JP2007247066A - 回転サセプタを備える半導体処理装置 - Google Patents

回転サセプタを備える半導体処理装置 Download PDF

Info

Publication number
JP2007247066A
JP2007247066A JP2007066095A JP2007066095A JP2007247066A JP 2007247066 A JP2007247066 A JP 2007247066A JP 2007066095 A JP2007066095 A JP 2007066095A JP 2007066095 A JP2007066095 A JP 2007066095A JP 2007247066 A JP2007247066 A JP 2007247066A
Authority
JP
Japan
Prior art keywords
susceptor
gas
compartments
target
compartment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007066095A
Other languages
English (en)
Inventor
Akira Shimizu
亮 清水
Wonyong Koh
ウォンヤン・コー
Hyung-Sang Park
ヒュウンサン・パク
Young-Duck Tak
ヨウン−ダック・タク
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASM Japan KK
Original Assignee
ASM Japan KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/376,048 external-priority patent/US20070218701A1/en
Application filed by ASM Japan KK filed Critical ASM Japan KK
Publication of JP2007247066A publication Critical patent/JP2007247066A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45544Atomic layer deposition [ALD] characterized by the apparatus
    • C23C16/45548Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction
    • C23C16/45551Atomic layer deposition [ALD] characterized by the apparatus having arrangements for gas injection at different locations of the reactor for each ALD half-reaction for relative movement of the substrate and the gas injectors or half-reaction reactor compartments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
    • H01L21/67739Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
    • H01L21/67748Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber horizontal transfer of a single workpiece
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/68764Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

【課題】ソースガスコンパートメントおよびパージガスコンパートメントがサセプタのサセプタ回転方向において交互して与えられる処理ターゲット上に薄膜を堆積するための装置および方法を提供する。
【解決手段】 処理ターゲット上に薄膜を堆積するための装置が:反応空間;上下に移動可能であり、かつその中心軸周りに回転可能であるサセプタ1;および、ソースガスコンパートメントおよびパージガスコンパートメントを含む複数のコンパートメントC1〜C4に反応空間を分割するための分離壁3を含み、それにおいて膜の堆積のためにサセプタが上昇されたとき、サセプタと分離壁の間に小さいギャップが作られ、それによってそれぞれのコンパートメントの間にガス分離が設定される。
【選択図】図1

Description

関連出願に対するクロスリファレンス
本件は、2006年3月15日に出願された米国特許出願第11/376048号の一部継続出願であり、その開示は参考文献として組み込まれる。
本発明は、概して原子層化学蒸着(ALCVD)によって、たとえば半導体ウエハ等の処理ターゲット上に薄膜を堆積させるための膜堆積装置および方法に関する。
より高度の集積回路を取り扱うことができる半導体装置に対する需要の増加に従って、薄膜堆積について従来のCVD(化学蒸着)方法より良好な制御を行えるALCVD(原子層CVD)方法が注目されている。この分野の従来技術について、下記の特許文献1、特許文献2、特許文献3、および特許文献4が挙げられる。ALCVDにおいては、膜堆積のために使用される反応ガスAおよびB(2つのガスに限定されず、堆積される膜のタイプに従ってA、B、C、およびD等の複数のガスの使用および切り替えが可能である)が、処理ターゲットに交互に吸着され、吸着された層だけが膜の堆積に使用される。この理由のため、この方法は、制御された状態で数分子から薄膜が堆積されることを可能にし、ステップのある部分もまた効果的にコーティング(良好なステップカバレージ)されることが可能である。
このALCVDプロセスの実施においては、ガスAからガスB、またはその逆の切り替え前に反応器から残存ガスを完全に排出することが重要になる。またバルブが、ソースガスとパージガスの間を切り替えるために頻繁に開閉されなければならないことから、寿命が短くなる傾向にある。さらに質量流量制御およびそのほかの従来的な流量制御手段の使用が、高速ガス切り替えのために不可能であり、それがオンタイム・プロセス監視を阻害している。ガスが反応器の内側に残存している場合には、CVD反応が気相で生じ、それがまた分子層レベルでの膜厚の制御を困難にする。また、気相における反応は、より大きなグレインを生成し、それが望ましくない粒子となる。従来は反応器から残存ガスAまたはBを完全に排出するために長いパージ時間が必要とされており、それが生産性を低下させていた。
これに対して、ステージ上に複数の処理ターゲットを配置し、その後そのステージを回転して複数のシャワーヘッドの下に移動することによって膜を堆積する方法が、生産性を向上させるために提案されている(特許文献5)。しかしながらこの方法は、先駆物質AおよびBによって共に占められ、したがって大量のデッドスペースを有するシャワーヘッドの内側が、必然的に長時間にわたってパージされる必要がある。特許文献5の特許においては、先駆物質AおよびBが別々のシャワーヘッドを占有することを可能にする似た方法もまた提案されている。しかしながらこの場合は、ガス・カーテンによる分割が、横並びで配置される先駆物質AとBの間の化学反応を防止し得ず、結果として粒子が生成される。さらにこの方法は、処理ターゲットより大きい反応チャンバを必要とし、そのことは、3類、4種、またはそれを超えるタイプの先駆物質が使用される場合には装置のサイズが増加されなければならないことを意味する。
従来方法に伴う別の問題は、PEALDの下におけるRFプラズマの高速反復オン/オフ切り替えの必要性であり、それにおいてオン期間は、プラズマを安定化させるために少なくとも1秒、好ましくは2秒の長さでなければならない。チャンバのインピーダンスにおける変化を自動的に調整する整合回路から、この要件を満たすためには、RFプラズマをオンにした直後に、安定点を見つけるために可変容量を変化させなければならず、それが反復オン/オフ・プロセスにおけるボトルネックを呈している。
このほかに、デッドスペース内のパージ効率を向上させるために、シャワーヘッドに排気バルブが取り付けられる方法が提案されている(たとえば、特許文献6、特許文献7、および特許文献8;すべてこの出願と同一の譲受人によって譲渡されている)。しかしながら、いくつかの場合においては、それらが充分な有効性を提供していない。
米国特許第6,572,705号明細書 米国特許第6,652,924号明細書 米国特許第6,764,546号明細書 米国特許第6,645,574号明細書 米国特許第6,902,620B1号明細書 米国特許公報第2004/0221808号明細書 米国特許公報第2005/0208217号明細書 米国特許公報第2005/0229848号明細書
したがって、本発明の目的は、上記の課題の1つまたはそれより多くを解決できる装置を提供することである。
ある実施態様においては、半導体ウエハ等の処理ターゲット上に薄膜を堆積するための装置が:反応チャンバ;上に複数の処理ターゲットを配置するための、上下に移動可能であり、かつその中心軸線の周りに回転可能であるサセプタ;および、ソースガスチャンバおよびパージガスチャンバを含む複数のチャンバ(コンパートメント)に反応空間を分割するための分離壁を含み、それにおいて膜の堆積のためにサセプタが上昇されたとき、サセプタと分離壁の間に小さいギャップが作られ、それによってそれぞれのチャンバの間にガス分離が設定され、各ソースガスチャンバおよび各パージガスチャンバがサセプタのサセプタ回転方向において交互に提供される。複数のターゲットが上に配置されたサセプタが回転され、その間、ソースガスAの吸着、パージ、吸着されたソースガスAとソースガスBの反応、およびパージの工程が連続的して交互に実施され各ターゲット上に薄膜を堆積させる。
上記において、各ターゲットが、そのターゲットを処理する間に各コンパートメント内でサセプタ回転方向に静止している必要はない。ターゲットが連続的にサセプタ回転方向に移動する間、ターゲットは、各コンパートメント内において特定の処理を受ける。サセプタの回転速度(すなわち、サセプタの円周方向における各ターゲットの移動速度)は、使用される先駆物質の吸着速度および反応速度をはじめ、必要なパージ時間から決定できる。ALD膜堆積の実施態様においては、これらの時間パラメータのうちの最長時間を回転速度として使用することができる。ALD膜堆積は、自己飽和反応であることから、回転サセプタを停止する必要性、または回転速度を変更してそれぞれの最適時間に適応させる必要がない。
ある実施態様においては、サセプタの温度を、使用されるガスのタイプの吸着および分解の温度に応じて約50℃から約500℃までの範囲内に制御することができる。ある実施態様においては、シャワーヘッドの温度(コンパートメントの温度)もまた約50℃から約500℃までの範囲内に制御することができる。ある実施態様においては、壁と、膜堆積の間に上昇したサセプタとの間の小さいギャップを約0.5mmから約2mmまでの範囲内に設定できる。ある実施態様においては、より完全にそれぞれの反応チャンバを分離するために、この装置が、それらの壁のボトムに沿って設けられた複数のガス取り入れ口から不活性ガスを導入し、その後サセプタ内に設けられた排気ポートから不活性ガスを排出するべく構成される。本発明において、ある実施態様内の『分離』は、実質的なガス分離を意味し、それが完全な物理的分離である必要はない。別の実施態様においては、『分離』が圧力的分離、温度的分離(シャワー・プレートが使用される場合)、または電気的分離を含むことがある。
ある実施態様においては、ソースガスが隣接するチャンバに漏れた場合であっても膜堆積結果が影響されることがないように、交互に配置されるソースガスとパージガスのチャンバを含むことができる。また、各ソースガスの吸着および/または反応を別々に最適圧力に制御することが可能である。ソースガスチャンバが横並びで備えられることなく、パージガスチャンバによって分離されていれば、セッティングがソースガスチャンバ間に圧力差をもたらす場合であっても安定した制御が可能になる。
ある実施態様においては、飽和プロセスではないCVD類似プロセスを実施するためにターゲット自体をサセプタより速い速度で回転することも可能である。
壁によって分割される各チャンバが同一サイズである必要はない。各チャンバが処理ターゲットより小さい場合であっても、サセプタの回転によって処理ターゲットが反応チャンバを通過する間に、ソースガスの吸着および/または反応またはパージの実施が可能である。
上記の実施態様の少なくとも1つによれば、各ソースガスが特定の別々のチャンバ内に流れることから、ソースガスを切り替えるための追加のパージを必要としない。サセプタの回転によって、処理ターゲットがパージ・チャンバを通過する間にその処理ターゲットの表面をパージできることから、ターゲットが次のソースガスに暴露される時点までにパージ処理を完了することが可能である。これは、生産性における有意な改善を実現する。さらに、前述の実施態様の少なくとも1つにおいては、ソースガスが気相で混じることがなく、それが粒子生成を抑え、膜厚の一様性を改善する。それに加えて、サセプタによって吸着されたソースガスだけが反応を生じ、したがって不要な膜堆積が防止されることからメンテナンス周期を長くすることが可能になる。しかも前述の実施態様の少なくとも1つにおいては、高速ガス切り替えが必要なくなり、それがバルブ寿命を延ばし、さらに質量流量制御を使用した異常についてのソースガスのフロー・レートのオンタイム監視を可能にし、それによって安定した製造装置が提供される。
前述の実施態様のすべてにおいて、実施態様内に使用される任意の要素は、別の実施態様内において相互交換可能に、または追加的に使用されることが可能であるが、その種の置換が実行可能でないか、有害な効果を生じるときはその限りでない。さらに本発明は、装置および方法に等しく適用され得る。本発明を、装置および方法の両方に適用することが可能である。
本発明および関連技術を超えて達成されるその利点を要約する目的のため、本発明の特定の目的および利点を上に述べた。当然のことながら、その種の目的または利点がすべて、本発明のいずれかの特定の実施態様に従って必ずしも達成されないことは理解されよう。したがって、たとえば当業者は認識することになろうが、本発明が、ここに教示されている1つの利点または利点のグループを、ここに教示されているか示唆されているとし得るほかの目的または利点を必ずしも達成することなしに達成し、または最適化する態様で具体化され、または実施されることがある。
本発明の追加の態様、特徴、および利点は、続く好適実施態様の詳細な説明から明らかになるであろう。
以上の、およびそのほかの本発明の特徴を、以下、本発明の限定ではなく例示が意図された好適な実施態様の図面を参照して説明する。図面は、例示目的のため多分に簡略化されており、縮尺は考慮されていない。
本発明を、好適な実施態様および図面を参照して詳細に説明する。しかしながら、これらの好適な実施態様および図面は、本発明を限定する意図ではない。
本発明は、限定の意図ではないが以下の実施態様を含む種々の方法で実施することが可能であり、それにおいて図面内で使用されている数は、純粋に実施態様の理解を容易にする目的だけのために使用されており、それらの数にそれが限定されないものとする。さらに、この明細書において、同一要素に異なる用語または名称が割り当てられることがあり、その場合には、それらの異なる用語または名称のうちの1つが、機能的に、または構造的にその残りとオーバーラップするかまたは含むか、またはその残りと相互交換可能に使用され得る。
ある実施態様においては、半導体処理装置が:(i)反応空間(たとえば100);(ii)上に複数のターゲット支持エリアを有し、反応空間の内側に位置し、複数の半導体ターゲット(たとえば2)のそれぞれをターゲット支持エリア上に配置するためのサセプタ(たとえば、1、1’、101)であって、その軸線方向において上側位置と下側位置の間で移動可能であり、上側位置にあるときはその軸線の周りに回転可能となるサセプタ;および(iii)処理のための複数のコンパートメント(たとえば、C1〜C4;P1〜P2およびR1〜R3;P1〜P4およびR1〜R4;P1〜P3およびR1〜R2、およびRFA)であって、それらの複数のコンパートメントの中心軸線からそれぞれが放射状に延びる隔壁(たとえば、3;3a〜3d、103)によって分割されており、反応空間の内側において、サセプタが隔壁に接触することなくターゲット上における膜の堆積のために上側位置において連続回転できるようにギャップ(たとえばΔ)を形成するようにサセプタの上方に配置されており、ターゲットが上に配置されたサセプタがその上側位置において連続的に回転する間、同時にそれらのコンパートメント内において異なる処理を施すべく構成された複数のコンパートメントを含む。
上記の実施態様は、限定の意図ではないが以下の実施態様を含む。
隔壁のうちの少なくとも1つは、その隔壁のうちの少なくとも1つによって画定される複数のコンパートメントのうちの1つの中に反応ガスまたはパージガス(たとえば、N、Ar、He、またはNe)を導入するための少なくとも1つのガス流出孔(たとえば、11、18、40)を有することができる。隔壁の中心(たとえば4)は、パージガスまたは不活性ガスを複数のコンパートメントの中心に導入するためのガス流出孔(たとえば10)を有することができる。隔壁は、ガスに関して複数のコンパートメントを分離するガス・カーテンとして不活性ガスをサセプタに向けて排出するためのガス流出孔(たとえば、5、12、17、105)を有することができる。
隔壁のうちの少なくとも1つは、サセプタ回転方向に関して前および後側(たとえば、3aF、3bF;3aB、3bB)を有することができ、その隔壁のうちの少なくとも1つは複数のコンパートメントのうちの2つを分離し、前および後側のうちの一方は、それらの2つのコンパートメントのうちの一方の中に反応ガスまたはパージガスを導入するための少なくとも1つのガス流出孔(たとえば、11、18)を有し、前および後側のうちの他方は、それらの2つのコンパートメントのうちの一方をそれらの2つのコンパートメントのうちの他方からガスに関して分離するガス・カーテンとして不活性ガスをサセプタに向けて排出するための少なくとも1つのガス流出孔(たとえば、17、12)を有する。隔壁の前および後側(たとえば、3aF、3bF;3aB、3bB)は、それぞれ、サセプタに面し、互いに対して角度を有し、かつ互いから離れる方向に面する平面を有することができる。
複数のコンパートメントのうちの少なくとも1つ(たとえばC6)には、その中に反応ガスまたはパージガスを導入するために、その複数のコンパートメントのうちの少なくとも1つの上側部分にガス流出孔(たとえば40)を設けることができる。サセプタは、ターゲット支持エリアの周囲に形成されたガスを通過させるための環状スリット(たとえば33)を有することができる。
サセプタは、それぞれがターゲット支持エリアの間に形成されたガスを通過させるためのスリット(たとえば、6、106)を有することができる。これらのスリットは、サセプタの周縁からサセプタの中心軸に向かって延びる凹部によって構成することができる。
この半導体処理装置は、さらに、サセプタの下側に設けられるガス流入ポート(たとえば、31、32、37a〜37d)を有する排気システム(たとえば30)を含むことができる。この排気システムは、サセプタの軸線方向において、その軸線の周りの回転なしに、サセプタとともに移動可能とすることができる。
複数のコンパートメント(たとえば、P1〜P3に対するR1〜R3:P1〜P4に対するR1〜R4;RFAに対するP1〜P2/R1〜R2)は、サセプタ回転方向において異なるサイズを有することができる。複数のコンパートメントのうちの少なくとも1つ(たとえば、P1〜P3;P1〜P4およびR1〜R4;P1〜P3およびR1〜R2)は、その複数のコンパートメントのうちの少なくとも1つに対応する領域内に各ターゲット支持エリアが完全に含まれ得ないようなサイズを有することができる。複数のコンパートメントのうちの少なくとも1つ(たとえばRFA)には、RF電源ユニットまたはアニール・ユニットを備えることができる。複数のコンパートメントのうちの少なくとも1つには、その複数のコンパートメントのうちの少なくとも1つの中に反応ガスを導入するためのシャワー・プレート(たとえば40)を備えることができる。
各ターゲット支持エリア(たとえば202)は、その軸線の周りにサセプタより速い回転速度で回転することができる。
別の態様においては、本発明を、半導体ターゲットを処理する方法に適用することが可能であり、当該方法は:(a)複数の半導体ターゲット(たとえば2)のそれぞれを、反応空間(たとえば100)の内側に位置するサセプタ(たとえば、1、1’、101)上に設けられたターゲット支持エリア上に配置すること;(b)サセプタの上に位置する複数のコンパートメント(たとえば、C1〜C4;P1〜P2およびR1〜R3;P1〜P4およびR1〜R4;P1〜P3およびR1〜R2、およびRFA)であって、複数のコンパートメントの中心軸線からそれぞれが放射状に延びる隔壁(たとえば、3;3a〜3d、103)によって分割される処理のための複数のコンパートメントに対して、サセプタがターゲット上における膜の堆積のために隔壁と接触することなく連続回転するようにギャップ(たとえばΔ)を形成する上側位置にあるサセプタをその軸線の周りに回転すること;および(c)ターゲットを処理するために、ターゲットが上に配置されたサセプタがその上側位置において連続的に回転する間、各コンパートメント内において独立に、かつ同時に処理条件を作り出すことを含む。
上記の実施態様は、限定の意図ではないが以下の実施態様を含む。
上記の作り出すことは、隔壁のうちの少なくとも1つに設けられた少なくとも1つのガス流出孔(たとえば、11、18、40)から、その隔壁のうちの少なくとも1つによって画定される複数のコンパートメントのうちの1つの中に反応ガスまたはパージガスを導入することを含むことができる。この作り出すことは、隔壁の中心(たとえば4)に設けられたガス流出孔(たとえば10)から複数のコンパートメントの中心にパージガスまたは不活性ガスを導入することを含むことができる。この作り出すことは、隔壁内に設けられたガス流出孔(たとえば、5、12、17、105)からサセプタに向けてガス・カーテンとして不活性ガスを排出し、それによってガスに関して複数のコンパートメントを分離することを含むことができる。
上記の作り出すことは:(I)隔壁のうちの少なくとも1つに備えられた前または後側(たとえば、3aF、3bF;3aB、3bB)のうちのいずれかに設けられる少なくとも1つのガス流出孔(たとえば、11、18、または12、17)からその隔壁のうちの少なくとも1つによって分割される複数のコンパートメントのうちの2つの一方の中に反応ガスまたはパージガスを導入すること;および(II)その隔壁のうちの少なくとも1つに備えられた前または後側のうちの他方に設けられる少なくとも1つのガス流出孔(たとえば、11、18、または12、17)からサセプタに向けて、それら2つのコンパートメントのうちの一方をそれらの2つのコンパートメントのうちの他方からガスに関して分離するガス・カーテンとして不活性ガスを導入することを含むことができる。これらの反応ガスまたはパージガスと不活性ガスは、互いから離れる方向に導入されるようにできる。
上記の作り出すことは、複数のコンパートメントのうちの少なくとも1つの中に、その複数のコンパートメントのうちの少なくとも1つの上側部分に設けられたガス流出孔(たとえば40)から反応ガスまたはパージガスを導入することを含むことができる。この作り出すことは、さらに、サセプタのターゲット支持エリアの周囲に形成された環状スリット(たとえば33)にガスを通過させることを含むことができる。
上記の作り出すことは、さらに、それぞれがターゲット支持エリアの間に形成されたサセプタ内に設けられるスリット(たとえば、6、106)にガスを通過させることを含むことができる。ガスは、サセプタの周縁からサセプタの中心軸に向かって延びるスリットに通すようにできる。
上記の作り出すことは、さらに、サセプタの下側に設けられるガス流入ポート(たとえば、31、32;37a〜37d)を介して反応空間からガスを排出することを含むことができる。さらにこの方法は、上記の作り出すことに先行して、このガス流入ポートを、サセプタの軸線方向に、その軸線の周りの回転なしにサセプタとともに移動することを含むことができる。
上記の作り出すことは、さらに、各ターゲット支持エリア(たとえば202)を、その軸線の周りにサセプタより速い回転速度で回転することを含むことができる。
上記の作り出すことは、さらに、複数のコンパートメントのうちの1つ(たとえば、R1〜R3;R1〜R4;R1〜R2)の中に反応ガスを導入し、サセプタ回転方向においてそのコンパートメントの1つの上流に隣接する複数のコンパートメントのうちの別の1つ(たとえば、それぞれP1〜P3;P1〜P4;P1〜P3)の中にパージガスを導入することを含むことができる。複数のコンパートメントのうちの別のもの(たとえば、P1〜P3;P1〜P4およびR1〜R4;P1〜P3およびR1〜R2)は、ターゲット支持エリア上の各ターゲットが、サセプタの回転のいかなる時点においてもその複数のコンパートメントのうちのその別のものに対応する領域内に完全に含まれ得ないようなサイズを有することができる。
上記の作り出すことは、複数のコンパートメントのうちの少なくとも1つ(たとえばRFA)の中においてRF電力を印加すること、またはターゲットのアニールを行うことを含むことができる。
上記の作り出すことは、複数のコンパートメントを通って移動する間にターゲット上に原子層を堆積させるべくサセプタの回転速度を制御することを含むことができる。さらにこの作り出すことは、サセプタが回転する間に、複数のコンパートメントのうちの少なくとも1つの中においてRF電力を一定して印加し、それによってRF電力の断続的なオン/オフ操作の必要性なしにターゲット上に原子層を堆積させることを含むことができる。
以下、各図面を参照し、本発明を限定する意図のない好適な実施態様について説明する。
図1は、本発明の実施態様に従ったサセプタ1および分離壁3の略図的な平面図、図4はサセプタ1および分離壁3の略図的な斜視図であり、それぞれ例示目的のためにトップ・プレートが省略されている。ターゲット2(たとえば半導体基板)は、サセプタ1上に形成されたそれぞれのターゲット支持エリア上に配置される。ターゲット支持エリアは、ターゲット2と概ね、または実質的に同一のサイズを有するか、またはそれよりわずかに大きく、したがって図から省略されている。サセプタ1は、4つより多くのターゲット(たとえば、5、6、8、10、およびそれらの数のうちの任意の2つの間の数)または4つより少ないターゲット(たとえば、2または3)を保持するべく構成可能である。ちなみにターゲット支持エリアは、必ずしもすべてが使用される必要はなく、与えられた処理に応じてターゲット支持エリアより少ないターゲットをその上に保持することが可能である。
処理ターゲットは、半導体基板またはデバイスとすることができ、200mmまたは300mmの直径を有することができるが、サイズおよび形状はそれに限定されないものとする。
図1および4においては、4つのコンパートメントC1〜C4が形成され、分離壁3によって分割されている。たとえばコンパートメントC1およびC3は、パージガスコンパートメント、コンパートメントC2およびC4は反応ガスコンパートメントであり、それにおいてはパージガスコンパートメントと反応ガスコンパートメントが交互に配置されており、その結果、パージガスコンパートメントがバッファとして機能可能であることから、反応ガスに関して各コンパートメントの分離を確保することが可能になる。コンパートメントの数は4つである必要はなく、ターゲット支持エリアの数とは独立に、与えられた処理に応じてそれを決定することができる。図24は、本発明の別の実施態様に従ったサセプタ1および分離壁3の略図的な平面図である。これらの図においても例示目的のためにトップ・プレートが省略されている。さらに、後述するサセプタ1内に備えることができる排気ポートについても例示目的のために省略されている。
図24では、サセプタ回転方向において交互に配置されたパージガスコンパートメントP1〜P3および反応ガスコンパートメントR1〜R3からなる6つのコンパートメントが存在する。図1の場合と同様に、各反応ガスコンパートメントに異なる反応ガスが提供される。この構成においては、R1、R2、またはR3からいくらかの反応ガスが漏れることがあっても、パージガスコンパートメントP1〜P3がバッファ・エリアとして機能することから、漏れた反応ガスがほかの反応ガスコンパートメント内に入ることがない。図1の場合と同様に、分離壁を使用したガス流の操作が比較的困難な中心またはその近傍における反応ガスの望ましくない混合が防止されるように、分離壁3が中心パージ・ポート4を有する。
図2は、本発明の実施態様に従った図1のサセプタ1および分離壁3の略図的な正面図である。中心パージ・ポート4は、分離壁3のボトムから下側に突出している。図5は、実施態様における中心パージ・ポート4の構造を略図的に示している。この図において、サセプタ1は、中心に凹状部分または凹部を有する(たとえば、約2mmから約20mmまでの深さ、および約5mmから約40mmまでの幅を有する)。中心パージ・ポート4は、パージガスが排出される開口部を下端に有する管状出口10を有することができる。管状出口10は、約5mmから約40mmまでの長さを有することができる。管状出口10から排出されたパージガスは、サセプタ1の中心から周縁に向かって流れる。このパージガスの流れは、コンパートメント間における反応ガスの望ましくない混合を効果的に防止する。
図3は、本発明の実施態様に従った分離壁3の略図的な部分斜視図である。分離壁3は、下端に流出孔5を有する。これらの流出孔5は、中心から周縁に向かって整列されている。この図において流出孔5は直線に整列されているが、別の流出孔を、流出孔5の隣のラインに整列させることも可能であり、それによって2つの異なるタイプのガスをそれぞれ分離壁3の前側および後側から排出することが可能になる。さらに、流出孔5から排出されるガスの流れの角度を、特定のコンパートメント内にガスが効果的に排出されるように整えることができる。ある実施態様においては、反応ガスが指定のコンパートメントに向かって排出され、それに対してパージガスは、ガス・カーテンとして機能するようにまっすぐ下に排出される。パージガスコンパートメントが備えられる場合には、効果的にそのコンパートメントに入るように、そのコンパートメントに向かう角度でパージガスを排出することができる。分離壁は、約5mmから100mmまで、好ましくは約20mmから40mmまでの幅を有することができる(図8における分離壁の高さα+β;流出孔のサイズについては後述)。
図2の実施態様においては、サセプタ1が排気切り欠き6を有し、それを介して反応ガスおよび/またはパージガスが下方に通過し、その結果、汚染または反応ガスの望ましくない混合をより効果的に防止することが可能になる。切り欠き6は、1つのターゲット支持エリアを通過したガスが、隣接するターゲット支持エリアに入る前に切り欠き6を通って排出されるように隣接するターゲット支持エリアの間に形成することができる。ある実施態様においては、図13、16、または20に示されているとおり、切り欠き6が周縁から中心に向かって延びている。周縁における切り欠き6の幅は、約5mmから約100mmまでの範囲内とすることができ、周縁から中心に向かう長さは、約100mmから約400mmまでの範囲内とすることができる。切り欠き6は、中心に向かって次第に狭くなるようにしてもよく、または長さ方向において一定の幅を有するようにしてもよい。別の実施態様においては、切り欠き6が複数スリットから形成されるようにできる。切り欠きは、その切り欠きを介してコンパートメント内のガスの排出を促進できる限り、任意の形状で形成することが可能である。さらに、ある実施態様においては、切り欠きがサセプタのトップにおいて、サセプタのボトムにおける開口部より広い開口部を有することができる。図8(後述)においては、サセプタの切り欠きがテーパ付き表面を有する。
図7は、本発明の実施態様に従った分離壁3a、3b、およびトップ・プレート20の略図的な(図6のA−B線に沿った)部分断面斜視図である。この図においてはトップ・プレート20が示されている。典型的に、トップ・プレート20は、分離壁3a、3bと連結される別体の部品である。トップ・プレート20はアルミニウムから作ることができ、分離壁3a、3bはアルミニウムから作ることができる。ある実施態様においては、トップ・プレート20を単一部品として分離壁と一体で形成することができる。
この図の中の分離壁3aは、サセプタ回転方向における前側3aFおよび後側3aBを有する。分離壁3bは、サセプタ回転方向における前側3bFおよび後側3bBを有する。前側3aFは、分離壁3aと3bの間のコンパートメントにガスが効果的に排出されることが可能となるように、サセプタの軸線方向に関して角度が付けられた流出孔11を有する。ある実施態様においては、流出孔11からのガスの流れの排出角度を、サセプタに面するトップ・プレート20の平面に関して約5°から約90°まで(好ましくは約10°から約85°まで)とすることができる。ある実施態様においては、流出孔の数を5から300まで(好ましくは10から200まで)とすることができる。ある実施態様においては、流出孔の直径を約0.1mmから約5mmまで(好ましくは約0.5mmから約2mmまで)の範囲内とすることができる。以上の流出孔の構造的特性は、前側3bF上の流出孔18に対しても適用できる。
それぞれの後側3aBおよび3bB上の流出孔17および12は、流出孔11と類似の構造的特性を有することが可能であるが、排出角度が異なる。この図において、流出孔17および12は、ガス・カーテンとして機能するパージガスまたは不活性ガスの排出用であり、したがって排出角度は、典型的に、サセプタの軸線方向と平行になる。ある実施態様においては、装置内に備わる排気システムに応じて流出孔17および12の排出角度を整えることができる。言い換えると、ガスが効果的かつ安定して流れ、それによって良好なガス・カーテンの形成が可能となるように排気システムの方向にガスが排出される。パージガスまたは不活性ガスを排出するための流出孔の数は、反応ガスを排出するための流出孔より多くすることができる。
分離壁に備えられている流出孔の形状は、円形である必要はなく、楕円形または矩形(スリット等)とすることができる。図7において、マニフォールド13、14、15、および16は、それぞれ孔17、11、18、および12と連結している。中心の管状出口10は独立に備えることができる。流出孔を配管で連結する必要はなく、ある実施態様においては中空の分離壁内に形成することができる。
図16は、本発明の実施態様に従ったサセプタ101、トップ・プレート120、トップ外壁121、分離壁103、排気プレート130、側方外壁140、およびサセプタ支持部107の部分断面図を伴った略図的な斜視図である。図16においては、分離壁103が中空であり、流出孔105が、分離壁103のボトム表面内に形成されている。さらに、中心パージ・ポート104が配管に連結されることなく、それもまた分離壁103のボトム表面内に形成されている。パージガスまたは不活性ガスは、孔63を通って分離壁103の内側の中に導入される。孔61および64は、分離壁103の内側の中にパージガスまたは不活性ガスを導入するために使用される。孔62は、分離壁103の別の内側(この図には示されていない)の中に反応ガスを導入するために使用される。その場合、分離壁103の内側のウイング(中心から周縁に延びる部分)が2つの長手方向の部分に分割され、一方はパージガスまたは不活性ガス用、他方は反応ガス用である。
図17は、本発明の実施態様に従った分離壁3a、3b、3c、3dの配管を示した概略図である。ここで注意を要するが、分離壁は、その中心から周縁に延びるウイングを有する単一部品として一体形成することが可能であり、その場合には、それらのウイングを集合的に分離壁と呼ぶ。また単に、複数の分離壁が中心部分に接続される場合における反応空間を分割する各部を分離壁と呼ぶことも可能である。図17においては、分離壁3a〜3dが導管および図7に示されているようなマニフォールドを使用する。
図17においては、サセプタ支持部7がサセプタを反時計回りに回転する。ソースガスAがMFC(質量流量制御器)73およびバルブ76を通り、ライン82を経由して分離壁3aに導入される。ソースガスAは、分離壁3aからコンパートメントC2に向かって、図7に示されているような傾斜付きの角度で排出される。言い換えると、ソースガスAは、サセプタ回転方向に抗する方向に導入される。ソースガスBは、MFC 71およびバルブ74を通り、ライン83を経由して分離壁3cに導入される。ソースガスBは、分離壁3cからコンパートメントC4に向かって、図7に示されているような傾斜角度でもって排出される。パージガスは、MFC 72およびバルブ75を通り、ライン81、82を経由して分離壁3a〜3dおよび中心パージ・ポート4に導入される。
各分離壁は、サセプタ回転方向に関して前および後側(図示せず)を有する。ソースガスAおよびソースガスBは、分離壁3aおよび3cのそれぞれの前側から排出される。パージガスは、図7に示されているように、分離壁3a、3b、3c、3dのそれぞれの後側からまっすぐ下側にサセプタの軸線方向に排出される。パージガスは、分離壁3b、3dのそれぞれの前側から傾斜角度でもって排出される。パージガスは、中心パージ・ポート4からまっすぐ下側に排出される。図18は、本発明の実施態様に従った装置内のガスの流れを示した略図的な仮想断面図であり、それにおいては、分離壁3aと3bの間の角度(45°)を仮想的に180°に展開して描かれている。ソースガスAは、サセプタが回転する間に、分離壁3aから、ターゲット2の上をサセプタ回転方向と逆方向に移動する。ソースガスAは、その後、コンパートメントC2からサセプタの周縁および排気ポート37b(図21参照)を通り、排気チャンネル30bに排出される。この排気の圧力は、圧力センサ36bによって測定することができる。分離壁3aからのパージガスは、排気ポート37a(図21参照)を通り、排気チャンネル30aに排出される。この排気の圧力は、圧力センサ36aによって測定することができる。
図21は、図18に示されている本発明の実施態様に従った排気プレート30の略図的な平面図である。図22は、図21に示されている本発明の実施態様に従った排気プレート30の略図的な斜視図である。排気プレート30は、コンパートメントC1〜C4に対応する開口部37a〜37dを有する。これらの開口部は、排気チャンネル30a〜30d(図19参照)にそれぞれ連結されている。37a〜37d等の排気ポートがC1〜C4等のコンパートメントに対応するとき、サセプタと分離壁の間に小さいギャップを伴って形成される場合であっても、それらコンパートメントの圧力コントロールを、圧力センサ36a、36b等の圧力測定手段および排気システムによって別々に行うことが可能である。さらに、各コンパートメントの圧力は、それぞれの反応ガスが気相において互いに混じらない態様で個別に設定することが可能である。排気プレート30の中心には、貫通孔38が設けられ、そこにサセプタ1のシャフト7が挿入される。
排気ポート37a〜37dは、図21に示されている開口部である必要はなく、中心から周縁に向かって放射状に延びる複数のスリットによって構成してもよい。
図23は、本発明の実施態様に従った装置の略図的な仮想断面図であり、排気チャンネル30a、30b、および排気プレート30を示している。排気プレート30は、サセプタ1と同様に移動可能である。サセプタ1は回転可能であるが、排気プレート30は回転可能でない。サーボ・モータ91が、サセプタ1および排気プレート30の上昇/下降を行う。排気プレート30は、シールを破ることなくサセプタ1の回転の間に排気プレート30が回転しないように磁気シール95を使用してサセプタ1に接続される。排気チャンネル30a、30bは、それぞれベローズ93a、93bを介して排気パイプ94a、94bに連結される。装置の内部は、排気部96に連結されており、ベローズ92によってシールされている。ある実施態様においては、反応空間内の確実な排気の流れが効率的に達成され、それによって各コンパートメントがガスに関して効果的に分離されている限り、排気プレートが移動可能でなく、装置に固定される。サセプタおよび排気プレートがともに移動可能であるとき、分離壁からのガスが安定して反応空間から排気されることが可能になる。
図2に示されているとおり、実施態様においては、分離壁3の下端とサセプタ1のトップ表面の間の距離Δが、ターゲット2の厚さより大きく、その結果、サセプタが上側位置において、分離壁と接触することなくターゲット上における膜の堆積のために連続して回転することが可能となり、かつコンパートメントがガスの流れまたは気相に関して分離されることが可能となる。距離Δは、0.5mm、1.0mm、1.5mm、2.0mm、3.0mm、4.0mm、およびそれらの数のうちの任意の2つの間の範囲(好ましくは約0.5mmから約2.0mmまで)を含む約0.4mmから約5.0mmまでに設定できる。分離壁3の下端とターゲット2のトップ表面の間の距離は、0.2mm、0.5mm、1.0mm、2.0mm、およびそれらの数のうちの任意の2つの間の範囲を含む約0.1mmから約3.0mmまでの範囲内とすることができる。
図8は、本発明の実施態様に従ったサセプタ1、分離壁3aおよび3b、トップ・プレート20、ならびに排気プレート30の仮想的な(図6のA−B線に沿った)部分断面図である。分離壁の軸線が、中心パージ・ポートではない太線21によって示されている。分離壁3aおよび3bは、反応空間100を分割し、下側にコンパートメントC5が形成されるトップ・プレート20を挟み込んでいる。分離壁3aは、サセプタ回転方向に関して前側3aFおよび後側3aBを有する。分離壁3aの前側3aFには、反応ガス用の流出孔11が設けられている。分離壁3aの後側3aBには、パージガスまたは不活性ガス用の流出孔17が設けられている。分離壁3bは、サセプタ回転方向に関して前側3bFおよび後側3bBを有する。分離壁3bの前側3bFには、反応ガス用の流出孔18が設けられている。分離壁3bの後側3bBには、パージガスまたは不活性ガス用の流出孔12が設けられている。この実施態様においては排気プレート30が排気ポート31、32を有する。
分離壁3a、3bの厚さα+βは、トップ表面から最下端までを測定したとき、ある実施態様では約10mmから約100mmまでとすることができる。分離壁3a、3bは、トップ・プレート20の下側平面からαだけ突出している。この差αは、1.0mm、1.5mm、2.0mm、3.0mm、4.0mm、および以上のうちの任意の2つの数の間の範囲(好ましくは1.0mmから2.0mmまで)を含む約0.5mmから約5.0mmまでの範囲内とすることができる。
図10は、図8に示されている構造の略図的な部分断面図であり、本発明の実施態様に従ったガス流の方向51、52、53、54、およびサセプタの回転の方向55を示している。サセプタ1は方向55に回転する。流出孔11から排出された反応ガスは、サセプタ回転方向55とは逆の方向51に流れ、それにおいて反応ガスがターゲットの表面に接触し、ターゲット上にALD膜が堆積される。これは自己飽和反応であり、したがってターゲットがコンパートメントC5内にとどまる間にALD膜の堆積が完了するような速度においてサセプタ1が回転する限り、時間制御が精密に行われる必要はない。パージガスまたは不活性ガスは、流出孔17および12からまっすぐ下側に、それぞれ方向52および53に排出される。反応ガスは、矢印54で示されるとおり、排気プレート30の排気ポート32に吸い込まれるが、パージガスは、矢印58で示されるとおり排気プレート30の排気ポート31に吸い込まれ、それによって反応ガス流とパージガス流が効果的に分離される。この実施態様においては、パージガス流52、53がガス・カーテンとして機能し、反応ガス流51が隣接するコンパートメントに入ることが遮断される。さらに、反応ガスは、ターゲット支持エリアの間に形成された切り欠きを通ってコンパートメントC5から排出され、その結果、反応ガス流が隣接するコンパートメントに入ることが遮断される。
図9は、本発明の実施態様に従ったサセプタ1’、分離壁3cおよび3d、トップ・プレート20’、および排気プレート30’の略図的な(図6のA−B線に沿った)部分断面図である。この実施態様においては、分離壁3cおよび3dによって画定されるコンパートメントC6内のトップ・プレート20’の下側表面にシャワー・プレート40が備えられている。このシャワー・プレート40が反応ガスの排出に使用されることから、分離壁3cが反応ガスの排出のために流出孔を有する必要はない。またシャワー・プレート40を、パージガスのために使用することも可能である。図12は、本発明の実施態様に従ったシャワー・プレート40、および分離壁3c、3dを備えるトップ・プレート20’の略図的な部分底面図である。シャワー・プレートは、それを通してガスを排出するための複数の孔を有している(図示せず)。シャワー・プレートは、電極として働くことも可能であり、コンパートメントC6をプラズマCVD処理チャンバまたはアニール・チャンバとして使用することができる。
分離壁3cは、流出孔17’を有する後側3cBを有している。分離壁3dは、分離壁3cと類似の構造を有しており、流出孔12’をもつ後側3dBを有している。さらにこの実施態様においては、サセプタ1’が、ターゲット2の周囲に形成されて反応ガス流を効果的に作り出す円形の排気ポート33(環状スリット)を有する(図13〜15参照)。さらに、排気プレート30が、円形の排気ポート33を通過したガスを集めて受け入れる排気ポート39を有する。図13は、本発明の実施態様に従った排気ポート33および排気切り欠き6をもつサセプタ1’の略図的な部分平面図である。円形の排気ポート33は、ターゲット支持エリア(図では、ターゲット2に関する円形の排気ポートの位置を示すためにそれと等しくなっている)の周縁の近傍に配置される。
図14は、本発明の実施態様に従った図13に示されているb−b線に沿ったサセプタ1’の略図的な部分断面図である。図15は、本発明の実施態様に従った図13に示されているa−a線に沿ったサセプタ1’の略図的な部分断面図である。円形の排気ポート33は、サセプタのトップ表面上の上側連続環状開口部33aおよび上側連続環状開口部33aより広い(たとえば、2〜3倍広い)幅を有する下側の複数の開口部33bから構成される。上側連続環状開口部33aの幅は約1mmから約10mmまでの範囲内(好ましくは約2mmから約5mmまで)とすることができる。円形の排気ポートは、図14に示されている断面を有し、そこにはステップが示されている。しかしながら円形の排気ポートが段を有する必要はなく、サセプタの下側表面において、サセプタの上側表面におけるより広い開口部を有するテーパ付き表面を有することができる。別の実施態様においては、円形の排気ポートが段またはテーパ付き表面を有してなく、矩形の断面を有する。別の実施態様においては、サセプタのトップ表面において、サセプタのボトム表面におけるより広い開口部を有する。円形の排気ポートを使用することによって、より安定したガス流をコンパートメント内に作り出すことが可能になり、それによってガスの混合が効果的に防止され、ターゲット全体にわたってガスが一様に分配される。
図11は、図9に示されている構造の略図的な部分断面図であり、本発明の実施態様に従ったガス流の方向52、53、54、56、57、およびサセプタの回転の方向55を示している。ガス流52、53は、図10と同じとすることができる。図11においては、矢印56を用いて示されているとおり、反応ガスがシャワー・プレート40からターゲット2に向かって流れる。この反応ガスは、矢印57を用いて示されているとおり、円形の排気ポート33を通過して排気プレート30’に向かう。排気プレート30’は図10と異なる形状を有し、円形の排気ポート33を通過したガスが共通排気ポート39に向かうことが可能になるように図10より広い開口部を有する。矢印52を用いて示されているパージガスは、矢印58’を用いて示されているとおり、排気プレート30’の排気ポート31’に受け取られる。この排気プレートは、図22に示されているとおりに構成されることが可能である。言い換えると、図8および9の各排気ポート31、32、31’、39は、排気チャンネルに接続される開口部またはスリットによって構成されている。
分離壁の構成は、たとえば図25および26に示されているとおりの変更が可能である。図25および26のそれぞれは、本発明の実施態様に従ったサセプタ1および分離壁3の略図的な平面図であり、それにおいてトップ・プレートは、例示目的のために省略されている。いずれの実施態様においても、各反応ガスコンパートメント(R1〜R4;R1〜R2)がパージガスコンパートメント(P1〜P4;P1〜P3)によって挟み込まれており、その結果、反応ガスがほかの反応ガスコンパートメントに入り込むことが防止できる。図26においては、プラズマCVD処理/アニール・コンパートメントRFAが形成されている。従来装置とは異なり、PEALD(プラズマ原子層烝着)膜を堆積させるために、RFの断続的なオン/オフ操作の必要性を伴うことなくRFプラズマが連続的に生成されるコンパートメントRFA内を、処理ターゲットが通過することができる。2またはそれより多くのコンパートメントがシャワー・プレートまたは電極を備えることができる。シャワー・プレートが電極として働く必要、およびRF電源に接続される必要はない。それに対してシャワー・プレートを備えずににコンパートメント内に電極を取り付けることは可能である。
各コンパートメントのサイズは、反応のタイプ(吸収速度、反応速度等)、サセプタの回転速度等に基づいて決定されることが可能であり、各ターゲット支持エリアがコンパートメントに対応する領域内に完全に含まれ得ないようにしてもよい。通常、パージガスコンパートメントは、反応ガスコンパートメントより小さい領域を必要とする。図24において、パージガスコンパートメントP1〜P3は、サセプタの中心に関する周囲角として測定したときターゲット2より小さい。たとえば中心に関するターゲット支持エリアの周囲角が60°であるとき、中心に関するパージガスコンパートメントP1、P2、P3の周囲角60°より小さく、たとえば30〜45°になる。ある実施態様においては、中心に関するパージガスコンパートメントの周囲角を、ターゲット支持エリアの周囲角の約20%から約90%までとすることができる(30%、50%、70%、および以上のうちの任意の2つの数の間の範囲を含む)。別の実施態様においては、コンパートメントC1およびC3をパージガスコンパートメントとし、コンパートメントC2およびC4を反応ガスコンパートメントとする図1に示されているように、中心に関するパージガスコンパートメントの周囲角をターゲット支持エリアの周囲角の約100%から約200%までとすることができる(120%、150%、180%、および以上のうちの任意の2つの数の間の範囲を含む)。
ある実施態様においては、中心に関する反応ガスコンパートメントの周囲角をパージガスコンパートメントのそれより大きく、かつ一般に、ターゲット支持エリアの周囲角の約60%から約200%までとすることができる(80%、100%、120%、150%、および以上のうちの任意の2つの数の間の範囲を含む)。ある実施態様においては、反応ガスコンパートメントの周囲角をターゲット支持エリアの周囲角のそれより大きくすることができる。
図25および26に示されている構成は、各コンパートメントのサイズに関して上記の範囲内に含まれる。図26においては、PEALDが電極として働くシャワー・プレートを使用し、一様なプラズマの生成に一様なRFの印加を必要とすることから、コンパートメントRFAが最大となっている。非プラズマALDプロセスの場合には、反応が自己飽和となることから、セグメントごとに処理をターゲットに適用することが可能であり、最低時間が満たされる限り反応時間が決定的とはならない。したがって、サセプタの中心に関して反応ガスコンパートメントがターゲットより小さい場合であっても、ターゲットの処理を効果的に行うことが可能である。
さらに、ある実施態様においては、ターゲット支持エリア自体を回転することができる。ターゲット支持エリアの回転は、プラズマCVD等の非自己飽和反応が行われるときに効果的である。その場合においては、ターゲットに適用される処理の高い一様性を達成するために、そのコンパートメントのサイズをほかのコンパートメントのそれより大きくすることができる。ターゲット支持エリアが回転可能である場合には、そのコンパートメントが比較的小さい場合であっても高い一様性を効果的に達成することが可能になる。その場合、好ましくはターゲット支持エリアが、より良好な一様性のためにサセプタより速く回転する。ターゲット支持エリアの回転は、ALD等の自己飽和反応についても効果的である。図27は、本発明の実施態様に従った、回転するターゲット2および分離壁3を備えるサセプタ1の略図的な平面図であるが、例示目的のためにトップ・プレートが省略されている。図28は、本発明の実施態様に従った図27に示されているターゲット回転エリア202および分離壁3の略図的な横断面図である。
ある実施態様においては、ターゲット支持エリアの回転速度を約5rpmから約400rpmまで、好ましくは約10rpmから約180rpmまでとすることができる。ある実施態様においては、ターゲット支持エリアの速度をサセプタのそれより少なくとも1.5倍速くすることができる(2倍、5倍、10倍、および以上のうちの任意の2つの数の間の範囲を含む)。別の実施態様においては、反応のタイプに応じて、ターゲット支持エリアの回転速度をサセプタのそれより低くすることができる。典型的に、サセプタの回転速度を、反応のタイプ、最低堆積時間、コンパートメントのサイズ等に応じて約2rpmから約100rpmまで、好ましくは約5rpmから約60rpmまでとすることができる。
次に、ある実施態様において、処理ターゲット上にどのようにして薄膜が堆積されるかについて図面を参照しつつ説明する。この実施態様は、本発明の限定を意図するものではない。図8においては、処理ターゲット載置手段(真空ロボット等、図示せず)を使用して複数の半導体ウエハ2がサセプタ1上に配置され、上昇/下降移動手段(図23に示されているサーボ・モータ91等)を使用してサセプタ1および排気プレート30が反応位置まで上昇されている。この時点において、サセプタ1と分離壁3の間のギャップ(Δ)が、たとえば0.5mmから2mmまでといった指定寸法に調整される。
その後、図10に示されているとおり、特定の量の反応ガスが流出孔17から分離壁内に導入される。次に、図8および10に示されているとおり、特定の量の先駆物質Aが流出孔11からコンパートメントC5(図1におけるコンパートメントC2に対応する)内に導入される。特定の量のパージガスが流出孔12から、図1におけるパージガスコンパートメントC1およびC3内に導入され、その後、先駆物質Bが流出孔11から、図1におけるコンパートメントC4内に導入される。サセプタが、図1において反時計回りに特定の速度で回転され、薄膜を堆積するために、先駆物質Bと反応する先駆物質Aを処理ターゲットに吸着させる。このプロセスは、反応ガスコンパートメントC2から、パージガスコンパートメントC1、反応ガスコンパートメントC4、およびパージガスコンパートメントC3の順番で開始することができる。
サセプタは、特定の膜厚が達成されるまで回転され、その後、反応ガスコンパートメントC2およびC4に対する先駆物質の供給、およびパージガスコンパートメントC1およびC3に対するパージガスの供給が停止され、サセプタが指定位置まで下降されて処理ターゲットが取り外される。
ここで、先駆物質が導入される反応ガスコンパートメントC2およびC4を、図9および11に示されているトップ・フロー型とすることができる。図9に示されている構成について言えば、シャワー・プレート40を、必要であればRFプラズマ処理が実行可能となるようにRF電極としても働くシャワーヘッドによって置換することができる。さらに1つのパージガスコンパートメントを図9および11に示されているトップ・フロー型に適合させ、RFプラズマによるアニールを、各回転に対応する膜堆積サイクルに組み込むことも可能である。また、反応ガスコンパートメントおよび/またはパージガスコンパートメントを、図24および25に示されているとおり、処理ターゲットより小さくすることも可能である。
サセプタの回転速度は、先駆物質の吸着速度および反応速度をはじめ、必要とされるパージ時間に依存し、それらすべての時間のうちの最長のものから決定される。堆積される膜の厚さは、サセプタが回転する回数によって制御が可能である。たとえば、先駆物質AおよびBとして、それぞれTMA(トリメチルアルミニウム)およびHO(水)を使用するAl(アルミナ)膜の堆積プロセスにおいては、先駆物質Aの供給、パージ、先駆物質Bの供給、およびパージからなるサセプタの各回転について約0.11nmの厚さの膜を堆積することが可能である。したがって、4nmの厚さの膜を堆積するためには、サセプタを36回、回転させる必要がある。
この場合、反応空間が4つのセクションに分割され、もっとも長い時間を必要とするHOパージの期間が750ミリ秒に設定される。これは、サセプタ速度における20rpmに換算され、それにおいては1.8分の膜堆積時間の間に4つの半導体ウエハを処理することが可能になる。結果として得られるスループットは、時間当たり133のウエハとなる。従来方法の下においては、反応器内の先駆物質を切り替えるために追加のパージ時間が必要となることから、スループットが時間当たり約40ウエハである。本特許出願のこの実施態様においては、サセプタ上に4つのターゲットが配置される。任意の従来方法の下においてコンパートメントの数を単純に4つまで増加した場合には、その種の構成が等しいスループットを達成できる。しかしながら各コンパートメントが別々のガスラインおよび排気ポンプをはじめ、RFが使用される場合には別々のRF回路を必要とし、したがって装置コストが増加する。またその種の従来構成では、シャワーヘッドに吸着される先駆物質AおよびBの反応に起因してメンテナンス周期がより短くなる。さらに、本特許出願の下においては、サセプタ上に配置ができる処理ターゲットの数が4つに限定されない。サセプタの回転速度が20rpmに限定されることもなく、使用される先駆物質AおよびBがより高い吸着速度および反応速度を有していれば、サセプタの速度をさらに上昇させることが可能である。これは、スループットにおける更なる向上を可能にする。他の図面に示されているとおり、飽和プロセスではないCVD類似プロセスを実施するためにサセプタより速い速度でウエハを回転することも可能である。
提案の方法の使用は、それぞれの先駆物質が専用の反応チャンバ(コンパートメント)内にだけ導入され、従来プロセスの下における生産性の減少、プロセスの不安定、および反復性の低下の主要原因であった先駆物質切り替えのための追加のパージが必要ないことから生産性を向上させる。また、反応ガスのコンパートメントとパージガスのコンパートメントとを交互に配置することは、先駆物質が気相で互いに混じることを防止し、それが粒子の生成を抑圧し、不要エリアにおける膜の堆積を防止し、その結果としてメンテナンス周期をより長くする。それに加えて、先駆物質が連続的に導入されることが可能であり、それがバルブ寿命を延ばし、質量流量制御器等を使用するプロセス監視を可能にする。結果として、異常等について材料供給量のオンタイム監視が可能になる。米国特許公報第2004/0221808号、同第2005/0208217号、および同第2005/0229848号は、すべてこの出願と同一の譲受人によって所有されているが、ALDプロセスについて述べており、それらの開示は、その全体が参考文献としてここに組み込まれる。
図29〜34は、本発明の別の実施態様を示している。図29は、サセプタ301、分離壁303、排気プレート330、および側外壁340の部分断面を伴う略図的な斜視図である。サセプタ301は4つのセクションを有し、隣接するセクションは、排気切り欠き306によって分離されている。各セクションは、くぼんだ部分であるターゲット支持エリア302を有し、その中に基板が嵌め込まれる。図29からはトップ外壁が省略されているが、図30に示されるとおり、分離壁303の上方にトップ外壁321が配置される。図30は、トップ外壁321および分離壁303を示した分解概略図である。
トップ外壁321は、側外壁340のトップに連結されて反応チャンバをシールするようにそれが下に向かって延びている環状エッジ部分323を有する(図34参照)。図34は、サセプタ301、分離壁303、排気プレート330、側外壁340、およびトップ外壁321の部分断面を示す略図的な斜視図である。図30に示されているとおり、この実施態様においては、トップ外壁321が凹部またはグルーブ322を有し、その中に分離壁303が嵌め込まれてガス流チャンネルが形成される。トップ外壁321のトップ部分は、それぞれのガス流チャンネルと連通する孔361、362、363、364、365等を有し、それらの孔を介して分離壁303内のそれぞれのガス流チャンネル内に特定のガスが導入される。この実施態様においては分離壁303が十字形状であり、4つの壁またはアームが中心から放射状に延びており、そこには中心パージ・ポート304が形成されている。
図31は、分離壁303の略図的な斜視図である。この実施態様においては、各壁が3面(分離壁の中心から見たときに左右の角度付きの面および中央の面)の下側部分を有する。各面は、この実施態様において、長手方向と垂直な方向において実質的に同一または略同一の幅を有し、かつ直線に整列された複数の孔を有する。第1の隔壁351においては、右側の傾斜角度をもつ面および中央の面は孔311を通るパージガス(たとえば、NまたはAr)の排出のために使用される。第1の隔壁351の左側の角度付きの面は、孔312を通る反応ガスAの排出のために使用される。第3の隔壁353(第1の隔壁351の反対側)は、同一の構造を有するが、左側の角度付きの面が反応ガスBの排出のために使用される点が異なる。第2の隔壁352および第4の隔壁352は、直線に整列されており、3面がすべてパージガス(たとえば、NまたはAr)の排出のために使用される。中心パージ・ポート304もまた、パージガス(たとえば、NまたはAr)の排出のために使用される。
各隔壁の内側は、ガスの分離に関して2つのガス流チャンネルに分割してもよく、たとえば右側の角度付きの面および中央の面が互いにガスに関して連通して一方のガス流チャンネルを形成し、左側の傾斜角度をもつ面がガスに関して右側の傾斜角度をもつ面および中央の面から分離され、他方のガス流チャンネルを形成する。その場合にトップ外壁321は、各ガス流チャンネルについて1つのガス取り入れ孔を有することができる。図34において、トップ外壁321は、第1の隔壁の右側の傾斜角度をもつ面および中央の面とガスに関して連通したパージガス取り入れ孔361、第1の隔壁の左側の傾斜角度をもつ面とガスに関して連通した反応ガスA取り入れ孔362を有する。同様にトップ外壁321は、それぞれ第2の隔壁の右側の角度付きの面および中央の面、および第2の隔壁の左側の角度付きの面とガスに関して連通した2つのパージガス取り入れ孔364を有する。第3および第4の隔壁は、それぞれ第1および第2の隔壁に対応する構造を有する。図34は、第4の隔壁の右側の角度付きの面に接続されたパージガス取り入れ孔363を示している。またトップ外壁321は、中心パージ・ポート304に接続されたパージガス取り入れ孔365も有する。
図32は、サセプタ301の略図的な斜視図である。このサセプタは、放射状に4つのセクションに分割され、隣接するセクションが排気切り欠き306によって分離されている。各セクションは、基板が嵌め込まれる凹部である基板支持エリア302を有する。サセプタ支持部307は、サセプタ301を回転する。
図33は、排気プレート330の略図的な斜視図である。サセプタ支持部307は、排気プレート330の中心孔338を通って挿入される(図34参照)。排気プレート330は、放射状に4つのセクション337a、337b、337c、および337dに分割されている。各セクションは、排気チャンネルに連結された孔を有する。セクション337aは排気チャンネル330aに連結された孔330a’を有し、同様にセクション337bは排気チャンネル330bに連結された孔330b’を有する。隣接するセクションの間には、仕切片360が備えられている。この実施態様においては、仕切片360が分離壁と同様に排気ガス流を促進するように3面構成である。すべての仕切片360は、中心近傍および外周縁に沿って接続されている。
上記の実施態様において構造が特定されていない場合に、当業者であれば、この開示に照らし、日常的に実施する上でその種の構造を容易に提供できるものである。
例1
以下は、先駆物質としてTEB(トリエチルボロン)、WF(六フッ化タングステン)、NH(アンモニア)を、Arをパージガスまたは不活性ガスとして使用したWNC(窒化炭化タングステン)膜堆積の例における本発明の実施態様に従った方法および従来方法の膜堆積結果である。本発明の実施態様については図8、17、および24に示されている装置が使用され、それにおいて:
ギャップΔ:1.2mm
分離壁の高さα+β:51.5mm
トップ・プレートの厚さβ:50mm
切り欠きの幅:10mm
パージガスコンパートメントの周縁角:20°
反応ガスコンパートメントの周縁角:30°
パージガスおよび反応ガス用の流出孔の数:50
ウエハの直径:300mm
中心からのパージガスの流量:20sccm
コンパートメントに対するパージガスの流量:1000sccm
先駆物質TEBの流量:400sccm(キャリアガスNを伴う)
先駆物質WFの流量:15sccm
先駆物質NHの流量:400sccm
コンパートメントP1〜P3の圧力:200Pa
コンパートメントR1の圧力:300Pa
コンパートメントR2の圧力:150Pa
コンパートメントR3の圧力:150Pa
反応チャンバの温度(堆積温度):320℃
比較に用いた方法(米国特許公報第2004/0221808号、同第2005/0208217号、および同第2005/0229848号):シャワーヘッド型、シャワーヘッド排気付き
堆積は、以下の表1に示されている条件の下に行われた。
Figure 2007247066
膜堆積結果(WNC 25nm)の結果を表2に示す。
Figure 2007247066
表2に示されているとおり、例1においては、パージガスおよび先駆物質ガスの連続流を使用し、各反応ガスコンパートメントをパージガスコンパートメントの間に挟み込むことによって先駆物質の混合が効果的に抑制されたことから膜内の粒子汚染が有意に抑制された。さらに例1においては、膜特性の一様性が非常に高かった。さらにまた、例1においてはスループットは従来方法の約9倍の高さであった。
例2
以下の例は、本発明の実施態様に従ったPEALD(プラズマALD)によるRu膜の堆積の例である。本発明のこの実施態様のために、図9、13、および26に示されている装置が使用されることを仮定し、以下に示されていない条件は例1と同一としてシミュレーションを行い、スループットを計算した:
パージガスコンパートメントの周縁角:15°
反応ガスコンパートメントの周縁角:20°
RFAコンパートメントの周縁角:90°
RF出力:200W、13.56MHz
中心からのパージガスの流量:20sccm
コンパートメントに対するパージガスの流量:1000sccm
先駆物質Ruの流量:400sccm(キャリアガスHeを伴う)
先駆物質NHの流量:400sccm
コンパートメントP1〜P2の圧力:200Pa
コンパートメントR1の圧力:400Pa
コンパートメントRFAの圧力:150Pa
反応チャンバの温度(堆積温度):320℃
比較に用いた方法(米国特許公報第2004/0221808号、同第2005/0208217号、および同第2005/0229848号):シャワーヘッド型、シャワーヘッド排気付き
堆積は、表3に示されている条件の下にシミュレーションされた。
Figure 2007247066
結果として、シミュレーションは、例2におけるスループットが従来方法の約10倍の高さとなることを明らかにしている。
この開示において条件および/または構造が特定されていない場合に、当業者であれば、この開示に照らし、日常的に実施する上でその種の条件および/または構造を容易に提供できる。
本発明は、以上の実施態様およびそのほかの多様な実施態様を含み、それには以下が含まれる:
(1)処理ターゲットとなる半導体ウエハ上に薄膜を堆積するための装置が:反応チャンバ、上に複数の処理ターゲットが据えられるサセプタ、およびサセプタを上下に移動するための上昇/下降手段;中心軸周りにサセプタを回転するための回転手段;および反応器を複数のチャンバに分割するための壁;を含み、この装置は、膜の堆積時に、壁に沿って小さいギャップを形成するまでサセプタが上昇され、それによってそれぞれの反応チャンバが分離されてソースガスおよびパージガスのチャンバが交互に提供されること、および上に処置ターゲットが配置されたサセプタ手段が回転し、処理ターゲット上に薄膜を堆積することを特徴とする。
(2)(1)で記述した装置は、膜の堆積時にサセプタが上昇され、反応チャンバを複数のチャンバに分離する壁に沿って形成される小さいギャップの中に不活性ガスが導入され、その後その不活性ガスが、それぞれのチャンバを分離するために、サセプタ手段上にある壁に正対する位置に備えられた排気ポートから排出されることを特徴とする。
(3)(2)で記述した装置は、不活性ガスがN、Ar、He、またはNeであることを特徴とする。
(4)(1)で記述した装置は、ソースガスまたはパージガスが、サセプタの回転方向において出口側の壁から導入され、入口側から排出されることを特徴とする。
(5)(1)で記述した装置は、ソースガスまたはパージガスが、壁によって分割される空間の上方から導入され、サセプタ上の各処理ターゲットの外周縁に備えられた排気ポートから排出されることを特徴とする。
(6)(1)で記述した装置は、サセプタの回転によって、壁によって分割された、処理ターゲットより小さいチャンバを処理ターゲットが通過する間にソースガスが吸着および/または反応またはパージされることを特徴とする。
(7)(1)で記述した装置は、サセプタが連続的に回転することを特徴とする。
(8)(1)で記述した装置は、膜を堆積するため、またはアニール効果を提供するために、壁によって分割された1つまたはそれより多くのチャンバにRFプラズマが印加されることを特徴とする。
(9)(1)で記述した装置は、サセプタと壁の間の小さいギャップによって形成されるチャンバが、圧力測定手段および圧力コントロール手段によって別々に圧力制御されることを特徴とする。
(10)(9)で記述した装置は、各チャンバの圧力が、それぞれのソースガスが互いに気相で混じらない方法で設定されることを特徴とする。
(11)(1)で記述した装置は、RFの断続的なオン/オフ操作を必要とすることなくPEALD膜を堆積するために、処置ターゲットがサセプタの回転によって、RFプラズマが連続的に生成されているRFプラズマ・チャンバ内に通されることを特徴とする。
(12)(1)で記述した装置は、サセプタの回転速度より速い速度で処理ターゲットが回転して膜が堆積されることを特徴とする。
当業者は理解することになろうが、本発明の精神から逸脱することなしに多くの多様な変更が行われ得る。したがって、本発明の形式は例示のみに過ぎす、本発明の範囲の限定を意図しないことが明確に理解されよう。
本発明の実施態様に従ったサセプタ1および分離壁3の、例示目的のためにトップ・プレートが省略された略図的な平面図である。 本発明の実施態様に従ったサセプタ1および分離壁3の、例示目的のためにトップ・プレートが省略された略図的な正面図である。 本発明の実施態様に従った分離壁3の略図的な部分斜視図である。 本発明の実施態様に従ったサセプタ1および分離壁3の、例示目的のためにトップ・プレートが省略された略図的な斜視図である。 本発明の実施態様に従ったサセプタ1および分離壁3の、例示目的のためにトップ・プレートが省略された、部分拡大図を伴う断面図である。 本発明の実施態様に従ったサセプタ1および分離壁3の、例示目的のためにトップ・プレートが省略された、図7の断面の位置を示した略図的な平面図である。 本発明の実施態様に従った分離壁3およびトップ・プレート20の、略図的な(図6のA−B線に沿った)部分断面斜視図である。 本発明の実施態様に従ったサセプタ1、分離壁3aおよび3b、トップ・プレート20、および排気プレート30の略示的な(図6のA−B線に沿った)部分断面図である。この図は縮尺を考慮していない。 本発明の実施態様に従ったサセプタ1’、分離壁3cおよび3d、トップ・プレート20’、および排気プレート30’の略図的な(図6のA−B線に沿った)部分断面図である。この図は縮尺を考慮していない。 本発明の実施態様に従ったガス流の方向51、52、53、54、およびサセプタの回転の方向55を示した図8に示されている構造の略図的な部分断面図である。 本発明の実施態様に従ったガス流の方向52、53、54、56、57、およびサセプタの回転の方向55を示した図9に示されている構造の略図的な部分断面図である。 本発明の実施態様に従ったシャワー・プレート40(電極としても働く)および分離壁3c、3dを備えるトップ・プレート20’の略図的な部分底面図である。 本発明の実施態様に従った円形の排気ポート33および排気切り欠き6を備えるサセプタ1’の略図的な部分平面図である。 本発明の実施態様に従った図13に示されているb−b線に沿ったサセプタ1’の略図的な部分断面図である。 本発明の実施態様に従った図13に示されているa−a線に沿ったサセプタ1’の略図的な部分断面図である。 本発明の実施態様に従ったサセプタ101、トップ・プレート120、トップ外壁121、分離壁103、排気プレート130、および側方外壁140の部分断面図を伴った略図的な斜視図である。 本発明の実施態様に従った分離壁3a、3b、3c、3dについての配管を示した概略図である。 本発明の実施態様に従った装置内のガスの流れを示した、分離壁3aと3bの間の角度(45°)が仮想的に180°に展開した略図的な仮想断面図である。 本発明の実施態様に従った図18に示されているc−c線に沿った排気システムの略図的な断面図である。 本発明の実施態様に従った図18に示されているサセプタ1の略図的な平面図である。 本発明の実施態様に従った図18に示されている排気プレート30の略図的な平面図である。 本発明の実施態様に従った図21に示されている排気プレート30の略図的な斜視図である。 本発明の実施態様に従った装置の略図的な仮想断面図である。 本発明の実施態様に従ったサセプタ1および分離壁3の、例示目的のためにトップ・プレートが省略された略図的な平面図である。 本発明の実施態様に従ったサセプタ1および分離壁3の、例示目的のためにトップ・プレートが省略された略図的な平面図である。 本発明の実施態様に従ったサセプタ1および分離壁3の、例示目的のためにトップ・プレートが省略された略図的な平面図である。 本発明の実施態様に従ったサセプタ1の、回転するターゲット2および分離壁3を備える、例示目的のためにトップ・プレートが省略された略図的な平面図である。 本発明の実施態様に従ったサセプタ1の、図27に示されているターゲット回転エリア202および分離壁3を示す、例示目的のためにトップ・プレートが省略された略図的な横断面図である。 本発明の実施態様に従ったサセプタ301、分離壁303、排気プレート330、および側外壁340の部分断面を伴う略図的な斜視図である。 本発明の実施態様に従ったトップ外壁321および分離壁303を示した分解概略図である。 本発明の実施態様に従った分離壁303の略図的な斜視図である。 本発明の実施態様に従ったサセプタ301の略図的な斜視図である。 本発明の実施態様に従った排気プレート330の略図的な斜視図である。 本発明の実施態様に従ったサセプタ301、分離壁303、排気プレート330、側外壁340、およびトップ外壁321の部分断面を示す略図的な斜視図である。
符号の説明
1 サセプタ
1’ サセプタ
2 ターゲット(半導体ウエハ)
3 分離壁
3a 分離壁
3aB 後側
3aF 前側
3b 分離壁
3bB 後側
3bF 前側
3c 分離壁
3cB 後側
3d 分離壁
3dB 後側
4 中心パージ・ポート
5 流出孔
6 切り欠き
7 サセプタ支持部(シャフト)
10 管状出口
11 流出孔
12 流出孔
12’ 流出孔
13、14、15、16 マニフォールド
17 流出孔
17’ 流出孔
18 流出孔
20 トップ・プレート
20’ トップ・プレート
30 排気プレート
30’ 排気プレート
30a〜30d 排気チャンネル
31 排気ポート
31’ 排気ポート
32 排気ポート
33 排気ポート(円形の排気ポート)
33a 上側連続環状開口部
36a 圧力センサ
36b 圧力センサ
37a〜37d 開口部(排気ポート)
38 貫通孔
39 排気ポート
40 シャワー・プレート
61 孔
62 孔
63 孔
64 孔
71 MFC
72 MFC
73 質量流量制御器(MFC)
74 バルブ
75 バルブ
76 バルブ
81 ライン
82 ライン
83 ライン
91 サーボ・モータ
92 ベローズ
93a ベローズ
93b ベローズ
94a 排気パイプ
94b 排気パイプ
95 磁気シール
96 排気部
100 反応空間
101 サセプタ
103 分離壁
104 中心パージ・ポート
105 流出孔
107 サセプタ支持部
120 トップ・プレート
121 外壁(トップ外壁)
130 排気プレート
140 外壁(側方外壁)
202 ターゲット回転エリア
301 サセプタ
302 ターゲット支持エリア(基板支持エリア)
303 分離壁
304 中心パージ・ポート
306 排気切り欠き
307 サセプタ支持部
311 孔
312 孔
321 トップ外壁
322 グルーブ
323 環状エッジ部分
330 排気プレート
330a 排気チャンネル
330a’ 孔
330b 排気チャンネル
330b’ 孔
337a セクション
337b セクション
337c セクション
337d セクション
338 中心孔
340 側外壁
351 第1の隔壁
352 第2の隔壁
353 第3の隔壁
354 第4の隔壁
360 仕切片
361 孔(パージガス取り入れ孔)
362 孔(反応ガスA取り入れ孔)
363 孔(パージガス取り入れ孔)
364 孔(パージガス取り入れ孔)
365 孔(パージガス取り入れ孔)
A ソースガス
B ソースガス
C1〜C4 コンパートメント
C5 コンパートメント
C6 コンパートメント
P1〜P3 パージガスコンパートメント
P1〜P4 パージガスコンパートメント
R1〜R3 反応ガスコンパートメント
R1〜R4 反応ガスコンパートメント
RFA プラズマCVD処理/アニール・コンパートメント;コンパートメント

Claims (37)

  1. ターゲット上に薄膜を堆積するための装置であって:
    反応空間;
    複数のターゲット支持エリアを上に有し、前記ターゲット支持エリア上にそれぞれが位置する複数のターゲットを配置するための前記反応空間の内側に位置するサセプタであって、軸線方向において上側位置と下側位置の間で移動可能であり、かつ前記上側位置にあるときはその軸線周りに回転可能となるサセプタ;および、
    処理のための複数のコンパートメントであって、前記複数のコンパートメントの中心軸線からそれぞれが放射状に延びる隔壁によって分割されており、前記反応空間の内側で、前記ターゲット上における膜の堆積のために前記サセプタが前記上側位置において前記隔壁と接触することなく連続回転可能となるギャップを形成するように前記サセプタの上方に配置され、前記ターゲットが上に配置された前記サセプタが前記上側位置において回転する間、同時に前記コンパートメント内において異なる処理を施すべく構成された複数のコンパートメント;
    を含む装置。
  2. 前記隔壁のうちの少なくとも1つは、前記隔壁のうちの前記少なくとも1つによって画定される前記複数のコンパートメントのうちの1つの中に反応ガスまたはパージガスを導入するための少なくとも1つのガス流出孔を有する、請求項1に記載の装置。
  3. 前記隔壁の中心は、パージガスまたは不活性ガスを前記複数のコンパートメントの中心に導入するためのガス流出孔を有する、請求項1に記載の装置。
  4. 前記隔壁は、ガスに関して前記複数のコンパートメントを分離するガス・カーテンとして不活性ガスを前記サセプタに向けて排出するためのガス流出孔を有する、請求項1に記載の装置。
  5. 前記隔壁のうちの少なくとも1つは、サセプタ回転方向に関して前および後側を有し、前記隔壁のうちの前記少なくとも1つは、前記複数のコンパートメントのうちの2つを分離し、前記前および後側のうちの一方は、前記2つのコンパートメントのうちの一方の中に反応ガスまたはパージガスを導入するための少なくとも1つのガス流出孔を有し、前記前および後側のうちの他方は、前記2つのコンパートメントのうちの前記一方を前記2つのコンパートメントのうちの他方からガスに関して分離するガス・カーテンとして不活性ガスを前記サセプタに向けて排出するための少なくとも1つのガス流出孔を有する、請求項1に記載の装置。
  6. 前記隔壁の前記前および後側は、それぞれ、サセプタに面し、互いに対して角度を有し、かつ互いから離れる方向に面する平面を有する、請求項5に記載の装置。
  7. 前記複数のコンパートメントのうちの少なくとも1つは、その中に反応ガスまたはパージガスを導入するために、前記複数のコンパートメントのうちの前記少なくとも1つの上側部分にガス流出孔が設けられる、請求項1に記載の装置。
  8. 前記サセプタは、前記ターゲット支持エリアの周囲に形成されたガスを通過させるための環状スリットを有する、請求項7に記載の装置。
  9. 前記サセプタは、前記ターゲット支持エリアの間にそれぞれが形成されたガスを通過させるためのスリットを有する、請求項1に記載の装置。
  10. 前記スリットは、前記サセプタの周縁から前記サセプタの中心軸に向かって延びる凹部によって構成される、請求項9に記載の装置。
  11. さらに、前記サセプタの下側に設けられるガス流入ポートを有する排気システムを含む、請求項1に記載の装置。
  12. 前記排気システムは、前記サセプタの前記軸方向において、その軸線の周りに回転することなく前記サセプタとともに移動可能である、請求項11に記載の装置。
  13. 前記複数のコンパートメントは、サセプタ回転方向において異なるサイズを有する、請求項1に記載の装置。
  14. 各ターゲット支持エリアは、その軸周りに前記サセプタより速い回転速度で回転可能である、請求項1に記載の装置。
  15. 前記複数のコンパートメントのうちの少なくとも1つは、前記複数のコンパートメントのうちの前記少なくとも1つに対応する領域内に各ターゲット支持エリアが完全に含まれ得ないようなサイズを有する、請求項1に記載の装置。
  16. 前記複数のコンパートメントのうちの少なくとも1つは、RF電源ユニットまたはアニール・ユニットを備える、請求項1に記載の装置。
  17. 前記複数のコンパートメントのうちの少なくとも1つは、前記複数のコンパートメントのうちの前記少なくとも1つの中に反応ガスを導入するためのシャワー・プレートが備えられる、請求項1に記載の装置。
  18. 処理ターゲット上に薄膜を堆積するための装置であって:
    反応空間;
    複数の処理ターゲットを上に配置するたのサセプタであって、上下に移動可能であり、かつその中心軸線の周りに回転可能であるサセプタ;および、
    前記反応空間を、ソースガスコンパートメントおよびパージガスコンパートメントを含む複数のコンパートメントに分割するための分離壁を含み、膜の堆積のために前記サセプタが上昇されたとき、前記サセプタと前記分離壁の間に小さいギャップが形成され、それによってそれぞれのコンパートメントの間にガス分離が設定され、各ソースガスコンパートメントおよび各パージガスコンパートメントが前記サセプタのサセプタ回転方向において交互に提供される装置。
  19. 前記小さいギャップは、約0.5mmから約2.0mmまでである、請求項18に記載の装置。
  20. 半導体ターゲットを処理するための方法であって:
    反応空間の内側に位置するサセプタ上に設けられたターゲット支持エリア上に複数の半導体ターゲットのそれぞれを配置すること;
    前記サセプタの上に位置する複数のコンパートメントであって、前記複数のコンパートメントの中心軸線からそれぞれが放射状に延びる隔壁によって分割される処理のための複数のコンパートメントに対して、前記サセプタが前記ターゲット上における膜の堆積のために前記隔壁と接触することなく連続回転するようにギャップを形成する上側位置にある前記サセプタをその軸線の周りに回転すること;および、
    前記ターゲットを処理するために、前記ターゲットが上に配置された前記サセプタが前記上側位置において連続的に回転する間、各コンパートメント内において独立に、かつ同時に処理条件を作り出すこと;
    を含む方法。
  21. 前記作り出すことは、前記隔壁のうちの少なくとも1つに設けられた少なくとも1つのガス流出孔から、前記隔壁のうちの前記少なくとも1つによって画定される前記複数のコンパートメントのうちの1つの中に反応ガスまたはパージガスを導入することを含む、請求項20に記載の方法。
  22. 前記作り出すことは、前記隔壁の中心に設けられたガス流出孔から前記複数のコンパートメントの中心にパージガスまたは不活性ガスを導入することを含む、請求項21に記載の方法。
  23. 前記作り出すステップは、前記隔壁内に設けられたガス流出孔から前記サセプタに向けてガス・カーテンとして不活性ガスを排出し、それによってガスに関して前記複数のコンパートメントを分離することを含む、請求項20に記載の方法。
  24. 前記作り出すステップは:
    前記隔壁のうちの少なくとも1つに備えられた前または後側のうちのいずれかに設けられる少なくとも1つのガス流出孔から、前記隔壁のうちの前記少なくとも1つによって分割される前記複数のコンパートメントのうちの2つの一方の中に反応ガスまたはパージガスを導入すること;および、
    前記隔壁のうちの前記少なくとも1つに備えられた前記前または後側のうちの他方に設けられる少なくとも1つのガス流出孔から前記サセプタに向けて、前記2つのコンパートメントのうちの前記一方を前記2つのコンパートメントのうちの他方からガスに関して分離するガス・カーテンとして不活性ガスを導入すること;
    を含む、請求項20に記載の方法。
  25. 前記反応ガスまたはパージガスと前記不活性ガスは、互いから離れる方向に導入される、請求項24に記載の方法。
  26. 前記作り出すことは、前記複数のコンパートメントのうちの少なくとも1つの中に、前記複数のコンパートメントのうちの前記少なくとも1つの上側部分に設けられるガス流出ポートから反応ガスまたはパージガスを導入することを含む、請求項20に記載の方法。
  27. 前記作り出すことは、さらに、前記サセプタの前記ターゲット支持エリアの周囲に形成された環状スリットにガスを通過させることを含む、請求項26に記載の方法。
  28. 前記作り出すことは、さらに、それぞれが前記ターゲット支持エリアの間に形成された前記サセプタ内に設けられたスリットにガスを通過させることを含む、請求項20に記載の方法。
  29. 前記ガスは、前記サセプタの周縁から前記サセプタの中心軸に向かって延びるスリットに通される、請求項28に記載の方法。
  30. 前記作り出すことは、さらに、前記サセプタの下側に設けられたガス流入ポートを介して前記反応空間からガスを排出することを含む、請求項20に記載の方法。
  31. さらに、前記作り出すことに先行して、前記ガス流入ポートを、前記サセプタの前記軸線方向に、その軸線周りの回転なしに前記サセプタとともに移動することを含む、請求項30に記載の方法。
  32. 前記作り出すことは、さらに、各ターゲット支持エリアを、その軸線周りに前記サセプタより速い回転速度で回転することを含む、請求項20に記載の方法。
  33. 前記作り出すことは、前記複数のコンパートメントのうちの1つの中に反応ガスを導入し、サセプタ回転方向において前記コンパートメントのうちの前記1つの上流に隣接する前記複数のコンパートメントのうちの別の1つの中にパージガスを導入することを含む、請求項20に記載の方法。
  34. 前記複数のコンパートメントのうちの別のものは、前記ターゲット支持エリア上の各ターゲットが、前記サセプタの回転のいかなる時点においても前記複数のコンパートメントのうちの前記別のものに対応する領域内に完全に含まれ得ないようなサイズを有する、請求項33に記載の方法。
  35. 前記作り出すことは、前記複数のコンパートメントのうちの少なくとも1つの中においてRF電力を印加すること、または前記ターゲットのアニールを行うことを含む、請求項20に記載の方法。
  36. 前記作り出すことは、前記複数のコンパートメントを通って移動する間に前記ターゲット上に原子層を堆積させるべく前記サセプタの回転速度を制御することを含む、請求項20に記載の方法。
  37. 前記作り出すことは、前記サセプタが回転する間に、前記複数のコンパートメントのうちの少なくとも1つの中においてRF電力を一定して印加し、それによってRF電力の断続的なオン/オフ操作の必要性なしに前記ターゲット上に原子層を堆積させることを含む、請求項36に記載の方法。
JP2007066095A 2006-03-15 2007-03-15 回転サセプタを備える半導体処理装置 Pending JP2007247066A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/376,048 US20070218701A1 (en) 2006-03-15 2006-03-15 Semiconductor-processing apparatus with rotating susceptor
US11/675,520 US20070218702A1 (en) 2006-03-15 2007-02-15 Semiconductor-processing apparatus with rotating susceptor

Publications (1)

Publication Number Publication Date
JP2007247066A true JP2007247066A (ja) 2007-09-27

Family

ID=38591673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007066095A Pending JP2007247066A (ja) 2006-03-15 2007-03-15 回転サセプタを備える半導体処理装置

Country Status (3)

Country Link
US (1) US20070218702A1 (ja)
JP (1) JP2007247066A (ja)
KR (1) KR20070093820A (ja)

Cited By (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084693A (ja) * 2007-09-28 2009-04-23 Osram Opto Semiconductors Gmbh 層析出装置および層析出装置を運転する方法
EP2138604A2 (en) 2008-06-27 2009-12-30 Tokyo Electron Limited Film deposition apparatus, film deposition method, and computer readable storage medium
JP2010056471A (ja) * 2008-08-29 2010-03-11 Tokyo Electron Ltd 成膜装置、成膜方法及び記憶媒体
JP2010056470A (ja) * 2008-08-29 2010-03-11 Tokyo Electron Ltd 成膜装置及び成膜方法
JP2010059494A (ja) * 2008-09-04 2010-03-18 Tokyo Electron Ltd 成膜装置、成膜方法、並びにこの成膜方法を成膜装置に実施させるプログラム及びこれを記憶するコンピュータ可読記憶媒体
JP2010059499A (ja) * 2008-09-04 2010-03-18 Tokyo Electron Ltd 成膜装置及び基板処理装置
JP2010059496A (ja) * 2008-09-04 2010-03-18 Tokyo Electron Ltd 成膜装置、成膜方法、並びにこの成膜方法を成膜装置に実施させるプログラムおよびこれを記憶するコンピュータ可読記憶媒体
JP2010059495A (ja) * 2008-09-04 2010-03-18 Tokyo Electron Ltd 成膜装置、基板処理装置、成膜方法及びこの成膜方法を実行させるためのプログラムを記録した記録媒体
JP2010059497A (ja) * 2008-09-04 2010-03-18 Tokyo Electron Ltd 成膜装置、成膜方法、並びにこの成膜方法を成膜装置に実施させるプログラム及びこれを記憶するコンピュータ可読記憶媒体
JP2010059498A (ja) * 2008-09-04 2010-03-18 Tokyo Electron Ltd 成膜装置、基板処理装置、成膜方法及びこの成膜方法を実行させるためのプログラムを記録した記録媒体
JP2010080924A (ja) * 2008-08-29 2010-04-08 Tokyo Electron Ltd 成膜装置、基板処理装置、成膜方法及び記憶媒体
JP2010084230A (ja) * 2008-09-04 2010-04-15 Tokyo Electron Ltd 成膜装置、基板処理装置及び回転テーブル
WO2010055926A1 (ja) * 2008-11-14 2010-05-20 東京エレクトロン株式会社 成膜装置
JP2010141207A (ja) * 2008-12-12 2010-06-24 Tokyo Electron Ltd 成膜装置、成膜方法及び記憶媒体
JP2010206025A (ja) * 2009-03-04 2010-09-16 Tokyo Electron Ltd 成膜装置、成膜方法、プログラム、およびコンピュータ可読記憶媒体
JP2010212627A (ja) * 2009-03-12 2010-09-24 Tokyo Electron Ltd 成膜装置、成膜方法及び記憶媒体
JP2010239103A (ja) * 2008-08-29 2010-10-21 Tokyo Electron Ltd 活性化ガスインジェクター、成膜装置及び成膜方法
JP2010263245A (ja) * 2008-06-27 2010-11-18 Tokyo Electron Ltd 成膜装置、成膜方法、基板処理装置及び記憶媒体
WO2011034057A1 (ja) * 2009-09-17 2011-03-24 東京エレクトロン株式会社 プラズマ処理装置およびプラズマ処理装置用ガス供給機構
CN102108496A (zh) * 2009-12-25 2011-06-29 东京毅力科创株式会社 成膜装置及成膜方法
JP2011134996A (ja) * 2009-12-25 2011-07-07 Tokyo Electron Ltd 成膜装置
JP2011151343A (ja) * 2009-12-25 2011-08-04 Tokyo Electron Ltd プラズマ処理装置
JP2011151387A (ja) * 2009-12-25 2011-08-04 Tokyo Electron Ltd 成膜装置及び成膜方法
JP2011210872A (ja) * 2010-03-29 2011-10-20 Tokyo Electron Ltd 成膜装置、成膜方法及び記憶媒体
JP2011222960A (ja) * 2010-02-26 2011-11-04 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法
JP2012049394A (ja) * 2010-08-27 2012-03-08 Tokyo Electron Ltd 成膜装置、成膜方法及び記憶媒体
JP2012521097A (ja) * 2009-03-16 2012-09-10 アルタ デバイセズ,インコーポレイテッド 蒸着用反応装置蓋アセンブリ
JP2012182499A (ja) * 2012-06-15 2012-09-20 Tokyo Electron Ltd 成膜装置
JP2013503498A (ja) * 2009-08-31 2013-01-31 ウォニック アイピーエス カンパニー リミテッド ガス噴射装置及びこれを用いた基板処理装置
JP2013055243A (ja) * 2011-09-05 2013-03-21 Tokyo Electron Ltd 成膜装置、成膜方法及び記憶媒体
JP2013055356A (ja) * 2012-11-29 2013-03-21 Tokyo Electron Ltd 基板処理装置、基板処理方法及び記憶媒体
JP2013520572A (ja) * 2010-02-25 2013-06-06 ネーデルランセ オルハニサチエ フォール トゥーヘパスト−ナツールウェーテンシャッペルック オンデルズク テーエヌオー 層堆積方法および機器
JP2013118411A (ja) * 2008-08-29 2013-06-13 Tokyo Electron Ltd 成膜装置
US8465591B2 (en) 2008-06-27 2013-06-18 Tokyo Electron Limited Film deposition apparatus
US8465592B2 (en) 2008-08-25 2013-06-18 Tokyo Electron Limited Film deposition apparatus
US8518183B2 (en) 2008-09-04 2013-08-27 Tokyo Electron Limited Film deposition apparatus, substrate process apparatus, film deposition method, and computer readable storage medium
JP2014509066A (ja) * 2011-01-13 2014-04-10 クックジェ エレクトリック コリア カンパニー リミテッド 半導体製造に使用される噴射部材及びそれを有するプラズマ処理装置
JP2014107344A (ja) * 2012-11-26 2014-06-09 Tokyo Electron Ltd 成膜方法、その成膜方法のプログラム、そのプログラムを記録した記録媒体、及び、成膜装置
US8746170B2 (en) 2009-11-04 2014-06-10 Tokyo Electron Limited Substrate process apparatus, substrate process method, and computer readable storage medium
WO2014087920A1 (ja) * 2012-12-04 2014-06-12 東京エレクトロン株式会社 成膜装置
US8808456B2 (en) 2008-08-29 2014-08-19 Tokyo Electron Limited Film deposition apparatus and substrate process apparatus
JP2014520212A (ja) * 2011-06-24 2014-08-21 クックジェ エレクトリック コリア カンパニー リミテッド 半導体製造に使用される噴射部材及びそれを有する基板処理装置
JP2014175483A (ja) * 2013-03-08 2014-09-22 Hitachi Kokusai Electric Inc 基板処理装置、及び半導体装置の製造方法
US8840727B2 (en) 2008-09-04 2014-09-23 Tokyo Electron Limited Film deposition apparatus, substrate processor, film deposition method, and computer-readable storage medium
WO2014148490A1 (ja) * 2013-03-22 2014-09-25 株式会社日立国際電気 基板処理装置、及び半導体装置の製造方法
US8882915B2 (en) 2009-04-09 2014-11-11 Tokyo Electron Limited Film deposition apparatus, film deposition method, and computer readable storage medium
US8992685B2 (en) 2009-04-09 2015-03-31 Tokyo Electron Limited Substrate processing apparatus, substrate processing method, and computer-readable storage medium
US9039837B2 (en) 2011-07-21 2015-05-26 Tokyo Electron Limited Film deposition apparatus and substrate processing apparatus
US9103030B2 (en) 2008-12-02 2015-08-11 Tokyo Electron Limited Film deposition apparatus
US9297072B2 (en) 2008-12-01 2016-03-29 Tokyo Electron Limited Film deposition apparatus
US9416448B2 (en) 2008-08-29 2016-08-16 Tokyo Electron Limited Film deposition apparatus, substrate processing apparatus, film deposition method, and computer-readable storage medium for film deposition method
US9583312B2 (en) 2012-12-14 2017-02-28 Tokyo Electron Limited Film formation device, substrate processing device, and film formation method
US9714467B2 (en) 2014-02-10 2017-07-25 Tokyo Electron Limited Method for processing a substrate and substrate processing apparatus
JP2017528916A (ja) * 2014-09-10 2017-09-28 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 空間的原子層堆積におけるガス分離制御
JP2017531920A (ja) * 2014-10-03 2017-10-26 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 高温酸化ケイ素原子層堆積技術
JP2017224825A (ja) * 2013-02-20 2017-12-21 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated カルーセル原子層堆積のための装置および方法
KR20180015578A (ko) 2016-08-03 2018-02-13 도쿄엘렉트론가부시키가이샤 성막 장치, 성막 방법 및 기억 매체
US9932674B2 (en) 2011-05-12 2018-04-03 Tokyo Electron Limited Film deposition apparatus, film deposition method, and computer-readable recording medium
US10246775B2 (en) 2016-08-03 2019-04-02 Tokyo Electron Limited Film forming apparatus, method of forming film, and storage medium
US10480067B2 (en) 2016-02-03 2019-11-19 Tokyo Electron Limited Film deposition method
WO2020138970A3 (ko) * 2018-12-26 2020-08-20 주성엔지니어링(주) 기판처리장치
US10900121B2 (en) 2016-11-21 2021-01-26 Tokyo Electron Limited Method of manufacturing semiconductor device and apparatus of manufacturing semiconductor device

Families Citing this family (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080027009A (ko) * 2006-09-22 2008-03-26 에이에스엠지니텍코리아 주식회사 원자층 증착 장치 및 그를 이용한 다층막 증착 방법
CN101611472B (zh) * 2007-01-12 2015-03-25 威科仪器有限公司 气体处理系统
US20080241384A1 (en) * 2007-04-02 2008-10-02 Asm Genitech Korea Ltd. Lateral flow deposition apparatus and method of depositing film by using the apparatus
KR100888067B1 (ko) * 2007-05-18 2009-03-11 한양대학교 산학협력단 배치형 원자층 증착장치 및 증착방법
TWI349720B (en) * 2007-05-30 2011-10-01 Ind Tech Res Inst A power-delivery mechanism and apparatus of plasma-enhanced chemical vapor deposition using the same
US20080314319A1 (en) * 2007-06-19 2008-12-25 Memc Electronic Materials, Inc. Susceptor for improving throughput and reducing wafer damage
US8282735B2 (en) * 2007-11-27 2012-10-09 Asm Genitech Korea Ltd. Atomic layer deposition apparatus
US8404049B2 (en) * 2007-12-27 2013-03-26 Memc Electronic Materials, Inc. Epitaxial barrel susceptor having improved thickness uniformity
KR101452222B1 (ko) * 2008-05-09 2014-10-21 주식회사 케이씨텍 원자층 증착 장치
US20090324826A1 (en) * 2008-06-27 2009-12-31 Hitoshi Kato Film Deposition Apparatus, Film Deposition Method, and Computer Readable Storage Medium
EP2159304A1 (en) 2008-08-27 2010-03-03 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Apparatus and method for atomic layer deposition
JP5280964B2 (ja) * 2008-09-04 2013-09-04 東京エレクトロン株式会社 成膜装置、基板処理装置、成膜方法及び記憶媒体
US8961691B2 (en) * 2008-09-04 2015-02-24 Tokyo Electron Limited Film deposition apparatus, film deposition method, computer readable storage medium for storing a program causing the apparatus to perform the method
JP2010087467A (ja) * 2008-09-04 2010-04-15 Tokyo Electron Ltd 成膜装置、基板処理装置、成膜方法及びこの成膜方法を実行させるためのプログラムを記録した記録媒体
JP5062144B2 (ja) * 2008-11-10 2012-10-31 東京エレクトロン株式会社 ガスインジェクター
JP5062143B2 (ja) * 2008-11-10 2012-10-31 東京エレクトロン株式会社 成膜装置
JP2010153769A (ja) * 2008-11-19 2010-07-08 Tokyo Electron Ltd 基板位置検出装置、基板位置検出方法、成膜装置、成膜方法、プログラム及びコンピュータ可読記憶媒体
DE102008062332A1 (de) 2008-12-15 2010-06-17 Gühring Ohg Vorrichtung zur Oberflächenbehandlung und/oder -beschichtung von Substratkomponenten
KR101028410B1 (ko) * 2008-12-29 2011-04-13 주식회사 케이씨텍 서셉터 및 이를 구비하는 원자층 증착장치
US20100227059A1 (en) * 2009-03-04 2010-09-09 Tokyo Electron Limited Film deposition apparatus, film deposition method, and computer readable storage medium
JP5107285B2 (ja) * 2009-03-04 2012-12-26 東京エレクトロン株式会社 成膜装置、成膜方法、プログラム、およびコンピュータ可読記憶媒体
JP5141607B2 (ja) * 2009-03-13 2013-02-13 東京エレクトロン株式会社 成膜装置
EP2281921A1 (en) 2009-07-30 2011-02-09 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Apparatus and method for atomic layer deposition.
JP5287592B2 (ja) * 2009-08-11 2013-09-11 東京エレクトロン株式会社 成膜装置
JP5444961B2 (ja) * 2009-09-01 2014-03-19 東京エレクトロン株式会社 成膜装置及び成膜方法
JP5434484B2 (ja) * 2009-11-02 2014-03-05 東京エレクトロン株式会社 成膜装置、成膜方法及び記憶媒体
JP5310512B2 (ja) * 2009-12-02 2013-10-09 東京エレクトロン株式会社 基板処理装置
JP5553588B2 (ja) * 2009-12-10 2014-07-16 東京エレクトロン株式会社 成膜装置
JP5396264B2 (ja) * 2009-12-25 2014-01-22 東京エレクトロン株式会社 成膜装置
JP5497423B2 (ja) * 2009-12-25 2014-05-21 東京エレクトロン株式会社 成膜装置
EP2360293A1 (en) 2010-02-11 2011-08-24 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Method and apparatus for depositing atomic layers on a substrate
EP2362002A1 (en) 2010-02-18 2011-08-31 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Continuous patterned layer deposition
EP2362411A1 (en) 2010-02-26 2011-08-31 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Apparatus and method for reactive ion etching
US8888919B2 (en) * 2010-03-03 2014-11-18 Veeco Instruments Inc. Wafer carrier with sloped edge
JP5696619B2 (ja) * 2011-08-17 2015-04-08 東京エレクトロン株式会社 成膜装置
JP5712889B2 (ja) * 2011-10-07 2015-05-07 東京エレクトロン株式会社 成膜装置及び基板処理装置
JP5993154B2 (ja) * 2012-01-20 2016-09-14 東京エレクトロン株式会社 パーティクル低減方法
JP5803706B2 (ja) * 2012-02-02 2015-11-04 東京エレクトロン株式会社 成膜装置
JP5803714B2 (ja) * 2012-02-09 2015-11-04 東京エレクトロン株式会社 成膜装置
US20130284097A1 (en) * 2012-04-25 2013-10-31 Joseph M. Ranish Gas distribution module for insertion in lateral flow chambers
US20130323422A1 (en) * 2012-05-29 2013-12-05 Applied Materials, Inc. Apparatus for CVD and ALD with an Elongate Nozzle and Methods Of Use
JP6011417B2 (ja) * 2012-06-15 2016-10-19 東京エレクトロン株式会社 成膜装置、基板処理装置及び成膜方法
JP5857896B2 (ja) * 2012-07-06 2016-02-10 東京エレクトロン株式会社 成膜装置の運転方法及び成膜装置
JP5997952B2 (ja) * 2012-07-06 2016-09-28 大陽日酸株式会社 気相成長装置
KR101426432B1 (ko) * 2012-09-20 2014-08-06 국제엘렉트릭코리아 주식회사 기판 처리 장치 및 방법
US9275835B2 (en) * 2012-11-29 2016-03-01 Gregory DeLarge Plasma generating device with moving carousel and method of use
US9512519B2 (en) 2012-12-03 2016-12-06 Taiwan Semiconductor Manufacturing Company, Ltd. Atomic layer deposition apparatus and method
KR101396462B1 (ko) * 2012-12-28 2014-05-20 엘아이지에이디피 주식회사 원자층 박막 증착장치
TWI627305B (zh) * 2013-03-15 2018-06-21 應用材料股份有限公司 用於轉盤處理室之具有剛性板的大氣蓋
TWI683382B (zh) * 2013-03-15 2020-01-21 應用材料股份有限公司 具有光學測量的旋轉氣體分配組件
JP6134191B2 (ja) 2013-04-07 2017-05-24 村川 惠美 回転型セミバッチald装置
KR102115337B1 (ko) * 2013-07-31 2020-05-26 주성엔지니어링(주) 기판 처리 장치
US9694436B2 (en) * 2013-11-04 2017-07-04 Veeco Precision Surface Processing Llc System and method for flux coat, reflow and clean
US11549181B2 (en) 2013-11-22 2023-01-10 Applied Materials, Inc. Methods for atomic layer deposition of SiCO(N) using halogenated silylamides
KR101560623B1 (ko) * 2014-01-03 2015-10-15 주식회사 유진테크 기판처리장치 및 기판처리방법
JP6287240B2 (ja) * 2014-01-17 2018-03-07 東京エレクトロン株式会社 真空処理装置及び真空処理方法
JP6388552B2 (ja) * 2015-03-03 2018-09-12 東京エレクトロン株式会社 基板処理装置及び基板処理方法
JP6054470B2 (ja) * 2015-05-26 2016-12-27 株式会社日本製鋼所 原子層成長装置
US10550469B2 (en) * 2015-09-04 2020-02-04 Lam Research Corporation Plasma excitation for spatial atomic layer deposition (ALD) reactors
KR102411077B1 (ko) * 2016-06-07 2022-06-17 어플라이드 머티어리얼스, 인코포레이티드 웨이퍼 균일성을 위한 윤곽 포켓 및 하이브리드 서셉터
US11948783B2 (en) 2016-11-15 2024-04-02 Applied Materials, Inc. Dynamic phased array plasma source for complete plasma coverage of a moving substrate
JP6697640B2 (ja) 2017-02-08 2020-05-20 ピコサン オーワイPicosun Oy 可動構造をもつ堆積またはクリーニング装置および動作方法
TWI802439B (zh) 2017-10-27 2023-05-11 美商應用材料股份有限公司 具有空間分離的單個晶圓處理環境
JP6575641B1 (ja) * 2018-06-28 2019-09-18 株式会社明電舎 シャワーヘッドおよび処理装置
WO2020092184A1 (en) * 2018-10-29 2020-05-07 Applied Materials, Inc. Methods of operating a spatial deposition tool
KR20200056273A (ko) * 2018-11-14 2020-05-22 주성엔지니어링(주) 기판처리장치 및 기판처리방법
CN110438473B (zh) * 2019-09-06 2022-02-11 左然 一种化学气相沉积装置及方法
US11447865B2 (en) 2020-11-17 2022-09-20 Applied Materials, Inc. Deposition of low-κ films

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3397297A (en) * 1966-02-24 1968-08-13 Ca Atomic Energy Ltd Induction heating apparatus
US3696779A (en) * 1969-12-29 1972-10-10 Kokusai Electric Co Ltd Vapor growth device
SE393967B (sv) * 1974-11-29 1977-05-31 Sateko Oy Forfarande och for utforande av stroleggning mellan lagren i ett virkespaket
US4484505A (en) * 1983-01-14 1984-11-27 Lewallyn Michael A Carpet beveling head device
JPH0666298B2 (ja) * 1983-02-03 1994-08-24 日電アネルバ株式会社 ドライエッチング装置
US5071670A (en) * 1990-06-11 1991-12-10 Kelly Michael A Method for chemical vapor deposition under a single reactor vessel divided into separate reaction chambers each with its own depositing and exhausting means
US5225366A (en) * 1990-06-22 1993-07-06 The United States Of America As Represented By The Secretary Of The Navy Apparatus for and a method of growing thin films of elemental semiconductors
US5338362A (en) * 1992-08-29 1994-08-16 Tokyo Electron Limited Apparatus for processing semiconductor wafer comprising continuously rotating wafer table and plural chamber compartments
JP3181171B2 (ja) * 1994-05-20 2001-07-03 シャープ株式会社 気相成長装置および気相成長方法
FI100409B (fi) * 1994-11-28 1997-11-28 Asm Int Menetelmä ja laitteisto ohutkalvojen valmistamiseksi
US5667592A (en) * 1996-04-16 1997-09-16 Gasonics International Process chamber sleeve with ring seals for isolating individual process modules in a common cluster
US6342277B1 (en) * 1996-08-16 2002-01-29 Licensee For Microelectronics: Asm America, Inc. Sequential chemical vapor deposition
US5916365A (en) * 1996-08-16 1999-06-29 Sherman; Arthur Sequential chemical vapor deposition
US6162299A (en) * 1998-07-10 2000-12-19 Asm America, Inc. Multi-position load lock chamber
KR100273473B1 (ko) * 1999-04-06 2000-11-15 이경수 박막 형성 방법
JP4726369B2 (ja) * 1999-06-19 2011-07-20 エー・エス・エムジニテックコリア株式会社 化学蒸着反応炉及びこれを利用した薄膜形成方法
US6812157B1 (en) * 1999-06-24 2004-11-02 Prasad Narhar Gadgil Apparatus for atomic layer chemical vapor deposition
US6511539B1 (en) * 1999-09-08 2003-01-28 Asm America, Inc. Apparatus and method for growth of a thin film
EP1221178A1 (en) * 1999-10-15 2002-07-10 ASM America, Inc. Method for depositing nanolaminate thin films on sensitive surfaces
US6576062B2 (en) * 2000-01-06 2003-06-10 Tokyo Electron Limited Film forming apparatus and film forming method
US6585823B1 (en) * 2000-07-07 2003-07-01 Asm International, N.V. Atomic layer deposition
KR100458982B1 (ko) * 2000-08-09 2004-12-03 주성엔지니어링(주) 회전형 가스분사기를 가지는 반도체소자 제조장치 및 이를이용한 박막증착방법
AU2001277755A1 (en) * 2000-08-11 2002-02-25 Tokyo Electron Limited Device and method for processing substrate
US6852167B2 (en) * 2001-03-01 2005-02-08 Micron Technology, Inc. Methods, systems, and apparatus for uniform chemical-vapor depositions
EP1421606A4 (en) * 2001-08-06 2008-03-05 Genitech Co Ltd PLASMA ACTIVE ATOMIC LAYER (PEALD) DEPOSITION APPARATUS AND METHOD OF FORMING THIN FILM USING SAID APPARATUS
US6820570B2 (en) * 2001-08-15 2004-11-23 Nobel Biocare Services Ag Atomic layer deposition reactor
KR100782529B1 (ko) * 2001-11-08 2007-12-06 에이에스엠지니텍코리아 주식회사 증착 장치
US6902620B1 (en) * 2001-12-19 2005-06-07 Novellus Systems, Inc. Atomic layer deposition systems and methods
KR100805843B1 (ko) * 2001-12-28 2008-02-21 에이에스엠지니텍코리아 주식회사 구리 배선 형성방법, 그에 따라 제조된 반도체 소자 및구리 배선 형성 시스템
US6932871B2 (en) * 2002-04-16 2005-08-23 Applied Materials, Inc. Multi-station deposition apparatus and method
US6869641B2 (en) * 2002-07-03 2005-03-22 Unaxis Balzers Ltd. Method and apparatus for ALD on a rotary susceptor
US6972055B2 (en) * 2003-03-28 2005-12-06 Finens Corporation Continuous flow deposition system
JP4152802B2 (ja) * 2003-05-09 2008-09-17 日本エー・エス・エム株式会社 薄膜形成装置
US7326502B2 (en) * 2003-09-18 2008-02-05 Intel Corporation Multilayer coatings for EUV mask substrates
US7408225B2 (en) * 2003-10-09 2008-08-05 Asm Japan K.K. Apparatus and method for forming thin film using upstream and downstream exhaust mechanisms
US7273526B2 (en) * 2004-04-15 2007-09-25 Asm Japan K.K. Thin-film deposition apparatus
US20070215036A1 (en) * 2006-03-15 2007-09-20 Hyung-Sang Park Method and apparatus of time and space co-divided atomic layer deposition
KR20080027009A (ko) * 2006-09-22 2008-03-26 에이에스엠지니텍코리아 주식회사 원자층 증착 장치 및 그를 이용한 다층막 증착 방법

Cited By (95)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084693A (ja) * 2007-09-28 2009-04-23 Osram Opto Semiconductors Gmbh 層析出装置および層析出装置を運転する方法
US9080237B2 (en) 2007-09-28 2015-07-14 Osram Opto Semiconductors Gmbh Layer depositing device and method for operating it
EP2138604A2 (en) 2008-06-27 2009-12-30 Tokyo Electron Limited Film deposition apparatus, film deposition method, and computer readable storage medium
JP2011103495A (ja) * 2008-06-27 2011-05-26 Tokyo Electron Ltd 成膜装置、成膜方法及び記憶媒体
JP4661990B2 (ja) * 2008-06-27 2011-03-30 東京エレクトロン株式会社 成膜装置、成膜方法、基板処理装置及び記憶媒体
JP2010263245A (ja) * 2008-06-27 2010-11-18 Tokyo Electron Ltd 成膜装置、成膜方法、基板処理装置及び記憶媒体
JP2010239102A (ja) * 2008-06-27 2010-10-21 Tokyo Electron Ltd 成膜装置、成膜方法及び記憶媒体
KR101533464B1 (ko) * 2008-06-27 2015-07-02 도쿄엘렉트론가부시키가이샤 박막 증착 장치, 박막 증착 방법 및 컴퓨터로 판독가능한 기억 매체
US8465591B2 (en) 2008-06-27 2013-06-18 Tokyo Electron Limited Film deposition apparatus
JP2011103496A (ja) * 2008-06-27 2011-05-26 Tokyo Electron Ltd 成膜装置、成膜方法及び記憶媒体
US8465592B2 (en) 2008-08-25 2013-06-18 Tokyo Electron Limited Film deposition apparatus
JP2010080924A (ja) * 2008-08-29 2010-04-08 Tokyo Electron Ltd 成膜装置、基板処理装置、成膜方法及び記憶媒体
US8673395B2 (en) 2008-08-29 2014-03-18 Tokyo Electron Limited Film deposition apparatus, film deposition method, and storage medium
US8808456B2 (en) 2008-08-29 2014-08-19 Tokyo Electron Limited Film deposition apparatus and substrate process apparatus
US9053909B2 (en) 2008-08-29 2015-06-09 Tokyo Electron Limited Activated gas injector, film deposition apparatus, and film deposition method
JP2013118411A (ja) * 2008-08-29 2013-06-13 Tokyo Electron Ltd 成膜装置
JP2010239103A (ja) * 2008-08-29 2010-10-21 Tokyo Electron Ltd 活性化ガスインジェクター、成膜装置及び成膜方法
KR101535682B1 (ko) * 2008-08-29 2015-07-09 도쿄엘렉트론가부시키가이샤 활성화 가스 인젝터, 성막 장치 및 성막 방법
US9416448B2 (en) 2008-08-29 2016-08-16 Tokyo Electron Limited Film deposition apparatus, substrate processing apparatus, film deposition method, and computer-readable storage medium for film deposition method
US8372202B2 (en) 2008-08-29 2013-02-12 Tokyo Electron Limited Film deposition apparatus
JP2010056470A (ja) * 2008-08-29 2010-03-11 Tokyo Electron Ltd 成膜装置及び成膜方法
JP2010056471A (ja) * 2008-08-29 2010-03-11 Tokyo Electron Ltd 成膜装置、成膜方法及び記憶媒体
US8673079B2 (en) 2008-09-04 2014-03-18 Tokyo Electron Limited Film deposition apparatus and substrate processing apparatus
JP2010059498A (ja) * 2008-09-04 2010-03-18 Tokyo Electron Ltd 成膜装置、基板処理装置、成膜方法及びこの成膜方法を実行させるためのプログラムを記録した記録媒体
JP2010059494A (ja) * 2008-09-04 2010-03-18 Tokyo Electron Ltd 成膜装置、成膜方法、並びにこの成膜方法を成膜装置に実施させるプログラム及びこれを記憶するコンピュータ可読記憶媒体
US8518183B2 (en) 2008-09-04 2013-08-27 Tokyo Electron Limited Film deposition apparatus, substrate process apparatus, film deposition method, and computer readable storage medium
US9267204B2 (en) 2008-09-04 2016-02-23 Tokyo Electron Limited Film deposition apparatus, substrate processing apparatus, film deposition method, and storage medium
JP2010084230A (ja) * 2008-09-04 2010-04-15 Tokyo Electron Ltd 成膜装置、基板処理装置及び回転テーブル
US8840727B2 (en) 2008-09-04 2014-09-23 Tokyo Electron Limited Film deposition apparatus, substrate processor, film deposition method, and computer-readable storage medium
KR101536779B1 (ko) * 2008-09-04 2015-07-14 도쿄엘렉트론가부시키가이샤 복수의 반응 가스를 차례로 기판에 공급하는 성막 장치, 기판 처리 장치, 성막 방법, 및 컴퓨터 판독 가능한 기록 매체
JP2010059499A (ja) * 2008-09-04 2010-03-18 Tokyo Electron Ltd 成膜装置及び基板処理装置
JP2010059496A (ja) * 2008-09-04 2010-03-18 Tokyo Electron Ltd 成膜装置、成膜方法、並びにこの成膜方法を成膜装置に実施させるプログラムおよびこれを記憶するコンピュータ可読記憶媒体
JP2010059495A (ja) * 2008-09-04 2010-03-18 Tokyo Electron Ltd 成膜装置、基板処理装置、成膜方法及びこの成膜方法を実行させるためのプログラムを記録した記録媒体
JP2010059497A (ja) * 2008-09-04 2010-03-18 Tokyo Electron Ltd 成膜装置、成膜方法、並びにこの成膜方法を成膜装置に実施させるプログラム及びこれを記憶するコンピュータ可読記憶媒体
US8951347B2 (en) 2008-11-14 2015-02-10 Tokyo Electron Limited Film deposition apparatus
JP2011100956A (ja) * 2008-11-14 2011-05-19 Tokyo Electron Ltd 成膜装置
KR101355234B1 (ko) 2008-11-14 2014-01-27 도쿄엘렉트론가부시키가이샤 성막 장치
WO2010055926A1 (ja) * 2008-11-14 2010-05-20 東京エレクトロン株式会社 成膜装置
US9297072B2 (en) 2008-12-01 2016-03-29 Tokyo Electron Limited Film deposition apparatus
US9103030B2 (en) 2008-12-02 2015-08-11 Tokyo Electron Limited Film deposition apparatus
KR101558606B1 (ko) * 2008-12-12 2015-10-07 도쿄엘렉트론가부시키가이샤 성막 장치, 성막 방법 및 기억 매체
JP2010141207A (ja) * 2008-12-12 2010-06-24 Tokyo Electron Ltd 成膜装置、成膜方法及び記憶媒体
JP2010206025A (ja) * 2009-03-04 2010-09-16 Tokyo Electron Ltd 成膜装置、成膜方法、プログラム、およびコンピュータ可読記憶媒体
JP2010212627A (ja) * 2009-03-12 2010-09-24 Tokyo Electron Ltd 成膜装置、成膜方法及び記憶媒体
JP2012521097A (ja) * 2009-03-16 2012-09-10 アルタ デバイセズ,インコーポレイテッド 蒸着用反応装置蓋アセンブリ
US8882915B2 (en) 2009-04-09 2014-11-11 Tokyo Electron Limited Film deposition apparatus, film deposition method, and computer readable storage medium
US8992685B2 (en) 2009-04-09 2015-03-31 Tokyo Electron Limited Substrate processing apparatus, substrate processing method, and computer-readable storage medium
US9732424B2 (en) 2009-08-31 2017-08-15 Wonik Ips Co., Ltd. Gas injection apparatus and substrate processing apparatus using same
JP2013503498A (ja) * 2009-08-31 2013-01-31 ウォニック アイピーエス カンパニー リミテッド ガス噴射装置及びこれを用いた基板処理装置
WO2011034057A1 (ja) * 2009-09-17 2011-03-24 東京エレクトロン株式会社 プラズマ処理装置およびプラズマ処理装置用ガス供給機構
US8967082B2 (en) 2009-09-17 2015-03-03 Tokyo Electron Limited Plasma processing apparatus and gas supply device for plasma processing apparatus
US8746170B2 (en) 2009-11-04 2014-06-10 Tokyo Electron Limited Substrate process apparatus, substrate process method, and computer readable storage medium
JP2011151343A (ja) * 2009-12-25 2011-08-04 Tokyo Electron Ltd プラズマ処理装置
CN102108496A (zh) * 2009-12-25 2011-06-29 东京毅力科创株式会社 成膜装置及成膜方法
JP2011134996A (ja) * 2009-12-25 2011-07-07 Tokyo Electron Ltd 成膜装置
JP2011132589A (ja) * 2009-12-25 2011-07-07 Tokyo Electron Ltd 成膜装置、成膜方法及び記憶媒体
JP2011151387A (ja) * 2009-12-25 2011-08-04 Tokyo Electron Ltd 成膜装置及び成膜方法
US8034723B2 (en) 2009-12-25 2011-10-11 Tokyo Electron Limited Film deposition apparatus and film deposition method
KR101380985B1 (ko) * 2009-12-25 2014-04-04 도쿄엘렉트론가부시키가이샤 플라즈마 처리 장치
JP2013520572A (ja) * 2010-02-25 2013-06-06 ネーデルランセ オルハニサチエ フォール トゥーヘパスト−ナツールウェーテンシャッペルック オンデルズク テーエヌオー 層堆積方法および機器
JP2011222960A (ja) * 2010-02-26 2011-11-04 Hitachi Kokusai Electric Inc 基板処理装置及び半導体装置の製造方法
CN102251229A (zh) * 2010-03-29 2011-11-23 东京毅力科创株式会社 成膜装置和成膜方法
JP2011210872A (ja) * 2010-03-29 2011-10-20 Tokyo Electron Ltd 成膜装置、成膜方法及び記憶媒体
JP2012049394A (ja) * 2010-08-27 2012-03-08 Tokyo Electron Ltd 成膜装置、成膜方法及び記憶媒体
US11118265B2 (en) 2010-08-27 2021-09-14 Tokyo Electron Limited Film deposition method and computer program storage medium
JP2014509066A (ja) * 2011-01-13 2014-04-10 クックジェ エレクトリック コリア カンパニー リミテッド 半導体製造に使用される噴射部材及びそれを有するプラズマ処理装置
JP2016028425A (ja) * 2011-01-13 2016-02-25 クックジェ エレクトリック コリア カンパニー リミテッド 半導体製造に使用される噴射部材、それを有するプラズマ処理装置、および半導体装置の製造方法
US9932674B2 (en) 2011-05-12 2018-04-03 Tokyo Electron Limited Film deposition apparatus, film deposition method, and computer-readable recording medium
JP2014520212A (ja) * 2011-06-24 2014-08-21 クックジェ エレクトリック コリア カンパニー リミテッド 半導体製造に使用される噴射部材及びそれを有する基板処理装置
US9039837B2 (en) 2011-07-21 2015-05-26 Tokyo Electron Limited Film deposition apparatus and substrate processing apparatus
KR101536805B1 (ko) * 2011-09-05 2015-07-14 도쿄엘렉트론가부시키가이샤 성막 장치, 성막 방법 및 기억 매체
JP2013055243A (ja) * 2011-09-05 2013-03-21 Tokyo Electron Ltd 成膜装置、成膜方法及び記憶媒体
US9453280B2 (en) 2011-09-05 2016-09-27 Tokyo Electron Limited Film deposition apparatus, film deposition method and storage medium
JP2012182499A (ja) * 2012-06-15 2012-09-20 Tokyo Electron Ltd 成膜装置
JP2014107344A (ja) * 2012-11-26 2014-06-09 Tokyo Electron Ltd 成膜方法、その成膜方法のプログラム、そのプログラムを記録した記録媒体、及び、成膜装置
JP2013055356A (ja) * 2012-11-29 2013-03-21 Tokyo Electron Ltd 基板処理装置、基板処理方法及び記憶媒体
WO2014087920A1 (ja) * 2012-12-04 2014-06-12 東京エレクトロン株式会社 成膜装置
US9583312B2 (en) 2012-12-14 2017-02-28 Tokyo Electron Limited Film formation device, substrate processing device, and film formation method
JP2017224825A (ja) * 2013-02-20 2017-12-21 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated カルーセル原子層堆積のための装置および方法
JP2014175483A (ja) * 2013-03-08 2014-09-22 Hitachi Kokusai Electric Inc 基板処理装置、及び半導体装置の製造方法
WO2014148490A1 (ja) * 2013-03-22 2014-09-25 株式会社日立国際電気 基板処理装置、及び半導体装置の製造方法
US10151031B2 (en) 2014-02-10 2018-12-11 Tokyo Electron Limited Method for processing a substrate and substrate processing apparatus
US9714467B2 (en) 2014-02-10 2017-07-25 Tokyo Electron Limited Method for processing a substrate and substrate processing apparatus
JP2017528916A (ja) * 2014-09-10 2017-09-28 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 空間的原子層堆積におけるガス分離制御
KR102664779B1 (ko) 2014-09-10 2024-05-08 어플라이드 머티어리얼스, 인코포레이티드 공간적인 원자 층 증착에서의 가스 분리 제어
KR20230035707A (ko) * 2014-09-10 2023-03-14 어플라이드 머티어리얼스, 인코포레이티드 공간적인 원자 층 증착에서의 가스 분리 제어
JP2017531920A (ja) * 2014-10-03 2017-10-26 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated 高温酸化ケイ素原子層堆積技術
US10480067B2 (en) 2016-02-03 2019-11-19 Tokyo Electron Limited Film deposition method
US10246775B2 (en) 2016-08-03 2019-04-02 Tokyo Electron Limited Film forming apparatus, method of forming film, and storage medium
KR20210040927A (ko) 2016-08-03 2021-04-14 도쿄엘렉트론가부시키가이샤 성막 장치, 성막 방법 및 기억 매체
KR102245563B1 (ko) 2016-08-03 2021-04-27 도쿄엘렉트론가부시키가이샤 성막 장치, 성막 방법 및 기억 매체
KR20230034251A (ko) 2016-08-03 2023-03-09 도쿄엘렉트론가부시키가이샤 성막 장치, 성막 방법 및 기억 매체
KR20180015578A (ko) 2016-08-03 2018-02-13 도쿄엘렉트론가부시키가이샤 성막 장치, 성막 방법 및 기억 매체
US10900121B2 (en) 2016-11-21 2021-01-26 Tokyo Electron Limited Method of manufacturing semiconductor device and apparatus of manufacturing semiconductor device
WO2020138970A3 (ko) * 2018-12-26 2020-08-20 주성엔지니어링(주) 기판처리장치

Also Published As

Publication number Publication date
KR20070093820A (ko) 2007-09-19
US20070218702A1 (en) 2007-09-20

Similar Documents

Publication Publication Date Title
JP2007247066A (ja) 回転サセプタを備える半導体処理装置
US20070218701A1 (en) Semiconductor-processing apparatus with rotating susceptor
TWI671792B (zh) 基板處理設備
US10475641B2 (en) Substrate processing apparatus
JP4629110B2 (ja) 薄膜蒸着装置及び方法
JP4399452B2 (ja) 基板処理装置及び半導体装置の製造方法
US8808456B2 (en) Film deposition apparatus and substrate process apparatus
US20110155056A1 (en) Film deposition apparatus
JP5535913B2 (ja) 蒸気に基づく組合せ処理
US9062373B2 (en) Film deposition apparatus
US20060073276A1 (en) Multi-zone atomic layer deposition apparatus and method
JP5262452B2 (ja) 成膜装置及び基板処理装置
KR20100028498A (ko) 성막 장치, 기판 처리 장치, 성막 방법 및 기록 매체
US10217642B2 (en) Substrate processing apparatus, substrate processing method and substrate holding member
US20210249265A1 (en) Deposition method and deposition apparatus
TW202113967A (zh) 半導體製程裝置及用於蝕刻基材的方法
US10472719B2 (en) Nozzle and substrate processing apparatus using same
JP6740799B2 (ja) 成膜装置、成膜方法及び記憶媒体
JP6680190B2 (ja) 成膜装置
KR20180138152A (ko) 성막 방법, 성막 장치 및 기억 매체
KR101668867B1 (ko) 원자층 증착장치
JP2022186347A (ja) 基板処理装置及び基板処理方法
TW202229629A (zh) 氣體供應單元及含有氣體供應單元之基板處理裝置
JP2023098683A (ja) ガス供給ユニットおよびガス供給ユニットを含む基材プロセッシング装置
KR20140134880A (ko) 원자층 박막 증착장치

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331