ES2405780T3 - Agentes para evitar y tratar trastornos que implican la modulación de los receptores de RyR - Google Patents

Agentes para evitar y tratar trastornos que implican la modulación de los receptores de RyR Download PDF

Info

Publication number
ES2405780T3
ES2405780T3 ES11151905T ES11151905T ES2405780T3 ES 2405780 T3 ES2405780 T3 ES 2405780T3 ES 11151905 T ES11151905 T ES 11151905T ES 11151905 T ES11151905 T ES 11151905T ES 2405780 T3 ES2405780 T3 ES 2405780T3
Authority
ES
Spain
Prior art keywords
ryr1
ryr
calstabine
ryr2
pka
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES11151905T
Other languages
English (en)
Inventor
Andrew Robert Marks
Donald W Landry
Shixian Deng
Zhen Zhuang Cheng
Stephan E Lehnart
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Columbia University in the City of New York
Original Assignee
Columbia University in the City of New York
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Columbia University in the City of New York filed Critical Columbia University in the City of New York
Application granted granted Critical
Publication of ES2405780T3 publication Critical patent/ES2405780T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D281/00Heterocyclic compounds containing rings of more than six members having one nitrogen atom and one sulfur atom as the only ring hetero atoms
    • C07D281/02Seven-membered rings
    • C07D281/04Seven-membered rings having the hetero atoms in positions 1 and 4
    • C07D281/08Seven-membered rings having the hetero atoms in positions 1 and 4 condensed with carbocyclic rings or ring systems
    • C07D281/10Seven-membered rings having the hetero atoms in positions 1 and 4 condensed with carbocyclic rings or ring systems condensed with one six-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D291/00Heterocyclic compounds containing rings having nitrogen, oxygen and sulfur atoms as the only ring hetero atoms
    • C07D291/08Heterocyclic compounds containing rings having nitrogen, oxygen and sulfur atoms as the only ring hetero atoms condensed with carbocyclic rings or ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/554Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having at least one nitrogen and one sulfur as ring hetero atoms, e.g. clothiapine, diltiazem
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/10Drugs for disorders of the urinary system of the bladder
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/08Drugs for skeletal disorders for bone diseases, e.g. rachitism, Paget's disease
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/28Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/12Antidiuretics, e.g. drugs for diabetes insipidus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/06Antiarrhythmics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Neurology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Cardiology (AREA)
  • Diabetes (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Hospice & Palliative Care (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Hematology (AREA)
  • Endocrinology (AREA)
  • Psychiatry (AREA)
  • Urology & Nephrology (AREA)
  • Emergency Medicine (AREA)
  • Obesity (AREA)
  • Pulmonology (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Nitrogen- Or Sulfur-Containing Heterocyclic Ring Compounds With Rings Of Six Or More Members (AREA)

Abstract

Uso de un compuesto representado por la estructura: **Fórmula** para tratar y evitar un trastorno o enfermedad asociado con un RyR que regula el funcionamiento de los canales de calcio en las células, o en la fabricación de un medicamento para dicho tratamiento o prevención, en el que el trastorno o enfermedad que está asociado con el RyR se selecciona del grupo que consiste en trastornos y enfermedades del músculo esquelético, trastornos y enfermedades cognitivos, hipertermia maligna, diabetes, y muerte súbita del lactante.

Description

Agentes para evitar y tratar trastornos que implican la modulación de los receptores de RyR
Campo de la invención
La presente invención se refiere a compuestos y a su uso para tratar y evitar trastornos y enfermedades asociados con los receptores de rianodina (RyR) que regulan el funcionamiento de los canales de calcio en las células. Más en particular, la invención divulga compuestos que están relacionados con las 1,4-benzotiazepinas y que son útiles para tratar trastornos cardíacos y del músculo esquelético. La invención también divulga composiciones farmacéuticas que comprenden los compuestos y artículos de fabricación que comprenden las composiciones farmacéuticas.
Antecedentes de la invención
El retículo sarcoplásmico (RS) es una estructura en las células que funciona, entre otras cosas, como un almacén de calcio (Ca2+) intracelular especializado. Los canales en el RS denominados receptores de rianodina (RyR) se abren y se cierran para regular la liberación de Ca2+ desde el RS al citoplasma intracelular de la célula. La liberación de Ca2+ en el citoplasma desde el RS incrementa la concentración de Ca2+ citoplásmico. La probabilidad de apertura (Po) de los RyR se refiere a la posibilidad de que el canal de RyR esté abierto en cualquier momento dado, y por lo tanto pueda liberar Ca2+ en el citoplasma desde el RS.
Hay tres tipos de receptores de rianodina, de los que todos son canales de Ca2+ altamente relacionados: RyR1, RyR2 y RyR3. RyR1 se encuentra predominantemente en el músculo esquelético así como en otros tejidos, RyR2 se encuentra predominantemente en el corazón así como en otros tejidos, y RyR3 se encuentra en el cerebro así como en otros tejidos. Los canales de RyR están formados por cuatro polipéptidos de RyR asociados con cuatro proteínas de unión a FK506 (FKBP), específicamente FKBP12 (calstabina-1) y FKBP12.6 (calstabina-2). La calstabina-1 se une a RyR1, la calstabina-2 se une a RyR2, y la calstabina-1 se une a RyR3. Las proteínas FKBP (calstabina-1 y calstabina-2) se unen al canal de RyR (una molécula por subunidad de RyR), estabilizan el funcionamiento del canal de RyR, y facilitan el paso acoplado entre canales de RyR próximos, evitando de este modo la activación anormal del canal durante el estado cerrado del canal.
Además de las proteínas de unión calstabina, la proteína cinasa A (PKA) también se une a la superficie citoplásmica de los RyR. La fosforilación por PKA de los RyR provoca la disociación parcial de las calstabinas de los RyR. La disociación de calstabina del RyR provoca un incremento en la probabilidad de apertura de RyR, y por lo tanto un incremento en la liberación de Ca2+ desde el RS al citoplasma intracelular.
La liberación de Ca2+ desde el RS en células del músculo esquelético y células del corazón es un mecanismo fisiológico clave que controla el funcionamiento del músculo, debido a que un incremento en la concentración de Ca2+ en el citoplasma intracelular provoca la contracción del músculo.
El acoplamiento de excitación-contracción (EC) en los músculos esqueléticos implica la despolarización eléctrica de la membrana plasmática en el túbulo transverso (túbulo T), lo que activa los canales de Ca2+ de tipo L de paso por voltaje (LTCC). Los LTCC desencadenan la liberación de Ca2+ desde el RS por medio de la interacción física con RyR1. El incremento resultante en la concentración de Ca2+ citoplásmico induce la interacción actina-miosina y la contracción del músculo. Para permitir la relajación, el Ca2+ intracelular se vuelve a bombear hacia el RS por medio de bombas de Ca2+ - ATPasa del RS (SERCA), lo que está regulado por fosfolambano (PLB) que depende del tipo de fibra muscular.
Se ha demostrado que las formas de enfermedad que dan como resultado la activación mantenida del sistema nervioso simpático y el incremento en los niveles de catecolamina en plasma provocan la activación inadaptada de las rutas de estrés intracelulares dando como resultado la desestabilización del estado cerrado del canal de RyR1 y la pérdida de Ca2+ intracelular. Se encontró que la pérdida de Ca2+ del RS por medio de canales de RyR1 reducía los almacenes de calcio del RS intracelular, incrementaba el consumo de energía de compensación y daba como resultado una aceleración significativa en la fatiga del músculo. El defecto de músculo inducido por estrés reduce de forma permanente el funcionamiento in vivo y del músculo aislado, en particular en situaciones de incremento de la demanda.
También se ha demostrado que la desestabilización del estado cerrado de RyR1 se produce bajo condiciones patológicas de incremento en la activación simpática e implica la reducción en la estabilización de la subunidad del canal de calstabina-1 (FKBP12). Los experimentos preliminares de eficacia han demostrado que la activación de PKA como efector final de los sistemas nerviosos simpáticos incrementa la fosforilación por PKA de RyR1 en Ser2843 lo que disminuye la afinidad de unión de calstabina-1 a RyR1 e incrementa la probabilidad de apertura del canal.
En el músculo estriado cardíaco, RyR2 es el principal canal de liberación de Ca2+ necesario para el acoplamiento de EC y la contracción del músculo. Durante el acoplamiento de EC, la despolarización de la membrana celular del músculo cardíaco durante la fase cero del potencial de acción activa los canales de Ca2+ de paso por voltaje. La entrada de Ca2+ a través de los canales de paso por voltaje abiertos a su vez inicia la liberación de Ca2+ desde el RS por medio de RyR2. Este proceso se conoce como liberación de Ca2+ inducida por Ca2+. La liberación de Ca2+ inducida por Ca2+ mediada por RyR2 activa entonces las proteínas contráctiles en la célula miocárdica, dando como resultado la contracción del músculo cardíaco.
La fosforilación de RyR2 cardíaco por PKA es una parte importante de la respuesta de "lucha o huida" que incrementa la ganancia en el acoplamiento de EC cardíaco aumentando la cantidad de Ca2+ liberado para un desencadenamiento dado. Esta ruta de señalización proporciona un mecanismo por el que la activación del sistema nervioso simpático, en respuesta al estrés, da como resultado un incremento en la salida cardíaca. La fosforilación por PKA de RyR2 incrementa la probabilidad de apertura del canal disociando la calstabina-2 (FKBP12.6) del complejo del canal. Esto, a su vez, incrementa la sensibilidad de RyR2 para la activación dependiente de Ca2+.
A pesar de los avances en el tratamiento, la insuficiencia cardíaca sigue siendo una causa importante de mortalidad en los países occidentales. Un rasgo característico importante de la insuficiencia cardíaca es la reducción en la contractilidad miocárdica. En la insuficiencia cardíaca, las anomalías contráctiles resultan, en parte, de alteraciones en la ruta de señalización que permite que el potencial de acción cardíaco desencadene la liberación de Ca2+ por medio de los canales de RyR2 y la contracción del músculo. En particular, en corazones con insuficiencia, la amplitud de la oscilación de Ca2+ de toda la célula disminuye y la duración se prolonga.
La arritmia cardíaca, una característica común de la insuficiencia cardíaca, da como resultado muchas de las muertes asociadas con la enfermedad. La fibrilación auricular (AF) es la arritmia cardíaca más común en humanos, y representa una causa principal de morbilidad y mortalidad. La remodelación estructural y eléctrica (incluyendo el acortamiento de la refractariedad auricular, la pérdida de la adaptación relacionada con la velocidad de la refractariedad, y el acortamiento de la longitud de onda de las ondas pequeñas de reentrada) acompaña a la taquicardia mantenida. Esta remodelación es probablemente importante en el desarrollo, mantenimiento y progresión de la fibrilación auricular. Los estudios sugieren que el control del calcio desempeña un papel en la remodelación eléctrica en la fibrilación auricular.
Aproximadamente un 50 % de todos los pacientes con cardiopatía mueren por arritmias cardíacas mortales. En algunos casos, una arritmia ventricular en el corazón es rápidamente mortal (un fenómeno denominado "muerte súbita de origen cardíaco" (MSC). Las arritmias ventriculares mortales y la MSC también se producen en individuos jóvenes, por lo demás sanos, que no saben que tienen una cardiopatía estructural. De hecho, la arritmia ventricular es la causa más común de muerte súbita en individuos por lo demás sanos.
La taquicardia ventricular polimórfica catecolaminérgica (TVPC) es un trastorno heredado en individuos con corazones estructuralmente normales. Se caracteriza por taquicardia ventricular inducida por estrés (una arritmia letal que provoca la MSC). En sujetos con TVPC, el ejercicio físico y/o el estrés inducen taquicardias ventriculares bidireccionales y/o polimórficas que dan lugar a MSC incluso en ausencia de cardiopatía estructural detectable. La TVPC se hereda predominantemente de forma autosómica dominante. Los individuos con TVPC tienen arritmias ventriculares cuando se someten a ejercicio, pero no desarrollan arritmias en reposo. Los estudios han identificado mutaciones en el gen RyR2 humano, en el cromosoma Iq42-q43, en individuos con TVPC.
Los corazones con insuficiencia (por ejemplo, en pacientes con insuficiencia cardíaca y en modelos animales de insuficiencia cardíaca) se caracterizan por una respuesta inadaptada que incluye estimulación hiperadrenérgica crónica. En la insuficiencia cardíaca, la estimulación beta-adrenérgica crónica está asociada con la activación de receptores beta-adrenérgicos en el corazón, que, a través del acoplamiento con proteínas G, activan la adenilil ciclasa y de este modo incrementan la concentración de cAMP intracelular. El cAMP activa la PKA dependiente de cAMP, que se ha demostrado que induce la hiperfosforilación de RyR2. Por tanto, la insuficiencia cardíaca crónica es un estado hiperadrenérgico crónico que da como resultado varias consecuencias patológicas, incluyendo la hiperfosforilación por PKA de RyR2.
La hiperfosforilación por PKA de RyR2 se ha propuesto como un factor que contribuye a una función contráctil deprimida y a arritmogénesis en la insuficiencia cardíaca. De acuerdo con esta hipótesis, se ha demostrado la hiperfosforilación por PKA de RyR2 en corazones con insuficiencia, in vivo, tanto en modelos animales como en pacientes con insuficiencia cardíaca que se someten a trasplante cardíaco.
En corazones con insuficiencia, la hiperfosforilación de RyR2 por PKA induce la disociación de FKBP12.6 (calstabina-2) del canal de RyR2. Esto provoca cambios marcados en las propiedades biofísicas del canal de RyR2, incluyendo el incremento de la probabilidad de apertura (Po) debido a un incremento en la sensibilidad para la activación dependiente de Ca2+; la desestabilización del canal, dando como resultado estados de subconductancia; y la alteración del paso acoplado de los canales, dando como resultado un acoplamiento de EC defectuoso y disfunción cardíaca. Por tanto, el RyR2 hiperfosforilado por PKA es muy sensible a la estimulación de Ca2+ de bajo nivel, y esto se manifiesta como una pérdida de Ca2+ de RS diastólica a través del canal de RyR2 hiperfosforilado por PKA.
La respuesta inadaptada al estrés en la insuficiencia cardíaca da como resultado la reducción de FKBP12.6 del complejo macromolecular del canal. Esto da lugar a un desplazamiento hacia la izquierda en la sensibilidad de RyR2 para la liberación de Ca2+ inducida por Ca2+, dando como resultado canales que son más activos a concentraciones de Ca2+ de bajas a moderadas. Con el tiempo, el incremento en la "pérdida" a través de RyR2 da como resultado el reajuste del contenido en Ca2+ de RS a un nivel inferior, lo que, a su vez, reduce la ganancia del acoplamiento de EC y contribuye a la alteración de la contractilidad sistólica.
Adicionalmente, una subpoblación de RyR2 que se "filtra" particularmente puede liberar Ca2+ de RS durante la fase de reposo del ciclo cardíaco, la diástole. Esto da como resultado despolarizaciones de la membrana del cardiomiocito conocidas como despolarizaciones secundarias retardadas (DAD), que se sabe que desencadenan arritmias cardíacas ventriculares mortales.
En pacientes con mutaciones de TVPC en su RyR2 y corazones por lo demás estructuralmente normales, se produce un fenómeno similar. Específicamente, se sabe que el ejercicio y el estrés inducen la liberación de catecolaminas que activan los receptores beta-adrenérgicos en el corazón. La activación de los receptores betaadrenérgicos da lugar a la hiperfosforilación por PKA de los canales de RyR2. Las pruebas también sugieren que la hiperfosforilación por PKA de RyR2 que resulta de la activación de los receptores beta-adrenérgicos hace más probable que los canales de RyR2 mutados canales se abran en la fase de relajación del ciclo cardíaco, incrementando la posibilidad de arritmias.
Se sabe que las arritmias cardíacas están asociadas con las pérdidas de Ca2+ de RS diastólicas en pacientes con mutaciones de TVPC en su RyR2 y corazones por lo demás estructuralmente normales. En estos casos, el mecanismo más común para la inducción y el mantenimiento de taquicardia ventricular es la automaticidad anormal. Una forma de automaticidad anormal, conocida por desencadenar arritmia, está asociada con la liberación anómala de Ca2+ de RS, lo que inicia DAD. Las DAD son despolarizaciones anormales en cardiomiocitos que se producen después de la repolarización de un potencial de acción cardíaca. La base molecular para la liberación anormal de Ca2+ de RS que da como resultado las DAD no se ha esclarecido completamente. Sin embargo, se sabe que las DAD se bloquean por rianodina, lo que proporciona pruebas de que RyR2 desempeña un papel clave en la patogénesis de esta liberación anómala de Ca2+.
La patente de los Estados Unidos n.º 6.489.125 analiza el JTV-519 (monoclorhidrato de 4-[3-(4-bencilpiperidin-1il)propionil]-7-metoxi-2,3,4,5-tetrahidro-1,4-benzotiazepina; también conocido como k201 o ICP-Calstan 100), una 1,4-benzotiazepina, como nuevo modulador de canales iónicos de calcio de RyR.
La solicitud pendiente de publicación de los EE. UU. con n.º de serie 10/763.498 analiza el RyR2 como objetivo para tratar y evitar la insuficiencia cardíaca y arritmias cardíacas, incluyendo la fibrilación auricular y arritmias cardíacas que provocan muerte súbita de origen cardiaco inducida por ejercicio (MSC). Se descubrió que los canales de RyR2 con 7 mutaciones de TVPC diferentes (por ejemplo S2246L, R2474S, N4104K, R4497C, P2328S, Q4201R, V4653F) tienen defectos funcionales que daban como resultado canales que filtran (es decir, una pérdida de calcio) cuando se estimulan durante el ejercicio. Se ha demostrado que el mecanismo para la VT en la TVPC es el mismo que el mecanismo para la VT en la insuficiencia cardíaca.
Se ha demostrado que las arritmias inducidas por ejercicio y la muerte súbita (en pacientes con TVPC) resultan de una reducción en la afinidad de FKBP12.6 (calstabina-2) para RyR2. Adicionalmente, se ha demostrado que el ejercicio activa el RyR2 como resultado de la fosforilación por proteína cinasa (PKA) dependiente de adenosina 3',5'monofosfato (cAMP). Los canales de RyR2 mutantes, que tenían una función normal en bicapas lipídicas planas bajo condiciones basales, eran más sensibles a la activación por fosforilación por PKA, lo que presenta un incremento en la actividad (probabilidad de apertura) y estados de apertura prolongados, en comparación con los canales naturales. Además, los canales de RyR2 mutantes fosforilados por PKA era resistentes a la inhibición por Mg2+, un inhibidor fisiológico del canal, y mostraron una reducción en la unión a FKBP12.6 (también conocida como calstabina-2, que estabiliza el canal en el estado cerrado). Estos hallazgos indican que, durante el ejercicio, cuando el RyR2 se fosforila por PKA, es más probable que los canales de TVPC mutantes se abran en la fase de relajación del ciclo cardíaco (diástole), lo que incremente la posibilidad de arritmias desencadenadas por pérdidas de Ca2+ de RS.
Adicionalmente, la solicitud de patente pendiente de tramitación de los EE. UU. n.º 09/288.606 analiza un procedimiento para regular la contracción del corazón de un sujeto administrando un compuesto que regula la fosforilación por PKA de un RyR2 y disminuye específicamente la fosforilación por PKA. LA solicitud de patente de los EE. UU. pendiente de trámite n.º 10/608.723 también analiza un procedimiento para el tratamiento y la profilaxis para taquiarritmia auricular y arritmias inducidas por ejercicio y estrés por la administración de un agente que inhibe la fosforilación por PKA de RyR2.
Sumario de la invención
En vista de lo anterior, existe una necesidad de identificar nuevos agentes eficaces para tratar o evitar trastornos y enfermedades asociados con los RyR que regulen el funcionamiento de los canales de calcio en las células, incluyendo trastornos y enfermedades del músculo esquelético y en especial trastornos y enfermedades cardíacos. Más en particular, existe una necesidad de identificar nuevos compuestos que se puedan usar para tratar trastornos asociados a RyR, por ejemplo, reparando la pérdida en los canales de RyR, y potenciando la unión de proteínas FKBP (calstabina-1 y calstabina-2) a RyR fosforilado por PKA, y a RyR mutante que por lo demás tienen afinidad
reducida para, o no se unen a, FKBP12 y FKBP12.6. Las realizaciones de la invención resuelven alguna de o todas estas necesidades.
En consecuencia, la presente invención proporciona el uso de un compuesto representado por la estructura:
para tratar y evitar un trastorno o enfermedad asociado con un RyR que regula el funcionamiento de los canales de calcio en las células, o en la fabricación de un medicamento para dicho tratamiento o prevención, en el que el trastorno o enfermedad que está asociado con el RyR se selecciona del grupo que consiste en trastornos y enfermedades cardíacos, trastornos y enfermedades del músculo esquelético, trastornos y enfermedades cognitivos, hipertermia maligna, diabetes, y muerte súbita del lactante.
En una realización, los trastornos y enfermedades del músculo esquelético asociados con el RyR se seleccionan del grupo que consiste en fatiga del músculo esquelético, fatiga del músculo esquelético inducida por ejercicio, miodistrofia, trastornos de la vejiga, e incontinencia.
En una realización, los trastornos y enfermedades cognitivos asociados con el RyR se seleccionan del grupo que consiste en enfermedad de Alzheimer, formas de pérdida de memoria, y pérdida de memoria dependiente de la edad.
Las benzodiazepinas usadas en el tratamiento de Alzheimer y diabetes se divulgan en el documento US2005/009755.
Otras características y ventajas de la presente invención serán evidentes a partir de la siguiente descripción detallada. Se debe entender, sin embargo, que la descripción detallada y los ejemplos específicos, aunque indican varias realizaciones de la invención, se dan únicamente a modo de ilustración, ya que serán evidentes varios cambios y modificaciones dentro del espíritu y alcance de la invención para los expertos en la técnica a partir de esta descripción detallada.
Breve descripción de las figuras
En la figura 1, las realizaciones A, B, C y D son, respectivamente, (A) inmunotransferencias de RyR2 fosforilado por PKA en presencia de FKBP12.6 y concentraciones de JVT-519 incrementadas; (B) inmunotransferencias de RyR2 fosforilado por PKA en presencia de S36 0,5 nM; (C) un gráfico de corriente a través de membrana plasmática, canales de Ca2+ de tipo L dependientes de voltaje que están completamente bloqueados por nifedipino pero no por S36 en cardiomiocitos de ratón aislados; y (D) un gráfico de la dependencia con el voltaje de corriente de Ca2+ de tipo L en canales en presencia de JTV-519 y S36.
La figura 2 demuestra la prevención de arritmias ventriculares inducidas por ejercicio por JTV-519 en ratones haploinsuficientes en calstabina (FKBP12.6)+l-. La figura proporciona gráficos que comparan la dependencia relacionada con la dosis de los efectos farmacológicos de JTV-519 y S36 con respecto a la muerte súbita de origen cardíaco (izquierda), TC mantenidas (medio) y TV no mantenidas (derecha).
La figura 3 es un gráfico que muestra el acortamiento fraccional (AF) del ventrículo izquierdo evaluado por ecocardiografía de modo M 2 semanas post-infarto de miocardio en ratones tratados.
La figura 4 es un gráfico que muestra las proporciones de peso de corazón con respecto a peso corporal (HW/BW) y las cuantificaciones de bucles presión-volumen (dP/dt) una semana post-infarto de miocardio de ratones tratados con placebo y S36. El tratamiento con S36 da como resultado una reducción beneficiosa de la proporción HW/BW y un incremento en la velocidad de desarrollo de presión en S36 en comparación con ratones tratados con placebo.
La figura 5 es un gráfico que resume los valores de CE50 de JTV-519 y una serie de compuestos de Rycal que indica varios compuestos con una mayor actividad biológica como se muestra por los valores de CE50 significativamente inferiores en comparación con JVT-519.
En la figura 6, las realizaciones A, B, y C son, respectivamente, (A) trazos de corriente de un solo canal de RyR2-P2328S y RyR2-WT; (B) trazos de corriente de un solo canal de RyR2-P2328S; y (C) análisis de inmunotransferencia de la unión a calstabina-2 de RyR2-P2328S.
En la figura 7, las realizaciones A, B, C, D, E, y F demuestran que la función del canal de RyR1 se incrementa y normaliza en ratones mdx tratados con JTV-519. Las realizaciones A y B son, respectivamente, un trazo de corriente de un solo canal y un histograma de amplitud de RyR1 del músculo sóleo de un ratón de control (natural) bajo condiciones de reposo. Las realizaciones C y D son , respectivamente, un trazo de corriente de un solo canal y un histograma de amplitud de RyR1 del músculo sóleo de un ratón mdx. Las realizaciones E y F son, respectivamente, un trazo de corriente de un solo canal y un histograma de amplitud de RyR1 del músculo sóleo de un ratón mdx tratado con JTV-519.
En la figura 8, las realizaciones A y B son, respectivamente, inmunotransferencias de RyR1, RyR1- pSer2843, y calstabina-1 asociada a RyR1 en ratones mdx y ratones naturales; y gráficos de barras de las cantidades relativas de RyR1-pSer2843 y calstabina-1 en ratones mdx y naturales.
En la figura 9, las realizaciones A, B, y C demuestran que una pérdida de Ca2+ RS es detectable en los músculos esqueléticos de animales con insuficiencia cardíaca. Las realizaciones A y B son imágenes de barrido lineal de fluorescencia de trazas de Ca2+ en miofibras de, respectivamente, ratas del grupo quirúrgico de referencia y postinfarto de miocardio (PIM). La realización C proporciona gráficos de barras que resumen la amplitud, tiempo de subida, FDHM, y FWHM de las trazas de Ca2+ para las ratas del grupo quirúrgico de referencia (símbolos abiertos) y PIM (símbolos cerrados).
La figura 10, realizaciones A y B, demuestra que el tratamiento de ratones naturales con JVT-519 mejora los tiempos de fatiga del músculo sóleo. La realización A proporciona los trazos de tiempo de fatiga de fuerza tetánica máximos para ratones naturales y con calstabina-2-/-, tratados con JVT-519 o placebo, como se indica. La realización B son gráficos de barras que resumen el tiempo medio para la fatiga para ratones naturales y con calstabina-2-/-, tratados con JVT-519 o placebo, como se indica.
La figura 11, realizaciones A y B, demuestra que los efectos beneficiosos del tratamiento con JVT-519 sobre la función del músculo esquelético dependen de la unión de calstabina-1 y no de calstabina-2 a RyR1. La realización A proporciona gráficos de barras de la fosforilación por PKA de RyR1 en Ser-2844 en ratones, que corresponde a Ser2843 en humanos. La realización B son gráficos de barras de la cantidad de calstabina-1 unida a RyR1 de ratones naturales y con calstabina-2-/-, tratados con JVT-519 o placebo.
La figura 12, realizaciones A, B, C y D, demuestra que JVT-519 normaliza la función del canal de RyR1 de pérdida o anormal in vivo. Las realizaciones A y C son trazos de corriente de un solo canal de ratones naturales con insuficiencia cardíaca tratados con placebo (A) y JVT-519 (C). Las realizaciones B y D son histogramas de amplitud para ratones naturales con insuficiencia cardíaca tratados con placebo (B) y JVT-519 (D)
La figura 13, realizaciones A y B, demuestra que JVT-519 incrementa la unión de calstabina a RyR fosforilado por PKA. La realización A son inmunotransferencias de calstabina-1 incubada y asociada con RyR1 y calstabina-2 incubada y asociada con RyR2 a concentraciones incrementadas de JVT-519. La realización B proporciona gráficos que resumen la proporción de calstabina-1 y calstabina-2 unida a RyR1 y RyR2, como se indica.
En la figura 14, las realizaciones A, B, C, y D demuestran que la fosforilación por PKA de Ser- 2843 incrementa la probabilidad de apertura y la cinética de paso de los canales de RyR1. La realización A proporciona trazos de corriente de un solo canal y el histograma correspondiente del RyR1 natural. La realización B proporciona trazos de corriente de un solo canal y el histograma correspondiente de RyR1 natural que está fosforilado por PKA. La realización C proporciona trazos de corriente de un solo canal y el histograma correspondiente de RyR1-Ser-2843A. La realización D proporciona trazos de corriente de un solo canal y el histograma correspondiente de RyR1-Ser2843D.
En la figura 15, las realizaciones A y B demuestran la hiperfosforilación por PKA y la deficiencia de calstabina-1 de los canales RyR1 después de ejercicio mantenido. La realización A son inmunotransferencias de RyR1, RyR1pSer2844, RyR1-pSer2849, y calstabina-1 para ratones control y que nadan después de un régimen de ejercicio. La realización B es un gráfico de barras que resume las cantidades relativas de los compuestos indicados después del régimen de ejercicio.
En la figura 16, las realizaciones A y B demuestran que la fosforilación por PKA de RyR1 se incrementa después de la exposición a duraciones incrementadas de ejercicio mantenido. La realización A proporciona inmunotransferencias de RyR1 y RyR1 -pSer2844 después de duraciones incrementadas de ejercicio mantenido. La realización B es un gráfico que muestra la fosforilación por PKA relativa de RyR1 para duraciones variables de ejercicio.
En la figura 17, las realizaciones A, B, y C demuestran que la fosforilación por PKA de RyR1 se incrementa con la fatiga muscular. Las realizaciones A y B son, respectivamente, trazados del tiempo de fatiga y un gráfico de barras que muestra tiempos de fatiga medios para el músculo sóleo de rata de sujetos con insuficiencia cardíaca y control. La realización C es un gráfico de fosforilación por PKA frente al tiempo de fatiga.
La figura 18 son tinciones tricrómica y con hematoxilina-eosina de secciones transversales del músculo extensor largo de los dedos (M. extensor digitorum longus) de ratón y demuestran una degeneración de miofibras consistente con la remodelación distrófica después de ejercicio mantenido.
La figura 19 muestra un trazo de corriente de hERG de muestra antes (control) y después de la aplicación de ARM036 a 100 μM. También se muestra el protocolo de pulso de voltaje usado para provocar corrientes de hERG.
La figura 20 muestra un transcurso de tiempo típico del efecto de ARM036 sobre la amplitud de corriente de hERG.
La aplicación de ARM036 10 μM se indica por la barra horizontal.
La figura 21 es un gráfico de concentración-respuesta que muestra el porcentaje de inhibición de corriente de hERG después de la aplicación de ARM036 a varias concentraciones.
La figura 22 es un gráfico de concentración-respuesta que muestra el porcentaje de inhibición de corriente de hERG después de la aplicación de ARM036-Na a varias concentraciones.
La figura 23 es un gráfico de concentración-respuesta que muestra el porcentaje de inhibición de corriente de hERG después de la aplicación de JTV-519 ("ARM00X") a varias concentraciones.
Descripción detallada de la invención
Como se usa en el presente documento y en las reivindicaciones adjuntas, las formas en singular "un", "una" y "el/la" incluyen referencias en plural a menos que el contenido establezca claramente lo contrario. Por tanto, por ejemplo, la referencia a "un agente" incluye una pluralidad de dichos agentes y equivalentes de los mismos conocidos por lo expertos en la técnica, y la referencia a "el polipéptido FKBP12.6" es una referencia a uno o más polipéptidos FKBP12.6 (también denominado calstabina-2) y equivalentes de los mismos conocidos por los expertos en la técnica, etc.
Las siguientes son definiciones de términos usados en la presente memoria descriptiva. La definición inicial proporcionada para un grupo o término en el presente documento se aplica a ese grupo o término en toda la presente memoria descriptiva de forma individual o como parte de otro grupo, a menos que se indique de otro modo.
El compuesto de la invención se denomina usado un sistema de nomenclatura numérico. Este compuesto numerado se denomina usando el prefijo "S" o bien el prefijo "ARM". Por tanto, el compuesto se denomina "S36" o bien "ARM036". Los sistemas de nomenclatura "S" y "ARM" se usan de manera intercambiable en toda la memoria descriptiva, los dibujos y las reivindicaciones.
Preferentemente, el compuesto de la presente invención se aísla y se purifica, posteriormente a su preparación, para obtener una composición que contenga una cantidad en peso igual a o mayor de un 99 % del compuesto (compuesto "sustancialmente puro"), que a continuación se usa o se formula como se describe en el presente documento. Este compuesto "sustancialmente puro" de la presente invención se contempla también en el presente documento como parte de la presente invención.
Se contemplan todos los isómeros configuracionales del compuesto de la presente invención, en mezcla o bien en forma pura o sustancialmente pura. La definición del compuesto de la presente invención abarca los isómeros de alqueno tanto cis (Z) como trans (E), así como los isómeros cis y trans de anillos heterocíclicos y de hidrocarburo cíclicos.
La presente invención proporciona el compuesto S36 que puede tratar y evitar trastornos y enfermedades asociados con los RyR que regulan el funcionamiento de los canales de calcio en las células. Más en particular, la presente invención proporciona el compuesto S36 que puede tratar o evitar una pérdida en los canales de RyR. "Trastornos y enfermedades asociados con los RyR" quiere decir trastornos y enfermedades que se pueden tratar y/o evitar modulando los receptores de rianodia (RyR) que regulan el funcionamiento de los canales de calcio en las células. "Trastornos y enfermedades asociados con los RyR" incluyen, sin limitación, trastornos y enfermedades cardíacos, trastornos y enfermedades del músculo esquelético, trastornos y enfermedades cognitivos, hipertermia maligna, diabetes, y muerte súbita del lactante. Los trastornos y enfermedades del músculo esquelético incluyen, pero no se limitan a, fatiga del músculo esquelético, fatiga del músculo esquelético inducida por ejercicio, miodistrofia, trastornos de la vejiga, e incontinencia. Los trastornos y enfermedades cognitivos incluyen, pero no se limitan a, enfermedad de Alzheimer, formas de pérdida de memoria, y pérdida de memoria dependiente de la edad.
Compuestos
La presente invención usa el compuesto:
Rutas de actividad
El compuesto de la invención reduce la probabilidad de apertura de RyR incrementando la afinidad de FKBP12 (calstabina-1) y FKBP12.6 (calstabina-2) para, respectivamente RyR1 fosforilado por PKA y RyR2 fosforilado por PKA. Además, el compuesto de la invención normaliza el paso de los canales de RyR mutantes, incluyendo canales de RyR2 mutantes asociados a TVPC, incrementando la afinidad de unión a FKBP12 (calstabina-1) y FKBP12.6 (calstabina-2). Por lo tanto, el compuesto de la invención evita trastornos y afecciones que implican la modulación de los RyR, en particular los RyR1 y RyR2. Ejemplos de dichos trastornos y afecciones incluyen, sin limitación, trastornos y enfermedades cardíacos, trastornos y enfermedades del músculo esquelético, trastornos y enfermedades cognitivos, hipertermia maligna, diabetes, y muerte súbita del lactante. Los trastornos y enfermedades del músculo esquelético incluyen, pero no se limitan a, fatiga del músculo esquelético, fatiga del músculo esquelético inducida por ejercicio, miodistrofia, trastornos de la vejiga, e incontinencia. Los trastornos y enfermedades cognitivos incluyen, pero no se limitan a, enfermedad de Alzheimer, formas de pérdida de memoria, y pérdida de memoria dependiente de la edad. El compuesto de la invención trata estos trastornos y afecciones incrementando la afinidad de unión a FKBP12 (calstabina-1)-RyR1 e incrementando la afinidad de unión a FKBP12.6 (calstabina-2)-RyR2.
El compuesto S36 se puede usar en un método para limitar o evitar una disminución en el nivel de FKBP (calstabina) unida a RyR en las células de un sujeto. Como se usa en el presente documento, "RyR" incluye RyR1, RyR2 y RyR3. Adicionalmente, FKBP incluye tanto FKBP 12 (calstabina-1) como FKBP12.6 (calstabina-2). Por lo tanto, "FKBP unida a RyR" se refiere a FKBP 12 unida a RyR1 (calstabina-1), FKBP 12.6 unida a RyR2 (calstabina-2), y FKBP 12 unida a RyR3 (calstabina-1).
Como se usa en el presente documento, "RyR" también incluye una "proteína RyR" y un "análogo de RyR". Un "análogo de RyR" es una variante funcional de la proteína RyR, que tiene actividad biológica de RyR, que tiene una homología de secuencia de aminoácidos de un 60 % o superior con la proteína RyR. Los RyR de la presente invención están no fosforilados, fosforilados (por ejemplo, por PKA), o hiperfosforilados (por ejemplo, por PKA). Como se usa adicionalmente en el presente documento, el término "actividad biológica de RyR" se refiere a la actividad de una proteína o péptido que demuestra una capacidad para asociarse físicamente con, o unirse a, FKBP 12 (calstabina-1) en el caso de RyR1 y RyR3, y FKBP12.6 (calstabina-2) en el caso de RyR2 (es decir, la unión de aproximadamente dos veces o, aproximadamente cinco veces, sobre la unión de base de un control negativo), bajo las condiciones de los ensayos descritos en el presente documento.
Como se usa en el presente documento,, "FKBP" incluye tanto una "proteína FKBP" como un "análogo de FKBP", tanto si es FKBP 12 (calstabina-1) o FKBP 12.6 (calstabina-2). A menos que se indique en el presente documento de otro modo, "proteína" debe incluir una proteína, dominio de proteína, polipéptido o péptido, y cualquier fragmento de los mismos. Un "análogo de FKBP" es una variante funcional de la proteína FKBP, que tiene actividad biológica de FKBP, que tiene una homología de secuencia de aminoácidos de un 60 % o superior con la proteína FKBP, tanto si es FKBP 12 (calstabina-1) o FKBP12.6 (calstabina-2). Como se usa adicionalmente en el presente documento, el término "actividad biológica de FKBP" se refiere a la actividad de una proteína o péptido que demuestra una capacidad para asociarse físicamente con, o unirse a, RyR2 no fosforilado o no hiperfosforilado (es decir, la unión de aproximadamente dos veces, o aproximadamente cinco veces, sobre la unión de base de un control negativo), bajo las condiciones de los ensayos descritos en el presente documento.
FKBP se une al canal de RyR, una molécula por subunidad de RyR. En consecuencia, como se usa en el presente documento, el término "FKBP unida a RyR" incluye una molécula de una proteína FKBP 12 (calstabina-1) que está unida a una subunidad de proteína RyR1 o un tetrámero de FKBP 12 que está asociado con un tetrámero de RyR1, una molécula de proteína FKBP12.6 (calstabina-2) que está unida a una subunidad de proteína RyR2 o un tetrámero de FKBP12.6 que está asociado con un tetrámero de RyR2, y una molécula de una proteína FKBP12 (calstabina-1) que está unida a una subunidad de proteína RyR3 o un tetrámero de FKBP 12 que está asociado con un tetrámero de RyR3. Por lo tanto, "FKBP unida a RyR" se refiere a "FKBP 12 unida a RyR1", "FKBP12.6 unida a RyR2" y "FKBP12 unida a RyR3".
Una "disminución" o "trastorno" en el nivel de FKBP unida a RyR en las células de un sujeto se refiere a una disminución, bajada o reducción detectable en el nivel de FKBP unida a RyR en las células del sujeto. Una disminución de este tipo se limita o se evita en las células de un sujeto cuando la disminución está de cualquier modo detenida, obstaculizada, impedida, obstruida o reducida por la administración de los compuestos de la invención, de modo que el nivel de FKBP unida a RyR en las células del sujeto sea mayor de lo que sería de otro modo en ausencia del compuesto administrado.
El nivel de FKBP unida a RyR en un sujeto se detecta por ensayos y técnicas estándar, incluyendo los determinados fácilmente a partir de la técnica anterior (por ejemplo, técnicas inmunológicas, análisis de hibridación, inmunoprecipitación, análisis de transferencia Western, técnicas de imagen de fluorescencia y/o detección de radiación, etc.), así como cualquier ensayo y procedimiento de detección divulgado en el presente documento. Por ejemplo, la proteína se aísla y se purifica de las células de un sujeto usando procedimientos estándar conocidos en la técnica, incluyendo, sin limitación, la extracción de las células (por ejemplo, con un detergente que solubilice la proteína) cuando sea necesario, seguido de purificación por afinidad en una columna, cromatografía (por ejemplo, FTLC y HPLC), inmunoprecipitación (con un anticuerpo), y precipitación (por ejemplo, con isopropanol y un reactivo tal como Trizol). El aislamiento y la purificación de la proteína se siguen por electroforesis (por ejemplo, sobre SDSgel de poliacrilamida). Una disminución en el nivel de FKBP unida a RyR en un sujeto, o la limitación o prevención del mismo, se determina comparando la cantidad de FKBP unida a RyR detectada antes de la administración de JTV-519 o un compuesto de fórmula I, I-a, I-b, I-c, I-d, I-e, I-f, I-g, I-h, I-i, I-j, I-k, I-l o I-m(de acuerdo con procedimientos descritos a continuación) con la cantidad detectada un tiempo adecuado después de la administración del compuesto.
Una disminución en el nivel de FKBP unida a RyR en las células de un sujeto se limita o evita, por ejemplo, inhibiendo la disociación de FKBP y RyR en las células del sujeto; incrementando la unión entre FKBP y RyR en las células del sujeto; o estabilizando el complejo RyR-FKBP en las células de un sujeto. Como se usa en el presente documento, el término "inhibir la disociación" incluye bloquear, disminuir, inhibir, limitar o evitar la disociación o separación física de una subunidad de FKBP de una molécula de RyR en las células del sujeto, y bloquear, disminuir, inhibir, limitar o evitar la disociación o separación física de una molécula de RyR de una subunidad de FKBP en las células del sujeto. Como se usa adicionalmente en el presente documento, el término "incrementar la unión" incluye potenciar, incrementar, o mejorar la capacidad del RyR fosforilado para asociarse físicamente con FKBP (por ejemplo, la unión de aproximadamente dos veces o, aproximadamente cinco veces, sobre la unión de base de un control negativo) en las células del sujeto y potenciar, incrementar o mejorar la capacidad de FKBP para asociarse físicamente con RyR fosforilado (por ejemplo, la unión de aproximadamente dos veces, o, aproximadamente cinco veces, sobre la unión de base de un control negativo) en las células del sujeto. Adicionalmente, una disminución en el nivel de FKBP unida a RyR en las células de un sujeto se limita o se evita disminuyendo directamente el nivel de RyR fosforilado en las células del sujeto o disminuyendo indirectamente el nivel de RyR fosforilado en las células (por ejemplo, dirigiendo una enzima (tal como PKA) u otra molécula endógena que regula o modula las funciones o niveles de RyR fosforilado en las células). En una realización, el nivel de RyR fosforilado en las células disminuye al menos en un 10 % en el uso de los compuestos de la presente invención. En otra realización, el nivel de RyR fosforilado disminuye al menos en un 20 %.
El sujeto que se puede tratar en la presente invención son sistemas in vitro e in vivo , incluyendo, sin limitación, células o tejidos aislados o cultivados, sistemas de ensayo in vitro no celulares y un animal (por ejemplo, un anfibio, un ave, un pez, un mamífero, un marsupial, un ser humano, un animal doméstico (tal como un gato, perro, mono, ratón o rata) o un animal comercial (tal como una vaca o un cerdo)).
Las células de un sujeto incluyen células del músculo estriado. Un músculo estriado es un músculo en el que las unidades de repetición (sarcómeros) de las miofibrillas contráctiles están dispuestas en registro en toda la célula, dando como resultado estriaciones transversales u oblicuas que s observan al nivel de un microscopio óptico. Los ejemplos de células del músculo estriado incluyen, sin limitación, células del músculo de movimiento voluntario (esquelético) y células miocárdicas. En una realización, la célula usada en el procedimiento de la presente invención es una célula miocárdica humana. Como se usa en el presente documento, el término "célula miocárdica" incluye fibras miocárdicas, tales como las encontradas en el miocardio del corazón. Las fibras miocárdicas están compuestas de cadenas de células miocárdicas o cardiomiocitos, unidas extremo a extremo a discos intercalados. Estos discos poseen dos tipos de uniones celulares: desmosomas expandidos que se extienden a lo largo de sus partes transversales, y uniones comunicantes, de las que las más grandes están a lo largo de sus partes longitudinales.
Una disminución en el nivel de FKBP unida a RyR se limita o se evita en las células de un sujeto administrando los compuestos de la invención al sujeto; esto también permitiría el contacto entre células del sujeto y los compuestos de la invención. Los compuestos de la invención son moduladores de los canales de iones de calcio. Además de regular los niveles de Ca2+ en células miocárdicas, los compuestos de la invención modulan la corriente de Na+ y la corriente de K+ rectificadora hacia dentro en las células, tales como células ventriculares de cobaya, e inhiben la corriente K+ rectificadora hacia dentro en las células, tales como células auriculares de cobaya.
Composición farmacéutica
El compuesto de la invención se puede formular en composiciones farmacéuticas para su administración a sujetos humanos en una forma biológicamente compatible adecuada para su administración in vivo. De acuerdo con otro aspecto, la presente invención proporciona una composición farmacéutica que comprende el compuestos S36 en mezcla con un diluyente y/o vehículo farmacéuticamente aceptable. El vehículo farmacéuticamente aceptable debe ser "aceptable" en el sentido de ser compatible con los otros ingredientes de la composición y no perjudicial para el receptor del mismo. El vehículo farmacéuticamente aceptable empleado en el presente documento se selecciona de varios materiales orgánicos o inorgánicos que se usan como materiales para formulaciones farmacéuticas y que se incorporan como agentes analgésicos, tampones, aglutinantes, disgregantes, diluyentes, emulsionantes, excipientes, cargas, deslizantes, solubilizantes, estabilizantes, agentes de suspensión, agentes de tonicidad, vehículos y agentes de incremento de la viscosidad. Si se necesario, también se añaden aditivos farmacéuticos, tales como antioxidantes, agentes aromáticos, colorantes, agentes de mejora del aroma, conservantes, y edulcorantes. Los ejemplos de vehículos farmacéuticos aceptables incluyen carboximetilcelulosa, celulosa cristalina, glicerina, goma arábiga, lactosa, estearato de magnesio, metilcelulosa, polvos, solución salina, alginato de sodio, sacarosa, almidón, talco y agua, entre otros.
Las formulaciones farmacéuticas se preparan por procedimientos bien conocidos en la técnica farmacéutica. Por ejemplo, el compuesto S36 se mezcla con un vehículo y/o diluyente, como una suspensión o solución. Opcionalmente, también se añaden uno o más ingredientes auxiliares (por ejemplo, tampones, agentes aromatizantes, tensioactivos, y similares). La elección del vehículo se determina por la solubilidad y la naturaleza química de los compuestos, la vía de administración elegida y la práctica farmacéutica estándar.
El compuesto S36 se administra a un sujeto poniendo en contacto las células objetivo(por ejemplo, células miocárdicas) in vivo en el sujeto con el compuesto. El compuesto está en contacto con (por ejemplo, se introducen en) células del sujeto usando técnicas conocidas utilizadas para la introducción y administración de proteínas, ácidos nucleicos y otros fármacos. Los ejemplos de procedimientos para poner en contacto las células con (es decir, tratar las células con) el compuesto de la invención incluyen, sin limitación, absorción, electroporación, inmersión, inyección, introducción, administración de liposomas, transfección, transfusión, vectores y otros vehículos y procedimientos de administración de fármacos. Cuando las células objetivo están localizadas en una parte particular de un sujeto, es deseable introducir el compuesto de la invención directamente a las células, por inyección o por algún otro medio (por ejemplo, introduciendo el compuesto en la sangre u otro fluido corporal). Las células objetivo están contenidas en el tejido de un sujeto y se detectan por procedimientos de detección estándar determinados fácilmente en la técnica conocida, de los que los ejemplos incluyen, sin limitación, técnicas inmunológicas (por ejemplo, tinción inmunohistoquímica), técnicas de imagen de fluorescencia, y técnicas microscópicas.
Adicionalmente, el compuesto de la presente invención se administra a un sujeto humano o animal por procedimientos conocidos incluyendo, sin limitación, administración oral, administración sublingual o bucal, administración parenteral, administración transdérmica, por vía de inhalación o por vía intranasal, vaginal, rectal e intramuscular. El compuesto de la invención se administra por vía parenteral, por inyección epifascial, intracapsular, intracraneal, intracutánea, intratecal, intramuscular, intraorbital, intraperitoneal, intraespinal, intraesternal, intravascular, intravenosa, parenquimatosa, subcutánea o sublingual, o por medio de catéter. En una realización, el agente se administra al sujeto por medio de la administración en los músculos del sujeto incluyendo pero sin limitarse a, los músculos cardíacos del sujeto. En una realización, el agente se administra al sujeto por medio de la administración dirigida a células miocárdicas por medio de un catéter insertado en el corazón del sujeto.
Para la administración oral, una formulación del compuesto de la invención se puede presentar como cápsulas, comprimidos, polvos, gránulos, o como una suspensión o solución. La formulación tiene aditivos convencionales, tales como lactosa, manitol, almidón de maíz o almidón de patata. La formulación también se presenta con aglutinantes, tales como celulosa cristalina, derivados de celulosa, goma arábiga, almidón de maíz o gelatinas. Adicionalmente, la formulación se presenta con disgregantes, tales como almidón de maíz, almidón de patata o carboximetilcelulosa de sodio. La formulación también se presenta con fosfato de calcio dibásico anhidro o glicolato sódico de almidón. Finalmente, la formulación se presenta con lubricantes, tales como talco o estearato de magnesio.
Para la administración parenteral (es decir, administración por inyección por medio de una vía distinta al canal alimentario), el compuesto de la invención se combina con una solución acuosa estéril que es isotónica con la sangre del sujeto. Una formulación de este tipo se prepara disolviendo un ingrediente activo sólido en agua que contiene sustancias fisiológicamente compatibles, tales como cloruro de sodio, glicina y similares, y que tiene un pH tamponado compatible con condiciones fisiológicas, para producir una solución acuosa, proporcionando después dicha solución estéril. La formulación se presenta en recipientes de dosis unitaria o múltiple, tales como ampollas o viales cerrados. La formulación se administra por cualquier modo de inyección, incluyendo, sin limitación, epifascial, intracapsular, intracraneal, intracutánea, intratecal, intramuscular, intraorbital, intraperitoneal, intraespinal, intraesternal, intravascular, intravenosa, parenquimatosa, subcutánea, o sublingual o por medio de catéter en el corazón del sujeto.
Para administración transdérmica, el compuesto de la invención se combina con potenciadores de penetración cutánea, tales como propilenglicol, polietilenglicol, isopropanol, etanol, ácido oleico, N-metilpirrolidona y similares, que incrementan la permeabilidad de la piel a los compuestos de la invención y permite que el compuesto penetren a través de la piel y en la circulación sanguínea. Las composiciones de compuesto/potenciador también se pueden combinar además con una sustancia polimérica, tal como etilcelulosa, hidroxipropilcelulosa, etileno/acetato de vinilo, polivinilpirrolidona, y similares, para proporcionar la composición en forma de gel, que se disuelven en un disolvente, tal como cloruro de metileno, evaporado hasta la viscosidad deseada y aplicado a continuación al material de soporte para proporcionar un parche.
En algunas realizaciones, la composición está en forma de dosis unitaria tal como un comprimido, cápsula o vial de dosis individual. Las dosis unitarias adecuadas, es decir cantidades terapéuticamente eficaces, se pueden determinar durante ensayos clínicos diseñados apropiadamente para cada una de las condiciones para las que está indicada la administración de un compuesto elegido y, por supuesto, variarán dependiendo del punto final clínico deseado. La presente solicitud también describe artículos de fabricación para tratar y evitar trastornos, tales como trastornos cardíacos, en un sujeto. Los artículos de fabricación comprenden una composición farmacéutica de S36. Los artículos de fabricación están envasados con indicaciones para varios trastornos que las composiciones farmacéuticas pueden tratar y/o evitar. Por ejemplo, los artículos de fabricación comprenden una dosis unitaria de un compuesto divulgado en el presente documento que puede tratar o evitar un trastorno muscular, y una indicación de que la dosis unitaria puede tratar o evitar un determinado trastorno.
De acuerdo con el uso de los compuestos de la presente invención, el compuesto S36 se administra al sujeto (o están en contacto con células del sujeto) en una cantidad eficaz para limitar o evitar una disminución en el nivel de FKBP unida a RyR en el sujeto, en particular en las células del sujeto. Esta cantidad se determina fácilmente por el experto en la técnica, basándose en procedimientos conocidos, incluyendo análisis de curvas de valoración establecidas in vivo y procedimientos y ensayos divulgados en el presente documento. En una realización, una cantidad adecuada del compuesto de la invención eficaz para limitar o evitar una disminución en el nivel de FKBP unida a RyR en el sujeto varía desde aproximadamente 0,01 mg/kg/día hasta aproximadamente 20 mg/kg/día, y/o es una cantidad suficiente para lograr niveles plasmáticos que varían desde aproximadamente 300 ng/ml hasta aproximadamente 1000 ng/ml. En una realización, la cantidad del compuesto de la invención varía desde aproximadamente 10 mg/kg/día hasta aproximadamente 20 mg/kg/día. En otra realización, se administra desde aproximadamente 0,01 mg/kg/día hasta aproximadamente 10 mg/kg/día. En otra realización, se administra desde aproximadamente 0,01 mg/kg/día hasta aproximadamente 5 mg/kg/día. En otra realización, se administra desde aproximadamente 0,05 mg/kg/día hasta aproximadamente 5 mg/kg/día. En otra realización, preferente, se administra desde aproximadamente 0,05 mg/kg/día hasta aproximadamente 1 mg/kg/día.
Usos
La presente invención proporciona una nueva variedad de tratamientos terapéuticos para pacientes con varios trastornos que implican modulación de los RyR, en particular trastornos del músculo esquelético (RyR1).
En una realización de la presente invención, el sujeto aún no ha desarrollado un trastorno. En otra realización de la presente invención, el sujeto necesita tratamiento para un trastorno.
Varios trastornos que los compuestos de la invención tratan o evitan son trastornos y enfermedades cardíacos, trastornos y enfermedades del músculo esquelético, trastornos y enfermedades cognitivos, hipertermia maligna, diabetes, y síndrome de muerte súbita del lactante. Los trastornos y enfermedades del músculo esquelético incluyen, pero no se limitan a, fatiga del músculo esquelético, fatiga del músculo esquelético inducida por ejercicio, miodistrofia, trastornos de la vejiga, e incontinencia. Los trastornos y enfermedades cognitivos incluyen, pero no se limitan a, enfermedad de Alzheimer, formas de pérdida de memoria, y pérdida de memoria dependiente de la edad. Un experto en la técnica reconocerá otras enfermedades, incluyendo pero sin limitarse a, trastornos musculares y cardíacos, para las que los compuestos de la invención pueden ser útiles para tratarlas, de acuerdo con la información proporcionada en el presente documento.
Debido a su capacidad para estabilizar la FKBP unida a RyR y mantener y restablecer el equilibrio en el contexto de la fosforilación por PKA dinámica y desfosforilación de RyR, el compuesto de la invención también es útil en el tratamiento de un sujeto que ya ha experimentado síntomas clínicos de varios de estos trastornos. Por ejemplo, si los síntomas del trastorno se observan en el sujeto con suficiente antelación, el compuesto S36 es eficaz para limitar
o evitar una disminución adicional en el nivel de FKBP unida a RyR en el sujeto.
Adicionalmente, el compuesto evita trastornos de ritmo cardíaco irregular en sujetos con defectos de heterocigotos en el gen FKBP 12.6.
En vista de los procedimientos anteriores, la presente invención también proporciona el uso del compuesto de la invención en un procedimiento para limitar o evitar una disminución en el nivel de FKBP unida a RyR en un sujeto que es candidato para un trastorno. La presente invención también proporciona el uso del compuesto de la invención en un procedimiento para tratar o evitar un trastorno muscular en un sujeto. Además, la presente invención proporciona el uso del compuesto de la invención en un procedimiento para tratar o evitar trastornos musculares inducidos por ejercicio en un sujeto.
Los RyR, incluyendo RyR1, RyR2 y RyR3, han estado implicados en varios acontecimientos biológicos en las células. Por ejemplo, se ha demostrado que los canales de RyR2 desempeñan un papel importante en el acoplamiento de EC y la contractilidad en células miocárdicas. Por lo tanto, está claro que los fármacos preventivos diseñados para limitar o evitar una disminución en el nivel de FKBP unida a RyR en las células, en particular FKPB12.6 unida a RyR2 en células miocárdicas, son útiles en la regulación de varios acontecimientos biológicos asociados con RyR, incluyendo acoplamiento de EC y contractilidad.
Procedimientos de síntesis
La presente invención, proporciona, en otro aspecto, procedimientos para la preparación de un compuesto S36.
Algunas de las siguientes síntesis utilizan disolventes. En una realización, el disolvente es un disolvente orgánico. En otra realización, el disolvente orgánico es cloruro de metileno (CH2Cl2), cloroformo (CCl4), formaldehído (CH2O) o metanol (CH3OH). Algunas de las siguientes síntesis también utilizan un catalizador básico. En una realización, el catalizador básico es un compuesto de amina. En otra realización, el catalizador básico es una alquilamina tal como trietilamina (TEA). En otra realización más, el catalizador básico es piridina. Algunas de las siguientes síntesis también utilizan soluciones básicas. En una realización, la solución básica es bicarbonato de sodio o carbonato de calcio. En otra realización, la solución básica es bicarbonato de sodio saturado o carbonato de calcio saturado. Algunas de las siguientes síntesis también utilizan soluciones ácidas. En una realización, la solución ácida es una solución de ácido sulfúrico, una solución de ácido clorhídrico o una solución de ácido nítrico. En una realización, la solución es HCl 1 N. Un experto en la técnica apreciará que se usen otros disolventes más, disolventes orgánicos, catalizadores básicos, soluciones básicas y soluciones ácidas en las realizaciones, de acuerdo con la descripción en el presente documento. Los disolventes, disolventes orgánicos, reactivos, catalizadores, soluciones de lavado, etc. se añaden a temperaturas apropiadas (por ejemplo temperatura ambiente o aproximadamente 20 ºC-25 ºC, 0 ºC, etc.).
Las siguientes síntesis usan S26 como material de partida. Los procedimientos para sintetizar S26 se describen en la solicitud de patente de los EE. UU. n.º 10/680.988.
Algunas de las siguientes síntesis requieren la purificación de la mezcla de reacción para proporcionar un producto final. La purificación de la mezcla de reacción implica uno o más procedimientos tales como la retirada de cualquier disolvente, cristalización del producto, separación cromatográfica del producto (incluyendo HPLC, cromatografía en gel de sílice, cromatografía en columna, etc), lavado con solución básica, lavado con solución ácida, redisolución del producto en otro disolvente, etc. Un experto en la técnica apreciará que se usen otros procedimientos en las realizaciones, de acuerdo con la descripción en el presente documento.
Las reacciones se llevan a cabo el tiempo necesario (por ejemplo, una hora, varias horas, durante una noche, 24 horas, etc.) para obtener los rendimientos deseados u óptimos de los compuestos deseados. A menudo, las mezclas de reacción se agitan. Las reacciones se llevan a cabo a temperaturas apropiadas (por ejemplo temperatura ambiente o aproximadamente 20 ºC-25 ºC, 0 ºC, 100 ºC, etc.).
Synthon S26 se prepara de acuerdo con procedimientos descritos en la solicitud de patente de los EE. UU. n.º 10/680.988.
S57 se prepara a partir de S26 y clorooxoacetato de metilo. En una realización, la reacción se produce en presencia de un disolvente, tal como un disolvente orgánico, tal como cloruro de metileno. Un catalizador básico, tal como piridina, se usa si fuera necesario para facilitar o apurar la reacción. La mezcla de reacción formada mezclando los reactivos se lava con solución básica (por ejemplo, bicarbonato de sodio saturado), solución acidificada (por ejemplo, HCl) y agua. La purificación, tal como con cromatografía en gel de sílice proporciona S57.
S36 se prepara a partir de S57 por reacción con hidróxido de sodio. En una realización, la reacción tiene lugar en un disolvente, tal como un disolvente orgánico, tal como metanol. El disolvente se retira de la mezcla de reacción formada mezclando los reactivos y el disolvente, formando de este modo un residuo. El residuo se disuelve en agua y se lava con otro disolvente orgánico, tal como éter, para retirar los compuestos hidrófobos no deseados. La fase acuosa de los lavados básicos se acidifica y el producto se extrae de esto usando un disolvente orgánico, tal como cloruro de metileno. Se usa purificación adicional si fuera necesario.
El compuesto S36 de la presente invención se puede preparar en formas diferentes, tales como sales, hidratos, solvatos o complejos, y la invención incluye todas las formas variantes de los compuestos.
Una "composición farmacéutica" se refiere a una mezcla de S36, o sales o hidratos o profármacos derivados farmacéuticamente aceptables, con otros componentes químicos, tales como vehículos y excipientes fisiológicamente aceptables. El propósito de una composición farmacéutica es facilitar la administración de un compuesto a un organismo.
Un compuesto de la presente invención también se puede formular como una sal farmacéuticamente aceptable, por ejemplo, sal de adición de ácido y complejos del mismo. La preparación de dichas sales puede facilitar el uso farmacológico alterando las características físicas del agente sin evitar su efecto fisiológico. Los ejemplos de alteraciones útiles en las propiedades físicas incluyen, pero no se limitan a, disminución del punto de fusión para facilitar la administración transmucosa e incremento de la solubilidad para facilitar la administración de concentraciones más altas del fármaco.
El término "sal farmacéuticamente aceptable" quiere decir una sal de adición de ácido que es adecuada para o compatible con el tratamiento de un paciente o un sujeto tal como un paciente humano o un animal tal como un perro.
El término "sal de adición de ácido farmacéuticamente aceptable" como se usa en el presente documento quiere decir cualquier sal orgánica o inorgánica no tóxica de S36. Los ácidos inorgánicos ilustrativos que forman sales de adición de ácido adecuadas incluyen ácidos clorhídrico, bromhídrico, sulfúrico y fosfórico, así como sales metálicas tales como monohidrógenoortofosfato de sodio e hidrógenosulfato de potasio. Los ácidos orgánicos ilustrativos que forman sales de adición de ácido adecuadas incluyen ácidos mono-, di-, y tricarboxílicos tales como ácidos glicólico, láctico, pirúvico, malónico, succínico, glutárico, fumárico, málico, tartárico, cítrico, ascórbico, maleico, benzoico, fenilacético, cinámico y salicílico, así como ácidos sulfónicos tales como ácidos p-toluensulfónico y metanosulfónico. Se pueden formar sales mono o bien di-ácidas, y dichas sales existen en forma hidratada, solvatada o bien sustancialmente anhidra. En general, las sales de adición de ácido son más solubles en agua y en varios disolventes orgánicos hidrófilos, y en general, demuestran puntos de fusión más altos en comparación con sus formas de base libre. La selección de una sal apropiada será conocida para un experto en la técnica. Otras sales farmacéuticamente aceptables, por ejemplo, oxalatos, se usan, por ejemplo, en el aislamiento del compuesto de la invención para uso de laboratorio o para la conversión posterior a una sal de adición de ácido farmacéuticamente aceptable.
El compuesto de la presente invención forma hidratos o solvatos, que están incluidos en el alcance de las reivindicaciones.
El término "solvato" como se usa en el presente documento quiere decir un compuesto S36 o una sal farmacéuticamente aceptable del mismo, en el que las moléculas de un disolvente adecuado se incorporan en la red cristalina. Un disolvente adecuado es fisiológicamente tolerable en la dosificación administrada. Los ejemplos de disolventes adecuados son etanol, agua y similares. Cuando el agua es el disolvente, la molécula se denomina "hidrato”.
El término una "cantidad eficaz", "cantidad suficiente" o "cantidad terapéuticamente eficaz" de un agente como se usa en el presente documento es esa cantidad suficiente para lograr resultados beneficiosos o deseados, incluyendo resultados clínicos y, como tal, una "cantidad eficaz" depende del contexto en el que se esté aplicando. La respuesta es preventiva y/o terapéutica. El término "cantidad eficaz" también incluye esa cantidad del compuesto S36 que es "terapéuticamente eficaz" y que evita o sustancialmente atenúa efectos secundarios no deseados.
Como se usa en el presente documento y así como se entiende en la técnica, "tratamiento" es un enfoque para obtener resultados beneficiosos o deseados, incluyendo resultados clínicos. Los resultados beneficiosos o deseados pueden incluir, pero no se limitan a, alivio o mejora de uno o más síntomas o afecciones, disminución del alcance de la enfermedad, estabilización (es decir, sin empeoramiento) del estado de la enfermedad, prevención de la propagación de la enfermedad, retraso o ralentización de la progresión de la enfermedad, mejora o paliación del estado y remisión de la enfermedad (ya sea parcial o total), sea detectable o no detectable. "Tratamiento" también puede querer decir la prolongación de la supervivencia en comparación con la supervivencia esperada si no se recibe tratamiento.
Los términos "animal", "sujeto" y "paciente" como se usa en el presente documento incluyen todos los miembros del reino animal incluyendo pero sin limitarse a, mamíferos, animales (por ejemplo, gatos, perros, caballos, etc.) y seres humanos.
La presente solicitud describe además una composición, que comprende la sal radiomarcada del compuesto S36. El marcado de los compuestos se lleva a cabo usando uno de una variedad de marcadores radioactivos diferentes conocidos en la técnica. El marcador radioactivo de la presente invención es, por ejemplo, un radioisótopo. El radioisótopo es cualquier isótopo que emite radiación detectable incluyendo, sin limitación, 35S, 125I, 3H o 14C. La radioactividad emitida por el radioisótopo se puede detectar por técnicas bien conocidas en la técnica. Por ejemplo, la emisión gamma del radioisótopo se detecta usando técnicas de formación de imágenes gamma, en particular formación de imágenes de centellografía.
A modo de ejemplo, los compuesto radiomarcados de la invención se preparan como sigue. Un compuesto de la invención se puede desmetilar en el anillo fenilo usando BBr3. A continuación, se vuelve a metilar el compuesto fenol resultante con un agente de metilación radiomarcado (tal como sulfato de 3H-dimetilo) en presencia de una base (tal como NaH) para proporcionar compuestos marcados con 3H.
El compuesto S36 de la presente invención puede estar asociado con un vehículo farmacéuticamente aceptable, como se describe anteriormente, para formar una composición farmacéutica.
Demostraciones de eficacia
Como se demuestra por la figura 1, realizaciones A, B, C y D, S36 es más potente al incrementar la unión de FKBP12.6 y RyR2 que JVT-519 y no bloquea el canal de Ca2+ de tipo L (ICa,L) o el canal de K+ de hERG (IKr). En la realización A, se genera RyR2 fosforilado por PKA como sigue: se añaden preparaciones de la membrana de RS cardíaca (5 μl, 50 μg) a un total de 100 μl de tampón cinasa (MgCl2 8 mM, EGTA 10 mM, Tris-PIPES 50 mM, pH 6,8) que contiene MgATP 100 μM y 40 unidades de PKA, y se incuba a temperatura ambiente. Se centrifugan las
muestras a 95.000 g durante 10 min y los sedimentos se lavan tres veces en 0,2 ml de tampón imidazol. Los sedimentos finales se agrupan y se resuspenden en tampón de imidazol (concentración final ≈ 10 μg/μl). Para someter a prueba la eficacia de reunión a FKBP12.6 de JTV-519, se incuba RS cardíaco fosforilado por PKA (50 mg) durante 30 minutos a temperatura ambiente con los compuestos de prueba y FKBP 12.6 250 nM en tampón de imidazol 10 mM, pH 7.0. A continuación se centrifugan las muestras a 100.000 g durante 10 minutos y los sedimentos se lavan 3 veces con tampón de imidizol. Después del lavado, las proteínas se fraccionan por tamaño en PAGE al 15%. Se desarrollan inmunotransferencias usando un anticuerpo anti-FKBP (dilución 1:3.000). Se cuantifica la cantidad de reunión usando densitometría de transferencia Western y se compara con la cantidad de FKBP asociado con RyR en RS no fosforilado. Se determinan las CE50 para los compuestos generando datos de unión a FKBP usando concentraciones de compuestos que varían de 0,5-1000 nM. En la realización B, se registran corrientes a través de canales de Ca2+ de tipo L en cardiomiocitos de ratón aislados usando condiciones para registros de pinzamiento zonal de membrana total con Ba2+ como el vehículo de carga. La solución extracelular contiene (en mM): N-metil-D-glucamina, 125; BaCl2, 20; CsCI, 5; MgCI2, 1; HEPES, 10; glucosa, 5; pH 7,4 (HCl). La solución intracelular contiene (in mM): CsCI, 60; CaCl2, 1; EGTA, 11; MgCI2, 1; K2ATP, 5; HEPES, 10; ácido aspártico, 50; pH 7,4 (CsOH). Bajo estas condiciones, se espera que la corriente medida sea llevada principalmente por Ba2+ a través de canales de calcio de tipo L lo que se denomina ICa,L. Los fármacos se aplican por un cambiador de de solución local y llegan a la membrana celular en 1 s. Los efectos de nifedipino y S36 se someten a prueba con etapas de fijación de voltaje de 20 ms a +10 o +20 mV (máximo de relación corriente-voltaje para cada célula individual) de potenciales de control de -80 mV o -40 mV. En la realización C, se miden y se presentan la dependencia con relación al voltaje de la corriente de Ca2+ de tipo L bloqueada por JVT-519 (1 μM) y S36 (1 μM).
Como se demuestra en la figura 2, S36 evita la muerte súbita de origen cardíaco inducida por ejercicio a niveles de plasma inferiores en comparación con JVT-519. Se muestra la dependencia con relación a la dosis de los efectos farmacológicos de JVT-519 y S36. Los niveles de plasma de JVT-519 1 μM evitan arritmias cardíacas y muerte súbita de origen cardíaco en ratones FKBP12.6+/-. Los niveles de plasma de S36 1 μM y 0,02 μM también evitan arritmias cardíacas y muerte súbita de origen cardíaco en ratones FKBP12.6+/-.
Como se demuestra por la figura 3, Rycal evita el desarrollo de insuficiencia cardíaca aguda post-infarto de miocardio. Los ratones tratados con placebo o tratados con Rycal (concentraciones plasmáticas de 100 nM o 200 nM) se someten a ligamiento permanente de la arteria coronaria descendente anterior izquierda dando como resultado un infarto de miocardio. Rycal mejora significativamente el acortamiento fraccional evaluado por ecocardiografía de modo M 2 semanas post-infarto de miocardio, en comparación con placebo.
Como se demuestra en la figura 4, S36 mejora la función cardíaca en insuficiencia cardíaca crónica post-infarto de miocardio. Los ratones naturales se someten a ligamiento permanente de la arteria coronaria descendente anterior izquierda dando como resultado un infarto de miocardio. Siete días después del infarto de miocardio, los ratones se tratan con S36 (concentración plasmática de 200 nM) o placebo. Las proporciones de peso del corazón con relación al peso corporal (HW/BW) y las cuantificaciones de bucle presión-volumen (dP/dt, pendiente de la derivada máxima de cambio en la presión sistólica con el tiempo) muestran la remodelación inversa y la mejora de la contractilidad cardíaca en ratones tratados con S36 en comparación con placebo.
La figura 5 es un gráfico resumen de valores de CE50 de JVT-519 y de los compuestos S1-S67 divulgados en el presente documento. El ensayo de reunión de FKBP 12.6 descrito anteriormente se usa para determinar la cantidad de unión de FKBP 12.6 a RyR2 fosforilado por PKA a varias concentraciones (0,5- 1000 nM) de los compuestos mostrados. Los valores de CE50 están calculados usando el ajuste de curva de Michaelis-Menten.
Como se demuestra en la figura 6, realizaciones A, B, y C, Rycal normaliza la función y estructura del canal de RyR2-P2328S asociado a TVPC. En la realización A se muestran trazos de corriente de un solo canal representativos de RyR2-P2328S no fosforilados y RyR2-WT fosforilado por PKA tratados con Rycal mostrando que no hay influencia de JVT-519 en la función del canal de referencia. Sin embargo, en RyR2-P2328S fosforilado por PKA, como se muestra en la realización B, Rycal normaliza el estado cerrado de un solo canal hasta niveles que se aproximan a los observados en la realización A, reduciendo la probabilidad de apertura de un 14,4 % a un 0,3 % después de la administración de 0,1 μmol/l de rycal. Los recuadros en las realizaciones A y B muestran aperturas de canal > 1 pA a una mayor resolución. La realización C muestra un análisis de inmunotransferencia de unión a calstabina-2 de RyR2-P2328S en presencia o ausencia de PKA y 0,1 μmol/l de rycal, como se indica. RyR2-P2328S se inmunoprecipita y se fosforila por PKA in vitro como se describe anteriormente.
Como se muestra en la figura 7, realizaciones A, B, C, D, y E, el funcionamiento del canal de RyR1 se incrementa y se normaliza en ratones mdx (deficientes en distrofina) tratados con JTV-519. En la figura 7, las aberturas de canal están representadas como deflexiones hacia arriba; 'c' indica el estado cerrado; y la amplitud de corriente de 4 pA está indicada por guiones. Los trazos superiores representan 5 s y los trazos inferiores 500 ms; las líneas de puntos indican estados de subconductancia.
La realización A de la figura 7 muestra un trazo de corriente de un solo canal de RyR1 del músculo sóleo de un ratón de control (natural) bajo condiciones de reposo (Ca2+ citoplásmico 150 nM). Como se observa, RyR1 está predominantemente cerrado. La realización C de la figura 7 muestra que la función del canal de RyR1 en un ratón mdx muestra un incremento significativo en la probabilidad de apertura, un incremento en la apertura promedio y una disminución en los tiempos de permanecía cerrado promedio, To y Tc, respectivamente. El incremento en Po en ratones mdx es consistente con la pérdida intracelular de Ca2+. Los histogramas de amplitud en las realizaciones B, D, y F muestran estados de subconductancia múltiples consistentes con la reducción de calstabina-1 (FKBP 12) en RyR1 del músculo sóleo de mdx. La realización E de la figura 7 muestra un ratón mdx tratado con JTV-519 1,0 μM. Como se observa, el ratón tratado con JTV-519 de canales RyR1 demuestra una actividad normal que no es significativamente diferente del trazo de los naturales no tratados, lo que indica de este modo que JTV-519 puede normalizar la función del canal de RyR1 en ratones mdx.
Los datos de la figura 7 son consistentes con la pérdida intracelular de Ca2+ de RS por medio de los canales de RyR1 como la causa del incremento de la pérdida de Ca2+ citosólico en los músculos esqueléticos de ratones mdx (deficientes en distrofina).
En la figura 8, las realizaciones A y B, demuestran que el músculo esquelético de mdx tiene niveles normales de fosforilación por PKA de RyR1, pero niveles reducidos de calstabina-1. Las inmunotransferencias en la realización A muestran que los ratones de tipo mdx tienen niveles reducidos de calstabina-1 en comparación con el ratón de control (natural). Los gráficos de barras de resumen de la realización B muestran que el ratón mdx, no obstante, tiene un nivel equivalente de fosforilación por PFA. Por lo tanto, se concluye que la reducción de calstabina-1 es un defecto que es consistente con la pérdida intracelular de Ca2+ observada en células del músculo esquelético de ratones mdx y miofibras de vehículos de mutación humanos. Es probable que la pérdida intracelular de Ca2+ de RS contribuya a la muerte de miofibras y a la pérdida de masa muscular por sobrecarga intracelular de Ca2+ tóxica y a la activación de proteasas.
La figura 9, realizaciones A, B, y C, demuestra que la pérdida de Ca2+ de RS a nivel subcelular en músculos esqueléticos de animales con insuficiencia cardíaca es detectable. La calidad de vida y el pronóstico en pacientes con insuficiencia cardíaca (IC) disminuye gravemente debido a la disfunción del músculo esquelético (por ejemplo, dificultad para respirar debida a debilidad diafragmática e intolerancia al ejercicio debido a fatiga del músculo esquelético de la extremidad) además de una función cardíaca deprimida. La desregulación de la liberación intracelular de Ca2+ RS es un mecanismo patógeno subyacente a la disfunción del músculo esquelético en la IC. La IC en animales provoca que se acelere significativamente la fatiga del músculo esquelético intrínseca.
Las realizaciones A y B de la figura 9 son imágenes de barrido lineal de fluorescencia AF/F de ejemplos representativos de trazas de Ca2+ en miofibras de ratas del grupo quirúrgico de referencia y post-infarto de miocardio (PIM) y el transcurso temporal de trazas de Ca2+ correspondiente. La realización C muestra la distribución relativa de las propiedades espacio-temporales de las trazas de Ca2+. Las gráficas indican 25, 50, 75 percentiles, las líneas horizontales indican el intervalo del 1-99 % de la distribución. Grupo quirúrgico de referencia, símbolos de apertura (n = 137, tres animales); post-infarto de miocardio (PIM), símbolos grises (n = 82, dos animales). *, P < 0,05. FDHM, duración total a una amplitud de pico del 50 %; FWHM, anchura total a una amplitud de pico del 50 %.
La figura 10, realizaciones A y B, demuestra que el tratamiento de ratones naturales con JVT-519 mejora los tiempos de fatiga del músculo sóleo en comparación con el placebo. Los músculos sóleos de ratones naturales o ratones con calstabina-2-/-, tratados con JVT-519 con insuficiencia cardíaca por infarto de miocardio son más resistentes a fatiga (P < 0,05) en comparación con ratones tratados con placebo. Después de completar el tratamiento, se diseccionó el músculo sóleo y se montó en un baño de tejido para evaluar la función del músculo esquelético aislado. Se muestra el 50% representativo de trazos de tiempo de fatiga de fuerza tetánica máximos para ratones naturales y con calstabina-2-/-, tratados con JVT-519 o placebo, en la realización A. En la realización B se muestran gráficos de barras que resumen el tiempo medio para la fatiga.
En resumen, el tratamiento con JVT-519 mejora la fatigabilidad del músculo esquelético en animales con insuficiencia cardíaca in vivo. De forma interesante, en ratones desactivados de calstabina-2-/-, los tiempos de fatiga también se mejoran significativamente en ratones tratados con JVT-519, lo que sugiere que los efectos beneficiosos sobre la función del músculo esquelético aislado dependen de la unión de calstabina-1 y no de calstabina-2 a RyR1. De hecho, parece que calstabina1 es la única isoforma de significancia funcional expresada en el músculo esquelético.
La figura 11, realizaciones A y B, demuestra que en un modelo animal de insuficiencia cardíaca post-infarto de miocardio, el RyR1 en el músculo sóleo también esa hiperfosforilado por PKA. En ratones tanto naturales como con calstabina-2-/-, JVT-519 incrementó la unión de calstabina-1 a RyR1 en el músculo sóleo, lo que sugiere que JVT519 mejora la fatigabilidad del músculo esquelético normalizando la reunión de calstabina-1 al complejo del canal. E inmunoprecipitaron cantidades equivalentes de RyR1 con un anticuerpo frente a RyR1. La realización A proporciona gráficos de barras que muestran la cantidad de fosforilación por PKA de RyR1 en Ser-2844 en ratones, (que corresponde a Ser-2843 en humanos). La disminución significativa de la fosforilación por PKA de RyR1 en ratones naturales tratados con JVT-519 probablemente resulta de los efectos cardíacos beneficiosos y la reducción secundaria de la actividad del nervio simpático. La realización B son gráficos de barras que muestran la cantidad de calstabina-1 unida a RyR1 de ratones naturales y con calstabina-2-/-, tratados con JVT-519 o placebo. Los ratones se trataron con JVT-519 por minibombas osmóticas implantables usando una dosis de 0,5 mg/kg/día. En resumen el tratamiento con JVT-519 dio como resultado un incremento altamente significativo de calstabina-1 en el complejo de RyR1 en músculos sóleos in vivo.
La figura 12, realizaciones A, B, C y D, demuestra que la reunión de calstabina-1 a RyR1 por JVT-519 normaliza la función del canal de RyR1 de pérdida o anormal in vivo. Las realizaciones A y C se muestran trazos de un solo canal de RyR1 a Ca2+ citoplásmico 150 nM representando condiciones de reposo en el músculo esquelético para ratones naturales tratados con placebo y JVT-519. El tratamiento con JVT-519 de ratones con insuficiencia cardíaca y fatiga muscular incrementada normalizó el paso de canal de RyR1 en el músculo esquelético in vivo. Las aperturas de los canales son hacia arriba, el guión indica el nivel total de apertura de canal (4 pA), las líneas de puntos indican
niveles de subconductancia y “c” indica el estado cerrado de los canales. Para los histogramas de amplitud en la
realización B y D, la amplitud se representa sobre el eje x, y los acontecimientos indican el número de aperturas de canal. Los valores de Po, To y Tc corresponden a trazos representativos. El tratamiento se indica en la parte superior de los trazos. El recuadro muestra una mayor resolución de los estados de apertura.
En resumen, los datos muestran que el tratamiento con JVT-519 in vivo normaliza la función del músculo esquelético y la disfunción del canal de RyR1 es consistente con la prevención de la pérdida intracelular de Ca2+ de RS como causa del incremento en la fatiga del músculo esquelético.
La figura 13 demuestra que JVT-519 también incrementa la afinidad de unión de calstabina para RyR1 en el músculo esquelético in vivo. Esto explica probablemente por qué los ratones tratados con JVT-519 con insuficiencia cardíaca tienen niveles incrementados de calstabina-1 unida a RyR1 en el músculo sóleo. En la realización A, se sólo inmunoprecipitaron cantidades equivalentes de RyR1 cardíaco o RyR2 cardíaco, se fosforilaron por PKA y se incubaron con calstabina-1 o calstabina-2 a concentraciones incrementadas de JVT-519, respectivamente. El
sedimento representa sólo calstabina unida a RyR. La realización de inmunotranferencia mostró que ≥ 50 nM de
JVT-519 incrementó la afinidad de unión de calstabina para RyR. Los gráficos de la realización B demuestran además que la fosforilación por PKA de RyR1 redujo la afinidad de calstabina-1 por RyR1 (círculos vacíos), mientras que el tratamiento con JVT-519 (círculos llenos) restableció la afinidad de unión calstabina-1 para RyR1 a la de RyR1 fosforilado por no-PKA (cuadrados vacíos).
La figura 14, realización A, B, C, y D demuestra que Ser-2843 es el único sitio de fosforilación por PKA en los canales de RyR1 esqueléticos. (A) Trazos de un solo canal representativos de RyR1 natural, (B) efecto de fosforilación por PKA exógena de RyR1 (wt RyR1-P), (C) PKA no afecta a RyR1-S2843A que contiene un sitio de fosforilación por PKA no funcional. Puesto que PKA no incrementa la actividad de RyR1-S2843A, parece que Ser2843 constituye el único sitio de fosforilación por PKA en los canales de RyR1 en el músculo esquelético. En consecuencia, (D) RyR1-S2843D constitutivamente fosforilado imita la fosforilación por PKA exógena mostrada en
(B) lo que confirma que Ser-2843 es el único sitio de fosforilación por PKA en los canales de RyR1 esqueléticos. Los registros de un solo canal de RyR1 en bicapas lipídicas planas muestran la actividad de los canales a 150 nM [Ca2+]cis (lado citosólico) con ATP 1 mM. Los registros fueron a 0 mV, el estado cerrado de los canales como se indica por 'c', y las aberturas de los canales son deflexiones hacia arriba. Todos los histogramas de amplitud puntuales se muestran a la derecha. La probabilidad de apertura (Po) y los tiempos de permanencia cerrado (Tc) y abierto (To) medios se indican sobre cada trazado de canal.
La figura 15, realizaciones A y B, demuestra la reducción en la estabilización de calstabina-1 y la hiperfosforilación por PKA de los canales de RyR1 a partir del ejercicio mantenido. El ejercicio aeróbico se puede definir como una forma de ejercicio físico que incrementa la frecuencia cardíaca y potencia la captación de oxígeno para mejorar el rendimiento. Son ejemplos de ejercicio aeróbico correr, montar en bicicleta y nadar. Durante el estudio de la figura 15, se sometió a los ratones a ejercicio aeróbico (se les obliga a nadar) durante 90 min dos veces al día. Se acostumbró a los animales a nadar en sesiones de entrenamiento: día -3 dos veces 30 min, día -2 dos veces 45 min, día -1 dos veces 60 min, día 0 y siguientes dos veces 90 min. Después, los ratones se sometieron a ejercicio durante 1, 7 o 21 días consecutivos adicionales durante 90 min dos veces al día. Entre las sesiones de natación separadas por un periodo de descanso de 4 horas, se mantuvo a los ratones calientes y se les dio alimento y agua. Se usó una piscina con agua corriente ajustable para someter a los ratones a ejercicio por natación. Se usó una piscina acrílica (90 cm de largo x 45 cm de ancho x 45 cm de profundidad) llenada con agua hasta una profundidad de 25 cm. Se generó una corriente en la piscina con una bomba. La velocidad de la corriente durante la sesión de natación fue a una velocidad constante de 1 l/min de caudal. Se mantuvo la temperatura del agua a 34 ºC con un calentador eléctrico. Se usaron ratones con mismo peso y edad para excluir las diferencias en la flotabilidad por la grasa corporal.
Usando la natación forzada como protocolo eficaz para incrementar la capacidad aeróbica del músculo esquelético en ratones, se han investigado la composición y el estado de fosforilación del complejo del canal RyR1 esquelético. Inesperadamente, después de 3 semanas nadando 90 min dos veces al día, los ratones naturales C57B16 mostraron un incremento significativo de fosforilación por PKA de RyR1 mientras que la fosforilación de Ca2+calmodulina cinasa II (CaMKII) no cambió lo que indica que la especificidad de la expresión de la proteína RyR1 de ruta de estrés era estable, sin embargo, se redujeron los canales de RyR1 de la subunidad de estabilización calstabina-1 (FKBP12). Se ha demostrado que la hiperfosforilación de RyR1 y la reducción de calstabina-1 son consistentes con el filtrado en los canales de RyR1 que provocan una pérdida intracelular de Ca2+ de RS.
Después de 3 semanas nadando 90 min dos veces al día, los canales de RyR1 están hiperfosforilados por PKA y con reducción de la subunidad de calstabina-1 de estabilización. Como se observa en la realización A, el complejo del canal macromolecular de RyR1 inmunoprecipitado muestra un incremento de fosforilación por PKA en Ser-2844 (correspondiente a RyR1-Ser-2843 humana) mientras que la fosforilación de CaMKII en Ser-2849 (correspondiente a RyR1-Ser-2848 humana) no cambia. Concomitante con el incremento de la hiperfosforilación por PKA de RyR1-Ser2844, se reduce la calstabina-1 del complejo del canal. Como se observa en la realización B, la normalización de la fosforilación y del contenido en calstabina-1 para cuatro subunidades del complejo del canal tetrámero muestra un incremento en la fosforilación por PKA y reducción de la subunidad de calstabina-1 de estabilización. Ratones de control, no sometidos a ejercicio; ratones que nadan, sometidos a ejercicio 90 min dos veces al día durante 3 semanas (datos preliminares). P < 0,05.
En la figura 16, las realizaciones A y B demuestran que la fosforilación por PKA se incrementa para duraciones incrementadas de ejercicio mantenido. Para investigar la influencia de la duración de ejercicio mantenido sobre el defecto en el canal de la liberación de Ca2+ de RyR1, los ratones se expusieron a natación durante 1, 7 o 21 días, después se sacrificaron de inmediato. Una mayor exposición a ejercicio mantenido da como resultado un incremento significativo de la hiperfosforilación por PKA de RyR1 que comenzó a los 7 días y saturó a los 21 días.
En la figura 16, realización A, el complejo del canal de RyR1 inmunoprecipitado muestra un incremento significativo y por encima de los niveles fisiológicos en la fosforilación por PKA en Ser-2844 (correspondiente a RyR1-Ser-2843 humana) después de 7 días de ejercicio por natación. En la figura 16, realización B, la normalización de fosforilación de RyR2-Ser-2844 dentro del complejo del canal tetrámero documenta un incremento significativo en la fosforilación por PKA. *, P < 0,05; **, P< 0,005.
En resumen, los datos de la figura 16 muestran que el ejercicio mantenido da como resultado un incremento significativo de la fosforilación de RyR1 por proteína cinasa A (PKA) que contribuye a la reducción de la subunidad de calstabina-1 de estabilización del complejo del canal como la causa de un defecto en la ganancia de función.
La figura 17 proporciona datos que muestran que el incremento crónico en la estimulación simpática de los músculos esqueléticos, da como resultado la pérdida intracelular de Ca2+ dependiente de RyR1 y un incremento significativo en la fatiga muscular. ¿Cuál es la consecuencia funcional de un incremento crónico en la hiperfosforilación por PKA de RyR1? Como se muestra en la figura 17 para ratones y ratas con insuficiencia cardíaca por infarto de miocardio, la hiperfosforilación por PKA de RyR1 crónica da como resultado un incremento en la fatiga muscular.
En la realización A, se puede observar que el músculo esquelético con insuficiencia cardíaca se fatiga antes que el control. Se montó el músculo sóleo de rata (n = 5 control, n = 8 HF) en un baño de tejido para evaluar la función contráctil. Se muestra el trazado de tiempo de fatiga representativo para músculos esqueléticos de control e IC. El gráfico de barras muestra el tiempo medio (± D.E.) para una fatiga del 40 %. *, P < 0,05. En la realización B, se puede observar que el músculo esquelético con insuficiencia cardíaca logró una fuerza tetánica máxima más lentamente que los músculos esqueléticos de control. Se indujo fuerza tetánica por estimulación de campo de alta frecuencia. El gráfico de barras muestra un tiempo de contracción del 50 %. **, P < 0,01. La realización C demuestra la correlación entre el tiempo para la fatiga y la fosforilación por PKA de RyR1 (r = 0,88) en músculo esquelético de rata de animales del grupo quirúrgico de referencia y con insuficiencia cardíaca. Se evaluaron la función muscular u la fosforilación por PKA de RyR1 usando músculos sóleos contralaterales de cada animal.
En resumen, la figura 17 proporciona datos que muestran que el ejercicio mantenido provoca la hiperfosforilación por PKA de RyR1 y la reducción de calstabina-1, y la figura 17 muestra que se produce el defecto idéntico en formas de enfermedad con un incremento en la actividad simpática lo que provoca una pérdida intracelular de Ca2+ de RS y una aceleración significativa en la fatiga del músculo esquelético.
Un problema adicional durante el ejercicio mantenido y el estrés es la degeneración del músculo esquelético lo que contribuye además a la disminución en el rendimiento del músculo esquelético. Para evaluar los cambios estructurales durante el ejercicio mantenido, se han caracterizado cambios histológicos en los músculos de contracción rápida de ratones expuestos a 3 semanas de ejercicio por natación. Los resultados se muestran en la figura 18. Las secciones transversales del músculo extensor largo de los dedos (EDL) mostraron cambios histológicos consistentes con la degeneración de miofibras de la sobrecarga intracelular de Ca2+ de los canales de RyR1 defectuosos. Por lo tanto, el ejercicio mantenido durante 90 min dos veces al día desencadena un fenotipo distrófico en los músculos EDL de ratones C57B16 normales.
La tinción tricrómica muestra miofibras empaquetadas de dimensión seccional similar en ratones de (WT) no sometidos a ejercicio (izquierda). Tres semanas de natación da como resultado la degeneración de miofibras y depósitos de colágeno intersticial con tamaño de fibras irregular. La tinción con hematoxilina-eosina (H-E) indica cambios nucleares y muerte de miofibras. Estos cambios son consistentes con la remodelación distrófica.
El canal de potasio rectificador retardado rápido (I(Kr)) es importante para la repolarización del potencial de acción cardíaco. HERG es la subunidad de formación de poro del canal I(Kr). La supresión de la función de I(Kr), por ejemplo como efecto secundario de un fármaco o el resultado de una mutación en hERG, puede dar lugar al síndrome de QT-largo (LQT), que está asociado con un incremento en el riesgo de arritmias potencialmente mortales. El compuesto de la presente invención presenta un menor nivel de actividad bloqueante de hERG que JTV-519, como se demuestra en las figuras 19-23. Por tanto, se espera que el compuesto de la presente invención sea menos tóxico y/o presenten menos efectos secundarios que JTV-519.
Las figuras 19 a 22 ilustran el efecto del compuesto ARM036 (también denominado S36) y ARM036-Na (una sal sódica de ARM036) sobre las corrientes de hERG.
La figura 19 muestra un registro de corriente de fijación de voltaje de hERG típica antes (control) y después de la
aplicación de ARM036 a 100 μM. El protocolo de pulso de voltaje usado para activar las corrientes de hERG se
ilustra debajo del trazo de corriente. Se puede observar que, después de la activación por el prepulso de acondicionamiento (a +20 mV), la repolarización parcial (pulso de prueba de -50 mV) de la membrana provoca una gran corriente de cola externa que decae lentamente. La aplicación de ARM036 redujo mínimamente la corriente de cola externa en de manera dependiente de la concentración y del tiempo.
La figura 20 muestra un transcurso de tiempo típico del efecto de ARM036 a 100 mM sobre la amplitud de corriente del canal de hERG.
La figura 21 es un gráfico que muestra la dependencia de la concentración del efecto de ARM036 sobre la corriente de hERG. La tabla 1 proporciona los datos numéricos que se ilustran gráficamente en la figura 21. Debido a que la mayor concentración de ARM036 sometida a prueba dio como resultado una inhibición de corriente menor del 50 %, no fue posible determinar un valor de CI50 para ARM036.
Tabla 1
Concentración (μM)
Media DE EEM N
10
0,7% 0,3% 0,2% 3
100
0,9% 0,7% 0,4% 3
La figura 22 es un gráfico que muestra la dependencia de la concentración del efecto de ARM036-Na sobre la corriente de hERG. La tabla 2 proporciona los datos numéricos que se ilustran gráficamente en la figura 22. Debido a que la mayor concentración de ARM036-Na sometida a prueba dio como resultado una inhibición de corriente menor del 50 %, no fue posible determinar un valor de CI50 para ARM036-Na.
Tabla 2
ID del artículo de prueba
CI50 (μM) Conc. (μM) % inhibición de hERG medio % desviación estándar % error estándar n Datos individuales (% inhibición)
ARM036-Na
ND 0,01 0,2 % 0,2 % 0,2 % 2 0,0 %
0,3 %
0,1
6,0 % 7,1 % 5,0 % 2 10,0 %
0,0 %
1
5,5 % 4,4 % 3,1 % 2 2,4 %
6,6 %
10
6,7 % 2,2 % 1,6 % 2 5,1 %
8,2 %
La figura 23 es un gráfico que muestra la dependencia de la concentración del efecto de JTV-519 (referido en la figura como "ARM0XX") sobre la corriente de hERG. La tabla 3 proporciona los datos numéricos que se ilustran gráficamente en la figura 23. El valor de CI50 para JTV-519 fue de 0,463 μM.
Tabla 3
ID del artículo de prueba
CI50 (μM) Conc. (μM) % inhibición de hERG medio % desviación estándar % error estándar n Datos individuales (% inhibición)
ARM0XX
0 463 0,01 5,0 % 0,3 % 0,2 % 2 5,2 %
4,8 %
0,1
18 1 % 11,4 % 8,1 % 2 10 0 %
26,1 %
1
68,4 % 19,1 % 13,5 % 2 81,9 %
54,9 %
10
92 8 % 5,8 % 4,1 % 2 96,9 %
88,7 %
El fármaco antiarrítmico E-4031, un bloqueante conocido de corrientes de hERG, se usó como control positivo. E4031 bloqueó la corriente de hERG con una CI50 de 0,5 μM (n = 6).
En resumen, el compuesto S36 presenta una reducción en la actividad bloqueante de hERG en comparación con JTV-519. Por tanto, se espera que el compuesto de la invención sea menos tóxico y/o presenten menos efectos secundarios que JTV-519.
La tabla 4 a continuación proporciona un valore de CE50 para el compuesto S36. Los datos de CE50 se obtuvieron usando el ensayo de reunión de FKBP 12.6 descrito anteriormente para determinar la cantidad de unión de FKBP
12.6 a RyR2 fosforilado por PKA a varias concentraciones (0,5- 1000 nM) del compuesto S36. El valor de CE50 está calculado usando el ajuste de curva de Michaelis-Menten.
Tabla 4
Compuesto N.º:
CE50 (nM)
36
15
Ejemplos
Ejemplo 1 - Fosforilación por PKA de RyR2 y unión de FKBP12.6
Se preparan membranas RS cardíacas, como se describe previamente (Marx, et al., PKA phosphorylation dissociates FKBP 12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell, 101:365-76, 2000; Kaftan, et al., Effects of rapamycin on ryanodine receptor/Ca(2+)-release channels from cardiac muscle. Circ. Res., 78:990-97,1996). Se generó FKBP12.6 marcado con 35S usando el sistema de transcripción/traducción TNT™ Quick Coupled de Promega (Madison, WI). Se usó la unión a [3H] rianodina para cuantificar los niveles de RyR2. Se diluyeron 100 μg de microsomas en 100 μl de tampón de imidazol 10 mM (pH
6,8), incubados con [35S]-FKBP12.6 250 nM (concentración final) a 37 ºC durante 60 min, después se desactivó con
500 μl de tampón de imidazol enfriado con hielo. Se centrifugaron las muestras a 100.000 g durante 10 min y se
lavaron tres veces en tampón imidazol. Se determina la cantidad de [35S]-FKBP12.6 unido por recuento de centelleo líquido del sedimento.
Ejemplo 2 - Inmunotransferencias
Se realizan inmunotransferencias de microsomas (50 μg) como se describe, con proteína de unión a FK506 antiFKBP12/12.6 (1:1.000), anti-RyR-5029 (1:3.000) (Jayaraman, et al., FK506 binding protein associated with the calcium release channel (ryanodine receptor). J. Biol. Chem., 267:9474- 77, 1992), o anti-fosfoRyR2-P2809 (1:5,000) durante 1 h a temperatura ambiente (Reiken, et al., Beta-blockers restore calcium release channel function and improve cardiac muscle performance in human heart failure. Circulation, 107:2459-66, 2003). El anticuerpo anti-RyR2 específico de P2809-fosfoepítopo es un anticuerpo de conejo policlonal purificado por afinidad, fabricado por encargo por Zymed Laboratories (San Francisco, CA) usando el péptido, CRTRRI-(pS)-QTSQ, que corresponde a RyR2 fosforilado por PKA en Ser2809. Después de la incubación con IgG anti-conejo marcada con HRP (dilución 1:5.000; Transduction Laboratories, Lexington, KY), se desarrollan las transferencias usando ECL (Amersham Pharmacia, Piscataway, NJ).
Ejemplo 3 - Registros de un solo canal
Los registros de un solo canal de RyR2 naturales de corazones de ratón, o RyR2 recombinante, se adquieren bajo condiciones de fijación de voltaje a 0 mV, como se describe previamente (Marx, et al., PKA phosphorylation
dissociates FKBP 12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell, 101:365-76, 2000). Las soluciones simétricas usadas para los registros de canal son: compartimento trans -HEPES, 250 mmol/l; Ba(OH)2, 53 mmol/l (en algunos experimentos, Ba(OH)2 se sustituye por Ca(OH)2); pH 7.35; y compartimento cis - HEPES, 250 mmol/l; Tris-base, 125 mmol/l; EGTA, 1,0 mmol/l; y CaCl2, 0,5 mmol/l; pH 7,35. A menos que se indique de otro modo, los registros de un solo canal se realizan en presencia de 150 nM [Ca2+] y 1,0 mM [Mg2+] en el compartimento cis. Se aplica rianodina (5 mM) al compartimento cis para confirmar la identidad de todos los canales. Se analizan los datos a partir de registros de corriente digitalizados usando el programa informático Fetchan (Axon Instruments, Union City, CA). Todos los datos se expresan como media ± EM. Se usa la prueba de la t de Student para datos independientes para la comparación estadística de los valores medios entre experimentos. Un valor de p<0,05 se considera estadísticamente significativo.
Ejemplo 4 - Compuestos y procedimientos para su síntesis
Se preparó Synthon S26 de acuerdo con procedimientos descritos en la solicitud de patente de los EE. UU. n.º 10/680.988.
Esquema 1: Síntesis de S36
Síntesis de S36 (esquema 1): A una solución agitada de S36 (0,85 g, 4,4 mmol) y piridina (0,70 g, 8,8 mmol) en CH2Cl2 (50 ml) a 0 ºC se le añade gota a gota clorooxoacetato de metilo (0,81 g, 6,6 mmol). La mezcla de reacción se agita a 0 ºC durante 2 horas, a continuación se lava con bicarbonato de socio saturado, HCl 1 N y agua. La cromatografía de columna en gel de sílice proporciona S57 como un sólido de color blanco (1,1 g, rendimiento del 90 %). Se disuelve S57 (1,1 g, 3,9 mmol) en metanol (10 ml) y a continuación, se añade una solución de hidróxido de sodio (0,3 g, 7,5 mmol) en agua (10 ml). La mezcla de reacción se agita a temperatura ambiente durante una hora. Después de retirar el disolvente, se disuelve el residuo en agua (10 ml) y se lava con éter (2x10 ml). Se acidifica la fase acuosa con HCl 1 N hasta pH = 2. Se extrae el producto con CH2Cl2 (2x10 ml). La retirada del disolvente proporciona el producto S36 como un sólido de color blanco (1,0 g, rendimiento del 100 %). El producto se puede purificar adicionalmente por cristalización.
Ejemplo 5 - Procedimiento de cribado ultrarrápido
Se han desarrollado ensayos para cribar moléculas pequeñas biológicamente activas. Estos ensayos se basan en la reunión de la proteína FKBP 12 a RyR.
Se desarrolla un ensayo altamente eficaz para el cribado ultrarrápido para moléculas pequeñas por inmovilización de FKBP 12.6 (proteína de fusión GST) sobre una placa de 96 pocillos recubierta con glutationa. El receptor de rianodina fosforilado por PKA de tipo 2 (RyR2) se carga sobre la placa recubierta con FKBP12.6, y se incuba con análogos de JTV-519 a varias concentraciones (10-100 nM) durante 30 min. Después de esto, se lava la placa para retirar el RyR2 no unido, y a continuación se incuba con anticuerpo anti-RyR2 durante 30 min. Se lava de nuevo la placa para retirar el anticuerpo anti-RyR2 no unido, y después se trata con anticuerpo secundario con marcado fluorescente. Se lee la placa por un lector de placas fluorescente automático para determinar la actividad de unión.
En un ensayo alternativo, RyR2 está fosforilado por PKA en presencia de 32P-ATP. Se carga el RyR2 fosforilado por PKA radioactivo sobre una placa de 96 pocillos recubierta con FKBP12.6, en presencia de análogos de JTV-519 a varias concentraciones (10-100 nM) durante 30 min. Se lava la placa para retirar el RyR2 radiomarcado no unido, y a continuación se lee por un lector de placas automático.
Ejemplo 6 - Efecto de los compuestos ARM036 sobre corrientes de hERG
Se estudiaron los efectos de los compuestos de la invención sobre corrientes de hERG usando células cultivadas de riñón embrionario humano 293 (HEK 293) que se habían transfectado de forma estable con ADNc de hERG. Las células HEK 293 no expresan hERG endógeno. Se transfectaron células HEK293 con un plásmido que contenía el ADNc de hERG y un gen de resistencia a neomicina. Se seleccionaron los transfectantes estables cultivando las células en presencia de G418. Se mantuvo la presión de selección por cultivo continuado en presencia de G418. Se cultivaron las células en medio Eagle modificado de Dulbecco/Nutreint Mizture F-12 (D-MEM/F-12) complementado con suero fetal bovino al 10 %, 199 U/ml de penicilina G sodio, 10 μg/ml de sulfato estreptomicina y 500 μg/ml de G418. Se cultivaron las células para su uso en electrofisiología en platos de 35 mm.
Se realizaron registros electrofisiológicos (usando el procedimiento de pinzamiento zonal de membrana total) a temperatura ambiente (18 ºC-24 ºC). Cada célula actuó como su propio control. Se evaluó el efecto de ARM036 en dos concentraciones: 10 y 100 μM. Se sometió a prueba cada concentración en al menos tres células (n ≥ 3). Se usó cisaprida 90 nM (disponible comercialmente de TOCRIS Bioscience) como control positivo para el bloqueo de hERG. Para el registro, se transfectaron células a la cámara de registro y se supercondensó con solución de control de vehículo. La solución de pipeta de parche para registros de célula completa contenía aspartato de potasio 130 mM, MgCl2 5 mM, EGTA 5 mM, ATP 4 mM y HEPES 10 mM. Se ajustó el pH hasta 7,2 con KOH. Se preparó la solución de pipeta en lotes, se alicuotó y se almacenó congelada. Se descongeló una alícuota y se usó cada día. Las pipetas de parche se fabricaron de tubos de capilaridad de vidrio usando un extractor de micropipeta P-97 (Sutter Instruments, Novato, CA). Se usó un amplificador de pinzamiento zonal de membrana comercial para los registros de célula completa. Antes de la digitalización, se filtraron con paso bajo registros de corriente a un quinto de la frecuencia de muestra.
Se midió el bloqueo de inicio y de equilibrio de corriente de hERG usando un patrón de pulso con amplitudes fijas (acondicionamiento prepulso: +20 mV durante 2 segundos; pulso de prueba: _50 mV durante 2 segundos) repetido a intervalos de 10 segundos, a partir de un potencial de control de -80 mV. Se midió la corriente máxima de cola durante la etapa de 2 segundos a _50 mV. Se mantuvo un equilibrio durante al menos 30 segundos antes de aplicar el compuesto de prueba o el control positivo. Se monitorizó la corriente máxima de cola hasta que se logró un nuevo equilibrio. Se aplicaron las concentraciones del compuesto de prueba de forma cumulativa en orden ascendente sin lavado entre aplicaciones.
Se realizó un análisis de adquisición de datos usando el paquete informático de pCLAMP (Vre. 8.2) (Axon Instruments, Union City, CA). Se definió el equilibrio por la velocidad constante limitante de cambio con el tiempo (dependencia lineal con el tiempo). El equilibrio antes y después de la aplicación de los compuestos de prueba o de control se usó para calcular el porcentaje de corriente que inhibía cada concentración. Se ajustaron los datos de concentración-respuesta a una ecuación de la forma:
%Bloqueo = {1-1/[prueba]/CI50)N]}x100
donde [prueba] es la concentración del compuesto de prueba, IC50 (concentración inhibidora 50) es la concentración del compuesto de prueba que produce la mitad de la inhibición máxima, N es el coeficiente de Hill, y % Bloqueo es el porcentaje de corriente de hERG inhibida a cada concentración del compuesto de prueba. Los ajustes cuadrados no lineales se resolvieron con el complemento Solver de Excel 2000 (Microsoft, Redmond, WA). Para algunos compuestos no fue posible determinar la CI50 porque la mayor concentración del compuesto de prueba usado no bloqueó el canal de hERG en un 50 % o más.
Ejemplo 7 - Efecto de varios compuestos sobre corrientes de hERG
Se sometió a prueba el compuesto de la invención para determinar su efecto sobre corrientes de hERG. El compuesto sometido a prueba fue ARM036-Na. A modo de comparación, también se sometió a prueba el efecto de JTV-519 (denominado en las figuras ARM00X) sobre corrientes de hERG. Se realizaron registros electrofisiológicos usando el sistema de pinzamiento zonal de membrana paralelo automático PatchXpress 7000A (Molecular Devices). Se sometió a prueba cada compuesto a 0,01, 0,1, 1 y 10 mM, con cada concentración probada en 2 células (n > 2). La duración de exposición para cada concentración de prueba fue de 5 minutos. Otros aspectos de los protocolos experimentales fueron esencialmente similares a los descritos en el ejemplo 6. Para ARM036-Na no fue posible determinar la CI50 porque la mayor concentración del compuesto de prueba usado no bloqueó el canal de hERG en un 50 % o más.

Claims (3)

  1. REIVINDICACIONES
    1. Uso de un compuesto representado por la estructura:
    para tratar y evitar un trastorno o enfermedad asociado con un RyR que regula el funcionamiento de los canales de
    5 calcio en las células, o en la fabricación de un medicamento para dicho tratamiento o prevención, en el que el trastorno o enfermedad que está asociado con el RyR se selecciona del grupo que consiste en trastornos y enfermedades del músculo esquelético, trastornos y enfermedades cognitivos, hipertermia maligna, diabetes, y muerte súbita del lactante.
  2. 2. El uso de la reivindicación 1, en el que los trastornos y enfermedades del músculo esquelético asociados con el
    10 RyR se seleccionan del grupo que consiste en fatiga del músculo esquelético, fatiga del músculo esquelético inducida por ejercicio, miodistrofia, trastornos de la vejiga, e incontinencia
  3. 3. El uso de la reivindicación 1, en el que los trastornos y enfermedades cognitivos asociados con el RyR se seleccionan del grupo que consiste en enfermedad de Alzheimer, formas de pérdida de memoria, y pérdida de memoria dependiente de la edad.
ES11151905T 2005-08-25 2006-08-17 Agentes para evitar y tratar trastornos que implican la modulación de los receptores de RyR Active ES2405780T3 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US212413 1994-03-11
US11/212,413 US7704990B2 (en) 2005-08-25 2005-08-25 Agents for preventing and treating disorders involving modulation of the RyR receptors

Publications (1)

Publication Number Publication Date
ES2405780T3 true ES2405780T3 (es) 2013-06-03

Family

ID=37772221

Family Applications (3)

Application Number Title Priority Date Filing Date
ES09013475T Active ES2405765T3 (es) 2005-08-25 2006-08-17 Agentes para evitar y tratar trastornos que implican la modulación de los receptores de RyR
ES06801887T Active ES2421159T3 (es) 2005-08-25 2006-08-17 Agentes para evitar y tratar trastornos que implican la modulación de los receptores de RyR
ES11151905T Active ES2405780T3 (es) 2005-08-25 2006-08-17 Agentes para evitar y tratar trastornos que implican la modulación de los receptores de RyR

Family Applications Before (2)

Application Number Title Priority Date Filing Date
ES09013475T Active ES2405765T3 (es) 2005-08-25 2006-08-17 Agentes para evitar y tratar trastornos que implican la modulación de los receptores de RyR
ES06801887T Active ES2421159T3 (es) 2005-08-25 2006-08-17 Agentes para evitar y tratar trastornos que implican la modulación de los receptores de RyR

Country Status (35)

Country Link
US (1) US7704990B2 (es)
EP (4) EP2177224B1 (es)
JP (1) JP5342877B2 (es)
KR (2) KR20080037741A (es)
CN (2) CN102558093B (es)
AP (1) AP3091A (es)
AR (1) AR057776A1 (es)
AU (1) AU2006283534C1 (es)
BR (1) BRPI0615097B1 (es)
CA (1) CA2620183C (es)
CR (1) CR9812A (es)
CY (3) CY1113975T1 (es)
DK (3) DK2177224T3 (es)
EA (1) EA014941B1 (es)
EC (1) ECSP088306A (es)
ES (3) ES2405765T3 (es)
GE (1) GEP20105134B (es)
HK (3) HK1119705A1 (es)
HN (1) HN2008000299A (es)
HR (3) HRP20130353T1 (es)
IL (1) IL189675A (es)
MA (1) MA29785B1 (es)
MY (1) MY144622A (es)
NO (1) NO20081421L (es)
NZ (1) NZ566822A (es)
PL (3) PL1928850T3 (es)
PT (3) PT2311464E (es)
RS (3) RS52780B (es)
SI (3) SI2311464T1 (es)
SV (1) SV2008002828A (es)
TN (1) TNSN08078A1 (es)
TW (1) TWI486338B (es)
UA (1) UA93388C2 (es)
WO (1) WO2007024717A2 (es)
ZA (1) ZA200802338B (es)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060293266A1 (en) * 2000-05-10 2006-12-28 The Trustees Of Columbia Phosphodiesterase 4D in the ryanodine receptor complex protects against heart failure
US7879840B2 (en) * 2005-08-25 2011-02-01 The Trustees Of Columbia University In The City Of New York Agents for preventing and treating disorders involving modulation of the RyR receptors
US20040048780A1 (en) * 2000-05-10 2004-03-11 The Trustees Of Columbia University In The City Of New York Method for treating and preventing cardiac arrhythmia
US7393652B2 (en) * 2000-05-10 2008-07-01 The Trustees Of Columbia University In The City Of New York Methods for identifying a chemical compound that directly enhances binding of FKBP12.6 to PKA-phosphorylated type 2 ryanodine receptor (RyR2)
US7718644B2 (en) * 2004-01-22 2010-05-18 The Trustees Of Columbia University In The City Of New York Anti-arrhythmic and heart failure drugs that target the leak in the ryanodine receptor (RyR2) and uses thereof
US20040229781A1 (en) * 2000-05-10 2004-11-18 Marks Andrew Robert Compounds and methods for treating and preventing exercise-induced cardiac arrhythmias
US6489125B1 (en) * 2000-05-10 2002-12-03 The Trustees Of Columbia University In The City Of New York Methods for identifying chemical compounds that inhibit dissociation of FKBP12.6 binding protein from type 2 ryanodine receptor
US8022058B2 (en) * 2000-05-10 2011-09-20 The Trustees Of Columbia University In The City Of New York Agents for preventing and treating disorders involving modulation of the RyR receptors
US7544678B2 (en) * 2002-11-05 2009-06-09 The Trustees Of Columbia University In The City Of New York Anti-arrythmic and heart failure drugs that target the leak in the ryanodine receptor (RyR2)
JP2007525165A (ja) * 2003-03-07 2007-09-06 トラスティーズ・オブ・コロンビア・ユニバーシティ・イン・ザ・シティ・オブ・ニューヨーク タイプ1ライアノジン受容体に基づく方法
US8710045B2 (en) * 2004-01-22 2014-04-29 The Trustees Of Columbia University In The City Of New York Agents for preventing and treating disorders involving modulation of the ryanodine receptors
US7704990B2 (en) 2005-08-25 2010-04-27 The Trustees Of Columbia University In The City Of New York Agents for preventing and treating disorders involving modulation of the RyR receptors
WO2008144483A2 (en) * 2007-05-18 2008-11-27 Armgo Pharma, Inc. Agents for treating disorders involving modulation of ryanodine receptors
SI2250159T1 (sl) 2008-03-03 2012-04-30 Armgo Pharma Inc Postopek za pripravo benzotiazepinov iz gama-amino alkilbenzenov
AU2008243144A1 (en) * 2008-11-06 2010-05-20 Quark Technologies Australia Pty Ltd Improvements in Radiopharmaceutical Purification
JP4808825B2 (ja) * 2009-02-25 2011-11-02 昇 金子 1,4−ベンゾチアゼピン−1−オキシド誘導体、及びそれを用いた医薬組成物
EP2418950A4 (en) * 2009-04-15 2012-10-24 State Of Oregon By & Through The State Board Of Higher Education On Behalf Of Portland State Unv COMPOUNDS AND METHODS FOR MODULATING THE ACTIVITY OF CALCIUM RELEASE CHANNELS
CN101812523B (zh) * 2010-04-09 2012-08-22 广州益善生物技术有限公司 Ryr1基因snp检测特异性引物、液相芯片和检测方法
WO2012019076A1 (en) 2010-08-06 2012-02-09 The Trustees Of Columbia University In The City Of New York Compositions and methods for preventing and treating cardiac ischemia/reperfusion injury
US9464322B2 (en) 2011-09-09 2016-10-11 University Of Kentucky Research Foundation Methods for diagnosing and treating alzheimer's disease (AD) using the molecules that stabilize intracellular calcium (Ca2+) release
EP2708535A1 (en) 2012-05-11 2014-03-19 Les Laboratoires Servier Agents for treating disorders involving modulation of ryanodine receptors
US9572528B1 (en) 2012-08-06 2017-02-21 Los Angeles Biomedical Research Insitute at Harbor-UCLA Medical Center Monitor for SIDS research and prevention
WO2016168694A1 (en) * 2015-04-15 2016-10-20 Ohio State Innovation Foundation Engineered calmodulin for treatment of ryanopathies
ES2643856B1 (es) * 2016-05-24 2018-08-03 Universidad Del Pais Vasco / Euskal Herriko Unibertsitatea Triazoles para la regulación de la homeostasis de calcio intracelular
EP3554258B1 (en) 2016-12-15 2023-07-19 Société des Produits Nestlé S.A. Compositions and methods that modulate phosphorus or enzymes in a companion animal
MX2020000090A (es) * 2017-07-06 2020-08-06 Childrens Medical Center Composiciones y metodos para tratar o prevenir la taquicardia ventricular polimorfica catecolaminergica.
CN108588085B (zh) * 2018-05-30 2021-11-09 上海市第十人民医院 恶性心律失常的筛查试剂盒、动物模型的建立方法及应用
US11129871B1 (en) 2018-06-19 2021-09-28 Washington University Compositions and methods for treating and preventing endoplasmic reticulum (ER) stress-mediated kidney diseases
TWI827866B (zh) * 2019-07-22 2024-01-01 日商埃塔斯製藥股份有限公司 有光學活性的1,4-苯並硫氮呯-1-氧化物衍生物的製造方法
WO2022150603A1 (en) 2021-01-08 2022-07-14 Armgo Pharma, Inc. Crystalline forms of a ryanodine receptor modulator and uses thereof
US11717526B2 (en) 2021-05-20 2023-08-08 Armgo Pharma, Inc. Pharmaceutical compositions comprising a ryanodine receptor modulator and uses thereof

Family Cites Families (204)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1060786A (en) * 1963-10-09 1967-03-08 Wander Ag Dr A Process for the preparation of lactams
US3519647A (en) 1966-10-12 1970-07-07 Squibb & Sons Inc 2,3,4,5-tetrahydro-1,5-benzothiazepines
EP0150996B1 (en) * 1984-01-27 1988-01-07 Ajinomoto Co., Inc. Manufacture of heptanoic acid derivatives
EP0238700B1 (en) 1986-03-27 1991-01-23 Topy Industries, Limited Carbon monoxide oxidizing catalyst
US4567254A (en) * 1984-09-19 1986-01-28 Kikkoman Corporation Method for preparing N6,8-disubstituted 3',5'-cyclic adenosine monophosphate and salt thereof
JPS6260A (ja) 1985-02-26 1987-01-06 Ajinomoto Co Inc シクロペンテニルヘプタン酸誘導体の製造方法
US4841055A (en) * 1985-03-25 1989-06-20 Japan Tobacco Inc. Desmosine derivatives and reagent for preparing artificial antigens
US4723012A (en) * 1985-03-25 1988-02-02 Japan Tobacco Inc. Desmosine derivatives having a disulfide bond and preparation of artificial antigen using the same
US6956032B1 (en) * 1986-04-18 2005-10-18 Carnegie Mellon University Cyanine dyes as labeling reagents for detection of biological and other materials by luminescence methods
JPS63227599A (ja) 1987-03-14 1988-09-21 Kirin Brewery Co Ltd アンスラサイクリン化合物およびその用途
US5179125A (en) * 1987-12-03 1993-01-12 Dainippon Pharmaceutical Co., Ltd. N-substituted mercaptopropanamide derivatives
US5210266A (en) * 1987-12-03 1993-05-11 Dainippon Pharmaceutical Co., Ltd. N-substituted mercaptopropanamide derivatives
DE58901634D1 (de) * 1988-11-05 1992-07-16 Bayer Ag Verfahren zur kernchlorierung von aromatischen kohlenwasserstoffen.
JPH0662567B2 (ja) 1988-12-27 1994-08-17 麒麟麦酒株式会社 ピリジンカルボキシイミダミド誘導体、その製造中間体、製造法および用途
US5223508A (en) * 1988-12-27 1993-06-29 Kirin Beer Kabushiki Kaisha Pyridyl carboximidamide compounds useful in treating blood pressure
US5272164A (en) 1988-12-27 1993-12-21 Kirin Beer Kabushiki Kaisha Carboximidamide derivatives
US5142647A (en) 1989-04-18 1992-08-25 Japan Tobacco, Inc. Magnus measuring apparatus
CA1341094C (en) * 1989-09-25 2000-09-05 Ronald G. Worton Diagnosis for malignant hyperthermia
ES2084706T3 (es) * 1989-09-30 1996-05-16 Kirin Brewery Metodo de produccion de plantones.
US5075293A (en) 1989-10-10 1991-12-24 The Dow Chemical Company ((N-heterocyclyl)carbonyl)phosphoramidothioate ester insecticides
US5153184A (en) 1989-10-10 1992-10-06 Dowelanco ((N-heterocyclyl)carbonyl)phosphoramidothioate ester insecticides
KR940000166B1 (ko) * 1989-11-09 1994-01-08 니혼다바고 상교오 가부시기가이샤 신규 글루코사민 유도체 및 이것을 막 구성성분으로서 함유한 리포솜
US4963671A (en) 1989-11-20 1990-10-16 E. R. Squibb & Sons, Inc. Process for resolving chiral intermediates used in making calcium channel blockers
WO1991009851A1 (en) * 1989-12-27 1991-07-11 Japan Tobacco Inc. 1,3,2-dioxathiolane oxide derivative
KR920701200A (ko) * 1990-03-30 1992-08-11 미즈노 시게루 신규의 4h-3,1-벤조옥사진-4-온 유도체
JP2651043B2 (ja) * 1990-07-10 1997-09-10 麒麟麦酒株式会社 ジフェニルメチルピペラジン誘導体
US5082847A (en) 1990-07-18 1992-01-21 Syntex (U.S.A.) Inc. Carbostyril compounds connected via an oxyalkyl group with a piperidine ring and having pharmaceutical utility
US5064810A (en) 1990-09-14 1991-11-12 Jeffrey Askanazi Use of branched chain amino acids to effect diaphragm contractility and fatigue
JP2703408B2 (ja) * 1990-12-28 1998-01-26 麒麟麦酒株式会社 1,4‐ベンゾチアゼピン誘導体
DE4102103A1 (de) * 1991-01-25 1992-08-20 Bayer Ag Substituierte benzoxazepine und benzthiazepine, verfahren zu ihrer herstellung und ihre verwendung in arzneimitteln
US5332734A (en) 1991-04-10 1994-07-26 Japan Tobacco, Incorporated Oxazinone derivative
US5182272A (en) * 1991-05-03 1993-01-26 G. D. Searle & Co. 8-substituted-dibenz[b,f][1,4]oxazepine-10(11)-carboxylic acid, substituted hydrazides, pharmaceutical compositions, and methods for treating pain
US5180720A (en) * 1991-05-03 1993-01-19 G. D. Searle & Co. 2- and 3-alkoxy or hydroxy-8-substituted-dibenz[b,f]-[1,4]oxazepine-10(11H)-carboxylic acid, substituted hydrazides and methods for treating pain
US5476780A (en) 1991-07-04 1995-12-19 Japan Tobacco, Inc. Method for culturing T precursor cells under conditions of high oxygen concentration
WO1993007129A1 (en) * 1991-10-11 1993-04-15 Yoshitomi Pharmaceutical Industries, Ltd. Remedy for osteoporosis and diazepine compound
AU3143593A (en) * 1991-12-20 1993-07-28 G.D. Searle & Co. Substituted dibenzoxazepines or dibenzothiazepines and their use as prostaglandin E2 antagonists
MX9300433A (es) * 1992-01-28 1994-07-29 Kirin Brewery Compuestos de piridincarboximidamina y composiciones farmaceuticas que los contienen.
GB9203347D0 (en) * 1992-02-17 1992-04-01 Wellcome Found Hypolipidaemic compounds
JP2667351B2 (ja) 1992-03-24 1997-10-27 麒麟麦酒株式会社 食餌脂質消化吸収阻害剤および飲食品
US5387684A (en) * 1992-03-25 1995-02-07 The Green Cross Corporation Isoindazole compound
JP3093419B2 (ja) 1992-03-30 2000-10-03 麒麟麦酒株式会社 1,4‐ベンゾチアゼピン誘導体
US5304644A (en) * 1992-04-15 1994-04-19 G. D. Searle & Co. 1-,2-,3-,4-,5-,6-,7-,8- and/or 9 substituted dibenzoxazepine compounds, pharmaceutical compositions and methods for treating pain
US5478832A (en) 1992-05-08 1995-12-26 The Green Cross Corporation Quinoline compounds
RU94046317A (ru) 1992-07-02 1996-10-20 Фудзисава Фармасьютикал Ко. Новое синтетическое промежуточное соединение для получения производных и способы получения производных аминокислот
WO1994004523A1 (en) * 1992-08-21 1994-03-03 Japan Tobacco Inc. Dioxacycloalkane compound with renin-inhibiting activity
US5260286A (en) 1992-10-16 1993-11-09 Japan Tobacco, Inc. 2-piperidinecarboxylic acid derivatives useful as NMDA receptor antagonists
SK280522B6 (sk) 1992-11-09 2000-03-13 The Boots Company Plc Deriváty 2,3,4,5-tetrahydro-1,4-benzotiazepínov, s
US5354758A (en) 1992-12-16 1994-10-11 Japan Tobacco Inc. Benzomorphans useful as NMDA receptor antagonists
ZA94284B (en) * 1993-01-27 1994-08-17 Shionogi & Co Process for preparing benzothiazepine derivatives
ZA941003B (en) * 1993-02-15 1995-08-14 Wellcome Found Hypolipidaemic compounds
IL108634A0 (en) 1993-02-15 1994-05-30 Wellcome Found Hypolipidaemic heterocyclic compounds, their prepatation and pharmaceutical compositions containing them
US5780441A (en) 1993-04-15 1998-07-14 Kirin Beer Kabushiki Kaisha Sphingoglycolipid compounds and therapeutic uses thereof
US5461047A (en) 1993-06-16 1995-10-24 G. D. Searle & Co. 2-,3-,4-,5-,6-,7-,8-,9- and/or 10-substituted dibenzoxazepine and dibenzthiazepine compounds, pharmaceutical compositions and methods of use
US5354747A (en) 1993-06-16 1994-10-11 G. D. Searle & Co. 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9- and/or 10-substituted dibenzoxazepine and dibenzthiazepine compounds, pharmaceutical compositions and methods of use
EP0677581A4 (en) 1993-08-19 1995-12-06 Japan Tobacco Inc DNA WHICH CODES THE PLANT-BASED ATP-DEPENDENT FRUCTOSE-6-PHOSPHATE-1-PHOSPHOTRANSFERASE, A RECOMBINANT VECTOR CONTAINING THE SAME, AND A METHOD FOR CHANGING THE SUGAR CONTENT OF A PLANT PLANT THROUGH PLANT.
FR2709753B1 (fr) 1993-09-09 1995-12-01 Hoechst Lab Nitrates organiques, leur procédé de préparation et leur application comme médicaments.
JPH08127594A (ja) * 1993-11-10 1996-05-21 Mochida Pharmaceut Co Ltd Fas抗原に結合する新規蛋白質およびそれをコードするDNA
CA2153498A1 (en) * 1993-11-10 1995-05-18 Hidetsura Cho Chroman derivative and medicinal use thereof
US6897295B1 (en) * 1993-11-10 2005-05-24 Mochida Pharmaceutical Co., Ltd. Antibodies and fragments thereof to Fas ligand and Fas ligand derived polypeptides
JP3914272B2 (ja) * 1993-12-28 2007-05-16 中外製薬株式会社 アドゼベリンをコードする遺伝子
JP2706755B2 (ja) * 1994-02-10 1998-01-28 日本たばこ産業株式会社 新規なベンジルアミノエトキシベンゼン誘導体
US5457182A (en) 1994-02-15 1995-10-10 Merck & Co., Inc. FK-506 cytosolic binding protein, FKBP12.6
US5449675A (en) 1994-06-09 1995-09-12 G. D. Searle & Co. Substituted dibenzoxazepine and dibenzthiazepine urea compounds, pharmaceutical compositions and methods of use
US20040175814A1 (en) 1994-06-15 2004-09-09 Kirin Beer Kubushiki Kaisha Novel transferase and amylase, process for producing the enzymes, use thereof, and gene coding for the same
DE69535865D1 (de) * 1994-06-15 2008-11-27 Kirin Brewery Transferase und Amylase, Verfahren zur Herstellung dieser Enzyme, ihre Verwendung und kodierende Gene
ZA956647B (en) 1994-08-10 1997-02-10 Wellcome Found Hypolipidaemic compounds.
US5767247A (en) 1994-11-11 1998-06-16 Noboru Kaneko Anti-annexin-V monoclonal antibodies, and preparation and use thereof
WO1996016062A1 (fr) 1994-11-18 1996-05-30 Japan Tobacco Inc. Remede contre l'osteoporose et compose de triazepine
US6632976B1 (en) 1995-08-29 2003-10-14 Kirin Beer Kabushiki Kaisha Chimeric mice that are produced by microcell mediated chromosome transfer and that retain a human antibody gene
US6660837B1 (en) 1995-09-14 2003-12-09 Kirin Beer Kabushiki Kaisha Modified protein derived from protein kinase N
JP3193301B2 (ja) * 1995-09-14 2001-07-30 麒麟麦酒株式会社 生理活性タンパク質p160
US5906819A (en) * 1995-11-20 1999-05-25 Kirin Beer Kabushiki Kaisha Rho target protein Rho-kinase
US5866341A (en) * 1996-04-03 1999-02-02 Chugai Pharmaceutical Co., Ltd. Compositions and methods for screening drug libraries
JP4331264B2 (ja) 1996-07-08 2009-09-16 協和発酵キリン株式会社 カルシウムレセプター活性化合物
JP3861187B2 (ja) * 1996-08-02 2006-12-20 住友精化株式会社 チアゼピン誘導体の製造方法
US6111072A (en) 1996-08-26 2000-08-29 Kirin Beer Kabushiki Kaisha Rho target protein human mDia and gene encoding same
DE69732628T2 (de) * 1996-12-12 2005-12-29 Kirin Beer K.K. Beta 1-4 n-acetylglucosaminyltransferase sowie das für diese kodierende gen
TW555562B (en) * 1996-12-27 2003-10-01 Kirin Brewery Method for activation of human antigen-presenting cells, activated human antigen-presenting cells and use thereof
JP2894445B2 (ja) 1997-02-12 1999-05-24 日本たばこ産業株式会社 Cetp活性阻害剤として有効な化合物
JP3521382B2 (ja) 1997-02-27 2004-04-19 日本たばこ産業株式会社 細胞間接着及びシグナル伝達を媒介する細胞表面分子
US7112655B1 (en) 1997-02-27 2006-09-26 Japan Tobacco, Inc. JTT-1 protein and methods of inhibiting lymphocyte activation
JP3885177B2 (ja) 1997-03-26 2007-02-21 大塚製薬株式会社 ヒト遺伝子
US6011036A (en) 1997-04-15 2000-01-04 Dr. Reddy's Research Foundation Heterocyclic compounds having antidiabetic hypolipidemic antihypertensive properties process for their preparation and pharmaceutical compositions containing them
DE19722317C1 (de) 1997-05-28 1998-10-08 Boehringer Ingelheim Int Das Protein des humanen Ryanodinrezeptors vom Typ 3 sowie dafür kodierende DNA-Moleküle
AUPO941497A0 (en) 1997-09-24 1997-10-16 Fujisawa Pharmaceutical Co., Ltd. Novel compounds
US20030064406A1 (en) * 1997-10-08 2003-04-03 Noboru Kaneko Process for analyzing annexin-V in urine, and application thereof
GB9724813D0 (en) 1997-11-25 1998-01-21 Univ Nottingham Reducing muscle fatigue
JP2959765B2 (ja) * 1997-12-12 1999-10-06 日本たばこ産業株式会社 3−ピペリジル−4−オキソキナゾリン誘導体及びそれを含有してなる医薬組成物
US6562618B1 (en) * 1997-12-25 2003-05-13 Japan Tobacco, Inc. Monoclonal antibody against connective tissue growth factor and medicinal uses thereof
US6583157B2 (en) 1998-01-29 2003-06-24 Tularik Inc. Quinolinyl and benzothiazolyl modulators
US6051714A (en) 1998-03-12 2000-04-18 Reilly Industries, Inc. Processes for dechlorinating pyridines
WO1999048492A1 (fr) 1998-03-26 1999-09-30 Japan Tobacco Inc. Derives d'amide et antagonistes de nociceptine
PL343424A1 (en) * 1998-04-10 2001-08-13 Japan Tobacco Inc Amidine compounds
EP1085879A2 (en) * 1998-06-08 2001-03-28 Advanced Medicine, Inc. Multibinding agents that modulate the 5-ht transporter
WO2000006724A1 (fr) * 1998-07-31 2000-02-10 Kirin Beer Kabushiki Kaisha Medicaments permettant de soigner la neuropathie contenant de la galectine-1 ou ses derives comme substance active
WO2000016806A1 (fr) 1998-09-17 2000-03-30 Nippon Kayaku Kabushiki Kaisha Remedes pour photochimioterapie
DE69929362T2 (de) * 1998-12-28 2006-09-28 Kaneko, Noboru verwendung von 1,4-benzothiazepinen zur Herstellung eines Medikaments ZUR BEHANDLUNG DER VORHOF-FIBRILLATION
EP1167537B1 (en) * 1999-03-30 2008-07-23 Japan Tobacco Inc. Process for producing monoclonal antibody
KR100686617B1 (ko) 1999-05-19 2007-02-23 가네꼬 노보루 1,4-벤조티아제핀유도체의 항암제 내성극복의약조성물
GB9914745D0 (en) * 1999-06-24 1999-08-25 Knoll Ag Therapeutic agents
JP3871503B2 (ja) 1999-08-30 2007-01-24 日本たばこ産業株式会社 免疫性疾患治療剤
AU7097400A (en) * 1999-09-01 2001-03-26 Otsuka Pharmaceutical Co., Ltd. Platelet membrane glycoprotein vi (gpvi) dna and protein sequences, and uses thereof
WO2001022968A1 (fr) * 1999-09-30 2001-04-05 Noboru Kaneko Agents anticancereux
TWI281915B (en) 1999-12-24 2007-06-01 Kirin Brewery Quinoline and quinazoline derivatives and drugs containing the same
WO2001047510A2 (en) * 1999-12-29 2001-07-05 Glaxo Group Limited Methods and compositions related to modulators of annexin and cartilage homeostasis
AU2001241420A1 (en) 2000-01-14 2001-07-24 Mitokor Screening assays using intramitochondrial calcium
MXPA02007035A (es) 2000-01-20 2002-12-13 Eisai Co Ltd Compuesto ciclico conteniendo nitrogeno y composicion farmaceutica conteniendo el compuesto.
WO2001055118A1 (fr) 2000-01-26 2001-08-02 Ono Pharmaceutical Co., Ltd. Derives heterocycliques condenses au benzene et medicaments contenant ceux-ci comme ingredients actifs
US6824973B2 (en) 2000-02-03 2004-11-30 Kirin Beer Kabushiki Kaisha Method of promoting stem cell proliferation or survival by contacting a cell with a stem cell factor-like polypeptide
AU2001232340A1 (en) 2000-02-18 2001-08-27 Kirin Beer Kabushiki Kaisha Novel isoxazole and thiazole compounds and use thereof as drugs
KR100835265B1 (ko) 2000-03-24 2008-06-09 파마시아 코포레이션 산화 질소 신타아제 억제제로 유용한 아미디노 화합물 및그들의 염
AR034120A1 (es) 2000-04-13 2004-02-04 Pharmacia Corp Compuesto derivado halogenado del acido 2-amino-4,5 heptenoico, composicion farmaceutica que lo comprende y el uso de dicho compuesto y dicha composicion en la fabricacion de un medicamento para inhibir o modular la sintesis de acido nitrico
AR032318A1 (es) 2000-04-13 2003-11-05 Pharmacia Corp Compuesto derivado halogenado del acido 2-amino-5,6 heptenoico; composicion farmaceutica que lo comprende y su uso en la fabricacion de un medicamento util como inhibidor de la oxido nitrico sintetasa
US6787668B2 (en) 2000-04-13 2004-09-07 Pharmacia Corporation 2-amino-4,5 heptenoic acid derivatives useful as nitric oxide synthase inhibitors
US6545170B2 (en) * 2000-04-13 2003-04-08 Pharmacia Corporation 2-amino-5, 6 heptenoic acid derivatives useful as nitric oxide synthase inhibitors
US8022058B2 (en) 2000-05-10 2011-09-20 The Trustees Of Columbia University In The City Of New York Agents for preventing and treating disorders involving modulation of the RyR receptors
US20040048780A1 (en) * 2000-05-10 2004-03-11 The Trustees Of Columbia University In The City Of New York Method for treating and preventing cardiac arrhythmia
US7718644B2 (en) * 2004-01-22 2010-05-18 The Trustees Of Columbia University In The City Of New York Anti-arrhythmic and heart failure drugs that target the leak in the ryanodine receptor (RyR2) and uses thereof
US20060293266A1 (en) 2000-05-10 2006-12-28 The Trustees Of Columbia Phosphodiesterase 4D in the ryanodine receptor complex protects against heart failure
US6489125B1 (en) 2000-05-10 2002-12-03 The Trustees Of Columbia University In The City Of New York Methods for identifying chemical compounds that inhibit dissociation of FKBP12.6 binding protein from type 2 ryanodine receptor
US20040229781A1 (en) * 2000-05-10 2004-11-18 Marks Andrew Robert Compounds and methods for treating and preventing exercise-induced cardiac arrhythmias
US7879840B2 (en) 2005-08-25 2011-02-01 The Trustees Of Columbia University In The City Of New York Agents for preventing and treating disorders involving modulation of the RyR receptors
US7393652B2 (en) 2000-05-10 2008-07-01 The Trustees Of Columbia University In The City Of New York Methods for identifying a chemical compound that directly enhances binding of FKBP12.6 to PKA-phosphorylated type 2 ryanodine receptor (RyR2)
CA2409437A1 (en) 2000-05-11 2001-11-22 Pharmacia Corporation Aldosterone antagonist composition for release during aldosterone acrophase
US20030220312A1 (en) 2000-05-11 2003-11-27 G.D. Searle & Co. Epoxy-steroidal aldosterone antagonist and calcium channel blocker combination therapy for treatment of cardiovascular disorders
JP3597140B2 (ja) 2000-05-18 2004-12-02 日本たばこ産業株式会社 副刺激伝達分子ailimに対するヒトモノクローナル抗体及びその医薬用途
CN101498731A (zh) 2000-05-18 2009-08-05 日本烟草产业株式会社 抗协同刺激信号转导分子ailim的人单克隆抗体及其药物用途
EP1300142A4 (en) 2000-07-05 2004-05-19 Ajinomoto Kk HYPOGLYCEMIC COMPOUNDS
AU2001267879A1 (en) 2000-07-05 2002-01-14 Ajinomoto Co., Inc. Acylsulfonamide derivatives
AU2001278045B2 (en) * 2000-07-27 2006-08-03 Pharmacia Corporation Epoxy-steroidal aldosterone antagonist and calcium channel blocker combination therapy for treatment of congestive heart failure
EP1305293A1 (en) 2000-08-01 2003-05-02 Pharmacia Corporation Hexahydro-7-imino-1h-azepin-2-yl-hexanoic acid derivatives as inhibitors of inducible nitric oxide synthase
MY131964A (en) * 2000-09-15 2007-09-28 Pharmacia Corp 2-amino-2-alkyl-5 heptenoic and heptynoic acid derivatives useful as nitric oxide synthase inhibitors
AR031129A1 (es) * 2000-09-15 2003-09-10 Pharmacia Corp Derivados de los acidos 2-amino-2-alquil-4-hexenoico y -hexinoico utiles como inhibidores de oxido nitrico sintetasa
AR031608A1 (es) 2000-09-15 2003-09-24 Pharmacia Corp Derivados de los acidos 2-amino-2-alquil-3-hexenoico y -hexinoico utiles como inhibidores de oxido nitrico sintetasa
US6936426B2 (en) * 2000-10-06 2005-08-30 Harbor-Ucla Research And Education Institute Detection of antibody mediated inflammatory auto-immune disorders
CA2430013C (en) * 2000-11-30 2011-11-22 Medarex, Inc. Transgenic transchromosomal rodents for making human antibodies
US6673904B2 (en) * 2000-12-23 2004-01-06 Kirin Beer Kabushiki Kaisha Stem cell growth factor-like polypeptides
US6962926B2 (en) 2001-01-31 2005-11-08 Telik, Inc. Antagonist of MCP-1 function, and compositions and methods of use thereof
EP1365022A4 (en) * 2001-02-01 2004-04-28 Mochida Pharm Co Ltd ADIPONECTIN-ASSOCIATED PROTEIN
JP4817514B2 (ja) * 2001-03-09 2011-11-16 協和発酵キリン株式会社 新規動物細胞用ベクターおよびその使用
JP4175113B2 (ja) * 2001-03-14 2008-11-05 小野薬品工業株式会社 Ep1アンタゴニストを有効成分として含有するうつ病の治療剤
US20030054531A1 (en) * 2001-03-19 2003-03-20 Decode Genetics Ehf, Human stroke gene
AU2002306868A1 (en) 2001-03-28 2002-10-15 Pharmacia Corporation Therapeutic combinations for cardiovascular and inflammatory indications
KR100879669B1 (ko) 2001-04-27 2009-01-21 기린 파마 가부시끼가이샤 아졸릴기를 갖는 퀴놀린 유도체 및 퀴나졸린 유도체
JP4230681B2 (ja) 2001-07-06 2009-02-25 株式会社東芝 高耐圧半導体装置
US20030220310A1 (en) 2001-07-27 2003-11-27 Schuh Joseph R. Epoxy-steroidal aldosterone antagonist and calcium channel blocker combination therapy for treatment of congestive heart failure
GB0121621D0 (en) * 2001-09-07 2001-10-31 Astrazeneca Ab Chemical compounds
AU2002336532C1 (en) * 2001-09-14 2008-10-16 Amgen, Inc Linked biaryl compounds
JP2003095977A (ja) * 2001-09-21 2003-04-03 Masafumi Yano 筋肉収縮・弛緩機能障害関連疾患の治療又は予防剤
US20050177884A1 (en) 2001-11-15 2005-08-11 Kirin Beer Kabushiki Kaisha Chimeric nonhuman animal
JP2003145746A (ja) * 2001-11-16 2003-05-21 Seiko Epson Corp インクジェット記録方法及びインクジェット記録装置
AU2002354056A1 (en) 2001-11-19 2003-06-10 Ono Pharmaceutical Co., Ltd. Remedies for urinary frequency
WO2003048140A1 (fr) * 2001-12-03 2003-06-12 Japan Tobacco Inc. Compose azole et utilisation medicinale de celui-ci
US20040171613A1 (en) 2001-12-27 2004-09-02 Japan Tobacco Inc. Therapeutic agent for non-immediate type allergic diseases
WO2003061699A1 (fr) 2001-12-27 2003-07-31 Japan Tobacco, Inc. Remedes pour affections allergiques
MXPA04006255A (es) * 2002-01-17 2004-09-27 Pharmacia Corp Compuestos novedosos de alquil/aril hidroxi o ceto tiepina como inhibidores del transporte del acido biliar codependiente del sodio apical y la captacion de taurocolato.
WO2003064404A1 (fr) 2002-02-01 2003-08-07 Dainippon Pharmaceutical Co., Ltd. Hydrazides d'acide 2-furancarboxylique et compositions pharmaceutiques les contenant
US20060233902A1 (en) 2002-02-14 2006-10-19 Kirin Beer Kabushiki Kaisha Compositions and foods for improving lipid metabolism
US7439332B2 (en) 2002-04-26 2008-10-21 Kirin Pharma Kabushiki Kaisha Polypeptide having an activity to support proliferation or survival of hematopoietic stem or progenitor cells
CN1655696A (zh) * 2002-04-26 2005-08-17 日本烟草产业株式会社 棒状物品成形装置
JP4113042B2 (ja) * 2002-05-24 2008-07-02 シチズンホールディングス株式会社 表示装置およびカラー表示方法
DE10237723A1 (de) 2002-08-17 2004-07-08 Aventis Pharma Deutschland Gmbh Verwendung von IKappaB-Kinase Inhibitoren in der Schmerztherapie
SK2332004A3 (en) * 2002-08-30 2004-12-01 Japan Tobacco Inc Dibenzylamine compound and medicinal use thereof
JP2004103256A (ja) 2002-09-04 2004-04-02 Nippon Chemicon Corp 非常灯
AU2003264427A1 (en) 2002-09-12 2004-04-30 Kirin Beer Kabushiki Kaisha Isoquinoline derivatives having kinasae inhibitory activity and drugs containing the same
EP1541153A1 (en) 2002-09-20 2005-06-15 Kirin Beer Kabushiki Kaisha Hepatitis c virus inhibitor comprising alpha-glycosylceramide as the active ingredient
CA2501068C (en) 2002-10-04 2014-12-16 Kirin Beer Kabushiki Kaisha Human artificial chromosome (hac) vector
US7544678B2 (en) 2002-11-05 2009-06-09 The Trustees Of Columbia University In The City Of New York Anti-arrythmic and heart failure drugs that target the leak in the ryanodine receptor (RyR2)
AU2003301894A1 (en) 2002-11-08 2004-06-07 Bayer Healthcare Ag Diagnostics and therapeutics for diseases associated with human phosphodiesterase 4d (pde4d)
MXPA05005425A (es) 2002-11-22 2005-11-23 Japan Tobacco Inc Heterociclos que contienen nitrogeno, biciclicos, fusionados.
EP1439221B1 (en) 2002-12-17 2007-01-24 F. Hoffmann-La Roche Ag PDE core construct
JP4400563B2 (ja) 2003-02-13 2010-01-20 萬有製薬株式会社 新規2−ピリジンカルボキサミド誘導体
TWI220798B (en) 2003-03-07 2004-09-01 Hitachi Cable Light-emitting diode array
JP2007525165A (ja) 2003-03-07 2007-09-06 トラスティーズ・オブ・コロンビア・ユニバーシティ・イン・ザ・シティ・オブ・ニューヨーク タイプ1ライアノジン受容体に基づく方法
PL1603553T3 (pl) 2003-03-17 2012-04-30 Japan Tobacco Inc Kompozycje farmaceutyczne inhibitorów CETP
KR20050110017A (ko) 2003-03-17 2005-11-22 니뽄 다바코 산교 가부시키가이샤 S-'2-(''1-(2-에틸부틸)시클로헥실!카르보닐!아미노)페닐!-2-메틸프로판티오에이트의 경구 생체이용율을증가시키는 방법
CL2004000544A1 (es) 2003-03-18 2005-01-28 Pharmacia Corp Sa Organizada B Uso de una combinacion farmaceutica, de un antagonista del receptor de aldosterona y un inhibidor de endopeptidasa neutral, util para el tratamiento y prevencion de una condicion patologica relacionada con hipertension, disfuncion renal, insulinopati
US20040235162A1 (en) 2003-03-18 2004-11-25 Kirin Beer Kabushiki Kaisha Method of preparing immunoregulatory dendritic cells and the use thereof
US20050032210A1 (en) * 2003-03-18 2005-02-10 Kirin Beer Kabushiki Kaisha Method of preparing immuno-regulatory dendritic cells and the use thereof
US8134015B2 (en) 2003-03-27 2012-03-13 Kyowa Hakko Kirin Co., Ltd. Compound inhibiting in vivo phosphorous transport and medicine containing the same
WO2004089918A1 (ja) 2003-04-09 2004-10-21 Japan Tobacco Inc. 複素芳香5員環化合物及びその医薬用途
US20040229803A1 (en) 2003-04-22 2004-11-18 Pharmacia Corporation Compositions of a cyclooxygenase-2 selective inhibitor and a potassium ion channel modulator for the treatment of pain, inflammation or inflammation mediated disorders
WO2004093816A2 (en) 2003-04-22 2004-11-04 Pharmacia Corporation Compositions comprising a selective cox-2 inhibitor and a calcium modulating agent
WO2004093813A2 (en) 2003-04-22 2004-11-04 Pharmacia Corporation Compositions of a cyclooxygenase-2 selective inhibitor and a calcium modulating agent for the treatment of pain, inflammation or inflammation mediated disorders
US20050009733A1 (en) * 2003-04-22 2005-01-13 Pharmacia Corporation Compositions of a cyclooxygenase-2 selective inhibitor and a potassium ion channel modulator for the treatment of central nervous system damage
TWI393560B (zh) * 2003-05-02 2013-04-21 Japan Tobacco Inc 包含s-〔2(〔〔1-(2-乙基丁基)環己基〕羰基〕胺基)苯基〕2-甲基丙烷硫酯及hmg輔酶a還原酶抑制劑之組合
WO2005016249A2 (en) * 2003-07-11 2005-02-24 Pharmacia Corporation Compositions of a chromene or phenyl acetic acid cyclooxygenase-2 selective inhibitor and an ace inhibitor for the treatment of central nervous system damage
EP1653969A4 (en) * 2003-08-07 2006-12-20 Japan Tobacco Inc PYRROLO 1,2-B PYRIDAZINE DERIVATIVES
CA2536173A1 (en) * 2003-08-20 2005-03-03 Nitromed, Inc. Nitrosated and nitrosylated cardiovascular compounds, compositions and methods of use
AU2004270162B2 (en) * 2003-08-28 2010-05-13 Nicox S.A. Nitrosated ad nitrosylated diuretic compouds, compositions and methods of use
US20050187221A1 (en) 2003-09-08 2005-08-25 Japan Tobacco Inc. Method of treating ischemia reperfusion injury
WO2005063247A1 (en) 2003-12-22 2005-07-14 Amgen Inc. Aryl sulfonamide compounds and uses related thereto
US7165879B2 (en) 2004-03-25 2007-01-23 Red Devil Equipment Company Clamp lock apparatus and method for a paint mixer
NZ550106A (en) * 2004-04-22 2009-06-26 Kyowa Hakko Kirin Co Ltd Transgenic animals and uses thereof
AU2005238389B2 (en) 2004-04-28 2009-08-06 Aetas Pharma Co., Ltd. Muscle relaxation accelerator and therapeutic agent for muscular tissue diseases such as muscle relaxation failure
US7378423B2 (en) * 2004-06-11 2008-05-27 Japan Tobacco Inc. Pyrimidine compound and medical use thereof
JP3968358B2 (ja) * 2004-06-30 2007-08-29 日本電信電話株式会社 薄型フラットツイストぺアすきまケーブル及びすきまナビゲータユニット
BRPI0513286A (pt) * 2004-07-15 2008-05-06 Japan Tobacco Inc compostos de benzamida condensada e inibidores de atividade de receptor vanilóide subtipo (vr1), suas composições farmacêuticas, pacote comercial, fármaco e respectivos usos
JP2006094849A (ja) 2004-08-30 2006-04-13 Kirin Brewery Co Ltd 相同組換え効率が向上した分化多能性細胞及びその利用
AR051780A1 (es) * 2004-11-29 2007-02-07 Japan Tobacco Inc Compuestos en anillo fusionados que contienen nitrogeno y utilizacion de los mismos
WO2006091716A2 (en) 2005-02-24 2006-08-31 Nitromed, Inc. Nitric oxide enhancing diuretic compounds, compositions and methods of use
KR100917511B1 (ko) 2005-02-28 2009-09-16 니뽄 다바코 산교 가부시키가이샤 Syk 저해 활성을 갖는 신규한 아미노피리딘 화합물
WO2006098394A1 (ja) 2005-03-14 2006-09-21 Japan Tobacco Inc. 脂質吸収抑制方法および脂質吸収抑制剤
US7704990B2 (en) 2005-08-25 2010-04-27 The Trustees Of Columbia University In The City Of New York Agents for preventing and treating disorders involving modulation of the RyR receptors

Also Published As

Publication number Publication date
HN2008000299A (es) 2011-07-11
AU2006283534C1 (en) 2012-08-02
EP2177224B1 (en) 2013-02-27
TNSN08078A1 (en) 2009-07-14
WO2007024717A3 (en) 2009-01-08
PL2177224T3 (pl) 2013-07-31
JP2009506034A (ja) 2009-02-12
EA200800665A1 (ru) 2008-08-29
EP2177224A2 (en) 2010-04-21
PT2311464E (pt) 2013-05-15
NZ566822A (en) 2011-04-29
NO20081421L (no) 2008-05-23
EP2311464B1 (en) 2013-02-13
US20070049572A1 (en) 2007-03-01
EP1928850B1 (en) 2013-06-19
CA2620183C (en) 2014-04-15
PL1928850T3 (pl) 2013-11-29
EP2311464A1 (en) 2011-04-20
CY1114091T1 (el) 2016-07-27
HRP20130669T1 (hr) 2013-08-31
CR9812A (es) 2009-09-14
HK1119705A1 (en) 2009-03-13
ECSP088306A (es) 2008-07-30
HK1137150A1 (en) 2010-07-23
MY144622A (en) 2011-10-14
ZA200802338B (en) 2009-01-28
SI1928850T1 (sl) 2013-09-30
KR20120025626A (ko) 2012-03-15
KR20080037741A (ko) 2008-04-30
SV2008002828A (es) 2010-07-20
ES2421159T3 (es) 2013-08-29
JP5342877B2 (ja) 2013-11-13
EP2177224A3 (en) 2010-06-30
RS52852B (en) 2013-12-31
SI2177224T1 (sl) 2013-06-28
DK2311464T3 (da) 2013-05-13
EA014941B1 (ru) 2011-04-29
CY1113974T1 (el) 2016-07-27
EP2764867A1 (en) 2014-08-13
CA2620183A1 (en) 2007-03-01
DK1928850T3 (da) 2013-09-23
ES2405765T3 (es) 2013-06-03
PT2177224E (pt) 2013-05-15
HRP20130353T1 (hr) 2013-06-30
HRP20130360T1 (hr) 2013-06-30
UA93388C2 (uk) 2011-02-10
US7704990B2 (en) 2010-04-27
MA29785B1 (fr) 2008-09-01
AU2006283534B2 (en) 2010-11-04
CN102558093B (zh) 2014-10-15
AR057776A1 (es) 2007-12-19
WO2007024717A2 (en) 2007-03-01
SI2311464T1 (sl) 2013-06-28
HK1153664A1 (en) 2012-04-05
CN101500576B (zh) 2013-08-14
DK2177224T3 (da) 2013-05-13
AU2006283534A1 (en) 2007-03-01
CN101500576A (zh) 2009-08-05
TW200800930A (en) 2008-01-01
IL189675A0 (en) 2008-06-05
IL189675A (en) 2013-12-31
CY1113975T1 (el) 2016-07-27
CN102558093A (zh) 2012-07-11
EP1928850A2 (en) 2008-06-11
KR101456342B1 (ko) 2014-11-03
RS52780B (en) 2013-10-31
EP1928850A4 (en) 2009-06-17
PL2311464T3 (pl) 2013-07-31
PT1928850E (pt) 2013-08-23
TWI486338B (zh) 2015-06-01
GEP20105134B (en) 2010-12-27
AP3091A (en) 2015-01-31
RS52781B (en) 2013-10-31
BRPI0615097B1 (pt) 2021-06-01
BRPI0615097A2 (pt) 2009-07-14

Similar Documents

Publication Publication Date Title
ES2405780T3 (es) Agentes para evitar y tratar trastornos que implican la modulación de los receptores de RyR
US8022058B2 (en) Agents for preventing and treating disorders involving modulation of the RyR receptors
ES2394104T3 (es) Derivados de benzotiazepina como inhibidores del receptor de rianodina (RYR2) y su uso en el tratamiento de enfermedades cardiacas
US8853198B2 (en) Agents for treating disorders involving modulation of ryanodine receptors
US7879840B2 (en) Agents for preventing and treating disorders involving modulation of the RyR receptors
KR20070116900A (ko) 라이아노딘 수용체 (ryr2)에서의 누출을 표적화하는신규한 항부정맥 및 심부전 약물
WO2008060332A2 (en) Methods for treating or reducing muscle fatigue
US20140187536A1 (en) Agents for preventing and treating disorders involving modulation of the ryanodine receptors