JP2006262165A - データリカバリ方法、データリカバリ回路、データ送受信装置及び情報処理装置 - Google Patents

データリカバリ方法、データリカバリ回路、データ送受信装置及び情報処理装置 Download PDF

Info

Publication number
JP2006262165A
JP2006262165A JP2005077646A JP2005077646A JP2006262165A JP 2006262165 A JP2006262165 A JP 2006262165A JP 2005077646 A JP2005077646 A JP 2005077646A JP 2005077646 A JP2005077646 A JP 2005077646A JP 2006262165 A JP2006262165 A JP 2006262165A
Authority
JP
Japan
Prior art keywords
data
phase
clock
phase error
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005077646A
Other languages
English (en)
Other versions
JP4676792B2 (ja
Inventor
Narihiro Masui
成博 増井
Hidetoshi Ema
秀利 江間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005077646A priority Critical patent/JP4676792B2/ja
Priority to EP06251361.9A priority patent/EP1703662B1/en
Priority to US11/376,064 priority patent/US7746971B2/en
Publication of JP2006262165A publication Critical patent/JP2006262165A/ja
Application granted granted Critical
Publication of JP4676792B2 publication Critical patent/JP4676792B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L7/00Automatic control of frequency or phase; Synchronisation
    • H03L7/06Automatic control of frequency or phase; Synchronisation using a reference signal applied to a frequency- or phase-locked loop
    • H03L7/08Details of the phase-locked loop
    • H03L7/099Details of the phase-locked loop concerning mainly the controlled oscillator of the loop
    • H03L7/0995Details of the phase-locked loop concerning mainly the controlled oscillator of the loop the oscillator comprising a ring oscillator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/06Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection
    • H04L25/068Dc level restoring means; Bias distortion correction ; Decision circuits providing symbol by symbol detection by sampling faster than the nominal bit rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • H04L7/0337Selecting between two or more discretely delayed clocks or selecting between two or more discretely delayed received code signals

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

【課題】 クロックが重畳された入力データから該クロックを復元することなく、正確にデータを復元できるデータリカバリ方法。
【解決手段】 シリアル転送されたデータをオーバーサンプリングすることにより復元するデータリカバリ方法で、シリアル転送されたデータを、所定周波数のクロックを所定位相ずつずらして生成された多相クロックによりオーバーサンプリングし、データ位相状態に応じて、位相状態が互いに異なるクロックパターンを生成、データから生成した第1の位相パターンと、クロックパターンから生成した第2の位相パターンとを比較し、抽出するビット数を制御する位相状態制御と、第1の位相パターンと第2の位相パターンに基づき、位相誤差を検出する位相誤差検出と、クロックパターンの位相状態及び位相誤差検出工程により検出された位相誤差に基づき、オーバーサンプリングデータから抽出するビットを選択してデータを復元する。
【選択図】 図4

Description

本発明は、シリアル転送されたデータを復元するためのデータリカバリ方法、データリカバリ回路、送受信装置及び情報処理装置に関する。
近年、機器間、ボード間、チップ間での大容量・高速データ伝送の要求に伴い、USB(Universal Serial Bus)、Serial ATA、IEEE1394、1G/10G Ethernet(登録商標)、InfiniBand、RapidIO、Fibre Channel、PCI Expressといった様々な高速インタフェース規格が提唱され実用化に供されており、今後高速化・大容量化の傾向はますます強まるものと予想される。
これら高速インタフェース規格の多くがシリアル転送方式を採用しており、予め定められた周波数に同期するようにデータが伝送される。伝送データには、この周波数のクロック信号が重畳され(エンベデッドクロック)、データ受信部では、受信データよりこのクロックを抽出し、この抽出したクロック信号により受信データを復元している(例えば、特許文献1参照。)。これらの動作を行う回路をクロックデータリカバリ回路(以下適宜CDR:Clock Data Recovery)と称する。
従来のCDR回路では、一般にPLL(Phase Locked Loop)回路が用いられ、PLLに含まれるVCO(Voltage Controlled Oscillator)の発振信号(クロック)が受信データの位相に対して同期するように制御され、再生クロックとして抽出される。そしてこの再生クロックを基準として受信データをラッチすることにより正確に受信データが復元できる。
しかしながら、今般の高速化の要求によりデータ転送レートが向上(例えばGbpsオーダーを超えるデータ転送レートになると)、VCOの発振周波数もGHzオーダーを超え、このような高速なデータを復元できるCDR回路を実現することは容易ではない。また、チップサイズの増大や消費電力の増大、コストアップなどのマイナスの要因も大きい。
また、高速になると配線遅延なども無視できるものではないので、素子の配置や配線などのレイアウトも考慮に入れなければならず、設計が非常に困難となる。また使用するデバイス特性に大きく依存するので、プロセス毎にレイアウトの再設計が必要となり(あるいは回路の再設計まで必要となり)、回路の再利用性についても劣り、開発期間の増大を招いていた。
このような問題を解決するものとして、オーバーサンプリング型のクロックデータリカバリ回路が提案されている(例えば、非特許文献1参照。)。図1は、従来のオーバーデータサンプリング型のCDR回路の構成図を示す。多相クロック生成部200はPLLやDLL(Delayed Locked Loop)などにより構成され、基準クロックRefCLKから互いに等間隔の位相差の多相クロックを生成する。フリップフロップ201には(以下、適宜フリップフロップは単にFFあるいはF/Fと称する)、入力データがデータ端子に共通入力される。フリップフロップ201は、多相クロック生成部200から供給される多相クロックの各クロックをそれぞれクロック端子に入力して、各クロックの立ち上がりで(あるいは立下りで)入力データを取り込む。
すなわちフリップフロップ201から出力されるデータは入力データを少しずつ位相のずれたクロックでサンプルしたものとなる。ディジタルPLL202では、フリップフロップ201から供給されるデータからデータの遷移タイミングを検出し、そのタイミングに同期する位相のクロックを多相クロックの中から選択し、再生クロックRecCLKとして復元する。また、再生クロックRecCLKと所定の位相差(例えば逆位相)を持つクロックで取り込んだデータを再生データRecDataとして選択し、出力する。再生クロックの選択には、データの遷移タイミングをフィルタで平滑化して検出している。そして後段の信号処理部(不図示)ではこの再生クロックRecCLKをクロックとして動作を行うことになる。CDR回路をこのような構成にすれば、多相クロック生成部以外はディジタル回路で構成できるので回路の実現が比較的容易となる。
ところで、この多相クロックはほぼ等位相間隔であることが望ましい。図2は、多相クロックが等間隔でない場合の問題点の一例を示す図である。ここでは4位相を例に説明する。図2では、再生クロックとして選択されたCLK2の位相が理想状態よりΔだけ遅れているものとする。信号処理部内の各データはこの再生クロックCLK2に同期して動作している。
ここでTswのタイミングでCLK1の位相に再生クロックが切り替わったとすると、局所的に元々の位相差に加えてさらにΔだけ再生クロックの周期が短くなり、信号処理部内でフリップフロップのセットアップ時間Tsu'が十分確保できなくなり、最悪の場合誤動作の恐れもある。これはたとえ多相クロック生成部100の出力端で等位相間隔になるように設計したとしても、再生クロックRecCLK出力端までの各クロックのスキュー(例えば配線遅延や負荷などにより影響する)により生じ、特に高速になると顕著となる。従って、各部で多相クロックの遅延量の合せ込みを行わなければならいため実現は容易ではなく、上述の問題点を解決するには至っていない。
また、この多相クロック生成部において、位相インターポレータを用い、位相を調整する方法が開示されている(例えば、特許文献2参照。)。位相インターポレータのような回路を設ければ、多相クロックの位相を等間隔で出力することは可能となる。
特開2004-128980号公報 特開2002-190724号公報 B.Kim et.al."A 30-MHz Hybrid Analog/Digtal Clock Recovery Circuit in 2-um CMOS", IEEE JSSC, December 1990, pp1385-1394
しかしながら、特許文献2記載のCDR回路は装置の増大化を招くほか、高速化に伴う配線遅延を無視しえない。配線遅延を回避する方法として、各部入力においてそれぞれ多相クロックの位相を合わせる方法が考えられる。しかし、多相クロックの位相を合わせることは、オーバーサンプリング周波数(図2の例では、転送データに含まれるクロックの4倍の周波数)で動作するオーバーサンプリング型CDR回路を実現するのと同等の困難性がある。
すなわち、従来のアナログ型PLLを用いたCDR回路やオーバーサンプリング型のCDR回路のように、入力データからクロックを復元し、この復元したクロックにより信号処理を行う装置においては、転送速度の高速化に伴ってCDRの実現が困難となってきている。そしてCDR部の設計期間がネックとなり開発期間の増大を招いており、今後の更なる高速化においては、この傾向はより顕著となり、その実現が益々困難になってきている。
本出願人はかかる問題を鑑みて、クロックが重畳された入力データから、その重畳されたクロックを復元することなく、独立したクロックによりデータを復元するデータリカバリ回路及びその方法を提案している。
本発明は、クロックが重畳された入力データから該クロックを復元することなく、データを復元するデータリカバリ回路及び方法を改善するものであり、入力データのジッタ(データ変化タイミングの時間的なぶれ)が増大しても正確にデータを復元できるデータリカバリ方法、データリカバリ回路、データ送受信装置及び情報処理装置を提供することを目的とする。
上記問題を解決するため、本発明は、シリアル転送されたデータをオーバーサンプリングすることにより復元するデータリカバリ方法であって、シリアル転送されたデータを、所定周波数のクロックを所定位相ずつずらして生成された多相クロックによりオーバーサンプリングしてオーバーサンプリングデータを取得するサンプリング工程と、オーバーサンプリングデータのデータ位相状態に応じて、位相状態(例えばSt0〜5)が互いに異なるクロックパターン(例えばCKP)を生成するクロックパターン生成工程と、オーバーサンプリングデータから生成した第1の位相パターン(例えば、RxEdge)と、クロックパターンから生成した第2の位相パターン(例えばCKEdge)とを比較して、オーバーサンプリングデータから抽出するビット数(例えばS0〜2)を制御する位相状態制御工程と、第1の位相パターンと第2の位相パターンに基づき、オーバーサンプリングデータの位相誤差(例えばErr)を検出する位相誤差検出工程と、クロックパターンの位相状態及び位相誤差検出工程により検出された位相誤差に基づき、オーバーサンプリングデータから抽出するビットを選択して前記データを復元するデータ選択工程と、を有することを特徴とする。
本発明によれば、クロックが重畳された入力データから該クロックを復元することなくデータを復元でき、また、入力データのジッタが増大しても正確にデータを復元できるデータリカバリ方法を提供できる。なお、オーバーサンプリングデータやクロックパターンから生成する位相パターンは、オーバーサンプリングデータの位相遅れ又は位相進みを検出できれば、どのように生成してもよい。
また、本発明のデータリカバリ方法の一形態において、位相誤差検出工程は、所定の期間における前記位相誤差の移動平均を算出し、位相誤差の移動平均を位相誤差とする、ことを特徴とする。
本発明によれば、所定の期間の位相誤差の平均を算出することで、ジッタの高周波成分を平均化して位相誤差を検出できる。
また、本発明のデータリカバリ方法の一形態において、位相誤差検出工程は、第1の位相パターンと第2の位相パターンとの位相差が略π程度となった場合、略π程度となる直前の前記位相誤差に基づき位相進み又は遅れを判定する、とを特徴とする。
本発明によれば、位相誤差が所定値以上又は所定値以下となった場合、すなわち、位相進みか位相遅れかの判別が困難な位相状態であっても、所定値以上又は以下となる直前の位相誤差により位相進みか遅れかを判定でき、適切な位相誤差を抽出できる。
また、本発明のデータリカバリ方法の一形態において、位相誤差検出工程は、位相誤差の平均値を算出している間に、クロックパターンの位相状態が遷移した場合、位相誤差を遷移状態に応じて補正する、ことを特徴とする。
本発明によれば、平均の算出中に、位相誤差を検出するための位相状態が遷移しても(変化しても)、遷移状態に応じて位相誤差を補正できるので、適切な位相誤差を検出できる。
また、本発明のデータリカバリ方法の一形態において、クロックパターン生成工程が位相状態の異なるクロックパターンに遷移するか否かを判定する期間は、位相誤差の移動平均を算出するための所定の期間より長い、ことを特徴とする。
本発明によれば、クロックパターンの位相状態を遷移するか否かを判定する期間よりも短い期間で位相誤差を平均化することにより、クロックパターンの位相状態の遷移より変化の早いジッタ成分に含まれる高周波のジッタ成分を平滑化して求め、これに応じて復元データの位相を選択しているので、常にアイ開口のほぼ中心でデータを取り込むようにでき、安定して正確にデータを復元できる。つまり、移動平均の帯域以下のジッタ成分まで抑圧できるようになるのでジッタ許容値が拡大される。
また、本発明のデータリカバリ方法の一形態において、データ選択工程は、クロックパターンの位相状態に基づきオーバーサンプリングデータから抽出するビットの複数個の候補を選択する第1の選択工程と、第1の選択工程により選択された複数個の候補から、位相誤差検出工程が検出した位相誤差に基づき1ビットを抽出する第2の選択工程と、を有することを特徴とする。
本発明によれば、検出された位相誤差に基づいて、アイ開口部の略中央のビットを選択できるので、正確にデータを復元できる。
また、本発明は、シリアル転送されたデータをオーバーサンプリングすることにより復元するデータリカバリ回路であって、シリアル転送されたデータを、所定周波数のクロックを所定位相ずつずらして生成された多相クロックによりオーバーサンプリングしてオーバーサンプリングデータを取得するサンプリング部と、オーバーサンプリングデータのデータ位相状態に応じて、位相状態が互いに異なるクロックパターンを生成するクロックパターン生成部と、オーバーサンプリングデータから生成した第1の位相パターンと、クロックパターンから生成した第2の位相パターンとを比較して、オーバーサンプリングデータから抽出するビット数を制御する位相状態制御工程と、第1の位相パターンと第2の位相パターンに基づき、オーバーサンプリングデータの位相誤差を検出する位相誤差検出工程と、クロックパターンの位相状態及び位相誤差検出部により検出された位相誤差に基づき、オーバーサンプリングデータから抽出するビットを選択してデータを復元するデータ選択部と、を有することを特徴とする。
また、本発明のデータリカバリ回路の一形態において、位相誤差検出部は、所定の期間における位相誤差の移動平均を算出し、位相誤差の移動平均を位相誤差とする、ことを特徴とする。
また、本発明のデータリカバリ回路の一形態において、位相誤差検出部は、第1の位相パターンと第2の位相パターンとの位相差が略π程度となった場合、略π程度となる直前の位相誤差に基づき位相進み又は遅れを判定する、ことを特徴とする。
また、本発明のデータリカバリ回路の一形態において、位相誤差検出部は、位相誤差の平均値を算出している間に、クロックパターンの位相状態が遷移した場合、位相誤差を遷移状態に応じて補正する、ことを特徴とする。
また、本発明のデータリカバリ回路の一形態において、クロックパターン生成部が位相状態の異なるクロックパターンに遷移するか否かを判定する期間は、位相誤差の移動平均を算出するための所定の期間より長い、ことを特徴とする。
また、本発明のデータリカバリ回路の一形態において、データ選択部は、位相状態に基づきオーバーサンプリングデータから抽出するビットの複数個の候補を選択する第1の選択部と、第1の選択部により選択された複数個の候補から、位相誤差検出部が検出した位相誤差に基づき1ビットを抽出するする第2の選択部と、を有することを特徴とする。
また、本発明は、周波数f1のクロックに同期してデータをシリアル転送するデータ送信部と、シリアル転送されたデータを、周波数f2のクロックを所定位相ずつずらして生成された多相クロックによりオーバーサンプリングしてオーバーサンプリングデータを取得するサンプリング部と、オーバーサンプリングデータのデータ位相状態に応じて、位相状態が互いに異なるクロックパターンを生成するクロックパターン生成部と、 前記オーバーサンプリングデータから生成した第1の位相パターンと、前記クロックパターンから生成した第2の位相パターンとを比較して、オーバーサンプリングデータから抽出するビット数を制御する位相状態制御部と、第1の位相パターンと前記第2の位相パターンに基づき、オーバーサンプリングデータの位相誤差を検出する位相誤差検出部と、クロックパターンの位相状態及び位相誤差検出部により検出された位相誤差に基づき、オーバーサンプリングデータから抽出するビットを選択してデータを復元するデータ選択部と、を有することを特徴とする。
また、本発明のデータ送受信装置の一形態において、位相誤差検出部は、所定の期間における位相誤差の移動平均を算出し、位相誤差の移動平均を位相誤差とする、ことを特徴とする。
また、本発明のデータ送受信装置の一形態において、位相誤差検出部は、第1の位相パターンと第2の位相パターンとの位相差が略π程度となった場合、略π程度となる直前の前記位相誤差に基づき位相進み又は遅れを判定する、ことを特徴とする。
また、本発明のデータ送受信装置の一形態において、位相誤差検出部は、位相誤差の平均値を算出している間に、クロックパターンの位相状態が遷移した場合、位相誤差を遷移状態に応じて補正する、ことを特徴とする。
また、本発明のデータ送受信装置の一形態において、クロックパターン生成部が位相状態の異なるクロックパターンに遷移するか否かを判定する期間は、位相誤差の移動平均を算出するための所定の期間より長い、ことを特徴とする。
また、本発明のデータ送受信装置の一形態において、データ選択部は、位相状態に基づきオーバーサンプリングデータから抽出するビットの複数個の候補を選択する第1の選択部と、第1の選択部により選択された複数個の候補から、位相誤差検出部が検出した位相誤差に基づき1ビットを抽出するする第2の選択部と、を有することを特徴とする。
また、本発明は、請求項7ないし12いずれか記載のデータリカバリ回路を用いた情報処理装置を提供する。
クロックが重畳された入力データから該クロックを復元することなく、入力データのジッタが増大しても正確にデータを復元できるデータリカバリ方法、データリカバリ回路、データ送受信装置及び情報処理装置を提供することができる。
以下、本発明を実施するための最良の形態を図面を参照しながら説明する。
〔第1の実施形態〕
まず、本実施の形態のデータリカバリ回路が適用されるシリアル転送部の物理層(Physical Layer)の全体構成例と概略動作について説明する。
図3は、データリカバリ回路が適用されたシリアル転送部の物理層部100の全体構成図を示す。物理層部100はデータの送信を行う送信部101と受信を行う受信部102とを有する。これら送信部101と受信部102の一組をポートと称する。
シリアル転送はpoint-to-pointで行われ、ポートが1対1で対応している。対向したポートには同等機能をもつ受信部121と送信部122を備える物理層部120が接続されている。
本実施形態における伝送路106、107は、送信と受信とは別個の伝送路により同時に行なうことが可能な全2重回線を構成しているが、必ずしも全2重回線である必要はなく、片2重回線により構成されている場合でも、本実施の形態のデータリカバリ回路が適用される。なお、伝送路106、107は、それぞれ2本の線路により構成されているが、無線により構成されていてもよい。
送信部101は、上位層から供給される送信データDtxを所定の変換規則に従って符号化を行うエンコーダ部ENC103と、エンコードされたデータをシリアル変換するシリアライザSER104と、シリアル変換したデータを伝送線路106上に送信する送信出力部Tx105とを有する。
伝送線路106上における伝送は差動信号で行うものとする。また、エンコーダ部ENC103での符号化は、8B/10B変換が適用される。8B/10B変換は、8ビットのデータから10ビットのデータ(以下、シンボルデータと称す)に変換するものであり、8ビットデータに加えKコード(あるいはKキャラクタ)と呼ばれる制御用の1ビットDtxkを用いデータ以外の制御のための特殊符号に変換する。8B/10B変換は公知の技術であるので詳細説明は省略する。
物理層部100は、PLL部113を備え、供給される基準クロックRefCLK1を基に、データ転送のため各規格に定められた周波数の転送クロックBCLKと内部動作のため転送クロックBCLKを10分周した(本実施の形態の8B/10B変換の場合)クロックPCLKを生成する。例えば、データ転送が2.5Gpsで行われる場合、転送クロックBCLKは2.5GHzとし、クロックPCLKは250MHzのクロックを生成する。そして、エンコーダ部103にはクロックPCLKを、シリアライザSER104にはクロックPCLK、BCLKを供給し各部を動作させる。また上位層とのデータの受け渡しもクロックPCLKに同期して行われる。
受信部102は、伝送線路107上を伝送されてきた差動信号を二値化する受信入力部Rx108と、受信信号からデータを復元するデータリカバリ部DR109と、復元したデータを10ビットのシンボルデータにパラレル変換するデシリアライザDES110と、送信側と受信側のクロックの周波数差を吸収するエラスティックバッファEB111と、10ビットシンボルを8ビットデータに変換する10B/8B変換を行うデコーダ部DEC112とを有する。
対向する送信部122は、PLL123において基準クロックRefCLK2を基に生成されるクロックに同期して送信する。一方、受信部102では最終的にはPLL113において基準クロックRefCLK1を基に生成されるクロックに同期して上位層へデータを出力しなければならないため、この基準クロックの周波数差を吸収するする必要がある。
エラスティックバッファEB111は、周波数差を吸収するために設けられており、例えば特殊符号の追加、削除により周波数差を吸収する。なお、エラスティックバッファEB111は、デコーダ部の後段に設けられることもある。また、この周波数差の許容値はインタフェース規格毎に定められている。
本実施の形態のデータリカバリ回路は、データリカバリ部DR109に適用されるものであり、デシリアライザDES110の機能を併せて有する。したがって、データリカバリ部DR109以外の他の部位の構成・機能は、以下に説明する本発明の要旨から大きく逸脱しない範囲で変更することが可能である。また、後述するように、図3ではデータリカバリ部DR109に供給する多相クロックCKO0〜11をPLL113で生成しており、送信部101に供給するクロックと共通のクロックを利用している。
これは、対向する物理層部100、120それぞれが、独立の基準クロックRefCLK1、RefCLK2から生成されたクロックそれぞれにより動作するよう構成されているためである。対向するポートの基準クロックRefCLK2とは独立の基準クロックRefCLK1に基づき生成したクロックによりこの物理層部100の全てが動作することになり、後述のように、物理層100でPLL113を共通化して利用することができ、回路(チップサイズ)の小型化、コストの低減が可能となる。
続いて、データリカバリ回路の実施形態について説明する。図4は、本実施形態の基本となるデータリカバリ回路のブロック図を示す。データリカバリ回路は、オーバーデータサンプリング部1、多相クロック生成部2及びシンボルデータ復元部3とを有する。
オーバーサンプリング部1は、多相クロック生成部2から供給される多相クロックCK0〜11により受信データDataを取り込み、オーバーサンプリングデータOVSDを出力する。
シンボルデータ復元部3は、オーバーサンプリングデータOVSDから10ビットのシンボルデータSYMを復元し、シンボルクロックSYMCLKを生成するもので、データリカバリの機能とデシリアライザの機能を有する。シンボルデータ復元部3は、データ選択部6、選択信号生成部7、デシリアライザDES8及びコンマ検出部9とから構成される。なお、シンボルデータ復元部3は、多相クロックの内の1つのクロックCK0で動作する。
多相クロック生成部2は、基準クロックRefCLK1から生成された所定周波数のクロックを所定位相ずつシフトし、互いにほぼ等間隔の位相差の多相クロックを生成する。
本実施の形態では、周期UIが定められている転送クロックBCLKの約1/2の周波数f2を有し、位相差が例えば1/6UIの多相クロックCK0〜11を生成する。例えば転送レートが2.5Gbpsの場合(UI=400ps)、800ps(1.25GHz)で66.7psずつ位相差を持つ12個のクロックを生成する。
なお、多相クロックの周波数f2は、転送クロックの1/2である必要はなく、例えば1/4にすることにより24個のクロックを生成してもよいし、転送クロックと同一にしてもよい。さらに、多相クロックの位相差は、転送クロックの周期UIの1/6UIに限定する必要はない。また、本実施形態のデータリカバリ回路は、多相クロック生成部2を含んで構成されているが、多相クロック生成部2をデータリカバリ回路とは別個に構成してもよい。
このようにデータリカバリ回路に、転送クロック周波数f1より低い周波数f2に設定された多相クロックを用いることにより、各部動作周波数や多相クロック生成部の発振周波数を下げることができるので実現が容易となる。
なお、本実施の形態によれば、多相クロック生成部2は図3におけるPLL113と兼用できる。詳細構成については後述する。
次に、データリカバリ回路の各部の詳細について説明する。
オーバーサンプリング部1は、12個のフリップフロップ(F/F0〜F/F11)4と、入力されたデータを1つのクロック(例えばCK0)に同期させて出力する並列化部5と、を有する。
フリップフロップF/F0〜F/F11には、それぞれの受信データDataが共通入力され、多相クロックCK0〜11の各クロックをそれぞれクロック端子に入力して、各クロックの立ち上がりで受信データを取り込み、出力Q0〜11を出力する。
並列化部5は、フリップフロップ4からの各出力Q0〜11を多相クロックの内の1つのクロック(ここではCK0とする)に同期させて、オーバーデータサンプルデータOVSDを出力する。
図5は、オーバーサンプリング部の各主要信号の信号波形図の一例を示す。図5(a)は、受信データDataの一波形例を示す。図5(b)は、データ転送クロックを示す(実際にはオーバーデータサンプリング部には存在しないが説明のため記載した。)。図5((c-0)〜(c-11))は、多相クロックCK0〜11を示し、2UIの周期でそれぞれ等位相間隔のクロックである。図5((d−0)〜(d−11))は、多相クロックCK0〜11によりFFに取り込まれ、各FFから出力されるデータQ0〜Q11を示す。図5(e)は、並列化部に一旦取り込まれたデータQ0〜Q5、データQ6〜Q11、を図5(f)は、並列化部から出力されるオーバーサンプリングデータOVSDを表している。
多相クロックCK0〜11の周期は、上述のようにデータ転送クロックの周期(UI)の2倍(2UI)に設定され、隣接したクロック相互の位相差が等間隔になるように位相をシフトしたクロックである。
図5(a)の受信データDataの黒点は、各多相クロックCK0〜11によるサンプリング点であり、多相クロックCK0〜11により取り込まれた各FF出力Q0〜11は、(d-0)〜(d-11)のように変化する。
並列化部5においては、一旦、クロックCK0でQ0〜Q5を取り込み(出力をQQ0〜5とする(e-0))、クロックCK6でQ6〜11を取り込む(出力をQQ6〜11とする(e-6))。次にクロックCK0でQQ0〜11を取り込んで並列同期化し、オーバーサンプリングデータOVSD[0:11]を出力する。なお、図5では左側がLSBで時間的に早いサンプル点を表している。
このように、クロックCK0でQ0〜Q5を取り込み、次いでクロックCK6でQ6〜11を取り込むことで、クロックCK0でQ0〜11を同期する際、セットアップ時間が不足してQ11やQ10が正常に取り込めないことが防止できる。なお、並列化部5において各データが安定して取り込めるようさらに段数を増やしてもよい。
ところで、一般に受信データDataの立ち上がり/立下りタイミングは、ランダムにあるいは多種多様な要因により図5の斜線部(ア)のように変動する、いわゆるジッタが生じる。ジッタが生じると、データ遷移タイミング付近のサンプルは図示した白丸のように変動することになる。このようなジッタが原因となってデータの正確な復元を妨げることもあるが、本実施の形態のデータリカバリ回路によればこのような問題も解決できる。
次に、オーバーサンプリングデータOVSDからデータを復元するシンボルデータ復元部3の構成およびその作用について説明する。
シンボルデータ復元部3は、データ選択部6と、選択信号生成部7と、デシリアライザ
8と、コンマ検出部9とを備え、オーバーサンプリングデータOVSDから10ビットのシンボルデータSYMを復元するとともに、位相状態を遷移させたシンボルクロックSYMCLKを生成する。
オーバーサンプリングデータOVSDは、転送データ2ビットを6位相のクロックでサンプリングした12ビットのデータである。したがって、12ビットのオーバーサンプリングデータOVSDから所定の位相クロックで取り込んだデータ(ビット)を選択出力すればよい。
ただし、対向する物理送部120の送信部122から送られるデータに含まれる転送クロック(受信データの基準クロックであり、重畳されているクロック)と、物理層100の受信部102でサンプリングに用いる多相クロック(図5(b)のクロックCK0〜11の2倍のクロック)がまったく同一周波数ならば常に一定の取り込み位相でよい。しかし、通常はある範囲内で周波数差を持つので、徐々に取り込み位相をずらしていき、通常は2ビットで、時折1ビットあるいは3ビットのデータを選択出力する。
例えば0.1%(=1000ppm)の周波数差があるとすると、転送データ1000ビットで1ビットのずれが発生するので、クロックCK0が500サイクルに1回、1または3ビットの出力となる。
選択信号生成部7は、オーバーサンプリングデータOVSDからこの取り込み位相を指示する選択信号Selを生成するものであり、同時にデータ有効数を示す状態信号S0、S1も生成する。ここで、S0=1の時はデータ数が1個有効を、S1=1の時はデータ数が3個有効を示す。また、通常はS0=S1=0となり、2個のデータが有効であることを示す。なお、S0=S1=1となることがないように設定されている。
データ選択部6は、この選択信号Sel及び状態信号S0,S1に従って、1〜3個の復元データD0〜D2をオーバーサンプリングデータOVSDから選択出力する。また、状態信号S0,S1を所定量遅延させた状態信号S0’、S1’も出力する。状態信号S0’、S1’は、復元データD0〜D2の有効データを示す。
転送されるシリアルデータにはコンマと呼ばれる特殊符号が所定の間隔で挿入されており、このコンマ符号を区切りとしてシリアルデータを10ビットのシンボルデータSYMに変換する。コンマ検出部9は、このコンマ符号を検出しコンマ検出信号Detを出力する。
デシリアライザDES8は、このコンマ検出信号Detを基に、データ選択部6から供給される1〜3個の復元データD0〜D2を10ビットのシンボルデータSYMにパラレル変換する。また、シンボルクロックSYMCLKの生成も行う。
シンボルデータ復元部3についてより詳細に説明する。
図6は、選択信号生成部7の構成例を、また、図7は選択信号生成部7の各主要信号の波形例を示す図である。
選択信号生成部7は、両エッジ検出部20と、比較部21と、カウンタ22と、状態制御部23と、CKP変換部24と、エッジ検出部25と、選択信号変換部26とを備え、多相クロック生成部2から供給される図7(a)クロックCK0を基準にして動作するように構成されている。
図7の(b)〜(h−2)に示す信号名は、図6における同一信号名の波形を示し、図7の下段(b)〜(g−2)は、上段の破線期間における、(b)〜(g−2)を拡大したものである。なお、図中のビット列は、LSBからMSBの順に記述され、LSBは、最初に受信したデータを示す。
図7(a)は、多相クロック生成部2から供給されるクロック(CK0)、図7(b)は、オーバーサンプリングデータOVSD[0:11]、図7(c)は、オーバーサンプリングデータOVSDのエッジ信号RxEdge、図7(d)は、転送データに合わせてクロックパターンの位相を遷移させたときの遷移状態state、図7(e)は、クロック(CK0)をオーバーサンプリングした12個のビット列からなるクロックパターンCKP、図7(f)は、クロックパターンCKPの立下りエッジCKEdge[0:11]、図7(g)は、クロックパターンCKPの位相遷移を示す信号(UP、DN)、図7(h)は、位相遷移を示す信号(UP、DN)の回数が所定値(N)を超えたタイミングを表す。
両エッジ検出部20は、オーバーサンプリングデータOVSD(b)から立ち上がり及び立下りの両エッジを検出し、そのエッジ位置を示すRxエッジ信号RxEdgeを出力する。
これはオーバーサンプリングデータOVSD[0:11]とOVSDを1位相分遅らせたデータdOVSD[0:11]とで各ビット毎排他的論理和した演算を行えば生成される(1クロック前のOVSD[11]をpOVSD11とすると、dOVSD[0:11]={pOVSD11,OVSD[0:10]})。
例えば図7に示すように、OVSD[0:11]=011111100000が連続しているとすると、
OVSD[0:11]= [0:11]= 011111100000
dOVSD[0:11]= [0:11]= 001111110000
RxEdge[0:11]= [0:11]= 0100000100
となる。
比較部21は、Rxエッジ信号RxEdgeと後述するクロック立下りエッジ信号CKEdgeとを比較し、どちらの位相が進んでいるか検出し、RxEdgeに対しCKEdgeの位相が進んでいればDN信号(g−2)を「H」に、遅れていればUP信号(g−1)を「H」に、一致していれば双方を「L」として出力する。
ここでRxEdgeに複数個の1がある場合、それぞれについて位相進み/遅れ判定を行い、いずれか多い方の結果を出力する。同数であれば一致と判定する。
カウンタ22は、比較部21より供給されるUP/DN信号をカウントし、その結果よりSUP信号(h−1)及びSDN信号(h−2)を出力する。
このようにカウンタ22は、UP/DN信号の平均化を行うので、PLLにおけるループフィルタの役割を果たす。カウンタ22は、例えばアップダウンカウンタなどにより構成され、UP=「H」ならばカウント値を+1し、DN=「H」ならばカウント値を−1する。そしてカウント値が正の所定値(例えば+N)を超えればSUP信号を「H」に、負の所定値(例えば-N)を下回ればSDN信号を「H」として出力し、カウント値を初期値(例えば0)にクリアする。
ここで正負の所定値を変更すれば平均化の帯域を変えることができ、正負の所定値はLPF(ループフィルタ)設定信号により変更可能である。
また、このようにカウンタ22で平均化することにより、受信データにジッタがあり、オーバーサンプリングデータOVSDのデータ遷移タイミングが変動する場合であっても、その平均位置がクロックに対して進んでいるか遅れているかを検出できる。
また、正負の閾値は、送信側との周波数差に対する応答性を考慮して選択すればよい。例えば、周波数差が0.1%(=1000ppm)とすると、500クロック(CK0)で6回のSUP(またはSDN)がでればよいので、Nは83以下であればよい。ここで上限値83に近いと制御系が不安定になるので、十分平均化の効果が得られる値(例えば8や16)に設定するとよい。
また、より簡単に構成するには、比較部21において複数のエッジに対し位相進み/遅れ両方の結果が出た場合はUP/DNとも「H」を出力し、次段のカウンタ22でUP=H、DN=Hの場合はカウントアップ/ダウンを行わないようにすればようにしてもよい。
状態制御部23は、クロックパターンCKPの位相状態を表す6つの状態St0〜St5を制御する。
状態制御部23は、転送クロックと等価な周波数を有し、1周期が12等分される12位相のクロックで、転送クロックをオーバーサンプリングした、12ビットのクロックパターンCKPの6つの位相状態(St0〜St5)を制御する。
図8は、クロックパターンCKPの位相遷移状態を模式的に示す図である。クロックパターンCKPの遷移条件は、図示するようにカウンタ22から供給されるSUP、SDN信号がそれぞれ「H」となることである。
また、位相の初期状態は例えばSt0とする。状態St0〜St5は、カウンタ22からSUP信号「H」が出力されるたびに時計方向に1つずつクロックパターンCKP(a)の位相状態が遷移し、カウンタ22からSDN信号「H」が出力されるたびに反時計方向に1つずつクロックパターンCKP(a)の位相状態が遷移する。
状態制御部23は、この状態を示すstate信号と状態信号S0,S1を出力する。なお、状態信号S0はSt4からSt3に遷移した時に、また状態信号S1はSt3からSt4に遷移した時のみ「H」となる。
CKP変換部24は、state信号をクロックパターン信号CKPに変換する。図9は、state信号をクロックパターンCKPに変換する変換規則の一例を示す図である。クロックパターン信号CKPは、周期1UIのクロックを1UIあたり6位相でオーバーサンプリングしたデータとなっており、St0〜St5に遷移するにつれ1位相ずつ進むものとしている。
選択信号変換部26は、state信号を選択信号Selに変換する。選択信号Selは、クロックパターンCKPの立ち上がり時に「1」となる信号である。図9は、state信号を選択信号Selに変換する変換規則を例示する。
なお、状態St4からSt3に遷移した場合、及びSt3からSt4に遷移した場合は、図9に示すように異なるパターンを出力する。これは先に示したS0,S1の「H」期間に対応し、信号S0,S1は選択信号Selの「1」の数(つまりクロック立ち上がり数)を表している。S0=1の時は「1」の数は1個、S1=1の時は「1」の数は3個、その他は2個となっている。
エッジ検出部25は、クロックパターン信号CKPの「1」→「0」に変化するビット、すなわちCKPの立ち下がりエッジを検出しクロック立下りエッジ信号CKEdge信号を出力する。
クロック立下りエッジ信号CKEdge信号は、クロックパターン信号CKPとCKPを1位相分遅らせたデータdCKP[0:11]とで各ビット毎に、(~CKP & dCKP)なる演算を行うことで生成される。ただし、“~”は否定演算、&は論理積を表す。また、1クロック前のCKP[11]をpCKP11とすると、dCKP[0:11]={pCKP11,CKP[0:10]}と表せる。
図7に戻って、信号波形例において、(b)オーバーサンプリングデータOVSDは、転送データ「10101010‥」がオーバーサンプリング部1でオーバーサンプリングされたものであり、「011111100000」のデータが連続している。
また、(d)stateはSt0で始まり、図9の変換規則に従い(e)クロックパターンCKPは「000111000111」が出力されている。したがって、各エッジ信号(c)RxEdgeは「010000010000」、(f)CKEdgeは「100000100000」となる。
拡大図Iに示す期間(i)においては、クロックパターンCKPの立下り位置の方がオーバーサンプリングデータOVSDのエッジ位置RxEdgeよりも進んでいるので、(g−2)DN信号が「H」となる。そしてカウンタ22において、カウント値が−Nとなったとき、(h−2)SDN信号が「H」となり、(d)遷移状態stateは、St5に遷移する。その結果(e)クロックパターンCKPは、「100011100011」に変わり、拡大図IIに示すように、(c)RxEdgeと(f)CKEdgeの位相が一致するようになる。すなわち、クロックパターンCKPがオーバーサンプリングデータOVSDに同期する。
続いて、データ選択部6について詳細に説明する。
図10は、データ選択部6の構成例を示す図である。第1選択部30は、オーバーサンプリングデータOVSD[0:5]から選択信号Sel[0:5]及び状態信号S0,S1に従い、データD0、D1を復元する。変換方法を下記に示す。
・S0=「H」の時、
D0、D1は、ともに無視する。
・S1=「H」の時、
D0はOVSD[0]に、D1はOVSD[5]にそれぞれ変換する。
・その他の場合、すなわち、S0=S1=「L」の時、
D0は無視する。D1は、kが0〜5まで変化させたときにおける(OVSD[k]&Sel「k」)の論理和に変換する(式で表せば、 D1=(OVSD[0]&Sel[0])|(OVSD[1]&Sel[1])|(OVSD[2]&Sel[2])|(OVSD[3]&Sel[3])|(OVSD[4]&Sel[4])|(OVSD[5]&Sel[5] となる。ただし、“&”は論理積演算、“|”は論理和演算を表す(以下、同様)。)。
また、第2選択部31はオーバーサンプリングデータOVSD[6:11]から選択信号Sel[6:11]に従い、データD2を復元する。変換方法を下記に示す。
D2=(OVSD[6]&Sel[6])|(OVSD[7]&Sel[7]|(OVSD[8]&Sel[8])|(OVSD[9]&Sel[9])|(OVSD[10]&Sel[10]))|(OVSD[11]&Sel[11])
すなわち、第1選択部30及び第2選択部31により、
・S0=「H」の時はD2の1つのデータが有効データとなり、
・S1=「H」の時はD0、D1,D2の3つのデータが有効データとなり、
・それ以外の時(S0=S1=「L」)は、D1,D2の2つのデータが有効データとなり、
元のデータが復元される。
また同時に各々の状態信号S0,S1を選択部30又は31での演算遅延時間だけ遅延させた信号S0'、S1'を出力する。遅延させた信号S0'、S1'は復元データD0,D1,D2の有効状態を示す。
図11は、本実施形態のデータリカバリ回路におけるビット同期動作(クロックパターンCKPとオーバーサンプリングデータOVSDの同期動作)の説明図である。受信データに重畳されているクロック周波数Frxと受信側のクロック(多相クロックCK0〜11の2逓倍のクロック)周波数Fckとが一致していない場合を考える。図11(a)はFrx>Fckの場合であり、図11(b)はFrx<Fckの場合を示す。
図11において、ΔΦは受信データ(図5(a))とクロックパターンCKP(図5(b)との位相差であり、受信データの位相が進んでいる時を正とする。時刻ta0、tb0ではクロックパターンはCK0に立下りエッジがあるとし(つまり位相状態St0)、受信データと一致しているとする。
(a)Frx>Fckの場合
位相差ΔΦは徐々に増加していくが、受信データは離散的なオーバーサンプリングデータOVSDとクロックパターンCKPとの位相比較をしているので、ΔΦが0〜π/3の間は一致していると見なされる。そして位相差がπ/3を越えた時点ta1から位相進み信号UPが「H」となりカウンタ22のカウント値Countが増加していく。そして所定値+Nに達すると(時刻ta2)SUP信号を「H」とし、位相状態を進める。その結果クロックパターンCKPの位相はπ/3進み、位相差ΔΦはπ/3減少する。
(b)Frx<Fckの場合
位相差ΔΦは徐々に減少していき、ΔΦ<0のときは位相遅れ信号DNが検知されるので、カウント値Countが減少していく。そして所定値−Nに達すると(時刻tb1)SDN信号を「H」とし、位相状態を遅らせ、その結果位相差ΔΦはπ/3増加する。
図11(a)又は(b)の動作が繰り返されビット同期状態となる。但し、図示するような定常位相誤差は発生する。
図12は、位相誤差とジッタ許容値の関係を説明するための図である。図12(a)は、位相差ΔΦが0の場合のアイパターンを、図12(b)は位相差ΔΦがπ/2の場合のアイパターンを示す。アイパターンにおいては、ジッタ部を斜線部で表し、ジッタ部は正確にデータを復元できない領域であることを示し、アイ開口部(中央の白抜き部)は正確にデータを復元できることを示す。
今、位相状態がSt0である場合、クロックパターンCKPの立下りエッジは位相0にある。このとき選択信号Selは位相3(及び位相9)が「1」となっており、この位相3でサンプルされたオーバーサンプリングデータOVSD[3](及びOVSD[9])がデータとして復元される。よって図示したジッタ量であれば、位相差ΔΦが0及びπ/2の場合共に、位相3はアイ開口部にあるので、正確にデータが復元される。
しかし、図12(b)のように位相誤差があると、ジッタ量が増大した場合に位相3がアイ開口部でなくなるため正確な復元ができなくなることがある。このような場合には多相クロックの相数を増やし、定常位相誤差が減少するようにすればよい。
図13は、デシリアライザ8の構成例を示す図である。デシリアライザ8は、復元データD0、D1、D2が入力されるシフトレジスタ36と、シンボル変換部37と、シンボル同期制御部38とを備えている。シフトレジスタ36は、復元データD0,D1,D2を状態信号S0',S1'に従い逐次シフトして保持し、各レジスタ出力をパラレルデータPDataとして出力する。
図14は、デシリアライザ8のシフトレジスタ36の詳細な構成例を示す図である。シフトレジスタ36は、フリップフロップ(レジスタ)40(0)〜(11)と、マルチプレクサ41(1)〜(11)とを備え、フリップフロップ(レジスタ)40(0)〜(11)は、縦列接続されてシフトレジスタを構成し、マルチプレクサ41(1)〜(11)は、状態信号S0’、S1’に従ってシフト量を変更するために設けられ、各レジスタへ入力されるデータが選択される。図において、フリップフロップ40(5)以降のものは省略されている。
マルチプレクサに入力されるデータの3つの入力のうち、上から3ビットシフト、2ビットシフト、1ビットシフトに対応し、S1'=「H」のときは一番上の入力が、S0'=「H」の時は一番下の入力が、その他の時は真中の入力が選択出力される。
フリップフロップ40は、12個設けるものとし、各レジスタの出力Q0〜Q11をパラレルデータPData[0:11]として出力する。このシフトレジスタ36により、1〜3個づつ復元されるデータがパラレル変換される。ここで、PData[11]が最初に転送された(受信した)ビット(以下適宜FRB:First Recieved Bitとする)であり、PData[0]が最後に転送されたビット(以下適宜LRB:Last Recieved Bitとする)である。
コンマ検出部9は、デシリアライザ8から供給されるパラレルデータPData中に所定のコンマ符号のパターンが含まれているか否かを検出し、その検出結果Detと検出された場合はその検出位置DetPos(例えば検出されたパターンのLSBのビットナンバー)をデシリアライザ8に供給する。
8B/10B変換の場合、コンマ符号は「0011111010」(又は「1100000101」)である(左側がFRB)。またシンボルの区切りを示す属性を持つ他の符号として、「0011111001」や「1100000110」を検出する場合もある。
例えば、PData[11:0]=「100111110101」の場合、PData[10:1]がコンマパターンと一致するので、Det=「H」とし、コンマ検出部9は同時に検出位置DetPos=1を出力する。
次に、シンボル同期制御部38及びシンボル変換部37の動作を説明する。図15は、図13のシンボル同期制御部38のシンボル同期動作を説明する信号波形図を示す。
図15において、PData[11]は、最初に受信されたビット(FRB)であり、
PData[0]は、最後に受信されたビット(LRB)である。図15(a)はクロック(CK0)、図15(b)はPData[11:0]、図15(c)は検出信号Det、図15(d)は検出位置信号DetPos、図15(e)は状態信号S0’、S1’、図15(g)はパラレルデータPDataを1クロック遅延させたdPData、図15(h)はシンボルクロックSYMCLK(ラッチイネーブル信号LEと同一信号)、図15(i)はパラレルデータPDataのシンボル有効位置を示すシンボル位置信号LEPos、図15(j)は、10ビットのシンボルSYM信号を、それぞれ表している。
今、コンマ検出部9が(b)パラレルデータPData中にコンマパターンCOMを検出すると(図15の拡大図の下線部)、コンマ検出部9は(c)検出信号Detと(d)検出位置信号DetPosを出力する。シンボル同期制御部38ではカウンタを内蔵しており、この検出信号Detをスタート信号、検出位置信号DetPosをカウント初期値とし、カウントを開始する。このカウントはデシリアライザ8に入力される1〜3個の復元データの個数分だけ進む。すなわち、状態信号S0'、S1'により復元データ個数をカウントし、カウント値が1シンボル分(10ビット)貯まる毎に、(h)ラッチイネーブル信号LEを出力(LEを「H」とする)し、カウント値を-10する。また同時に、パラレルデータPDataのシンボル有効位置を示す(i)シンボル位置信号LEPosとしてカウント値を出力する。なお、状態信号は各ブロックでの処理時間の分遅延させた(本例では2クロック)S0”、S1”(e-1,e-2)を用いてカウントを行う。S0”=「H」の時はカウントは1進み、S1”=「H」のときは3進み、その他の時は2進む。
シンボル変換部37は、パラレルデータPDataを1クロック遅延させた(g)dPDataから、ラッチイネーブル信号LE=「H」の時、シンボル位置信号LEPosに従い10ビットの(j)シンボルSYM[0:9]([0]:FRB)を取り出す。すなわち、LEPos=0,1,2であれば、それぞれ、dPData[9:0],[10:1],[11:2]を取り出す。LEPos≧3の場合はそれ以前のクロックで取り出されるので、LEPos≧3の場合は存在しない。また、シンボル同期制御部38は、ラッチイネーブル信号LEと同一の信号がシンボルクロックSYMCLKを出力する。
このようにして、シンボルクロックSYMCLKに同期して10ビットのシンボルSYMが復元される。なお、シンボルクロックの周期は、通常、CK0クロック5個分(転送クロックの10クロック分)であるが、送信側と受信側の周波数差により、時折4CKOクロック分又は6CKOクロック分となる。この差分は図3の全体構成図で説明したようにエラスティックバッファEBで吸収する。
続いて、図3のPLL113について詳細に説明する。図16は、PLL113の構成例を示す。PLL113は、分周器50と、位相周波比較器PFD51と、ローパスフィルタLPF52と、電圧制御発振器VCO53と、分周器55と、分周器58とを備えており、基準クロックRefCLK1から、転送クロックBCLKと、内部動作用クロックPCLKと、多相クロックCK0〜CK11とを生成する。
VCO53は、3段の差動バッファ54a〜cを接続したリングオシレータで構成され、6位相のクロックc0〜c5を生成しており、このうちの1つをクロックBCLKとして出力する。
分周器50はクロックBCLKを10分周し、位相周波比較器PFD51にフィードバックする。
位相周波比較器PFD51は、基準クロックRefCLK1と分周器50出力との位相比較を行い、この位相差情報に基づき内在するチャージポンプを駆動する。
ローパスフィルタLPF52はチャージポンプ出力を平滑化し、制御電圧Vcを電圧制御発信器VCO53に供給する。
VCO53内の差動バッファ54a〜cは、制御電圧Vcに従って遅延量が変化し、位相同期制御が行われる。例えば、基準クロックRefCLK1として250MHzのクロックが供給されると、差動バッファ54a〜cは、2.5GHzの転送クロックBCLKを生成する。
分周器58は、クロックBCLKを10分周してクロックPCLKを生成する。
分周器55は、クロックc0〜c5をそれぞれクロック入力する6つの2分周器56a〜fを備え(トグルフリップフロップなどにより構成)、それぞれの2分周器56a〜fが、6位相クロックc0〜c5をそれぞれを2分周し、その正転及び反転出力を出力する。すなわち、分周器55は、クロックBCLKの1/2の周波数で12位相のクロックCK0〜11を生成する。
また、これら2分周器56a〜fは、リセット回路57の出力RSTBによりリセットされ、各位相が図5の(c-0)〜(c-11)となるように揃えられる。
以上説明したように、本実施の形態のデータリカバリ回路は、受信データに重畳されているクロックを復元することなく、つまり受信データに重畳されたクロックとは同期していない独立のクロックを生成し、その多相クロックでオーバーサンプリングしたデータから受信データ及びシンボルを復元することができる。(選択信号生成部7では、オーバーサンプリングデータOVSDから受信データに重畳されたクロックをクロックパターンCKPとして仮想的に復元しており、またデータ選択部6において、このクロックパターンCKPに基づき変換された選択信号Selによりデータを復元している。)
したがって、物理層100の送信部101及び受信部102(一組のポート)で、物理層120のPLL123とは別体のPLLを、共通化して利用することができ、回路(チップサイズ)の小型化、コストの低減が可能となる。
かかる効果は、更に、データリカバリ回路が複数の物理層を有している場合に顕著に奏される。図17は、複数の物理層部とPLLとの関係を示す図である。図17におけるPLL150は、多相クロック生成部を兼ね、複数の物理層部(ここでは第1及び第2レーン物理層部151、152を示し、他は図示が省略されている。)に、転送クロックBCLKとクロックPCLKと多相クロックCK0〜CK11とを共通に供給するように構成されている。
第1レーン物理層部151は、送信部101−1と、受信部102−1(本実施形態のデータリカバリ回路を有する)とを備え、第2レーン物理層部152も、第1レーン物理層部151と同様に送信部101−2と、受信部102−2(本実施形態のデータリカバリ回路を有する)とを備えている。
図17のPLL150は、供給された基準クロックRefCLKから生成した転送クロックBCLK、クロックPCLKを各送信部101−1、101−2に供給すると共に、各受信部102−1、102−2に多相クロックCK0〜CK11を供給する。すなわち、本実施の形態のデータリカバリ回路は、複数の物理層においてPLLを共通化することもでき、回路(チップサイズ)の小型化、コストの低減を可能となる。
また、本実施形態のデータリカバリ回路は、オーバーサンプリング部を除く大部分が単一周波数のクロックCK0で動作しており、多相クロック間やデータ間のスキューをほとんど気にすることなく設計できるので、高速化も容易に実現できる。
また、近年発展の著しい回路・レイアウト設計検証ツールも容易に適用できるため、設計の簡易化が図れ、また回路の再利用性も向上するので、開発期間の短縮化も図れる。
また、データのパラレル処理化しによりさらにその動作周波数を低減することも容易にできるので、転送レートの高速化に対しても容易に対応できる。
また、本実施の形態では、転送クロック周波数の1/2の周波数で12位相のオーバーサンプリングをする例を説明したが、例えば転送クロック周波数の1/4の周波数で24位相のオーバーサンプリングをしてもよい。かかる場合も上述した各ブロックを適宜変更するだけで適用することができ、また、これによりさらに動作周波数を下げてることができるので、より高速な転送レートにも容易に対応できる。一方、転送クロック周波数で6位相のオーバーサンプリングを行ってもよく、また、多相クロックの相数も適宜変更可能である。
〔第2の実施形態〕
第2の実施形態では、受信データのジッタに様々な周波数成分のジッタが含まれている場合のデータの復元について説明する。
一般に、受信データのジッタには様々な周波数成分のジッタが含まれている。低周波数成分のジッタ(すなわち位相変動)に対しては選択信号生成部7による位相状態の制御により追従されるため、図12で説明したように若干の位相誤差は残るもののアイ開口部が大きく減少することはなく正確にデータを復元できる。
この追従可能な周波数帯域は位相状態の制御帯域つまりLPF設定信号によって設定されるカウンタ22の正負所定値により定まる。しかし、制御帯域以上の高周波数成分のジッタに対しては、クロックパターンCKPの位相状態が追従できないので、ジッタ成分として加算されてアイ開口部が縮小され、正確なデータの復元が困難になる。
図18は、高周波ジッタとアイ開口の関係の一例を示す。図18(b)は、時刻tにおけるジッタ(ジッタの経時変化)を表し、制御帯域以上の周波数fjのジッタ(一点鎖線)にランダムジッタRjが重畳されている。ランダムジッタRjのピークトゥピーク(振幅)がトータルジッタTjとして現れる。図18では説明のため周波数fj成分のジッタとランダムジッタRjの重畳としたが、実際には様々な周波数成分のジッタが加算されており、fjより高周波数のジッタはランダムジッタRjとしてまとめて取り扱う。
このようにトータルジッタTjが現れる場合、アイパターンは図18(a)のようになる。すなわち、アイ開口部(白抜き部分)は、高周波成分のジッタの重畳により大幅に縮小されてしまうため正確なデータの復元が困難になる。
また、受信データのジッタは対向するポートの送信データ用のPLLの特性に大きく依存し、種々のポートが接続されることを想定するデータ受信装置においては、いかなる対向送信部に対してもジッタを抑圧できるように位相状態の制御帯域を設定することは困難であり、また制御ループの時間遅れも0にすることはできない。このため、制御帯域を高域化していくと位相余裕がなくなり制御が不安定になり最悪の場合発振の恐れもあるため、制御帯域の拡大にも限界がある。つまり図18のようなジッタ特性を持つ受信データを正確に復元することは困難であった。これは本実施の形態のデータリカバリ回路に限らず、従来のCDR回路についても同様である。
図18(c−0)は時刻t0におけるアイパターンを、(c−1)は時刻t1におけるアイパターンを、(c−2)は時刻t2におけるアイパターンを、それぞれ示す。図18(c−1)〜(c−2)に示されるように、開口の中心は時刻と共に変動するものの、所定の時刻においては、十分広いアイ開口が得られている。したがって、周波数fjのジッタの周期(1/fj)より十分短い時間tav(例えば1/10×(1/fj))の受信データエッジの平均を検出し、これに応じてデータ復元する位相(図(c−0)〜(c−2)の黒点)を変化(シフト)させれば、その復元位相に対しては十分広いアイ開口があるので正確にデータを復元できる。以下、図面に基づき、高周波成分のジッタを含むデータの復元について説明する。
図19は、第2の実施形態の基本となるデータリカバリ回路のブロック図を示す。なお、図19において、図4と同一部分には同一の符号を付しその説明は省略する。図19は、図4で説明したシンボルデータ復元部のうち選択信号生成部の代わりに位相状態制御部62を有する点、位相誤差検出部63を有する点、および、データ選択部61の処理が相違する点で図4と異なる。
位相状態制御部62は、図4の選択信号生成部7と同様に、オーバーサンプリングデータOVSDの両エッジを検出し、これにクロックパターンCKPの立下りエッジが一致するように制御した位相状態信号stateとデータ有効数(1〜3)を示す状態信号S0、S1を生成する。当該処理の詳細は図6と同様であり、第2実施形態の位相状態制御部62は、図6の選択信号生成部7において、選択信号変換部26を省き、状態制御部23から、直接、位相状態信号stateを出力する。
位相誤差検出部63は、オーバーサンプリングデータOVSDの所定期間内のエッジ位置の平均を検出し、このエッジ位置平均の位相状態stateに対する誤差を示す位相誤差信号PhErrを生成する。すなわち、図18における期間tav中のデータエッジ平均値Eavのジッタ中心値からのずれPeを検出する。
データ選択部61は、位相状態信号state、状態信号S0,S1及び位相誤差信号PhErrに従って1〜3個の復元データD0〜D2をオーバーサンプリングデータOVSDから選択出力する。また、復元データD0〜D2の有効データを示す状態信号S0'、S1'も状態信号S0,S1を回路遅延に合わせて所定量遅延させて出力する。
続いて、位相誤差検出部63の詳細について説明する。
図20は、位相誤差検出部63の構成例を示す図である。位相誤差検出部63は、エッジ検出部66、位相比較部67及び移動平均部68を有する。
エッジ検出部66は、オーバーサンプリングデータOVSDから立ち上がり及び立下りの両エッジを検出し、そのエッジ位置を示すエッジ信号RxEdgeを出力する。すなわち、図6の両エッジ検出部20と同様に作用する。したがって、位相状態制御部62内の両エッジ検出部20と兼用するように回路を構成してもよい。
また、エッジ検出部66は、次段の構成を容易にするため、立ち上がりエッジと立ち下がりエッジを個別に検出し、そのエッジ信号を示すエッジ信号RxEdgeP及びRxEdgeNを出力するようにしても良い。この場合は、それぞれ、RxEdgeP=OVSD & ~dOVSD、及び、RxEdgeN=~OVSD & dOVSDの演算を行えば、エッジ信号RxEdgeP及びRxEdgeNが得られる。
位相比較部67は、エッジ信号RxEdge(P,N)と位相状態信号stateより、各エッジのクロックパターンCKPの立ち下がりエッジからの位相誤差Errを所定の対応表に基づき検出する。図21は、エッジ信号RxEdge(P,N)と位相状態信号stateの対応表の一例を示す。位相誤差Errは、エッジ信号RxEdge(P,N)と位相状態信号stateとに基づき、図21の対応表に従い算出される。
図21の対応表によれば、各エッジがクロックパターンCKPの立ち下がりエッジから遅れていれば正、進んでいれば負とし、その差が1位相あれば1となる。また、*印は+3又は−3となることを表し、位相誤差信号PhErrの符号が正であれば+3を、負であれば−3を選択する。図18(b)のように、データエッジ平均値Eavのジッタ中心値は周期的な変動を示すため、移動平均値が+1の時、次のエッジ位置が−3となるような急激な位相変動は通常起こらないと想定される。したがって、このような変換を行うことで±πの境界付近でも誤差を正確に検出できる。
図22は、位相差と位相誤差Errの関係における位相比較特性を示す図である。点線は+3または−3と固定とした場合であり、上記のように変換することで±πの境界付近で正確に検出できるようになる。
図21の変換表を用いた位相誤差Err検出の具体例を示す。今、位相状態stateがSt0の時、クロックパターンCKPは図9に示すように変換されており、立下りエッジ位置は[0]及び[6]にある。ここでエッジ信号RxEdgeの[0]が1の場合、クロックパターンCKPの立ち下がりエッジと一致しているので位相誤差Errは0である。またエッジ信号RxEdgeの[1]が1の場合、エッジ位置が1位相分遅れているので位相誤差Errは+1となる。
なお、前述したようにエッジ信号を立ち上がりと立下りで個別に検出するとRxEdgeP は[0]〜[5]内に「1」が1個、RxEdgeNは「1」が0個、RxEdgeP は[6]〜[11]内に「1」が1個、RxEdgeNは「1」が0個となるので変換が容易になる。この場合はそれぞれ対応した位相誤差ErrP、ErrNを出力するものとする。また、RxEdgeP[k]のk=0〜5とした時の論理和がこの範囲内でのエッジの有無を示すので、これを用いて次段の移動平均を算出する。
移動平均部68は、直近n個の位相誤差Errの平均を算出し、位相誤差信号PhErrとして出力する。図23は、n=4とした場合の移動平均部68の構成例を示す。移動平均部68は、フリップフロップF/F70a〜c、加算器71、補正部72、及び乗算器73を有する。
フリップフロップF/F70a〜70cは、シフトレジスタ70を構成し、エッジが検出されるたび誤差信号Errを1段ずつシフトしていく。加算器71は、シフトレジスタ70の各段の出力Err,Err1,Err2,Err3を加算するものである。
補正部72は位相状態の遷移が生じた時に加算器71からの出力に対し補正を行う。すなわち、誤差信号Errを算出する前に位相状態の遷移があった場合、例えば位相誤差Errはstate=St1に対する誤差であり、Err1〜Err3はstate=St0に対する誤差を検出したものであったとすると、補正値を+3とすることにより、誤差の加算値は位相状態state=St1に対する値に補正できるようになる。位相状態の遷移はSUP又はSDNが「H」となったときに起こるので、SUP=Hとなったときは+3とし、シフトする毎に+2,+1,0と補正値を変化させる。各位相誤差Errの値は−3〜+3を取り補正値も−3〜+3なので補正部出力は−15〜+15の値となり、補正部から出力される信号は符号ビットも含め5ビットである。
乗算器73は、補正部72からの出力に1/4を掛け位相誤差の平均値を算出し、位相誤差信号PhErrとして出力する。1/4するので補正部72からの出力を2ビットLSB側にシフトすればよい。また小数点以下を四捨五入としても良い。このように位相誤差を平均化することによりランダムジッタ成分に含まれるような高周波のジッタ成分は平滑化される。
また位相誤差が立ち上がりと立ち下がりで個別に出力される場合は、点線枠74内のブロックを2つ備え、それぞれErrPとErrNの4エッジ分の加算値を求め、さらにこれらを加算した後、1/8すればよい。なお、移動平均の値nは適宜変更可能である。
データ選択部61について説明する。図24は、データ選択部61の構成例を示す図である。データ選択部61は、第1選択部80と第2選択部81とを有する。
第1選択部80は、オーバーサンプリングデータOVSDから位相状態信号stateに従って、復元データD1、D2毎(D0が有効な場合はD0に対しても)に複数個(本第2の実施形態ではa〜dの4個とする)の候補を選択する。
第1選択部80は、a〜dの4個の候補を図25の対応表に基づいて選択する。図25においてp9〜p11は、オーバーサンプリングデータOVSD[9]〜[11]をクロックCK0の1サイクル分遅延させたものである。これらの遅延は第1選択部80内で行われる。またn0は次サイクルのオーバーサンプリングデータOVSD[0]である。
第1選択部80は、位相状態stateに応じて、復元データ候補D1a〜d及びD2a〜dに対応するオーバーデータサンプルデータを、それぞれ実線枠及び点線枠内のa〜dから選択する。またD0a〜dは、St3からSt4に遷移した場合のみ有効となるのでSt4の時のみ選択し、残りの状態では無視される。
具体例で説明する。今、位相状態stateがSt0の時、D1a〜D1dはそれぞれOVSD[1]〜[4]が選択され、D2a〜dはそれぞれOVSD[7]〜[10]が選択される。D0a〜dは、St0では無視されるので、なんであってもよい。
第2選択部81は、復元データ候補D0a〜d、D1a〜D1d、D2a〜dの中から位相誤差信号PhErrに従って復元データD0,D1,D2を選択出力する。位相誤差信号PhErr=0であれば、現在の位相状態stateに対して局所的な受信データエッジ位置も一致しているので(図18の時刻t0のアイパターン(c-0)に相当する)、クロックパターンCKPの立下り位置の逆位相となる候補cをそれぞれ選択する。位相誤差信号PhErr=+1であれば、現在の位相状態stateに対して局所的な受信データエッジ位置はほぼ1位相分遅れているので(図18の時刻t1のアイパターン(c-1)に相当する)、候補dをそれぞれ選択する。同様に位相誤差信号PhErr=-1であれば候補bを、位相誤差信号PhErr=-2であれば候補aを選択する。また、位相誤差信号PhErr=+2,+3または−3となったときは、別途候補を生成しておきこれを選択するようにしてもよいが、通常このような大きな位相誤差は発生しないので本第2の実施形態では候補dまたはaを選択するようにしておく。このようにして選択したデータを復元データD0,D1,D2として出力する。
図18に示したように、局所的なアイ開口の中心はこの位相誤差と同等だけ変動しているので、位相誤差信号PhErrに従って選択するデータを変更することにより、常に最適なデータ取り込み位相を選択することができ、正確にデータを復元できる。
また、図示は省略するが位相誤差信号PhErrの算出時間と合わせるため、第1選択部80の前または後ろに所定クロック分の遅延調整部を適宜設けると良い。また第1選択部80と第2選択部81は逆の順序で選択するようにしても良い。
以上説明したように、本第2の実施形態によれば、多相クロックの相数を増加させなくても、制御帯域以上の高周波成分を持つ入力データのジッタ許容値を拡大させることができる。すなわち位相状態制御部62は受信データのエッジのジッタ中心にクロックパターンCKPの立下りが一致するように位相状態stateを制御し、位相誤差検出部63は局所的な受信データエッジのジッタ中心からの誤差である位相誤差信号PhErrを検出し、データ選択部61は位相状態stateと位相誤差信号PhErrに従ってデータを復元するので、図18のような位相状態の制御帯域より高周波で、移動平均部68の帯域より低周波のジッタ成分があっても、その位相誤差に応じて復元データの位相を変更しているので、常にアイ開口のほぼ中心でデータを取り込むようにでき、安定して正確にデータを復元できる。つまり移動平均の帯域以下のジッタ成分まで抑圧できるようになるのでジッタ許容値が拡大される。また、位相誤差信号PhErrを制御系にフィードバックすることは無いので高帯域化しても制御系が不安定になることも無く発振の心配も無い。
第1及び第2の実施の形態のデータリカバリ回路又は方法は、コンピュータに代表される情報処理装置内部や画像形成装置(複写機、MFP(Multi Function Printer)、プリンタ、ファクシミリ等)内部のデータ伝送を高速に行う。例えば、データリカバリ回路はコンピュータ内部の所定のボードに搭載され、他のボードやシリアルインターフェイス等から伝送されたシリアルデータを受信しまた送信する高速な送受信装置として機能する。
従来のオーバーデータサンプリング型のCDR回路の構成図である。 多相クロックが等間隔でない場合の問題点の一例を示す図である。 データリカバリ回路が適用されたシリアル転送部の物理層部の全体構成図である。 データリカバリ回路のブロック図である。 オーバーサンプリング部の各主要信号の信号波形の一例を示す図である。 選択信号生成部の構成例を示す図である。 選択信号生成部の各主要信号の波形例を示す図である。 クロックパターンCKPの位相遷移状態を模式的に示す図である。 state信号をクロックパターンCKPに変換する変換規則の一例を示す図である。 データ選択部の構成例を示す図である。 本実施形態のデータリカバリ回路におけるビット同期動作の説明図である。 位相誤差とジッタ許容値の関係を説明するための図である。 デシリアライザの構成例を示す図である。 デシリアライザのうちのシフトレジスタの詳細な構成例を示す図である。 図13に示したシンボル同期制御部とシンボル変換部とを説明する信号波形図である。 PLLの構成例を示す図である。 複数の物理層部とPLLとの関係を示す図である。 高周波ジッタとアイ開口の関係の一例を示す図である。 第2の実施形態のデータリカバリ回路のブロック図である。 位相誤差検出部の構成例を示す図である。 エッジ信号RxEdge(P,N)と位相状態信号stateの対応表の一例である。 位相差と位相誤差Errの関係における位相比較特性を示す図である。 移動平均部の構成例を示す図である。 データ選択部の構成例を示す図である。 第1選択部が複数の候補から一のビットを選択する対応表の一例である。
符号の説明
1 オーバーサンプリング部
2 多相クロック生成部
3 シンボルデータ復元部
4、40、70、201 FF(フリップフロップ)
5 並列化部
6 データ選択部
7 選択信号生成部
8 デシリアライザ
9 コンマ検出部
20 両エッジ検出部
21 比較部
22、61 カウンタ
23、62 状態制御部
24 CKP変換部
25、66 エッジ検出部
26、63 選択信号変換部
30、80 第1選択部
31、81 第2選択部
36 シフトレジスタ
37 シンボル変換部
38 シンボル同期制御部
41 マルチプレクサ
50、55、58 分周器
51 位相周波比較器PFD
52 ローパスフィルタ
53 電圧制御発振回路VCO
54 差動バッファ
56 2分周器
57 リセット回路
61 データ選択部
62 位相状態制御部
63 位相誤差検出部
67 位相比較部
68 移動平均部
71 加算器
72 補正部
73 乗算器
100、120 物理層部
101、122 送信部
102、121 受信部
103 エンコーダ部
104 シリアライザ部
105 送信出力部
106、107 伝送路
108 受信入力部
109 データリカバリ部
110 デシリアライザ部
111 エラスティックバッファ部
112 デコーダ部
113、150 PLL
151 第1レーン物理層部
152 第2レーン物理層部

Claims (19)

  1. シリアル転送されたデータをオーバーサンプリングすることにより復元するデータリカバリ方法であって、
    シリアル転送された前記データを、所定周波数のクロックを所定位相ずつずらして生成された多相クロックによりオーバーサンプリングしてオーバーサンプリングデータを取得するサンプリング工程と、
    前記オーバーサンプリングデータのデータ位相状態に応じて、位相状態が互いに異なるクロックパターンを生成するクロックパターン生成工程と、
    前記オーバーサンプリングデータから生成した第1の位相パターンと、前記クロックパターンから生成した第2の位相パターンとを比較して、前記オーバーサンプリングデータから抽出するビット数を制御する位相状態制御工程と、
    前記第1の位相パターンと前記第2の位相パターンに基づき、前記オーバーサンプリングデータの位相誤差を検出する位相誤差検出工程と、
    前記クロックパターンの位相状態及び前記位相誤差検出工程により検出された前記位相誤差に基づき、前記オーバーサンプリングデータから抽出するビットを選択して前記データを復元するデータ選択工程と、を有することを特徴とするデータリカバリ方法。
  2. 前記位相誤差検出工程は、
    所定の期間における前記位相誤差の移動平均を算出し、前記位相誤差の移動平均を位相誤差とする、
    ことを特徴とする請求項1記載のデータリカバリ方法。
  3. 前記位相誤差検出工程は、
    前記第1の位相パターンと前記第2の位相パターンとの位相差が略π程度となった場合、略π程度となる直前の前記位相誤差に基づき位相進み又は遅れを判定する、
    ことを特徴とする請求項1又は2記載のデータリカバリ方法。
  4. 前記位相誤差検出工程は、前記位相誤差の平均値を算出している間に、前記クロックパターンの位相状態が遷移した場合、前記位相誤差を遷移状態に応じて補正する、
    ことを特徴とする請求項2又は3記載のデータリカバリ方法。
  5. 前記クロックパターン生成工程が前記位相状態の異なる前記クロックパターンに遷移するか否かを判定する期間は、
    前記位相誤差の移動平均を算出するための前記所定の期間より長い、
    ことを特徴とする請求項2ないし4のいずれか記載のデータリカバリ方法。
  6. 前記データ選択工程は、
    前記クロックパターンの前記位相状態に基づき前記オーバーサンプリングデータから抽出するビットの複数個の候補を選択する第1の選択工程と、
    前記第1の選択工程により選択された前記複数個の候補から、前記位相誤差検出工程が検出した位相誤差に基づき1ビットを抽出する第2の選択工程と、
    を有することを特徴とする請求項1ないし5いずれか記載のデータリカバリ方法。
  7. シリアル転送されたデータをオーバーサンプリングすることにより復元するデータリカバリ回路であって、
    シリアル転送された前記データを、所定周波数のクロックを所定位相ずつずらして生成された多相クロックによりオーバーサンプリングしてオーバーサンプリングデータを取得するサンプリング部と、
    前記オーバーサンプリングデータのデータ位相状態に応じて、位相状態が互いに異なるクロックパターンを生成するクロックパターン生成部と、
    前記オーバーサンプリングデータから生成した第1の位相パターンと、前記クロックパターンから生成した第2の位相パターンとを比較して、前記オーバーサンプリングデータから抽出するビット数を制御する位相状態制御部と、
    前記第1の位相パターンと前記第2の位相パターンに基づき、前記オーバーサンプリングデータの位相誤差を検出する位相誤差検出部と、
    前記クロックパターンの位相状態及び前記位相誤差検出部により検出された前記位相誤差に基づき、前記オーバーサンプリングデータから抽出するビットを選択して前記データを復元するデータ選択部と、を有することを特徴とするデータリカバリ回路。
  8. 前記位相誤差検出部は、
    所定の期間における前記位相誤差の移動平均を算出し、前記位相誤差の移動平均を位相誤差とする、
    ことを特徴とする請求項7記載のデータリカバリ回路。
  9. 前記位相誤差検出部は、
    前記第1の位相パターンと前記第2の位相パターンとの位相差が略π程度となった場合、略π程度となる直前の前記位相誤差に基づき位相進み又は遅れを判定する、
    ことを特徴とする請求項7又は8記載のデータリカバリ回路。
  10. 前記位相誤差検出部は、前記位相誤差の平均値を算出している間に、前記クロックパターンの位相状態が遷移した場合、前記位相誤差を遷移状態に応じて補正する、
    ことを特徴とする請求項7ないし9いずれか記載のデータリカバリ回路。
  11. 前記クロックパターン生成部が前記位相状態の異なる前記クロックパターンに遷移するか否かを判定する期間は、
    前記位相誤差の移動平均を算出するための前記所定の期間より長い、
    ことを特徴とする請求項7ないし10のいずれか記載のデータリカバリ回路。
  12. 前記データ選択部は、
    前記位相状態に基づき前記オーバーサンプリングデータから抽出するビットの複数個の候補を選択する第1の選択部と、
    前記第1の選択部により選択された前記複数個の候補から、前記位相誤差検出部が検出した位相誤差に基づき1ビットを抽出するする第2の選択部と、
    を有することを特徴とする請求項7ないし11いずれか記載のデータリカバリ回路。
  13. 周波数f1のクロックに同期してデータをシリアル転送するデータ送信部と、
    シリアル転送された前記データを、周波数f2のクロックを所定位相ずつずらして生成された多相クロックによりオーバーサンプリングしてオーバーサンプリングデータを取得するサンプリング部と、
    前記オーバーサンプリングデータのデータ位相状態に応じて、位相状態が互いに異なるクロックパターンを生成するクロックパターン生成部と、
    前記オーバーサンプリングデータから生成した第1の位相パターンと、前記クロックパターンから生成した第2の位相パターンとを比較して、前記オーバーサンプリングデータから抽出するビット数を制御する位相状態制御部と、
    前記第1の位相パターンと前記第2の位相パターンに基づき、前記オーバーサンプリングデータの位相誤差を検出する位相誤差検出部と、
    前記クロックパターンの位相状態及び前記位相誤差検出部により検出された前記位相誤差に基づき、前記オーバーサンプリングデータから抽出するビットを選択して前記データを復元するデータ選択部と、を有することを特徴とするデータ送受信装置。
  14. 前記位相誤差検出部は、
    所定の期間における前記位相誤差の移動平均を算出し、前記位相誤差の移動平均を位相誤差とする、
    ことを特徴とする請求項13記載のデータ送受信装置。
  15. 前記位相誤差検出部は、
    前記第1の位相パターンと前記第2の位相パターンとの位相差が略π程度となった場合、略π程度となる直前の前記位相誤差に基づき位相進み又は遅れを判定する、
    ことを特徴とする請求項13又は14記載のデータ送受信装置。
  16. 前記位相誤差検出部は、
    前記位相誤差の平均値を算出している間に、前記クロックパターンの位相状態が遷移した場合、前記位相誤差を遷移状態に応じて補正する、
    ことを特徴とする請求項14又は15記載のデータ送受信装置。
  17. 前記クロックパターン生成部が前記位相状態の異なる前記クロックパターンに遷移するか否かを判定する期間は、
    前記位相誤差の移動平均を算出するための前記所定の期間より長い、
    ことを特徴とする請求項14ないし16のいずれか記載のデータ送受信装置。
  18. 前記データ選択部は、
    前記位相状態に基づき前記オーバーサンプリングデータから抽出するビットの複数個の候補を選択する第1の選択部と、
    前記第1の選択部により選択された前記複数個の候補から、前記位相誤差検出部が検出した位相誤差に基づき1ビットを抽出するする第2の選択部と、
    を有することを特徴とする請求項13ないし17いずれか記載のデータ送受信装置。
  19. 請求項7ないし12いずれか記載のデータリカバリ回路を用いた情報処理装置。
JP2005077646A 2005-03-17 2005-03-17 データリカバリ方法、データリカバリ回路、データ送受信装置及び情報処理装置 Expired - Fee Related JP4676792B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005077646A JP4676792B2 (ja) 2005-03-17 2005-03-17 データリカバリ方法、データリカバリ回路、データ送受信装置及び情報処理装置
EP06251361.9A EP1703662B1 (en) 2005-03-17 2006-03-15 Data recovery method, data recovery circuit, data transmitting/receiving apparatus, information processing apparatus, a computer program and a computer readable storage medium
US11/376,064 US7746971B2 (en) 2005-03-17 2006-03-16 Data recovery method, data recovery circuit, data transmitting/receiving apparatus and information processing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005077646A JP4676792B2 (ja) 2005-03-17 2005-03-17 データリカバリ方法、データリカバリ回路、データ送受信装置及び情報処理装置

Publications (2)

Publication Number Publication Date
JP2006262165A true JP2006262165A (ja) 2006-09-28
JP4676792B2 JP4676792B2 (ja) 2011-04-27

Family

ID=36405981

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005077646A Expired - Fee Related JP4676792B2 (ja) 2005-03-17 2005-03-17 データリカバリ方法、データリカバリ回路、データ送受信装置及び情報処理装置

Country Status (3)

Country Link
US (1) US7746971B2 (ja)
EP (1) EP1703662B1 (ja)
JP (1) JP4676792B2 (ja)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010028615A (ja) * 2008-07-23 2010-02-04 Ricoh Co Ltd クロック・データ・リカバリ回路
KR100985874B1 (ko) 2008-07-08 2010-10-08 포항공과대학교 산학협력단 싱글 비트 블라인드 오버샘플링 데이터 복원회로 및복원방법
JP2010283816A (ja) * 2009-05-29 2010-12-16 Honeywell Internatl Inc クロックを並列データに整列させるための回路
US7889816B2 (en) 2007-03-16 2011-02-15 Ricoh Company, Ltd. Clock and data recovery circuit and communications apparatus including the clock and data recovery circuit
JP2011193039A (ja) * 2010-03-11 2011-09-29 Fujitsu Ltd 受信回路及びサンプリングクロック制御方法
JP2011223366A (ja) * 2010-04-12 2011-11-04 Fujitsu Ltd データ受信回路
US8165252B2 (en) 2007-05-24 2012-04-24 Sony Corporation Signal processing device and method, and program
JP2012147195A (ja) * 2011-01-11 2012-08-02 Fujitsu Ltd 受信回路、伝送システムおよび受信方法
US8473770B2 (en) 2009-06-15 2013-06-25 Renesas Electronics Corporation Semiconductor device and data processing system
JP2013141102A (ja) * 2011-12-28 2013-07-18 Fujitsu Ltd 受信装置、送受信システム、および復元方法
US8582708B2 (en) 2009-07-06 2013-11-12 Panasonic Corporation Clock and data recovery circuit
WO2014010236A1 (ja) * 2012-07-12 2014-01-16 株式会社デンソー データ受信装置及びデータ通信システム
WO2014045551A1 (ja) * 2012-09-18 2014-03-27 株式会社デンソー 受信回路
DE102015115944A1 (de) 2014-09-29 2016-03-31 Fanuc Corporation Datenwiederherstellungsschaltung

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4948077B2 (ja) * 2005-10-14 2012-06-06 ルネサスエレクトロニクス株式会社 送受信装置及びそれを用いた通信システム
CN101473587A (zh) * 2006-06-16 2009-07-01 松下电器产业株式会社 数据发送装置和数据发送方法
KR100894811B1 (ko) * 2007-01-11 2009-04-24 삼성전자주식회사 서데스의 역직렬화기 및 그것의 데이터 역직렬화 방법
JP2008263508A (ja) * 2007-04-13 2008-10-30 Nec Electronics Corp クロックアンドデータリカバリ回路
US8055927B2 (en) * 2007-05-23 2011-11-08 International Business Machines Corporation Structure for analyzing dynamic CPU voltage
US7844846B2 (en) * 2007-05-23 2010-11-30 International Business Machines Corporation System and method for analyzing dynamic CPU voltage
US7991097B2 (en) * 2007-10-04 2011-08-02 Himax Technologies Limited Method and apparatus for adjusting serial data signal
GB2474923B (en) 2008-07-18 2011-11-16 Phasor Solutions Ltd A phased array antenna and a method of operating a phased array antenna
KR101642833B1 (ko) * 2010-02-05 2016-07-26 삼성전자주식회사 클럭 임베디드 인터페이스 방법, 그 방법을 이용하는 송수신기 및 디스플레이 장치
US8326364B2 (en) * 2010-05-13 2012-12-04 Texas Instruments Incorporated High resolution, low power design for CPRI/OBSAI latency measurement
TWI436630B (zh) * 2010-11-16 2014-05-01 Etron Technology Inc 可容忍擾動之相位選擇器與相關方法、以及時脈與資料恢復電路
TWI406504B (zh) * 2010-12-30 2013-08-21 Sunplus Technology Co Ltd 利用過取樣的資料回復裝置及其方法
CN103178784B (zh) * 2011-12-21 2017-02-08 北京普源精电科技有限公司 一种振荡键控调制方法、装置和函数信号发生器
US8653868B2 (en) 2012-06-28 2014-02-18 Intel Corporation Low power data recovery
GB201215114D0 (en) 2012-08-24 2012-10-10 Phasor Solutions Ltd Improvements in or relating to the processing of noisy analogue signals
JP5849997B2 (ja) 2013-06-24 2016-02-03 株式会社デンソー データ通信システム、スレーブ及びマスタ
US9692672B2 (en) * 2014-01-23 2017-06-27 Stmicroelectronics S.R.L. Communication system, and corresponding integrated circuit and method
GB201403507D0 (en) 2014-02-27 2014-04-16 Phasor Solutions Ltd Apparatus comprising an antenna array
WO2016046883A1 (ja) * 2014-09-22 2016-03-31 株式会社ソシオネクスト 受信回路、集積回路及び受信方法
TWI554037B (zh) * 2015-04-16 2016-10-11 群聯電子股份有限公司 時脈資料回復電路模組、記憶體儲存裝置及相位鎖定方法
JP2017011342A (ja) * 2015-06-16 2017-01-12 富士通株式会社 伝送装置及びクロック再生方法
US9819481B2 (en) 2015-08-20 2017-11-14 Macnica Americas, Inc Clock recovery method and apparatus
KR102653891B1 (ko) 2016-11-30 2024-04-02 삼성전자주식회사 지연 클록 신호의 위상을 보간하기 위한 위상 보간기 및 이를 포함하고, 위상이 보간된 클록 신호를 이용하여 데이터 샘플링을 수행하는 장치
US10374785B2 (en) * 2016-12-27 2019-08-06 Intel Corporation Clock phase adjustment using clock and data recovery scheme
US9722630B1 (en) * 2017-03-28 2017-08-01 Andes Technology Corporation Decoding apparatus and method for decoding a serially transmitted signal thereof
KR20190075332A (ko) * 2017-12-21 2019-07-01 에스케이하이닉스 주식회사 반도체 장치
US11063596B1 (en) * 2021-01-07 2021-07-13 Global Unichip Corporation Frame decoding circuit and method for performing frame decoding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936849A (ja) * 1995-07-20 1997-02-07 Hitachi Ltd ビット同期回路及びビット同期方式
JP2001148692A (ja) * 1999-09-09 2001-05-29 Matsushita Electric Ind Co Ltd クロック抽出装置
JP2002171249A (ja) * 2000-12-04 2002-06-14 Matsushita Electric Ind Co Ltd データ受信装置及びデータ受信方法
JP2004128980A (ja) * 2002-10-03 2004-04-22 Renesas Technology Corp データリカバリ回路とデータリカバリ方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7227918B2 (en) * 2000-03-14 2007-06-05 Altera Corporation Clock data recovery circuitry associated with programmable logic device circuitry
KR100346837B1 (ko) * 2000-09-02 2002-08-03 삼성전자 주식회사 클럭 스큐에 의한 에러를 최소화하는 데이타 복원 장치 및그 방법
JP3636657B2 (ja) 2000-12-21 2005-04-06 Necエレクトロニクス株式会社 クロックアンドデータリカバリ回路とそのクロック制御方法
US6914953B2 (en) * 2000-12-28 2005-07-05 International Business Machines Corporation Multiphase clock recovery using D-type phase detector
US6819728B2 (en) * 2000-12-28 2004-11-16 International Business Machines Corporation Self-correcting multiphase clock recovery
US6441667B1 (en) * 2001-03-29 2002-08-27 International Business Machines Corporation Multiphase clock generator
US7142486B2 (en) 2001-04-02 2006-11-28 Ricoh Company, Ltd. Signal processing method and signal processing apparatus
CN100531026C (zh) * 2001-10-26 2009-08-19 国际商业机器公司 跃迁检测、确认和存储电路
JP2003304225A (ja) * 2002-04-09 2003-10-24 Mitsubishi Electric Corp データリカバリ回路
US6983387B2 (en) * 2002-10-17 2006-01-03 International Business Machines Corporation Microprocessor chip simultaneous switching current reduction method and apparatus
JP4196657B2 (ja) * 2002-11-29 2008-12-17 株式会社日立製作所 データ再生方法およびデジタル制御型クロックデータリカバリ回路
US6831491B2 (en) * 2002-12-23 2004-12-14 Agilent Technologies, Inc. Systems and methods for correcting phase locked loop tracking error using feed-forward phase modulation
JP2004260677A (ja) * 2003-02-27 2004-09-16 Renesas Technology Corp 通信装置
DE102004014695B4 (de) * 2003-03-26 2007-08-16 Infineon Technologies Ag Takt- und Datenwiedergewinnungseinheit
US7386080B2 (en) * 2003-09-30 2008-06-10 Intel Corportion High-speed data sampler for optical interconnect
ES2303622T3 (es) 2003-12-01 2008-08-16 Robert Bosch Gmbh Procedimiento para el transporte de productos.
JP4480536B2 (ja) * 2003-12-05 2010-06-16 株式会社リコー データリカバリ方法およびデータリカバリ回路

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936849A (ja) * 1995-07-20 1997-02-07 Hitachi Ltd ビット同期回路及びビット同期方式
JP2001148692A (ja) * 1999-09-09 2001-05-29 Matsushita Electric Ind Co Ltd クロック抽出装置
JP2002171249A (ja) * 2000-12-04 2002-06-14 Matsushita Electric Ind Co Ltd データ受信装置及びデータ受信方法
JP2004128980A (ja) * 2002-10-03 2004-04-22 Renesas Technology Corp データリカバリ回路とデータリカバリ方法

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7889816B2 (en) 2007-03-16 2011-02-15 Ricoh Company, Ltd. Clock and data recovery circuit and communications apparatus including the clock and data recovery circuit
US8165252B2 (en) 2007-05-24 2012-04-24 Sony Corporation Signal processing device and method, and program
KR100985874B1 (ko) 2008-07-08 2010-10-08 포항공과대학교 산학협력단 싱글 비트 블라인드 오버샘플링 데이터 복원회로 및복원방법
JP2010028615A (ja) * 2008-07-23 2010-02-04 Ricoh Co Ltd クロック・データ・リカバリ回路
JP2010283816A (ja) * 2009-05-29 2010-12-16 Honeywell Internatl Inc クロックを並列データに整列させるための回路
US8473770B2 (en) 2009-06-15 2013-06-25 Renesas Electronics Corporation Semiconductor device and data processing system
US8582708B2 (en) 2009-07-06 2013-11-12 Panasonic Corporation Clock and data recovery circuit
JP2011193039A (ja) * 2010-03-11 2011-09-29 Fujitsu Ltd 受信回路及びサンプリングクロック制御方法
JP2011223366A (ja) * 2010-04-12 2011-11-04 Fujitsu Ltd データ受信回路
JP2012147195A (ja) * 2011-01-11 2012-08-02 Fujitsu Ltd 受信回路、伝送システムおよび受信方法
JP2013141102A (ja) * 2011-12-28 2013-07-18 Fujitsu Ltd 受信装置、送受信システム、および復元方法
WO2014010236A1 (ja) * 2012-07-12 2014-01-16 株式会社デンソー データ受信装置及びデータ通信システム
JP2014033428A (ja) * 2012-07-12 2014-02-20 Denso Corp データ受信装置及びデータ通信システム
WO2014045551A1 (ja) * 2012-09-18 2014-03-27 株式会社デンソー 受信回路
DE102015115944A1 (de) 2014-09-29 2016-03-31 Fanuc Corporation Datenwiederherstellungsschaltung
US9337996B2 (en) 2014-09-29 2016-05-10 Fanuc Corporation Data recovery circuit
DE102015115944B4 (de) 2014-09-29 2019-04-18 Fanuc Corporation Datenwiederherstellungsschaltung

Also Published As

Publication number Publication date
EP1703662B1 (en) 2017-10-04
JP4676792B2 (ja) 2011-04-27
US7746971B2 (en) 2010-06-29
EP1703662A1 (en) 2006-09-20
US20060227916A1 (en) 2006-10-12

Similar Documents

Publication Publication Date Title
JP4676792B2 (ja) データリカバリ方法、データリカバリ回路、データ送受信装置及び情報処理装置
EP1538775B1 (en) Data recovery method and data recovery circuit
JP5463246B2 (ja) 位相同期回路、cdr回路及び受信回路
US5850422A (en) Apparatus and method for recovering a clock signal which is embedded in an incoming data stream
US9036755B2 (en) Circuits and methods for time-average frequency based clock data recovery
US7913104B1 (en) Method and apparatus for receive channel data alignment with minimized latency variation
JP5086014B2 (ja) データリカバリ方法およびデータリカバリ回路
JP5286845B2 (ja) データリカバリ回路
JP5553999B2 (ja) デジタル位相ロックループを実施するためのシステム及び方法
US6314151B1 (en) Phase comparator operable at half frequency of input signal
JP2009239768A (ja) 半導体集積回路装置、及び、クロックデータ復元方法
JP5610540B2 (ja) シリアル通信用インターフェース回路及びパラレルシリアル変換回路
JP7393079B2 (ja) 半導体装置
TW202029652A (zh) 檢測時脈信號的頻率和相位的積體電路以及包括所述積體電路的時脈及資料恢復電路
US20070230646A1 (en) Phase recovery from forward clock
JP2008211742A (ja) クロック再生装置
JP2006109082A (ja) データ送受信方法、及びデータ送受信装置
TWI499914B (zh) 資料傳輸方法及資料回復方法
JPWO2009069244A1 (ja) 送信方法および送信装置
JP2006166229A (ja) データリカバリ方法及びデータリカバリ回路及びこれを用いたデータ受信装置
US7460040B1 (en) High-speed serial interface architecture for a programmable logic device
JP3973149B2 (ja) データリカバリ回路とデータリカバリ方法
KR100844313B1 (ko) 데이터 속도의 1/4 주파수 클럭을 사용하는 고속의 클럭 및데이터 복원 회로 및 방법
JP2010016545A (ja) 多相クロック生成回路、オーバーサンプリング回路及び位相シフト回路
JP2005339001A (ja) 位相同期回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140204

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4676792

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees