patent/EP1333976B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41BMACHINES OR ACCESSORIES FOR MAKING, SETTING, OR DISTRIBUTING TYPE; TYPE; PHOTOGRAPHIC OR PHOTOELECTRIC COMPOSING DEVICES
    • B41B17/00Photographic composing machines having fixed or movable character carriers and without means for composing lines prior to photography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/02Engraving; Heads therefor
    • B41C1/04Engraving; Heads therefor using heads controlled by an electric information signal
    • B41C1/05Heat-generating engraving heads, e.g. laser beam, electron beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N1/00Printing plates or foils; Materials therefor
    • B41N1/04Printing plates or foils; Materials therefor metallic
    • B41N1/06Printing plates or foils; Materials therefor metallic for relief printing or intaglio printing

Definitions

  • the invention relates to a method according to the preamble of patent claim 1 and a base body of a gravure printing form according to the preamble of patent claim 8.
  • DE-A 2 218 393 a non-generic method for the production of gravure forms with electron beams is known.
  • DE-A 2 218 393 has therefore proposed coating the surfaces to be engraved with electron beams with a separating layer of silver or copper sulfide having a layer thickness of only 0.1 ⁇ m.
  • a second layer of copper with a layer thickness of 15 ⁇ m was then applied to the separating layer. Separation layer and second layer served only to reduce ablation depth.
  • EP-B 0 473 973 proposes to produce the wells no longer in copper, but in zinc.
  • the object of the invention is to provide a method and to provide a base body in which or on the Rastemäpfchen a gravure mold directly by means of laser radiation preferably in copper, but also in other materials without ejection crater edge, i. burr-free Rastezepfchen can be produced.
  • the object is achieved in that a preferably only a single ablation support layer is applied to the base body via the upper layer regions provided for the information embossing, through which sieve cups are laser ablated by material ablation (vaporization and / or ejection of molten material) into the jacket regions are introduced and then this support layer is removed, whereupon burr-free Rastemäpfchen be obtained.
  • the laser radiation is a temporally modulated in their intensity course radiation. Usually you will use a pulsed radiation, but this is not mandatory. Laser spikes, Q-switch, mode-locking etc. are also possible. Upon removal of the backing layer, there is no change in the snap-in cups in the topsheet regions.
  • the quality of the Rastmäpfchen so produced without burr is so good that without aftertreatment, a hard layer, especially a chromium layer, can be applied.
  • the chromium layer in such intaglio printing plates will preferably be applied with a layer thickness between 4 ⁇ m and 30 ⁇ m, in particular between 8 ⁇ m and 10 ⁇ m.
  • the burr-free well cups preferably in copper, can be achieved by selecting the support layer to allow good energy launch for the laser radiation with good ablation of material to the underlying material with minimized directional radiation backscatter.
  • Minimized radiation backscatter is important to prevent radiation from entering the laser cavity. This would namely amplified there and could cause damage to the optical components.
  • a good energy coupling of the laser radiation is important, because then only a small amount of radiation remains, the even for a return reflection yet could be considered.
  • a good energy input causes a strong heating of the material of the support layer. Once the support layer has become liquid, there is virtually no need to worry about radiation absorption.
  • the melting point should definitely be lower than that of the underlying upper layer material, in which then the Rastezepfchen lie. If the Rastemäpfchen are in copper, the melting point should be below 1083 ° C. Only at the melting point would the metals be 961 ° C silver, 660 ° C aluminum, 1063 ° C gold (which, however, would immediately be cost-off), gallium and germanium 937 ° C, indium 927 ° C, lead at 327 ° C, tin at 232 ° C, zinc at 419 ° C, etc.
  • the material of the backing layer is intended to cause a material removal in the underlying material carrying the printing information. That is, it should be done by the introduced with the laser radiation local heat energy as quickly as possible reproduced melting of the underlying material. As tests have shown, this reproducible melting is only given if the layer thickness of the Abtragungsunterstützungs harsh is everywhere the same thickness. If this is the case, precisely the cell volume to be generated can be specified via the irradiated maximum pulse intensity and the pulse shape. The cell volume can be determined most simply experimentally.
  • the material of the ablation support layer should have the highest possible vapor pressure.
  • the vapor pressure of the "base material” should be at least five times smaller than that of the material lying thereon. If left in the above example, zinc has a vapor pressure about 100 times higher than copper.
  • the material of the ablation support layer should be well removable, especially chemically, without attacking the information-bearing cladding regions.
  • the wavelength of the laser radiation used is to be adapted to the absorption of the material of the ablation support layer. Also, the wavelength has to be adapted to the dimensions of the sieve cups to be produced in accordance with the optical imaging laws.
  • a CO 2 laser wavelength 10.6 microns
  • a pulse shaping as well as an optical setup for the beam guidance of the laser will preferably be carried out as described in EP 00 810 552.0. If an Nd: YAG laser is used, zinc has also proved to be a material of the ablation support layer in this case as well.
  • the ablation support layer not only initiates a material removal in the underlying material, it also causes a turn-on delay for the drilling operation in the underlying layer.
  • the laser pulse has thus already risen to a higher intensity value compared to its initial pulse value, which results in a drilling intensity increase. This results in a good, i. a hemispherical sieve cup shape.
  • Metallic rotary gravure printing plates are usually constructed of several functional elements.
  • the main body 1 is usually a steel cylinder.
  • a copper layer 3 is applied with a thickness of several Millimetem
  • the copper layer 3 is the information-carrying intaglio printing plate.
  • the information consists of an arrangement of a plurality of Rastemäpfchen 5, which absorb the color required for the print.
  • a chromium coating 7 having a typical thickness of about 10 ⁇ m is applied as the uppermost layer
  • the printing information is now introduced directly into the copper layer 3 in the upper layer region 8 with a beam 9 of a pulsed Nd: YAG laser by material removal.
  • the copper surface 11 is galvanic with a zinc layer 13 as ablation support layer a small thickness tolerance (less than 5 ⁇ 10 -5 ) provided. Burr freedom is a prerequisite for perfect quality in the printing process.
  • the laser pulse 9 for generating in each case a detent cup 5 pierces the zinc layer 13 while melting .
  • Solid zinc has an absorption for the radiation 9 of the Nd: YAG laser of approximately 50%. Furthermore, solid zinc shows virtually no directional reflection. Does the zinc go because of its relatively low melting point and its low thermal conductivity in relation to copper in the liquid state, there is a nearly 100 percent radiation absorption. There is a strong local heating of the zinc, which further passes in the absorbent state to the underlying copper, whereupon this also goes into the liquid state. Copper is now of almost 100 percent reflection for the radiation 9 of the Nd: YAG laser (the reflection but does not come to effect, since the copper is still covered by zinc) in the solid state, now liquid in an approximately 100- percent absorption.
  • the copper material ejection or that of the zinc 15 lie on the zinc layer 13 and can easily be removed by chemically detaching them in a subsequent cleaning process.
  • the exposed engraving (Rastemäpfchen 5) in copper 3 is burr-free and can be easily chromed.
  • zinc prevents the melting from adhering, reduces the initial reflection for the laser radiation 9 and therefore allows an efficient drilling process in copper 3.
  • the method just described is not limited to zinc 13 as a copper coating.
  • the ablation support layer to be applied to copper 3 does not necessarily have to be a metal layer.
  • Non-metals are also suitable, provided they have the required properties regarding absorption, directional reflection and melting point.
  • ablation support layer 13 instead of just a single ablation support layer 13 , multiple layers may be superimposed. However, it has proven the only zinc layer 13 for cost reasons and because of the ease of handling.
  • the main body 1 of a gravure form does not necessarily have to be cylindrical; it can also be semi-cylindrical, flat or otherwise shaped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Or Reproduction Of Printing Formes (AREA)
  • Printing Plates And Materials Therefor (AREA)

Description

  • Die Erfindung betrifft ein Verfahren gemäss dem Oberbegriff des Patentanspruchs 1 und einen Grundkörper einer Tiefdruckform gemäss dem Oberbegriff des-Patentanspruchs 8.
  • Stand der Technik
  • Aus der DE-A 2 218 393 ist ein gattungsfremdes Verfahren zur Herstellung von Tiefdruckformen mit Elektronenstrahlen bekannt. Bei der Herstellung von Tiefdruckformen mit Elektronenstrahlen ergaben sich Schwierigkeiten bei der Erzeugung von Rasternäpfchen mit einer Tiefe unter 10 µm. Die DE-A 2 218 393 hat deshalb vorgeschlagen, die mit Elektronenstrahlen zu gravierenden Oberflächen mit einer Trennschicht aus Silber bzw. Kupfersulfid mit einer Schichtdicke von lediglich 0,1 µm zu beschichten. Auf die Trennschicht wurde dann eine zweite Schicht aus Kupfer mit einer Schichtdicke von 15 µm aufgebracht. Trennschicht und zweite Schicht dienten lediglich dazu, auf Abtragungstiefe zu reduzieren. Nach dem Gravieren mit Elektronenstrahlen, wobei Näpfchen mit einer Tiefe bis zu 20 µm erzeugt wurden, verblieben beim nachträglichen Abziehen der Trenn- und Kupferschicht lediglich Näpfchen mit einer Tiefe von 5 µm; d.h. unter 10 µm, wie gewünscht.
  • Das in der DE-A 2 218 393 beschriebene Verfahren stellte aufgrund einer Erzeugung von zwei Schichten mit unterschiedlichen Materialen und einem Arbeiten im Vakuum ein kompliziertes Verfahren dar.
  • Aus der DE-A 30 35 714 ist ein weiteres Verfahren zur Herstellung von Drucknäpfchen für eine Tiefdruckform bekannt. Hierbei wurde die noch "rohe" Tiefdruckform mit einem ätzmittelresistenten Lack belegt. Der Lack wurde dann mit einer elektronischen Graviervorrichtung an den Stellen abgetragen, an denen später Rasternäpfchen vorhanden sein sollten. Als elektronische Graviervorrichtung wurde ein Stichel, ein Laserstrahl oder ein Elektronenstrahl verwendet. Nach dem gezielten Abtragen des Lacks erfolgte zur Erzeugung der Rasternäpfchen ein Ätzvorgang. Das hier beschriebene Herstellungsverfahren war kompliziert und zeitaufwendig.
  • Ein hierzu analoges Verfahren ist in der DE-A 2 344 233 beschrieben.
  • In der EP-B 0 473 973 wird nun vorgeschlagen, mittels Laserstrahlung eine direkte Gravur der Rastemäpfchen für die Tiefdruckform vorzunehmen, wobei hier darauf hingewiesen wird, dass eine Laserbearbeitung von Tiefdruckformen mit einer Aussenschicht aus Kupfer mit den nachfolgenden Schwierigkeiten verbunden waren:
    1. 1. Sehr starke Reflexion der Kupferschicht;
    2. 2. Hohe Schmelz- bzw. Verdampfungstemperatur von Kupfer;
    3. 3. Hohe Schmelz- bzw. Verdampfungswärme von Kupfer;
    4. 4. Gute Wärmeleitfähigkeit von Kupfer und damit starke Wärmeabgabe an die Umgebung der Rastemäpfchen.
  • Bei der Lasergravur von Kupferschichten ergab sich zudem ein überstehender Auswurfkraterrand am Näpfchen. Dieser Rand musste dann in mühevoller Weise entfernt werden.
  • Aus diesem Grund schlägt die EP-B 0 473 973 vor, die Näpfchen nicht mehr in Kupfer, sondem in Zink zu erzeugen.
  • Das in der EP-B 0 473 973 beschriebene Verfahren ist zwar einsetzbar, nachteilig bei den hiermit hergestellten Tiefdruckformen ist jedoch, dass die gesamte Tiefdrucktechnik nun einmal auf Kupfer als Material ausgerichtet ist, in dem sich die Rasternäpfchen befinden.
  • Aufgabe der Erfindung
  • Aufgabe der Erfindung ist es, ein Verfahren vorzustellen sowie einen Grundkörper zu schaffen, bei dem bzw. auf dem Rastemäpfchen einer Tiefdruckform direkt mittels Laserstrahlung bevorzugt in Kupfer, aber auch in anderen Materialien ohne Auswurfskraterrand, d.h. gratfreie Rastemäpfchen herstellbar sind.
  • Lösung der Aufgabe
  • Die Aufgabe wird dadurch gelöst, dass auf dem Grundkörper über dessen, für die Informationseinprägung vorgesehenen Oberschichtbereichen eine, bevorzugt nur eine einzige Abtragungsunterstützungsschicht aufgebracht wird, durch die hindurch Rasternäpfchen mit der Laserstrahlung durch Materialablation (Verdampfen und/oder Auswurf von geschmolzenem Material) in die Mantelbereiche eingebracht werden und anschliessend diese Unterstützungsschicht entfernt wird, worauf gratfreie Rastemäpfchen erhalten werden. Die Laserstrahlung ist eine zeitlich in ihrem intensitätsverlauf modulierte Strahlung. In der Regel wird man eine gepulste Strahlung verwenden, was jedoch nicht zwingend ist. Laserspikes, Q-switch, mode-locking usw. sind ebenfalls möglich. Bei der Entfernung der Unterstützungsschicht erfolgt keine Veränderung der Rastemäpfchen in den Oberschichtbereichen. Die Qualität der derart ohne Grat hergestellten Rastemäpfchen ist so gut, dass ohne Nachbehandlung eine Hartschicht, insbesondere eine Chromschicht, aufgebracht werden kann. Die Chromschicht bei derartigen Tiefdruckformen wird man vorzugsweise mit einer Schichtdicke zwischen 4 µm und 30 µm, insbesondere zwischen 8 µm und 10 µm aufbringen.
  • Die gratfreien Rasternäpfchen, vorzugsweise in Kupfer, lassen sich inbesondere dadurch erreichen, dass die Unterstützungsschicht derart ausgewählt wird, dass sie eine gute Energieeinkopplung für die Laserstrahlung mit einer guten Materialabtragungsinitierung (Ablation) zum darunterliegenden Material bei einer minimierten gerichteten Strahlungsrückstreuung ermöglicht. Eine minimierte Strahlungsrückstreuung ist wichtig, damit keine Strahlung zurück in den Laserresonator gelangt. Diese würde nämlich dort verstärkt und könnte Beschädigungen an den optischen Komponenten bewirken. Eine gute Energieeinkopplung der Laserstrahlung ist wichtig, da dann nur noch ein geringer Strahlungsanteil verbleibt, der überhaupt für eine Rückreflexion noch in Frage kommen könnte. Andererseits bewirkt eine gute Energieeinkopplung eine starke Aufheizung des Materials der Unterstützungsschicht. Ist die Unterstützungsschicht einmal in den flüssigen Zustand übergegangen, muss man sich praktisch keine Sorgen mehr betreffend Strahlungsabsorption machen.
  • Wählt man nun dieses Material der Unterstützungsschicht noch derart aus, dass bei seinem wesentlichen Materialanteil der Schmelzpunkt tief liegt, so tritt die hohe Strahlungsabsorption auch schnell ein. Der Schmelzpunkt sollte jedoch auf jeden Fall tiefer liegen als derjenige des darunterliegenden Oberschichtmaterials, in dem dann die Rastemäpfchen liegen. Sollen die Rastemäpfchen in Kupfer liegen, so sollte der Schmelzpunkt unter 1083 °C liegen. Lediglich vom Schmelzpunkt her, würden sich bei den Metallen Silber mit 961 °C, Aluminium mit 660 °C, Gold mit 1063 °C (was jedoch sofort von den Kosten her herausfällt), Gallium und Germanium mit 937 °C, Indium mit 927 °C, Blei mit 327 °C, Zinn mit 232 °C, Zink mit 419 °C usw. anbieten. Vernünftig verwendbar sind jedoch nur Materialien, deren Dämpfe nicht gesundheitsschädlich sind, da ansonsten grosse Aufwendung für eine Dampfabsaugung vorgenommen werden müssten. Unter einem wesentlichen Materialanteil des Schichtmaterials wird ein Prozentsatz verstanden, der die oben angeführte Eigenschaft hervorruft. Ein wesentlicher Materialanteil dürfte je nach Materialien bei einem Prozentanteil von 80 % bis nahe 100% liegen.
  • Das Material der Unterstützungsschicht soll einen Materialabtrag in dem die Druckinformation tragenden darunterliegenden Material bewirken. D.h. es soll durch die mit der Laserstrahlung eingebrachte örtliche Wärmeenergie möglichst rasch ein reproduziertes Schmelzen des darunterliegenden Materials erfolgen. Wie Versuche gezeigt haben, ist dieses reproduzierbare Schmelzen nur gegeben, wenn die Schichtdicke der Abtragungsunterstützungsschicht überall gleich dick ist. Ist dies der Fall, kann nämlich über die eingestrahlte maximale Pulsintensität und die Pulsform exakt das zu erzeugende Näpfchenvolumen vorgegeben werden. Das Näpfchenvolumen lässt sich am einfachsten experimentell ermitteln. Gute Ergebnisse haben sich bei Kupfer als informationstragender Schicht und Zink als Abtragungsunterstützungsschicht bei deren Schichtdicke zwischen 1 µm bis 15 µm, bevorzugt zwischen 5 µm und 10 µm mit einer Schichtdicketoleranz von kleiner als 10-3, bevorzugt von besser als 5 · 10-5 ergeben. Eine Zinkschicht mit einer derartigen Genauigkeit wird am besten galvanisch aufgebracht.
  • Durch Versuche konnte ferner festgestellt werden, dass das Material der Abtragungsunterstützungsschicht einen möglichst hohen Dampfdruck aufweisen sollte. Vom Laserpuls aus der informationstragenden Schicht ausgeworfenes "Untergrundmaterial", welches noch flüssig auf die Unterstützungsschicht fällt, bringt diese zum Schmelzen und Verdampfen und wird dann durch den Dampf unter einem weiteren Wärmeverlust weggeschleudert. Der Dampfdruck des "Untergrundmaterials" sollte mindestens fünfmal kleiner sein als derjenige des darauf liegenden Materials. Wird beim oben angeführten Beispiel verblieben, so hat Zink einen etwa 100 mal höheren Dampfdruck als Kupfer.
  • Das Material der Abtragungsunterstützungsschicht sollte gut, insbesondere chemisch, ohne Angreifen der informationstragenden Mantelbereiche entfernbar sein.
  • Die Wellenlänge der verwendeten Laserstrahlung ist der Absorption des Materials der Abtragungsunterstützungsschicht anzupassen. Auch ist die Wellenlänge gemäss den optischen Abbildungsgesetzen den Dimensionen der zu erzeugenden Rasternäpfchen anzupassen. Für Rastemäpfchen mit einem Durchmesser grösser als 10 µm kann ein CO2-Laser (Wellenlänge 10,6 µm) verwendet werden. Für kleine Durchmesser wird man bevorzugt einen Nd:YAG-Laser (1,06 µm) verwenden. Eine Pulsformung sowie einen optischen Aufbau für die Strahlführung des Lasers wird man vorzugsweise derart vornehmen, wie in der EP 00 810 552.0 beschrieben. Wird ein Nd:YAG-Laser verwendet, hat sich auch in diesem Fall Zink als Material der Abtragungsunterstützungsschicht bewährt.
  • Die Abtragungsunterstützungsschicht initiert nicht nur einen Materialabtrag in dem darunter liegenden Material, sie bewirkt zudem eine Einschaltverzögerung für den Bohrvorgang in die darunterliegende Schicht. Der Laserpuls ist somit bereits auf einen gegenüber seinem Pulsanfangswert höheren Intensitätswert angestiegen, was eine Bohrintensitätserhöhung ergibt. Hierdurch ergibt sich eine gute, d.h. eine halbkugelförmige Rasternäpfchenform.
  • Weitere Vorteile der Erfindung sowie der Ausführungsvarianten ergeben sich auch noch aus dem untenstehenden Text.
  • Nachfolgend wird ein Ausführungsbeispiel angeführt, welches jedoch gemäss obigen Ausführungen in einem weiten Bereich auch materialmässig variierbar ist.
  • Aus der nachfolgenden Detailbeschreibung und der Gesamtheit der Patentansprüche ergeben sich weitere vorteilhafte Ausführungsformen und Merkmalskombinationen der Erfindung.
  • Kurze Beschreibung der Zeichnungen
  • Die zur Erläuterung der Ausführungsbeispiele verwendeten Zeichnungen zeigen:
  • Fig. 1
    einen Querschnitt durch den efindungsgemässen Grundkörper in vergrösserter Darstellung mit einem Rastemäpfchen erzeugenden, gepulsten Laserstrahl,
    Fig. 2
    einen zu Figur 1 analogen Querschnitt, wobei hier die Abtragungsunterstützungsschicht entfernt ist und
    Fig. 3
    einen zu den Figuren 1 und 2 analogen Querschnitt, wobei hier eine Hartschicht aufgebracht ist
  • Grundsätzlich sind in den Figuren gleiche Teile mit gleichen Bezugszeichen versehen.
  • Wege zur Ausführung der Erfindung
  • Metallische Rotations-Tiefdruckformen sind üblicherweise aus mehreren funktionellen Elementen aufgebaut. Als Grundkörper 1 dient meist ein Stahlzylinder. Auf dem Stahlzylinder ist eine Kupferlage 3 mit einer Dicke von einigen Millimetem aufgebracht Die Kupferlage 3 ist die informationstragende Tiefdruckform. Die Information besteht aus einer Anordnung einer Vielzahl von Rastemäpfchen 5, welche die für den Druck benötigte Farbe aufnehmen. Zur Erhöhung der Wiederstandsfähigkeit ist als oberste Schicht eine Chrombeschichtung 7 mit einer typischen Dicke von etwa 10 µm aufgebracht
  • Die Druckinformation wird nun direkt in die Kupferlage 3 in deren Oberschichtbereich 8 mit einem Strahl 9 eines gepulsten Nd:YAG-Lasers durch Materialabtragung eingebracht Um diese direkte Materialabtragung mit gratfreien Rastemäpfchen 5 zu erreichen, wird die Kupferoberfläche 11 galvanisch mit einer Zinkschicht 13 als Abtragungsunterstützungsschicht mit einer geringen Dickentoleranz (kleiner als 5 · 10-5) versehen. Die Gratfreiheit ist eine Voraussetzung für eine einwandfreie Qualität im Druckprozess.
  • Der Laserpuls 9 zur Erzeugung jeweils eines Rastemäpfchens 5 durchstösst unter einem Aufschmelzen die Zink-Schicht 13. Festes Zink hat eine Absorption für die Strahlung 9 des Nd:YAG-Lasers von etwa 50 %. Ferner zeigt festes Zink so gut wie keine gerichtete Rückstrahlung. Geht das Zink aufgrund seines relativ tiefen Schmelzpunkts und seiner im Verhältnis zu Kupfer geringen Wärmeleitfähigkeit in den flüssigen Zustand über, erfolgt eine nahezu 100-prozentige Strahlungsabsorption. Es erfolgt eine starke örtliche Erwärmung des Zinks, welches weiterhin im absorbierenden Zustand diese an das darunterliegende Kupfer weitergibt, worauf dieses ebenfalls in den flüssigen Zustand übergeht. Kupfer ist nun von einer nahezu 100-prozentigen Reflexion für die Strahlung 9 des Nd:YAG-Lasers (wobei die Reflexion jedoch nicht zur Wirkung kommt, da das Kupfer noch von Zink bedeckt ist) im festen Zustand, jetzt flüssig in eine annähernd 100-prozentige Absorption übergegangen.
  • Der Kupfermaterialauswurf bzw. derjenige des Zinks 15 liegen auf der Zinkschicht 13 und können leicht entfernt werden, indem diese in einem folgenden Reinigungsprozess chemisch abgelöst wird. Die freigelegte Gravur (Rastemäpfchen 5) im Kupfer 3 ist gratfrei und kann problemlos verchromt werden.
  • Mit der dünn aufgetragenen Zinkschicht 13 ist nun eine wirtschaftliche, direkte, gratfreie Lasergravur in Kupfer 3 möglich geworden. Zink verhindert insbesondere ein Anhaften der Aufschmelzungen, reduziert die Anfangsreflexion für die Laserstrahlung 9 und erlaubt deshalb einen effizienten Bohrprozess in Kupfer 3.
  • Das gerade beschriebene Verfahren ist selbstverständlich nicht auf Zink 13 als Kupferbeschichtung beschränkt. Wie eingangs ausgeführt, sind eine Reihe anderer Materialien möglich. Die auf Kupfer 3 aufzubringende Abtragungsunterstützungsschicht muss auch nicht unbedingt eine Metallschicht sein. Auch Nicht-Metalle eignen sich, sofern sie die geforderten Eigenschaften betreffend Absorption, gerichteter Reflexion und Schmelzpunkt aufweisen.
  • Anstelle nur einer einzigen Abtragungsunterstützungsschicht 13 können auch mehrere Schichten übereinander angebracht werden. Es hat sich jedoch die einzige Zinkschicht 13 aus Kostengründen und aufgrund des einfachen Handlings bewährt.
  • Der Grundkörper 1 einer Tiefdruckform muss nicht unbedingt zylindrisch ausgebildet sein; er kann auch halbzylindrisch, flach oder anders geformt sein.

Claims (10)

  1. Verfahren zur Herstellung einer Rastemäpfchen (5) als Druckinfomationen tragenden, vorzugsweise einen rotationssymmetrischen Grundkörper (1) aufweisenden, Tiefdruckform mittels zeitlich modulierter, insbesondere gepulster Laserstrahlung (9), dadurch gekennzeichnet, dass auf dem Grundkörper (1) über dessen, für eine Informationseinprägung vorgesehenen Oberschichtbereichen (8) eine Abtragungsunterstützungsschicht (13) aufgebracht wird, durch die hindurch Rasternäpfchen (5) mit der Laserstrahlung (9) in die Oberschichtbereiche (8) durch Materialablation eingebracht werden und anschliessend diese Abtragungsunterstützungsschicht (13) entfernt wird, worauf gratfreie Rastemäpfchen (5) erhalten werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass nur eine einzige Abtragungsunterstützungsschicht (13) aufgebracht, und nach deren Entfernen eine Hartschicht (7), insbesondere eine Chromschicht (7), vorzugsweise mit einer Schichtdicke zwischen 4 µm und 30 µm, insbesondere zwischen 8 µm und 10 µm, aufgebracht wird und vorzugsweise die für die Informationseinprägung vorgesehenen Schichtbereiche (8) aus Kupfer sind.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Unterstützungsschicht (13) derart ausgewählt wird, dass sie eine gute Energieeinkopplung für die Laserstrahlung (9) mit einer guten Materialabtragungsinitüerung zum darunterliegenden Material (3, 8) bei einer minimierten gerichteten Strahlungsrückstreuung ermöglicht.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Unterstützungsschicht (13) mit einer bis auf eine Toleranz konstanten Dicke aufgebracht wird, um die Rasternäpfchentiefe über eine einstellbare Energie bzw. einen zeitlich modulierten Intensitätsverlauf der Laserstrahlung (9) mit einem vorgebbaren, reproduzierbaren Formfaktor erzeugen zu können, und die Unterstützungsschicht (13) mit einer Dicke zwischen 1 µm und 15 µm, insbesondere zwischen 5 µm und 10 µm, speziell galvanisch, unter besonderer Beachtung einer Schichtdickentoleranz kleiner als 10-3, vorzugsweise kleiner als 5.10-5, aufgebracht wird.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass für die Unterstützungsschicht (13) ein Material mit einem hohen Dampfdruck, vorzugsweise mit mindestens einem um den Faktor fünf höheren als Kupfer ausgewählt wird und namentlich die Unterstützungsschicht (13) gut, insbesondere chemisch, ohne Angreifen der informationstragenden Schichtbereiche (8) entfernbar ist.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass ein wesentlicher Materialanteil der Unterstützungsschicht (13) derart ausgewählt wird, dass er einen tiefen Schmelzpunkt, vorzugsweise unter demjenigen von Kupfer, insbesondere unter 500 °C hat und vor allem ein Metall, insbesondere Zink ist.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass eine Laserstrahlung (9) mit einer bevorzugten Wellenlänge zwischen 0,8 µm und 11 µm, vorzugsweise die Strahlung eines CO2-Lasers, insbesondere bei Rasternäpfchen im Mikrometerbereich die Strahlung eines Nd:YAG-Lasers verwendet wird.
  8. Grundkörper (1) einer Tiefdruckform, in dessen Oberschichtbereich bzw. -bereiche (8) Rasternäpfchen (5) als Druckinformation mit zeitlich modulierter, insbesondere gepulster Laserstrahlung (9) mit einem Verfahren gemäss der Ansprüche 1 bis 7 einbringbar sind, dadurch gekennzeichnet, dass jeder Oberschichtbereich (8) mit einer einzigen, entfembaren, als Abtragungsunterstützungsschicht (13) wirkenden Schicht bedeckt ist, durch die hindurch Rastemäpfchen (5) mit der Laserstrahlung (9) einbringbar sind, ein wesentlicher Materialanteil der Unterstützungsschicht (13) ein Metall ist, und die Unterstützungsschicht (13) gegenüber dem Oberflächenbereich bzw. den -bereichen eine bessere Energieeinkopplung für die Laserstrahlung (9) mit einer guten Materialabtragungsinitiierung zum darunterliegenden Material (3) bei einer minimierten gerichteten Strahlungsrückstreuung ermöglicht.
  9. Grundkörper (1) nach Anspruch 8, dadurch gekennzeichnet, dass die für die Informationseinprägung vorgesehenen Schichtbereiche (8) aus Kupfer sind und die Unterstützungsschicht (13) eine Dicke zwischen 1 µm und 15 µm, insbesondere zwischen 5 µm und 10 µm, mit einer Schichtdickentoleranz kleiner als 10-3, insbesondere kleiner als 5 · 10-5 hat, wobei die Unterstützungsschicht (13) ein Material mit einem hohen Dampfdruck, vorzugsweise mit mindestens einem um den Faktor fünf höheren als Kupfer ist und namentlich die Unterstützungsschicht (13) gut, insbesondere chemisch, ohne Angreifen der informationstragenden Schichtbereiche (8) entfernbar ist.
  10. Grundkörper (1) nach Anspruch 8 oder 9, dadurch gekennzeichnet, dass ein wesentlicher Materialanteil der Unterstützungsschicht (13) einen tiefen Schmelzpunkt, vorzugsweise unter demjenigen von Kupfer, insbesondere unter 500°C hat und insbesondere Zink ist.
EP01980111A 2000-11-15 2001-11-15 Verfahren zur herstellung von rasternäpfchen in einer tiefdruckform und in dem verfahren verwendbarer grundkörper Expired - Lifetime EP1333976B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH221900 2000-11-15
CH22192000 2000-11-15
PCT/CH2001/000668 WO2002040272A1 (de) 2000-11-15 2001-11-15 Verfahren zur herstellung von rasternäpfchen in einer tiefdruckform und in dem verfahren verwendbarer grundkörper

Publications (2)

Publication Number Publication Date
EP1333976A1 EP1333976A1 (de) 2003-08-13
EP1333976B1 true EP1333976B1 (de) 2006-08-23

Family

ID=4568057

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01980111A Expired - Lifetime EP1333976B1 (de) 2000-11-15 2001-11-15 Verfahren zur herstellung von rasternäpfchen in einer tiefdruckform und in dem verfahren verwendbarer grundkörper

Country Status (5)

Country Link
US (1) US20040029048A1 (de)
EP (1) EP1333976B1 (de)
JP (1) JP2004512997A (de)
DE (1) DE50110828D1 (de)
WO (1) WO2002040272A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008130309A1 (en) 2007-04-23 2008-10-30 Anders Bjurstedt Rotogravure printing apparatus
DE102012205702B3 (de) * 2012-04-05 2013-05-23 Schaeffler Technologies AG & Co. KG Verfahren zum Markieren von Bauteilen

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090168111A9 (en) * 1999-09-01 2009-07-02 Hell Gravure Systems Gmbh Printing form processing with fine and coarse engraving tool processing tracks
EP1410923B1 (de) * 2002-10-17 2006-08-09 Hell Gravure Systems GmbH Verfahren zur Herstellung einer Druckform für den Tiefdruck
AT504185B1 (de) * 2003-07-03 2009-06-15 Oebs Gmbh Verfahren zur herstellung einer druckplatte
FR2898903B1 (fr) 2006-03-24 2012-08-31 Oreal Composition de teinture comprenant un colorant disulfure fluorescent, procede d'eclaircissement des matieres keratiniques a partir de ce colorant
EP1985459A3 (de) * 2007-04-23 2009-07-29 Mdc Max Daetwyler AG Herstellung von Tiefdruckformen
DE102008035203B4 (de) 2008-07-28 2011-01-27 Leibniz-Institut für Oberflächenmodifizierung e.V. Verfahren zum Löschen und Neubebildern eines Druckzylinders
DE102009058845B4 (de) * 2009-12-18 2012-12-06 Christof Tielemann Verfahren zur Herstellung einer Druckwalze mit einer Laser-gravierten Oberfläche
JP6389695B2 (ja) * 2014-08-18 2018-09-12 理想科学工業株式会社 感熱製版装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE728837C (de) * 1935-05-30 1942-12-04 Josef Horn Verfahren zum Herstellen von Flachdruckplatten
US2100258A (en) * 1936-02-15 1937-11-23 Reynolds Metals Co Composite body of copper and aluminum or copper and magnesium, and method of making same
US3474457A (en) * 1967-11-13 1969-10-21 Precision Instr Co Laser recording apparatus
US3539410A (en) * 1967-11-20 1970-11-10 Gen Photogrammetric Services L Relief models
US3528965A (en) * 1968-02-09 1970-09-15 Beecham Group Ltd Penicillin ester process and products
DE2218393A1 (de) 1972-04-15 1973-10-25 Steigerwald Strahltech Mittels energiestrahls gravierbares werkstueck, insbesondere tiefdruckform oder dergleichen
DE2344233A1 (de) 1972-09-09 1974-03-21 Newton Horwood Ltd Druckplatte und verfahren zu ihrer herstellung
US4060032A (en) * 1975-05-21 1977-11-29 Laser Graphic Systems Corporation Substrate for composite printing and relief plate
US4357633A (en) * 1979-07-11 1982-11-02 Buechler Lester W Engraving apparatus and method
US4328390A (en) * 1979-09-17 1982-05-04 The University Of Delaware Thin film photovoltaic cell
JPS5646753A (en) 1979-09-26 1981-04-28 Dainippon Printing Co Ltd Preparation of gravure lithographic plate
DE3047999A1 (de) * 1980-12-19 1982-07-15 Basf Ag, 6700 Ludwigshafen Verfahren zur verringerung der abrasion von pigmenten und druckfarben und im abrasionsverhalten verbesserte pigmente und druckfarben
DK159251C (da) * 1983-03-12 1991-02-18 Basf Ag Fremgangsmaade til lukning af spalten mellem en paa et dybtrykapparats trykformcylinder opspaendt dybtrykplades ender, samt indretning ved dybtryksapparatet, til udoevelse af fremgangsmaaden
EP0473973B1 (de) 1990-09-04 1995-11-29 MDC Max Dätwyler Bleienbach AG Verfahren zum Bearbeiten von Tiefdruckformen
DE4212582A1 (de) * 1992-04-15 1993-10-21 Hell Ag Linotype Verfahren zur Gravur von Druckformen sowie Druckform zur Durchführung des Verfahrens
CH689917A5 (de) * 1995-05-03 2000-01-31 Daetwyler Ag Verfahren und Vorrichtung zur Herstellung von Rasternäpfchen in der Oberfläche eines Tiefdruckzylinders.
JP3408923B2 (ja) 1996-05-28 2003-05-19 シャープ株式会社 画像表示装置
US5807658A (en) * 1996-08-20 1998-09-15 Presstek, Inc. Self-cleaning, abrasion-resistant, laser-imageable lithographic printing contructions
DE19840926B4 (de) * 1998-09-08 2013-07-11 Hell Gravure Systems Gmbh & Co. Kg Anordnung zur Materialbearbeitung mittels Laserstrahlen und deren Verwendung
EP1072350A1 (de) * 1999-07-12 2001-01-31 MDC Max Dätwyler AG Bleienbach Verfahren zur Erzeugung einer Intensitätsverteilung über einen Arbeitslaserstrahl sowie Vorrichtung hierzu
DE10033629B4 (de) * 2000-07-11 2011-12-01 Tampoprint Ag Druckklischee

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008130309A1 (en) 2007-04-23 2008-10-30 Anders Bjurstedt Rotogravure printing apparatus
DE102012205702B3 (de) * 2012-04-05 2013-05-23 Schaeffler Technologies AG & Co. KG Verfahren zum Markieren von Bauteilen
WO2013149747A1 (de) 2012-04-05 2013-10-10 Schaeffler Technologies AG & Co. KG Verfahren zum markieren von bauteilen unter verwendung vom überlappenden und danach kaum überlappenden laserpulsen

Also Published As

Publication number Publication date
JP2004512997A (ja) 2004-04-30
EP1333976A1 (de) 2003-08-13
DE50110828D1 (de) 2006-10-05
WO2002040272A1 (de) 2002-05-23
US20040029048A1 (en) 2004-02-12

Similar Documents

Publication Publication Date Title
EP1389405B1 (de) Verfahren zum bohren von mikrolöchern mit einem laserstrahl
DE69113924T2 (de) Gravierverfahren von Gegenständen in fester Form und die hergestellten Gegenstände.
EP1333976B1 (de) Verfahren zur herstellung von rasternäpfchen in einer tiefdruckform und in dem verfahren verwendbarer grundkörper
EP2707173B1 (de) Verfahren und vorrichtung zum mechanischen entschichten beschichteter platinen unter verwendung einer presse und einem schabemesser
WO2003074278A1 (de) Qualitätsdruckverfahren und druckmaschine sowie drucksubstanz hierfür
DE102004024643A1 (de) Werkstückteilungsverfahren unter Verwendung eines Laserstrahls
DE10205351A1 (de) Verfahren zur lasergesteuerten Materialbearbeitung
EP3606698B1 (de) Verfahren zum verschweissen von bauteilen
DE2814044C2 (de)
EP2681348B1 (de) Verfahren zum veredeln einer metallischen beschichtung auf einem stahlband
DE2910732A1 (de) Verfahren zur verhinderung von gratbildung beim elektronenstrahlbohren
EP0473973A1 (de) Verfahren zum Bearbeiten von Tiefdruckformen
EP2191976B1 (de) Verfahren zum Markieren oder Beschriften eines Werkstücks
EP4041467B1 (de) Stahlblech mit einer deterministischen oberflächenstruktur sowie verfahren zu dessen herstellung
DE102016212057A1 (de) Verfahren zum Verschweißen von Bauteilen
EP1151857A2 (de) Gesteuerte Bebilderung und Löschung einer Druckform aus metallischem Titan
AT12321U1 (de) Multilayer-leiterplattenelement mit wenigstens einem laserstrahl-stoppelement sowie verfahren zum anbringen eines solchen laserstrahl- stoppelements in einem multilayer- leiterplattenelement
DE102006023940B4 (de) Verfahren zur Nanostrukturierung eines Substrats
DE102017106372A1 (de) Verfahren zur Bearbeitung eines Werkstückes und ein dadurch hergestelltes Werkstück
DE19612100B4 (de) Verfahren zur Herstellung einer metallischen Tiefdruckform
DE19637255C1 (de) Verfahren zum indirekten Beschriften von transparenten Materialien
DE19507827A1 (de) Verfahren zur Herstellung einer Druckform für den Offset- oder Tiefdruck
DE10140533A1 (de) Verfahren und Vorrichtung zur Mikrobearbeitung eines Werkstücks mit Laserstrahlung
DE19801013A1 (de) Verfahren zur Abtragung von Oberflächenschichten mittels deckschichtenverstärkter laserinduzierter Schockwellen
DE102011017080A1 (de) Verfahren zur Bearbeitung eines Werkstücks mit Laserstrahl

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030514

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RBV Designated contracting states (corrected)

Designated state(s): DE IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20060823

REF Corresponds to:

Ref document number: 50110828

Country of ref document: DE

Date of ref document: 20061005

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070524

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081211

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100601