ES2398052T3 - Sistemas para tratar un árbol bronquial - Google Patents
Sistemas para tratar un árbol bronquial Download PDFInfo
- Publication number
- ES2398052T3 ES2398052T3 ES09743805T ES09743805T ES2398052T3 ES 2398052 T3 ES2398052 T3 ES 2398052T3 ES 09743805 T ES09743805 T ES 09743805T ES 09743805 T ES09743805 T ES 09743805T ES 2398052 T3 ES2398052 T3 ES 2398052T3
- Authority
- ES
- Spain
- Prior art keywords
- electrode
- tissue
- expandable balloon
- airway
- nerve
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002679 ablation Methods 0.000 claims abstract description 113
- 210000005036 nerve Anatomy 0.000 claims abstract description 101
- 210000000944 nerve tissue Anatomy 0.000 claims abstract description 71
- 239000003507 refrigerant Substances 0.000 claims abstract description 41
- 210000000653 nervous system Anatomy 0.000 claims abstract description 22
- 239000002826 coolant Substances 0.000 claims abstract description 7
- 230000000451 tissue damage Effects 0.000 claims abstract description 6
- 231100000827 tissue damage Toxicity 0.000 claims abstract description 6
- 210000001519 tissue Anatomy 0.000 claims description 160
- 230000006378 damage Effects 0.000 claims description 58
- 230000030833 cell death Effects 0.000 claims description 20
- 238000002604 ultrasonography Methods 0.000 claims description 16
- 239000000523 sample Substances 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000003384 imaging method Methods 0.000 claims description 7
- 230000034994 death Effects 0.000 claims description 2
- 239000012141 concentrate Substances 0.000 claims 1
- 230000000241 respiratory effect Effects 0.000 abstract description 5
- 238000011282 treatment Methods 0.000 description 140
- 210000004072 lung Anatomy 0.000 description 87
- 238000000034 method Methods 0.000 description 61
- 210000000621 bronchi Anatomy 0.000 description 52
- 239000012530 fluid Substances 0.000 description 52
- 210000002460 smooth muscle Anatomy 0.000 description 43
- 230000000712 assembly Effects 0.000 description 34
- 238000000429 assembly Methods 0.000 description 34
- 210000002808 connective tissue Anatomy 0.000 description 28
- 210000004369 blood Anatomy 0.000 description 24
- 239000008280 blood Substances 0.000 description 24
- 239000000126 substance Substances 0.000 description 24
- 210000003097 mucus Anatomy 0.000 description 21
- 210000001710 bronchial artery Anatomy 0.000 description 18
- 230000007423 decrease Effects 0.000 description 18
- 210000002345 respiratory system Anatomy 0.000 description 18
- 230000000694 effects Effects 0.000 description 17
- 210000004204 blood vessel Anatomy 0.000 description 16
- 238000001816 cooling Methods 0.000 description 16
- 210000004907 gland Anatomy 0.000 description 16
- 230000002685 pulmonary effect Effects 0.000 description 16
- 210000003437 trachea Anatomy 0.000 description 16
- 239000007789 gas Substances 0.000 description 15
- 210000001186 vagus nerve Anatomy 0.000 description 14
- 210000000981 epithelium Anatomy 0.000 description 13
- 210000004126 nerve fiber Anatomy 0.000 description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 12
- 229910052760 oxygen Inorganic materials 0.000 description 12
- 239000001301 oxygen Substances 0.000 description 12
- 208000019693 Lung disease Diseases 0.000 description 11
- 230000004941 influx Effects 0.000 description 11
- 210000003205 muscle Anatomy 0.000 description 11
- 230000008569 process Effects 0.000 description 11
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 10
- 206010013975 Dyspnoeas Diseases 0.000 description 10
- 208000006673 asthma Diseases 0.000 description 10
- 230000001681 protective effect Effects 0.000 description 10
- 230000004044 response Effects 0.000 description 10
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 230000003843 mucus production Effects 0.000 description 9
- 208000006545 Chronic Obstructive Pulmonary Disease Diseases 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 8
- 230000001886 ciliary effect Effects 0.000 description 8
- 230000002638 denervation Effects 0.000 description 8
- 208000014674 injury Diseases 0.000 description 8
- 238000002560 therapeutic procedure Methods 0.000 description 8
- 230000032258 transport Effects 0.000 description 8
- 208000000884 Airway Obstruction Diseases 0.000 description 7
- 206010011224 Cough Diseases 0.000 description 7
- 208000027418 Wounds and injury Diseases 0.000 description 7
- 210000001367 artery Anatomy 0.000 description 7
- 210000000038 chest Anatomy 0.000 description 7
- 210000004081 cilia Anatomy 0.000 description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 7
- 238000009826 distribution Methods 0.000 description 7
- 239000000835 fiber Substances 0.000 description 7
- 239000002085 irritant Substances 0.000 description 7
- 231100000021 irritant Toxicity 0.000 description 7
- 208000024891 symptom Diseases 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 230000004075 alteration Effects 0.000 description 6
- 210000004027 cell Anatomy 0.000 description 6
- 230000008602 contraction Effects 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 210000004379 membrane Anatomy 0.000 description 6
- 206010014561 Emphysema Diseases 0.000 description 5
- 206010020880 Hypertrophy Diseases 0.000 description 5
- 210000004556 brain Anatomy 0.000 description 5
- 210000003123 bronchiole Anatomy 0.000 description 5
- 229910002092 carbon dioxide Inorganic materials 0.000 description 5
- 239000001569 carbon dioxide Substances 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 230000010339 dilation Effects 0.000 description 5
- 230000036541 health Effects 0.000 description 5
- 229940088597 hormone Drugs 0.000 description 5
- 239000005556 hormone Substances 0.000 description 5
- 230000004199 lung function Effects 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 210000002569 neuron Anatomy 0.000 description 5
- 230000036961 partial effect Effects 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 230000008961 swelling Effects 0.000 description 5
- 230000009885 systemic effect Effects 0.000 description 5
- 206010006458 Bronchitis chronic Diseases 0.000 description 4
- 206010061218 Inflammation Diseases 0.000 description 4
- 208000037656 Respiratory Sounds Diseases 0.000 description 4
- 206010047924 Wheezing Diseases 0.000 description 4
- 206010006451 bronchitis Diseases 0.000 description 4
- 208000007451 chronic bronchitis Diseases 0.000 description 4
- 239000004020 conductor Substances 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 201000010099 disease Diseases 0.000 description 4
- 230000004054 inflammatory process Effects 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000029058 respiratory gaseous exchange Effects 0.000 description 4
- 230000008054 signal transmission Effects 0.000 description 4
- 239000000779 smoke Substances 0.000 description 4
- 210000000329 smooth muscle myocyte Anatomy 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- 208000000059 Dyspnea Diseases 0.000 description 3
- 208000011623 Obstructive Lung disease Diseases 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 210000003169 central nervous system Anatomy 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 238000004891 communication Methods 0.000 description 3
- 230000030214 innervation Effects 0.000 description 3
- 230000000670 limiting effect Effects 0.000 description 3
- 230000033001 locomotion Effects 0.000 description 3
- 238000013123 lung function test Methods 0.000 description 3
- 230000015654 memory Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 231100000252 nontoxic Toxicity 0.000 description 3
- 230000003000 nontoxic effect Effects 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 210000001147 pulmonary artery Anatomy 0.000 description 3
- 230000004202 respiratory function Effects 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- 230000002792 vascular Effects 0.000 description 3
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 241000208125 Nicotiana Species 0.000 description 2
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 2
- 206010030113 Oedema Diseases 0.000 description 2
- 230000005856 abnormality Effects 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 210000003484 anatomy Anatomy 0.000 description 2
- 229940065524 anticholinergics inhalants for obstructive airway diseases Drugs 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 238000010342 arterial blood gas test Methods 0.000 description 2
- 210000003403 autonomic nervous system Anatomy 0.000 description 2
- 230000017531 blood circulation Effects 0.000 description 2
- 229940124630 bronchodilator Drugs 0.000 description 2
- 238000003763 carbonization Methods 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 239000000812 cholinergic antagonist Substances 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 239000012809 cooling fluid Substances 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 230000035876 healing Effects 0.000 description 2
- JYGXADMDTFJGBT-VWUMJDOOSA-N hydrocortisone Chemical compound O=C1CC[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 JYGXADMDTFJGBT-VWUMJDOOSA-N 0.000 description 2
- 230000002757 inflammatory effect Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 210000000876 intercostal muscle Anatomy 0.000 description 2
- 210000000867 larynx Anatomy 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000004118 muscle contraction Effects 0.000 description 2
- 230000001734 parasympathetic effect Effects 0.000 description 2
- 210000001002 parasympathetic nervous system Anatomy 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 238000009613 pulmonary function test Methods 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 230000004043 responsiveness Effects 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000012781 shape memory material Substances 0.000 description 2
- 208000013220 shortness of breath Diseases 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000002889 sympathetic effect Effects 0.000 description 2
- 210000002820 sympathetic nervous system Anatomy 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- 210000000779 thoracic wall Anatomy 0.000 description 2
- 230000008733 trauma Effects 0.000 description 2
- 230000036642 wellbeing Effects 0.000 description 2
- UCTWMZQNUQWSLP-VIFPVBQESA-N (R)-adrenaline Chemical compound CNC[C@H](O)C1=CC=C(O)C(O)=C1 UCTWMZQNUQWSLP-VIFPVBQESA-N 0.000 description 1
- 229930182837 (R)-adrenaline Natural products 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 0 CCC*1N=C1 Chemical compound CCC*1N=C1 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 206010008469 Chest discomfort Diseases 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 206010049816 Muscle tightness Diseases 0.000 description 1
- 208000028389 Nerve injury Diseases 0.000 description 1
- 208000027771 Obstructive airways disease Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 206010040007 Sense of oppression Diseases 0.000 description 1
- 206010052428 Wound Diseases 0.000 description 1
- 210000001015 abdomen Anatomy 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 239000000808 adrenergic beta-agonist Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 239000013566 allergen Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000037007 arousal Effects 0.000 description 1
- 210000003050 axon Anatomy 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 210000000133 brain stem Anatomy 0.000 description 1
- 239000004044 bronchoconstricting agent Substances 0.000 description 1
- 230000003435 bronchoconstrictive effect Effects 0.000 description 1
- 239000000168 bronchodilator agent Substances 0.000 description 1
- 238000013276 bronchoscopy Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 210000000845 cartilage Anatomy 0.000 description 1
- 230000006037 cell lysis Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 210000002249 digestive system Anatomy 0.000 description 1
- 238000011038 discontinuous diafiltration by volume reduction Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 229960005139 epinephrine Drugs 0.000 description 1
- 210000003238 esophagus Anatomy 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 229960000890 hydrocortisone Drugs 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000005865 ionizing radiation Effects 0.000 description 1
- 230000000622 irritating effect Effects 0.000 description 1
- 230000005923 long-lasting effect Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002324 minimally invasive surgery Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 230000017074 necrotic cell death Effects 0.000 description 1
- 230000007830 nerve conduction Effects 0.000 description 1
- 230000008764 nerve damage Effects 0.000 description 1
- 230000007383 nerve stimulation Effects 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 210000004789 organ system Anatomy 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 210000000578 peripheral nerve Anatomy 0.000 description 1
- 210000003800 pharynx Anatomy 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000001012 protector Effects 0.000 description 1
- 210000003456 pulmonary alveoli Anatomy 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 239000012857 radioactive material Substances 0.000 description 1
- 238000007674 radiofrequency ablation Methods 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000306 recurrent effect Effects 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 210000005241 right ventricle Anatomy 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 230000001953 sensory effect Effects 0.000 description 1
- 229910001285 shape-memory alloy Inorganic materials 0.000 description 1
- 229920000431 shape-memory polymer Polymers 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 238000011947 six minute walk test Methods 0.000 description 1
- 230000016160 smooth muscle contraction Effects 0.000 description 1
- 230000029547 smooth muscle hypertrophy Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 230000004936 stimulating effect Effects 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 239000002470 thermal conductor Substances 0.000 description 1
- 230000001256 tonic effect Effects 0.000 description 1
- 238000012285 ultrasound imaging Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1477—Needle-like probes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/1206—Generators therefor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1482—Probes or electrodes therefor having a long rigid shaft for accessing the inner body transcutaneously in minimal invasive surgery, e.g. laparoscopy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B18/1492—Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/1815—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/20—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
- A61B18/22—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor
- A61B18/24—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor with a catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B34/00—Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
- A61B34/20—Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/12—Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods
- A61B2017/00017—Electrical control of surgical instruments
- A61B2017/00022—Sensing or detecting at the treatment site
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00005—Cooling or heating of the probe or tissue immediately surrounding the probe
- A61B2018/00011—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00005—Cooling or heating of the probe or tissue immediately surrounding the probe
- A61B2018/00011—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
- A61B2018/00023—Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00214—Expandable means emitting energy, e.g. by elements carried thereon
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00053—Mechanical features of the instrument of device
- A61B2018/00214—Expandable means emitting energy, e.g. by elements carried thereon
- A61B2018/0022—Balloons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00315—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
- A61B2018/00541—Lung or bronchi
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B2018/00571—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
- A61B2018/00577—Ablation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/02—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
- A61B2018/0212—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument inserted into a body lumen, e.g. catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1405—Electrodes having a specific shape
- A61B2018/1425—Needle
- A61B2018/143—Needle multiple needles
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/04—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
- A61B18/12—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
- A61B18/14—Probes or electrodes therefor
- A61B2018/1405—Electrodes having a specific shape
- A61B2018/1425—Needle
- A61B2018/1432—Needle curved
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B18/00—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
- A61B18/18—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
- A61B18/1815—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves
- A61B2018/1861—Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using microwaves with an instrument inserted into a body lumen or cavity, e.g. a catheter
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N7/00—Ultrasound therapy
- A61N7/02—Localised ultrasound hyperthermia
- A61N7/022—Localised ultrasound hyperthermia intracavitary
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Otolaryngology (AREA)
- Plasma & Fusion (AREA)
- Electromagnetism (AREA)
- Cardiology (AREA)
- Optics & Photonics (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Robotics (AREA)
- Surgical Instruments (AREA)
- Endoscopes (AREA)
- Laser Surgery Devices (AREA)
- Media Introduction/Drainage Providing Device (AREA)
Abstract
Un catéter (2000, 2500, 3000), que comprende: un cuerpo alargado (2030, 2530) a través del cual puede fluir un refrigerante; un electrodo (2004, 2504) configurado para enviar energía para realizar la ablación de tejido nervioso en una paredde vía respiratoria de un árbol bronquial; y un globo expansible (2002, 2502, 3002) que tiene un estado aplastado y un estado expandido, en donde el globoexpansible en el estado expandido está dimensionado para contactar con la pared de vía respiratoria del árbolbronquial, en donde el globo expansible se acopla al cuerpo alargado y está configurado para contener elrefrigerante de tal manera que el refrigerante refrigera el electrodo y el globo expansible cuando el catéter está encontacto con la pared de vía respiratoria para limitar o impedir daños al tejido entre el electrodo y el tejido nervioso,en donde el electrodo (2004) se acopla al globo expansible (2002, 2502, 3002) de tal manera que el electrodo (2004)es movido hacia la pared de vía respiratoria cuando el globo expansible se mueve desde el estado aplastado alestado expandido, y en donde el electrodo (2004) está configurado para enviar una cantidad suficiente de energía para realizar laablación de una parte de un tronco de nervio que se extiende a lo largo del árbol bronquial para atenuar las señales del sistema nervioso transmitidas a una parte del árbol bronquial mientras el globo expansible (2002, 2502, 3002)está en el estado expandido, y en donde el globo expansible (2002, 2502, 3002) está configurado para absorberenergía térmica de la pared de las vías respiratorias para limitar o impedir daños al tejido entre el electrodo y el tejidonervioso, en donde el cuerpo alargado incluye un paso interno de afluencia (2011) que está acoplado a una entrada (2013) de refrigerante próxima a un extremo del globo expansible caracterizado porque el cuerpo alargado incluye además unpaso interno (2021) de salida que está acoplado a una salida (2023) de refrigerante en otro extremo del globoexpansible de tal manera que el refrigerante circula dentro del globo expansible cuando el refrigerante fluye a travésdel paso interno de afluencia, la entrada de refrigerante, la salida de refrigerante y el paso interno de salida.
Description
Sistemas para tratar un árbol bronquial.
Esta solicitud reivindica el beneficio bajo 35 U. S. C. § 119 (E) de la solicitud provisional de patente de EE.UU. nº 61/052.082 presentada el 9 de mayo de 2008; la solicitud provisional de patente de EE.UU. nº 61/106.490 presentada el 17 de octubre de 2008; y la solicitud provisional de patente de EE.UU. nº 61/155.449 presentada el 25 de febrero de 2009.
Ámbito técnico
La presente invención está relacionada generalmente con sistemas para tratar un árbol bronquial, y, más particularmente, la invención está relacionada con sistemas para obtener una respuesta deseada.
Descripción de la técnica relacionada
Las enfermedades pulmonares pueden causar una gran variedad de problemas que afectan negativamente a las prestaciones de los pulmones. Las enfermedades pulmonares, tal como el asma y la enfermedad crónica obstructora pulmonar ("COPD" del inglés chronic obstructive pulmonary disease), pueden llevar a un aumento de la resistencia al flujo de aire en los pulmones. La mortalidad, los costes relacionados con la salud y el tamaño de la población que tiene efectos negativos debido a enfermedades pulmonares son substanciales. Estas enfermedades a menudo afectan negativamente a la calidad de vida. Los síntomas son variados pero a menudo incluyen tos; dificultad al respirar; y resuello. En COPD, por ejemplo, la dificultad al respirar puede notarse al realizar actividades algo arduas, como correr, jogging, andar a paso ligero, etc. A medida que progresa la enfermedad, la dificultad al respirar puede notarse al realizar actividades no arduas, tal como andar. Con el tiempo, los síntomas de COPD pueden producirse cada vez con menos esfuerzo hasta que está presente en todo momento, limitando de ese modo gravemente la capacidad de una persona para realizar tareas normales.
Las enfermedades pulmonares a menudo se caracterizan por la obstrucción de las vías respiratorias asociada con el bloqueo de un paso interno de las vías respiratorias, engrosamiento de una pared de vía respiratoria, alteración de estructuras dentro o alrededor de la pared de vía respiratoria o combinaciones de los mismos. La obstrucción de las vías respiratorias puede disminuir significativamente la cantidad de gases intercambiados en los pulmones, que tiene como resultado la dificultad al respirar. El bloqueo de un paso interno de vía respiratoria puede ser causado por excesivo moco intraluminal o fluido de edema, o los dos. El engrosamiento de la pared de vía respiratoria puede ser atribuible a una contracción excesiva del músculo liso de vías respiratorias, hipertrofia de músculo liso de vías respiratorias, hipertrofia de glándulas de mucosa, inflamación, edema o combinaciones de las mismas. La alteración de estructuras alrededor de las vías respiratorias, tal como la destrucción del propio tejido pulmonar, puede llevar a una pérdida de tracción radial en la pared de vía respiratoria y el subsiguiente estrechamiento de la vía respiratoria.
El asma puede caracterizarse por contracción del músculo liso de vía respiratoria, hipertrofia de músculo liso, producción excesiva de moco, hipertrofia de glándula de mucosa y/o inflamación e hinchazón de vías respiratorias. Estas anomalías son el resultado de una interacción compleja de citocinas locales inflamatorias (sustancias químicas liberadas localmente por células inmunes situadas en o cerca de la pared de vía respiratoria), sustancias irritantes inhaladas (por ejemplo, aire frío, humo, alérgenos u otras sustancias químicas), hormonas sistémicas (sustancias químicas en la sangre tal como el cortisol antiinflamatorio y la epinefrina estimulante), aporte local del sistema nervioso (neuronas contenidas completamente dentro de la pared de vía respiratoria que puede producir un estímulo local de reflejo de las células del músculo liso y las glándulas de mucosa), y aporte del sistema nervioso central (señales del sistema nervioso desde el cerebro a las células del músculo liso y las glándulas mucosas transportadas a través del nervio vago). Estas condiciones a menudo causan alteraciones esparcidas temporales de tejidos y obstrucción inicialmente reversible del flujo de aire que en última instancia pueden llevar a una alteración permanente de tejidos y obstrucción permanente del flujo de aire que hace difícil respirar a la víctima de asma. El asma puede incluir además episodios o ataques agudos de estrechamiento adicional de las vías respiratorias a través de la contracción del músculo liso híper-sensible de las vías respiratorias que aumenta significativamente la resistencia al flujo de aire. Los síntomas del asma incluyen episodios recurrentes de dificultad al respirar (por ejemplo, falta de aliento o disnea), resuello, opresión en el pecho y tos.
El enfisema es un tipo de COPD caracterizado a menudo por la alteración del tejido pulmonar que rodea o está adyacente a las vías respiratorias en los pulmones. El enfisema puede implicar la destrucción de tejido pulmonar (por ejemplo, tejido alveolar tal como los alveolos) que lleva a la reducción del intercambio de gases y la reducción de la tracción radial aplicada a la pared de las vías respiratorias por el tejido pulmonar circundante. La destrucción de tejido alveolar deja las áreas de pulmón con enfisema con espacios de aire excesivamente grandes que está desprovistos de paredes alveolares y capilares alveolares y de ese modo es ineficaz en el intercambio de gases. El aire llega a quedar "atrapado" en estos espacios de aire más grandes. Este aire "atrapado" puede causar hiperinsuflación del pulmón, y en los límites del pecho restringe la afluencia de aire rico en oxígeno y el funcionamiento apropiado del tejido más sano. Esto tiene como resultado una significativa dificultad al respirar y puede llevar a niveles bajos de oxígeno y niveles altos de dióxido de carbono en la sangre. Este tipo de destrucción de tejido pulmonar ocurre como parte del proceso de envejecimiento normal, incluso en individuos sanos. Desafortunadamente, la exposición a sustancias químicas u otras sustancias (por ejemplo, el humo del tabaco) puede acelerar significativamente el ritmo del daño o la destrucción de tejido. La dificultad al respirar puede verse aumentada aún más por la obstrucción de las vías respiratorias. La reducción de la tracción radial puede causar que las paredes de las vías respiratorias lleguen a quedar "flexible" de tal manera que las paredes de las vías respiratorias se aplastan parcial o completamente durante la exhalación. Un individuo con enfisema puede ser incapaz de entregar aire fuera de sus pulmones debido a este aplastamiento de las vías respiratorias y obstrucciones de las vías respiratorias durante la exhalación.
La bronquitis crónica es un tipo de COPD que puede caracterizarse por la contracción del músculo liso de las vías respiratorias, hipertrofia del músculo liso, producción excesiva de moco, hipertrofia de glándula mucosa e inflamación de las paredes de las vías respiratorias. Como el asma, estas anomalías son el resultado de una interacción compleja de citocinas locales inflamatorias, sustancias irritantes inhaladas, hormonas sistémicas, el sistema nervioso local y el sistema nervioso central. A diferencia del asma en el que la obstrucción respiratoria puede ser en gran parte reversible, la obstrucción de las vías respiratorias en la bronquitis crónica es principalmente crónica y permanente. A menudo para una víctima de bronquitis crónica es difícil respirar a causa de los síntomas crónicos de falta de aliento, resuello y opresión en el pecho, así como tos con producción de moco.
Se pueden utilizar diferentes técnicas para valorar la gravedad y la progresión de las enfermedades pulmonares. Por ejemplo, para evaluar sujetos a menudo se utilizan pruebas de funcionamiento pulmonar, capacidad de ejercicio y cuestionarios de calidad de vida. Las pruebas de funcionamiento pulmonar implican medidas objetivas y reproducibles de parámetros pulmonares, fisiológicos y básicos, tal como el flujo de aire total, volumen pulmonar e intercambio de gas. Los índices de pruebas de funcionamiento pulmonar utilizados para la valoración de enfermedades pulmonares de obstrucción incluyen el volumen espiratorio forzado en 1 segundo (FEV1), la capacidad vital forzada (FVC), la proporción de FEV1 a FVC, la capacidad pulmonar total (TLC), la resistencia de las vías respiratorias y las pruebas de gases en sangre arterial. El FEV1 es el volumen de aire que un paciente puede exhalar durante el primer segundo de una exhalación fuerte que comienza con los pulmones completamente llenos de aire. El FEV1 es también el flujo medio que se produce durante el primer segundo de una exhalación fuerte. Este parámetro puede utilizarse para evaluar y determinar la presencia y el impacto de cualquier obstrucción de las vías respiratorias. El FVC es el volumen total de aire que un paciente puede exhalar durante una exhalación fuerte que comienza con los pulmones completamente llenos de aire. El FEV1/FVC es la fracción durante el primer segundo de todo el aire que puede ser exhalado durante una exhalación fuerte. Una proporción FEV1/FVC de menos de 0,7 después de la administración de por lo menos un broncodilatador define la presencia de COPD. El TLC es la cantidad total de aire dentro de los pulmones cuando los pulmones están completamente llenos y puede aumentar cuando el aire queda atrapado dentro de los pulmones de pacientes con una enfermedad pulmonar de obstrucción. La resistencia en las vías respiratorias se define como el gradiente de presión entre los alvéolos y la boca con el régimen de flujo de aire entre los alvéolos y la boca, similarmente, la resistencia de una vía respiratoria dada se definiría como la proporción del gradiente de presión a través de la vía respiratoria dada con el flujo a través de la vía respiratoria. Las pruebas de gases en sangre arterial miden la cantidad de oxígeno y la cantidad de dióxido de carbono en la sangre y el método más directo es valorar la capacidad de los pulmones y del sistema respiratorio para llevar oxígeno desde el aire a la sangre y sacar dióxido de carbono de la sangre fuera del cuerpo.
Las pruebas de capacidad de ejercicio son medidas objetivas y reproducibles de la capacidad de un paciente para realizar actividades. Una prueba de seis minutos andando (6MWT) es una prueba de la capacidad de ejercicio en la que un paciente anda tan lejos como le sea posible sobre una superficie plana en 6 minutos. Otra prueba de la capacidad de ejercicio implica medir la capacidad máxima de ejercicio de un paciente. Por ejemplo, un médico puede medir la cantidad de potencia que puede producir el paciente mientras está en un ciclo-ergómetro. El paciente puede respirar el 30 por ciento de oxígeno y la carga de trabajo puede aumentar de 5 a 10 vatios cada 3 minutos.
Los cuestionarios de calidad de vida valoran la salud y el bienestar generales de un paciente. El Cuestionario de Respiración del St. George es un cuestionario de calidad de vida que incluye 75 preguntas diseñadas para medir el impacto de una enfermedad pulmonar de obstrucción en la salud general, en la vida cotidiana y en el bienestar percibido. La eficacia de un tratamiento para enfermedades pulmonares puede ser evaluada utilizando pruebas de funcionamiento pulmonar, pruebas de capacidad de ejercicio y/o cuestionarios. Un programa del tratamiento puede ser modificado basándose en los resultados de estas pruebas y/o cuestionarios.
Los tratamientos, tal como la termoplastia bronquial, implican la destrucción del tono del músculo liso mediante la ablación de la pared de las vías respiratorias en una multitud de ramificaciones bronquiales dentro del pulmón eliminando de ese modo a la vez músculos lisos y nervios en las paredes de vías respiratorias del pulmón. Las vías respiratorias tratadas no pueden responder favorablemente a sustancias irritantes inhaladas, hormonas sistémicas y a aportes del sistema nervioso local y el central. Desafortunadamente, esta destrucción de tono de músculo liso y nervios en la pared de las vías respiratorias puede afectar adversamente por lo tanto a las prestaciones de los pulmones. Por ejemplo, las sustancias irritantes inhaladas, tal como el humo u otras sustancias nocivas, normalmente estimulan los receptores irritantes pulmonares para producir tos y contraer el músculo liso de las vías respiratorias. La eliminación de nervios en las paredes de las vías respiratorias quita a la vez el funcionamiento nervioso local y el aporte nervioso central, eliminando de ese modo la capacidad del pulmón para expulsar sustancias nocivas con una tos fuerte. La eliminación del tono de músculo liso de las vías respiratorias puede eliminar la capacidad de las vías respiratorias para contraerse, permitiendo de ese modo la penetración más profunda de sustancias no deseadas, tal como sustancias nocivas, en el pulmón.
Adicionalmente, los métodos para destruir el tono de músculo liso por ablación de trozos de la pared de vía respiratoria, tal como termoplastia bronquial, a menudo tienen las limitaciones siguientes: 1) incapacidad para afectar a las vías respiratorias que no reciben ablación directamente, típicamente las vías respiratorias de menos de aproximadamente 3,0 mm que también pueden ser estrechadas en enfermedades pulmonares de obstrucción tales como el asma, el enfisema y la bronquitis crónica; 2) hinchazón a corto plazo que provoca problemas respiratorios agudos debido a hinchazón durante la operación en las vías respiratorias ya estrechadas por efectos de enfermedad pulmonar de obstrucción; 3) pueden necesitarse cientos de aplicaciones en las vías respiratorias dentro de los pulmones para alterar la funcionalidad pulmonar en conjunto; 4) dado que se tratan múltiples generaciones de vías respiratorias dentro del pulmón (típicamente generaciones 2-8), puede ser problemático buscar el objetivo en vías respiratorias pulmonares sin omitir o tratar en exceso secciones específicas de las vías respiratorias pulmonares; y, 5) puede ser necesario separar la etapa de tratamiento en fases para reducir la carga curativa en el pulmón, lo que añade riesgos y costes adicionales con cada sesión adicional de tratamiento de broncoscopia.
El asma y COPD son enfermedades graves con un creciente número de víctimas. Las técnicas actuales de gestión, que incluyen fármacos prescritos, no son completamente exitosas están libres de efectos secundarios. Adicionalmente, muchos pacientes no cumplen el régimen de dosis de prescripción de fármaco. Por consiguiente, sería deseable proporcionar un tratamiento que mejore la resistencia al flujo de aire sin la necesidad de la conformidad por parte del paciente.
Un aparato que tiene las características constructivas de la primera parte de la reivindicación 1, se conoce por el documento US-B1-6 488 673. El documento US-A-4658 836 está relacionado con un aplicador para una terapia con radiación electromagnética. El sistema también comprende un suministro y depósito de fluido de refrigeración que están conectados a una parte flexible de fluido de refrigeración del aplicador. Los medios de refrigeración y la parte de refrigeración del aplicador cooperan para refrigerar la superficie y las capas cercanas a la superficie de la zona del cuerpo que es calentada por irradiación, permitiendo de ese modo el calentamiento sin un calentamiento superficial excesivo.
Compendio de la invención
La presente invención se define en la reivindicación independiente 1. Las realizaciones preferidas están especificadas por la reivindicación dependiente, la siguiente descripción solamente sirve para ilustrar la presente invención.
Un sistema de tratamiento puede ser dirigido a través de las vías respiratorias, tal como los bronquios principales a derecha e izquierda de la raíz pulmonar así como las vías respiratorias más distales dentro de los pulmones, para tratar una gran variedad de síntomas, condiciones y/o enfermedades pulmonares, incluidas, sin limitación, asma, COPD y enfermedades pulmonares de obstrucción, u otras enfermedades que llevan a un aumento de la resistencia al flujo de aire en los pulmones. El sistema de tratamiento puede tratar uno o más lugares de objetivo sin tratar lugares que no son el objetivo. Incluso si se tratan características anatómicas que son el objetivo (por ejemplo, nervios, glándulas, membranas y similares) de los bronquios principales, bronquios lobulares, bronquios segmentales o bronquios subsegmentales, las características anatómicas que no son el objetivo pueden permanecer substancialmente sin alterar. Por ejemplo, el sistema de tratamiento puede destruir el tejido nervioso en lugares de objetivo sin destruir ninguna extensión significativa de tejido que no es el objetivo que puede permanecer funcional después de realizar el tratamiento.
Por lo menos algunas realizaciones descritas en esta memoria pueden utilizarse para afectar al tejido nervioso de troncos de nervios fuera de las paredes de las vías respiratorias al tiempo que se mantiene la capacidad de las vías respiratorias para moverse (por ejemplo, contraerse y/o expandirse) en respuesta a, por ejemplo, sustancias irritantes inhaladas, estimulación local de nervios, hormonas sistémicas o combinaciones de los mismos. En algunas realizaciones, el tejido nervioso de los troncos de nervios es destruido sin eliminar el tono de músculo liso. Después de dañar los troncos de nervio, las vías respiratorias tienen por lo menos algún tono de músculo de tal manera que los músculos lisos en las vías respiratorias, si son estimulados, pueden alterar el diámetro de las vías respiratorias para ayudar a mantener un funcionamiento pulmonar apropiado. Puede mantenerse una gran variedad de funciones fisiológicas diferentes asociadas con el tono de músculo liso, antes, durante y/o después del tratamiento.
También se describe un método para tratar una o varias enfermedades pulmonares. El método incluye daños al tejido nervioso de un tronco de nervio vago que se extiende a lo largo del exterior de una vía respiratoria de árbol bronquial para atenuar las señales del sistema nervioso transmitidas a una parte del árbol bronquial. El tronco de nervio puede ser el tallo principal de un nervio, comprendiendo un manojo de fibras nerviosas unidas juntas por una funda dura de tejido conjuntivo. En algunas realizaciones, el tejido nervioso es dañado al tiempo que se mantiene una funcionalidad de una o más características anatómicas, tal como vasos sanguíneos, que también se extienden al lado de las vías respiratorias para preservar una función respiratoria de la parte del árbol bronquial después de que sea dañado el tejido nervioso.
Las condiciones y los síntomas asociados con enfermedades pulmonares pueden ser reducidos, limitados o substancialmente eliminados. Por ejemplo, puede tratarse la obstrucción de las vías respiratorias para obtener una reducción de la resistencia al flujo de aire. Los vasos sanguíneos u otro tejido pueden quedar intactos y funcionales durante y/o después del tratamiento. La función respiratoria que es preservada puede incluir intercambio de gases, transporte de mucosidad ciliar y similares. En algunas realizaciones, el tejido nervioso, tal como el tejido nervioso de troncos de nervio situados fuera de las vías respiratorias, es dañado sin dañar ninguna parte de extensión significativa de la pared de las vías respiratorias que es circunferencialmente adyacente al tejido dañado de nervio. Por consiguiente, el tejido que no es objetivo puede quedar substancialmente sin alterar por el daño al tejido nervioso de las vías respiratorias.
Dañar el tejido nervioso puede implicar la entrega de energía al tejido nervioso de tal manera que el tejido destruido de nervio impide o detiene la transmisión de señales del sistema nervioso a nervios más distales a lo largo del árbol bronquial. El tejido nervioso puede ser dañado temporal o permanentemente entregando diferentes tipos de energía al tejido nervioso. Por ejemplo, el tejido nervioso puede ser dañado térmicamente aumentando una temperatura del tejido nervioso a una primera temperatura (por ejemplo, una temperatura de ablación) mientras la pared de las vías respiratorias está a una segunda temperatura que es menor que la primera temperatura. Una parte de la pared de las vías respiratorias situada radialmente hacia dentro desde el tejido nervioso puede estar a la primera temperatura para evitar el daño permanente a la parte de la pared de vía respiratoria. La primera temperatura puede ser lo suficientemente alta para provocar una destrucción permanente del tejido nervioso. El tejido nervioso forma parte de un tronco de nervio situado en el tejido conjuntivo fuera de la pared de vía respiratoria. El tejido nervioso y el músculo liso en la pared de vía respiratoria pueden permanecer funcionales para mantener un nivel deseado de tono de músculo liso. Las vías respiratorias pueden contraerse/dilatarse en respuesta a una estimulación (por ejemplo, la estimulación provocada por sustancias irritantes inhaladas, el sistema nervioso local o por hormonas sistémicas). El tejido nervioso puede formar parte de una ramificación nerviosa o fibras nerviosas en la pared de las vías respiratorias. El tejido nervioso del tronco de nervio y el tejido nervioso de ramas/fibras nerviosas pueden ser dañados simultánea o secuencialmente. Para enviar la energía se pueden utilizar diversos tipos de elementos que se pueden activar, tal como elementos de ablación.
El método para tratar un sujeto comprende mover un conjunto alargado a lo largo de un paso interno de unas vías respiratorias de un árbol bronquial. La vías respiratorias incluyen una primera sección tubular, una segunda sección tubular, un lugar de tratamiento entre la primera sección tubular y la segunda sección tubular, y un nervio que se extiende a lo largo de por lo menos la primera sección tubular, el lugar de tratamiento y la segunda sección tubular. El nervio puede estar dentro o fuera de la pared de vía respiratoria. El nervio puede ser un tronco de nervio fuera de la pared de vía respiratoria y estar conectado a un nervio vago.
El método puede incluir además dañar una parte del nervio en el lugar de tratamiento para impedir substancialmente que las señales viajen entre la primera sección tubular y la segunda sección tubular a través del nervio. En algunas realizaciones, puede mantenerse el flujo sanguíneo entre la primera sección tubular y la segunda sección tubular mientras se daña una parte del nervio. El flujo sanguíneo continuo puede mantener la funcionalidad deseada del tejido pulmonar distal.
La segunda sección tubular de las vías respiratorias puede dilatarse como respuesta al daño al nervio. Como las señales del sistema nervioso no son entregadas al músculo liso de las vías respiratorias de la segunda sección tubular, el músculo liso puede relajarse para provocar la dilatación de las vías respiratorias, reduciendo de ese modo la resistencia al flujo de aire, incluso la resistencia al flujo de aire asociada con enfermedades pulmonares. En algunas realizaciones, puede dañarse el tejido nervioso para provocar la dilatación de substancialmente todas las vías respiratorias distales al tejido dañado. El nervio puede ser un tronco de nervio, ramificación nerviosa, fibras nerviosas y/o otros nervios accesibles.
El método puede incluir además detectar uno o varios atributos de unas vías respiratorias y evaluar si el tejido nervioso está dañado basándose en los atributos. La evaluación incluye comparar atributos medidos de las vías respiratorias (por ejemplo, comparar medidas tomadas en momentos diferentes), comparar atributos medidos y valores almacenados (por ejemplo, valores de referencia), calcular valores basados en atributos medidos, monitorizar cambios de atributos, combinaciones de los mismos o algo parecido.
El método para tratar un sujeto puede incluir mover un dispositivo intraluminal a lo largo de un paso interno de una vía respiratoria de un árbol bronquial. Una parte de la vía respiratoria es denervada utilizando el dispositivo intraluminal. En algunas realizaciones, la parte de la vía respiratoria es denervada sin dañar irreversiblemente ninguna extensión significativa de una superficie interior de la vías respiratoria. En algunas realizaciones, una parte de un árbol bronquial es denervado sin dañar irreversiblemente ninguna extensión significativa de tejido nervioso (por ejemplo, tejido nervioso de fibras nerviosas) dentro de las paredes de vías respiratorias del árbol bronquial. La superficie interior puede definir el paso interno a lo largo del que fue movido el dispositivo intraluminal.
El proceso de denervación puede ser realizado sin destruir por lo menos una arteria que se extiende a lo largo de las vías respiratorias. En algunas realizaciones, se preservan substancialmente todas las arterias que se extienden a lo largo de las vías respiratorias durante el proceso de denervación. En algunas realizaciones, uno o varios nervios empotrados en la pared de las vías respiratorias pueden quedar generalmente sin dañar durante el proceso de denervación. Los nervios destruidos pueden ser troncos de nervio fuera de las vías respiratorias.
El proceso de denervación puede disminuir el tono de músculo liso de las vías respiratorias para lograr un aumento de flujo de aire deseado adentro y afuera del pulmón. En algunas realizaciones, el proceso de denervación provoca una disminución suficiente del tono de músculo liso para aumentar substancialmente el flujo de aire adentro y afuera del pulmón. Por ejemplo, el sujeto puede tener un aumento en FEV1 de por lo menos el 10% sobre una FEV1 basal. Como tal, el sujeto puede experimentar una mejora significativa de la función pulmonar al realizar actividades diarias normales, incluso actividades extenuantes. En algunas realizaciones, la disminución del tono de músculo liso de las vías respiratorias es suficiente para provocar un aumento de FEV1 en el intervalo de aproximadamente el 10% a aproximadamente el 30%. Puede tratarse cualquier número de lugares de tratamiento ya sea en los bronquios principales, bronquios segmentales o bronquios subsegmentales para lograr el aumento deseado en la función pulmonar.
El conjunto alargado para tratar un pulmón está adaptado para dañar tejido nervioso de un tronco de nervio para atenuar las señales del sistema nervioso transmitidas a una parte más distal del árbol bronquial. El tejido puede ser dañado mientras el conjunto alargado se extiende a lo largo de un paso interno del árbol bronquial. Puede utilizarse un conjunto de entrega para proporcionar acceso al tejido nervioso.
El sistema para tratar un sujeto incluye un conjunto alargado dimensionado para moverse a lo largo de un paso interno de una vía respiratoria de un árbol bronquial. El conjunto alargado está adaptado para atenuar las señales transmitidas por el tejido nervioso, tal como tejido nervioso de troncos de nervio, mientras no se daña irreversiblemente ninguna extensión significativa de una superficie interior de la vía respiratoria. El conjunto alargado puede incluir una extremidad distal que se puede empotrar que tiene por lo menos un elemento que se puede accionar, tal como un elemento de ablación. El elemento de ablación puede realizar la ablación de varios tipos de tejido nervioso cuando es activado. En algunas realizaciones, el elemento de ablación incluye uno o varios electrodos que pueden funcionar para enviar energía de radiofrecuencia.
El método comprende dañar el tejido nervioso de un primer bronquio principal para impedir substancialmente que las señales del sistema nervioso viajen a substancialmente todas las ramas bronquiales distales conectadas al primer bronquio principal. En algunas realizaciones, se trata la mayoría o la totalidad de las ramas bronquiales distales al primer bronquio principal. El tejido nervioso, en ciertas realizaciones, está situado entre una tráquea y un pulmón a través del que se extienden las ramas bronquiales. El método incluye además dañar el tejido nervioso de un segundo bronquio principal para impedir substancialmente que las señales del sistema nervioso viajen a substancialmente todas las ramas bronquiales distales conectadas al segundo bronquio principal. Se puede utilizar un conjunto de catéter para dañar el tejido nervioso del primer bronquio principal y para dañar el tejido nervioso del segundo bronquio principal sin quitar el conjunto de catéter de una tráquea conectada a los primeros y segundos bronquios.
El método comprende denervar la mayoría de una parte de un árbol bronquial para impedir substancialmente que las señales del sistema nervioso viajen a substancialmente todas las ramas bronquiales de la parte. En ciertas realizaciones, los procedimientos de denervación implican dañar tejido nervioso utilizando menos de aproximadamente 100 aplicaciones de energía, 50 aplicaciones de energía, 36 aplicaciones de energía, 18 aplicaciones de energía, 10 aplicaciones de energía o 3 aplicaciones de energía. Cada aplicación de energía puede ser en un lugar diferente de tratamiento. En algunas realizaciones, substancialmente todas las ramas bronquiales en uno o ambos pulmones son denervadas por la aplicación de energía.
Puede utilizarse uno o más elementos de detección para detectar atributos de las vías respiratorias antes, durante y/o después de la terapia. Un elemento de detección puede contactar físicamente con una superficie interior de las vías respiratorias para evaluar propiedades físicas de las vías respiratorias. El elemento de detección puede incluir uno o más globos hinchables que pueden colocarse distales al tejido de objetivo
Breve descripción de las diversas vistas de los dibujos
En las Figuras, números de referencia idénticos identifican elementos o actos similares.
La Figura 1 es una ilustración de pulmones, vasos sanguíneos y nervios cerca de los pulmones y en éstos.
La Figura 2A es una vista esquemática de un sistema de tratamiento situado dentro de un bronquio izquierdo principal según una realización.
La Figura 2B es una vista esquemática de un sistema de tratamiento y un instrumento que se extienden en sentido distal desde el sistema de tratamiento.
La Figura 3 es una vista en sección transversal de una vía respiratoria de un árbol bronquial que rodea una
extremidad distal de un sistema de tratamiento situado a lo largo de un paso interno de vía respiratoria según una
realización.
La Figura 4 es una vista en sección transversal de una vía respiratoria de un árbol bronquial que rodea una
extremidad distal de un sistema de tratamiento cuando un músculo liso de la vía respiratoria está contraído y hay
moco en un paso interno de vía respiratoria según una realización.
La Figura 5A es una vista en sección transversal parcial de un sistema de tratamiento que tiene un conjunto de
entrega y un conjunto alargado que se extiende a través y afuera del conjunto de entrega.
La Figura 5B es una ilustración de una extremidad distal del conjunto alargado de la Figura 5A situado para afectar
al tejido nervioso de un tronco de nervio.
La Figura 6 es una vista en alzado lateral de un conjunto de entrega en un paso interno de una vía respiratoria
bronquial según una realización.
La Figura 7 es una vista en alzado lateral de una extremidad distal de un conjunto alargado que se mueve a través
del conjunto de entrega de la Figura 6.
La Figura 8 es una vista en alzado lateral de la extremidad distal del conjunto alargado saliendo desde el conjunto de
entrega según una realización.
La Figura 9 es una vista ampliada en sección transversal parcial de la extremidad distal de la Figura 8, en donde la
extremidad distal se extiende a una pared de la vía respiratoria.
La Figura 10A es una vista en alzado lateral de un conjunto de ablación auto-expansible en una vía respiratoria
según una realización.
La Figura 10B es una vista frontal del conjunto de ablación de la Figura 10A.
La Figura 11A es una vista en alzado lateral de otra realización de un conjunto de ablación auto-expansible en una
vía respiratoria.
La Figura 11B es una vista frontal del conjunto de ablación de la Figura 11A.
La Figura 12A es una vista en sección transversal parcial de un sistema de tratamiento que tiene un conjunto de
entrega y un conjunto alargado independiente dentro del conjunto de entrega según una realización.
La Figura 12B es una vista frontal del sistema de tratamiento de la Figura 12A.
La Figura 13A es una vista en sección transversal de un conjunto de entrega que entrega energía a un lugar de
tratamiento según una realización.
La Figura 13B es una vista frontal del conjunto de entrega de la Figura 13A.
La Figura 14A es una vista en sección transversal parcial de un sistema de tratamiento que tiene un conjunto
alargado con un orificio situado en una pared de vía respiratoria según una realización.
La Figura 14B es una vista frontal del sistema de tratamiento de la Figura 14A.
La Figura 15A es una vista en alzado lateral de un sistema de tratamiento que tiene un conjunto expansible.
La Figura 15B es una vista en sección transversal del conjunto expansible de la Figura 15A.
La Figura 16 es un gráfico de la profundidad de tejido frente a la temperatura del tejido.
La Figura 17 es una vista en alzado lateral del conjunto expansible de la Figura 15A en una vía respiratoria.
La Figura 18 es una vista en sección transversal del conjunto expansible de la Figura 15A y una vía respiratoria que
rodean el conjunto expansible.
La Figura 19A es una vista en alzado lateral de un sistema de tratamiento que tiene un conjunto expansible, según
una realización.
La Figura 19B es una vista en sección transversal del conjunto expansible de la Figura 19A.
La Figura 20A es una vista en alzado lateral de un sistema de tratamiento que tiene un conjunto expansible, según
otra realización.
La Figura 20B es una vista en sección transversal del conjunto expansible de la Figura 20A.
La Figura 21 es una vista en sección transversal del conjunto expansible de la Figura 20A y una vía respiratoria que rodean el conjunto expansible.
Descripción detallada
En la siguiente descripción, se establecen ciertos detalles específicos con el fin de proporcionar una comprensión profunda de diversas realizaciones de la invención. Sin embargo, un experto en la técnica comprenderá que la invención puede ponerse en poner en práctica sin estos detalles. En otros casos, no se han descrito con todo detalle estructuras muy conocidas asociadas con sistemas de catéter, conjuntos de entrega, elementos que se pueden activar, red de circuitos y electrodos para evitar un oscureciendo innecesario de las descripciones de las realizaciones de la invención.
A menos que el contexto lo requiera de otro modo, a través de la memoria descriptiva y las reivindicaciones que siguen, la palabra "comprender" y las variaciones de la misma, como "comprende" y "comprendiendo" han de interpretarse en un sentido abierto e inclusivo, esto es, como "incluir pero sin estar limitado a".
La Figura 1 ilustra unos pulmones humanos 10 que tienen un pulmón izquierdo 11 y un pulmón derecho 12. Una tráquea 20 se extiende hacia abajo desde la nariz y la boca y se divide en un bronquio principal izquierdo 21 y un bronquio principal derecho 22. El bronquio principal izquierdo 21 y el bronquio principal derecho 22 se ramifican cada uno para formar bronquios segmentales lobulares, y bronquios sub-segmentales, que tienen diámetros sucesivamente más pequeños y longitudes más cortas en la dirección hacia fuera (es decir, la dirección distal). Una arteria pulmonar principal 30 se origina en un ventrículo derecho del corazón y pasa por delante de una raíz pulmonar 24. En la raíz pulmonar 24, la arteria 30 se ramifica en una arteria pulmonar izquierda y una derecha, que a su vez se ramifican para formar una red de vasos sanguíneos ramificados. Estos vasos sanguíneos pueden extenderse al lado de las vías respiratorias de un árbol bronquial 27. El árbol bronquial 27 incluye el bronquio principal izquierdo 21, el bronquio principal derecho 22, bronquiolos y alvéolos. Los nervios vagos 41, 42 se extienden al lado de la tráquea 20 y se ramifican para formar troncos de nervio 45.
Los nervios vagos izquierdos y derechos 41, 42 se originan en el tallo cerebral, pasan a través del cuello, y descienden a través del pecho a ambos lados de la tráquea 20. Los nervios vagos 41, 42 se expanden adentro de los troncos de nervio 45 que incluyen los plexos pulmonares anteriores y posteriores que se envuelven alrededor de la tráquea 20, el bronquio principal izquierdo 21 y el bronquio principal derecho 22. Los troncos de nervio 45 también se extienden a lo largo y afuera de las vías respiratorias que se ramifican del árbol bronquial 27. Los troncos de nervio 45 son el tallo principal de un nervio, comprendiendo un manojo de fibras nerviosas unidas juntas por una funda dura de tejido conjuntivo.
La función principal de los pulmones 10 es intercambiar oxígeno del aire con la sangre e intercambiar dióxido de carbono desde la sangre al aire. El proceso de intercambio de gases empieza cuando se atrae aire rico en oxígeno a los pulmones 10. La contracción del diafragma y los músculos intercostales de la pared del pecho cooperan para disminuir la presión dentro del pecho para hacer que el aire rico en oxígeno fluya a través de las vías respiratorias de los pulmones 10. Por ejemplo, el aire pasa a través de la boca y la nariz, la tráquea 20, y luego a través del árbol bronquial 27. El aire es entregado finalmente a los alveolos para el proceso de intercambio de gases.
La sangre pobre en oxígeno es bombeada desde el lado derecho del corazón a través de la arteria pulmonar 30 y finalmente es entregada a los capilares alveolares. Esta sangre pobre en oxígeno es rica en desecho de dióxido de carbono. Unas membranas semipermeables separan la sangre pobre en oxígeno en los capilares del aire rico en oxígeno en los alvéolos. Estos capilares envuelven alrededor y se extienden entre los alvéolos. El oxígeno del aire se difunde a través de las membranas hacia la sangre, y el dióxido de carbono de la sangre se difunde a través de las membranas al aire en los alvéolos. El sangre nueva enriquecida con oxígeno fluye entonces desde los capilares alveolares a través de los vasos sanguíneos ramificados del sistema venoso pulmonar al corazón. El corazón bombea la sangre rica en oxígeno a través del cuerpo. El aire sin oxígeno en el pulmón es exhalado cuando el diafragma y los músculos intercostales se relajan y los pulmones y la pared del pecho regresan elásticamente a los estados relajados normales. De esta manera, el aire puede fluir a través de los bronquiolos ramificados, los bronquios 21, 22 y la tráquea 20 y finalmente es expulsado por la boca y la nariz.
Puede utilizarse un sistema de tratamiento 198 de la Figura 2A para tratar los pulmones 10 con el fin de ajustar el flujo de aire durante la espiración o aspiración, o los dos. Por ejemplo, las vías respiratorias pueden ampliarse (por ejemplo, dilatarse) para disminuir la resistencia al flujo de aire para aumentar el intercambio de gases. El sistema de tratamiento 198 puede afectar al tejido nervioso, tal como al tejido nervioso de un tronco de nervio, para dilatar las vías respiratorias.
En algunas realizaciones, el sistema de tratamiento 198 tiene como objetivo el sistema nervioso que proporciona la comunicación entre el cerebro y los pulmones 10 utilizando señales eléctricas y químicas. Una red de tejido nervioso del sistema nervioso autónomo siente y regula la actividad del sistema respiratorio y el sistema vascular. El tejido nervioso incluye fibras que utilizan sustancias químicas y señales eléctricas para transmitir información sensorial y motriz de una parte del cuerpo a otra. Por ejemplo, el tejido nervioso puede transmitir información motriz en forma de aportes al sistema nervioso, tal como una señal que provoca la contracción de músculos u otras respuestas. Las fibras pueden estar compuestas de neuronas. El tejido nervioso puede estar rodeado por tejido conjuntivo, es decir, epineurio. El sistema nervioso autónomo incluye un sistema simpático y un sistema parasimpático. El sistema nervioso simpático está implicado en gran parte en funciones "de excitación" durante períodos de estrés. El sistema nervioso parasimpático está implicado en gran parte en funciones "vegetativas" durante períodos de conservación de energía. Los sistemas nerviosos simpáticos y parasimpáticos están activos simultáneamente y tienen generalmente efectos recíprocos en sistemas de órganos. Mientras la inervación de los vasos sanguíneos se origina desde ambos sistemas, la inervación de las vías respiratorias es en gran parte de naturaleza parasimpática y viaja entre el pulmón y el cerebro en el nervio vago derecho 42 y el nervio vago izquierdo 41.
El sistema de tratamiento 198 puede realizar cualquier número de procedimientos en uno o en más de estos troncos de nervio 45 para afectar a la parte del pulmón asociada con esos troncos de nervio. Debido a que parte del tejido nervioso en la red de troncos de nervio 45 se unen en otros nervios (por ejemplo, los nervios conectados al esófago, los nervios a través del pecho y al abdomen, y similares), el sistema de tratamiento 198 puede tratar lugares específicos para minimizar, limitar o eliminar substancialmente el daño no deseado de ésos otros nervios. Algunas fibras de los plexos pulmonares anteriores y posteriores se unen en pequeños troncos de nervio que se extienden a lo largo de las superficies exteriores de la tráquea 20 y los bronquios ramificados y bronquiolos cuando viajan hacia afuera a los pulmones 10. A lo largo de los bronquios ramificados, estos pequeños troncos de nervio se ramifican continuamente entre sí y envían fibras a las paredes de las vías respiratorias, como se explicó con respecto a las Figuras 3 y 4.
El sistema de tratamiento 198 puede afectar a un tejido nervioso específico, tal como el tejido nervioso vago, asociado con lugares particulares de interés. El tejido nervioso vago incluye fibras eferentes y fibras aferentes orientadas en paralelo entre sí dentro de una ramificación nerviosa. El tejido nervioso eferente transmite señales del cerebro a células efectoras de las vías respiratorias, en su mayor parte células de músculo liso de vías respiratorias y células que producen moco. El tejido nervioso aferente transmite señales desde los receptores sensitivos de las vías respiratorias, que responden de forma diversa a sustancias irritantes y se extienden al cerebro. Mientras el tejido nervioso eferente inerva las células de músculo liso completamente desde la tráquea 20 a los bronquiolos terminales, la inervación de fibras aferentes está limitada en gran parte a la tráquea 20 y a los bronquios más grandes. Hay una actividad tónica basal constante de los tejidos eferentes del nervio vago a las vías respiratorias que provocan un nivel basal de contracción de músculo liso y secreción mucosa.
El sistema de tratamiento 198 puede afectar a los tejidos eferentes y/o aferentes para controlar el músculo liso de las vías respiratorias (por ejemplo, inervar el músculo liso) y secreción mucosa. La contracción del músculo liso de las vías respiratorias y el exceso de secreción mucosa asociados con enfermedades pulmonares a menudo tienen como resultado una resistencia relativamente alta al flujo de aire que provoca un reducido intercambio de gases y menores prestaciones pulmonares.
Por ejemplo, el sistema de tratamiento 198 puede atenuar la transmisión de las señales que viajan por los nervios vagos 41, 42 que provocan contracciones de músculos, producción de moco y similares. La atenuación puede incluir, sin limitación, dificultad, limitación, bloqueo y/o interrupción de la transmisión de señales. Por ejemplo, la atenuación puede incluir la disminución de la amplitud de señal de las señales de nervio o debilitación de la transmisión de señales de nervio. Disminuir o detener el aporte del sistema nervioso a las vías respiratorias distales puede alterar el tono del músculo liso de las vías respiratorias, la producción de moco en las vías respiratorias, la inflamación de las vías respiratorias y similares, controlando de ese modo el flujo de aire adentro y afuera de los pulmones 10. En algunas realizaciones, puede disminuirse el aporte del sistema nervioso para disminuir correspondientemente el tono del músculo liso de las vías respiratorias. En algunas realizaciones, la producción de moco de vías respiratorias puede disminuirse una cantidad suficiente para provocar una disminución substancial de la tos y/o de la resistencia al flujo de aire. La atenuación de la señal puede permitir a los músculos lisos relajarse y prevenir, limitar o eliminar substancialmente la producción de moco por las células productoras de mucosa. De esta manera, pueden alterarse las vías respiratorias sanas y/o enfermas para ajustar la función pulmonar. Después del tratamiento, pueden utilizarse diversos tipos de cuestionarios o pruebas para valorar la respuesta del sujeto al tratamiento. Si se necesita o se desea, pueden realizarse procedimientos adicionales para reducir la frecuencia de la tos, disminuir la dificultad al respirar, disminuir el resuello y similares.
Los bronquios principales 21, 22 (es decir, generación de vías respiratorias 1) de la Figura 1 pueden ser tratados para afectar a las partes distales del árbol bronquial 27. En algunas realizaciones, los bronquios principales izquierdo y derecho 21, 22 son tratados en ubicaciones a lo largo de las raíces del pulmón izquierdo y el derecho 24 y fuera de los pulmones izquierdo y derecho 11, 12. Los lugares de tratamiento pueden ser distales a donde las ramas de nervios vagos se conectan a la tráquea y a los bronquios principales 21, 22 y proximales a los pulmones 11, 12. Puede utilizarse una única sesión de tratamiento que implica dos aplicaciones de terapia para tratar la mayor parte o todo el árbol bronquial 27. Substancialmente todas las ramas bronquiales que se extienden a los pulmones 11, 12 pueden verse afectadas para proporcionar un alto nivel de eficacia terapéutica. Debido a que las arterias bronquiales en los bronquios principales 21, 22 tienen diámetros relativamente grandes y gran capacidad de disipar calor, las arterias bronquiales pueden estar protegidas del daño involuntario debido al tratamiento.
En algunas realizaciones, uno de los bronquios principales, izquierdos y derechos, 21, 22 es tratado para tratar un lado del árbol bronquial 27. El otro bronquio principal 21, 22 puede ser tratado basándose en la eficacia del primer tratamiento. Por ejemplo, el bronquio principal izquierdo 21 puede ser tratado para tratar el pulmón izquierdo 11. El bronquio principal derecho 22 puede ser tratado para tratar el pulmón derecho 12. En algunas realizaciones, un único sistema de tratamiento puede dañar el tejido nervioso de uno de los bronquios 21, 22 y puede dañar el tejido nervioso del otro bronquio principal 21, 22 sin retirar el sistema de tratamiento de la tráquea 20. El tejido nervioso situado a lo largo de los bronquios principales 21, 22 puede de este modo ser dañado sin quitar el sistema de tratamiento de la tráquea 20. En algunas realizaciones, puede realizarse un único procedimiento para tratar de manera conveniente substancialmente todo, o por lo menos una parte significativa (por ejemplo, por lo menos el 50%, 70%, 80%, 90% de las vías respiratorias bronquiales), del árbol bronquial del paciente. En otros procedimientos, el sistema de tratamiento puede quitarse del paciente después de tratar uno de los pulmones 11,
12. Si se necesita, el otro pulmón 11, 12 puede ser tratado en un procedimiento subsiguiente.
El sistema de tratamiento 198 de las Figuras 2A y 2B puede tratar las vías respiratorias que son distales a los bronquios principales 21, 22. Por ejemplo, el sistema de tratamiento 198 puede colocarse en las vías respiratorias de generación más alta (por ejemplo, generaciones de vías respiratorias> 2) para afectar a las partes distales remotas del árbol bronquial 27. El sistema de tratamiento 198 puede ser dirigido a través de las vías respiratorias sinuosas para realizar una gran variedad de procedimientos diferentes, tal como, por ejemplo, denervación de una parte de un lóbulo, de un lóbulo entero, de múltiples lóbulos o de un pulmón o ambos pulmones. En algunas realizaciones, los bronquios lobulares son tratados para denervar los lóbulos pulmonares. Por ejemplo, puede ser el objetivo uno o más lugares de tratamiento a lo largo de un bronquio lobular para denervar un lóbulo entero conectado a ese bronquio lobular. Pueden tratarse los bronquios lobulares izquierdos para afectar al lóbulo superior izquierdo y/o el lóbulo inferior izquierdo. Pueden tratarse los bronquios derechos lobulares para afectar al lóbulo superior derecho, el lóbulo medio derecho y/o el lóbulo inferior derecho. Los lóbulos pueden ser tratados al mismo tiempo o secuencialmente. En algunas realizaciones, un médico puede tratar un lóbulo. Basándose en la eficacia del tratamiento, el médico puede tratar secuencialmente o al mismo tiempo un lóbulo(s) adicional(es). De esta manera, pueden tratarse regiones aisladas diferentes del árbol bronquial.
El sistema de tratamiento 198 también puede utilizarse en bronquios segmentales o subsegmentales. Cada bronquio segmental puede ser tratado entregando energía a un único lugar de tratamiento a lo largo de cada bronquio segmental. Por ejemplo, la energía puede ser entregada a cada bronquio segmental del pulmón derecho. En algunos procedimientos, diez aplicaciones de energía pueden tratar la mayor parte o substancialmente todo el pulmón derecho. En algunos procedimientos, se trata la mayoría o substancialmente todo de ambos pulmones utilizando menos de treinta y seis aplicaciones diferentes de energía. Dependiendo de la estructura anatómica del árbol bronquial, los bronquios segmentales a menudo pueden ser denervados utilizando algunas aplicaciones de energía.
El sistema de tratamiento 198 puede afectar al tejido nervioso mientras se mantiene la función de otro tejido o características anatómicas, tal como las glándulas mucosas, cilios, músculo liso, vasos del cuerpo (por ejemplo los vasos sanguíneos), y similares. El tejido nervioso incluye neuronas, fibras nerviosas, dendritas y tejido de soporte, tal como la neuroglia. Las neuronas transmiten impulsos eléctricos, y las fibras nerviosas son axones prolongados que conducen los impulsos. Los impulsos eléctricos son convertidos en señales químicas para comunicarse con células efectoras u otras neuronas. A modo de ejemplo, el sistema de tratamiento 198 es capaz de denervar una parte de una vía respiratoria del árbol bronquial 27 para atenuar una o más señales del sistema nervioso transmitidas por tejido nervioso. La denervación puede incluir el daño de todo el tejido nervioso de una sección de un tronco de nervio a lo largo de una vía respiratoria para impedir que substancialmente todas las señales viajen a través de la sección dañada del tronco de nervio a ubicaciones más distales a lo largo del árbol bronquial. Si una pluralidad de troncos de nervio se extiende a lo largo de las vías respiratorias, cada tronco de nervio puede ser dañado. Como tal, puede cortarse el suministro al nervio a lo largo de una sección del árbol bronquial. Cuando las señales se cortan, el músculo liso distal de vías respiratorias puede relajarse llevando a una dilatación de las vías respiratorias. Esta dilatación de las vías respiratorias reduce la resistencia al flujo de aire para aumentar el intercambio de gases en los pulmones 10, reduciendo, limitando o eliminando substancialmente de ese modo uno o más síntomas, tal como la dificultad al respirar, resuello, opresión en el pecho y similares. El tejido que rodea o es adyacente al tejido nervioso de objetivo puede verse afectado pero no ser dañado permanentemente. En algunas realizaciones, por ejemplo, los vasos sanguíneos bronquiales a lo largo de las vías respiratorias tratadas pueden entregar una cantidad similar de sangre a los tejidos de paredes bronquiales y los vasos sanguíneos pulmonares a lo largo de las vías respiratorias tratadas pueden entregar una cantidad similar de sangre a los alveolos en las regiones distales del árbol bronquial 27 antes y después del tratamiento. Estos vasos sanguíneos pueden continuar transportando sangre para mantener suficiente intercambio de gases. En algunas realizaciones, el músculo liso de las vías respiratorias no es dañado de manera significativa. Por ejemplo, puede alterarse reversiblemente una sección relativamente pequeña de músculo liso en una pared de vía respiratoria que no impacta perceptiblemente a la función respiratoria. Si se utiliza energía para destruir el tejido nervioso fuera de las vías respiratorias, una cantidad de energía terapéuticamente efectiva no alcanza una parte significativa del tejido de músculo liso que no es objetivo.
El sistema de tratamiento 198 de la Figura 2A incluye un controlador de tratamiento 202 y un conjunto alargado intraluminal 200 conectado al controlador 202. El conjunto alargado 200 puede ser insertado en la tráquea 20 y ser dirigido adentro y a través del árbol bronquial 27 con o sin utilizar un conjunto de entrega. El conjunto alargado 200 incluye una extremidad distal 203 capaz de afectar selectivamente al tejido.
El controlador 202 de la Figura 2A puede incluir uno o más procesadores, microprocesadores, procesadores digitales de señales (DSP), distribución de puertas programables en campo (FPGA), y/o circuitos integrados específicos de aplicaciones (ASIC), dispositivos de memoria, buses, fuentes de alimentación y similares. Por ejemplo, el controlador 202 puede incluir un procesador en comunicación con uno o más dispositivos de memoria. Los buses pueden vincular una fuente de alimentación interna o externa con el procesador. Las memorias pueden adoptar diversas formas, incluidas, por ejemplo, una o más memorias intermedias, registros, memorias de acceso aleatorio (RAM) y/o memorias de solo lectura (ROM). El controlador 202 también puede incluir un display, tal como una pantalla.
En algunas realizaciones, el controlador 202 tiene un sistema de circuito cerrado o un sistema de circuito abierto. Por ejemplo, el controlador 202 puede tener un sistema de circuito cerrado, por lo que la potencia a la extremidad distal 203 es controlada basándose en señales de realimentación de uno o más sensores configurados para transmitir (o enviar) una o más señales indicativas de una o más características de tejido, distribución de energía, temperatura de tejido o cualquier otro parámetro mensurable de interés. Basándose en esas lecturas, el controlador 202 puede ajustar entonces el funcionamiento de la extremidad distal 203. Como alternativa, el sistema de tratamiento 198 puede ser un sistema de circuito abierto en donde el funcionamiento de la extremidad distal 203 es establecido por un aporte del usuario. Por ejemplo, el sistema de tratamiento 198 puede ponerse en un modo de potencia fija. Se contempla que el sistema de tratamiento 198 pueda ser cambiado repetidas veces entre un sistema de circuito cerrado y un sistema de circuito abierto para tratar diferentes tipos de lugares.
La extremidad distal 203 de las Figuras 2A-4 puede tener como objetivo varios lugares en los pulmones 10, incluyendo, sin limitación, tejido nervioso (por ejemplo, tejido de nervios vagos 41, 42, troncos de nervio 45, etc.), tejido fibroso, tejidos enfermos o anómalos (por ejemplo, tejido canceroso, tejido inflamado y similares), tejido de músculo, sangre, vasos sanguíneos, características anatómicas (por ejemplo, membranas, glándulas, cilios y similares), u otros lugares de interés. Se explican varios tipos de extremidades distales con respecto a las Figuras 5A-14B.
La Figura 3 es una vista en sección transversal de una vía respiratoria sana 100, ilustrada como un tubo bronquial. La extremidad distal 203 se coloca a lo largo de un paso interno 101 definido por una superficie interior 102 de la vía respiratoria 100. La superficie interior ilustrada 102 está definida por una capa plegada de epitelio 110 rodeada por estroma 112a. Una capa de tejido 114 de músculo liso rodea el estroma 112a. Hay una capa de estroma 112b entre el tejido 114 de músculo y el tejido conjuntivo 124. Las glándulas mucosas 116, los cartílagos 118, los vasos sanguíneos 120 y fibras nerviosas 122 están dentro de la capa de estroma 112b. Las ramificaciones 130 de arteria bronquial y los troncos de nervio 45 son exteriores a una pared 103 de la vía respiratoria 100. Las arterias 130 y troncos de nervio 45 ilustrados están dentro del tejido conjuntivo 124 rodeando la pared 103 de vía respiratoria y pueden estar orientados generalmente paralelos a la vía respiratoria 100. En la Figura 1, por ejemplo, los troncos de nervios 45 se originan en los nervios vagos 41, 42 y se extienden a lo largo de la vía respiratoria 100 hacia los alveolos. Las fibras nerviosas 122 están en la pared 103 de vía respiratoria y se extienden desde los troncos de nervio 45 al tejido muscular 114. Las señales del sistema nervioso son transmitidas desde los troncos de nervio 45 al músculo 114 a través de las fibras nerviosas 122.
La extremidad distal 203 de la Figura 3 puede dañar, excitar u obtener de otro modo una respuesta deseada de los cilios a lo largo del epitelio 110 con el fin de controlar (por ejemplo, el aumento o la disminución) del transporte de mucosidad. Cuando una persona respira se inhalan muchas partículas y las vías respiratorias funcionan como un filtro para quitar las partículas del aire. El sistema de transporte de mucosidad ciliar funciona como un mecanismo de autolimpieza para todas las vías respiratorias a través de los pulmones 10. El transporte de mucosidad ciliar es un método primario para la limpieza de moco de las partes distales de los pulmones 10, sirviendo de ese modo como una barrera inmune primaria para los pulmones 10. Por ejemplo, la superficie interior 102 de la Figura 3 puede estar cubierta con cilios y revestida con moco. Como parte del sistema de transporte de la mucosidad ciliar, el moco atrapa muchas partículas inhaladas (por ejemplo, contaminantes no deseados como el humo del tabaco) y mueve estas partículas hacia la laringe. El ritmo ciliar de los cilios mueve una alfombra continua de moco y las partículas atrapadas desde las partes distales de los pulmones 10 pasando por la laringe y a la faringe para la expulsión del sistema respiratorio. La extremidad distal 203 puede dañar los cilios para disminuir el transporte de mucosidad ciliar
o excitar los cilios para aumentar el transporte de mucosidad ciliar.
En algunas realizaciones, la extremidad distal 203 trata selectivamente lugares de objetivo de tratamiento dentro de la pared 103 de vía respiratoria (por ejemplo, características anatómicas en los estromas 112a, 112b). Por ejemplo, pueden dañarse las glándulas mucosas 116 para reducir la producción de moco una cantidad suficiente para impedir la acumulación de moco que causa un aumento de la resistencia al flujo de aire al tiempo que se preserva suficiente producción de moco para mantener un transporte efectivo de mucosidad ciliar, si se necesita o se desea. En algunas realizaciones, por ejemplo, la extremidad distal 203 envía energía ablativa que viaja a través de la periferia interior de la pared 103 de vía respiratoria a las glándulas mucosas 116. En otras realizaciones, la extremidad distal 203 es insertada en la pared 103 de vía respiratoria para colocar la extremidad distal 203 próxima a las glándulas mucosas
116. La extremidad distal empotrada 203 trata entonces las glándulas mucosas 116 al tiempo que limita el tratamiento del tejido circundante. La extremidad distal 203 también puede utilizarse para destruir ramas/fibras nerviosas que pasan a través de la pared 103 de vía respiratoria u otras características anatómicas en la pared 103 de vía respiratoria.
Si la vía respiratoria 100 se contrae excesivamente, la resistencia al flujo de aire de la vía respiratoria 100 puede ser relativamente alta. La extremidad distal 203 puede relajar el tejido muscular 114 para dilatar la vía respiratoria 100 con el fin de reducir la resistencia al flujo de aire, permitiendo de ese modo que más aire alcance los alveolos para el proceso de intercambio de gases. Diversas vías respiratorias del árbol bronquial 47 pueden tener músculos que se contraen en respuesta a señales que viajan por los troncos de nervio 45. La extremidad 203 puede dañar lugares a través de los pulmones 10 para dilatar las vías respiratorias contraídas.
La Figura 4 es una vista en sección transversal de una parte de la vía respiratoria 100 que tiene tejido 114 de músculo liso en un estado contraído y moco 150 de las glándulas mucosas hipertrofiadas 116. El tejido muscular contraído 114 y el moco 150 cooperan para obstruir parcialmente el paso interno 101. La extremidad distal 203 puede relajar el tejido 114 de músculo liso y reducir, limitar o eliminar substancialmente la producción de moco de las glándulas mucosas 116. La vía respiratoria 100 puede dilatarse entonces y puede reducirse la cantidad de moco 150, para agrandar efectivamente el paso interno 101.
La extremidad distal 203 de las Figuras 3 y 4 puede entregar diferentes tipos de energía. Tal como se utiliza en esta memoria, el término "energía" se interpreta ampliamente para incluir, sin limitación, energía térmica, energía criogénica (por ejemplo, energía de refrigeración), energía eléctrica, energía acústica (por ejemplo, energía ultrasónica), energía de radiofrecuencia energía de impulsos de alta tensión, energía mecánica, radiación ionizante, energía óptica (por ejemplo, energía luminosa) y combinaciones de las mismas, así como otros tipos de energía adecuada para tratar tejidos. A modo de ejemplo, puede utilizarse energía térmica para calentar tejido. Puede utilizarse energía mecánica para perforar, desgarrar, cortar, aplastar o dañar de otro modo físicamente el tejido. En algunas realizaciones, la extremidad distal 203 aplica presión al tejido con el fin de dañar temporal o permanentemente el tejido. La energía eléctrica es particularmente muy adecuada para dañar membranas celulares, tal como las membranas celulares de tejido de tronco de nervio u otras características anatómicas de objetivo. La energía acústica puede ser emitida como ondas continuas o a impulsos, dependiendo de los parámetros de una aplicación particular. Adicionalmente, la energía acústica puede ser emitida en formas de ondas que tienen diversas formas, tal como ondas sinusoidales, ondas triangulares, ondas cuadradas u otras formas de onda.
En algunas realizaciones, se emplea un fluido (por ejemplo, un líquido, gas o mezclas de los mismos) para dañar el tejido. La extremidad distal 203 puede incluir uno o más elementos de flujo a través de los cuales puede circular el fluido para controlar la temperatura superficial del elemento de flujo. El elemento de flujo puede ser uno o más globos, miembros expansibles y similares. El fluido puede ser salino calentado/refrigerado, fluidos criogénicos y similares. Adicionalmente o como alternativa, la extremidad distal 203 puede incluir uno o más orificios a través de los cuales fluye el fluido para traumatizar el tejido.
En algunas realizaciones, la extremidad distal 203 entrega una o más sustancias (por ejemplo, semillas radioactivas, materiales radioactivos, etc.), agentes de tratamiento y similares. Ejemplos no limitativos de agentes de tratamiento incluyen, sin limitación, uno o más antibióticos, agentes antiinflamatorios, sustancias farmacéuticamente activas, broncoconstrictores, broncodilatadores (por ejemplo, agonistas beta-adrenérgicos, anticolinérgicos, etc.), fármacos que bloquean los nervios, agentes fotoreactivos o combinaciones de los mismos. Por ejemplo, pueden administrarse fármacos que boquean nervios de corta duración o larga duración (por ejemplo, anticolinérgicos) al tejido nervioso para atenuar temporal o permanentemente a la transmisión de señales. También se pueden administrar sustancias directamente a los nervios 122 o los troncos de nervio 45, o a ambos, para dañar químicamente el tejido nervioso.
Las Figuras 5A-14B ilustran realizaciones para la entrega a lo largo de un paso interno de una vía respiratoria. Las realizaciones ilustradas son sólo algunos ejemplos de los tipos de sistemas de tratamiento capaces de realizar procedimientos particulares. Debe reconocerse que cada uno de los sistemas de tratamiento descritos en esta memoria puede ser modificado para tratar tejido en diferentes ubicaciones, dependiendo del tratamiento que va a ser realizado. El tratamiento puede ser realizado en vías respiratorias que están dentro o fuera del pulmón izquierdo o el derecho. Las Figuras 5A-13B ilustran sistemas de tratamiento capaces de enviar energía. Estos sistemas de tratamiento pueden enviar energía continuamente durante un periodo de tiempo predeterminado mientras permanecen estacionarios. Como alternativa, los sistemas de tratamiento pueden ser a impulsos, pueden ser activados muchas veces, o pueden ser accionados con una combinación de cualquiera de estas maneras. Los diferentes patrones de aplicación de energía pueden conseguirse configurando el mismo sistema de tratamiento o pueden implicar mover el conjunto de tratamiento o cualquiera de sus componentes a ubicaciones diferentes.
Haciendo referencia a la Figura 5A, un sistema de tratamiento 198A incluye un conjunto alargado 200A que tiene una extremidad distal 203A situada a lo largo de la vía respiratoria 100. El conjunto alargado 200A se extiende a través de un paso interno de trabajo 401 de un conjunto de entrega 400 e incluye un tronco flexible 500 y un conjunto desplegable de ablación 520 que sobresale del tronco 500.
El tronco 500 puede ser un tronco generalmente recto que es doblado a medida que se mueve a lo largo del paso interno 401. En algunas realizaciones, el tronco 500 tiene una sección no lineal preformada 503 para dirigir el conjunto de ablación 520 hacia la pared 103 de vía respiratoria. Según se muestra en la Figura 5A, el paso interno 401 puede tener un diámetro que es significativamente más grande que el diámetro exterior del tronco 500. Cuando el tronco 500 pasa fuera del conjunto de entrega 400, el tronco 500 adopta la configuración preestablecida. El tronco flexible 500 puede hacerse, en su totalidad o en parte, de uno o más metales, aleaciones (por ejemplo, aleaciones de acero tal como acero inoxidable), plásticos, polímeros y combinaciones de los mismos, así como otros materiales biocompatibles.
En algunas realizaciones, el tronco 500 se mueve selectivamente entre una configuración de entrega y una configuración de tratamiento. Por ejemplo, el tronco 500 puede tener una configuración substancialmente recta para la entrega y una configuración curva para acoplarse al tejido. En tales realizaciones, el tronco 500 puede hacerse, en su totalidad o en parte, de uno o más materiales con memoria de forma, que mueve el tronco 500 entre la configuración de entrega y la configuración de tratamiento cuando es activado. Los materiales con memoria de forma incluyen, por ejemplo, aleaciones con memoria de forma (por ejemplo, NiTi), polímeros con memoria de forma, materiales ferromagnéticos y similares. Estos materiales pueden ser transformados desde una primera configuración preestablecida a una segunda configuración preestablecida cuando son activados (por ejemplo, térmicamente activados).
El conjunto de ablación 520 incluye una sección protectora 524 y un elemento de ablación 525. Cuando el elemento de ablación 525 es activado, el elemento de ablación 525 envía energía al tejido dirigido. La sección protectora 524 inhibe o bloquea la energía enviada para proteger el tejido que no es el objetivo. El elemento de ablación 525 y la sección protectora 524 cooperan de este modo para proporcionar una entrega localizada de energía para minimizar, limitar o eliminar substancialmente el trauma adicional no deseado asociado con la energía producida.
El elemento de ablación 525 puede estar adaptado para enviar energía que realiza la ablación de tejido. Los términos "realizar ablación" o "ablación," incluidos los derivados de los mismos, incluyen, sin limitación, la alteración substancial de propiedades eléctricas, propiedades mecánicas, propiedades químicas u otras propiedades del tejido. En el contexto de aplicaciones de ablación pulmonar mostradas y descritas haciendo referencia a las variaciones de las realizaciones ilustrativas en esta memoria, "ablación" incluye alterar lo suficientemente las propiedades del tejido nervioso para bloquear substancialmente la transmisión de señales eléctricas a través del tejido nervioso sometido a ablación.
El término "elemento" dentro del contexto de "elemento de ablación" incluye un elemento discreto, tal como un electrodo, o una pluralidad de elementos discretos tal, como una pluralidad de electrodos espaciados, que están situados con el fin de tratar colectivamente una región de tejido o tratar lugares discretos. Un tipo de elemento de ablación emite energía que realiza la ablación de tejido cuando el elemento es acoplado y energizado por una fuente de energía. Ejemplos de elementos de ablación emisores de energía incluyen, sin limitación, elementos de electrodos que se pueden acoplar a fuentes de corriente continua ("CC") o fuentes de corriente alterna ("CA") (por ejemplo, fuentes de corriente de radiofrecuencia ("RF")), elementos de antena que se pueden energizar con fuentes de energía de microondas, fuentes de impulsos de alta tensión, elementos calentadores (por ejemplo, elementos metálicos u otros conductores térmicos que son energizados para emitir calor a través de transferencia de calor por convección, transferencia conductiva de calor, etc.), elementos emisores de luz (por ejemplo, fibra óptica capaz de transmitir la suficiente luz para realizar la ablación del tejido cuando la fibra óptica es acoplada a una fuente de luz), fuentes de luz (por ejemplo, láseres, diodos emisores de luz, etc.), elementos ultrasónicos tales como elementos de ultrasonidos adaptados para emitir ondas sonoras ultrasónicas suficientes para realizar la ablación del tejido cuando está acoplado a fuentes adecuadas de excitación), combinaciones de los mismos y similares.
Tal como se utiliza en esta memoria, el término "realizar ablación," incluidas las variaciones del mismo, se interpreta para incluir, sin limitación, destruir o dañar permanentemente, herir o traumatizar tejido. Por ejemplo, la ablación puede incluir la destrucción localizada de tejido, lisis celular, reducción de tamaño de células, necrosis o combinaciones de las mismas.
En algunas realizaciones, el conjunto de ablación 520 puede conectarse a un generador de energía (por ejemplo, un generador eléctrico de frecuencia de radio (RF)) por cables eléctricos dentro del tronco 500. Por ejemplo, el generador eléctrico de RF puede ser incorporado en el controlador 202 de la Figura 2A. En algunas realizaciones, el generador eléctrico de RF es incorporado en el conjunto de ablación 520.
La energía de RF puede ser enviada en una frecuencia deseada basada en el tratamiento. Frecuencias de ejemplo incluyen, sin limitación, frecuencias en el intervalo de aproximadamente 50 khz a aproximadamente 1000 MHz. Cuando la energía de RF es dirigida al tejido, la energía es convertida dentro del tejido en calor que hace que la temperatura del tejido esté en el intervalo de aproximadamente 40 °C a aproximadamente 99 °C. La energía de RF puede ser aplicada durante un tiempo en el intervalo de aproximadamente 1 segundo a aproximadamente 120 segundos. En algunas realizaciones, el generador de RF tiene un único canal y entrega aproximadamente de 1 a 25 vatios de energía de RF y posee la capacidad de flujo continuo. También pueden utilizarse intervalos de frecuencias, de tiempo y de envío de potencia.
La sección protectora 524 puede ser en forma de un protector hecho, en su totalidad o en parte, de un material que no es transmisor con respecto a la energía del elemento de ablación 525. En algunas realizaciones, la sección protectora 524 está compuesta de uno o más metales, materiales ópticamente opacos y similares. Si el elemento de ablación 525 envía energía ablativa, la sección protectora 524 puede bloquear una cantidad suficiente de la energía ablativa para impedir la ablación de tejido directamente junto a la sección protectora 524. De esta manera, el tejido que no es el objetivo no es dañado permanentemente.
Un usuario puede inspeccionar visualmente la vía respiratoria 100 utilizando el conjunto de entrega 400 de las Figuras 5A y 5B para colocar y evaluar el lugar(es) de tratamiento y los tejidos que no son el objetivo antes, durante y/o después de realizar una terapia. El conjunto de entrega 400 puede ser un catéter, funda de entrega, broncoscopio, endoscopio u otro dispositivo adecuado para guiar el conjunto alargado 200A. En algunas realizaciones, el conjunto de entrega 400 incluye uno o más dispositivos de visualización, tal como dispositivos ópticos de visualización (por ejemplo, cámaras), trenes ópticos (por ejemplo, un conjunto de lentes) y similares. Por ejemplo, el conjunto de entrega 400 puede ser en forma de un broncoscopio que tiene una o más luces para la iluminación y fibras ópticas para transmitir imágenes. A modo de otro ejemplo, el conjunto de entrega 400 puede tener un dispositivo de visualización por ultrasonidos, tal como se explica con respecto a las Figuras 11A y 11B.
Las Figuras 6-9 muestran un ejemplo de método para utilizar el sistema de tratamiento 198A. Generalmente, el sistema de tratamiento 198A puede alterar el tejido nervioso de la vía respiratoria 100 para controlar el aporte del sistema nervioso a una parte del pulmón mientras no se daña ninguna extensión significativa de otras estructuras pulmonares.
Según se muestra en la Figura 6, el conjunto de entrega 400 es movido a lo largo del paso interno 101 de la vía respiratoria 100, según se indica con una flecha 560. El conjunto alargado 200A es llevado en el conjunto de entrega 400 para evitar heridas a la vía respiratoria 100 durante la colocación del conjunto de entrega 400.
La Figura 7 muestra el conjunto alargado 200A moviéndose a lo largo del paso interno 401 hacia una abertura 564, como se indica con una flecha 568. Mientras el conjunto alargado 200A es movido a través del conjunto de entrega 400 (mostrado en sección transversal) el conjunto de ablación 520 (mostrado en línea imaginaria) puede ser alojado dentro del tronco 500 para evitar daños a la vía respiratoria 100 o al conjunto de entrega 400, o los dos. Un usuario puede empujar el tronco 500 fuera del conjunto de entrega 400 hacia la pared 103 de vía respiratoria.
La Figura 8 muestra un extremo distal 570 del tronco 500 próximo a la pared 103. El conjunto afilado de ablación 520 es desplegado desde el tronco 500 y contacta con la pared 103. El conjunto de ablación 520 entonces se hace avanzar a través de la pared 103 hasta que el elemento de ablación expuesto 525 está empotrado dentro de la pared 103, como se muestra en la Figura 9. La posición del conjunto de ablación 520 con respeto a la pared 103 de vía respiratoria puede ajustarse extendiendo o retrayendo el conjunto de ablación 520. Debido a que el conjunto de ablación 520 es relativamente esbelto, la pared 103 puede experimentar una cantidad insignificante de trauma.
El conjunto de ablación ilustrado 520 está conectado a un cable del generador de RF y el otro cable del generador de RF puede conectarse a un electrodo externo. Cuando se activa el generador de RF, el elemento de ablación 525 entrega energía de RF al tejido que contacta o es adyacente al elemento de ablación 525. La energía de RF fluye a través del tejido y es convertida en calor. El calor puede ser concentrado en la parte exterior de la pared 103 de vía respiratoria. Por ejemplo, el elemento de ablación 525 de la Figura 5B envía energía de RF que provoca daños a los troncos de nervio 45. En algunas realizaciones, se entrega una cantidad suficiente de energía de RF al tronco de nervio 45 para destruir una sección longitudinal entera del tronco de nervio 45 mientras se mantiene la cantidad de energía que llega a los vasos sanguíneos 130 inferior de una cantidad que provoca la destrucción de tejido. El daño a otras regiones que no son objetivo (por ejemplo, el epitelio) también puede mantenerse por debajo de un nivel aceptable. De este modo, pueden realizarse terapias sin dañar ninguna extensión significativa de otras regiones de la vía respiratoria 100, incluso regiones que están junto al lugar de tratamiento.
Las funciones naturales del cuerpo pueden ayudar a prevenir, reducir o limitar los daños al tejido. Si las ramificaciones 130 de arteria bronquial son calentadas por el sistema de tratamiento 198A, la sangre dentro de los vasos sanguíneos 130 puede absorber la energía térmica y entonces puede llevarse la energía térmica lejos de la sección calentada de las ramificaciones 130. De esta manera, la energía térmica es transferida a la sangre. Después de que se haya realizado el tratamiento, las ramificaciones 130 de arteria bronquial pueden continuar para mantener la salud del tejido pulmonar.
Este procedimiento puede ser repetido para dañar tejido adicional de troncos de nervio 45 situados fuera de la circunferencia de la pared 103. En algunas realizaciones, pueden tratarse todos los nervios alrededor de la vía respiratoria 100 para impedir que las señales pasen entre una sección proximal 572 de la vía respiratoria 100 y una sección distal 573 de la vía respiratoria 100, como se muestra en la Figura 5A. Debido a que las señales no son transmitidas a la sección distal 573, la sección distal 573 puede dilatarse. La vías respiratorias 100 también pueden permanecer generalmente intactas para mantener la salud de la sección distal 573. Tras completar el proceso de tratamiento, el conjunto de ablación 520 es retraído hacia atrás adentro del tronco 500 para la retirada desde las vías respiratorias 100 o para la colocación en otras ubicaciones de tratamiento.
La eficacia del tratamiento puede ser evaluada basándose por lo menos en parte en uno o más atributos de las vías respiratorias, pruebas de la función pulmonar, pruebas de capacidad de ejercicio y/o cuestionarios. Los pacientes pueden ser evaluados para seguir y monitorizar su progreso. Si se necesita o se desea, se pueden realizar procedimientos adicionales hasta que se consigan las respuestas deseadas.
Pueden utilizarse tipos diferentes de instrumentos para evaluar atributos de las vías respiratorias con sistemas de tratamiento. Durante la ablación, la reacción de un instrumento puede indicar si el tejido objetivo ha sido sometido a ablación. Una vez que el tejido objetivo está sometido a ablación, puede interrumpirse la terapia para minimizar o limitar el daño colateral, si lo hay, al tejido sano que no es objetivo. La Figura 2B muestra un instrumento 199 con un elemento de detección en forma de un globo. Se puede utilizar fluido (por ejemplo, aire, solución salina o algo parecido) para hinchar el globo con el fin de evaluar atributos de vías respiratorias. El instrumento 199 puede ser un instrumento convencional para la dilatación de vías respiratorias, oclusión de vías respiratorias o algo parecido. Pueden utilizarse instrumentos disponibles para comprar de numerosos proveedores médicos, incluidos Ackrad Laboratories, Cranford, Nueva Jersey y Erich Jaeger, Hoechberg, Alemania, o ser modificados para ser utilizados con los sistemas de tratamientos descritos en esta memoria. Los instrumentos pueden ser entregados a través de los sistemas de tratamiento (por ejemplo, a través de un paso interno central del sistema de tratamiento) para colocar un elemento de detección distal al sistema de tratamiento.
Los atributos de vías respiratorias evaluadas por el instrumento pueden incluir, sin limitación, propiedades físicas de vías respiratorias (por ejemplo, conformidad de vías respiratorias, propiedades contráctiles, etc.), resistencia de vías respiratorias, dimensiones de pasos internos de vías respiratorias (por ejemplo, formas de vías respiratorias, diámetros de vías respiratorias, etc.), capacidad de respuesta de vías respiratorias (por ejemplo, capacidad de respuesta a la estimulación), características musculares (por ejemplo, tono de músculo, tensión de músculo, etc.) o algo parecido. En algunas realizaciones, los cambios de características musculares de vías respiratorias pueden ser monitorizados midiendo los cambios de presión del globo intraluminal que es hinchado a una presión conocida. Basándose en cambios de presión en el globo, un médico determina los efectos, si los hay, del tratamiento, incluidos, sin limitación, si el tejido objetivo ha sido estimulado, dañado, sometido a ablación o algo parecido. Por ejemplo, el globo puede ser colocado distal al tejido de objetivo. Cuando el tejido nervioso es dañado, se reduce la tensión muscular en las vías respiratorias que rodean el globo provocando la expansión de las vías respiratorias, así como la expansión del globo. La presión en el globo disminuye a medida que el globo se expande.
El instrumento 199 y el sistema de tratamiento 198 pueden ser entregados a través de diferentes pasos internos en un dispositivo de entrega, incluidos, sin limitación, un catéter de múltiples pasos internos, una funda de entrega, un broncoscopio, un endoscopio u otro dispositivo adecuado para administrar y guiar múltiples dispositivos. El dispositivo de entrega puede ser seleccionado basándose en la ubicación del lugar(es) de tratamiento, la configuración del sistema de tratamiento o algo parecido.
Las disminuciones en la resistencia de las vías respiratorias pueden indicar que los conductos de las vías respiratorias se están abriendo, por ejemplo, como respuesta a la atenuación del aporte del sistema nervioso a esas vías respiratorias. La disminución de la resistencia en las vías respiratorias asociada con el tratamiento de vías respiratorias de baja generación (por ejemplo, bronquios principales, bronquios lobulares, bronquios segmentales) puede ser mayor que la cantidad de disminución de resistencia en las vías respiratorias asociada con el tratamiento de vías respiratorias de alta generación (por ejemplo, bronquiolos sub-segmentales). Un médico puede seleccionar para el tratamiento las vías respiratorias apropiadas para lograr una disminución deseada en la resistencia de las vías respiratorias y pueden ser medidas en la boca de un paciente, una rama bronquial que es próxima al lugar de tratamiento, una tráquea o a cualquier otra ubicación adecuada. La resistencia de las vías respiratorias puede ser medida antes de realizar la terapia, durante la terapia y/o después de la terapia. En algunas realizaciones, la resistencia en las vías respiratorias se mide en una ubicación dentro del árbol bronquial, por ejemplo, utilizando un sistema de tratamiento ventilado que permite la respiración desde zonas que están más distales al lugar de tratamiento.
Las Figuras 10A-14B ilustran conjuntos de tratamiento que pueden ser generalmente similares al conjunto de tratamiento 198A explicado con respecto a las Figuras 5A- 9, excepto por los detalles siguientes. La Figura 10A ilustra un sistema de tratamiento 198B que incluye un tronco flexible alargado 610 y una pluralidad de conjuntos radialmente desplegados de ablación 620. Los conjuntos de ablación 620 pueden aplastarse hacia dentro cuando se tira del tronco 610 en sentido proximal con el conjunto de entrega 400 (se muestra en sección transversal). Cuando la pluralidad de conjuntos de ablación 620 son empujados fuera del conjunto de entrega 400, los conjuntos de ablación 620 se auto-expanden predisponiéndose radialmente hacia fuera.
Cada conjunto de electrodo 620 incluye una extremidad afilada para perforar la pared 103 de vía respiratoria e incluye elementos extensibles y retráctiles afilados de ablación 625. Los conjuntos de ablación 620 están preferiblemente aislados excepto los elementos expuestos de ablación 625. Los conjuntos de ablación 620 pueden estar conectados a un generador eléctrico de RF por cables eléctricos que viajan dentro del tronco 610. Mientras el sistema de tratamiento 198B está siendo entregado, los conjuntos de ablación 620 pueden ser colocados dentro del tronco 610. Los conjuntos de ablación 620 pueden ser movidos fuera del tronco 610 y llevados al contacto con la pared 103. Los conjuntos de ablación 620 pueden ser movidos simultáneamente a través de la pared 103 de vía respiratoria hasta que las longitudes deseadas de los elementos de ablación 625 estén dentro de la pared 103 de vía respiratoria.
Según se muestra en la Figura 10B, la pluralidad de elementos de ablación 625, ilustrados como electrodos, pueden estar espaciados circunferencialmente entre sí a lo largo de la pared 103 de vía respiratoria. Los elementos de ablación 625 pueden estar espaciados de manera desigual o uniforme entre sí.
Todos los conjuntos de ablación 620 pueden estar conectados a un cable del generador de RF y el otro cable del generador de RF puede estar conectado a un electrodo externo 623 (mostrado en línea imaginaria), de modo que la corriente fluya entre los conjuntos de ablación 620 y/o entre uno o más de los conjuntos de ablación 620 y el electrodo externo 623. En algunas realizaciones, un número seleccionado de conjuntos de ablación 620 se conectan a un cable del generador de RF mientras los otros conjuntos de ablación 620 se conectan al otro cable del generador de RF de tal manera que la corriente fluya entre los conjuntos de ablación 620.
Cuando el generador de RF es activado, la corriente fluye a través del tejido y genera una cantidad deseada de calor. El calor puede concentrarse por fuera de la pared 103 de vía respiratoria para dañar el tejido periférico. Por ejemplo, la temperatura del tejido conjuntivo puede ser más alta que las temperaturas del estroma, músculos lisos y/o el epitelio. A modo de ejemplo, la temperatura del tejido conjuntivo puede ser lo suficientemente alta para producir daño a los tejidos de nervio en los troncos de nervio 45 mientras otros tejidos que no son el objetivo de la vía respiratoria 100 son mantenidos a una temperatura más baja para evitar o limitar el daño a los tejidos que no son el objetivo. En otras realizaciones, el calor puede concentrarse en una o en más de las capas internas (por ejemplo, el estroma) de la pared 103 de vía respiratoria o en la periferia interior (por ejemplo, el epitelio) de la pared 103 de vía respiratoria.
Según se muestra en la Figura 10B, uno o más vasos de las ramificaciones 130 de arteria bronquial pueden estar relativamente cercanos a los elementos de ablación 625. El calor generado por los elementos de ablación 625 puede ser controlado de tal manera que la sangre que fluye a través de las ramificaciones 130 de arteria bronquial protege a esas ramificaciones 130 de una herida térmica mientras se daña el tejido nervioso, incluso si el tejido nervioso está junto a las ramificaciones 130 de arteria. Tras completar el proceso de tratamiento, los conjuntos de ablación 620 son retraídos hacia atrás adentro del tronco 610 para la retirada desde las vías respiratorias 100 o para la colocación en otras ubicaciones de tratamiento.
Las Figuras 11A y 11B ilustran un sistema de tratamiento 198C que incluye un tronco flexible alargado 710 y una pluralidad de conjuntos extensibles y retráctiles de ablación 720. Cuando los conjuntos de ablación 720 son desplegados, los conjuntos de ablación 720 se predisponen radialmente hacia fuera y al contacto con una sección tubular 719 de la vía respiratoria 100. Los elementos de ablación 725 de los conjuntos de ablación 720 pueden estar distribuidos axial y circunferencialmente por una longitud de tratamiento LT de la sección 719.
Los conjuntos de ablación 720 pueden incluir secciones protectoras 721 y los elementos expuestos de ablación 725. Las secciones protectoras 721 pueden extenderse desde el tronco 710 a una superficie interior de la vía respiratoria
100. Los elementos de ablación 725 sobresalen desde unas correspondientes secciones protectoras 721. Los conjuntos de ablación 720 pueden estar conectados a un generador eléctrico de radiofrecuencia (RF) por cables eléctricos que viajan dentro del tronco 710.
El sistema de tratamiento 198C es entregado a la ubicación deseada de tratamiento dentro de la vía respiratoria 100. Mientras el sistema de tratamiento 198C está siendo entregado, los conjuntos de ablación 720 están retraídos dentro del tronco 710 para no dañar la vía respiratoria 100 o el dispositivo de entrega 400, o los dos. Una vez en la posición, los elementos afilados de ablación 725 son llevados al contacto con la pared 103 de vía respiratoria. Los elementos 725 entonces se hacen avanzar a través de la pared 103 de vía respiratoria hasta que los elementos de ablación 625 están empotrados dentro de la pared 103 de vía respiratoria. Substancialmente todos los conjuntos de ablación 720 pueden estar conectados a un cable del generador de RF y el otro cable del generador de RF puede estar conectado a un electrodo externo, de modo que la corriente fluya entre los conjuntos de ablación 720 y el electrodo externo. Como alternativa, unos conjuntos individuales seleccionadas de ablación 720 pueden estar conectados a un cable del generador de RF mientras otros conjuntos de ablación 720 pueden estar conectados al otro cable del generador de RF, de modo que la corriente pueda fluir entre los conjuntos de ablación 720.
La Figura 12A ilustra el conjunto alargado 200A de las Figuras 5A y 5B pasando a través de un conjunto de entrega 400A, ilustrado como un broncoscopio, que tiene un dispositivo 850 de toma de imágenes. El dispositivo 850 de toma de imágenes está situado en una extremidad 413A del conjunto de entrega 400A. En algunas realizaciones, el dispositivo 850 de toma de imágenes incluye una serie de transductores de ultrasonidos con una frecuencia de trabajo entre aproximadamente 1 MHz y aproximadamente 250 MHz y capacidades de Doppler. Los frentes de onda 860 enviados por el dispositivo 850 de toma de imágenes se ilustran en las Figuras 12A y 12B.
Cuando se usa, el dispositivo de entrega 400A se hace avanzar a la región deseada de tratamiento de la vía respiratoria 100. El dispositivo 850 de toma de imágenes se utiliza entonces para tomar imágenes de por lo menos una parte de la pared 103 de vía respiratoria, ubicando de ese modo las estructuras anatómicas, tal como los troncos de nervio 45 y/o ramificaciones 130 de arteria bronquial, que están ubicados en el tejido conjuntivo 124 fuera de la pared de las vías respiratorias. Por ejemplo, el dispositivo 850 de toma de imágenes puede utilizarse para tomar imágenes circunferencialmente de la vía respiratoria 100. En algunos modos de funcionamiento, los tejidos de objetivo (por ejemplo, los troncos de nervio 45, glándulas mucosas 116 y similares) están ubicados de tal manera que sólo se trata la parte de la pared 103 inmediatamente adyacente a los tejidos de objetivo y el tejido conjuntivo
124. En otros modos de funcionamiento, se localizan los tejidos que no son el objetivo (por ejemplo, ramificaciones 130 de arteria bronquial) y se tratan todas las otras regiones de la pared 103 y el tejido conjuntivo 124.
Al tratar los troncos de nervio 45, la extremidad 413 del dispositivo de entrega 400A puede ser guiada y ser colocada cerca de un tronco 45 de nervio seleccionado. Una vez en la posición, el elemento afilado de ablación 525 es llevado al contacto con la pared 103. El elemento de ablación 525 entonces se hace avanzar a través de la pared 103 hasta que los elementos de ablación 525 están empotrados. Los elementos expuestos ilustrados de ablación 525 están adyacentes al tronco de nervio en el tejido conjuntivo 124. Se activa el generador de RF y la corriente fluye entre el conjunto de ablación 520 y el tejido de la pared 103. La corriente hace que los tejidos de los troncos de nervio 45 aumenten de temperatura hasta que se daña el tejido calentado. Al colocar el conjunto de ablación 520 cerca del tronco de nervio 45, el tronco de nervio 45 es dañado selectivamente mientras se minimiza la herida a tejidos que no son el objetivo, como las arterias bronquiales 130. Este procedimiento puede repetirse para dañar ramificaciones nerviosas adicionales 45 situadas alrededor de la circunferencia de la pared 103 en o junto al tejido conjuntivo 124.
Se pueden utilizar diversos tipos de dispositivos para tratar tejidos objetivo a distancia. Las Figuras 13A y 13B ilustran un sistema de tratamiento 200E en forma de un broncoscopio que tiene una distribución 950 de transductores de ultrasonidos de gran energía situados en su extremidad 413E. La distribución 950 de transductores de ultrasonidos de energía puede ser colocada para tomar imágenes del lugar deseado de tratamiento. La distribución 950 de transductores de ultrasonidos se utiliza entonces para tomar imágenes circunferencialmente de la pared 103 para localizar los troncos de nervio 45 y/o las arterias bronquiales 130. En algunos modos de funcionamiento, se localizan los troncos de nervio 45 y sólo se trata el área de la pared 103 de la vía respiratoria 100 y el tejido conjuntivo 124 alrededor de los troncos de nervio 45 utilizando energía de ultrasonidos. En otros modos de funcionamiento, se localizan las arterias bronquiales 130 y se tratan todas las otras áreas de la pared 103 de la vía respiratoria 100 y el tejido conjuntivo 124 utilizando energía de ultrasonidos.
La distribución 950 de transductores de ultrasonidos pueden emitir ondas sonoras sumamente enfocadas 960 en el tejido conjuntivo 124 para dañar los troncos de nervio 45 y minimizar o evitar heridas a las arterias bronquiales 130. La extremidad 413E del broncoscopio 400B puede ser colocada de tal manera que la energía enviada es dirigida lejos o no alcanza las ramificaciones 130 de arteria bronquial. Este procedimiento para tratar tejido a distancia puede repetirse para dañar troncos de nervio adicionales 45 situados alrededor de la circunferencia de la pared 103 en el tejido conjuntivo 124, según se desee. El broncoscopio 400B puede utilizarse para dañar todos o por lo menos algunos de los troncos de nervios 45 en una sección particular de la vía respiratoria 100.
Las Figuras 14A 14B ilustran un sistema de tratamiento 198F que incluye un conjunto alargado 200F. El conjunto alargado 200F incluye un tronco alargado 1110 y una extremidad extensible y retráctil de perforación 1120. La extremidad de perforación 1120 está adaptada para pasar a través del tejido e incluye por lo menos un orificio 1130. La extremidad de perforación ilustrada 1120 incluye un único orificio lateral 1130 para el envío de sustancias que pueden fluir. Un paso interno puede extenderse en sentido proximal desde el orificio 1130 a través del tronco 1110. Una sustancia fluida puede fluir en sentido distal a través del paso interno y afuera del orificio 1130. Ejemplos de sustancias que pueden fluir incluyen, sin limitación, uno o más líquidos calentados, líquidos refrigerados, gases calentados, gases refrigerados, soluciones químicas, fármacos y similares, así como otras sustancias que pueden causar daño al tejido. Por ejemplo, puede administrarse salino (por ejemplo, salino calentado o refrigerado) o fluidos criogénicos a través del orificio 1130.
El conjunto alargado 200F de las Figuras 14A y 14B puede ser entregado a la ubicación deseada de tratamiento utilizando el conjunto de entrega 400. Mientras el conjunto alargado 200F está siendo entregado, la extremidad de perforación 1120 está retraída dentro del tronco 1110 para no dañar la vía respiratoria 100 y/o el conjunto de entrega
400. Una vez en la posición, la extremidad afilada hueca 1020 es llevada al contacto con la pared 103 de vía respiratoria. La extremidad 1020 se hace avanzar entonces a través de la pared 103 de vía respiratoria hasta que el orificio lateral 1130 esté dentro o junto al tejido conjuntivo 124. La sustancia que puede fluir es administrada a través de la extremidad 1020 y afuera del orificio 1130 y fluye contra el tejido de la vía respiratoria 100. En algunas realizaciones, la sustancia expulsada corta, aplasta o daña de otro modo el tejido. En algunas realizaciones, la sustancia que puede fluir incluye por lo menos un fármaco de larga duración bloqueador de nervios que bloquea completa o parcialmente la conducción nerviosa en los troncos de nervio 45.
Las Figura 15A-19B ilustran sistemas de tratamiento que pueden ser generalmente similares al sistema del tratamiento 198A explicado con respecto a las Figuras 5A-9, excepto por los detalles siguientes. La Figura 15A es una vista lateral longitudinal de un sistema de tratamiento 2000 en forma de un catéter de electrodo calentado/refrigerado por fluido con globo expansible. La Figura 15B es una vista en sección transversal de un conjunto expansible 2001 del sistema 2000. El conjunto expansible ilustrado 2001 está en un estado expandido. Las líneas de flujo 2100 representan el movimiento de fluido a través del conjunto expandido 2001. El conjunto expandido 2001 incluye un miembro expansible 2002 y un electrodo de ablación 2004. El electrodo de ablación 2004 puede aplastarse hacia dentro cuando el sistema de tratamiento 2000 es movido (por ejemplo, se tira de él en sentido proximal o es empujado en sentido distal) a través de un conjunto de entrega. Cuando el sistema de tratamiento 2000 es empujado fuera del conjunto de entrega, el electrodo de ablación 2004 puede expandirse hacia afuera hinchando al miembro expansible 2002.
El sistema de tratamiento 2000 incluye generalmente el miembro expansible 2002 (ilustrado en forma de un globo extensible térmicamente conductivo), un electrodo de ablación 2004, un elemento conductor 2031, una línea de afluencia 2011 y una línea de salida 2021. El electrodo de ablación 2004 es expansible y está conectado a un extremo distal 2033 del elemento conductor 2031. Un extremo proximal 2035 del elemento conductor 2031 está conectado a un conector eléctrico 2038. La energía es transferida desde el conector eléctrico 2038 al electrodo expansible 2004 a través del elemento conductor 2031. El elemento conductor 2031 puede incluir, sin limitación, uno
o más cables, conductos o algo parecido.
Un extremo proximal 2009 de la línea de afluencia 2011 tiene una válvula en línea 2012. Un extremo proximal 2015 de la línea de salida 2021 también tiene una válvula de salida 2022. La válvula en línea 2011 puede conectarse a un suministro de fluido, tal como una fuente de refrigerante, mediante un conector 2018. El fluido fluye a través de la línea de afluencia 2011 adentro del globo 2002, y sale del globo 2002 a través de la línea de salida 2021. El fluido puede incluir, sin limitación, fluido de temperatura controlada, tal como agua, salino u otro fluido adecuado para el uso en un paciente.
Un paso interno 2017 de la línea de afluencia 2011 y un paso interno 2019 de la línea de salida 2021 proporcionan comunicación de fluidos con el globo 2002. El fluido puede fluir a través del paso interno 2017 adentro del globo 2002. El fluido circula dentro del globo 2002 y fluye afuera del globo 2002 a través del paso interno 2019. El fluido puede pasar a través del conector 2028 a un sistema de retorno de fluido, que puede refrigerar el fluido y recircular el fluido al suministro de fluido.
Pueden utilizarse diferentes tipos de materiales para formar los diferentes componentes del sistema 2000. En algunas realizaciones, el globo 2002 se hace, en su totalidad o en parte, de un material extensible, químicamente inerte, no tóxico, aislante eléctricamente y térmicamente conductivo. Por ejemplo, el globo 2002 puede hacerse de polímeros, plásticos, silicio, caucho, polietileno, combinaciones de los mismo, o algo parecido. En algunas realizaciones, la línea de afluencia 2011 y la línea de salida 2021 se hacen, en su totalidad o en parte, de algún material adecuado flexible, químicamente inerte y no tóxico para resistir las presiones de funcionando sin expansión significativa. La línea de afluencia 2011 y la línea de salida 2021 pueden tener una longitud adecuada para ser pasada al pulmón y al árbol bronquial. Por ejemplo, las líneas 2011, 2021 pueden tener una longitud de aproximadamente 80 cm. También son posibles otras longitudes.
La Figura 15B muestra la línea de afluencia 2011 y la línea de salida 2021 dispuestas para minimizar, reducir o impedir substancialmente el flujo cruzado, el efecto sifón o flujo hacia atrás entre las dos líneas 2011, 2021. La línea de afluencia ilustrada 2011 lleva el globo 2004. La línea de afluencia 2011 puede entrar en un extremo proximal 2003 del globo 2002, extenderse por la longitud del globo 2002, y llegar a un extremo distal 2007 del globo 2002. La línea ilustrada de afluencia 2011 está conectada al extremo distal 2007 para mantener el globo 2002 en una configuración alargada.
Una extremidad 2005 sale del globo 2002. La extremidad ilustrada 2005 es una extremidad atraumática situada opuesta al extremo de la línea de afluencia 2011. Cerca de la extremidad 2005, la línea de afluencia 2011 tiene una abertura 2013 que libera fluido adentro del globo 2002. El fluido fluye dentro del globo 2002 y es recogido en la línea de salida 2021. La línea de salida ilustrada 2021 tiene una abertura 2023 para recibir el fluido. La abertura 2023 está generalmente en el extremo distal de una parte de la línea de salida 2021 en el globo 2002 y recoge el fluido de cualquier dirección. Debido a que las aberturas 2013, 2023 están en extremos opuestos del globo 2002, el fluido puede fluir generalmente en una dirección a través del globo 2002. Esto asegura que el fluido a una temperatura deseada llene el globo 2002.
Las formas del electrodo 2004 y el globo 2002 pueden seleccionarse de tal manera que el electrodo 2004 y el globo 2004 se expanden/deshinchan juntos. Cuando el globo 2002 es hinchado, el electrodo 2004 es expandido con el globo 2002. Cuando el globo 2002 es deshinchado, el electrodo 2004 se contrae con el globo 2002. El electrodo 2004 puede estar acoplado a una superficie exterior o superficie interior del globo 2002 y puede estar hecho de diferentes tipos de materiales conductivos, incluido, sin limitación, cualquier material químicamente inerte, no tóxico, estructuralmente elástico, eléctricamente conductor. En algunas realizaciones, el electrodo 2004 se acopla al exterior del globo 2002 y se hace, en su totalidad o en parte, de un material deformable, sumamente conductivo. La energía enviada por el electrodo 2004 es enviada directamente a la pared 100 de vía respiratoria sin pasar a través de la pared del globo 2002. El electrodo 2004 puede ser un alambre o banda delgados hechos en su mayor parte o por completo de cobre. El alambre puede estar revestido o sin revestir dependiendo de la aplicación. En otras realizaciones, el electrodo 2004 está empotrado en la pared del globo 2002. Puede colocarse cualquier número de electrodos 2004 a lo largo del globo 2002. Por ejemplo, puede colocarse una distribución de electrodos separados aparte a lo largo del globo para tratar una longitud de una vía respiratoria.
El elemento eléctrico conductor 2031 viaja al lado y generalmente paralelo a una o a ambas de las líneas 2011, 2021. El electrodo 2004 puede conectarse a través del elemento eléctrico conductor 2031 y el conector eléctrico 2038 a una fuente de energía, tal como un generador eléctrico de RF. Si la fuente de energía es un generador eléctrico de RF, puede acoplarse un cable al conector 2038. El otro cable del generador de RF puede conectarse a un electrodo externo, tal como el electrodo externo 623 mostrado en línea imaginaria en la Figura 10B, de modo que la corriente fluya entre el electrodo expansible 2004 y el electrodo externo.
El catéter de electrodo 2000 con globo expansible refrigerado por fluido puede ser entregado en las vías respiratorias del pulmón con el globo 2002 deshinchado y el electrodo 2004 contraído. El electrodo 2004 puede mantenerse en una configuración aplastada o cerrada para permitir que el catéter 2000 pase fácilmente a través de los pulmones. El catéter 2000 es movido a través de las vías respiratorias hasta que el electrodo 2004 esté en la posición deseada de tratamiento. Una vez en la posición, el fluido (por ejemplo, refrigerante) tiene permitido fluir a través de la línea de afluencia 2011 y adentro del globo 2002. El fluido hincha el globo 2002 que a su vez expande el electrodo 2004. La salida del fluido a través de la línea de salida 2021 puede regularse de tal manera que el globo 2002 continúe hinchándose hasta que el electrodo 2004 es llevado al contacto o próximo a la pared de la vía respiratoria.
El tratamiento puede empezar con la activación del generador de RF. Cuando se activa el generador de RF, se transmite energía de RF a través del conector eléctrico 2038, a través del elemento eléctrico de conexión 2031, a través del electrodo expandido 2004 y a los tejidos de las vías respiratorias. La energía de RF calienta el tejido (por ejemplo, tejido superficial y profundo) de la pared de vía respiratoria y el fluido 2100 (por ejemplo, un refrigerante) que fluye a través del globo 2002 refrigera el tejido (por ejemplo, tejidos superficiales) de la pared de vía respiratoria. El efecto neto de este calentamiento superficial y profundo por energía de RF y la refrigeración superficial por el refrigerante circulante 2100 a través del globo 2002 es la concentración de calor en las capas exteriores de la pared 100 de vía respiratoria. El refrigerante puede ser un líquido enfriado. La temperatura del tejido conjuntivo puede ser más alta que las temperaturas del epitelio, estroma, y/o músculo liso. Por ejemplo, la temperatura del tejido conjuntivo puede ser lo suficientemente alta para producir daño al tronco de nervio mientras otros tejidos que no son el objetivo de la vía respiratoria son mantenidos a una temperatura más baja para evitar o limitar el daño a los tejidos que no son el objetivo. En otras realizaciones, el calor puede concentrarse en una o en más de las capas internas (por ejemplo, el estroma) de la pared de vía respiratoria o en el recubrimiento interior (por ejemplo, el epitelio) de la pared de vía respiratoria.
Las Figuras 16 y 17 muestran el efecto producido por el calentamiento superficial y profundo por la energía de RF y la refrigeración superficial haciendo circular refrigerante 2100 en el globo 2002. La Figura 16 muestra una sección transversal de perfil de temperatura tomada a lo largo de la línea de puntos 2200 de la Figura 15B que es perpendicular al eje largo del globo 2002. Las Figuras 16 y 17 se explican con todo detalle más adelante.
La Figura 16 es un gráfico con un eje horizontal que corresponde a la profundidad en el tejido de la pared de vía respiratoria del punto de contacto o el área de contacto con el electrodo 2004 en milímetros con un eje vertical que corresponde a la temperatura del tejido en grados Centígrados. El punto "0" en el gráfico corresponde al punto o el área de contacto entre el electrodo de ablación 2004 y el tejido de la pared de vía respiratoria. En el gráfico se muestran tres curvas A, B y C y corresponden a tres niveles diferentes de potencia de energía de radiofrecuencia que está siendo entregada al tejido. La temperatura en el gráfico es de hasta aproximadamente 100 °C. Se ha mostrado la temperatura de aproximadamente 100 °C, o un poco menos, porque se considera un límite superior para la temperatura de tejido durante la ablación por RF. A aproximadamente 90 °C, los fluidos de tejido comienzan a hervir y el tejido se coagula y carboniza en el electrodo de ablación 2004, aumentando de ese modo mucho su impedancia y comprometiendo su capacidad de transferir energía de RF al tejido de la pared de vía respiratoria. De este modo, puede ser deseable tener temperaturas de tejido se permanezcan por debajo de aproximadamente 90 °C. A aproximadamente 50 °C, una línea 2201 representa la temperatura por encima de cual se produce la muerte de células de tejido y debajo de la cual el tejido no sufre substanciales efectos a largo plazo (o ningún efecto a largo plazo).
La curva A mostrada en la FIGURA 16 representa lo que ocurre con y sin refrigeración del electrodo de ablación 2004 en un nivel relativamente de bajo de potencia, por ejemplo, aproximadamente 10 vatios de energía de RF. La curva A está dividida en tres segmentos A1, A2 y A3. El segmento A2 de línea interrumpida representa una continuación de la curva exponencial A3 cuando no se aplica ninguna refrigeración. Como puede verse mediante la curva A, la temperatura de la interfaz de electrodo-tejido sin refrigeración alcanza 80 °C y disminuye de manera exponencial a medida que aumenta la distancia en el tejido de la vía respiratoria 100. Según se muestra, la curva A3 cruza la frontera de muerte de células de tejido a 50 °C representada por la línea 2201 a una profundidad de aproximadamente 5 milímetros. De este modo, sin la refrigeración de electrodo, la profundidad de muerte de células que se produciría sería aproximadamente 5 milímetros según se representa con la distancia d1. La muerte adicional de células pararía en este nivel de potencia.
Si se emplea refrigeración activa, la temperatura cae a un nivel mucho más bajo, por ejemplo, aproximadamente 35 °C, como se representa con la curva A1 en la interfaz de electrodo-tejido a 0 milímetros de distancia. Dado que esta temperatura está por debajo de 50 °C, la muerte de células no comenzará a producirse hasta una distancia de d2 en el punto donde la curva A2 cruza la línea de muerte de células a 50 °C, por ejemplo, una profundidad de 3 milímetros de la superficie. La muerte de células se producirá a profundidades de 3 milímetros a 5 milímetros como se representa con la distancia d3. Tal procedimiento de ablación refrigerada es ventajoso porque permite que la muerte de células y la destrucción de tejido se produzcan a una distancia (o un intervalo de distancias) desde la interfaz de electrodo-tejido sin destruir el epitelio y el tejido inmediatamente subyacentes a los mismos. En algunas realizaciones, los tejidos nerviosos que discurren a lo largo del exterior de las vías respiratorias pueden ser sometidos a ablación sin dañar el epitelio o las estructuras subyacentes, tal como el estroma y las células de músculo liso.
La curva B representa lo que ocurre con y sin refrigeración del electrodo en un nivel más alto de potencia, por ejemplo, 20 vatios de energía de RF. El segmento B2 de la curva B representa una continuación de la curva exponencial del segmento B3 sin refrigeración. Como puede verse, la temperatura en la interfaz de electrodo-tejido se acerca a 100 °C, que puede no ser deseable porque es una temperatura en la que se produce el hervor de fluidos de tejido y la coagulación y carbonización de tejido en la interfaz de tejido-electrodo, aumentando de este modo apreciablemente la impedancia del tejido y comprometiendo la capacidad de entregar energía adicional de RF en la pared de vía respiratoria. Al proporcionar una refrigeración activa, la curva B1 muestra que la temperatura en la interfaz de electrodo-tejido cae a aproximadamente 40 °C y que la muerte de células se produce a profundidades de dos milímetros como se representa con d4 a una profundidad de aproximadamente 8 milímetros donde la curva B3 cruza los 50 °C. De este modo, puede verse que es posible proporcionar una región mucho más profunda y más grande de muerte de células utilizando el nivel más alto de potencia sin alcanzar una temperatura alta no deseada (por ejemplo, una temperatura que tendría como resultado la coagulación y carbonización de tejido en la interfaz de electrodo-tejido). Los sistemas pueden utilizarse para lograr la muerte de células debajo de la superficie de epitelios de la vía respiratoria de modo que la superficie no deba ser destruida, facilitando de este modo una temprana recuperación del paciente sometido a un tratamiento.
La curva C representa un nivel todavía más alto de potencia, por ejemplo, 40 vatios de energía de RF. La curva C incluye unos segmentos C1, C2 y C3. El segmento de línea interrumpida C2 es una continuación de la curva exponencial C3. El segmento C2 muestra que la temperatura en la interfaz electrodo-tejido supera de lejos los 100 °C, y sería inadecuado sin refrigeración activa. Con refrigeración activa, la temperatura en la interfaz de electrodotejido se acerca a 80 °C, y aumenta gradualmente y se aproxima a cerca de 95 °C, y después cae de manera exponencial para cruzar la línea 2201 de muerte de células de 50 °C a una distancia de aproximadamente 15 milímetros de la interfaz de electrodo-tejido en la superficie epitelial de las vías respiratorias representada por la distancia d6. Debido a que la temperatura de comienzo está por encima de la línea de muerte de células 2201 de 50 °C, la muerte de células de tejido se producirá desde la superficie epitelial a una profundidad de aproximadamente 15 milímetros para proporcionar regiones grandes y profundas de destrucción de tejido.
La Figura 17 es una vista en sección transversal del catéter de electrodo 2000 de globo expansible, refrigerado por fluido. Las líneas de flujo 2100 representan el movimiento de refrigerante a través del globo expandido 2002. Las curvas isotermas muestran las temperaturas que son alcanzadas en el electrodo 2004 en la superficie exterior del globo 2002 y en profundidades diferentes en la pared 100 de vía respiratoria de la interfaz de electrodo-tejido cuando se aplica potencia al electrodo 2004 y el refrigerante (por ejemplo, una solución salina a temperatura ambiente) es entregado al globo 2002. Ajustando la tasa de entrega de potencia al electrodo 2004, la tasa a la que se pasa la solución salina al globo 2002, la temperatura de la solución salina, y el tamaño del globo 2002, se puede modificar el contorno y la temperatura exactos de las isotermas individuales. Por ejemplo, seleccionando la temperatura y caudal adecuados de salino y la tasa de entrega de potencia al electrodo, es posible lograr temperaturas en las que las isotermas A = 60 °C, B = 55 °C, C = 50 °C, D = 45 °C, E = 40 °C y F = 37 °C. Ajustes adicionales hacen posible lograr temperaturas donde las isotermas A = 50 °C, B = 47,5 °C, C = 45 °C, D = 42,5 °C, E = 40 °C y F = 37 °C. Sólo se calentarán las zonas contenidas dentro de la isoterma de 50 °C lo suficiente como para inducir la muerte de células. Extrapolando en 3 dimensiones las isotermas mostradas en la Figura 17, una banda circunferencial 2250 de tejido se calentará potencialmente por encima de 50 °C, reservando el tejido cerca del epitelial 110 de la vía respiratoria 100. También se pueden conseguir temperaturas e isotermas diferentes.
La Figura 18 es una vista en sección transversal de una parte de la vía respiratoria 100 y catéter de electrodo 2000 con globo expansible refrigerado por fluido situado en la vía respiratoria 100. Debido a la forma ondulante del electrodo expansible 2004, el electrodo parece como una multitud de óvalos. El globo 2002 es hinchado para adaptarse al electrodo expansible 2004 y a la superficie epitelial de la vía respiratoria 100. El electrodo 2004 puede ser presionado contra la vía respiratoria 100. Cuando el electrodo expandido 2004 transmite energía de RF a los tejidos de la vía respiratoria 100 y el globo 2002 es llenado de refrigerante fluyendo 2100, la energía de RF calienta el tejido superficial y profundo de la pared 100 de vía respiratoria y el tejido conjuntivo 124 mientras el refrigerante 2100 refrigera los tejidos superficiales de la pared 100 de vía respiratoria. El efecto neto de este calentamiento superficial y profundo por energía de RF y refrigeración superficial por el refrigerante circulante 2100 es la concentración de calor en las capas exteriores de la pared 100 de vía respiratoria, tal como el tejido conjuntivo 124. Una banda 2250 de tejido puede calentarse selectivamente por encima de 50 °C. Por ejemplo, la temperatura del tejido conjuntivo 124 puede ser más alta que las temperaturas del epitelio 110, estroma 112 y/o músculo liso 114. Además, uno o más de los vasos de las ramificaciones 130 de arteria bronquial pueden estar dentro de la banda 2250. El calor generado utilizando el electrodo 2004 puede ser controlado de tal manera que la sangre que fluye a través de las ramificaciones 130 de arteria bronquial protegen a esas ramificaciones 130 de una herida térmica mientras se daña el tejido de tronco de nervio 45, incluso si el tejido nervioso está junto a las ramificaciones de arteria.
El catéter de electrodo 2000 puede tratar tejido sin formar una perforación de pared de vía respiratoria en el lugar de tratamiento para evitar o reducir la frecuencia de infecciones. También puede facilitar una curación más rápida para el paciente del tejido próximo a la región de muerte de células. El catéter 2000 puede producir regiones relativamente pequeñas de muerte de células. Por ejemplo, puede destruirse una banda de tejido de 2 a 3 milímetros en medio de la pared 100 de vía respiratoria o a lo largo de la superficie exterior de la pared 100 de vía respiratoria. Mediante la aplicación apropiada de potencia y la eliminación apropiada de calor del electrodo, pueden crearse lesiones a cualquier profundidad deseada sin dañar la superficie interior de la vía respiratoria.
Tras terminar el proceso de tratamiento, puede detenerse la afluencia de refrigerante adentro del globo 2002. Se deshincha el globo 2002 haciendo que el electrodo expansible 2004 retroceda lejos de la pared 100 de vía respiratoria. Cuando el globo 2002 está deshinchado completamente, el catéter de electrodo 2000 con globo expansible, refrigerado por fluido puede ser recolocado para tratar otras ubicaciones en el pulmón o ser retirado de la vía respiratoria 100 enteramente.
Las Figuras 19A y 19B ilustran un sistema de tratamiento que puede ser generalmente similar al catéter 2000 explicado con respecto a las Figuras 15A-18. Un catéter de electrodo 2500 con globo expansible, con disipador térmico por fluido tiene una única línea de refrigerante 2511 con válvula en línea asociada 2512 y un conector 2518 que proporciona afluencia y salida alternativas de fluido disipador térmico adentro y afuera de un globo 2502.
El catéter de electrodo 2500 con globo expansible con disipador térmico fluido puede ser entregado en las vías respiratorias del pulmón con el globo 2502 deshinchado y el electrodo 2504 contraído. El catéter 2500 puede ser movido dentro de las vías respiratorias hasta que el electrodo 2504 esté en una posición deseada de tratamiento. Una vez en la posición, el fluido disipador térmico se pasa a través de la línea 2511 y al globo 2502, hinchando de ese modo el globo 2502 y expandiendo el electrodo 2504. El fluido se pasa al globo 2502 hasta que el electrodo 2504 es llevado al contacto con la pared 100 de vía respiratoria.
El fluido disipador térmico pasado al globo 2502 del catéter de electrodo 2500 es generalmente estático y actúa como un disipador térmico para estabilizar la temperatura del electrodo 2504 y los tejidos superficiales de la pared 100 de vía respiratoria. El disipador térmico estático proporcionado por el fluido en el globo 2502 puede producir perfiles de temperatura e isotermas similares a las mostradas en las Figuras 16 y 17. Por ejemplo, el catéter de electrodo 2500 puede producir una banda de muerte de células de tejido en el tejido conjuntivo de la vía respiratoria mientras el epitelio, estroma y/o músculo liso resultan relativamente ilesos. De este modo, puede dañarse el tejido nervioso mientras se protegen los otros tejidos, que no son el objetivo, de las vías respiratorias.
Las Figuras 20A-21 ilustran un sistema de tratamiento que generalmente puede ser similar al catéter de electrodo 2000 con globo expansible refrigerado por fluido mostrado en las Figuras 15A-18. La Figura 20A es una vista lateral longitudinal de un catéter de electrodo 3000 guiado por ultrasonidos radial refrigerado por fluido. La Figura 20B es una vista parcial longitudinal en sección del catéter de electrodo 3000 guiado por ultrasonidos radial refrigerado por fluido tomada a través de un globo 3002 con líneas de flujo 3100 que representan el movimiento de refrigerante a través del globo expandido 3002 y frentes de onda 3047 de toma de imágenes de ultrasonidos para guiar el dispositivo de ablación.
El catéter de electrodo 3000 incluye generalmente un globo extensible térmicamente conductivo 3002, un electrodo 3004, un elemento conductor 3031, una línea de afluencia 3011, una línea de salida 3021 y una sonda de ultrasonidos 3045. El electrodo expansible 3004 está conectado a un extremo distal del elemento conductor 3031. Un extremo proximal del elemento conductor 3031 está conectado a un conector eléctrico 3038 para la transmisión de energía (por ejemplo, energía de RF) al electrodo 3004. El extremo proximal de la línea 3011 de afluencia de refrigerante tiene una válvula en línea El extremo proximal de la línea 3021 de salida de refrigerante también tiene una válvula de salida 3022. La válvula de afluencia 3012 puede conectarse a una fuente de refrigerante mediante el conector 3018. El paso interno de la línea de afluencia 3011 y el paso interno de la línea de salida 3021 permiten que el fluido fluya desde la fuente de fluido al interior del globo 3002 y que el fluido fluya a través de otro conector 3028 al retorno de refrigerante, donde el refrigerante puede volverse a refrigerar y recircular al suministro de fluido.
La línea de afluencia 3011 y la línea de salida 3021 tienen una longitud adecuada para ser pasadas al pulmón y al árbol bronquial. Por ejemplo, el catéter 3000 puede tener una longitud de aproximadamente 80 cm. La Figura 20B muestra un catéter 3000 adaptado para reducir, limitar o impedir substancialmente el flujo cruzado, la formación de sifón o el flujo hacia atrás entre las dos líneas dentro del globo 3002. La línea de afluencia 3011 entra por el extremo proximal del globo 3002, se extiende por la longitud del globo 3002, llega al extremo distal del globo 3002, y se conecta al globo 3002. La línea de afluencia 3011 tiene una abertura 3013 cerca de una extremidad 3005 que libera refrigerante adentro del globo 3002. El fluido fluye dentro del globo 3002 y entonces es recogido en la línea de salida 3021 a través de una abertura 3023. La abertura 3023 está generalmente en el extremo distal de la línea de salida 3021 y recoge refrigerante de cualquier dirección.
El electrodo 3004 está ubicado en una superficie del globo 3002 de tal manera que, cuando el globo 3002 es hinchado utilizando fluido, el electrodo 3004 es llevado al contacto con la pared 100 de vía respiratoria. El elemento eléctrico conductor 3031 viaja por un lado y paralelo a la línea de afluencia 3011, la línea de salida 3021 y la funda de ultrasonidos 3041. El electrodo 3004 puede conectarse a través del elemento eléctrico conductor 3031 y el conector eléctrico 3038 a un generador de RF. El otro cable del generador de RF puede conectarse a un electrodo externo de modo que la corriente fluya entre el electrodo expansible 3004 y el electrodo externo.
La sonda de ultrasonidos 3045 puede ser una parte integral del catéter 3000 de electrodo guiado por ultrasonidos refrigerado por fluido o puede ser una sonda radial, estándar e independiente de ultrasonidos, tal como una sonda Olympus UM-2R-3 o UM-3R- 3 conducida por un procesador estándar Olympus UE- M60, con el catéter 3000 de electrodo guiado por ultrasonidos radiales refrigerado por fluido configurado para deslizar sobre la sonda radial estándar de ultrasonidos.
El sistema de ultrasonidos puede incluir un transductor de ultrasonidos de banda ancha que funcionan con una frecuencia central entre aproximadamente 7 MHz y aproximadamente 50 MHz. Si la sonda de ultrasonidos 3045 es una parte integral del catéter de electrodo 3000, la sonda de ultrasonidos 3045 puede ser contenida dentro de una cubierta emparejada acústicamente de ultrasonidos 3041 y ser conectada a una unidad impulsora de ultrasonidos y el procesador por el conector de ultrasonidos 3048. En funcionamiento, la sonda de ultrasonidos 3045 es rotada alrededor de su eje longitudinal dentro de la cubierta de ultrasonidos 3041 por la unidad impulsora de ultrasonidos y el procesador a través del conector de ultrasonidos 3048 permitiendo que se tomen imágenes (por ejemplo, imágenes radiales de 360°). Estas imágenes pueden ser tomadas en una dirección perpendicular al eje largo de la sonda de ultrasonidos 3045. El fluido en el globo 3002 puede acoplar acústicamente la sonda de ultrasonidos 3045 a la pared de la vía respiratoria.
El catéter de electrodo 3000 puede ser entregado a las vías respiratorias del pulmón con el globo 3002 en un estado deshinchado. El catéter 3000 es colocado dentro de las vías respiratorias cerca o en la ubicación deseada de tratamiento. Una vez colocado, el fluido fluye a través de la línea de afluencia 3011 y adentro del globo 3002. El globo 3002 se hincha para llevar el electrodo 3004 al contacto con la superficie epitelial de la vía respiratoria. La salida de fluido a través de la línea de salida 3021 puede regularse de tal manera que el globo 3002 continúe hinchándose hasta que el electrodo 3004 es llevado al contacto con la pared 100 de vía respiratoria.
Puede activarse la unidad impulsora de ultrasonidos y el procesador. La sonda de ultrasonidos 3045 puede captar imágenes. Por ejemplo, la sonda 3045, dentro de la cubierta de ultrasonidos 3041, puede ser rotada alrededor de su eje longitudinal para producir imágenes radiales de 360° de las vías respiratorias y las estructuras de vasos de pared de las vías respiratorias. El cable eléctrico de conexión 3031 puede servir como una guía sobre las imágenes de ultrasonidos en la ubicación del electrodo 3004. Una sección del alambre 3031 que se extiende a lo largo (por ejemplo, sobre la superficie) del globo 3002 puede ser visible en las imágenes de ultrasonidos. La sección de alambre 3031 por lo tanto puede indicar la ubicación del electrodo 3004. En algunas realizaciones, los troncos de nervio y la sangre bronquial pueden ser identificados en las imágenes de ultrasonidos y el catéter de electrodo 3000 guiado por ultrasonidos refrigerado por fluido puede ser rotado hasta que el electrodo 3004 es llevado a las proximidades del primer tronco de nervio 45.
Cuando se activa el generador de RF, el generador transmite energía de RF a través del conector eléctrico 3038, a través del cable eléctrico de conexión 3031, a través del electrodo expandido 3004 y a los tejidos de las vías respiratorias. La energía de RF calienta el tejido superficial y profundo de la pared 100 de vía respiratoria y el tejido conjuntivo 124 en la zona que recubre inmediatamente el electrodo 3004 y el refrigerante que fluye 3100 a través del globo 3002 refrigera los tejidos superficiales de la pared 100 de vía respiratoria. El efecto neto de este calentamiento superficial y profundo por energía de RF y la refrigeración superficial por el refrigerante circulante 3100 a través del globo 3002 es la concentración de calor en las capas exteriores de la pared 100 de vía respiratoria que recubre inmediatamente el electrodo 3004. Por ejemplo, la temperatura del tejido conjuntivo 124 en la zona de un único tronco de nervio 45 puede ser más alta que las temperaturas del epitelio 110, estroma 112 y/o músculo liso 114. Por ejemplo, la temperatura del tejido conjuntivo puede ser lo suficientemente alta para producir daño al tejido nervioso 45 mientras otros tejidos que no son el objetivo de la vía respiratoria 100 son mantenidos a una temperatura más baja para evitar o limitar el daño a los tejidos que no son el objetivo. El tratamiento puede repetirse en otras zonas según se necesite.
La Figura 21 es una vista en sección transversal de una parte de la vía respiratoria 100 y el catéter de electrodo 3000 guiado por ultrasonidos refrigerado por fluido en la vía respiratoria 100. La sección transversal se toma a través del propio electrodo 3004.
El globo 3002 se puede adaptar al electrodo 3004 y la superficie epitelial de la vía respiratoria 100. Cuando se transmite la energía de RF a través del electrodo 3004 a los tejidos de las vías respiratorias y el globo 3002 es llenado de refrigerante fluyendo 3100, la energía de RF calienta el tejido superficial y profundo de la pared 100 de vía respiratoria que recubre inmediatamente el electrodo 3004. El refrigerante 3100 fluye para controlar la temperatura de los tejidos superficiales de la pared 100 de vía respiratoria. El efecto neto es la concentración de calor en las capas exteriores de la pared 100 de vía respiratoria inmediatamente sobre el electrodo 3004 produciendo un único volumen de objetivo 3250 de tejido calentado por encima de una temperatura de tratamiento (por ejemplo, aproximadamente 50 °C). Por ejemplo, la temperatura del tejido conjuntivo 124 en la región de un único tronco de nervio 45 en la zona inmediatamente sobre el electrodo 3004 puede ser más alta que las temperaturas del epitelio 110, estroma 112 y/o músculo liso 114.
Los vasos de las ramificaciones 130 de arteria bronquial pueden estar dentro o cerca del volumen de calentamiento producido durante la aplicación de energía de RF. El calor generado por el electrodo 3004 puede ser controlado de tal manera que la sangre que fluye a través de las ramificaciones 130 de arteria bronquial protegen a esas ramificaciones 130 de una herida térmica mientras se daña el tejido nervioso 45, incluso si el tejido nervioso está junto a las ramificaciones de arteria.
Las realizaciones descritas en esta memoria pueden utilizarse en el sistema respiratorio, en el aparato digestivo, en el sistema nervioso, en el sistema vascular o en otros sistemas. Por ejemplo, los conjuntos alargados descritos en esta memoria pueden ser entregados a través de vasos sanguíneos para tratar el sistema vascular. Los sistemas de tratamiento y sus componentes descritos en esta memoria pueden utilizarse como un adjunto durante otro procedimiento médico, tal como procedimientos mínimamente invasivos, procedimientos abiertos, procedimientos semi-abiertos u otros procedimientos quirúrgicos (por ejemplo, cirugía de reducción de volumen pulmonar) que proporcionan preferiblemente acceso a un lugar deseado de objetivo. Diversos procedimientos quirúrgicos en el pecho pueden proporcionar acceso al tejido pulmonar. Las técnicas y procedimientos de acceso que se utilizan para proporcionar el acceso a una región de objetivo pueden ser realizadas por un cirujano y/o un sistema robótico. Los expertos en la técnica reconocen que hay muchas maneras diferentes para acceder a una región de objetivo.
Los conjuntos alargados descritos en esta memoria pueden utilizarse con alambre de guía, fundas de entrega, instrumentos ópticos, introductores, trocares, agujas de biopsia un otro equipo médico adecuado. Si el lugar de tratamiento de objetivo está en una ubicación distante en el paciente (por ejemplo, un lugar de tratamiento cerca de la raíz pulmonar 24 de la Figura 1), puede utilizarse una gran variedad de instrumentos y técnicas para acceder al lugar. Los conjuntos alargados flexibles pueden colocarse fácilmente dentro del paciente utilizando, por ejemplo, dispositivos dirigibles de entrega, tal como endoscopios y broncoscopios, como se ha explicado anteriormente.
Los conjuntos alargados semirígidos o rígidos pueden ser entregados utilizando trocares, orificios de acceso, fundas rígidas de entrega utilizando procedimientos semi-abiertos, procedimientos abiertos u otras herramientas/procedimientos de entrega que proporcionan un recorrido algo recto de entrega. Ventajosamente, los conjuntos alargados rígidos o semirígidos pueden ser lo suficientemente rígidos para acceder y para tratar el tejido remoto, tal como el nervio vago, ramas de nervios, fibras nerviosas y/o troncos de nervio a lo largo de las vías respiratorias, sin administrar los conjuntos alargados a través de las vías respiratorias. Las realizaciones y las técnicas descritas en esta memoria pueden utilizarse con otros procedimientos, tal como termoplastia bronquial.
Las diversas realizaciones descritas antes también pueden combinarse para proporcionar realizaciones adicionales. Pueden hacerse estos y otros cambios a las realizaciones a la luz de la descripción detallada antes. Las realizaciones, características, sistemas, dispositivos, materiales, métodos y técnicas descritas en esta memoria descriptiva pueden, en algunas realizaciones, ser similares a alguna o varias de las realizaciones, características, sistemas, dispositivos, materiales, métodos y técnicas descritos en la solicitud provisional de patente de EE.UU. nº 61/052.082 presentada el 9 de mayo de 2008; solicitud provisional de patente de EE.UU. nº 61/106.490 presentada el 17 de octubre de 2008; y solicitud provisional de patente de EE.UU. nº 61/155.449 presentada el 25 de febrero de 2009. Además, las realizaciones, características, sistemas, dispositivos, materiales, métodos y técnicas descritas en esta memoria descriptiva pueden, en ciertas realizaciones, ser aplicadas a o utilizadas con respecto a alguna o varias de las realizaciones, características, sistemas, dispositivos, materiales, métodos y técnicas descritos en las ya mencionada solicitud provisional de patente de EE.UU. nº 61/052.082 presentada el 9 de mayo de 2008; solicitud provisional de patente de EE.UU. nº 61/106.490 presentada el 17 de octubre de 2008; y solicitud provisional de patente de EE.UU. nº 61/155.449 presentada el 25 de febrero de 2009.
Claims (12)
- REIVINDICACIONES1. Un catéter (2000, 2500, 3000), que comprende:un cuerpo alargado (2030, 2530) a través del cual puede fluir un refrigerante;un electrodo (2004, 2504) configurado para enviar energía para realizar la ablación de tejido nervioso en una pared de vía respiratoria de un árbol bronquial; yun globo expansible (2002, 2502, 3002) que tiene un estado aplastado y un estado expandido, en donde el globo expansible en el estado expandido está dimensionado para contactar con la pared de vía respiratoria del árbol bronquial, en donde el globo expansible se acopla al cuerpo alargado y está configurado para contener el refrigerante de tal manera que el refrigerante refrigera el electrodo y el globo expansible cuando el catéter está en contacto con la pared de vía respiratoria para limitar o impedir daños al tejido entre el electrodo y el tejido nervioso,en donde el electrodo (2004) se acopla al globo expansible (2002, 2502, 3002) de tal manera que el electrodo (2004) es movido hacia la pared de vía respiratoria cuando el globo expansible se mueve desde el estado aplastado al estado expandido, yen donde el electrodo (2004) está configurado para enviar una cantidad suficiente de energía para realizar la ablación de una parte de un tronco de nervio que se extiende a lo largo del árbol bronquial para atenuar las señales del sistema nervioso transmitidas a una parte del árbol bronquial mientras el globo expansible (2002, 2502, 3002) está en el estado expandido, y en donde el globo expansible (2002, 2502, 3002) está configurado para absorber energía térmica de la pared de las vías respiratorias para limitar o impedir daños al tejido entre el electrodo y el tejido nervioso,en donde el cuerpo alargado incluye un paso interno de afluencia (2011) que está acoplado a una entrada (2013) de refrigerante próxima a un extremo del globo expansible caracterizado porque el cuerpo alargado incluye además un paso interno (2021) de salida que está acoplado a una salida (2023) de refrigerante en otro extremo del globo expansible de tal manera que el refrigerante circula dentro del globo expansible cuando el refrigerante fluye a través del paso interno de afluencia, la entrada de refrigerante, la salida de refrigerante y el paso interno de salida.
-
- 2.
- El catéter de la reivindicación 1, en donde el electrodo se extiende circunferencialmente alrededor del globo expansible.
-
- 3.
- El catéter de la reivindicación 1, en donde el electrodo está colocado fuera del globo expansible de tal manera que el electrodo sea capaz de enviar energía directamente a la pared de vía respiratoria.
-
- 4.
- El catéter de la reivindicación 1, en donde el electrodo está empotrado en una pared del globo expansible.
-
- 5.
- El catéter de la reivindicación 1, en donde el electrodo está acoplado a una superficie exterior del globo expansible o una superficie interior del globo expansible.
-
- 6.
- El catéter de la reivindicación 1, que comprende además una pluralidad de electrodos espaciados acoplados al globo expansible y configurados para enviar energía.
-
- 7.
- El catéter de la reivindicación 1, que comprende además una sonda de ultrasonidos (3045) capaz de enviar energía de ultrasonidos a través de una pared del miembro expansible para tomar imágenes.
-
- 8.
- El catéter de la reivindicación 1, en donde el electrodo y el globo expansible están configurados para elevar la temperatura del tejido nervioso para provocar la muerte de células del tejido nervioso al tiempo que se mantiene la temperatura del otro tejido por debajo de una temperatura en la que se produce la muerte de células.
-
- 9.
- El catéter de la reivindicación 1, en donde el electrodo y el globo expansible están configurados para cooperar para elevar la temperatura de un tejido a una profundidad de 2 mm a 8 mm en la pared de las vías respiratorias para provocar la muerte de células, al tiempo que se mantienen tejidos a una profundidad inferior a 2 mm en la pared de vía respiratoria a una temperatura por debajo de una temperatura a la que se produce la muerte de células.
-
- 10.
- Un sistema que comprende: un catéter según cualquiera de las reivindicaciones 1 a 9
una fuente de refrigerante acoplada al catéter, yun generador de radiofrecuencia acoplado al catéter; en donde la fuente de refrigerante está configurada para entregar refrigerante al globo expansible y el generador de radiofrecuencia está configurado para entregar energía al electrodo para concentrar el calentamiento en capas exteriores de la pared de las vías respiratorias. -
- 11.
- El sistema de la reivindicación 10, en donde la fuente de refrigerante está configurada para enviar un refrigerante a baja temperatura que absorbe energía térmica para refrigerar el tejido en contacto con el miembro expansible.
-
- 12.
- El sistema de la reivindicación 10, que comprende además: un broncoscopio (200, 400) que tiene un paso interno de entrega para recibir el catéter.
Applications Claiming Priority (7)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US52082P | 1997-07-17 | ||
| US5208208P | 2008-05-09 | 2008-05-09 | |
| US10649008P | 2008-10-17 | 2008-10-17 | |
| US106490P | 2008-10-17 | ||
| US15544909P | 2009-02-25 | 2009-02-25 | |
| US155449P | 2009-02-25 | ||
| PCT/US2009/043393 WO2009137819A1 (en) | 2008-05-09 | 2009-05-08 | Systems, assemblies, and methods for treating a bronchial tree |
Publications (2)
| Publication Number | Publication Date |
|---|---|
| ES2398052T3 true ES2398052T3 (es) | 2013-03-13 |
| ES2398052T5 ES2398052T5 (es) | 2021-10-25 |
Family
ID=40929508
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| ES09743805T Active ES2398052T5 (es) | 2008-05-09 | 2009-05-08 | Sistemas para tratar un árbol bronquial |
Country Status (10)
| Country | Link |
|---|---|
| US (12) | US8088127B2 (es) |
| EP (6) | EP4166107A1 (es) |
| JP (6) | JP2011519699A (es) |
| KR (1) | KR101719824B1 (es) |
| CN (1) | CN102014779B (es) |
| AU (1) | AU2009244058B2 (es) |
| CA (1) | CA2723806C (es) |
| ES (1) | ES2398052T5 (es) |
| IL (1) | IL209193A0 (es) |
| WO (1) | WO2009137819A1 (es) |
Families Citing this family (340)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7992572B2 (en) | 1998-06-10 | 2011-08-09 | Asthmatx, Inc. | Methods of evaluating individuals having reversible obstructive pulmonary disease |
| US6634363B1 (en) | 1997-04-07 | 2003-10-21 | Broncus Technologies, Inc. | Methods of treating lungs having reversible obstructive pulmonary disease |
| US7027869B2 (en) | 1998-01-07 | 2006-04-11 | Asthmatx, Inc. | Method for treating an asthma attack |
| US7921855B2 (en) | 1998-01-07 | 2011-04-12 | Asthmatx, Inc. | Method for treating an asthma attack |
| US7198635B2 (en) | 2000-10-17 | 2007-04-03 | Asthmatx, Inc. | Modification of airways by application of energy |
| US8181656B2 (en) | 1998-06-10 | 2012-05-22 | Asthmatx, Inc. | Methods for treating airways |
| CA2387127A1 (en) | 1999-10-25 | 2001-05-17 | Therus Corporation | Use of focused ultrasound for vascular sealing |
| US6626855B1 (en) | 1999-11-26 | 2003-09-30 | Therus Corpoation | Controlled high efficiency lesion formation using high intensity ultrasound |
| US8241274B2 (en) | 2000-01-19 | 2012-08-14 | Medtronic, Inc. | Method for guiding a medical device |
| US8251070B2 (en) | 2000-03-27 | 2012-08-28 | Asthmatx, Inc. | Methods for treating airways |
| US7104987B2 (en) | 2000-10-17 | 2006-09-12 | Asthmatx, Inc. | Control system and process for application of energy to airway walls and other mediums |
| US7653438B2 (en) | 2002-04-08 | 2010-01-26 | Ardian, Inc. | Methods and apparatus for renal neuromodulation |
| US7617005B2 (en) * | 2002-04-08 | 2009-11-10 | Ardian, Inc. | Methods and apparatus for thermally-induced renal neuromodulation |
| US7756583B2 (en) | 2002-04-08 | 2010-07-13 | Ardian, Inc. | Methods and apparatus for intravascularly-induced neuromodulation |
| US8347891B2 (en) | 2002-04-08 | 2013-01-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen |
| US7853333B2 (en) | 2002-04-08 | 2010-12-14 | Ardian, Inc. | Methods and apparatus for multi-vessel renal neuromodulation |
| US8150519B2 (en) | 2002-04-08 | 2012-04-03 | Ardian, Inc. | Methods and apparatus for bilateral renal neuromodulation |
| WO2004073505A2 (en) * | 2003-02-20 | 2004-09-02 | Prorhythm, Inc. | Cardiac ablation devices |
| US20040226556A1 (en) * | 2003-05-13 | 2004-11-18 | Deem Mark E. | Apparatus for treating asthma using neurotoxin |
| US7291146B2 (en) | 2003-09-12 | 2007-11-06 | Minnow Medical, Inc. | Selectable eccentric remodeling and/or ablation of atherosclerotic material |
| US9713730B2 (en) | 2004-09-10 | 2017-07-25 | Boston Scientific Scimed, Inc. | Apparatus and method for treatment of in-stent restenosis |
| US8396548B2 (en) | 2008-11-14 | 2013-03-12 | Vessix Vascular, Inc. | Selective drug delivery in a lumen |
| US7742795B2 (en) | 2005-03-28 | 2010-06-22 | Minnow Medical, Inc. | Tuned RF energy for selective treatment of atheroma and other target tissues and/or structures |
| US7949407B2 (en) | 2004-11-05 | 2011-05-24 | Asthmatx, Inc. | Energy delivery devices and methods |
| US12433837B2 (en) | 2005-07-22 | 2025-10-07 | The Foundry, Llc | Systems and methods for delivery of a therapeutic agent |
| EP1906923B1 (en) | 2005-07-22 | 2018-01-24 | The Foundry, LLC | Systems and methods for delivery of a therapeutic agent |
| US8167805B2 (en) * | 2005-10-20 | 2012-05-01 | Kona Medical, Inc. | Systems and methods for ultrasound applicator station keeping |
| US9402633B2 (en) | 2006-03-13 | 2016-08-02 | Pneumrx, Inc. | Torque alleviating intra-airway lung volume reduction compressive implant structures |
| US8888800B2 (en) | 2006-03-13 | 2014-11-18 | Pneumrx, Inc. | Lung volume reduction devices, methods, and systems |
| US8157837B2 (en) | 2006-03-13 | 2012-04-17 | Pneumrx, Inc. | Minimally invasive lung volume reduction device and method |
| US10363092B2 (en) | 2006-03-24 | 2019-07-30 | Neuwave Medical, Inc. | Transmission line with heat transfer ability |
| US8019435B2 (en) | 2006-05-02 | 2011-09-13 | Boston Scientific Scimed, Inc. | Control of arterial smooth muscle tone |
| EP2021846B1 (en) | 2006-05-19 | 2017-05-03 | Koninklijke Philips N.V. | Ablation device with optimized input power profile |
| US20080039746A1 (en) | 2006-05-25 | 2008-02-14 | Medtronic, Inc. | Methods of using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
| US10376314B2 (en) | 2006-07-14 | 2019-08-13 | Neuwave Medical, Inc. | Energy delivery systems and uses thereof |
| US11389235B2 (en) | 2006-07-14 | 2022-07-19 | Neuwave Medical, Inc. | Energy delivery systems and uses thereof |
| AU2007310991B2 (en) | 2006-10-18 | 2013-06-20 | Boston Scientific Scimed, Inc. | System for inducing desirable temperature effects on body tissue |
| JP5479901B2 (ja) | 2006-10-18 | 2014-04-23 | べシックス・バスキュラー・インコーポレイテッド | 身体組織に対する所望の温度作用の誘発 |
| EP2954868A1 (en) | 2006-10-18 | 2015-12-16 | Vessix Vascular, Inc. | Tuned rf energy and electrical tissue characterization for selective treatment of target tissues |
| US8496653B2 (en) | 2007-04-23 | 2013-07-30 | Boston Scientific Scimed, Inc. | Thrombus removal |
| US8322335B2 (en) | 2007-10-22 | 2012-12-04 | Uptake Medical Corp. | Determining patient-specific vapor treatment and delivery parameters |
| US8483831B1 (en) | 2008-02-15 | 2013-07-09 | Holaira, Inc. | System and method for bronchial dilation |
| EP4166107A1 (en) | 2008-05-09 | 2023-04-19 | Nuvaira, Inc. | Systems, assemblies, and methods for treating a bronchial tree |
| US9173669B2 (en) * | 2008-09-12 | 2015-11-03 | Pneumrx, Inc. | Enhanced efficacy lung volume reduction devices, methods, and systems |
| JP5307900B2 (ja) | 2008-11-17 | 2013-10-02 | べシックス・バスキュラー・インコーポレイテッド | 組織トポグラフィの知識によらないエネルギーの選択的な蓄積 |
| EP2376011B1 (en) | 2009-01-09 | 2019-07-03 | ReCor Medical, Inc. | Apparatus for treatment of mitral valve insufficiency |
| DE102009006416B3 (de) * | 2009-01-28 | 2010-08-26 | Siemens Aktiengesellschaft | Verfahren und Verzweigungs-Ermittlungseinrichtung zur Ermittlung einer Verzweigungsstelle sowie einer Mittellinie innerhalb eines Hohlorgans nebst zugehörigem Computerprogramm |
| US8632534B2 (en) | 2009-04-03 | 2014-01-21 | Angiodynamics, Inc. | Irreversible electroporation (IRE) for congestive obstructive pulmonary disease (COPD) |
| US9078655B2 (en) | 2009-04-17 | 2015-07-14 | Domain Surgical, Inc. | Heated balloon catheter |
| US9131977B2 (en) | 2009-04-17 | 2015-09-15 | Domain Surgical, Inc. | Layered ferromagnetic coated conductor thermal surgical tool |
| US9107666B2 (en) | 2009-04-17 | 2015-08-18 | Domain Surgical, Inc. | Thermal resecting loop |
| US8292879B2 (en) | 2009-04-17 | 2012-10-23 | Domain Surgical, Inc. | Method of treatment with adjustable ferromagnetic coated conductor thermal surgical tool |
| US9265556B2 (en) | 2009-04-17 | 2016-02-23 | Domain Surgical, Inc. | Thermally adjustable surgical tool, balloon catheters and sculpting of biologic materials |
| US8551096B2 (en) | 2009-05-13 | 2013-10-08 | Boston Scientific Scimed, Inc. | Directional delivery of energy and bioactives |
| EP2432422A4 (en) | 2009-05-18 | 2018-01-17 | PneumRx, Inc. | Cross-sectional modification during deployment of an elongate lung volume reduction device |
| US8903488B2 (en) | 2009-05-28 | 2014-12-02 | Angiodynamics, Inc. | System and method for synchronizing energy delivery to the cardiac rhythm |
| CN102458544B (zh) * | 2009-06-09 | 2015-03-18 | 雷斯平诺维有限公司 | 用于将治疗方案应用于心肺系统器官的设备和方法 |
| US9895189B2 (en) | 2009-06-19 | 2018-02-20 | Angiodynamics, Inc. | Methods of sterilization and treating infection using irreversible electroporation |
| CN106214246A (zh) | 2009-07-28 | 2016-12-14 | 纽韦弗医疗设备公司 | 能量递送系统及其使用 |
| US8517962B2 (en) | 2009-10-12 | 2013-08-27 | Kona Medical, Inc. | Energetic modulation of nerves |
| US8986231B2 (en) | 2009-10-12 | 2015-03-24 | Kona Medical, Inc. | Energetic modulation of nerves |
| US9119951B2 (en) | 2009-10-12 | 2015-09-01 | Kona Medical, Inc. | Energetic modulation of nerves |
| US8469904B2 (en) | 2009-10-12 | 2013-06-25 | Kona Medical, Inc. | Energetic modulation of nerves |
| US8295912B2 (en) | 2009-10-12 | 2012-10-23 | Kona Medical, Inc. | Method and system to inhibit a function of a nerve traveling with an artery |
| US20110092880A1 (en) | 2009-10-12 | 2011-04-21 | Michael Gertner | Energetic modulation of nerves |
| US11998266B2 (en) | 2009-10-12 | 2024-06-04 | Otsuka Medical Devices Co., Ltd | Intravascular energy delivery |
| US8986211B2 (en) | 2009-10-12 | 2015-03-24 | Kona Medical, Inc. | Energetic modulation of nerves |
| US9174065B2 (en) | 2009-10-12 | 2015-11-03 | Kona Medical, Inc. | Energetic modulation of nerves |
| US20160059044A1 (en) | 2009-10-12 | 2016-03-03 | Kona Medical, Inc. | Energy delivery to intraparenchymal regions of the kidney to treat hypertension |
| US20110118600A1 (en) | 2009-11-16 | 2011-05-19 | Michael Gertner | External Autonomic Modulation |
| CN104042322B (zh) | 2009-10-27 | 2017-06-06 | 赫莱拉公司 | 具有可冷却的能量发射组件的递送装置 |
| WO2011053757A1 (en) * | 2009-10-30 | 2011-05-05 | Sound Interventions, Inc. | Method and apparatus for treatment of hypertension through percutaneous ultrasound renal denervation |
| US8911439B2 (en) | 2009-11-11 | 2014-12-16 | Holaira, Inc. | Non-invasive and minimally invasive denervation methods and systems for performing the same |
| WO2011060200A1 (en) | 2009-11-11 | 2011-05-19 | Innovative Pulmonary Solutions, Inc. | Systems, apparatuses, and methods for treating tissue and controlling stenosis |
| US20110144637A1 (en) * | 2009-12-11 | 2011-06-16 | Medtronic Cryocath Lp | Vein Occlusion Devices and Methods for Catheter-Based Ablation |
| WO2011073815A2 (en) * | 2009-12-19 | 2011-06-23 | Koninklijke Philips Electronics N.V. | Copd exacerbation prediction system and method |
| US20110263921A1 (en) * | 2009-12-31 | 2011-10-27 | Anthony Vrba | Patterned Denervation Therapy for Innervated Renal Vasculature |
| US10575893B2 (en) | 2010-04-06 | 2020-03-03 | Nuvaira, Inc. | System and method for pulmonary treatment |
| EP3949885A1 (en) * | 2010-04-06 | 2022-02-09 | Nuvaira, Inc. | System for pulmonary treatment |
| JP2013523318A (ja) | 2010-04-09 | 2013-06-17 | べシックス・バスキュラー・インコーポレイテッド | 組織の治療のための発電および制御の装置 |
| US9192790B2 (en) | 2010-04-14 | 2015-11-24 | Boston Scientific Scimed, Inc. | Focused ultrasonic renal denervation |
| EP3804651A1 (en) | 2010-05-03 | 2021-04-14 | Neuwave Medical, Inc. | Energy delivery systems |
| US8473067B2 (en) | 2010-06-11 | 2013-06-25 | Boston Scientific Scimed, Inc. | Renal denervation and stimulation employing wireless vascular energy transfer arrangement |
| US20130211176A1 (en) * | 2010-06-24 | 2013-08-15 | Emcision Limited | Enhanced ablation apparatus |
| US9408661B2 (en) | 2010-07-30 | 2016-08-09 | Patrick A. Haverkost | RF electrodes on multiple flexible wires for renal nerve ablation |
| US9084609B2 (en) | 2010-07-30 | 2015-07-21 | Boston Scientific Scime, Inc. | Spiral balloon catheter for renal nerve ablation |
| US9463062B2 (en) | 2010-07-30 | 2016-10-11 | Boston Scientific Scimed, Inc. | Cooled conductive balloon RF catheter for renal nerve ablation |
| US9358365B2 (en) | 2010-07-30 | 2016-06-07 | Boston Scientific Scimed, Inc. | Precision electrode movement control for renal nerve ablation |
| US20120029512A1 (en) * | 2010-07-30 | 2012-02-02 | Willard Martin R | Balloon with surface electrodes and integral cooling for renal nerve ablation |
| US9155589B2 (en) | 2010-07-30 | 2015-10-13 | Boston Scientific Scimed, Inc. | Sequential activation RF electrode set for renal nerve ablation |
| US9700368B2 (en) | 2010-10-13 | 2017-07-11 | Angiodynamics, Inc. | System and method for electrically ablating tissue of a patient |
| US8696581B2 (en) | 2010-10-18 | 2014-04-15 | CardioSonic Ltd. | Ultrasound transducer and uses thereof |
| EP2661304A1 (en) | 2010-10-18 | 2013-11-13 | Cardiosonic Ltd. | Therapeutics reservoir |
| TWI556849B (zh) | 2010-10-21 | 2016-11-11 | 美敦力阿福盧森堡公司 | 用於腎臟神經協調的導管裝置 |
| US8974451B2 (en) | 2010-10-25 | 2015-03-10 | Boston Scientific Scimed, Inc. | Renal nerve ablation using conductive fluid jet and RF energy |
| US9220558B2 (en) | 2010-10-27 | 2015-12-29 | Boston Scientific Scimed, Inc. | RF renal denervation catheter with multiple independent electrodes |
| US9028485B2 (en) | 2010-11-15 | 2015-05-12 | Boston Scientific Scimed, Inc. | Self-expanding cooling electrode for renal nerve ablation |
| US9668811B2 (en) | 2010-11-16 | 2017-06-06 | Boston Scientific Scimed, Inc. | Minimally invasive access for renal nerve ablation |
| US9089350B2 (en) | 2010-11-16 | 2015-07-28 | Boston Scientific Scimed, Inc. | Renal denervation catheter with RF electrode and integral contrast dye injection arrangement |
| US9326751B2 (en) | 2010-11-17 | 2016-05-03 | Boston Scientific Scimed, Inc. | Catheter guidance of external energy for renal denervation |
| US9060761B2 (en) | 2010-11-18 | 2015-06-23 | Boston Scientific Scime, Inc. | Catheter-focused magnetic field induced renal nerve ablation |
| US9192435B2 (en) | 2010-11-22 | 2015-11-24 | Boston Scientific Scimed, Inc. | Renal denervation catheter with cooled RF electrode |
| US9023034B2 (en) | 2010-11-22 | 2015-05-05 | Boston Scientific Scimed, Inc. | Renal ablation electrode with force-activatable conduction apparatus |
| US20120157993A1 (en) | 2010-12-15 | 2012-06-21 | Jenson Mark L | Bipolar Off-Wall Electrode Device for Renal Nerve Ablation |
| US10405920B2 (en) | 2016-01-25 | 2019-09-10 | Biosense Webster (Israel) Ltd. | Temperature controlled short duration ablation |
| US10292763B2 (en) | 2016-01-25 | 2019-05-21 | Biosense Webster (Israel) Ltd. | Temperature controlled short duration ablation |
| US10441354B2 (en) | 2016-01-25 | 2019-10-15 | Biosense Webster (Israel) Ltd. | Temperature controlled short duration ablation |
| EP2656807A4 (en) | 2010-12-21 | 2016-08-31 | Terumo Corp | BALLOON CATHETER AND POWER SUPPLY SYSTEM FOR IT |
| WO2012100095A1 (en) | 2011-01-19 | 2012-07-26 | Boston Scientific Scimed, Inc. | Guide-compatible large-electrode catheter for renal nerve ablation with reduced arterial injury |
| EP2704657A4 (en) | 2011-04-08 | 2014-12-31 | Domain Surgical Inc | IMPEDANCE MATCHING CIRCUIT |
| CA2832311A1 (en) | 2011-04-08 | 2012-11-29 | Covidien Lp | Iontophoresis drug delivery system and method for denervation of the renal sympathetic nerve and iontophoretic drug delivery |
| US8932279B2 (en) | 2011-04-08 | 2015-01-13 | Domain Surgical, Inc. | System and method for cooling of a heated surgical instrument and/or surgical site and treating tissue |
| US8663190B2 (en) | 2011-04-22 | 2014-03-04 | Ablative Solutions, Inc. | Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation |
| US9237925B2 (en) | 2011-04-22 | 2016-01-19 | Ablative Solutions, Inc. | Expandable catheter system for peri-ostial injection and muscle and nerve fiber ablation |
| WO2012148969A2 (en) | 2011-04-25 | 2012-11-01 | Brian Kelly | Apparatus and methods related to constrained deployment of cryogenic balloons for limited cryogenic ablation of vessel walls |
| WO2012158722A2 (en) | 2011-05-16 | 2012-11-22 | Mcnally, David, J. | Surgical instrument guide |
| JP2014519395A (ja) * | 2011-06-15 | 2014-08-14 | ティダル ウェーブ テクノロジー、インコーポレイテッド | 高周波アブレーション・カテーテル・デバイス |
| WO2013013156A2 (en) | 2011-07-20 | 2013-01-24 | Boston Scientific Scimed, Inc. | Percutaneous devices and methods to visualize, target and ablate nerves |
| EP2734264B1 (en) | 2011-07-22 | 2018-11-21 | Boston Scientific Scimed, Inc. | Nerve modulation system with a nerve modulation element positionable in a helical guide |
| US9138371B2 (en) * | 2011-08-05 | 2015-09-22 | Angiosome, Inc. | Therapeutic garment, apparatus, method, and system having inflatable bladders |
| US9056185B2 (en) | 2011-08-24 | 2015-06-16 | Ablative Solutions, Inc. | Expandable catheter system for fluid injection into and deep to the wall of a blood vessel |
| US20130053792A1 (en) | 2011-08-24 | 2013-02-28 | Ablative Solutions, Inc. | Expandable catheter system for vessel wall injection and muscle and nerve fiber ablation |
| US9526558B2 (en) | 2011-09-13 | 2016-12-27 | Domain Surgical, Inc. | Sealing and/or cutting instrument |
| US9078665B2 (en) | 2011-09-28 | 2015-07-14 | Angiodynamics, Inc. | Multiple treatment zone ablation probe |
| JP6146923B2 (ja) * | 2011-09-30 | 2017-06-14 | コヴィディエン リミテッド パートナーシップ | エネルギー送達デバイスおよび使用の方法 |
| US10201386B2 (en) | 2011-10-05 | 2019-02-12 | Nuvaira, Inc. | Apparatus for injuring nerve tissue |
| US9186210B2 (en) | 2011-10-10 | 2015-11-17 | Boston Scientific Scimed, Inc. | Medical devices including ablation electrodes |
| US9420955B2 (en) | 2011-10-11 | 2016-08-23 | Boston Scientific Scimed, Inc. | Intravascular temperature monitoring system and method |
| EP2765940B1 (en) | 2011-10-11 | 2015-08-26 | Boston Scientific Scimed, Inc. | Off-wall electrode device for nerve modulation |
| US9364284B2 (en) | 2011-10-12 | 2016-06-14 | Boston Scientific Scimed, Inc. | Method of making an off-wall spacer cage |
| EP2768568B1 (en) | 2011-10-18 | 2020-05-06 | Boston Scientific Scimed, Inc. | Integrated crossing balloon catheter |
| EP2768563B1 (en) | 2011-10-18 | 2016-11-09 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
| US8951251B2 (en) | 2011-11-08 | 2015-02-10 | Boston Scientific Scimed, Inc. | Ostial renal nerve ablation |
| US9119600B2 (en) | 2011-11-15 | 2015-09-01 | Boston Scientific Scimed, Inc. | Device and methods for renal nerve modulation monitoring |
| US9119632B2 (en) | 2011-11-21 | 2015-09-01 | Boston Scientific Scimed, Inc. | Deflectable renal nerve ablation catheter |
| CN102629327A (zh) * | 2011-12-02 | 2012-08-08 | 普建涛 | 气道壁识别方法 |
| KR20140102668A (ko) | 2011-12-06 | 2014-08-22 | 도메인 서지컬, 인크. | 수술 기기로의 전원공급 제어 시스템 및 그 방법 |
| SG11201402610QA (en) * | 2011-12-09 | 2014-10-30 | Metavention Inc | Therapeutic neuromodulation of the hepatic system |
| CA2859199C (en) | 2011-12-15 | 2022-08-30 | The Board Of Trustees Of The Leland Stanford Junior University | Systems for treating pulmonary hypertension |
| WO2013096803A2 (en) | 2011-12-21 | 2013-06-27 | Neuwave Medical, Inc. | Energy delivery systems and uses thereof |
| US9265969B2 (en) | 2011-12-21 | 2016-02-23 | Cardiac Pacemakers, Inc. | Methods for modulating cell function |
| JP5898336B2 (ja) | 2011-12-23 | 2016-04-06 | べシックス・バスキュラー・インコーポレイテッド | 拡張可能なバルーン及び熱感知デバイスを備えた電極パッドを含むデバイス |
| CN104135958B (zh) | 2011-12-28 | 2017-05-03 | 波士顿科学西美德公司 | 用有聚合物消融元件的新消融导管调变神经的装置和方法 |
| US9050106B2 (en) | 2011-12-29 | 2015-06-09 | Boston Scientific Scimed, Inc. | Off-wall electrode device and methods for nerve modulation |
| US10105505B2 (en) | 2012-01-13 | 2018-10-23 | Respinova Ltd. | Means and method for fluid pulses |
| US9414881B2 (en) | 2012-02-08 | 2016-08-16 | Angiodynamics, Inc. | System and method for increasing a target zone for electrical ablation |
| US10249036B2 (en) | 2012-02-22 | 2019-04-02 | Veran Medical Technologies, Inc. | Surgical catheter having side exiting medical instrument and related systems and methods for four dimensional soft tissue navigation |
| WO2013134543A1 (en) | 2012-03-08 | 2013-09-12 | Medtronic Ardian Luxembourg Sarl | Immune system neuromodulation and associated systems and methods |
| WO2013157011A2 (en) | 2012-04-18 | 2013-10-24 | CardioSonic Ltd. | Tissue treatment |
| CN102614017B (zh) * | 2012-04-20 | 2015-09-30 | 中国人民解放军第二军医大学 | 非接触性用于支气管腔内治疗微波装置 |
| US10610294B2 (en) | 2012-04-22 | 2020-04-07 | Newuro, B.V. | Devices and methods for transurethral bladder partitioning |
| CN104379212B (zh) | 2012-04-22 | 2016-08-31 | 纽乌罗有限公司 | 针对膀胱过度活动症的膀胱组织改变 |
| US9883906B2 (en) | 2012-04-22 | 2018-02-06 | Newuro, B.V. | Bladder tissue modification for overactive bladder disorders |
| US10258791B2 (en) | 2012-04-27 | 2019-04-16 | Medtronic Ardian Luxembourg S.A.R.L. | Catheter assemblies for neuromodulation proximate a bifurcation of a renal artery and associated systems and methods |
| US10660703B2 (en) | 2012-05-08 | 2020-05-26 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices |
| WO2013173481A2 (en) | 2012-05-18 | 2013-11-21 | Holaira, Inc. | Compact delivery pulmonary treatment systems and methods for improving pulmonary function |
| US20130317339A1 (en) | 2012-05-23 | 2013-11-28 | Biosense Webster (Israel), Ltd. | Endobronchial catheter |
| US11357447B2 (en) | 2012-05-31 | 2022-06-14 | Sonivie Ltd. | Method and/or apparatus for measuring renal denervation effectiveness |
| US9770293B2 (en) | 2012-06-04 | 2017-09-26 | Boston Scientific Scimed, Inc. | Systems and methods for treating tissue of a passageway within a body |
| EP2877113B1 (en) | 2012-07-24 | 2018-07-25 | Boston Scientific Scimed, Inc. | Electrodes for tissue treatment |
| JP6574378B2 (ja) * | 2012-08-04 | 2019-09-11 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | カテーテルの特定を改善するためのプローブのたわみの定量化 |
| WO2014032016A1 (en) | 2012-08-24 | 2014-02-27 | Boston Scientific Scimed, Inc. | Intravascular catheter with a balloon comprising separate microporous regions |
| CN104780859B (zh) | 2012-09-17 | 2017-07-25 | 波士顿科学西美德公司 | 用于肾神经调节的自定位电极系统及方法 |
| US9333035B2 (en) | 2012-09-19 | 2016-05-10 | Denervx LLC | Cooled microwave denervation |
| WO2014047411A1 (en) | 2012-09-21 | 2014-03-27 | Boston Scientific Scimed, Inc. | System for nerve modulation and innocuous thermal gradient nerve block |
| US10549127B2 (en) | 2012-09-21 | 2020-02-04 | Boston Scientific Scimed, Inc. | Self-cooling ultrasound ablation catheter |
| WO2014059165A2 (en) | 2012-10-10 | 2014-04-17 | Boston Scientific Scimed, Inc. | Renal nerve modulation devices and methods |
| US9044575B2 (en) | 2012-10-22 | 2015-06-02 | Medtronic Adrian Luxembourg S.a.r.l. | Catheters with enhanced flexibility and associated devices, systems, and methods |
| US8740849B1 (en) * | 2012-10-29 | 2014-06-03 | Ablative Solutions, Inc. | Peri-vascular tissue ablation catheter with support structures |
| US10736656B2 (en) | 2012-10-29 | 2020-08-11 | Ablative Solutions | Method for painless renal denervation using a peri-vascular tissue ablation catheter with support structures |
| US9301795B2 (en) | 2012-10-29 | 2016-04-05 | Ablative Solutions, Inc. | Transvascular catheter for extravascular delivery |
| US9526827B2 (en) | 2012-10-29 | 2016-12-27 | Ablative Solutions, Inc. | Peri-vascular tissue ablation catheter with support structures |
| US10945787B2 (en) | 2012-10-29 | 2021-03-16 | Ablative Solutions, Inc. | Peri-vascular tissue ablation catheters |
| US10881458B2 (en) | 2012-10-29 | 2021-01-05 | Ablative Solutions, Inc. | Peri-vascular tissue ablation catheters |
| EP2914326B1 (en) | 2012-11-02 | 2023-08-16 | Neurotronic, Inc. | Chemical ablation formulations |
| US12208224B2 (en) | 2012-11-02 | 2025-01-28 | Neurotronic, Inc. | Chemical ablation and method of treatment for various diseases |
| US10537375B2 (en) | 2015-04-24 | 2020-01-21 | Neurotronic, Inc. | Chemical ablation and method of treatment for various diseases |
| US9272132B2 (en) | 2012-11-02 | 2016-03-01 | Boston Scientific Scimed, Inc. | Medical device for treating airways and related methods of use |
| WO2014071372A1 (en) | 2012-11-05 | 2014-05-08 | Boston Scientific Scimed, Inc. | Devices for delivering energy to body lumens |
| US9827036B2 (en) | 2012-11-13 | 2017-11-28 | Pulnovo Medical (Wuxi) Co., Ltd. | Multi-pole synchronous pulmonary artery radiofrequency ablation catheter |
| CN102908191A (zh) | 2012-11-13 | 2013-02-06 | 陈绍良 | 多极同步肺动脉射频消融导管 |
| US11241267B2 (en) | 2012-11-13 | 2022-02-08 | Pulnovo Medical (Wuxi) Co., Ltd | Multi-pole synchronous pulmonary artery radiofrequency ablation catheter |
| US12082868B2 (en) | 2012-11-13 | 2024-09-10 | Pulnovo Medical (Wuxi) Co., Ltd. | Multi-pole synchronous pulmonary artery radiofrequency ablation catheter |
| US9398933B2 (en) * | 2012-12-27 | 2016-07-26 | Holaira, Inc. | Methods for improving drug efficacy including a combination of drug administration and nerve modulation |
| CN205215353U (zh) | 2013-02-07 | 2016-05-11 | 上海魅丽纬叶医疗科技有限公司 | 射频消融系统及其射频消融设备 |
| CN103271765B (zh) * | 2013-02-07 | 2016-05-11 | 上海魅丽纬叶医疗科技有限公司 | 经腔穿壁神经消融导管、设备及其方法 |
| EP2953532B1 (en) * | 2013-02-08 | 2020-01-15 | Covidien LP | System for lung denervation |
| US20140228875A1 (en) | 2013-02-08 | 2014-08-14 | Nidus Medical, Llc | Surgical device with integrated visualization and cauterization |
| US10328281B2 (en) | 2013-02-08 | 2019-06-25 | Covidien Lp | System and method for lung denervation |
| US20140243780A1 (en) * | 2013-02-28 | 2014-08-28 | Empire Technology Development | Systems and methods for reducing mucin hypersecretion |
| US10076384B2 (en) | 2013-03-08 | 2018-09-18 | Symple Surgical, Inc. | Balloon catheter apparatus with microwave emitter |
| WO2014143571A1 (en) | 2013-03-11 | 2014-09-18 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
| US9956033B2 (en) | 2013-03-11 | 2018-05-01 | Boston Scientific Scimed, Inc. | Medical devices for modulating nerves |
| CN105377344B (zh) | 2013-03-13 | 2019-08-30 | 努瓦拉公司 | 液体输送系统和治疗方法 |
| US9808311B2 (en) | 2013-03-13 | 2017-11-07 | Boston Scientific Scimed, Inc. | Deflectable medical devices |
| CN105188587A (zh) * | 2013-03-13 | 2015-12-23 | 波士顿科学医学有限公司 | 具有线性离子化传导性气球的可转向消融设备 |
| US10499980B2 (en) * | 2013-03-14 | 2019-12-10 | Spiration, Inc. | Flexible RF ablation needle |
| JP6220044B2 (ja) | 2013-03-15 | 2017-10-25 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | 腎神経アブレーションのための医療用デバイス |
| WO2014143898A1 (en) * | 2013-03-15 | 2014-09-18 | Holaira, Inc. | Systems, devices, and methods for treating a pulmonary disorder with an agent |
| EP2968919B1 (en) | 2013-03-15 | 2021-08-25 | Medtronic Ardian Luxembourg S.à.r.l. | Controlled neuromodulation systems |
| CN105228546B (zh) | 2013-03-15 | 2017-11-14 | 波士顿科学国际有限公司 | 利用阻抗补偿的用于治疗高血压的医疗器械和方法 |
| US10265122B2 (en) | 2013-03-15 | 2019-04-23 | Boston Scientific Scimed, Inc. | Nerve ablation devices and related methods of use |
| WO2014189794A1 (en) | 2013-05-18 | 2014-11-27 | Medtronic Ardian Luxembourg S.A.R.L. | Neuromodulation catheters with shafts for enhanced flexibility and control and associated devices, systems, and methods |
| EP2999411B1 (en) | 2013-05-23 | 2020-10-07 | Cardiosonic Ltd. | Devices for renal denervation and assessment thereof |
| CN105473089A (zh) * | 2013-06-05 | 2016-04-06 | 麦特文申公司 | 靶标神经纤维的调节 |
| US9943365B2 (en) | 2013-06-21 | 2018-04-17 | Boston Scientific Scimed, Inc. | Renal denervation balloon catheter with ride along electrode support |
| JP2016524949A (ja) | 2013-06-21 | 2016-08-22 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | 回転可能シャフトを有する腎神経アブレーション用医療装置 |
| US9707036B2 (en) | 2013-06-25 | 2017-07-18 | Boston Scientific Scimed, Inc. | Devices and methods for nerve modulation using localized indifferent electrodes |
| US9833283B2 (en) | 2013-07-01 | 2017-12-05 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation |
| US10413357B2 (en) | 2013-07-11 | 2019-09-17 | Boston Scientific Scimed, Inc. | Medical device with stretchable electrode assemblies |
| CN105377169B (zh) | 2013-07-11 | 2019-04-19 | 波士顿科学国际有限公司 | 用于神经调制的装置和方法 |
| EP3049007B1 (en) | 2013-07-19 | 2019-06-12 | Boston Scientific Scimed, Inc. | Spiral bipolar electrode renal denervation balloon |
| US10695124B2 (en) | 2013-07-22 | 2020-06-30 | Boston Scientific Scimed, Inc. | Renal nerve ablation catheter having twist balloon |
| EP3024406B1 (en) | 2013-07-22 | 2019-06-19 | Boston Scientific Scimed, Inc. | Medical devices for renal nerve ablation |
| US20150031946A1 (en) | 2013-07-24 | 2015-01-29 | Nidus Medical, Llc | Direct vision cryosurgical probe and methods of use |
| EP3335658B1 (en) | 2013-08-09 | 2020-04-22 | Boston Scientific Scimed, Inc. | Expandable catheter |
| EP3035879A1 (en) | 2013-08-22 | 2016-06-29 | Boston Scientific Scimed, Inc. | Flexible circuit having improved adhesion to a renal nerve modulation balloon |
| CN105555218B (zh) | 2013-09-04 | 2019-01-15 | 波士顿科学国际有限公司 | 具有冲洗和冷却能力的射频(rf)球囊导管 |
| WO2015038886A1 (en) | 2013-09-12 | 2015-03-19 | Holaira, Inc. | Systems, devices, and methods for treating a pulmonary disease with ultrasound energy |
| JP6392348B2 (ja) | 2013-09-13 | 2018-09-19 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | 蒸着されたカバー層を有するアブレーション用医療デバイス及びその製造方法 |
| DE102013219509A1 (de) * | 2013-09-27 | 2015-04-02 | Olympus Winter & Ibe Gmbh | Expandierbare gekühlte Elektrode |
| US9687288B2 (en) | 2013-09-30 | 2017-06-27 | Arrinex, Inc. | Apparatus and methods for treating rhinitis |
| US9782211B2 (en) | 2013-10-01 | 2017-10-10 | Uptake Medical Technology Inc. | Preferential volume reduction of diseased segments of a heterogeneous lobe |
| CN105592778B (zh) | 2013-10-14 | 2019-07-23 | 波士顿科学医学有限公司 | 高分辨率心脏标测电极阵列导管 |
| US11246654B2 (en) | 2013-10-14 | 2022-02-15 | Boston Scientific Scimed, Inc. | Flexible renal nerve ablation devices and related methods of use and manufacture |
| US9770606B2 (en) | 2013-10-15 | 2017-09-26 | Boston Scientific Scimed, Inc. | Ultrasound ablation catheter with cooling infusion and centering basket |
| US9962223B2 (en) | 2013-10-15 | 2018-05-08 | Boston Scientific Scimed, Inc. | Medical device balloon |
| JP6259099B2 (ja) | 2013-10-18 | 2018-01-10 | ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. | 可撓性を備える導電性ワイヤを備えるバルーン・カテーテル、並びに関連する使用および製造方法 |
| US9949652B2 (en) | 2013-10-25 | 2018-04-24 | Ablative Solutions, Inc. | Apparatus for effective ablation and nerve sensing associated with denervation |
| US10390881B2 (en) | 2013-10-25 | 2019-08-27 | Denervx LLC | Cooled microwave denervation catheter with insertion feature |
| CN105658163B (zh) | 2013-10-25 | 2020-08-18 | 波士顿科学国际有限公司 | 去神经柔性电路中的嵌入式热电偶 |
| US10517666B2 (en) | 2013-10-25 | 2019-12-31 | Ablative Solutions, Inc. | Apparatus for effective ablation and nerve sensing associated with denervation |
| WO2015061790A2 (en) | 2013-10-25 | 2015-04-30 | Pneumrx, Inc. | Genetically-associated chronic obstructive pulmonary disease treatment |
| US9931046B2 (en) | 2013-10-25 | 2018-04-03 | Ablative Solutions, Inc. | Intravascular catheter with peri-vascular nerve activity sensors |
| US12114916B2 (en) | 2013-12-12 | 2024-10-15 | Nuvaira, Inc. | Catheter and handle assembly, systems, and methods |
| US11202671B2 (en) | 2014-01-06 | 2021-12-21 | Boston Scientific Scimed, Inc. | Tear resistant flex circuit assembly |
| CN103735307B (zh) * | 2014-01-14 | 2016-06-08 | 沈诚亮 | 支气管热成形导管 |
| US20150209107A1 (en) | 2014-01-24 | 2015-07-30 | Denervx LLC | Cooled microwave denervation catheter configuration |
| EP4253024B1 (en) | 2014-01-27 | 2025-02-26 | Medtronic Ireland Manufacturing Unlimited Company | Neuromodulation catheters having jacketed neuromodulation elements and related devices |
| US9907609B2 (en) | 2014-02-04 | 2018-03-06 | Boston Scientific Scimed, Inc. | Alternative placement of thermal sensors on bipolar electrode |
| US11000679B2 (en) | 2014-02-04 | 2021-05-11 | Boston Scientific Scimed, Inc. | Balloon protection and rewrapping devices and related methods of use |
| WO2015127401A2 (en) * | 2014-02-21 | 2015-08-27 | Circuit Therapeutics, Inc. | System and method for therapeutic management of unproductive cough |
| US9974597B2 (en) | 2014-03-19 | 2018-05-22 | Boston Scientific Scimed, Inc. | Systems and methods for assessing and treating tissue |
| CN106572880B (zh) | 2014-03-28 | 2019-07-16 | 斯波瑞申有限公司 | 用于医疗装置的可预测配置的系统 |
| CN103876833B (zh) * | 2014-04-08 | 2016-11-23 | 王昌惠 | 能够将肺部废气导出的射频消融减容电极 |
| EP4371512A3 (en) | 2014-04-24 | 2024-08-14 | Medtronic Ardian Luxembourg S.à.r.l. | Neuromodulation catheters having braided shafts and associated systems and methods |
| US10709490B2 (en) | 2014-05-07 | 2020-07-14 | Medtronic Ardian Luxembourg S.A.R.L. | Catheter assemblies comprising a direct heating element for renal neuromodulation and associated systems and methods |
| US10357306B2 (en) | 2014-05-14 | 2019-07-23 | Domain Surgical, Inc. | Planar ferromagnetic coated surgical tip and method for making |
| US10303880B2 (en) * | 2014-07-24 | 2019-05-28 | Nuvoton Technology Corporation | Security device having indirect access to external non-volatile memory |
| US9763743B2 (en) | 2014-07-25 | 2017-09-19 | Arrinex, Inc. | Apparatus and method for treating rhinitis |
| US10390838B1 (en) | 2014-08-20 | 2019-08-27 | Pneumrx, Inc. | Tuned strength chronic obstructive pulmonary disease treatment |
| US12114911B2 (en) | 2014-08-28 | 2024-10-15 | Angiodynamics, Inc. | System and method for ablating a tissue site by electroporation with real-time pulse monitoring |
| CN113040895A (zh) | 2014-10-30 | 2021-06-29 | 纽敦力公司 | 治疗多种疾病的化学消融和方法 |
| US10925579B2 (en) | 2014-11-05 | 2021-02-23 | Otsuka Medical Devices Co., Ltd. | Systems and methods for real-time tracking of a target tissue using imaging before and during therapy delivery |
| WO2016084081A2 (en) * | 2014-11-26 | 2016-06-02 | Sonievie Ltd. | Devices and methods for pulmonary hypertension treatment |
| US10485604B2 (en) | 2014-12-02 | 2019-11-26 | Uptake Medical Technology Inc. | Vapor treatment of lung nodules and tumors |
| JP2017536187A (ja) | 2014-12-03 | 2017-12-07 | メタベンション インコーポレイテッド | 神経または他の組織を調節するためのシステムおよび方法 |
| US10531906B2 (en) | 2015-02-02 | 2020-01-14 | Uptake Medical Technology Inc. | Medical vapor generator |
| US10376308B2 (en) | 2015-02-05 | 2019-08-13 | Axon Therapies, Inc. | Devices and methods for treatment of heart failure by splanchnic nerve ablation |
| CN107847740A (zh) * | 2015-02-24 | 2018-03-27 | 加尔瓦尼生物电子有限公司 | 神经调节设备 |
| US9901384B2 (en) * | 2015-03-31 | 2018-02-27 | Boston Scientific Scimed, Inc. | Airway diagnosis and treatment devices and related methods of use |
| US20160287223A1 (en) * | 2015-04-01 | 2016-10-06 | Boston Scientific Scimed, Inc. | Pulmonary biopsy devices |
| US12268433B2 (en) | 2015-05-12 | 2025-04-08 | National University Of Ireland, Galway | Devices for therapeutic nasal neuromodulation and associated methods and systems |
| US20210169566A1 (en) * | 2019-12-04 | 2021-06-10 | National University Of Ireland, Galway | Devices for therapeutic nasal neuromodulation and associated methods and systems |
| CA2996168A1 (en) * | 2015-08-21 | 2017-03-02 | Avenu Medical, Inc. | Systems and methods for percutaneous access and formation of arteriovenous fistulas |
| EP4052756B1 (en) * | 2015-08-21 | 2024-05-15 | Galvani Bioelectronics Limited | Neuromodulation device |
| US9592138B1 (en) | 2015-09-13 | 2017-03-14 | Martin Mayse | Pulmonary airflow |
| CN108135655B (zh) | 2015-10-20 | 2021-08-06 | 捷锐士股份有限公司 | 消融装置 |
| US10952792B2 (en) | 2015-10-26 | 2021-03-23 | Neuwave Medical, Inc. | Energy delivery systems and uses thereof |
| GB2545465A (en) | 2015-12-17 | 2017-06-21 | Creo Medical Ltd | Electrosurgical probe for delivering microwave energy |
| US10307206B2 (en) | 2016-01-25 | 2019-06-04 | Biosense Webster (Israel) Ltd. | Temperature controlled short duration ablation |
| EP3413822B1 (en) | 2016-02-11 | 2023-08-30 | Arrinex, Inc. | Device for image guided post-nasal nerve ablation |
| KR101776043B1 (ko) * | 2016-03-18 | 2017-09-07 | 연세대학교 산학협력단 | 기관분기부 고정이 가능한 이중기관지 튜브 |
| GB2552921A (en) | 2016-04-04 | 2018-02-21 | Creo Medical Ltd | Electrosurgical probe for delivering RF and microwave energy |
| EP3808302B1 (en) | 2016-04-15 | 2023-07-26 | Neuwave Medical, Inc. | System for energy delivery |
| CN105997235A (zh) * | 2016-05-06 | 2016-10-12 | 上海安臻医疗科技有限公司 | 支气管热成形系统 |
| US10327853B2 (en) | 2016-05-10 | 2019-06-25 | Covidien Lp | System and method of performing treatment along a lumen network |
| US10524859B2 (en) | 2016-06-07 | 2020-01-07 | Metavention, Inc. | Therapeutic tissue modulation devices and methods |
| EP3468495B1 (en) | 2016-06-09 | 2024-02-28 | Nuvaira, Inc. | Systems for improved delivery of expandable catheter assemblies into body lumens |
| JP6948351B2 (ja) | 2016-06-15 | 2021-10-13 | アリネックス, インコーポレイテッド | 鼻腔の側面を処置するためのデバイスおよび方法 |
| US12403305B2 (en) | 2016-06-27 | 2025-09-02 | Galvanize Therapeutics, Inc. | Immunostimulation in the treatment of viral infection |
| DK3474760T3 (da) | 2016-06-27 | 2023-03-20 | Galvanize Therapeutics Inc | Generator og et kateter med en elektrode til at behandle en lungepassage |
| EP3490442A4 (en) | 2016-07-29 | 2020-03-25 | Axon Therapies, Inc. | Devices, systems, and methods for treatment of heart failure by splanchnic nerve ablation |
| MX2019003483A (es) | 2016-10-04 | 2019-09-02 | Avent Inc | Sondas rf frias. |
| US11253312B2 (en) | 2016-10-17 | 2022-02-22 | Arrinex, Inc. | Integrated nasal nerve detector ablation-apparatus, nasal nerve locator, and methods of use |
| US10905492B2 (en) | 2016-11-17 | 2021-02-02 | Angiodynamics, Inc. | Techniques for irreversible electroporation using a single-pole tine-style internal device communicating with an external surface electrode |
| WO2018106939A1 (en) | 2016-12-07 | 2018-06-14 | Nuvaira, Inc. | Method and systems for reducing treatment variability and increasing treatment efficacy and durability |
| JP7033142B2 (ja) * | 2017-01-06 | 2022-03-09 | セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド | 肺静脈隔離バルーンカテーテル |
| US20200238107A1 (en) | 2017-03-20 | 2020-07-30 | Sonie Vie Ltd. | Pulmonary hypertension treatment method and/or system |
| EP3381393A1 (en) * | 2017-03-31 | 2018-10-03 | National University of Ireland Galway | An ablation probe |
| EP3614940B1 (en) | 2017-04-28 | 2024-11-20 | Arrinex, Inc. | Systems for locating blood vessels in the treatment of rhinitis |
| US11129673B2 (en) | 2017-05-05 | 2021-09-28 | Uptake Medical Technology Inc. | Extra-airway vapor ablation for treating airway constriction in patients with asthma and COPD |
| US11304685B2 (en) * | 2017-07-05 | 2022-04-19 | Regents Of The University Of Minnesota | Lung biopsy devices, systems and methods for locating and biopsying an object |
| US11344364B2 (en) | 2017-09-07 | 2022-05-31 | Uptake Medical Technology Inc. | Screening method for a target nerve to ablate for the treatment of inflammatory lung disease |
| CN109464186B (zh) | 2017-09-08 | 2023-12-22 | 泽丹医疗股份有限公司 | 治疗肺部肿瘤的装置和方法 |
| US11350988B2 (en) | 2017-09-11 | 2022-06-07 | Uptake Medical Technology Inc. | Bronchoscopic multimodality lung tumor treatment |
| USD845467S1 (en) | 2017-09-17 | 2019-04-09 | Uptake Medical Technology Inc. | Hand-piece for medical ablation catheter |
| US11419658B2 (en) | 2017-11-06 | 2022-08-23 | Uptake Medical Technology Inc. | Method for treating emphysema with condensable thermal vapor |
| US11490946B2 (en) | 2017-12-13 | 2022-11-08 | Uptake Medical Technology Inc. | Vapor ablation handpiece |
| US10561461B2 (en) | 2017-12-17 | 2020-02-18 | Axon Therapies, Inc. | Methods and devices for endovascular ablation of a splanchnic nerve |
| DK4218640T3 (en) * | 2017-12-26 | 2025-09-29 | Galvanize Therapeutics Inc | Systems for the treatment of disease states and disorders |
| AU2018397478B2 (en) * | 2017-12-26 | 2024-11-07 | Galvanize Therapeutics, Inc. | Optimization of energy delivery for various applications |
| AU2019210741A1 (en) | 2018-01-26 | 2020-08-06 | Axon Therapies, Inc. | Methods and devices for endovascular ablation of a splanchnic nerve |
| US11672596B2 (en) | 2018-02-26 | 2023-06-13 | Neuwave Medical, Inc. | Energy delivery devices with flexible and adjustable tips |
| US11344356B2 (en) | 2018-02-28 | 2022-05-31 | Medtronic Cryocath Lp | Apparatus and method for targeted bronchial denervation by cryo-ablation |
| EP3773293A1 (en) | 2018-03-29 | 2021-02-17 | National University of Ireland Galway | An ablation probe |
| EP3773296B1 (en) * | 2018-04-06 | 2025-07-30 | Ablative Solutions, Inc. | Peri-vascular tissue ablation catheters |
| US10849685B2 (en) | 2018-07-18 | 2020-12-01 | Ablative Solutions, Inc. | Peri-vascular tissue access catheter with locking handle |
| JP6968287B2 (ja) * | 2018-08-15 | 2021-11-17 | 日本ライフライン株式会社 | バルーン型電極カテーテル |
| JP6663461B2 (ja) * | 2018-08-31 | 2020-03-11 | 株式会社アドメテック | 内視鏡下癌治療システム |
| US11419671B2 (en) | 2018-12-11 | 2022-08-23 | Neurent Medical Limited | Systems and methods for therapeutic nasal neuromodulation |
| US11653927B2 (en) | 2019-02-18 | 2023-05-23 | Uptake Medical Technology Inc. | Vapor ablation treatment of obstructive lung disease |
| US11832879B2 (en) | 2019-03-08 | 2023-12-05 | Neuwave Medical, Inc. | Systems and methods for energy delivery |
| CN114007535A (zh) * | 2019-04-18 | 2022-02-01 | 盖乐世公司 | 用于治疗异常组织的装置、系统和方法 |
| US11172984B2 (en) | 2019-05-03 | 2021-11-16 | Biosense Webster (Israel) Ltd. | Device, system and method to ablate cardiac tissue |
| EP3917426B1 (en) | 2019-06-20 | 2023-09-06 | Axon Therapies, Inc. | Devices for endovascular ablation of a splanchnic nerve |
| CN114080194A (zh) * | 2019-07-08 | 2022-02-22 | 直观外科手术操作公司 | 用于局部腔内热液治疗的系统和方法 |
| DE202019103823U1 (de) | 2019-07-11 | 2019-07-19 | Albert-Ludwigs-Universität Freiburg | System zur Temperaturüberwachung bei der Durchführung einer Laserlicht-basierten intrakorporalen Lithotripsie |
| CN110393603A (zh) * | 2019-08-02 | 2019-11-01 | 上海市东方医院(同济大学附属东方医院) | 一种大型动物的肺迷走神经损伤的方法 |
| EP4209191A1 (en) | 2020-01-17 | 2023-07-12 | Axon Therapies, Inc. | Catheter and computer for calculation of accumulated volume of liquid delivered into a patient |
| JP7728015B2 (ja) | 2020-03-31 | 2025-08-22 | エアーウエイブ メディカル, エルエルシー | 積分aモード信号を用いた気管支除神経法 |
| CN113491827B (zh) * | 2020-04-07 | 2023-12-29 | 浙江迈达佩思医疗科技有限公司 | 骶神经刺激系统及骶神经刺激系统配置参数的确定方法 |
| US12318638B2 (en) | 2020-04-07 | 2025-06-03 | Sonivie Ltd. | Devices and methods for reducing parasympathetic nerve activity in patients with a respiratory syndrome |
| US11007001B1 (en) * | 2020-04-07 | 2021-05-18 | Sonivie Ltd. | Devices and methods for reducing parasympathetic nerve activity in patients with a respiratory syndrome |
| WO2021205229A1 (en) | 2020-04-09 | 2021-10-14 | Neurent Medical Limited | Systems and methods for improving sleep with therapeutic nasal treatment |
| US20210338316A1 (en) * | 2020-04-30 | 2021-11-04 | Ethicon, Inc. | Systems and methods for sealing cored or punctured tissue using inflatable balloon |
| US11666370B2 (en) | 2020-07-27 | 2023-06-06 | Medtronic, Inc. | Apparatus and method for targeted temporary bronchial nerve modulation by cryo-ablation for prevention and treatment of acute respiratory distress syndromes |
| US12369962B2 (en) | 2021-02-17 | 2025-07-29 | Medtronic Cryocath Lp. | Method and apparatus for determining bronchial denervation |
| US12369884B2 (en) | 2021-03-04 | 2025-07-29 | Covidien Lp | Endoluminal shafts including ultrasound coupling capability |
| CN113081256B (zh) * | 2021-05-20 | 2025-08-01 | 上海瑞柯恩激光技术有限公司 | 一种人体管壁的保护装置 |
| EP4108197A1 (en) | 2021-06-24 | 2022-12-28 | Gradient Denervation Technologies | Systems for treating tissue |
| CA3227157A1 (en) | 2021-07-20 | 2023-01-26 | Apreo Health, Inc. | Endobronchial implants and related technology |
| CN114469314A (zh) * | 2022-01-25 | 2022-05-13 | 杨清 | 一种经支气管行肺动脉去神经术装置 |
| CN114469312A (zh) * | 2022-01-25 | 2022-05-13 | 杨清 | 一种经支气管行肺动脉去神经术装置 |
| JP7410198B2 (ja) * | 2022-02-28 | 2024-01-09 | 日本ライフライン株式会社 | バルーン型電極カテーテル |
| US20230380893A1 (en) * | 2022-05-25 | 2023-11-30 | Lepu Medical Technology (Beijing) Co., Ltd. | Radiofrequency ablation device |
| US20230380890A1 (en) * | 2022-05-26 | 2023-11-30 | Biosense Webster (Israel) Ltd. | Transseptal tissue puncture apparatuses, systems, and methods |
| US20230404647A1 (en) * | 2022-06-21 | 2023-12-21 | Varian Medical Systems, Inc. | Apparatuses and methods for combination radio frequency and cryo ablation treatments |
| EP4565165A1 (en) | 2022-08-05 | 2025-06-11 | Skybeam Limited | Lung treatment |
| US20240164842A1 (en) * | 2022-11-21 | 2024-05-23 | Nuvaira, Inc. | Utilization of three-dimensional navigation technology during lung denervation procedures |
Family Cites Families (1138)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US2008A (en) * | 1841-03-18 | Gas-lamp eok conducting gas pkom ah elevated buhner to one below it | ||
| US612724A (en) | 1898-10-18 | Bert j | ||
| US1155169A (en) | 1914-11-28 | 1915-09-28 | John Starkweather | Surgical instrument. |
| US1207479A (en) | 1915-03-05 | 1916-12-05 | Holger Bisgaard | Self-retaining gatheter. |
| US1216183A (en) | 1916-09-18 | 1917-02-13 | Charles M Swingle | Electrotherapeutic rejuvenator. |
| US1695107A (en) | 1926-11-24 | 1928-12-11 | Willi Landau | Therapeutic implement |
| US2072346A (en) | 1934-10-04 | 1937-03-02 | Ward R Smith | Drainage tube |
| US2279714A (en) | 1940-10-26 | 1942-04-14 | Firm Asclepio Mira Limitada | Cystoscope |
| US3320957A (en) | 1964-05-21 | 1967-05-23 | Sokolik Edward | Surgical instrument |
| US3568659A (en) | 1968-09-24 | 1971-03-09 | James N Karnegis | Disposable percutaneous intracardiac pump and method of pumping blood |
| US3667476A (en) | 1970-04-27 | 1972-06-06 | Bio Data Corp | Apparatus for monitoring body temperature and controlling a heating device to maintain a selected temperature |
| US3692029A (en) | 1971-05-03 | 1972-09-19 | Edwin Lloyd Adair | Retention catheter and suprapubic shunt |
| US3995617A (en) | 1972-05-31 | 1976-12-07 | Watkins David H | Heart assist method and catheter |
| US3949743A (en) | 1973-03-19 | 1976-04-13 | Schick Incorporated | Medicated vapor production method and apparatus |
| GB1459397A (en) * | 1973-03-22 | 1976-12-22 | Biopulse Co Ltd | Apparatus for treating organisms by applying an electrical signal thereto |
| FR2232331B1 (es) | 1973-06-06 | 1978-03-24 | Guerin A Ets | |
| SU545358A1 (ru) | 1974-07-11 | 1977-02-05 | Предприятие П/Я В-2481 | Устройство вспомогательного кровообращени |
| US4078864A (en) | 1976-07-08 | 1978-03-14 | United Technologies Corporation | Method and apparatus for viewing and measuring damage in an inaccessible area |
| US4095602A (en) | 1976-09-27 | 1978-06-20 | Leveen Harry H | Multi-portal radiofrequency generator |
| US4129129A (en) | 1977-03-18 | 1978-12-12 | Sarns, Inc. | Venous return catheter and a method of using the same |
| US4116589A (en) | 1977-04-15 | 1978-09-26 | Avco Corporation | Extracorporeal pulsatile blood pump comprised of side by side bladders |
| US4154246A (en) | 1977-07-25 | 1979-05-15 | Leveen Harry H | Field intensification in radio frequency thermotherapy |
| US4351330A (en) | 1978-01-30 | 1982-09-28 | Scarberry Eugene N | Emergency internal defibrillation |
| JPS54154759U (es) | 1978-04-20 | 1979-10-27 | ||
| US4305402A (en) | 1979-06-29 | 1981-12-15 | Katims Jefferson J | Method for transcutaneous electrical stimulation |
| US4503863A (en) * | 1979-06-29 | 1985-03-12 | Katims Jefferson J | Method and apparatus for transcutaneous electrical stimulation |
| US4557272A (en) | 1980-03-31 | 1985-12-10 | Microwave Associates, Inc. | Microwave endoscope detection and treatment system |
| US4565200A (en) * | 1980-09-24 | 1986-01-21 | Cosman Eric R | Universal lesion and recording electrode system |
| US4502490A (en) | 1980-10-28 | 1985-03-05 | Antec Systems Limited | Patient monitoring equipment, probe for use therewith, and method of measuring anesthesia based on oesophagal contractions |
| JPS57168656A (en) | 1981-04-10 | 1982-10-18 | Medos Kenkyusho Kk | Endoscope laser coagulator |
| US4706688A (en) | 1981-05-18 | 1987-11-17 | Don Michael T Anthony | Non-invasive cardiac device |
| US4612934A (en) | 1981-06-30 | 1986-09-23 | Borkan William N | Non-invasive multiprogrammable tissue stimulator |
| US4584998A (en) | 1981-09-11 | 1986-04-29 | Mallinckrodt, Inc. | Multi-purpose tracheal tube |
| JPS5883966A (ja) | 1981-11-13 | 1983-05-19 | テルモ株式会社 | 膜型人工肺用血液回路 |
| DE3247793C2 (de) | 1981-12-31 | 1986-01-09 | Harald 7200 Tuttlingen Maslanka | Hochfrequenz-chirurgische Schlingenelektrode |
| US5370675A (en) | 1992-08-12 | 1994-12-06 | Vidamed, Inc. | Medical probe device and method |
| US4512762A (en) | 1982-11-23 | 1985-04-23 | The Beth Israel Hospital Association | Method of treatment of atherosclerosis and a balloon catheter for same |
| US4773899A (en) | 1982-11-23 | 1988-09-27 | The Beth Israel Hospital Association | Method of treatment of artherosclerosis and balloon catheter the same |
| US4567882A (en) | 1982-12-06 | 1986-02-04 | Vanderbilt University | Method for locating the illuminated tip of an endotracheal tube |
| US4784135A (en) | 1982-12-09 | 1988-11-15 | International Business Machines Corporation | Far ultraviolet surgical and dental procedures |
| JPS59167707A (ja) | 1983-03-14 | 1984-09-21 | Toshiba Corp | サンプル値制御装置 |
| ZW6584A1 (en) | 1983-04-18 | 1985-04-17 | Glaxo Group Ltd | Phenethanolamine derivatives |
| US4646737A (en) | 1983-06-13 | 1987-03-03 | Laserscope, Inc. | Localized heat applying medical device |
| US4704121A (en) | 1983-09-28 | 1987-11-03 | Nimbus, Inc. | Anti-thrombogenic blood pump |
| US4625712A (en) | 1983-09-28 | 1986-12-02 | Nimbus, Inc. | High-capacity intravascular blood pump utilizing percutaneous access |
| US4522212A (en) | 1983-11-14 | 1985-06-11 | Mansfield Scientific, Inc. | Endocardial electrode |
| FR2561929B1 (fr) | 1984-03-27 | 1989-02-03 | Atesys | Appareillage automatique implante pour la defibrillation ventriculaire |
| US4621882A (en) | 1984-05-14 | 1986-11-11 | Beta Phase, Inc. | Thermally responsive electrical connector |
| US4649935A (en) | 1984-05-21 | 1987-03-17 | Symtonic Sa | Method of treating neurovegetative disorders and apparatus therefor |
| US4573481A (en) | 1984-06-25 | 1986-03-04 | Huntington Institute Of Applied Research | Implantable electrode array |
| JPS6162444A (ja) | 1984-08-14 | 1986-03-31 | コンシ−リオ・ナツイオナ−レ・デツレ・リチエルケ | 頻拍発生位置の検出方法および装置 |
| JPS6148350A (ja) | 1984-08-15 | 1986-03-10 | オリンパス光学工業株式会社 | 医療用レ−ザ装置 |
| US4799479A (en) | 1984-10-24 | 1989-01-24 | The Beth Israel Hospital Association | Method and apparatus for angioplasty |
| US5019075A (en) | 1984-10-24 | 1991-05-28 | The Beth Israel Hospital | Method and apparatus for angioplasty |
| US4772112A (en) | 1984-11-30 | 1988-09-20 | Cvi/Beta Ventures, Inc. | Eyeglass frame including shape-memory elements |
| US4754065A (en) | 1984-12-18 | 1988-06-28 | Cetus Corporation | Precursor to nucleic acid probe |
| EP0189329A3 (en) | 1985-01-25 | 1987-06-03 | Robert E. Fischell | A tunneling catheter system for transluminal arterial angioplasty |
| GB2171309B (en) | 1985-02-26 | 1988-11-02 | North China Res I Electro Opti | Microwave therapeutic apparatus |
| US4739759A (en) | 1985-02-26 | 1988-04-26 | Concept, Inc. | Microprocessor controlled electrosurgical generator |
| US4862886A (en) | 1985-05-08 | 1989-09-05 | Summit Technology Inc. | Laser angioplasty |
| US4658836A (en) * | 1985-06-28 | 1987-04-21 | Bsd Medical Corporation | Body passage insertable applicator apparatus for electromagnetic |
| US4976709A (en) | 1988-12-15 | 1990-12-11 | Sand Bruce J | Method for collagen treatment |
| US4989604A (en) * | 1985-10-03 | 1991-02-05 | Accu Science Corporation | Electromagnetic device |
| US4643186A (en) * | 1985-10-30 | 1987-02-17 | Rca Corporation | Percutaneous transluminal microwave catheter angioplasty |
| US4683890A (en) | 1985-12-23 | 1987-08-04 | Brunswick Manufacturing Co., Inc. | Method and apparatus for controlled breathing employing internal and external electrodes |
| DE8607358U1 (de) | 1986-03-18 | 1986-05-28 | Ruß, Jürgen, 5300 Bonn | Rohrförmige biegsame Sonde zum Einführen in die Luftröhre und Bronchien |
| US4827935A (en) | 1986-04-24 | 1989-05-09 | Purdue Research Foundation | Demand electroventilator |
| US4709698A (en) | 1986-05-14 | 1987-12-01 | Thomas J. Fogarty | Heatable dilation catheter |
| US4790305A (en) | 1986-06-23 | 1988-12-13 | The Johns Hopkins University | Medication delivery system |
| US4767402A (en) | 1986-07-08 | 1988-08-30 | Massachusetts Institute Of Technology | Ultrasound enhancement of transdermal drug delivery |
| IE60941B1 (en) | 1986-07-10 | 1994-09-07 | Elan Transdermal Ltd | Transdermal drug delivery device |
| US4754752A (en) | 1986-07-28 | 1988-07-05 | Robert Ginsburg | Vascular catheter |
| US5231995A (en) | 1986-11-14 | 1993-08-03 | Desai Jawahar M | Method for catheter mapping and ablation |
| US5215103A (en) | 1986-11-14 | 1993-06-01 | Desai Jawahar M | Catheter for mapping and ablation and method therefor |
| US5027829A (en) | 1986-12-15 | 1991-07-02 | Larsen Lawrence E | Apparatus for diathermy treatment and control |
| US4976710A (en) | 1987-01-28 | 1990-12-11 | Mackin Robert A | Working well balloon method |
| GB8704104D0 (en) | 1987-02-21 | 1987-03-25 | Manitoba University Of | Respiratory system load apparatus |
| IT1203503B (it) | 1987-02-25 | 1989-02-15 | Cardiosistemi Spa | Cannula di drenaggio venoso |
| GB8705451D0 (en) | 1987-03-09 | 1987-04-15 | Driver Southall | Combinational weighing systems |
| US4802492A (en) | 1987-03-11 | 1989-02-07 | National Jewish Center For Immunology And Respiratory Medicine | Method for determining respiratory function |
| SU1457935A1 (ru) | 1987-03-17 | 1989-02-15 | Предприятие П/Я А-1405 | Устройство дл электроанальгезии |
| US4779614A (en) | 1987-04-09 | 1988-10-25 | Nimbus Medical, Inc. | Magnetically suspended rotor axial flow blood pump |
| MC1921A1 (fr) | 1987-04-10 | 1989-04-06 | Sankei Yakuhin Kk | Derives acyles |
| US4904472A (en) * | 1987-04-10 | 1990-02-27 | The University Of Virginia Alumni Patent Foundation | Use of adenosine antagonists in the treatment of bradyarrhythmias and mechanical dysfunction associated with cardiopulmonary resuscitation |
| CN87208158U (zh) | 1987-05-20 | 1988-10-19 | 张雪珊 | 家用双功能灯 |
| US5849026A (en) | 1987-05-20 | 1998-12-15 | Zhou; Lin | Physiotherapy method |
| EP0293068A1 (en) | 1987-05-27 | 1988-11-30 | Teijin Limited | An electric therapeutic apparatus |
| US4808164A (en) * | 1987-08-24 | 1989-02-28 | Progressive Angioplasty Systems, Inc. | Catheter for balloon angioplasty |
| JPS6446056U (es) | 1987-09-17 | 1989-03-22 | ||
| US4846152A (en) | 1987-11-24 | 1989-07-11 | Nimbus Medical, Inc. | Single-stage axial flow blood pump |
| US4817586A (en) | 1987-11-24 | 1989-04-04 | Nimbus Medical, Inc. | Percutaneous bloom pump with mixed-flow output |
| US4895557A (en) | 1987-12-07 | 1990-01-23 | Nimbus Medical, Inc. | Drive mechanism for powering intravascular blood pumps |
| US5588432A (en) | 1988-03-21 | 1996-12-31 | Boston Scientific Corporation | Catheters for imaging, sensing electrical potentials, and ablating tissue |
| US4907589A (en) | 1988-04-29 | 1990-03-13 | Cosman Eric R | Automatic over-temperature control apparatus for a therapeutic heating device |
| US4906229A (en) | 1988-05-03 | 1990-03-06 | Nimbus Medical, Inc. | High-frequency transvalvular axisymmetric blood pump |
| US5010892A (en) | 1988-05-04 | 1991-04-30 | Triangle Research And Development Corp. | Body lumen measuring instrument |
| WO1989011311A1 (en) | 1988-05-18 | 1989-11-30 | Kasevich Associates, Inc. | Microwave balloon angioplasty |
| DE3821544C2 (de) | 1988-06-25 | 1994-04-28 | H Prof Dr Med Just | Dilatationskatheter |
| US4967765A (en) | 1988-07-28 | 1990-11-06 | Bsd Medical Corporation | Urethral inserted applicator for prostate hyperthermia |
| US4908012A (en) | 1988-08-08 | 1990-03-13 | Nimbus Medical, Inc. | Chronic ventricular assist system |
| US4920978A (en) | 1988-08-31 | 1990-05-01 | Triangle Research And Development Corporation | Method and apparatus for the endoscopic treatment of deep tumors using RF hyperthermia |
| JP2686982B2 (ja) | 1988-09-02 | 1997-12-08 | 日産自動車株式会社 | クリヤー塗膜の形成方法 |
| US4902129A (en) | 1988-09-06 | 1990-02-20 | Schott Fiber Optics | Orientation indicator for a flexible fiberscope or endoscope including method of manufacture |
| US4955377A (en) | 1988-10-28 | 1990-09-11 | Lennox Charles D | Device and method for heating tissue in a patient's body |
| US5151100A (en) | 1988-10-28 | 1992-09-29 | Boston Scientific Corporation | Heating catheters |
| US5191883A (en) | 1988-10-28 | 1993-03-09 | Prutech Research And Development Partnership Ii | Device for heating tissue in a patient's body |
| US4945912A (en) | 1988-11-25 | 1990-08-07 | Sensor Electronics, Inc. | Catheter with radiofrequency heating applicator |
| US4969865A (en) | 1989-01-09 | 1990-11-13 | American Biomed, Inc. | Helifoil pump |
| US5779698A (en) | 1989-01-18 | 1998-07-14 | Applied Medical Resources Corporation | Angioplasty catheter system and method for making same |
| US4944722A (en) | 1989-02-23 | 1990-07-31 | Nimbus Medical, Inc. | Percutaneous axial flow blood pump |
| US5057107A (en) | 1989-04-13 | 1991-10-15 | Everest Medical Corporation | Ablation catheter with selectively deployable electrodes |
| US5433730A (en) | 1989-05-03 | 1995-07-18 | Intermedics, Inc. | Conductive pouch electrode for defibrillation |
| US5152286A (en) | 1989-05-08 | 1992-10-06 | Mezhotraslevoi Nauchnoinzhenerny Tsentr "Vidguk" | Method of microwave resonance therapy and device therefor |
| US5114423A (en) | 1989-05-15 | 1992-05-19 | Advanced Cardiovascular Systems, Inc. | Dilatation catheter assembly with heated balloon |
| US5107835A (en) | 1989-05-22 | 1992-04-28 | Physiodynamics | Electrotherapeutic treatment |
| US5006119A (en) | 1989-05-25 | 1991-04-09 | Engineering & Research Associates, Inc. | Hollow core coaxial catheter |
| US5074860A (en) | 1989-06-09 | 1991-12-24 | Heraeus Lasersonics, Inc. | Apparatus for directing 10.6 micron laser radiation to a tissue site |
| DE3920862A1 (de) | 1989-06-26 | 1991-01-03 | Teves Gmbh Alfred | Hilfskraftlenkung fuer kraftfahrzeuge |
| US4985014A (en) | 1989-07-11 | 1991-01-15 | Orejola Wilmo C | Ventricular venting loop |
| US5084044A (en) | 1989-07-14 | 1992-01-28 | Ciron Corporation | Apparatus for endometrial ablation and method of using same |
| US5005559A (en) | 1989-07-27 | 1991-04-09 | Massachusetts Institute Of Technology | Video-graphic arthroscopy system |
| US5292331A (en) | 1989-08-24 | 1994-03-08 | Applied Vascular Engineering, Inc. | Endovascular support device |
| US5057105A (en) | 1989-08-28 | 1991-10-15 | The University Of Kansas Med Center | Hot tip catheter assembly |
| US5562608A (en) | 1989-08-28 | 1996-10-08 | Biopulmonics, Inc. | Apparatus for pulmonary delivery of drugs with simultaneous liquid lavage and ventilation |
| WO1991003267A1 (en) * | 1989-08-28 | 1991-03-21 | Sekins K Michael | Lung cancer hyperthermia via ultrasound and/or convection with perfluorocarbon liquids |
| US5270305A (en) * | 1989-09-08 | 1993-12-14 | Glaxo Group Limited | Medicaments |
| US5167223A (en) | 1989-09-08 | 1992-12-01 | Tibor Koros | Heart valve retractor and sternum spreader surgical instrument |
| DE69029141T2 (de) | 1989-09-08 | 1997-04-10 | Boston Scientific Corp., Natick, Mass. | Angioplastie mit niedrigem physiologischen stress |
| US5100388A (en) | 1989-09-15 | 1992-03-31 | Interventional Thermodynamics, Inc. | Method and device for thermal ablation of hollow body organs |
| DE3931041C2 (de) | 1989-09-16 | 2000-04-06 | Boehringer Ingelheim Kg | Ester von Thienylcarbonsäuren mit Aminoalkoholen, ihre Quaternierungsprodukte, Verfahren zu ihrer Herstellung und diese enthaltende Arzneimittel |
| US5117828A (en) | 1989-09-25 | 1992-06-02 | Arzco Medical Electronics, Inc. | Expandable esophageal catheter |
| US5007908A (en) | 1989-09-29 | 1991-04-16 | Everest Medical Corporation | Electrosurgical instrument having needle cutting electrode and spot-coag electrode |
| US5036848A (en) | 1989-10-16 | 1991-08-06 | Brunswick Biomedical Technologies, Inc. | Method and apparatus for controlling breathing employing internal and external electrodes |
| US4991603A (en) | 1989-10-30 | 1991-02-12 | Siemens-Pacesetter, Inc. | Transvenously placed defibrillation leads via an inferior vena cava access site and method of use |
| US5203832A (en) | 1989-11-17 | 1993-04-20 | Long Manufacturing Ltd. | Circumferential flow heat exchanger |
| US5009636A (en) | 1989-12-06 | 1991-04-23 | The Kendall Company | Dual-lumen catheter apparatus and method |
| US5254088A (en) | 1990-02-02 | 1993-10-19 | Ep Technologies, Inc. | Catheter steering mechanism |
| ES2071207T3 (es) | 1990-02-08 | 1995-06-16 | Howmedica | Dilatador hinchable. |
| US6536427B2 (en) * | 1990-03-02 | 2003-03-25 | Glaxo Group Limited | Inhalation device |
| FR2659240B1 (fr) | 1990-03-06 | 1997-07-04 | Daniel Galley | Systeme d'electrode epidurale appelee a etre introduite dans l'espace epidural. |
| US5549559A (en) | 1990-03-22 | 1996-08-27 | Argomed Ltd. | Thermal treatment apparatus |
| US5056529A (en) | 1990-04-03 | 1991-10-15 | Groot William J De | Apparatus and method for performing a transbroncheal biopsy |
| US5139029A (en) | 1990-04-06 | 1992-08-18 | Henry Fishman | Allergy testing apparatus and method |
| US5236413B1 (en) | 1990-05-07 | 1996-06-18 | Andrew J Feiring | Method and apparatus for inducing the permeation of medication into internal tissue |
| US5096916A (en) | 1990-05-07 | 1992-03-17 | Aegis Technology, Inc. | Treatment of chronic obstructive pulmonary disease (copd) by inhalation of an imidazoline |
| US5078716A (en) | 1990-05-11 | 1992-01-07 | Doll Larry F | Electrosurgical apparatus for resecting abnormal protruding growth |
| US5624392A (en) | 1990-05-11 | 1997-04-29 | Saab; Mark A. | Heat transfer catheters and methods of making and using same |
| US5056519A (en) | 1990-05-14 | 1991-10-15 | Vince Dennis J | Unilateral diaphragmatic pacer |
| US5265604A (en) | 1990-05-14 | 1993-11-30 | Vince Dennis J | Demand - diaphragmatic pacing (skeletal muscle pressure modified) |
| US5054486A (en) | 1990-05-31 | 1991-10-08 | Mamoru Yamada | Remedial techniques for the treatment of painful disorders such as intervertebral disc hernia and the like |
| US5190540A (en) * | 1990-06-08 | 1993-03-02 | Cardiovascular & Interventional Research Consultants, Inc. | Thermal balloon angioplasty |
| US5360443A (en) | 1990-06-11 | 1994-11-01 | Barone Hector D | Aortic graft for repairing an abdominal aortic aneurysm |
| EP0533816B1 (en) * | 1990-06-15 | 1995-06-14 | Cortrak Medical, Inc. | Drug delivery apparatus |
| SE500550C2 (sv) | 1990-06-18 | 1994-07-11 | Siemens Elema Ab | Sätt och anordning för reduktion av återandning av gas från det skadliga rummet |
| US5103804A (en) | 1990-07-03 | 1992-04-14 | Boston Scientific Corporation | Expandable tip hemostatic probes and the like |
| US5188602A (en) | 1990-07-12 | 1993-02-23 | Interventional Thermodynamics, Inc. | Method and device for delivering heat to hollow body organs |
| US5135517A (en) | 1990-07-19 | 1992-08-04 | Catheter Research, Inc. | Expandable tube-positioning apparatus |
| US5100423A (en) | 1990-08-21 | 1992-03-31 | Medical Engineering & Development Institute, Inc. | Ablation catheter |
| CA2089739A1 (en) * | 1990-09-14 | 1992-03-15 | John H. Burton | Combined hyperthermia and dilation catheter |
| US5170803A (en) | 1990-09-28 | 1992-12-15 | Brunswick Biomedical Technologies, Inc. | Esophageal displacement electrode |
| US5053033A (en) | 1990-10-10 | 1991-10-01 | Boston Advanced Technologies, Inc. | Inhibition of restenosis by ultraviolet radiation |
| US5030645A (en) | 1990-10-15 | 1991-07-09 | Merck & Co., Inc. | Method of treating asthma using (S)-α-fluoromethyl-histidine and esters thereof |
| US5105826A (en) | 1990-10-26 | 1992-04-21 | Medtronic, Inc. | Implantable defibrillation electrode and method of manufacture |
| US5174288A (en) | 1990-11-30 | 1992-12-29 | Medtronic, Inc. | Method and apparatus for cardiac defibrillation |
| US5165420A (en) | 1990-12-21 | 1992-11-24 | Ballard Medical Products | Bronchoalveolar lavage catheter |
| US5224491A (en) | 1991-01-07 | 1993-07-06 | Medtronic, Inc. | Implantable electrode for location within a blood vessel |
| US5170802A (en) | 1991-01-07 | 1992-12-15 | Medtronic, Inc. | Implantable electrode for location within a blood vessel |
| US5324255A (en) | 1991-01-11 | 1994-06-28 | Baxter International Inc. | Angioplasty and ablative devices having onboard ultrasound components and devices and methods for utilizing ultrasound to treat or prevent vasopasm |
| US5409453A (en) | 1992-08-12 | 1995-04-25 | Vidamed, Inc. | Steerable medical probe with stylets |
| US5465717A (en) | 1991-02-15 | 1995-11-14 | Cardiac Pathways Corporation | Apparatus and Method for ventricular mapping and ablation |
| US5345936A (en) | 1991-02-15 | 1994-09-13 | Cardiac Pathways Corporation | Apparatus with basket assembly for endocardial mapping |
| US5415166A (en) | 1991-02-15 | 1995-05-16 | Cardiac Pathways Corporation | Endocardial mapping apparatus and cylindrical semiconductor device mounting structure for use therewith and method |
| RU2091054C1 (ru) | 1991-03-25 | 1997-09-27 | Владивостокский государственный медицинский университет | Способ лечения астматического бронхита у детей с конституциональным диатезом |
| US5116864A (en) | 1991-04-09 | 1992-05-26 | Indiana University Foundation | Method for preventing restenosis following reconfiguration of body vessels |
| CA2108012A1 (en) | 1991-04-10 | 1992-10-11 | Leo Rubin | Defibrillator and demand pacer catheter and method |
| US5405362A (en) | 1991-04-29 | 1995-04-11 | The Board Of Regents For The University Of Texas System | Interactive external defibrillation and drug injection system |
| US5239982A (en) | 1991-06-07 | 1993-08-31 | Baxter International Inc. | Catheter depth gauge and method of use |
| US5213576A (en) | 1991-06-11 | 1993-05-25 | Cordis Corporation | Therapeutic porous balloon catheter |
| US5255678A (en) | 1991-06-21 | 1993-10-26 | Ecole Polytechnique | Mapping electrode balloon |
| US5383917A (en) | 1991-07-05 | 1995-01-24 | Jawahar M. Desai | Device and method for multi-phase radio-frequency ablation |
| JPH0522345A (ja) | 1991-07-12 | 1993-01-29 | Hitachi Ltd | 最大転送単位の最適値管理決定方式 |
| EP0600916A4 (en) | 1991-07-22 | 1995-11-02 | Cyberonics Inc | Treatment of respiratory disorders by nerve stimulation. |
| GB9120306D0 (en) | 1991-09-24 | 1991-11-06 | Graham Herbert K | Method and compositions for the treatment of cerebral palsy |
| JPH05121329A (ja) | 1991-10-30 | 1993-05-18 | Toshiba Corp | 化合物薄膜の製造方法及び製造装置 |
| CA2123487A1 (en) | 1991-11-12 | 1993-05-27 | Adrian S. Fox | Adhesive hydrogels having extended use lives and process for the preparation of same |
| AU669864B2 (en) | 1991-12-06 | 1996-06-27 | Nagao Kajiwara | Apparatus for monitoring bronchial electrocardiogram |
| DE4140689B4 (de) | 1991-12-10 | 2007-11-22 | Boehringer Ingelheim Kg | Inhalationspulver und Verfahren zu ihrer Herstellung |
| US5658549A (en) | 1991-12-12 | 1997-08-19 | Glaxo Group Limited | Aerosol formulations containing propellant 134a and fluticasone propionate |
| IL104068A (en) | 1991-12-12 | 1998-10-30 | Glaxo Group Ltd | Surfactant-free pharmaceutical aerosol formulation comprising 1,1,1,2-tetrafluoroethane or 1,1,1,2,3,3,3-heptafluoro-n- propane as propellant |
| ES2159678T3 (es) | 1991-12-18 | 2001-10-16 | Minnesota Mining & Mfg | Formulaciones de aerosol en suspension. |
| CA2058179C (en) | 1991-12-20 | 1999-02-09 | Roland Drolet | Basic electrophysiological conditioning system and method |
| FR2685208B1 (fr) | 1991-12-23 | 1998-02-27 | Ela Medical Sa | Dispositif de canulation ventriculaire. |
| US6053172A (en) | 1995-06-07 | 2000-04-25 | Arthrocare Corporation | Systems and methods for electrosurgical sinus surgery |
| US5366443A (en) | 1992-01-07 | 1994-11-22 | Thapliyal And Eggers Partners | Method and apparatus for advancing catheters through occluded body lumens |
| US6159194A (en) | 1992-01-07 | 2000-12-12 | Arthrocare Corporation | System and method for electrosurgical tissue contraction |
| US5231996A (en) | 1992-01-28 | 1993-08-03 | Medtronic, Inc. | Removable endocardial lead |
| RU2053814C1 (ru) | 1992-02-11 | 1996-02-10 | Новиков Валерий Николаевич | Способ лечения локального эндобронхита |
| US5555883A (en) | 1992-02-24 | 1996-09-17 | Avitall; Boaz | Loop electrode array mapping and ablation catheter for cardiac chambers |
| US5263493A (en) | 1992-02-24 | 1993-11-23 | Boaz Avitall | Deflectable loop electrode array mapping and ablation catheter for cardiac chambers |
| US5344398A (en) | 1992-02-25 | 1994-09-06 | Japan Crescent, Inc. | Heated balloon catheter |
| US5540681A (en) | 1992-04-10 | 1996-07-30 | Medtronic Cardiorhythm | Method and system for radiofrequency ablation of tissue |
| US5269758A (en) | 1992-04-29 | 1993-12-14 | Taheri Syde A | Intravascular catheter and method for treatment of hypothermia |
| US5443470A (en) | 1992-05-01 | 1995-08-22 | Vesta Medical, Inc. | Method and apparatus for endometrial ablation |
| US5331947A (en) | 1992-05-01 | 1994-07-26 | Shturman Cardiology Systems, Inc. | Inflatable sheath for introduction of ultrasonic catheter through the lumen of a fiber optic endoscope |
| US5190046A (en) | 1992-05-01 | 1993-03-02 | Shturman Cardiology Systems, Inc. | Ultrasound imaging balloon catheter |
| US5255679A (en) | 1992-06-02 | 1993-10-26 | Cardiac Pathways Corporation | Endocardial catheter for mapping and/or ablation with an expandable basket structure having means for providing selective reinforcement and pressure sensing mechanism for use therewith, and method |
| US5324284A (en) | 1992-06-05 | 1994-06-28 | Cardiac Pathways, Inc. | Endocardial mapping and ablation system utilizing a separately controlled ablation catheter and method |
| US5271383A (en) | 1992-06-05 | 1993-12-21 | Wilk Peter J | Method for reducing intussusception |
| US5281218A (en) | 1992-06-05 | 1994-01-25 | Cardiac Pathways Corporation | Catheter having needle electrode for radiofrequency ablation |
| US5782239A (en) | 1992-06-30 | 1998-07-21 | Cordis Webster, Inc. | Unique electrode configurations for cardiovascular electrode catheter with built-in deflection method and central puller wire |
| US5772590A (en) | 1992-06-30 | 1998-06-30 | Cordis Webster, Inc. | Cardiovascular catheter with laterally stable basket-shaped electrode array with puller wire |
| US5411025A (en) | 1992-06-30 | 1995-05-02 | Cordis Webster, Inc. | Cardiovascular catheter with laterally stable basket-shaped electrode array |
| WO1994003142A1 (en) | 1992-07-30 | 1994-02-17 | Temple University - Of The Commonwealth System Of Higher Education | Direct manual cardiac compression device and method of use thereof |
| US5630794A (en) | 1992-08-12 | 1997-05-20 | Vidamed, Inc. | Catheter tip and method of manufacturing |
| GB9219102D0 (en) | 1992-09-09 | 1992-10-21 | Fairfax Andrew J | Flowmeters |
| EP0661948B1 (en) | 1992-09-23 | 1997-11-19 | Endocardial Solutions, Inc. | Endocardial mapping system |
| US6647617B1 (en) | 1992-09-23 | 2003-11-18 | Graydon Ernest Beatty | Method of construction an endocardial mapping catheter |
| US6603996B1 (en) | 2000-06-07 | 2003-08-05 | Graydon Ernest Beatty | Software for mapping potential distribution of a heart chamber |
| US5311866A (en) | 1992-09-23 | 1994-05-17 | Endocardial Therapeutics, Inc. | Heart mapping catheter |
| US5553611A (en) | 1994-01-06 | 1996-09-10 | Endocardial Solutions, Inc. | Endocardial measurement method |
| US6240307B1 (en) | 1993-09-23 | 2001-05-29 | Endocardial Solutions, Inc. | Endocardial mapping system |
| US5662108A (en) | 1992-09-23 | 1997-09-02 | Endocardial Solutions, Inc. | Electrophysiology mapping system |
| US7189208B1 (en) | 1992-09-23 | 2007-03-13 | Endocardial Solutions, Inc. | Method for measuring heart electrophysiology |
| US7930012B2 (en) | 1992-09-23 | 2011-04-19 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Chamber location method |
| US5309910A (en) | 1992-09-25 | 1994-05-10 | Ep Technologies, Inc. | Cardiac mapping and ablation systems |
| US5293869A (en) | 1992-09-25 | 1994-03-15 | Ep Technologies, Inc. | Cardiac probe with dynamic support for maintaining constant surface contact during heart systole and diastole |
| US5313943A (en) | 1992-09-25 | 1994-05-24 | Ep Technologies, Inc. | Catheters and methods for performing cardiac diagnosis and treatment |
| US6086581A (en) | 1992-09-29 | 2000-07-11 | Ep Technologies, Inc. | Large surface cardiac ablation catheter that assumes a low profile during introduction into the heart |
| US5471982A (en) | 1992-09-29 | 1995-12-05 | Ep Technologies, Inc. | Cardiac mapping and ablation systems |
| EP0669839B2 (en) | 1992-10-01 | 2001-12-19 | Cardiac Pacemakers, Inc. | Stent-type defibrillation electrode structures |
| WO1994007446A1 (en) | 1992-10-05 | 1994-04-14 | Boston Scientific Corporation | Device and method for heating tissue |
| US5431696A (en) | 1992-10-13 | 1995-07-11 | Atlee, Iii; John L. | Esophageal probe for transeophageal cardiac stimulation |
| US5807306A (en) | 1992-11-09 | 1998-09-15 | Cortrak Medical, Inc. | Polymer matrix drug delivery apparatus |
| US5391197A (en) | 1992-11-13 | 1995-02-21 | Dornier Medical Systems, Inc. | Ultrasound thermotherapy probe |
| US5956501A (en) | 1997-01-10 | 1999-09-21 | Health Hero Network, Inc. | Disease simulation system and method |
| US5545161A (en) | 1992-12-01 | 1996-08-13 | Cardiac Pathways Corporation | Catheter for RF ablation having cooled electrode with electrically insulated sleeve |
| US5348554A (en) | 1992-12-01 | 1994-09-20 | Cardiac Pathways Corporation | Catheter for RF ablation with cooled electrode |
| US5256141A (en) | 1992-12-22 | 1993-10-26 | Nelson Gencheff | Biological material deployment method and apparatus |
| US5393207A (en) | 1993-01-21 | 1995-02-28 | Nimbus, Inc. | Blood pump with disposable rotor assembly |
| US5409483A (en) | 1993-01-22 | 1995-04-25 | Jeffrey H. Reese | Direct visualization surgical probe |
| US5797960A (en) | 1993-02-22 | 1998-08-25 | Stevens; John H. | Method and apparatus for thoracoscopic intracardiac procedures |
| US5725525A (en) | 1993-03-16 | 1998-03-10 | Ep Technologies, Inc. | Multiple electrode support structures with integral hub and spline elements |
| US5823189A (en) | 1993-03-16 | 1998-10-20 | Ep Technologies, Inc. | Multiple electrode support structures with spline elements and over-molded hub |
| US5893847A (en) | 1993-03-16 | 1999-04-13 | Ep Technologies, Inc. | Multiple electrode support structures with slotted hub and hoop spline elements |
| WO1994021170A1 (en) | 1993-03-16 | 1994-09-29 | Ep Technologies, Inc. | Flexible circuit assemblies employing ribbon cable |
| JP3423719B2 (ja) | 1993-03-16 | 2003-07-07 | ボストン サイエンティフィック リミテッド | 複数電極支持機構 |
| US5409710A (en) | 1993-04-20 | 1995-04-25 | Endocon, Inc. | Foam cell drug delivery |
| US5417687A (en) | 1993-04-30 | 1995-05-23 | Medical Scientific, Inc. | Bipolar electrosurgical trocar |
| US6749604B1 (en) | 1993-05-10 | 2004-06-15 | Arthrocare Corporation | Electrosurgical instrument with axially-spaced electrodes |
| US5456667A (en) | 1993-05-20 | 1995-10-10 | Advanced Cardiovascular Systems, Inc. | Temporary stenting catheter with one-piece expandable segment |
| JPH06339453A (ja) | 1993-06-01 | 1994-12-13 | Olympus Optical Co Ltd | 内視鏡カバー方式の内視鏡装置 |
| DE69435254D1 (de) | 1993-06-10 | 2009-12-31 | Allergan Inc | Behandlung von neuromusculaeren Störungen und Zuständen mit verschiedenen botulism Serotypen |
| FI96815C (fi) | 1993-06-23 | 1996-08-26 | Nokia Telecommunications Oy | Puhelunmuodostusmenetelmä |
| US5571088A (en) | 1993-07-01 | 1996-11-05 | Boston Scientific Corporation | Ablation catheters |
| JP3898754B2 (ja) | 1993-07-01 | 2007-03-28 | ボストン サイエンティフィック リミテッド | 像形成、電位検出型及び切除カテーテル |
| US5860974A (en) * | 1993-07-01 | 1999-01-19 | Boston Scientific Corporation | Heart ablation catheter with expandable electrode and method of coupling energy to an electrode on a catheter shaft |
| GB9314640D0 (en) | 1993-07-15 | 1993-08-25 | Salim Aws S M | Tunnellimg catheter |
| US5422362A (en) | 1993-07-29 | 1995-06-06 | Quadra Logic Technologies, Inc. | Method to inhibit restenosis |
| US5490521A (en) | 1993-08-31 | 1996-02-13 | Medtronic, Inc. | Ultrasound biopsy needle |
| US5507791A (en) | 1993-08-31 | 1996-04-16 | Sit'ko; Sergei P. | Microwave resonance therapy |
| US5396887A (en) | 1993-09-23 | 1995-03-14 | Cardiac Pathways Corporation | Apparatus and method for detecting contact pressure |
| US6947785B1 (en) | 1993-09-23 | 2005-09-20 | Endocardial Solutions, Inc. | Interface system for endocardial mapping catheter |
| US5908446A (en) | 1994-07-07 | 1999-06-01 | Cardiac Pathways Corporation | Catheter assembly, catheter and multi-port introducer for use therewith |
| US5626618A (en) | 1993-09-24 | 1997-05-06 | The Ohio State University | Mechanical adjunct to cardiopulmonary resuscitation (CPR), and an electrical adjunct to defibrillation countershock, cardiac pacing, and cardiac monitoring |
| US5607462A (en) | 1993-09-24 | 1997-03-04 | Cardiac Pathways Corporation | Catheter assembly, catheter and multi-catheter introducer for use therewith |
| US5415656A (en) | 1993-09-28 | 1995-05-16 | American Medical Systems, Inc. | Electrosurgical apparatus |
| US5496312A (en) | 1993-10-07 | 1996-03-05 | Valleylab Inc. | Impedance and temperature generator control |
| US5437665A (en) | 1993-10-12 | 1995-08-01 | Munro; Malcolm G. | Electrosurgical loop electrode instrument for laparoscopic surgery |
| US5400783A (en) | 1993-10-12 | 1995-03-28 | Cardiac Pathways Corporation | Endocardial mapping apparatus with rotatable arm and method |
| US5582609A (en) | 1993-10-14 | 1996-12-10 | Ep Technologies, Inc. | Systems and methods for forming large lesions in body tissue using curvilinear electrode elements |
| US5881727A (en) | 1993-10-14 | 1999-03-16 | Ep Technologies, Inc. | Integrated cardiac mapping and ablation probe |
| US5991650A (en) | 1993-10-15 | 1999-11-23 | Ep Technologies, Inc. | Surface coatings for catheters, direct contacting diagnostic and therapeutic devices |
| WO1995010322A1 (en) | 1993-10-15 | 1995-04-20 | Ep Technologies, Inc. | Creating complex lesion patterns in body tissue |
| US5545193A (en) | 1993-10-15 | 1996-08-13 | Ep Technologies, Inc. | Helically wound radio-frequency emitting electrodes for creating lesions in body tissue |
| US5470352A (en) | 1993-10-29 | 1995-11-28 | Northeastern University | Balloon angioplasty device |
| US5536267A (en) | 1993-11-08 | 1996-07-16 | Zomed International | Multiple electrode ablation apparatus |
| US6071280A (en) | 1993-11-08 | 2000-06-06 | Rita Medical Systems, Inc. | Multiple electrode ablation apparatus |
| US6641580B1 (en) | 1993-11-08 | 2003-11-04 | Rita Medical Systems, Inc. | Infusion array ablation apparatus |
| US5599345A (en) | 1993-11-08 | 1997-02-04 | Zomed International, Inc. | RF treatment apparatus |
| US5487385A (en) | 1993-12-03 | 1996-01-30 | Avitall; Boaz | Atrial mapping and ablation catheter system |
| US5641326A (en) | 1993-12-13 | 1997-06-24 | Angeion Corporation | Method and apparatus for independent atrial and ventricular defibrillation |
| US6986893B2 (en) | 1993-12-28 | 2006-01-17 | Allergan, Inc. | Method for treating a mucus secretion |
| US6974578B1 (en) | 1993-12-28 | 2005-12-13 | Allergan, Inc. | Method for treating secretions and glands using botulinum toxin |
| US6245040B1 (en) | 1994-01-14 | 2001-06-12 | Cordis Corporation | Perfusion balloon brace and method of use |
| US5423812A (en) | 1994-01-31 | 1995-06-13 | Ellman; Alan G. | Electrosurgical stripping electrode for palatopharynx tissue |
| AUPM411494A0 (en) | 1994-02-25 | 1994-03-24 | Central Sydney Area Health Service | Method and device for the provocation of upper or lower airway narrowing and/or the induction of sputum |
| US6216043B1 (en) | 1994-03-04 | 2001-04-10 | Ep Technologies, Inc. | Asymmetric multiple electrode support structures |
| US5394880A (en) | 1994-03-17 | 1995-03-07 | Atlee, Iii; John L. | Esophageal stethoscope |
| US5598848A (en) | 1994-03-31 | 1997-02-04 | Ep Technologies, Inc. | Systems and methods for positioning multiple electrode structures in electrical contact with the myocardium |
| US5454840A (en) | 1994-04-05 | 1995-10-03 | Krakovsky; Alexander A. | Potency package |
| US5766605A (en) | 1994-04-15 | 1998-06-16 | Mount Sinai School Of Medicine Of The City University Of New York | Treatment of autonomic nerve dysfunction with botulinum toxin |
| JPH07289557A (ja) | 1994-04-25 | 1995-11-07 | Inter Noba Kk | 血管狭窄部の加熱治療方法とその局部加熱式カテーテル |
| EP0757539A4 (en) | 1994-04-29 | 1998-08-05 | Boston Scient Corp | RESECTION OF COAGULATED TISSUES |
| US5458596A (en) | 1994-05-06 | 1995-10-17 | Dorsal Orthopedic Corporation | Method and apparatus for controlled contraction of soft tissue |
| US6152143A (en) | 1994-05-09 | 2000-11-28 | Somnus Medical Technologies, Inc. | Method for treatment of air way obstructions |
| US5807308A (en) | 1996-02-23 | 1998-09-15 | Somnus Medical Technologies, Inc. | Method and apparatus for treatment of air way obstructions |
| US5843021A (en) | 1994-05-09 | 1998-12-01 | Somnus Medical Technologies, Inc. | Cell necrosis apparatus |
| US5547469A (en) | 1994-05-13 | 1996-08-20 | Boston Scientific Corporation | Apparatus for performing diagnostic and therapeutic modalities in the biliary tree |
| US5478309A (en) | 1994-05-27 | 1995-12-26 | William P. Sweezer, Jr. | Catheter system and method for providing cardiopulmonary bypass pump support during heart surgery |
| ZA954936B (en) * | 1994-06-17 | 1996-02-27 | Trudell Medical Ltd | Nebulizing catheter system and methods of use and manufacture |
| US5836905A (en) | 1994-06-20 | 1998-11-17 | Lemelson; Jerome H. | Apparatus and methods for gene therapy |
| US5843077A (en) | 1994-06-24 | 1998-12-01 | Somnus Medical Technologies, Inc. | Minimally invasive apparatus for internal ablation of turbinates with surface cooling |
| US5681308A (en) | 1994-06-24 | 1997-10-28 | Stuart D. Edwards | Ablation apparatus for cardiac chambers |
| US6056744A (en) | 1994-06-24 | 2000-05-02 | Conway Stuart Medical, Inc. | Sphincter treatment apparatus |
| US6092528A (en) | 1994-06-24 | 2000-07-25 | Edwards; Stuart D. | Method to treat esophageal sphincters |
| US6009877A (en) | 1994-06-24 | 2000-01-04 | Edwards; Stuart D. | Method for treating a sphincter |
| US5800429A (en) | 1994-06-24 | 1998-09-01 | Somnus Medical Technologies, Inc. | Noninvasive apparatus for ablating turbinates |
| US6006755A (en) | 1994-06-24 | 1999-12-28 | Edwards; Stuart D. | Method to detect and treat aberrant myoelectric activity |
| US5827277A (en) | 1994-06-24 | 1998-10-27 | Somnus Medical Technologies, Inc. | Minimally invasive apparatus for internal ablation of turbinates |
| US6405732B1 (en) | 1994-06-24 | 2002-06-18 | Curon Medical, Inc. | Method to treat gastric reflux via the detection and ablation of gastro-esophageal nerves and receptors |
| US5505730A (en) | 1994-06-24 | 1996-04-09 | Stuart D. Edwards | Thin layer ablation apparatus |
| CA2194071C (en) | 1994-06-27 | 2005-12-13 | Roger A. Stern | Non-linear control systems and methods for heating and ablating body tissue |
| US5735846A (en) | 1994-06-27 | 1998-04-07 | Ep Technologies, Inc. | Systems and methods for ablating body tissue using predicted maximum tissue temperature |
| US5680860A (en) | 1994-07-07 | 1997-10-28 | Cardiac Pathways Corporation | Mapping and/or ablation catheter with coilable distal extremity and method for using same |
| US5496304A (en) * | 1994-07-20 | 1996-03-05 | University Of Utah Research Foundation | Surgical marking pen |
| DE4427106A1 (de) | 1994-07-30 | 1996-02-01 | Otto Werner Woelky | Verfahren zur Bekämpfung von Krebsgeschwülsten und Hautkrebserkrankungen |
| US5623940A (en) | 1994-08-02 | 1997-04-29 | S.L.T. Japan Co., Ltd. | Catheter apparatus with a sensor |
| US5454782A (en) | 1994-08-11 | 1995-10-03 | Perkins; Rodney C. | Translumenal circumferential energy delivery device |
| US8025661B2 (en) | 1994-09-09 | 2011-09-27 | Cardiofocus, Inc. | Coaxial catheter instruments for ablation with radiant energy |
| US5549655A (en) | 1994-09-21 | 1996-08-27 | Medtronic, Inc. | Method and apparatus for synchronized treatment of obstructive sleep apnea |
| US5522862A (en) | 1994-09-21 | 1996-06-04 | Medtronic, Inc. | Method and apparatus for treating obstructive sleep apnea |
| US6142994A (en) | 1994-10-07 | 2000-11-07 | Ep Technologies, Inc. | Surgical method and apparatus for positioning a diagnostic a therapeutic element within the body |
| US5836947A (en) | 1994-10-07 | 1998-11-17 | Ep Technologies, Inc. | Flexible structures having movable splines for supporting electrode elements |
| US5885278A (en) | 1994-10-07 | 1999-03-23 | E.P. Technologies, Inc. | Structures for deploying movable electrode elements |
| JPH10509338A (ja) | 1994-10-07 | 1998-09-14 | イーピー テクノロジーズ,インコーポレイテッド | 電極要素を支持するための可撓性構造 |
| US5740808A (en) | 1996-10-28 | 1998-04-21 | Ep Technologies, Inc | Systems and methods for guilding diagnostic or therapeutic devices in interior tissue regions |
| US5722401A (en) | 1994-10-19 | 1998-03-03 | Cardiac Pathways Corporation | Endocardial mapping and/or ablation catheter probe |
| US5899882A (en) | 1994-10-27 | 1999-05-04 | Novoste Corporation | Catheter apparatus for radiation treatment of a desired area in the vascular system of a patient |
| US5630813A (en) | 1994-12-08 | 1997-05-20 | Kieturakis; Maciej J. | Electro-cauterizing dissector and method for facilitating breast implant procedure |
| US5669930A (en) | 1994-12-08 | 1997-09-23 | Fuji Systems Corporation | Stent for intracorporeal retention |
| EP0797408A2 (en) | 1994-12-13 | 1997-10-01 | Torben Lorentzen | An electrosurgical instrument for tissue ablation, an apparatus, and a method for providing a lesion in damaged and diseased tissue from a mammal |
| US5707336A (en) | 1995-01-09 | 1998-01-13 | Cardassist Incorporated | Ventricular assist device |
| US5601088A (en) | 1995-02-17 | 1997-02-11 | Ep Technologies, Inc. | Systems and methods for filtering artifacts from composite signals |
| US5630425A (en) | 1995-02-17 | 1997-05-20 | Ep Technologies, Inc. | Systems and methods for adaptive filtering artifacts from composite signals |
| US5792064A (en) | 1995-02-17 | 1998-08-11 | Panescu; Dorin | Systems and methods for analyzing cardiac biopotential morphologies by cross-correlation |
| IT1277790B1 (it) | 1995-02-17 | 1997-11-12 | Tecres Spa | Protesi metacarpo-falangea ed interfalangea per articolazioni della mano o del piede |
| WO1996025095A1 (en) | 1995-02-17 | 1996-08-22 | Ep Technologies, Inc. | Systems and methods for making time-sequential measurements of biological events |
| US5722416A (en) | 1995-02-17 | 1998-03-03 | Ep Technologies, Inc. | Systems and methods for analyzing biopotential morphologies in heart tissue to locate potential ablation sites |
| US5595183A (en) | 1995-02-17 | 1997-01-21 | Ep Technologies, Inc. | Systems and methods for examining heart tissue employing multiple electrode structures and roving electrodes |
| US5605157A (en) | 1995-02-17 | 1997-02-25 | Ep Technologies, Inc. | Systems and methods for filtering signals derived from biological events |
| US5711305A (en) | 1995-02-17 | 1998-01-27 | Ep Technologies, Inc. | Systems and methods for acquiring endocardially or epicardially paced electrocardiograms |
| US6409722B1 (en) | 1998-07-07 | 2002-06-25 | Medtronic, Inc. | Apparatus and method for creating, maintaining, and controlling a virtual electrode used for the ablation of tissue |
| EP0827383B1 (en) | 1995-02-28 | 2007-05-30 | Boston Scientific Corporation | Polymer implements for torque transmission |
| US6106524A (en) | 1995-03-03 | 2000-08-22 | Neothermia Corporation | Methods and apparatus for therapeutic cauterization of predetermined volumes of biological tissue |
| US5627392A (en) | 1995-03-07 | 1997-05-06 | California Institute Of Technology | Semiconductor structure for long term learning |
| US5868740A (en) | 1995-03-24 | 1999-02-09 | Board Of Regents-Univ Of Nebraska | Method for volumetric tissue ablation |
| WO1996032151A1 (en) | 1995-04-14 | 1996-10-17 | Glaxo Wellcome Inc. | Metered dose inhaler for fluticasone propionate |
| DE69634865D1 (de) * | 1995-04-14 | 2005-07-21 | Smithkline Beecham Corp | Dosierinhalator für Salmeterol |
| US5588812A (en) | 1995-04-19 | 1996-12-31 | Nimbus, Inc. | Implantable electric axial-flow blood pump |
| US5707218A (en) | 1995-04-19 | 1998-01-13 | Nimbus, Inc. | Implantable electric axial-flow blood pump with blood cooled bearing |
| US5620438A (en) | 1995-04-20 | 1997-04-15 | Angiomedics Ii Incorporated | Method and apparatus for treating vascular tissue following angioplasty to minimize restenosis |
| GB9508204D0 (en) | 1995-04-21 | 1995-06-07 | Speywood Lab Ltd | A novel agent able to modify peripheral afferent function |
| US5678535A (en) | 1995-04-21 | 1997-10-21 | Dimarco; Anthony Fortunato | Method and apparatus for electrical stimulation of the respiratory muscles to achieve artificial ventilation in a patient |
| US5607419A (en) | 1995-04-24 | 1997-03-04 | Angiomedics Ii Inc. | Method and apparatus for treating vessel wall with UV radiation following angioplasty |
| DK0782463T3 (da) | 1995-04-28 | 2000-06-05 | Target Therapeutics Inc | Højtydende flettet kateter |
| WO1996034570A1 (en) | 1995-05-01 | 1996-11-07 | Ep Technologies, Inc. | Systems and methods for obtaining desired lesion characteristics while ablating body tissue |
| US5688267A (en) | 1995-05-01 | 1997-11-18 | Ep Technologies, Inc. | Systems and methods for sensing multiple temperature conditions during tissue ablation |
| US5681280A (en) | 1995-05-02 | 1997-10-28 | Heart Rhythm Technologies, Inc. | Catheter control system |
| US6575969B1 (en) | 1995-05-04 | 2003-06-10 | Sherwood Services Ag | Cool-tip radiofrequency thermosurgery electrode system for tumor ablation |
| DE69636885T2 (de) | 1995-05-04 | 2007-06-21 | Sherwood Services Ag | Chirurgiesystem mit gekühlter Elektrodenspitze |
| US5755753A (en) | 1995-05-05 | 1998-05-26 | Thermage, Inc. | Method for controlled contraction of collagen tissue |
| US5817073A (en) | 1995-06-02 | 1998-10-06 | Krespi; Yosef P. | Apparatus for administering local anesthetics and therapeutic medications during endoscopic surgery |
| US5540730A (en) | 1995-06-06 | 1996-07-30 | Cyberonics, Inc. | Treatment of motility disorders by nerve stimulation |
| US6363937B1 (en) | 1995-06-07 | 2002-04-02 | Arthrocare Corporation | System and methods for electrosurgical treatment of the digestive system |
| US6090104A (en) | 1995-06-07 | 2000-07-18 | Cordis Webster, Inc. | Catheter with a spirally wound flat ribbon electrode |
| US5741248A (en) | 1995-06-07 | 1998-04-21 | Temple University-Of The Commonwealth System Of Higher Education | Fluorochemical liquid augmented cryosurgery |
| US6132438A (en) | 1995-06-07 | 2000-10-17 | Ep Technologies, Inc. | Devices for installing stasis reducing means in body tissue |
| US6837888B2 (en) | 1995-06-07 | 2005-01-04 | Arthrocare Corporation | Electrosurgical probe with movable return electrode and methods related thereto |
| US5697925A (en) | 1995-06-09 | 1997-12-16 | Engineering & Research Associates, Inc. | Apparatus and method for thermal ablation |
| US5868737A (en) | 1995-06-09 | 1999-02-09 | Engineering Research & Associates, Inc. | Apparatus and method for determining ablation |
| JPH0947518A (ja) | 1995-06-26 | 1997-02-18 | Lederle Japan Ltd | フォトダイナミックセラピ用光ファイバレーザ導光プローブ |
| US5873852A (en) | 1995-07-10 | 1999-02-23 | Interventional Technologies | Device for injecting fluid into a wall of a blood vessel |
| US6008211A (en) | 1995-07-27 | 1999-12-28 | Pdt Pharmaceuticals, Inc. | Photoactivatable compounds comprising benzochlorin and furocoumarin |
| US6023638A (en) | 1995-07-28 | 2000-02-08 | Scimed Life Systems, Inc. | System and method for conducting electrophysiological testing using high-voltage energy pulses to stun tissue |
| WO1997004702A1 (en) | 1995-07-28 | 1997-02-13 | Ep Technologies, Inc. | Systems and methods for conducting electrophysiological testing using high-voltage energy pulses to stun heart tissue |
| US5782827A (en) | 1995-08-15 | 1998-07-21 | Rita Medical Systems, Inc. | Multiple antenna ablation apparatus and method with multiple sensor feedback |
| US5624439A (en) | 1995-08-18 | 1997-04-29 | Somnus Medical Technologies, Inc. | Method and apparatus for treatment of air way obstructions |
| US5660175A (en) | 1995-08-21 | 1997-08-26 | Dayal; Bimal | Endotracheal device |
| US5908839A (en) | 1995-08-24 | 1999-06-01 | Magainin Pharmaceuticals, Inc. | Asthma associated factors as targets for treating atopic allergies including asthma and related disorders |
| US6210367B1 (en) | 1995-09-06 | 2001-04-03 | Microwave Medical Systems, Inc. | Intracorporeal microwave warming method and apparatus |
| US6496738B2 (en) | 1995-09-06 | 2002-12-17 | Kenneth L. Carr | Dual frequency microwave heating apparatus |
| US5848972A (en) | 1995-09-15 | 1998-12-15 | Children's Medical Center Corporation | Method for endocardial activation mapping using a multi-electrode catheter |
| US5707400A (en) * | 1995-09-19 | 1998-01-13 | Cyberonics, Inc. | Treating refractory hypertension by nerve stimulation |
| EP0858354A4 (en) | 1995-10-11 | 2001-10-24 | Regeneration Tech | GENERATOR AND METHOD RELATING TO BIO-ACTIVE FREQUENCIES |
| US5891182A (en) | 1995-10-11 | 1999-04-06 | Regeneration Tech | Bio-active frequency generator and method |
| US5658322A (en) | 1995-10-11 | 1997-08-19 | Regeneration Technology | Bio-active frequency generator and method |
| DE69531399T2 (de) | 1995-10-16 | 2004-06-09 | Sun Medical Technology Research Corp., Suwa | Kunstherz |
| US5574059A (en) | 1995-10-27 | 1996-11-12 | Cornell Research Foundation, Inc. | Treating disorders mediated by vascular smooth muscle cell proliferation |
| US6198970B1 (en) | 1995-10-27 | 2001-03-06 | Esd Limited Liability Company | Method and apparatus for treating oropharyngeal respiratory and oral motor neuromuscular disorders with electrical stimulation |
| US5733316A (en) * | 1995-10-27 | 1998-03-31 | Dornier Medical Systems, Inc. | Organ separation for thermal therapy |
| US5837001A (en) | 1995-12-08 | 1998-11-17 | C. R. Bard | Radio frequency energy delivery system for multipolar electrode catheters |
| US5925038A (en) | 1996-01-19 | 1999-07-20 | Ep Technologies, Inc. | Expandable-collapsible electrode structures for capacitive coupling to tissue |
| WO1997025917A1 (en) | 1996-01-19 | 1997-07-24 | Ep Technologies, Inc. | Multi-function electrode structures for electrically analyzing and heating body tissue |
| US5891135A (en) | 1996-01-19 | 1999-04-06 | Ep Technologies, Inc. | Stem elements for securing tubing and electrical wires to expandable-collapsible electrode structures |
| US5846238A (en) | 1996-01-19 | 1998-12-08 | Ep Technologies, Inc. | Expandable-collapsible electrode structures with distal end steering or manipulation |
| US5891136A (en) | 1996-01-19 | 1999-04-06 | Ep Technologies, Inc. | Expandable-collapsible mesh electrode structures |
| US5871483A (en) * | 1996-01-19 | 1999-02-16 | Ep Technologies, Inc. | Folding electrode structures |
| US5836874A (en) | 1996-04-08 | 1998-11-17 | Ep Technologies, Inc. | Multi-function electrode structures for electrically analyzing and heating body tissue |
| US5904711A (en) | 1996-02-08 | 1999-05-18 | Heartport, Inc. | Expandable thoracoscopic defibrillation catheter system and method |
| US5727569A (en) | 1996-02-20 | 1998-03-17 | Cardiothoracic Systems, Inc. | Surgical devices for imposing a negative pressure to fix the position of cardiac tissue during surgery |
| US5695471A (en) | 1996-02-20 | 1997-12-09 | Kriton Medical, Inc. | Sealless rotary blood pump with passive magnetic radial bearings and blood immersed axial bearings |
| US5730726A (en) | 1996-03-04 | 1998-03-24 | Klingenstein; Ralph James | Apparatus and method for removing fecal impaction |
| US6036687A (en) * | 1996-03-05 | 2000-03-14 | Vnus Medical Technologies, Inc. | Method and apparatus for treating venous insufficiency |
| US6152899A (en) | 1996-03-05 | 2000-11-28 | Vnus Medical Technologies, Inc. | Expandable catheter having improved electrode design, and method for applying energy |
| US6139527A (en) | 1996-03-05 | 2000-10-31 | Vnus Medical Technologies, Inc. | Method and apparatus for treating hemorrhoids |
| US6033397A (en) * | 1996-03-05 | 2000-03-07 | Vnus Medical Technologies, Inc. | Method and apparatus for treating esophageal varices |
| JP4060887B2 (ja) | 1996-03-05 | 2008-03-12 | ヴィナス メディカル テクノロジーズ インコーポレイテッド | 組織を加熱するための脈管カテーテル利用システム |
| GB9620620D0 (en) | 1996-10-03 | 1996-11-20 | Ici Plc | Illumination system |
| US5755760A (en) | 1996-03-11 | 1998-05-26 | Medtronic, Inc. | Deflectable catheter |
| NL1002598C2 (nl) | 1996-03-13 | 1997-09-17 | Bootsman Holding Bv | Werkwijze en inrichting voor het bewerken van substraat. |
| JPH09243837A (ja) | 1996-03-14 | 1997-09-19 | Hitachi Cable Ltd | レーザ導波路 |
| US6458121B1 (en) | 1996-03-19 | 2002-10-01 | Diapulse Corporation Of America | Apparatus for athermapeutic medical treatments |
| US5699799A (en) | 1996-03-26 | 1997-12-23 | Siemens Corporate Research, Inc. | Automatic determination of the curved axis of a 3-D tube-shaped object in image volume |
| US6258083B1 (en) | 1996-03-29 | 2001-07-10 | Eclipse Surgical Technologies, Inc. | Viewing surgical scope for minimally invasive procedures |
| US5863291A (en) | 1996-04-08 | 1999-01-26 | Cardima, Inc. | Linear ablation assembly |
| US5694934A (en) | 1996-04-17 | 1997-12-09 | Beth Israel Hospital | MR studies in which a paramagnetic gas is administered to a living patient |
| US5979456A (en) | 1996-04-22 | 1999-11-09 | Magovern; George J. | Apparatus and method for reversibly reshaping a body part |
| US5733319A (en) | 1996-04-25 | 1998-03-31 | Urologix, Inc. | Liquid coolant supply system |
| US6036640A (en) | 1996-04-29 | 2000-03-14 | Medtronic, Inc. | Device and method for repositioning the heart during surgery |
| US6735471B2 (en) | 1996-04-30 | 2004-05-11 | Medtronic, Inc. | Method and system for endotracheal/esophageal stimulation prior to and during a medical procedure |
| AUPN957296A0 (en) | 1996-04-30 | 1996-05-23 | Cardiac Crc Nominees Pty Limited | A system for simultaneous unipolar multi-electrode ablation |
| US5820589A (en) | 1996-04-30 | 1998-10-13 | Medtronic, Inc. | Implantable non-invasive rate-adjustable pump |
| US7269457B2 (en) | 1996-04-30 | 2007-09-11 | Medtronic, Inc. | Method and system for vagal nerve stimulation with multi-site cardiac pacing |
| US6532388B1 (en) | 1996-04-30 | 2003-03-11 | Medtronic, Inc. | Method and system for endotracheal/esophageal stimulation prior to and during a medical procedure |
| US5861022A (en) | 1996-04-30 | 1999-01-19 | Hipskind; S. Gregory | Method for the treatment of hiccups |
| US6006134A (en) | 1998-04-30 | 1999-12-21 | Medtronic, Inc. | Method and device for electronically controlling the beating of a heart using venous electrical stimulation of nerve fibers |
| US7022105B1 (en) | 1996-05-06 | 2006-04-04 | Novasys Medical Inc. | Treatment of tissue in sphincters, sinuses and orifices |
| US5810807A (en) | 1996-05-22 | 1998-09-22 | Ganz; Robert A. | Sphincterotome with deflectable cutting plane and method of using the same |
| US5669932A (en) | 1996-05-29 | 1997-09-23 | Isostent, Inc. | Means for accurately positioning an expandable stent |
| US6212432B1 (en) | 1996-05-31 | 2001-04-03 | Masayuki Matsuura | Method, apparatus and system using a plurality of low-frequencies for therapy |
| US5976709A (en) | 1996-05-31 | 1999-11-02 | Hitachi Kinzoku Kabushiki Kaisha | Aluminum alloy member, with insert provided therein, possessing improved damping capacity and process for producing the same |
| US5782797A (en) | 1996-06-06 | 1998-07-21 | Scimed Life Systems, Inc. | Therapeutic infusion device |
| US5800486A (en) | 1996-06-17 | 1998-09-01 | Urologix, Inc. | Device for transurethral thermal therapy with cooling balloon |
| GB2314273B (en) | 1996-06-17 | 2000-09-27 | Spes | The use of TCET in the prophylaxis and treatment of allergies |
| US6743197B1 (en) | 1996-07-10 | 2004-06-01 | Novasys Medical, Inc. | Treatment of discrete tissues in respiratory, urinary, circulatory, reproductive and digestive systems |
| JPH1026709A (ja) | 1996-07-11 | 1998-01-27 | Harufumi Kato | レーザ側方照射器 |
| US5882346A (en) | 1996-07-15 | 1999-03-16 | Cardiac Pathways Corporation | Shapable catheter using exchangeable core and method of use |
| US5919172A (en) | 1996-07-17 | 1999-07-06 | Becton, Dickinson And Company | Hypodermic needle having a differential surface finish |
| US7440800B2 (en) | 1996-08-19 | 2008-10-21 | Mr3 Medical, Llc | System and method for managing detrimental cardiac remodeling |
| US5755714A (en) | 1996-09-17 | 1998-05-26 | Eclipse Surgical Technologies, Inc. | Shaped catheter for transmyocardial revascularization |
| US5855577A (en) | 1996-09-17 | 1999-01-05 | Eclipse Surgical Technologies, Inc. | Bow shaped catheter |
| US5906636A (en) | 1996-09-20 | 1999-05-25 | Texas Heart Institute | Heat treatment of inflamed tissue |
| US6464697B1 (en) | 1998-02-19 | 2002-10-15 | Curon Medical, Inc. | Stomach and adjoining tissue regions in the esophagus |
| US6016437A (en) * | 1996-10-21 | 2000-01-18 | Irvine Biomedical, Inc. | Catheter probe system with inflatable soft shafts |
| US5891027A (en) | 1996-10-21 | 1999-04-06 | Irvine Biomedical, Inc. | Cardiovascular catheter system with an inflatable soft tip |
| KR100340252B1 (ko) | 1996-10-23 | 2002-06-12 | 사토 히로시 | 전지용 전극의 제조방법 |
| US5904651A (en) | 1996-10-28 | 1999-05-18 | Ep Technologies, Inc. | Systems and methods for visualizing tissue during diagnostic or therapeutic procedures |
| US5752518A (en) | 1996-10-28 | 1998-05-19 | Ep Technologies, Inc. | Systems and methods for visualizing interior regions of the body |
| US5722403A (en) | 1996-10-28 | 1998-03-03 | Ep Technologies, Inc. | Systems and methods using a porous electrode for ablating and visualizing interior tissue regions |
| US5908445A (en) | 1996-10-28 | 1999-06-01 | Ep Technologies, Inc. | Systems for visualizing interior tissue regions including an actuator to move imaging element |
| US5848969A (en) | 1996-10-28 | 1998-12-15 | Ep Technologies, Inc. | Systems and methods for visualizing interior tissue regions using expandable imaging structures |
| US5779669A (en) | 1996-10-28 | 1998-07-14 | C. R. Bard, Inc. | Steerable catheter with fixed curve |
| WO1998018391A1 (en) | 1996-10-30 | 1998-05-07 | Ekos Corporation | Intraluminal wall drug delivery device |
| US5919147A (en) | 1996-11-01 | 1999-07-06 | Jain; Krishna M. | Method and apparatus for measuring the vascular diameter of a vessel |
| US6197013B1 (en) | 1996-11-06 | 2001-03-06 | Setagon, Inc. | Method and apparatus for drug and gene delivery |
| US6480746B1 (en) | 1997-08-13 | 2002-11-12 | Surx, Inc. | Noninvasive devices, methods, and systems for shrinking of tissues |
| US5833651A (en) | 1996-11-08 | 1998-11-10 | Medtronic, Inc. | Therapeutic intraluminal stents |
| US6091995A (en) | 1996-11-08 | 2000-07-18 | Surx, Inc. | Devices, methods, and systems for shrinking tissues |
| US6081749A (en) | 1997-08-13 | 2000-06-27 | Surx, Inc. | Noninvasive devices, methods, and systems for shrinking of tissues |
| US6073052A (en) | 1996-11-15 | 2000-06-06 | Zelickson; Brian D. | Device and method for treatment of gastroesophageal reflux disease |
| GB9626960D0 (en) * | 1996-12-27 | 1997-02-12 | Glaxo Group Ltd | Valve for aerosol container |
| US5873865A (en) | 1997-02-07 | 1999-02-23 | Eclipse Surgical Technologies, Inc. | Spiral catheter with multiple guide holes |
| US5730741A (en) | 1997-02-07 | 1998-03-24 | Eclipse Surgical Technologies, Inc. | Guided spiral catheter |
| US6056769A (en) | 1997-02-11 | 2000-05-02 | Biointerventional Corporation | Expansile device for use in blood vessels and tracts in the body and tension application device for use therewith and method |
| US5882329A (en) | 1997-02-12 | 1999-03-16 | Prolifix Medical, Inc. | Apparatus and method for removing stenotic material from stents |
| JP4052690B2 (ja) | 1997-02-19 | 2008-02-27 | 株式会社エス・エフ・シー | 指圧式温灸器 |
| US7591814B2 (en) | 1997-02-27 | 2009-09-22 | Cryocath Technologies Inc. | Extended treatment zone catheter |
| US5999855A (en) | 1997-02-28 | 1999-12-07 | Dimarco; Anthony F. | Method and apparatus for electrical activation of the expiratory muscles to restore cough |
| US5897554A (en) | 1997-03-01 | 1999-04-27 | Irvine Biomedical, Inc. | Steerable catheter having a loop electrode |
| US7220257B1 (en) | 2000-07-25 | 2007-05-22 | Scimed Life Systems, Inc. | Cryotreatment device and method |
| US6063078A (en) | 1997-03-12 | 2000-05-16 | Medtronic, Inc. | Method and apparatus for tissue ablation |
| US5954661A (en) | 1997-03-31 | 1999-09-21 | Thomas Jefferson University | Tissue characterization and treatment using pacing |
| US7992572B2 (en) | 1998-06-10 | 2011-08-09 | Asthmatx, Inc. | Methods of evaluating individuals having reversible obstructive pulmonary disease |
| US6411852B1 (en) * | 1997-04-07 | 2002-06-25 | Broncus Technologies, Inc. | Modification of airways by application of energy |
| US6488673B1 (en) † | 1997-04-07 | 2002-12-03 | Broncus Technologies, Inc. | Method of increasing gas exchange of a lung |
| US6634363B1 (en) | 1997-04-07 | 2003-10-21 | Broncus Technologies, Inc. | Methods of treating lungs having reversible obstructive pulmonary disease |
| US6083255A (en) | 1997-04-07 | 2000-07-04 | Broncus Technologies, Inc. | Bronchial stenter |
| US7425212B1 (en) | 1998-06-10 | 2008-09-16 | Asthmatx, Inc. | Devices for modification of airways by transfer of energy |
| US5972026A (en) | 1997-04-07 | 1999-10-26 | Broncus Technologies, Inc. | Bronchial stenter having diametrically adjustable electrodes |
| US6273907B1 (en) | 1997-04-07 | 2001-08-14 | Broncus Technologies, Inc. | Bronchial stenter |
| US6200333B1 (en) * | 1997-04-07 | 2001-03-13 | Broncus Technologies, Inc. | Bronchial stenter |
| US6283988B1 (en) | 1997-04-07 | 2001-09-04 | Broncus Technologies, Inc. | Bronchial stenter having expandable electrodes |
| US7027869B2 (en) | 1998-01-07 | 2006-04-11 | Asthmatx, Inc. | Method for treating an asthma attack |
| US5876340A (en) | 1997-04-17 | 1999-03-02 | Irvine Biomedical, Inc. | Ablation apparatus with ultrasonic imaging capabilities |
| US5861014A (en) | 1997-04-30 | 1999-01-19 | Medtronic, Inc. | Method and apparatus for sensing a stimulating gastrointestinal tract on-demand |
| US5971983A (en) | 1997-05-09 | 1999-10-26 | The Regents Of The University Of California | Tissue ablation device and method of use |
| US6024740A (en) | 1997-07-08 | 2000-02-15 | The Regents Of The University Of California | Circumferential ablation device assembly |
| US6012457A (en) | 1997-07-08 | 2000-01-11 | The Regents Of The University Of California | Device and method for forming a circumferential conduction block in a pulmonary vein |
| US6416740B1 (en) | 1997-05-13 | 2002-07-09 | Bristol-Myers Squibb Medical Imaging, Inc. | Acoustically active drug delivery systems |
| US6050992A (en) | 1997-05-19 | 2000-04-18 | Radiotherapeutics Corporation | Apparatus and method for treating tissue with multiple electrodes |
| US6217576B1 (en) | 1997-05-19 | 2001-04-17 | Irvine Biomedical Inc. | Catheter probe for treating focal atrial fibrillation in pulmonary veins |
| US7255693B1 (en) | 1997-05-23 | 2007-08-14 | Csa Medical, Inc. | Heated catheter used in cryotherapy |
| US5876399A (en) | 1997-05-28 | 1999-03-02 | Irvine Biomedical, Inc. | Catheter system and methods thereof |
| US6201023B1 (en) | 1997-06-10 | 2001-03-13 | Agrogene Ltd. | Methods and compositions to protect crops against plant parasitic nematodes |
| CA2287206A1 (en) | 1997-06-13 | 1998-12-17 | Arthrocare Corporation | Electrosurgical systems and methods for recanalization of occluded body lumens |
| US6251109B1 (en) | 1997-06-27 | 2001-06-26 | Daig Corporation | Process and device for the treatment of atrial arrhythmia |
| US5957919A (en) | 1997-07-02 | 1999-09-28 | Laufer; Michael D. | Bleb reducer |
| US6117101A (en) | 1997-07-08 | 2000-09-12 | The Regents Of The University Of California | Circumferential ablation device assembly |
| US6547788B1 (en) | 1997-07-08 | 2003-04-15 | Atrionx, Inc. | Medical device with sensor cooperating with expandable member |
| US6652515B1 (en) * | 1997-07-08 | 2003-11-25 | Atrionix, Inc. | Tissue ablation device assembly and method for electrically isolating a pulmonary vein ostium from an atrial wall |
| US6500174B1 (en) | 1997-07-08 | 2002-12-31 | Atrionix, Inc. | Circumferential ablation device assembly and methods of use and manufacture providing an ablative circumferential band along an expandable member |
| US6139571A (en) | 1997-07-09 | 2000-10-31 | Fuller Research Corporation | Heated fluid surgical instrument |
| US6014579A (en) | 1997-07-21 | 2000-01-11 | Cardiac Pathways Corp. | Endocardial mapping catheter with movable electrode |
| US6010500A (en) | 1997-07-21 | 2000-01-04 | Cardiac Pathways Corporation | Telescoping apparatus and method for linear lesion ablation |
| US6626903B2 (en) | 1997-07-24 | 2003-09-30 | Rex Medical, L.P. | Surgical biopsy device |
| AUPO826597A0 (en) | 1997-07-25 | 1997-08-21 | Platt, Harry Louis | Cardiac patient remote monitoring apparatus |
| DE69833665T2 (de) | 1997-08-08 | 2006-11-09 | Duke University | Zusammensetzungen zur vereinfachung von chirurgischen verfahren |
| US6711436B1 (en) * | 1997-08-08 | 2004-03-23 | Duke University | Compositions, apparatus and methods for facilitating surgical procedures |
| US5891138A (en) | 1997-08-11 | 1999-04-06 | Irvine Biomedical, Inc. | Catheter system having parallel electrodes |
| WO1999008614A1 (en) | 1997-08-13 | 1999-02-25 | Surx, Inc. | Noninvasive devices, methods, and systems for shrinking of tissues |
| US9023031B2 (en) | 1997-08-13 | 2015-05-05 | Verathon Inc. | Noninvasive devices, methods, and systems for modifying tissues |
| US5916235A (en) | 1997-08-13 | 1999-06-29 | The Regents Of The University Of California | Apparatus and method for the use of detachable coils in vascular aneurysms and body cavities |
| US6283987B1 (en) | 1998-01-14 | 2001-09-04 | Surx, Inc. | Ribbed electrodes and methods for their use |
| US6479523B1 (en) | 1997-08-26 | 2002-11-12 | Emory University | Pharmacologic drug combination in vagal-induced asystole |
| US6063768A (en) | 1997-09-04 | 2000-05-16 | First; Eric R. | Application of botulinum toxin to the management of neurogenic inflammatory disorders |
| US5964782A (en) | 1997-09-18 | 1999-10-12 | Scimed Life Systems, Inc. | Closure device and method |
| US5954717A (en) | 1997-09-25 | 1999-09-21 | Radiotherapeutics Corporation | Method and system for heating solid tissue |
| US6045549A (en) | 1997-09-30 | 2000-04-04 | Somnus Medical Technologies, Inc. | Tissue ablation apparatus and device for use therein and method |
| EP0908713A1 (en) | 1997-10-06 | 1999-04-14 | Claud S. Gordon Company | Temperature instrumented semiconductor wafer |
| US6645200B1 (en) | 1997-10-10 | 2003-11-11 | Scimed Life Systems, Inc. | Method and apparatus for positioning a diagnostic or therapeutic element within the body and tip electrode for use with same |
| US6071281A (en) | 1998-05-05 | 2000-06-06 | Ep Technologies, Inc. | Surgical method and apparatus for positioning a diagnostic or therapeutic element within the body and remote power control unit for use with same |
| US5893835A (en) | 1997-10-10 | 1999-04-13 | Ethicon Endo-Surgery, Inc. | Ultrasonic clamp coagulator apparatus having dual rotational positioning |
| US5893887A (en) | 1997-10-14 | 1999-04-13 | Iowa-India Investments Company Limited | Stent for positioning at junction of bifurcated blood vessel and method of making |
| US6424864B1 (en) | 1997-11-28 | 2002-07-23 | Masayuki Matsuura | Method and apparatus for wave therapy |
| US5971979A (en) | 1997-12-02 | 1999-10-26 | Odyssey Technologies, Inc. | Method for cryogenic inhibition of hyperplasia |
| US6917834B2 (en) | 1997-12-03 | 2005-07-12 | Boston Scientific Scimed, Inc. | Devices and methods for creating lesions in endocardial and surrounding tissue to isolate focal arrhythmia substrates |
| JP3980140B2 (ja) * | 1997-12-04 | 2007-09-26 | 村越 寧根 | 治療器具 |
| US6464680B1 (en) | 1998-07-29 | 2002-10-15 | Pharmasonics, Inc. | Ultrasonic enhancement of drug injection |
| US7921855B2 (en) | 1998-01-07 | 2011-04-12 | Asthmatx, Inc. | Method for treating an asthma attack |
| WO1999035988A1 (en) | 1998-01-14 | 1999-07-22 | Conway-Stuart Medical, Inc. | Electrosurgical device for sphincter treatment |
| JP2002508989A (ja) | 1998-01-14 | 2002-03-26 | キューロン メディカル,インコーポレイテッド | 胃食道逆流症(gerd)を治療するための電気外科器具および方法 |
| US6440128B1 (en) | 1998-01-14 | 2002-08-27 | Curon Medical, Inc. | Actively cooled electrode assemblies for forming lesions to treat dysfunction in sphincters and adjoining tissue regions |
| WO1999035987A1 (en) | 1998-01-14 | 1999-07-22 | Conway-Stuart Medical, Inc. | Gerd treatment apparatus and method |
| US6200311B1 (en) | 1998-01-20 | 2001-03-13 | Eclipse Surgical Technologies, Inc. | Minimally invasive TMR device |
| US6231595B1 (en) | 1998-03-31 | 2001-05-15 | Innercool Therapies, Inc. | Circulating fluid hypothermia method and apparatus |
| US6447505B2 (en) | 1998-02-11 | 2002-09-10 | Cosman Company, Inc. | Balloon catheter method for intra-urethral radio-frequency urethral enlargement |
| US6273886B1 (en) | 1998-02-19 | 2001-08-14 | Curon Medical, Inc. | Integrated tissue heating and cooling apparatus |
| US6258087B1 (en) | 1998-02-19 | 2001-07-10 | Curon Medical, Inc. | Expandable electrode assemblies for forming lesions to treat dysfunction in sphincters and adjoining tissue regions |
| US6423058B1 (en) | 1998-02-19 | 2002-07-23 | Curon Medical, Inc. | Assemblies to visualize and treat sphincters and adjoining tissue regions |
| US6325798B1 (en) | 1998-02-19 | 2001-12-04 | Curon Medical, Inc. | Vacuum-assisted systems and methods for treating sphincters and adjoining tissue regions |
| US7165551B2 (en) | 1998-02-19 | 2007-01-23 | Curon Medical, Inc. | Apparatus to detect and treat aberrant myoelectric activity |
| US6402744B2 (en) * | 1998-02-19 | 2002-06-11 | Curon Medical, Inc. | Systems and methods for forming composite lesions to treat dysfunction in sphincters and adjoining tissue regions |
| US6355031B1 (en) | 1998-02-19 | 2002-03-12 | Curon Medical, Inc. | Control systems for multiple electrode arrays to create lesions in tissue regions at or near a sphincter |
| US7468060B2 (en) * | 1998-02-19 | 2008-12-23 | Respiratory Diagnostic, Inc. | Systems and methods for treating obesity and other gastrointestinal conditions |
| CA2319517A1 (en) | 1998-02-19 | 1999-08-26 | Curon Medical, Inc. | Electrosurgical sphincter treatment apparatus |
| US8906010B2 (en) | 1998-02-19 | 2014-12-09 | Mederi Therapeutics, Inc. | Graphical user interface for association with an electrode structure deployed in contact with a tissue region |
| US6358245B1 (en) | 1998-02-19 | 2002-03-19 | Curon Medical, Inc. | Graphical user interface for association with an electrode structure deployed in contact with a tissue region |
| US20100114087A1 (en) | 1998-02-19 | 2010-05-06 | Edwards Stuart D | Methods and devices for treating urinary incontinence |
| US6142993A (en) | 1998-02-27 | 2000-11-07 | Ep Technologies, Inc. | Collapsible spline structure using a balloon as an expanding actuator |
| CA2320109A1 (en) | 1998-03-06 | 1999-09-10 | Curon Medical, Inc. | Apparatus to electrosurgically treat esophageal sphincters |
| JP2002506672A (ja) | 1998-03-19 | 2002-03-05 | オーレイテック インターヴェンションズ インコーポレイテッド | 手術部位にエネルギーを給送するためのカテーテル |
| US6053909A (en) | 1998-03-27 | 2000-04-25 | Shadduck; John H. | Ionothermal delivery system and technique for medical procedures |
| US8128595B2 (en) | 1998-04-21 | 2012-03-06 | Zoll Circulation, Inc. | Method for a central venous line catheter having a temperature control system |
| US6338727B1 (en) | 1998-08-13 | 2002-01-15 | Alsius Corporation | Indwelling heat exchange catheter and method of using same |
| US6003517A (en) | 1998-04-30 | 1999-12-21 | Ethicon Endo-Surgery, Inc. | Method for using an electrosurgical device on lung tissue |
| WO1999055245A1 (en) | 1998-04-30 | 1999-11-04 | Edwards Stuart D | Electrosurgical sphincter treatment apparatus |
| US6161047A (en) | 1998-04-30 | 2000-12-12 | Medtronic Inc. | Apparatus and method for expanding a stimulation lead body in situ |
| US6045550A (en) | 1998-05-05 | 2000-04-04 | Cardiac Peacemakers, Inc. | Electrode having non-joined thermocouple for providing multiple temperature-sensitive junctions |
| US6558378B2 (en) | 1998-05-05 | 2003-05-06 | Cardiac Pacemakers, Inc. | RF ablation system and method having automatic temperature control |
| US6493589B1 (en) | 1998-05-07 | 2002-12-10 | Medtronic, Inc. | Methods and apparatus for treatment of pulmonary conditions |
| US6001054A (en) | 1998-05-19 | 1999-12-14 | Regulla; D. F. | Method and apparatus for differential energy application for local dose enhancement of ionizing radiation |
| US6241727B1 (en) | 1998-05-27 | 2001-06-05 | Irvine Biomedical, Inc. | Ablation catheter system having circular lesion capabilities |
| US6997189B2 (en) * | 1998-06-05 | 2006-02-14 | Broncus Technologies, Inc. | Method for lung volume reduction |
| US6174323B1 (en) * | 1998-06-05 | 2001-01-16 | Broncus Technologies, Inc. | Method and assembly for lung volume reduction |
| US6599311B1 (en) | 1998-06-05 | 2003-07-29 | Broncus Technologies, Inc. | Method and assembly for lung volume reduction |
| US5997534A (en) | 1998-06-08 | 1999-12-07 | Tu; Hosheng | Medical ablation device and methods thereof |
| US7198635B2 (en) | 2000-10-17 | 2007-04-03 | Asthmatx, Inc. | Modification of airways by application of energy |
| US8181656B2 (en) | 1998-06-10 | 2012-05-22 | Asthmatx, Inc. | Methods for treating airways |
| US20070123958A1 (en) | 1998-06-10 | 2007-05-31 | Asthmatx, Inc. | Apparatus for treating airways in the lung |
| US20070106348A1 (en) | 1998-06-10 | 2007-05-10 | Asthmatx, Inc. | Method for treating airways in the lung |
| US7187973B2 (en) | 1998-06-30 | 2007-03-06 | Endocardial Solutions, Inc. | Congestive heart failure pacing optimization method and device |
| US6322559B1 (en) | 1998-07-06 | 2001-11-27 | Vnus Medical Technologies, Inc. | Electrode catheter having coil structure |
| US5995873A (en) | 1998-07-07 | 1999-11-30 | Rhodes; Donald A. | Treatment of pain and of the nervous system |
| US6029091A (en) | 1998-07-09 | 2000-02-22 | Irvine Biomedical, Inc. | Catheter system having lattice electrodes |
| US6296639B1 (en) | 1999-02-12 | 2001-10-02 | Novacept | Apparatuses and methods for interstitial tissue removal |
| US6212433B1 (en) | 1998-07-28 | 2001-04-03 | Radiotherapeutics Corporation | Method for treating tumors near the surface of an organ |
| US6322584B2 (en) | 1998-07-31 | 2001-11-27 | Surx, Inc. | Temperature sensing devices and methods to shrink tissues |
| US6366813B1 (en) | 1998-08-05 | 2002-04-02 | Dilorenzo Daniel J. | Apparatus and method for closed-loop intracranical stimulation for optimal control of neurological disease |
| US5992419A (en) | 1998-08-20 | 1999-11-30 | Mmtc, Inc. | Method employing a tissue-heating balloon catheter to produce a "biological stent" in an orifice or vessel of a patient's body |
| US6673098B1 (en) | 1998-08-24 | 2004-01-06 | Radiant Medical, Inc. | Disposable cassette for intravascular heat exchange catheter |
| US6610083B2 (en) | 1998-08-24 | 2003-08-26 | Radiant Medical, Inc. | Multiple lumen heat exchange catheters |
| GB9818548D0 (en) | 1998-08-25 | 1998-10-21 | Microbiological Res Authority | Treatment of mucas hypersecretion |
| US5980563A (en) | 1998-08-31 | 1999-11-09 | Tu; Lily Chen | Ablation apparatus and methods for treating atherosclerosis |
| US6183468B1 (en) | 1998-09-10 | 2001-02-06 | Scimed Life Systems, Inc. | Systems and methods for controlling power in an electrosurgical probe |
| US6123702A (en) | 1998-09-10 | 2000-09-26 | Scimed Life Systems, Inc. | Systems and methods for controlling power in an electrosurgical probe |
| US6245065B1 (en) | 1998-09-10 | 2001-06-12 | Scimed Life Systems, Inc. | Systems and methods for controlling power in an electrosurgical probe |
| US6123703A (en) | 1998-09-19 | 2000-09-26 | Tu; Lily Chen | Ablation catheter and methods for treating tissues |
| JP2002526188A (ja) | 1998-09-24 | 2002-08-20 | スーパー ディメンション リミテッド | 体内への医療処置中にカテーテルの位置を判定するためのシステム及び方法 |
| US6036689A (en) | 1998-09-24 | 2000-03-14 | Tu; Lily Chen | Ablation device for treating atherosclerotic tissues |
| US20040006268A1 (en) | 1998-09-24 | 2004-01-08 | Super Dimension Ltd Was Filed In Parent Case | System and method of recording and displaying in context of an image a location of at least one point-of-interest in a body during an intra-body medical procedure |
| IL126333A0 (en) | 1998-09-24 | 1999-05-09 | Super Dimension Ltd | System and method of recording and displaying in context of an image a location of at least one point-of-interest in body during an intra-body medical procedure |
| US20030074011A1 (en) | 1998-09-24 | 2003-04-17 | Super Dimension Ltd. | System and method of recording and displaying in context of an image a location of at least one point-of-interest in a body during an intra-body medical procedure |
| US20040230252A1 (en) | 1998-10-21 | 2004-11-18 | Saul Kullok | Method and apparatus for affecting the autonomic nervous system |
| US6366814B1 (en) | 1998-10-26 | 2002-04-02 | Birinder R. Boveja | External stimulator for adjunct (add-on) treatment for neurological, neuropsychiatric, and urological disorders |
| US7076307B2 (en) | 2002-05-09 | 2006-07-11 | Boveja Birinder R | Method and system for modulating the vagus nerve (10th cranial nerve) with electrical pulses using implanted and external components, to provide therapy neurological and neuropsychiatric disorders |
| US6123718A (en) | 1998-11-02 | 2000-09-26 | Polymerex Medical Corp. | Balloon catheter |
| ES2238862T3 (es) | 1998-11-16 | 2005-09-01 | United States Surgical Corporation | Aparato para el tratamiento termico de tejido. |
| ES2228165T3 (es) | 1998-12-09 | 2005-04-01 | Cook Incorporated | Aguja hueca, curvada, superelastica, para uso medico. |
| ES2242602T3 (es) | 1999-01-06 | 2005-11-16 | United States Surgical Corporation | Dispositivo de inyeccion para cartografia de tejidos. |
| US6269813B1 (en) | 1999-01-15 | 2001-08-07 | Respironics, Inc. | Tracheal gas insufflation bypass and phasic delivery system and method |
| US6230052B1 (en) | 1999-01-29 | 2001-05-08 | Andy Wolff | Device and method for stimulating salivation |
| US6097985A (en) | 1999-02-09 | 2000-08-01 | Kai Technologies, Inc. | Microwave systems for medical hyperthermia, thermotherapy and diagnosis |
| US6293908B1 (en) | 1999-02-12 | 2001-09-25 | Fuji Photo Optical Co., Ltd. | Mouthpiece and insertion assisting device for endoscope |
| US6019783A (en) | 1999-03-02 | 2000-02-01 | Alsius Corporation | Cooling system for therapeutic catheter |
| US6582427B1 (en) | 1999-03-05 | 2003-06-24 | Gyrus Medical Limited | Electrosurgery system |
| JP2000262538A (ja) * | 1999-03-17 | 2000-09-26 | Olympus Optical Co Ltd | 高周波用穿刺電極を用いた電気手術装置 |
| US6161049A (en) | 1999-03-26 | 2000-12-12 | Urologix, Inc. | Thermal therapy catheter |
| JP2000271235A (ja) | 1999-03-26 | 2000-10-03 | Olympus Optical Co Ltd | 前立腺治療装置 |
| US6786889B1 (en) | 1999-03-31 | 2004-09-07 | Scimed Life Systems, Inc | Textured and/or marked balloon for stent delivery |
| US6425877B1 (en) | 1999-04-02 | 2002-07-30 | Novasys Medical, Inc. | Treatment of tissue in the digestive circulatory respiratory urinary and reproductive systems |
| US6409723B1 (en) | 1999-04-02 | 2002-06-25 | Stuart D. Edwards | Treating body tissue by applying energy and substances |
| US20010007070A1 (en) | 1999-04-05 | 2001-07-05 | Medtronic, Inc. | Ablation catheter assembly and method for isolating a pulmonary vein |
| US6325797B1 (en) | 1999-04-05 | 2001-12-04 | Medtronic, Inc. | Ablation catheter and method for isolating a pulmonary vein |
| US6546932B1 (en) | 1999-04-05 | 2003-04-15 | Cryocath Technologies Inc. | Cryogenic method and apparatus for promoting angiogenesis |
| US6776990B2 (en) * | 1999-04-08 | 2004-08-17 | Allergan, Inc. | Methods and compositions for the treatment of pancreatitis |
| US6593130B1 (en) | 1999-04-16 | 2003-07-15 | The Regents Of The University Of California | Method and apparatus for ex vivo and in vivo cellular electroporation of gene protein or drug therapy |
| US6317615B1 (en) | 1999-04-19 | 2001-11-13 | Cardiac Pacemakers, Inc. | Method and system for reducing arterial restenosis in the presence of an intravascular stent |
| US6149647A (en) | 1999-04-19 | 2000-11-21 | Tu; Lily Chen | Apparatus and methods for tissue treatment |
| US6939346B2 (en) | 1999-04-21 | 2005-09-06 | Oratec Interventions, Inc. | Method and apparatus for controlling a temperature-controlled probe |
| US6270476B1 (en) | 1999-04-23 | 2001-08-07 | Cryocath Technologies, Inc. | Catheter |
| US6302870B1 (en) | 1999-04-29 | 2001-10-16 | Precision Vascular Systems, Inc. | Apparatus for injecting fluids into the walls of blood vessels, body cavities, and the like |
| US6341236B1 (en) * | 1999-04-30 | 2002-01-22 | Ivan Osorio | Vagal nerve stimulation techniques for treatment of epileptic seizures |
| AU4696100A (en) | 1999-05-04 | 2000-11-17 | Curon Medical, Inc. | Electrodes for creating lesions in tissue regions at or near a sphincter |
| WO2000069376A1 (en) * | 1999-05-18 | 2000-11-23 | Silhouette Medical Inc. | Surgical weight control device |
| US7171263B2 (en) | 1999-06-04 | 2007-01-30 | Impulse Dynamics Nv | Drug delivery device |
| CA2372430C (en) | 1999-06-05 | 2011-10-04 | Wilson-Cook Medical Inc. | Indicia for an endoscopic medical device |
| US6235024B1 (en) | 1999-06-21 | 2001-05-22 | Hosheng Tu | Catheters system having dual ablation capability |
| EP1281366B1 (en) | 1999-06-23 | 2006-10-11 | Novasys Medical, Inc. | Treatment of sphincters with electrosurgery and active substances |
| JP4576521B2 (ja) | 1999-06-25 | 2010-11-10 | ハンセン メディカル, インコーポレイテッド | 組織を処置するための装置および方法 |
| JP2003503119A (ja) | 1999-06-25 | 2003-01-28 | エモリ ユニバーシティ | 迷走神経刺激用機器及び方法 |
| RU2164424C1 (ru) * | 1999-06-28 | 2001-03-27 | Коноплев Сергей Петрович | Способ низкочастотной электромагнитной терапии и устройство для его осуществления |
| US6238392B1 (en) | 1999-06-29 | 2001-05-29 | Ethicon Endo-Surgery, Inc. | Bipolar electrosurgical instrument including a plurality of balloon electrodes |
| US6361554B1 (en) * | 1999-06-30 | 2002-03-26 | Pharmasonics, Inc. | Methods and apparatus for the subcutaneous delivery of acoustic vibrations |
| US6587719B1 (en) | 1999-07-01 | 2003-07-01 | Cyberonics, Inc. | Treatment of obesity by bilateral vagus nerve stimulation |
| US6364878B1 (en) | 1999-07-07 | 2002-04-02 | Cardiac Pacemakers, Inc. | Percutaneous transluminal ablation catheter manipulation tool |
| US6200332B1 (en) | 1999-07-09 | 2001-03-13 | Ceramoptec Industries, Inc. | Device and method for underskin laser treatments |
| US7422584B2 (en) | 2002-07-05 | 2008-09-09 | Broncus Technologies, Inc. | Extrapleural airway device and method |
| US7462162B2 (en) | 2001-09-04 | 2008-12-09 | Broncus Technologies, Inc. | Antiproliferative devices for maintaining patency of surgically created channels in a body organ |
| CA2393898A1 (en) | 1999-08-05 | 2001-02-15 | Broncus Technologies, Inc. | Methods and devices for creating collateral channels in the lungs |
| US20030070676A1 (en) | 1999-08-05 | 2003-04-17 | Cooper Joel D. | Conduits having distal cage structure for maintaining collateral channels in tissue and related methods |
| US7175644B2 (en) * | 2001-02-14 | 2007-02-13 | Broncus Technologies, Inc. | Devices and methods for maintaining collateral channels in tissue |
| US20050060044A1 (en) * | 1999-08-05 | 2005-03-17 | Ed Roschak | Methods and devices for maintaining patency of surgically created channels in a body organ |
| US6749606B2 (en) | 1999-08-05 | 2004-06-15 | Thomas Keast | Devices for creating collateral channels |
| US20030130657A1 (en) | 1999-08-05 | 2003-07-10 | Tom Curtis P. | Devices for applying energy to tissue |
| US7815590B2 (en) * | 1999-08-05 | 2010-10-19 | Broncus Technologies, Inc. | Devices for maintaining patency of surgically created channels in tissue |
| US7422563B2 (en) | 1999-08-05 | 2008-09-09 | Broncus Technologies, Inc. | Multifunctional tip catheter for applying energy to tissue and detecting the presence of blood flow |
| US20050137715A1 (en) | 1999-08-05 | 2005-06-23 | Broncus Technologies, Inc. | Methods and devices for maintaining patency of surgically created channels in a body organ |
| US7022088B2 (en) | 1999-08-05 | 2006-04-04 | Broncus Technologies, Inc. | Devices for applying energy to tissue |
| US20050177144A1 (en) | 1999-08-05 | 2005-08-11 | Broncus Technologies, Inc. | Methods and devices for maintaining patency of surgically created channels in a body organ |
| US6712812B2 (en) * | 1999-08-05 | 2004-03-30 | Broncus Technologies, Inc. | Devices for creating collateral channels |
| US6767544B2 (en) | 2002-04-01 | 2004-07-27 | Allergan, Inc. | Methods for treating cardiovascular diseases with botulinum toxin |
| US7527622B2 (en) | 1999-08-23 | 2009-05-05 | Cryocath Technologies Inc. | Endovascular cryotreatment catheter |
| US6315778B1 (en) | 1999-09-10 | 2001-11-13 | C. R. Bard, Inc. | Apparatus for creating a continuous annular lesion |
| US6264653B1 (en) | 1999-09-24 | 2001-07-24 | C. R. Band, Inc. | System and method for gauging the amount of electrode-tissue contact using pulsed radio frequency energy |
| WO2001022897A1 (en) | 1999-09-28 | 2001-04-05 | Novasys Medical, Inc. | Treatment of tissue by application of energy and drugs |
| US6338836B1 (en) | 1999-09-28 | 2002-01-15 | Siemens Aktiengesellschaft | Asthma analysis method employing hyperpolarized gas and magnetic resonance imaging |
| US20030069570A1 (en) * | 1999-10-02 | 2003-04-10 | Witzel Thomas H. | Methods for repairing mitral valve annulus percutaneously |
| US7229469B1 (en) | 1999-10-02 | 2007-06-12 | Quantumcor, Inc. | Methods for treating and repairing mitral valve annulus |
| US20040249401A1 (en) | 1999-10-05 | 2004-12-09 | Omnisonics Medical Technologies, Inc. | Apparatus and method for an ultrasonic medical device with a non-compliant balloon |
| US6587718B2 (en) | 1999-10-08 | 2003-07-01 | Scimed Life Systems, Inc. | Iontophoretic delivery to heart tissue |
| US6265379B1 (en) | 1999-10-13 | 2001-07-24 | Allergan Sales, Inc. | Method for treating otic disorders |
| US6287304B1 (en) | 1999-10-15 | 2001-09-11 | Neothermia Corporation | Interstitial cauterization of tissue volumes with electrosurgically deployed electrodes |
| US6838429B2 (en) | 1999-10-22 | 2005-01-04 | Paslin David A | Atopic dermatitis treatment method |
| DE19952505A1 (de) | 1999-10-29 | 2001-05-03 | Gerd Hausdorf | Expandierbarer Ballon mit technisch sichtbar zu machender, mit einem Muster versehener Hülle |
| US6303509B1 (en) | 1999-10-29 | 2001-10-16 | Taiwan Semiconductor Manufacturing Company | Method to calibrate the wafer transfer for oxide etcher (with clamp) |
| US20040215296A1 (en) | 1999-11-16 | 2004-10-28 | Barrx, Inc. | System and method for treating abnormal epithelium in an esophagus |
| US20060095032A1 (en) | 1999-11-16 | 2006-05-04 | Jerome Jackson | Methods and systems for determining physiologic characteristics for treatment of the esophagus |
| US6551310B1 (en) | 1999-11-16 | 2003-04-22 | Robert A. Ganz | System and method of treating abnormal tissue in the human esophagus |
| US20040215235A1 (en) | 1999-11-16 | 2004-10-28 | Barrx, Inc. | Methods and systems for determining physiologic characteristics for treatment of the esophagus |
| US6529756B1 (en) | 1999-11-22 | 2003-03-04 | Scimed Life Systems, Inc. | Apparatus for mapping and coagulating soft tissue in or around body orifices |
| US6626855B1 (en) | 1999-11-26 | 2003-09-30 | Therus Corpoation | Controlled high efficiency lesion formation using high intensity ultrasound |
| US6752765B1 (en) | 1999-12-01 | 2004-06-22 | Medtronic, Inc. | Method and apparatus for monitoring heart rate and abnormal respiration |
| US6139845A (en) | 1999-12-07 | 2000-10-31 | Allergan Sales, Inc. | Method for treating cancer with a neurotoxin |
| JP2004512856A (ja) | 1999-12-23 | 2004-04-30 | シーラス、コーポレイション | 画像形成および治療用超音波トランスデューサ |
| US6547776B1 (en) | 2000-01-03 | 2003-04-15 | Curon Medical, Inc. | Systems and methods for treating tissue in the crura |
| US7483743B2 (en) | 2000-01-11 | 2009-01-27 | Cedars-Sinai Medical Center | System for detecting, diagnosing, and treating cardiovascular disease |
| US6451013B1 (en) | 2000-01-19 | 2002-09-17 | Medtronic Xomed, Inc. | Methods of tonsil reduction using high intensity focused ultrasound to form an ablated tissue area containing a plurality of lesions |
| US6356786B1 (en) * | 2000-01-20 | 2002-03-12 | Electrocore Techniques, Llc | Method of treating palmar hyperhydrosis by electrical stimulation of the sympathetic nervous chain |
| US6438423B1 (en) | 2000-01-20 | 2002-08-20 | Electrocore Technique, Llc | Method of treating complex regional pain syndromes by electrical stimulation of the sympathetic nerve chain |
| US6885888B2 (en) * | 2000-01-20 | 2005-04-26 | The Cleveland Clinic Foundation | Electrical stimulation of the sympathetic nerve chain |
| US6356787B1 (en) * | 2000-02-24 | 2002-03-12 | Electro Core Techniques, Llc | Method of treating facial blushing by electrical stimulation of the sympathetic nerve chain |
| US6589235B2 (en) | 2000-01-21 | 2003-07-08 | The Regents Of The University Of California | Method and apparatus for cartilage reshaping by radiofrequency heating |
| US20030050591A1 (en) * | 2000-02-08 | 2003-03-13 | Patrick Mchale Anthony | Loading system and method for using the same |
| US6663622B1 (en) | 2000-02-11 | 2003-12-16 | Iotek, Inc. | Surgical devices and methods for use in tissue ablation procedures |
| US6773711B2 (en) | 2000-02-15 | 2004-08-10 | Allergan, Inc. | Botulinum toxin therapy for Hashimoto's thyroiditis |
| US6524580B1 (en) | 2000-02-15 | 2003-02-25 | Allergan Sales, Inc. | Method for treating thyroid disorders |
| US6723091B2 (en) | 2000-02-22 | 2004-04-20 | Gyrus Medical Limited | Tissue resurfacing |
| US6328977B1 (en) | 2000-02-22 | 2001-12-11 | Allergan Sales, Inc. | Method for treating hyperparathyroidism |
| US6708064B2 (en) | 2000-02-24 | 2004-03-16 | Ali R. Rezai | Modulation of the brain to affect psychiatric disorders |
| US6551274B2 (en) | 2000-02-29 | 2003-04-22 | Biosense Webster, Inc. | Cryoablation catheter with an expandable cooling chamber |
| US6394956B1 (en) | 2000-02-29 | 2002-05-28 | Scimed Life Systems, Inc. | RF ablation and ultrasound catheter for crossing chronic total occlusions |
| US6679264B1 (en) | 2000-03-04 | 2004-01-20 | Emphasys Medical, Inc. | Methods and devices for use in performing pulmonary procedures |
| US6544226B1 (en) | 2000-03-13 | 2003-04-08 | Curon Medical, Inc. | Operative devices that can be removably fitted on catheter bodies to treat tissue regions in the body |
| US6770070B1 (en) | 2000-03-17 | 2004-08-03 | Rita Medical Systems, Inc. | Lung treatment apparatus and method |
| US8251070B2 (en) | 2000-03-27 | 2012-08-28 | Asthmatx, Inc. | Methods for treating airways |
| US20010031981A1 (en) | 2000-03-31 | 2001-10-18 | Evans Michael A. | Method and device for locating guidewire and treating chronic total occlusions |
| US6514290B1 (en) * | 2000-03-31 | 2003-02-04 | Broncus Technologies, Inc. | Lung elastic recoil restoring or tissue compressing device and method |
| US6673068B1 (en) | 2000-04-12 | 2004-01-06 | Afx, Inc. | Electrode arrangement for use in a medical instrument |
| US20060100666A1 (en) | 2000-04-20 | 2006-05-11 | Pulmosonix Pty. Ltd. | Apparatus and method for lung analysis |
| US6676686B2 (en) * | 2000-04-25 | 2004-01-13 | Harumi Naganuma | Noninvasive detection and activation of the lymphatic system in treating disease and alleviating pain |
| US6652517B1 (en) | 2000-04-25 | 2003-11-25 | Uab Research Foundation | Ablation catheter, system, and method of use thereof |
| US20010044596A1 (en) | 2000-05-10 | 2001-11-22 | Ali Jaafar | Apparatus and method for treatment of vascular restenosis by electroporation |
| EP1296598B1 (en) | 2000-05-16 | 2007-11-14 | Atrionix, Inc. | Apparatus incorporating an ultrasound transducer on a delivery member |
| US6610713B2 (en) | 2000-05-23 | 2003-08-26 | North Shore - Long Island Jewish Research Institute | Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation |
| US8914114B2 (en) | 2000-05-23 | 2014-12-16 | The Feinstein Institute For Medical Research | Inhibition of inflammatory cytokine production by cholinergic agonists and vagus nerve stimulation |
| US6306423B1 (en) | 2000-06-02 | 2001-10-23 | Allergan Sales, Inc. | Neurotoxin implant |
| US6306403B1 (en) | 2000-06-14 | 2001-10-23 | Allergan Sales, Inc. | Method for treating parkinson's disease with a botulinum toxin |
| EP1365800B1 (en) | 2000-06-28 | 2013-03-06 | Ira Sanders | Methods for using tetanus toxin for benificial purposes in animals (mammals) |
| US6477396B1 (en) | 2000-07-07 | 2002-11-05 | Biosense Webster, Inc. | Mapping and ablation catheter |
| US20030125786A1 (en) | 2000-07-13 | 2003-07-03 | Gliner Bradford Evan | Methods and apparatus for effectuating a lasting change in a neural-function of a patient |
| US6635054B2 (en) | 2000-07-13 | 2003-10-21 | Transurgical, Inc. | Thermal treatment methods and apparatus with focused energy application |
| AU2001273468B2 (en) | 2000-07-13 | 2005-05-26 | Recor Medical, Inc. | Energy application with inflatable annular lens |
| EP1172445A1 (en) | 2000-07-14 | 2002-01-16 | Praenadia GmbH | A method for direct genetic analysis of target cells by using fluorescence probes |
| US6903187B1 (en) * | 2000-07-21 | 2005-06-07 | Allergan, Inc. | Leucine-based motif and clostridial neurotoxins |
| IT1319170B1 (it) | 2000-07-28 | 2003-09-26 | Lorenzo Piccone | Apparecchiatura in grado di modulare il sistema neurovegetativo edintegrare la sua azione con quella del sistema nervoso centrale: |
| JP2002078809A (ja) | 2000-09-07 | 2002-03-19 | Shutaro Satake | 肺静脈電気的隔離用バルーンカテーテル |
| US6640120B1 (en) | 2000-10-05 | 2003-10-28 | Scimed Life Systems, Inc. | Probe assembly for mapping and ablating pulmonary vein tissue and method of using same |
| JP2002112946A (ja) | 2000-10-11 | 2002-04-16 | Olympus Optical Co Ltd | 内視鏡用フード |
| BR0107304A (pt) | 2000-10-12 | 2002-08-13 | Boehringer Ingelheim Pharma | Pó para inalação contendo tiotrópio |
| US6908928B2 (en) | 2000-10-12 | 2005-06-21 | Bi Pharma Kg. | Crystalline tiotropium bromide monohydrate, processes for the preparation thereof, and pharmaceutical compositions |
| UA75375C2 (en) | 2000-10-12 | 2006-04-17 | Boehringer Ingelheim Pharma | Method for producing powdery preparations for inhaling |
| US6475160B1 (en) | 2000-10-13 | 2002-11-05 | Nathan Sher | Skin testing device |
| AU1210901A (en) | 2000-10-17 | 2002-04-29 | Broncus Tech Inc | Modification of airways by application of energy |
| US7104987B2 (en) * | 2000-10-17 | 2006-09-12 | Asthmatx, Inc. | Control system and process for application of energy to airway walls and other mediums |
| US6549808B1 (en) | 2000-10-19 | 2003-04-15 | Heinz R. Gisel | Devices and methods for the transcutaneous delivery of ions and the electrical stimulation of tissue and cells at targeted areas in the eye |
| US6827931B1 (en) | 2000-10-20 | 2004-12-07 | Allergan, Inc. | Method for treating endocrine disorders |
| US6601581B1 (en) | 2000-11-01 | 2003-08-05 | Advanced Medical Applications, Inc. | Method and device for ultrasound drug delivery |
| US6575623B2 (en) | 2000-11-10 | 2003-06-10 | Cardiostream, Inc. | Guide wire having extendable contact sensors for measuring temperature of vessel walls |
| US6847849B2 (en) * | 2000-11-15 | 2005-01-25 | Medtronic, Inc. | Minimally invasive apparatus for implanting a sacral stimulation lead |
| US20040087936A1 (en) | 2000-11-16 | 2004-05-06 | Barrx, Inc. | System and method for treating abnormal tissue in an organ having a layered tissue structure |
| AT5005U1 (de) * | 2000-11-21 | 2002-02-25 | Ernst Biegler Ges M B H | Elektrodensystem zur elektrischen punktual-stimulationstherapie und handhabungswerkzeug hierfür |
| US6633779B1 (en) | 2000-11-27 | 2003-10-14 | Science Medicus, Inc. | Treatment of asthma and respiratory disease by means of electrical neuro-receptive waveforms |
| US6681136B2 (en) * | 2000-12-04 | 2004-01-20 | Science Medicus, Inc. | Device and method to modulate blood pressure by electrical waveforms |
| US7785323B2 (en) | 2000-12-04 | 2010-08-31 | Boston Scientific Scimed, Inc. | Loop structure including inflatable therapeutic device |
| US6676657B2 (en) | 2000-12-07 | 2004-01-13 | The United States Of America As Represented By The Department Of Health And Human Services | Endoluminal radiofrequency cauterization system |
| US20020087151A1 (en) | 2000-12-29 | 2002-07-04 | Afx, Inc. | Tissue ablation apparatus with a sliding ablation instrument and method |
| US20020143373A1 (en) | 2001-01-25 | 2002-10-03 | Courtnage Peter A. | System and method for therapeutic application of energy |
| US6735475B1 (en) | 2001-01-30 | 2004-05-11 | Advanced Bionics Corporation | Fully implantable miniature neurostimulator for stimulation as a therapy for headache and/or facial pain |
| US6989004B2 (en) | 2001-02-28 | 2006-01-24 | Rex Medical, L.P. | Apparatus for delivering ablation fluid to treat lesions |
| US7101384B2 (en) * | 2001-03-08 | 2006-09-05 | Tru-Light Corporation | Light processing of selected body components |
| US6723053B2 (en) | 2001-03-14 | 2004-04-20 | Coopersurgical, Inc. | Esophageal balloon catheter device |
| AU2002258565A1 (en) | 2001-03-20 | 2002-10-03 | Bruce R. Gilbert, M.D., Ph.D., P.C. | Device for surface stimulation of acupuncture points |
| US6699243B2 (en) | 2001-09-19 | 2004-03-02 | Curon Medical, Inc. | Devices, systems and methods for treating tissue regions of the body |
| US20050283197A1 (en) | 2001-04-10 | 2005-12-22 | Daum Douglas R | Systems and methods for hypotension |
| US6666858B2 (en) | 2001-04-12 | 2003-12-23 | Scimed Life Systems, Inc. | Cryo balloon for atrial ablation |
| US20040243118A1 (en) | 2001-06-01 | 2004-12-02 | Ayers Gregory M. | Device and method for positioning a catheter tip for creating a cryogenic lesion |
| US6620159B2 (en) | 2001-06-06 | 2003-09-16 | Scimed Life Systems, Inc. | Conductive expandable electrode body and method of manufacturing the same |
| US7127284B2 (en) | 2001-06-11 | 2006-10-24 | Mercator Medsystems, Inc. | Electroporation microneedle and methods for its use |
| US20020198574A1 (en) | 2001-06-22 | 2002-12-26 | Ron Gumpert | Automatic sobriety training and reconditioning system |
| EP1271384A1 (en) | 2001-06-28 | 2003-01-02 | Boehringer Ingelheim International GmbH | System and method for assisting in diagnosis, therapy and/or monitoring of a funtional lung disease |
| JP4602602B2 (ja) * | 2001-07-19 | 2010-12-22 | オリンパス株式会社 | 医療器具 |
| US20060167498A1 (en) | 2001-07-23 | 2006-07-27 | Dilorenzo Daniel J | Method, apparatus, and surgical technique for autonomic neuromodulation for the treatment of disease |
| ATE292992T1 (de) * | 2001-07-27 | 2005-04-15 | Impella Cardiotech Ag | Neurostimulationseinheit zur immobilisation des herzens während kardiochirurgischer operationen |
| US6622047B2 (en) | 2001-07-28 | 2003-09-16 | Cyberonics, Inc. | Treatment of neuropsychiatric disorders by near-diaphragmatic nerve stimulation |
| HU224941B1 (en) * | 2001-08-10 | 2006-04-28 | Bgi Innovacios Kft | Phototerapy apparatus |
| US6994706B2 (en) | 2001-08-13 | 2006-02-07 | Minnesota Medical Physics, Llc | Apparatus and method for treatment of benign prostatic hyperplasia |
| US6827718B2 (en) | 2001-08-14 | 2004-12-07 | Scimed Life Systems, Inc. | Method of and apparatus for positioning and maintaining the position of endoscopic instruments |
| US7734355B2 (en) | 2001-08-31 | 2010-06-08 | Bio Control Medical (B.C.M.) Ltd. | Treatment of disorders by unidirectional nerve stimulation |
| US20050060041A1 (en) * | 2001-09-04 | 2005-03-17 | Broncus Technologies, Inc. | Methods and devices for maintaining surgically created channels in a body organ |
| WO2003020103A2 (en) | 2001-09-04 | 2003-03-13 | Amit Technology Science & Medicine Ltd. | Method of and device for therapeutic illumination of internal organs and tissues |
| WO2007143665A2 (en) | 2006-06-05 | 2007-12-13 | Broncus Technologies, Inc. | Devices for creating passages and sensing blood vessels |
| US7708712B2 (en) | 2001-09-04 | 2010-05-04 | Broncus Technologies, Inc. | Methods and devices for maintaining patency of surgically created channels in a body organ |
| US20050060042A1 (en) * | 2001-09-04 | 2005-03-17 | Broncus Technologies, Inc. | Methods and devices for maintaining surgically created channels in a body organ |
| US20050137611A1 (en) | 2001-09-04 | 2005-06-23 | Broncus Technologies, Inc. | Methods and devices for maintaining surgically created channels in a body organ |
| US6802843B2 (en) | 2001-09-13 | 2004-10-12 | Csaba Truckai | Electrosurgical working end with resistive gradient electrodes |
| US6623742B2 (en) | 2001-09-17 | 2003-09-23 | Allergan, Inc. | Methods for treating fibromyalgia |
| US7187964B2 (en) | 2001-09-27 | 2007-03-06 | Dirar S. Khoury | Cardiac catheter imaging system |
| JP3607231B2 (ja) | 2001-09-28 | 2005-01-05 | 有限会社日本エレクテル | 高周波加温バルーンカテーテル |
| US6635056B2 (en) | 2001-10-09 | 2003-10-21 | Cardiac Pacemakers, Inc. | RF ablation apparatus and method using amplitude control |
| US6671533B2 (en) | 2001-10-11 | 2003-12-30 | Irvine Biomedical Inc. | System and method for mapping and ablating body tissue of the interior region of the heart |
| US6934583B2 (en) | 2001-10-22 | 2005-08-23 | Pacesetter, Inc. | Implantable lead and method for stimulating the vagus nerve |
| US6895267B2 (en) | 2001-10-24 | 2005-05-17 | Scimed Life Systems, Inc. | Systems and methods for guiding and locating functional elements on medical devices positioned in a body |
| US6669693B2 (en) | 2001-11-13 | 2003-12-30 | Mayo Foundation For Medical Education And Research | Tissue ablation device and methods of using |
| US6692492B2 (en) | 2001-11-28 | 2004-02-17 | Cardiac Pacemaker, Inc. | Dielectric-coated ablation electrode having a non-coated window with thermal sensors |
| US7591818B2 (en) | 2001-12-04 | 2009-09-22 | Endoscopic Technologies, Inc. | Cardiac ablation devices and methods |
| US6893436B2 (en) | 2002-01-03 | 2005-05-17 | Afx, Inc. | Ablation instrument having a flexible distal portion |
| EP1476147A4 (en) | 2002-01-18 | 2005-03-09 | Tatton Technologies Llc | METHODS OF TREATING VIEW DISORDERS |
| US7473273B2 (en) | 2002-01-22 | 2009-01-06 | Medtronic Vascular, Inc. | Stent assembly with therapeutic agent exterior banding |
| US20080147137A1 (en) | 2002-01-23 | 2008-06-19 | Biocontrol Medical Ltd. | Inhibition of sympathetic nerves |
| US20030153905A1 (en) | 2002-01-25 | 2003-08-14 | Edwards Stuart Denzil | Selective ablation system |
| US6695761B2 (en) | 2002-01-30 | 2004-02-24 | Biomed Solutions, Llc | Apparatus for assisting a heart |
| WO2003066155A2 (en) | 2002-02-01 | 2003-08-14 | The Cleveland Clinic Foundation | Methods of affecting hypothalamic-related conditions |
| JP2005515819A (ja) | 2002-02-01 | 2005-06-02 | ザ クリーブランド クリニック ファウンデイション | 交感神経鎖を刺激する伝達デバイス |
| AU2003241269A1 (en) | 2002-02-01 | 2003-09-09 | The Cleveland Clinic Foundation | Neurostimulation for affecting sleep disorders |
| US20110306997A9 (en) | 2002-02-21 | 2011-12-15 | Roschak Edmund J | Devices for creating passages and sensing for blood vessels |
| US6937896B1 (en) | 2002-02-26 | 2005-08-30 | Pacesetter, Inc. | Sympathetic nerve stimulator and/or pacemaker |
| GB0204525D0 (en) | 2002-02-27 | 2002-04-10 | Whale Jon | Medical therapy apparatus |
| US20030225443A1 (en) | 2002-03-13 | 2003-12-04 | Kanthi Kiran | Methods and devices for modulating atrial configuration |
| US20030187430A1 (en) | 2002-03-15 | 2003-10-02 | Vorisek James C. | System and method for measuring power at tissue during RF ablation |
| US7309707B2 (en) | 2002-03-20 | 2007-12-18 | Boehringer Ingelheim Pharma Gmbh & Co. Kg | Crystalline micronisate, process for the manufacture thereof and use thereof for the preparation of a medicament |
| US7239912B2 (en) | 2002-03-22 | 2007-07-03 | Leptos Biomedical, Inc. | Electric modulation of sympathetic nervous system |
| US7689276B2 (en) | 2002-09-13 | 2010-03-30 | Leptos Biomedical, Inc. | Dynamic nerve stimulation for treatment of disorders |
| US6755849B1 (en) | 2002-03-28 | 2004-06-29 | Board Of Regents, The University Of Texas System | Method for delivering energy to tissue and apparatus |
| US8551069B2 (en) | 2002-04-08 | 2013-10-08 | Medtronic Adrian Luxembourg S.a.r.l. | Methods and apparatus for treating contrast nephropathy |
| US7853333B2 (en) | 2002-04-08 | 2010-12-14 | Ardian, Inc. | Methods and apparatus for multi-vessel renal neuromodulation |
| US8347891B2 (en) | 2002-04-08 | 2013-01-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for performing a non-continuous circumferential treatment of a body lumen |
| US20080213331A1 (en) | 2002-04-08 | 2008-09-04 | Ardian, Inc. | Methods and devices for renal nerve blocking |
| US8145317B2 (en) | 2002-04-08 | 2012-03-27 | Ardian, Inc. | Methods for renal neuromodulation |
| US7756583B2 (en) | 2002-04-08 | 2010-07-13 | Ardian, Inc. | Methods and apparatus for intravascularly-induced neuromodulation |
| US7617005B2 (en) | 2002-04-08 | 2009-11-10 | Ardian, Inc. | Methods and apparatus for thermally-induced renal neuromodulation |
| US7162303B2 (en) | 2002-04-08 | 2007-01-09 | Ardian, Inc. | Renal nerve stimulation method and apparatus for treatment of patients |
| US8150519B2 (en) | 2002-04-08 | 2012-04-03 | Ardian, Inc. | Methods and apparatus for bilateral renal neuromodulation |
| US8774913B2 (en) | 2002-04-08 | 2014-07-08 | Medtronic Ardian Luxembourg S.A.R.L. | Methods and apparatus for intravasculary-induced neuromodulation |
| US20070129761A1 (en) | 2002-04-08 | 2007-06-07 | Ardian, Inc. | Methods for treating heart arrhythmia |
| US8131371B2 (en) | 2002-04-08 | 2012-03-06 | Ardian, Inc. | Methods and apparatus for monopolar renal neuromodulation |
| US7653438B2 (en) | 2002-04-08 | 2010-01-26 | Ardian, Inc. | Methods and apparatus for renal neuromodulation |
| US7620451B2 (en) | 2005-12-29 | 2009-11-17 | Ardian, Inc. | Methods and apparatus for pulsed electric field neuromodulation via an intra-to-extravascular approach |
| US20070135875A1 (en) | 2002-04-08 | 2007-06-14 | Ardian, Inc. | Methods and apparatus for thermally-induced renal neuromodulation |
| US6978174B2 (en) | 2002-04-08 | 2005-12-20 | Ardian, Inc. | Methods and devices for renal nerve blocking |
| US6953431B2 (en) | 2002-04-11 | 2005-10-11 | University Of South Florida | Eccentric dilation balloons for use with endoscopes |
| WO2003088820A2 (en) | 2002-04-19 | 2003-10-30 | Broncus Technologies, Inc. | Devices for maintaining surgically created openings |
| US7141041B2 (en) | 2003-03-19 | 2006-11-28 | Mercator Medsystems, Inc. | Catheters having laterally deployable needles |
| DE10218894A1 (de) | 2002-04-26 | 2003-11-13 | Storz Endoskop Prod Gmbh | Vorrichtung zur Überwachung medizinischer Geräte |
| US7326697B2 (en) * | 2002-04-29 | 2008-02-05 | Corcept Therapeutics, Inc. | Methods for increasing the therapeutic response to electroconvulsive therapy |
| KR20040108769A (ko) | 2002-05-02 | 2004-12-24 | 메디거스 엘티디. | 내시경 및 복강경용 진입 포트 |
| EP1515775A4 (en) * | 2002-05-07 | 2010-03-03 | Oncostim Inc | METHOD AND DEVICE FOR TREATING CANCER WITH ELECTROTHERAPY ASSOCIATED WITH CHEMOTHERAPEAN MEDICAMENTS AND RADIOTHERAPY |
| US6921538B2 (en) | 2002-05-10 | 2005-07-26 | Allergan, Inc. | Therapeutic treatments for neuropsychiatric disorders |
| AUPS226402A0 (en) * | 2002-05-13 | 2002-06-13 | Advanced Metal Coatings Pty Limited | An ablation catheter |
| US6898557B2 (en) | 2002-05-17 | 2005-05-24 | Hewlett-Packard Development Company, Lp. | System and method for remote testing of components |
| WO2003097095A1 (en) | 2002-05-20 | 2003-11-27 | Chemstop Pty Ltd | Process for the preparation and activation of substances and a means of producing same |
| US20050065553A1 (en) * | 2003-06-13 | 2005-03-24 | Omry Ben Ezra | Applications of vagal stimulation |
| US20040028676A1 (en) * | 2002-08-06 | 2004-02-12 | Klein Dean A. | Swallowing system tissue modifier |
| US7491403B2 (en) | 2002-12-20 | 2009-02-17 | Botulinum Toxin Research Associates | Pharmaceutical botulinum toxin compositions |
| US7292890B2 (en) | 2002-06-20 | 2007-11-06 | Advanced Bionics Corporation | Vagus nerve stimulation via unidirectional propagation of action potentials |
| US6776991B2 (en) | 2002-06-26 | 2004-08-17 | Allergan, Inc. | Methods for treating priapism |
| US6881213B2 (en) | 2002-06-28 | 2005-04-19 | Ethicon, Inc. | Device and method to expand treatment array |
| US20040009180A1 (en) | 2002-07-11 | 2004-01-15 | Allergan, Inc. | Transdermal botulinum toxin compositions |
| US6866662B2 (en) | 2002-07-23 | 2005-03-15 | Biosense Webster, Inc. | Ablation catheter having stabilizing array |
| US6878156B1 (en) | 2002-07-26 | 2005-04-12 | Alsius Corporation | Portable cooler for heat exchange catheter |
| US6852110B2 (en) | 2002-08-01 | 2005-02-08 | Solarant Medical, Inc. | Needle deployment for temperature sensing from an electrode |
| US7393350B2 (en) | 2002-08-06 | 2008-07-01 | Erbe Elektromedizin Gmbh | Cryo-surgical apparatus and methods |
| US6733464B2 (en) | 2002-08-23 | 2004-05-11 | Hewlett-Packard Development Company, L.P. | Multi-function sensor device and methods for its use |
| US7328069B2 (en) * | 2002-09-06 | 2008-02-05 | Medtronic, Inc. | Method, system and device for treating disorders of the pelvic floor by electrical stimulation of and the delivery of drugs to the left and right pudendal nerves |
| US6780183B2 (en) | 2002-09-16 | 2004-08-24 | Biosense Webster, Inc. | Ablation catheter having shape-changing balloon |
| WO2004033034A1 (en) | 2002-10-04 | 2004-04-22 | Microchips, Inc. | Medical device for neural stimulation and controlled drug delivery |
| US7037319B2 (en) | 2002-10-15 | 2006-05-02 | Scimed Life Systems, Inc. | Nanotube paper-based medical device |
| US6755026B2 (en) | 2002-10-24 | 2004-06-29 | Tech Medical Devices Inc. | Thermoelectric system to directly regulate the temperature of intravenous solutions and bodily fluids |
| US20040082947A1 (en) | 2002-10-25 | 2004-04-29 | The Regents Of The University Of Michigan | Ablation catheters |
| US20050222651A1 (en) | 2002-10-31 | 2005-10-06 | Cherokee Products, Inc | Therapeutic device and method |
| US7536339B1 (en) | 2002-10-31 | 2009-05-19 | Trading Technologies International, Inc. | Method and system for quantity entry |
| US7066950B2 (en) | 2002-10-31 | 2006-06-27 | Cherokee Products, Inc. | Vapor therapy treatment device and method for generating therapeutic vapor treatment |
| US7238357B2 (en) | 2002-11-05 | 2007-07-03 | Allergan, Inc. | Methods for treating ulcers and gastroesophageal reflux disease |
| US20040153056A1 (en) | 2002-11-11 | 2004-08-05 | Berchtold Holding Gmbh, A German Corporation | Probe |
| US20040106954A1 (en) | 2002-11-15 | 2004-06-03 | Whitehurst Todd K. | Treatment of congestive heart failure |
| EP1426078A1 (en) | 2002-12-04 | 2004-06-09 | Terumo Kabushiki Kaisha | Heart treatment equipment for preventing fatal arrhythmia |
| US7986994B2 (en) | 2002-12-04 | 2011-07-26 | Medtronic, Inc. | Method and apparatus for detecting change in intrathoracic electrical impedance |
| US7065409B2 (en) | 2002-12-13 | 2006-06-20 | Cardiac Pacemakers, Inc. | Device communications of an implantable medical device and an external system |
| US7395117B2 (en) | 2002-12-23 | 2008-07-01 | Cardiac Pacemakers, Inc. | Implantable medical device having long-term wireless capabilities |
| US7131445B2 (en) | 2002-12-23 | 2006-11-07 | Gyrus Medical Limited | Electrosurgical method and apparatus |
| US7127300B2 (en) | 2002-12-23 | 2006-10-24 | Cardiac Pacemakers, Inc. | Method and apparatus for enabling data communication between an implantable medical device and a patient management system |
| US6978182B2 (en) | 2002-12-27 | 2005-12-20 | Cardiac Pacemakers, Inc. | Advanced patient management system including interrogator/transceiver unit |
| US7278984B2 (en) | 2002-12-31 | 2007-10-09 | Alsius Corporation | System and method for controlling rate of heat exchange with patient |
| US20050059153A1 (en) * | 2003-01-22 | 2005-03-17 | George Frank R. | Electromagnetic activation of gene expression and cell growth |
| JP4067976B2 (ja) | 2003-01-24 | 2008-03-26 | 有限会社日本エレクテル | 高周波加温バルーンカテーテル |
| US20040147988A1 (en) | 2003-01-29 | 2004-07-29 | Stephens Willard M. | Method of treatment using one or more of a group of the "THERMA-KLOTH" products |
| US7613515B2 (en) | 2003-02-03 | 2009-11-03 | Enteromedics Inc. | High frequency vagal blockage therapy |
| US7844338B2 (en) | 2003-02-03 | 2010-11-30 | Enteromedics Inc. | High frequency obesity treatment |
| US20040172084A1 (en) | 2003-02-03 | 2004-09-02 | Knudson Mark B. | Method and apparatus for treatment of gastro-esophageal reflux disease (GERD) |
| DE10305553B4 (de) | 2003-02-10 | 2005-11-03 | Lothar Dr.med. Göbel | Vorrichtung zur Tamponade von Körperhöhlen |
| US20040158237A1 (en) | 2003-02-11 | 2004-08-12 | Marwan Abboud | Multi-energy ablation station |
| US6913616B2 (en) | 2003-02-14 | 2005-07-05 | Laser Cleanse | Laser ionization therapy system and method |
| EP1594566A4 (en) | 2003-02-18 | 2006-08-02 | Science Medicus Inc | IMPLANTATION PROCEDURE FOR REGULATING BLOOD PRESSURE VIA CODED NERVO SIGNALS |
| WO2004073505A2 (en) | 2003-02-20 | 2004-09-02 | Prorhythm, Inc. | Cardiac ablation devices |
| US6923808B2 (en) | 2003-02-24 | 2005-08-02 | Boston Scientific Scimed, Inc. | Probes having helical and loop shaped inflatable therapeutic elements |
| US7559890B2 (en) | 2003-02-26 | 2009-07-14 | Ikona Medical Corporation | Endoscopic imaging of an organ system |
| US8071550B2 (en) | 2003-03-03 | 2011-12-06 | Allergan, Inc. | Methods for treating uterine disorders |
| IL154801A0 (en) | 2003-03-06 | 2003-10-31 | Karotix Internat Ltd | Multi-channel and multi-dimensional system and method |
| US7551957B2 (en) | 2003-03-06 | 2009-06-23 | Bioelectronics Corp. | Electromagnetic therapy device and methods |
| US7783358B2 (en) | 2003-03-14 | 2010-08-24 | Endovx, Inc. | Methods and apparatus for treatment of obesity with an ultrasound device movable in two or three axes |
| US7684865B2 (en) * | 2003-03-14 | 2010-03-23 | Endovx, Inc. | Methods and apparatus for treatment of obesity |
| US7430449B2 (en) | 2003-03-14 | 2008-09-30 | Endovx, Inc. | Methods and apparatus for testing disruption of a vagal nerve |
| US7252677B2 (en) | 2003-03-14 | 2007-08-07 | Light Sciences Oncology, Inc. | Light generating device to intravascular use |
| US20060015151A1 (en) * | 2003-03-14 | 2006-01-19 | Aldrich William N | Method of using endoscopic truncal vagoscopy with gastric bypass, gastric banding and other procedures |
| US7394976B2 (en) | 2003-03-25 | 2008-07-01 | Arizant Healthcare Inc. | Fluid warming cassette and system capable of operation under negative pressure |
| US7186251B2 (en) | 2003-03-27 | 2007-03-06 | Cierra, Inc. | Energy based devices and methods for treatment of patent foramen ovale |
| KR100466866B1 (ko) | 2003-04-24 | 2005-01-24 | 전명기 | 생체조직을 응고괴사시키는 고주파 전기수술기용 전극 |
| US7390496B2 (en) | 2003-04-25 | 2008-06-24 | Allergan, Inc. | Therapeutic treatments for repetitive hand washing |
| US7396535B2 (en) | 2003-04-25 | 2008-07-08 | Ackerman Alan H | Therapy for obsessive compulsive head banging |
| US7221979B2 (en) | 2003-04-30 | 2007-05-22 | Medtronic, Inc. | Methods and apparatus for the regulation of hormone release |
| US7101387B2 (en) | 2003-04-30 | 2006-09-05 | Scimed Life Systems, Inc. | Radio frequency ablation cooling shield |
| US6838434B2 (en) | 2003-05-02 | 2005-01-04 | Allergan, Inc. | Methods for treating sinus headache |
| US20040226556A1 (en) | 2003-05-13 | 2004-11-18 | Deem Mark E. | Apparatus for treating asthma using neurotoxin |
| US20060287679A1 (en) | 2003-05-16 | 2006-12-21 | Stone Robert T | Method and system to control respiration by means of confounding neuro-electrical signals |
| US20060111755A1 (en) | 2003-05-16 | 2006-05-25 | Stone Robert T | Method and system to control respiration by means of neuro-electrical coded signals |
| US20050261747A1 (en) | 2003-05-16 | 2005-11-24 | Schuler Eleanor L | Method and system to control respiration by means of neuro-electrical coded signals |
| US6937903B2 (en) | 2003-05-16 | 2005-08-30 | Science Medicus, Inc. | Respiratory control by means of neuro-electrical coded signals |
| WO2004111074A2 (en) * | 2003-05-30 | 2004-12-23 | The Cleveland Clinic Foundation | In vivo production of a clostridial neurotoxin light chain peptide |
| US7149574B2 (en) * | 2003-06-09 | 2006-12-12 | Palo Alto Investors | Treatment of conditions through electrical modulation of the autonomic nervous system |
| US7738952B2 (en) | 2003-06-09 | 2010-06-15 | Palo Alto Investors | Treatment of conditions through modulation of the autonomic nervous system |
| US20040253274A1 (en) | 2003-06-11 | 2004-12-16 | Allergan, Inc. | Use of a clostridial toxin to reduce appetite |
| US7186220B2 (en) * | 2003-07-02 | 2007-03-06 | Cardiac Pacemakers, Inc. | Implantable devices and methods using frequency-domain analysis of thoracic signal |
| US8002740B2 (en) | 2003-07-18 | 2011-08-23 | Broncus Technologies, Inc. | Devices for maintaining patency of surgically created channels in tissue |
| US8308682B2 (en) | 2003-07-18 | 2012-11-13 | Broncus Medical Inc. | Devices for maintaining patency of surgically created channels in tissue |
| WO2005006963A2 (en) | 2003-07-18 | 2005-01-27 | Broncus Technologies, Inc. | Devices for maintaining patency of surgically created channels in tissue |
| US6974224B2 (en) | 2003-07-30 | 2005-12-13 | Tru-Light Corporation | Modularized light processing of body components |
| US7757690B2 (en) | 2003-09-18 | 2010-07-20 | Cardiac Pacemakers, Inc. | System and method for moderating a therapy delivered during sleep using physiologic data acquired during non-sleep |
| US7662101B2 (en) * | 2003-09-18 | 2010-02-16 | Cardiac Pacemakers, Inc. | Therapy control based on cardiopulmonary status |
| US7610094B2 (en) | 2003-09-18 | 2009-10-27 | Cardiac Pacemakers, Inc. | Synergistic use of medical devices for detecting medical disorders |
| US7156843B2 (en) | 2003-09-08 | 2007-01-02 | Medtronic, Inc. | Irrigated focal ablation tip |
| US20050065584A1 (en) | 2003-09-09 | 2005-03-24 | Schiff Jonathan D. | System and method for cooling internal tissue |
| US7291146B2 (en) | 2003-09-12 | 2007-11-06 | Minnow Medical, Inc. | Selectable eccentric remodeling and/or ablation of atherosclerotic material |
| WO2005027996A2 (en) | 2003-09-15 | 2005-03-31 | Atrium Medical Corporation | Application of a therapeutic substance to a tissue location using an expandable medical device |
| US20050090722A1 (en) | 2003-09-17 | 2005-04-28 | Thomas Perez | Method and apparatus for providing UV light to blood |
| US20050255317A1 (en) | 2003-09-22 | 2005-11-17 | Advanced Cardiovascular Systems, Inc. | Polymeric marker with high radiopacity for use in medical devices |
| US20050153885A1 (en) | 2003-10-08 | 2005-07-14 | Yun Anthony J. | Treatment of conditions through modulation of the autonomic nervous system |
| US7435252B2 (en) | 2003-10-15 | 2008-10-14 | Valam Corporation | Control of microorganisms in the sino-nasal tract |
| US20050171396A1 (en) | 2003-10-20 | 2005-08-04 | Cyberheart, Inc. | Method for non-invasive lung treatment |
| US7266414B2 (en) | 2003-10-24 | 2007-09-04 | Syntach, Ag | Methods and devices for creating electrical block at specific sites in cardiac tissue with targeted tissue ablation |
| US20050096644A1 (en) | 2003-10-30 | 2005-05-05 | Hall Jeffrey A. | Energy delivery optimization for RF duty cycle for lesion creation |
| US20050165456A1 (en) | 2003-12-19 | 2005-07-28 | Brian Mann | Digital electrode for cardiac rhythm management |
| JP4391221B2 (ja) | 2003-12-22 | 2009-12-24 | 有限会社日本エレクテル | 高周波加温バルーンカテーテル |
| US7676269B2 (en) | 2003-12-29 | 2010-03-09 | Palo Alto Investors | Treatment of female fertility conditions through modulation of the autonomic nervous system |
| US7422555B2 (en) | 2003-12-30 | 2008-09-09 | Jacob Zabara | Systems and methods for therapeutically treating neuro-psychiatric disorders and other illnesses |
| US7150745B2 (en) | 2004-01-09 | 2006-12-19 | Barrx Medical, Inc. | Devices and methods for treatment of luminal tissue |
| US7371231B2 (en) | 2004-02-02 | 2008-05-13 | Boston Scientific Scimed, Inc. | System and method for performing ablation using a balloon |
| US20050222628A1 (en) | 2004-03-31 | 2005-10-06 | Krakousky Alexander A | Implantable device for pain control and other medical treatments |
| US20050222635A1 (en) | 2004-03-31 | 2005-10-06 | Krakovsky Alexander A | Potency package two |
| US8007495B2 (en) | 2004-03-31 | 2011-08-30 | Biosense Webster, Inc. | Catheter for circumferential ablation at or near a pulmonary vein |
| EP2484408B1 (en) | 2004-04-12 | 2014-02-12 | Zoll Medical Corporation | Automated pediatric defibrillator |
| EP1737371B1 (en) | 2004-04-19 | 2011-06-08 | ProRhythm, Inc. | Ablation devices with sensor structures |
| US7410480B2 (en) | 2004-04-21 | 2008-08-12 | Acclarent, Inc. | Devices and methods for delivering therapeutic substances for the treatment of sinusitis and other disorders |
| US7377918B2 (en) | 2004-04-28 | 2008-05-27 | Gyrus Medical Limited | Electrosurgical method and apparatus |
| US7324850B2 (en) | 2004-04-29 | 2008-01-29 | Cardiac Pacemakers, Inc. | Method and apparatus for communication between a handheld programmer and an implantable medical device |
| WO2006007048A2 (en) | 2004-05-04 | 2006-01-19 | The Cleveland Clinic Foundation | Methods of treating medical conditions by neuromodulation of the sympathetic nervous system |
| US7706878B2 (en) | 2004-05-07 | 2010-04-27 | Zoll Medical Corporation | Automated caregiving device with prompting based on caregiver progress |
| US7899527B2 (en) | 2004-05-13 | 2011-03-01 | Palo Alto Investors | Treatment of conditions through modulation of the autonomic nervous system during at least one predetermined menstrual cycle phase |
| CA2569413A1 (en) * | 2004-05-14 | 2005-12-01 | Medtronic, Inc. | Methods of using high intensity focused ultrasound to form an ablated tissue area |
| WO2006007284A2 (en) * | 2004-06-21 | 2006-01-19 | Curon Medical, Inc. | Systems and methods for treating tissue regions of the body |
| US8409167B2 (en) | 2004-07-19 | 2013-04-02 | Broncus Medical Inc | Devices for delivering substances through an extra-anatomic opening created in an airway |
| WO2006014732A2 (en) | 2004-07-19 | 2006-02-09 | Broncus Technologies, Inc. | Methods and devices for maintaining patency of surgically created channels in a body organ |
| US7742795B2 (en) | 2005-03-28 | 2010-06-22 | Minnow Medical, Inc. | Tuned RF energy for selective treatment of atheroma and other target tissues and/or structures |
| EP1804902A4 (en) | 2004-09-10 | 2008-04-16 | Cleveland Clinic Foundation | INTRALUMINAL ELECTRODE ASSEMBLY |
| US8396548B2 (en) | 2008-11-14 | 2013-03-12 | Vessix Vascular, Inc. | Selective drug delivery in a lumen |
| US7906124B2 (en) | 2004-09-18 | 2011-03-15 | Asthmatx, Inc. | Inactivation of smooth muscle tissue |
| US7553309B2 (en) | 2004-10-08 | 2009-06-30 | Covidien Ag | Electrosurgical system employing multiple electrodes and method thereof |
| US7402172B2 (en) | 2004-10-13 | 2008-07-22 | Boston Scientific Scimed, Inc. | Intraluminal therapeutic patch |
| US20060089637A1 (en) | 2004-10-14 | 2006-04-27 | Werneth Randell L | Ablation catheter |
| WO2006044662A2 (en) | 2004-10-14 | 2006-04-27 | Prorhythm, Inc. | Ablation devices and methods with ultrasonic imaging |
| US7553307B2 (en) | 2004-10-15 | 2009-06-30 | Baxano, Inc. | Devices and methods for tissue modification |
| US8221397B2 (en) | 2004-10-15 | 2012-07-17 | Baxano, Inc. | Devices and methods for tissue modification |
| US7524318B2 (en) * | 2004-10-28 | 2009-04-28 | Boston Scientific Scimed, Inc. | Ablation probe with flared electrodes |
| US20070083239A1 (en) | 2005-09-23 | 2007-04-12 | Denise Demarais | Methods and apparatus for inducing, monitoring and controlling renal neuromodulation |
| US7937143B2 (en) | 2004-11-02 | 2011-05-03 | Ardian, Inc. | Methods and apparatus for inducing controlled renal neuromodulation |
| WO2006052940A2 (en) | 2004-11-05 | 2006-05-18 | Asthmatx, Inc. | Medical device with procedure improvement features |
| US7200445B1 (en) | 2005-10-21 | 2007-04-03 | Asthmatx, Inc. | Energy delivery devices and methods |
| US7949407B2 (en) | 2004-11-05 | 2011-05-24 | Asthmatx, Inc. | Energy delivery devices and methods |
| AU2005304632C1 (en) | 2004-11-12 | 2010-11-04 | Boston Scientific Scimed, Inc. | Improved energy delivery devices and methods |
| JP2008519669A (ja) | 2004-11-12 | 2008-06-12 | アスマティックス,インコーポレイテッド | 改善されたエネルギー送達の装置および方法 |
| US20070093802A1 (en) | 2005-10-21 | 2007-04-26 | Danek Christopher J | Energy delivery devices and methods |
| MX2007005937A (es) | 2004-11-16 | 2007-09-11 | Robert L Barry | Metodo y aparato para tratamiento pulmonar. |
| US8332047B2 (en) | 2004-11-18 | 2012-12-11 | Cardiac Pacemakers, Inc. | System and method for closed-loop neural stimulation |
| US20060118127A1 (en) * | 2004-12-06 | 2006-06-08 | Chinn Douglas O | Tissue protective system and method for thermoablative therapies |
| US20060135953A1 (en) | 2004-12-22 | 2006-06-22 | Wlodzimierz Kania | Tissue ablation system including guidewire with sensing element |
| US11207518B2 (en) | 2004-12-27 | 2021-12-28 | The Feinstein Institutes For Medical Research | Treating inflammatory disorders by stimulation of the cholinergic anti-inflammatory pathway |
| ATE489132T1 (de) | 2004-12-27 | 2010-12-15 | The Feinstein Inst Medical Res | Behandlung von entzündlichen erkrankungen durch elektrische stimulation des vagus-nervs |
| US20080021274A1 (en) | 2005-01-05 | 2008-01-24 | Avantis Medical Systems, Inc. | Endoscopic medical device with locking mechanism and method |
| US7722538B2 (en) | 2005-02-10 | 2010-05-25 | Dirar S. Khoury | Conductance-imaging catheter and determination of cavitary volume |
| US20070060954A1 (en) | 2005-02-25 | 2007-03-15 | Tracy Cameron | Method of using spinal cord stimulation to treat neurological disorders or conditions |
| US20060241523A1 (en) | 2005-04-12 | 2006-10-26 | Prorhythm, Inc. | Ultrasound generating method, apparatus and probe |
| US7594925B2 (en) | 2005-04-21 | 2009-09-29 | Asthmatx, Inc. | Control systems for delivering energy |
| US8052668B2 (en) | 2005-05-13 | 2011-11-08 | Cardiac Pacemakers, Inc. | Neurotoxic agents and devices to treat atrial fibrillation |
| AU2006252347A1 (en) | 2005-06-01 | 2006-12-07 | Broncus Technologies, Inc. | Methods and devices for maintaining surgically created channels in a body organ |
| US7621890B2 (en) | 2005-06-09 | 2009-11-24 | Endocare, Inc. | Heat exchange catheter with multi-lumen tube having a fluid return passageway |
| CN101309651B (zh) | 2005-06-20 | 2011-12-07 | 麦德托尼克消融前沿有限公司 | 消融导管 |
| DE102005030861A1 (de) | 2005-07-01 | 2007-01-04 | Invendo Medical Gmbh | Kühleinrichtung für elektronische Bauteile vorzugsweise eines Endoskops |
| US20070021803A1 (en) * | 2005-07-22 | 2007-01-25 | The Foundry Inc. | Systems and methods for neuromodulation for treatment of pain and other disorders associated with nerve conduction |
| EP1906923B1 (en) | 2005-07-22 | 2018-01-24 | The Foundry, LLC | Systems and methods for delivery of a therapeutic agent |
| US9511210B2 (en) | 2006-05-19 | 2016-12-06 | The Foundry, Llc | Apparatus for toxin delivery to the nasal cavity |
| US8660647B2 (en) | 2005-07-28 | 2014-02-25 | Cyberonics, Inc. | Stimulating cranial nerve to treat pulmonary disorder |
| US20070043342A1 (en) | 2005-08-16 | 2007-02-22 | Galil Medical Ltd. | Cryoprobe with reduced adhesion to frozen tissue, and cryosurgical methods utilizing same |
| US7628789B2 (en) | 2005-08-17 | 2009-12-08 | Pulmonx Corporation | Selective lung tissue ablation |
| WO2007019876A1 (en) | 2005-08-19 | 2007-02-22 | De Neve Werner Francois | Device and method for assisting heat ablation treatment of the heart |
| US20070055328A1 (en) † | 2005-09-02 | 2007-03-08 | Mayse Martin L | Device and method for esophageal cooling |
| US9486274B2 (en) | 2005-09-07 | 2016-11-08 | Ulthera, Inc. | Dissection handpiece and method for reducing the appearance of cellulite |
| US8868177B2 (en) | 2009-03-20 | 2014-10-21 | ElectroCore, LLC | Non-invasive treatment of neurodegenerative diseases |
| US9089719B2 (en) | 2009-03-20 | 2015-07-28 | ElectroCore, LLC | Non-invasive methods and devices for inducing euphoria in a patient and their therapeutic application |
| US9174066B2 (en) | 2009-03-20 | 2015-11-03 | ElectroCore, LLC | Devices and methods for non-invasive capacitive electrical stimulation and their use for vagus nerve stimulation on the neck of a patient |
| US7747324B2 (en) | 2005-11-10 | 2010-06-29 | Electrocore Llc | Electrical stimulation treatment of bronchial constriction |
| US8676330B2 (en) | 2009-03-20 | 2014-03-18 | ElectroCore, LLC | Electrical and magnetic stimulators used to treat migraine/sinus headache and comorbid disorders |
| US8041428B2 (en) | 2006-02-10 | 2011-10-18 | Electrocore Llc | Electrical stimulation treatment of hypotension |
| US9119953B2 (en) | 2005-11-10 | 2015-09-01 | ElectroCore, LLC | Non-invasive treatment of a medical condition by vagus nerve stimulation |
| US20070106338A1 (en) | 2005-11-10 | 2007-05-10 | Electrocore, Inc. | Direct and Indirect Control of Muscle for the Treatment of Pathologies |
| US8812112B2 (en) | 2005-11-10 | 2014-08-19 | ElectroCore, LLC | Electrical treatment of bronchial constriction |
| US8874205B2 (en) | 2009-03-20 | 2014-10-28 | ElectroCore, LLC | Device and methods for non-invasive electrical stimulation and their use for vagal nerve stimulation |
| US9037247B2 (en) | 2005-11-10 | 2015-05-19 | ElectroCore, LLC | Non-invasive treatment of bronchial constriction |
| US20110125203A1 (en) | 2009-03-20 | 2011-05-26 | ElectroCore, LLC. | Magnetic Stimulation Devices and Methods of Therapy |
| US8874227B2 (en) | 2009-03-20 | 2014-10-28 | ElectroCore, LLC | Devices and methods for non-invasive capacitive electrical stimulation and their use for vagus nerve stimulation on the neck of a patient |
| US8676324B2 (en) | 2005-11-10 | 2014-03-18 | ElectroCore, LLC | Electrical and magnetic stimulators used to treat migraine/sinus headache, rhinitis, sinusitis, rhinosinusitis, and comorbid disorders |
| US20070106337A1 (en) | 2005-11-10 | 2007-05-10 | Electrocore, Inc. | Methods And Apparatus For Treating Disorders Through Neurological And/Or Muscular Intervention |
| EP1954348A1 (en) | 2005-11-22 | 2008-08-13 | Mayo Foundation for Medical Education and Research | Detecting and treating nervous system disorders |
| US7997278B2 (en) | 2005-11-23 | 2011-08-16 | Barrx Medical, Inc. | Precision ablating method |
| US8190238B2 (en) | 2005-12-09 | 2012-05-29 | Hansen Medical, Inc. | Robotic catheter system and methods |
| US20070149959A1 (en) | 2005-12-23 | 2007-06-28 | Sanarus Medical, Inc. | Cryoprobe for low pressure systems |
| JP2009525805A (ja) | 2006-02-10 | 2009-07-16 | エレクトロコア、インコーポレイテッド | 電気的変調を用いたアナフィラキシーの治療方法および治療装置 |
| WO2007094828A2 (en) | 2006-02-10 | 2007-08-23 | Electrocore, Inc. | Electrical stimulation treatment of hypotension |
| US20070239256A1 (en) | 2006-03-22 | 2007-10-11 | Jan Weber | Medical devices having electrical circuits with multilayer regions |
| US20100241188A1 (en) | 2009-03-20 | 2010-09-23 | Electrocore, Inc. | Percutaneous Electrical Treatment Of Tissue |
| US20100057178A1 (en) | 2006-04-18 | 2010-03-04 | Electrocore, Inc. | Methods and apparatus for spinal cord stimulation using expandable electrode |
| US8209034B2 (en) | 2008-12-18 | 2012-06-26 | Electrocore Llc | Methods and apparatus for electrical stimulation treatment using esophageal balloon and electrode |
| US8401650B2 (en) | 2008-04-10 | 2013-03-19 | Electrocore Llc | Methods and apparatus for electrical treatment using balloon and electrode |
| US20100174340A1 (en) | 2006-04-18 | 2010-07-08 | Electrocore, Inc. | Methods and Apparatus for Applying Energy to Patients |
| US20070255270A1 (en) | 2006-04-27 | 2007-11-01 | Medtronic Vascular, Inc. | Intraluminal guidance system using bioelectric impedance |
| EP2020914B1 (en) | 2006-05-10 | 2017-03-01 | Regents of the University of Minnesota | Methods and apparatus of three dimensional cardiac electrophysiological imaging |
| EP2021846B1 (en) | 2006-05-19 | 2017-05-03 | Koninklijke Philips N.V. | Ablation device with optimized input power profile |
| GB0610637D0 (en) | 2006-05-23 | 2006-07-05 | Emcision Ltd | Apparatus and method for treating tissue such as tumours |
| US20080004596A1 (en) | 2006-05-25 | 2008-01-03 | Palo Alto Institute | Delivery of agents by microneedle catheter |
| PL2037840T3 (pl) | 2006-06-28 | 2012-09-28 | Medtronic Ardian Luxembourg | Systemy do termicznie indukowanej neuromodulacji nerek |
| EP2067447B1 (en) | 2006-06-30 | 2012-08-15 | Bernard Alfons Lucie B. Cambier | Steerable catheter device for the chemoembolization and/or embolization of vascular structures, tumours and/or organs |
| US7517320B2 (en) | 2006-06-30 | 2009-04-14 | Broncus Technologies, Inc. | Airway bypass site selection and treatment planning |
| US7425211B2 (en) | 2006-08-03 | 2008-09-16 | Arbel Medical Ltd. | Cryogenic probe for treating enlarged volume of tissue |
| US7588549B2 (en) | 2006-08-03 | 2009-09-15 | Terumo Cardiovascular Systems Corporation | Thermoelectric temperature control for extracorporeal blood circuit |
| US8177829B2 (en) | 2006-08-23 | 2012-05-15 | Boston Scientific Scimed, Inc. | Auxiliary balloon catheter |
| US8103341B2 (en) | 2006-08-25 | 2012-01-24 | Cardiac Pacemakers, Inc. | System for abating neural stimulation side effects |
| EP2954868A1 (en) | 2006-10-18 | 2015-12-16 | Vessix Vascular, Inc. | Tuned rf energy and electrical tissue characterization for selective treatment of target tissues |
| AU2007310991B2 (en) | 2006-10-18 | 2013-06-20 | Boston Scientific Scimed, Inc. | System for inducing desirable temperature effects on body tissue |
| JP5479901B2 (ja) | 2006-10-18 | 2014-04-23 | べシックス・バスキュラー・インコーポレイテッド | 身体組織に対する所望の温度作用の誘発 |
| US7931647B2 (en) | 2006-10-20 | 2011-04-26 | Asthmatx, Inc. | Method of delivering energy to a lung airway using markers |
| US8882697B2 (en) | 2006-11-07 | 2014-11-11 | Dc Devices, Inc. | Apparatus and methods to create and maintain an intra-atrial pressure relief opening |
| JP2010510029A (ja) | 2006-11-22 | 2010-04-02 | ブロンカス テクノロジーズ, インコーポレイテッド | 通路作成および血管感知のための装置 |
| GB0624658D0 (en) | 2006-12-11 | 2007-01-17 | Medical Device Innovations Ltd | Electrosurgical ablation apparatus and a method of ablating biological tissue |
| CN100574719C (zh) | 2006-12-26 | 2009-12-30 | 上海导向医疗系统有限公司 | 气体节流冷却式射频消融电极 |
| WO2008089357A1 (en) | 2007-01-17 | 2008-07-24 | The Cleveland Clinic Foundation | Apparatus and methods for treating pulmonary conditions |
| WO2008109760A2 (en) | 2007-03-06 | 2008-09-12 | Broncus Technologies, Inc. | Blood vessel sensing catheter having working lumen for medical appliances |
| US8496653B2 (en) | 2007-04-23 | 2013-07-30 | Boston Scientific Scimed, Inc. | Thrombus removal |
| CN101292897A (zh) | 2007-04-25 | 2008-10-29 | 中国科学院理化技术研究所 | 冷热探针治疗系统 |
| WO2008137757A1 (en) | 2007-05-04 | 2008-11-13 | Barrx Medical, Inc. | Method and apparatus for gastrointestinal tract ablation for treatment of obesity |
| US8983609B2 (en) | 2007-05-30 | 2015-03-17 | The Cleveland Clinic Foundation | Apparatus and method for treating pulmonary conditions |
| WO2008156982A1 (en) | 2007-06-13 | 2008-12-24 | E- Pacing, Inc. | Implantable devices and methods for stimulation of cardiac or other tissues |
| US20080312543A1 (en) | 2007-06-18 | 2008-12-18 | Broncus Technologies, Inc. | Measurement of pulmonary hypertension from within the airways |
| US8784338B2 (en) | 2007-06-22 | 2014-07-22 | Covidien Lp | Electrical means to normalize ablational energy transmission to a luminal tissue surface of varying size |
| WO2009009443A1 (en) | 2007-07-06 | 2009-01-15 | Barrx Medical, Inc. | Method and apparatus for gastrointestinal tract ablation to achieve loss of persistent and/or recurrent excess body weight following a weight-loss operation |
| WO2009006748A2 (en) | 2007-07-09 | 2009-01-15 | Sis-Medical Ag | Method and system to detect neointima coverage of a stent |
| US8235983B2 (en) | 2007-07-12 | 2012-08-07 | Asthmatx, Inc. | Systems and methods for delivering energy to passageways in a patient |
| US20090177192A1 (en) | 2007-07-13 | 2009-07-09 | Scimed Life Systems, Inc. | Method for ablating tissue to facilitate implantation and apparatus and kit for use therewith |
| JP4967875B2 (ja) | 2007-07-17 | 2012-07-04 | 三菱電機株式会社 | 半導体発光装置及びその製造方法 |
| JP5436423B2 (ja) * | 2007-07-24 | 2014-03-05 | アスマティックス,インコーポレイテッド | 組織治療装置への電力制御等のインピーダンス検出に基づく電力制御のシステムおよび方法 |
| US20090043301A1 (en) * | 2007-08-09 | 2009-02-12 | Asthmatx, Inc. | Monopolar energy delivery devices and methods for controlling current density in tissue |
| US20090076491A1 (en) | 2007-09-19 | 2009-03-19 | Broncus Technologies, Inc. | Methods for maintaining the patency of collateral channels in the lungs using cryo-energy |
| CA2697829C (en) | 2007-10-12 | 2017-09-19 | Conmed Corporation | Apparatus and methods for the measurement of cardiac output |
| CN101411645A (zh) | 2007-10-19 | 2009-04-22 | 上海导向医疗系统有限公司 | 表面温度均匀的射频消融电极 |
| US8323202B2 (en) | 2007-11-16 | 2012-12-04 | Pneumrx, Inc. | Method and system for measuring pulmonary artery circulation information |
| US8906011B2 (en) | 2007-11-16 | 2014-12-09 | Kardium Inc. | Medical device for use in bodily lumens, for example an atrium |
| US20090192505A1 (en) | 2007-12-05 | 2009-07-30 | Reset Medical, Inc. | Method for cryospray ablation |
| US8155744B2 (en) | 2007-12-13 | 2012-04-10 | The Cleveland Clinic Foundation | Neuromodulatory methods for treating pulmonary disorders |
| US20090204005A1 (en) | 2008-02-07 | 2009-08-13 | Broncus Technologies, Inc. | Puncture resistant catheter for sensing vessels and for creating passages in tissue |
| EP2249900A4 (en) | 2008-02-08 | 2013-11-06 | Terumo Corp | DEVICE FOR LOCAL INTRALUMINAL TRANSPORT OF A BIOLOGICALLY AND PHYSIOLOGICALLY ACTIVE AGENCY |
| US8483831B1 (en) | 2008-02-15 | 2013-07-09 | Holaira, Inc. | System and method for bronchial dilation |
| US20090248011A1 (en) | 2008-02-28 | 2009-10-01 | Hlavka Edwin J | Chronic venous insufficiency treatment |
| US20090227980A1 (en) | 2008-03-06 | 2009-09-10 | Boston Scientific Scimed, Inc. | Triggered drug release |
| US8470337B2 (en) | 2008-03-13 | 2013-06-25 | Allergan, Inc. | Therapeutic treatments using botulinum neurotoxin |
| US20090254142A1 (en) | 2008-04-08 | 2009-10-08 | Silhouette Medical, Usa | Treating Medical Conditions of Hollow Organs |
| US8682449B2 (en) | 2008-04-10 | 2014-03-25 | ElectroCore, LLC | Methods and apparatus for transcranial stimulation |
| US8543211B2 (en) | 2008-04-10 | 2013-09-24 | ElectroCore, LLC | Methods and apparatus for deep brain stimulation |
| WO2009126383A2 (en) | 2008-04-10 | 2009-10-15 | Electrocore Inc. | Methods and apparatus for electrical treatment using balloon and electrode |
| EP4166107A1 (en) | 2008-05-09 | 2023-04-19 | Nuvaira, Inc. | Systems, assemblies, and methods for treating a bronchial tree |
| US8128617B2 (en) | 2008-05-27 | 2012-03-06 | Boston Scientific Scimed, Inc. | Electrical mapping and cryo ablating with a balloon catheter |
| US9101382B2 (en) | 2009-02-18 | 2015-08-11 | Hotspur Technologies, Inc. | Apparatus and methods for treating obstructions within body lumens |
| US9089700B2 (en) | 2008-08-11 | 2015-07-28 | Cibiem, Inc. | Systems and methods for treating dyspnea, including via electrical afferent signal blocking |
| US10736689B2 (en) | 2008-08-20 | 2020-08-11 | Prostacare Pty Ltd | Low-corrosion electrode for treating tissue |
| WO2010027798A2 (en) | 2008-08-26 | 2010-03-11 | Northwestern University | Ablation devices and related methods thereof |
| EP2328650B1 (en) | 2008-08-26 | 2016-04-06 | Cook Medical Technologies LLC | Balloon catheters having a plurality of needles for the injection of one or more therapeutic agents |
| US8303581B2 (en) | 2008-09-02 | 2012-11-06 | Covidien Lp | Catheter with remotely extendible instruments |
| US20100076518A1 (en) | 2008-09-18 | 2010-03-25 | Conceptx Medical, Inc. | Systems and methods for relieving dyspnea |
| EP2349371B1 (en) | 2008-10-07 | 2013-12-04 | Boston Scientific Scimed, Inc. | Medical devices for delivery of therapeutic agents to body lumens |
| WO2010056771A1 (en) | 2008-11-11 | 2010-05-20 | Shifamed Llc | Low profile electrode assembly |
| US8734502B2 (en) | 2008-12-17 | 2014-05-27 | Cook Medical Technologies Llc | Tapered stent and flexible prosthesis |
| US20100160906A1 (en) | 2008-12-23 | 2010-06-24 | Asthmatx, Inc. | Expandable energy delivery devices having flexible conductive elements and associated systems and methods |
| EP2376011B1 (en) | 2009-01-09 | 2019-07-03 | ReCor Medical, Inc. | Apparatus for treatment of mitral valve insufficiency |
| US10252074B2 (en) | 2009-03-20 | 2019-04-09 | ElectroCore, LLC | Nerve stimulation methods for averting imminent onset or episode of a disease |
| US9174045B2 (en) | 2009-03-20 | 2015-11-03 | ElectroCore, LLC | Non-invasive electrical and magnetic nerve stimulators used to treat overactive bladder and urinary incontinence |
| US10286212B2 (en) | 2009-03-20 | 2019-05-14 | Electrocore, Inc. | Nerve stimulation methods for averting imminent onset or episode of a disease |
| US8914122B2 (en) | 2009-03-20 | 2014-12-16 | ElectroCore, LLC | Devices and methods for non-invasive capacitive electrical stimulation and their use for vagus nerve stimulation on the neck of a patient |
| WO2010110785A1 (en) | 2009-03-24 | 2010-09-30 | Electrocore, Inc. | Electrical treatment of bronchial constriction |
| US20100256629A1 (en) | 2009-04-06 | 2010-10-07 | Voyage Medical, Inc. | Methods and devices for treatment of the ostium |
| US20100256630A1 (en) | 2009-04-07 | 2010-10-07 | Angiodynamics, Inc. | Irreversible electroporation (ire) for esophageal disease |
| EP2243501A1 (en) | 2009-04-24 | 2010-10-27 | Eurocor Gmbh | Shellac and paclitaxel coated catheter balloons |
| US8788034B2 (en) | 2011-05-09 | 2014-07-22 | Setpoint Medical Corporation | Single-pulse activation of the cholinergic anti-inflammatory pathway to treat chronic inflammation |
| CN201431510Y (zh) | 2009-05-08 | 2010-03-31 | 上海理工大学 | 用于椎间盘的气冷与灌注组合式射频消融探针电极装置 |
| US8551096B2 (en) | 2009-05-13 | 2013-10-08 | Boston Scientific Scimed, Inc. | Directional delivery of energy and bioactives |
| EP2253337A1 (en) | 2009-05-18 | 2010-11-24 | Encapson B.V. | Balloon catheter comprising pressure sensitive microcapsules. |
| US8483832B2 (en) | 2009-05-20 | 2013-07-09 | ElectroCore, LLC | Systems and methods for selectively applying electrical energy to tissue |
| EP2440262A2 (en) | 2009-06-10 | 2012-04-18 | Boston Scientific Scimed, Inc. | Electrochemical therapeutic agent delivery device |
| JP2012531270A (ja) | 2009-06-24 | 2012-12-10 | シファメド・ホールディングス・エルエルシー | 操作可能な医療用送達装置および使用方法 |
| US8371303B2 (en) | 2009-08-05 | 2013-02-12 | Anesthetech Inc. | System and method for imaging endotracheal tube placement and measuring airway occlusion cuff pressure |
| AU2010281644A1 (en) | 2009-08-05 | 2012-02-23 | Ndi Medical, Llc | Systems and methods for maintaining airway patency |
| AU2010284772A1 (en) | 2009-08-21 | 2012-03-08 | Auckland Uniservices Limited | System and method for mapping gastro-intestinal electrical activity |
| US8233987B2 (en) | 2009-09-10 | 2012-07-31 | Respicardia, Inc. | Respiratory rectification |
| CN104042322B (zh) * | 2009-10-27 | 2017-06-06 | 赫莱拉公司 | 具有可冷却的能量发射组件的递送装置 |
| US20120209118A1 (en) | 2009-10-30 | 2012-08-16 | Sound Interventions | Method and apparatus for non-invasive treatment of hypertension through ultrasound renal denervation |
| WO2011053757A1 (en) | 2009-10-30 | 2011-05-05 | Sound Interventions, Inc. | Method and apparatus for treatment of hypertension through percutaneous ultrasound renal denervation |
| US20110112400A1 (en) | 2009-11-06 | 2011-05-12 | Ardian, Inc. | High intensity focused ultrasound catheter apparatuses, systems, and methods for renal neuromodulation |
| WO2011060200A1 (en) * | 2009-11-11 | 2011-05-19 | Innovative Pulmonary Solutions, Inc. | Systems, apparatuses, and methods for treating tissue and controlling stenosis |
| US20120302909A1 (en) | 2009-11-11 | 2012-11-29 | Mayse Martin L | Methods and systems for screening subjects |
| US8911439B2 (en) | 2009-11-11 | 2014-12-16 | Holaira, Inc. | Non-invasive and minimally invasive denervation methods and systems for performing the same |
| US20110137284A1 (en) | 2009-12-03 | 2011-06-09 | Northwestern University | Devices for material delivery, electroporation, and monitoring electrophysiological activity |
| US20110245756A1 (en) | 2009-12-03 | 2011-10-06 | Rishi Arora | Devices for material delivery, electroporation, sonoporation, and/or monitoring electrophysiological activity |
| US20110144630A1 (en) | 2009-12-10 | 2011-06-16 | Loeb Marvin P | Fiber optic device with controlled reuse |
| WO2011088399A1 (en) | 2010-01-18 | 2011-07-21 | Stanford University | Method and apparatus for radioablation of regular targets such as sympathetic nerves |
| US9993625B2 (en) | 2010-01-29 | 2018-06-12 | Mirus Llc | Biodegradable protrusions on inflatable device |
| CA2793737A1 (en) | 2010-03-24 | 2011-09-29 | Shifamed Holdings, Llc | Intravascular tissue disruption |
| US10575893B2 (en) | 2010-04-06 | 2020-03-03 | Nuvaira, Inc. | System and method for pulmonary treatment |
| EP3949885A1 (en) | 2010-04-06 | 2022-02-09 | Nuvaira, Inc. | System for pulmonary treatment |
| US20110264086A1 (en) | 2010-04-14 | 2011-10-27 | Frank Ingle | Renal artery denervation apparatus employing helical shaping arrangement |
| US9237961B2 (en) | 2010-04-23 | 2016-01-19 | Medtronic Vascular, Inc. | Stent delivery system for detecting wall apposition of the stent during deployment |
| CA2797130A1 (en) | 2010-05-12 | 2011-11-17 | Shifamed Holdings, Llc | Low profile electrode assembly |
| CA2799473C (en) | 2010-05-14 | 2020-03-10 | Todd Sheppard Saunders | Methods and devices for cooling spinal tissue |
| GB2535657A (en) | 2010-07-13 | 2016-08-24 | Sandhill Scient Inc | Apparatus and method for detecting and measuring condition of esophageal mucosa and indications of gastroesophageal reflux disease |
| US9295663B2 (en) | 2010-07-14 | 2016-03-29 | Abbott Cardiovascular Systems Inc. | Drug coated balloon with in-situ formed drug containing microspheres |
| US20120029512A1 (en) | 2010-07-30 | 2012-02-02 | Willard Martin R | Balloon with surface electrodes and integral cooling for renal nerve ablation |
| US9155589B2 (en) | 2010-07-30 | 2015-10-13 | Boston Scientific Scimed, Inc. | Sequential activation RF electrode set for renal nerve ablation |
| US9095320B2 (en) | 2010-09-27 | 2015-08-04 | CyroMedix, LLC | Cryo-induced renal neuromodulation devices and methods |
| JP2013544565A (ja) | 2010-10-20 | 2013-12-19 | メドトロニック アーディアン ルクセンブルク ソシエテ ア レスポンサビリテ リミテ | 腎神経調節のための拡張可能なメッシュ構造を有するカテーテル器具並びに関連するシステムおよび方法 |
| US9192435B2 (en) | 2010-11-22 | 2015-11-24 | Boston Scientific Scimed, Inc. | Renal denervation catheter with cooled RF electrode |
| US11246653B2 (en) | 2010-12-07 | 2022-02-15 | Boaz Avitall | Catheter systems for cardiac arrhythmia ablation |
| US8998893B2 (en) | 2010-12-07 | 2015-04-07 | Boaz Avitall | Catheter systems for cardiac arrhythmia ablation |
| EP2658605B1 (en) | 2010-12-28 | 2016-07-27 | Cibiem, Inc. | Endovascular carotid body ablation catheter for sympathetic rebalancing of patient |
| US9095262B2 (en) | 2011-01-05 | 2015-08-04 | Mehdi Razavi | Guided ablation devices, systems, and methods |
| US20120191081A1 (en) | 2011-01-25 | 2012-07-26 | Medtronic, Inc. | Method and Apparatus for Regulating The Formation Of Ice On A Catheter |
| US20120191080A1 (en) | 2011-01-25 | 2012-07-26 | Medtronic, Inc. | Method and Apparatus for Regulating the Formation of Ice On A Catheter |
| CN103442659A (zh) | 2011-01-28 | 2013-12-11 | 美敦力阿迪安卢森堡有限公司 | 装备有形状记忆材料的消融导管 |
| EP2670291A4 (en) | 2011-02-04 | 2015-02-25 | Penn State Res Found | METHOD AND DEVICE FOR DETERMINING THE LOCATION OF AN ENDOSCOPE |
| US8579800B2 (en) | 2011-03-22 | 2013-11-12 | Fabian Emura | Systematic chromoendoscopy and chromocolonoscopy as a novel systematic method to examine organs with endoscopic techniques |
| AU2012239878B2 (en) | 2011-04-08 | 2015-01-29 | Covidien Lp | Flexible microwave catheters for natural or artificial lumens |
| CA2832311A1 (en) | 2011-04-08 | 2012-11-29 | Covidien Lp | Iontophoresis drug delivery system and method for denervation of the renal sympathetic nerve and iontophoretic drug delivery |
| WO2012148966A2 (en) | 2011-04-25 | 2012-11-01 | Brian Kelly | Apparatus and methods related to selective thermal insulation of cryogenic balloons for limited cryogenic ablation of vessel walls |
| WO2012148969A2 (en) | 2011-04-25 | 2012-11-01 | Brian Kelly | Apparatus and methods related to constrained deployment of cryogenic balloons for limited cryogenic ablation of vessel walls |
| US20140316398A1 (en) | 2011-04-29 | 2014-10-23 | Brian Kelly | Systems and methods related to selective heating of cryogenic balloons for targeted cryogenic neuromodulation |
| US8909316B2 (en) | 2011-05-18 | 2014-12-09 | St. Jude Medical, Cardiology Division, Inc. | Apparatus and method of assessing transvascular denervation |
| US8702619B2 (en) | 2011-08-26 | 2014-04-22 | Symap Holding Limited | Mapping sympathetic nerve distribution for renal ablation and catheters for same |
| US10201386B2 (en) | 2011-10-05 | 2019-02-12 | Nuvaira, Inc. | Apparatus for injuring nerve tissue |
| WO2013173481A2 (en) | 2012-05-18 | 2013-11-21 | Holaira, Inc. | Compact delivery pulmonary treatment systems and methods for improving pulmonary function |
| US9398933B2 (en) | 2012-12-27 | 2016-07-26 | Holaira, Inc. | Methods for improving drug efficacy including a combination of drug administration and nerve modulation |
| CN105377344B (zh) | 2013-03-13 | 2019-08-30 | 努瓦拉公司 | 液体输送系统和治疗方法 |
| WO2014143898A1 (en) | 2013-03-15 | 2014-09-18 | Holaira, Inc. | Systems, devices, and methods for treating a pulmonary disorder with an agent |
| WO2015038886A1 (en) | 2013-09-12 | 2015-03-19 | Holaira, Inc. | Systems, devices, and methods for treating a pulmonary disease with ultrasound energy |
| US12114916B2 (en) | 2013-12-12 | 2024-10-15 | Nuvaira, Inc. | Catheter and handle assembly, systems, and methods |
| EP3468495B1 (en) | 2016-06-09 | 2024-02-28 | Nuvaira, Inc. | Systems for improved delivery of expandable catheter assemblies into body lumens |
| WO2018106939A1 (en) | 2016-12-07 | 2018-06-14 | Nuvaira, Inc. | Method and systems for reducing treatment variability and increasing treatment efficacy and durability |
-
2009
- 2009-05-08 EP EP22196336.6A patent/EP4166107A1/en active Pending
- 2009-05-08 JP JP2011508719A patent/JP2011519699A/ja active Pending
- 2009-05-08 AU AU2009244058A patent/AU2009244058B2/en not_active Ceased
- 2009-05-08 KR KR1020107026952A patent/KR101719824B1/ko active Active
- 2009-05-08 ES ES09743805T patent/ES2398052T5/es active Active
- 2009-05-08 CN CN200980116717.XA patent/CN102014779B/zh active Active
- 2009-05-08 EP EP12005299.8A patent/EP2529686B1/en active Active
- 2009-05-08 EP EP13003667.6A patent/EP2662116B1/en active Active
- 2009-05-08 EP EP13003665.0A patent/EP2662046B1/en active Active
- 2009-05-08 EP EP09743805.5A patent/EP2320821B2/en active Active
- 2009-05-08 WO PCT/US2009/043393 patent/WO2009137819A1/en not_active Ceased
- 2009-05-08 US US12/463,304 patent/US8088127B2/en active Active
- 2009-05-08 EP EP13003666.8A patent/EP2662027B1/en active Active
- 2009-05-08 CA CA2723806A patent/CA2723806C/en active Active
-
2010
- 2010-11-08 IL IL209193A patent/IL209193A0/en unknown
-
2011
- 2011-06-24 US US13/168,893 patent/US20110257647A1/en not_active Abandoned
- 2011-09-26 US US13/245,522 patent/US8226638B2/en active Active
-
2012
- 2012-04-20 US US13/452,664 patent/US8808280B2/en active Active
- 2012-04-20 US US13/452,648 patent/US8961507B2/en active Active
- 2012-04-20 US US13/452,660 patent/US8821489B2/en active Active
- 2012-04-20 US US13/452,655 patent/US8961508B2/en active Active
- 2012-08-13 US US13/584,142 patent/US20120316552A1/en not_active Abandoned
- 2012-08-22 US US13/592,075 patent/US9668809B2/en active Active
-
2015
- 2015-01-29 JP JP2015014893A patent/JP6352199B2/ja active Active
-
2017
- 2017-02-08 US US15/427,685 patent/US10149714B2/en active Active
-
2018
- 2018-04-04 JP JP2018072023A patent/JP6539373B2/ja active Active
- 2018-12-03 US US16/207,810 patent/US11937868B2/en active Active
-
2019
- 2019-06-07 JP JP2019106610A patent/JP6859393B2/ja active Active
-
2021
- 2021-03-25 JP JP2021051054A patent/JP2021102081A/ja active Pending
-
2024
- 2024-02-26 JP JP2024026928A patent/JP2024069255A/ja active Pending
- 2024-03-25 US US18/615,889 patent/US20240225718A1/en active Pending
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20240225718A1 (en) | Systems, assemblies, and methods for treating a bronchial tree |