EP3441336B1 - Dispositif de manipulation de feuille individuelle destiné à l'entrée et à la sortie de feuilles individuelles rectangulaires, en particulier de billets de banque dans un récipient ou à partir de ce dernier - Google Patents

Dispositif de manipulation de feuille individuelle destiné à l'entrée et à la sortie de feuilles individuelles rectangulaires, en particulier de billets de banque dans un récipient ou à partir de ce dernier Download PDF

Info

Publication number
EP3441336B1
EP3441336B1 EP18189944.4A EP18189944A EP3441336B1 EP 3441336 B1 EP3441336 B1 EP 3441336B1 EP 18189944 A EP18189944 A EP 18189944A EP 3441336 B1 EP3441336 B1 EP 3441336B1
Authority
EP
European Patent Office
Prior art keywords
stack
separating
impeller
container
single sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18189944.4A
Other languages
German (de)
English (en)
Other versions
EP3441336A1 (fr
Inventor
Günter Holland-Letz
Ayhan Aslan
Ludger Hoischen
Martin LÖSER
Dirk Brexel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wincor Nixdorf International GmbH
Original Assignee
Wincor Nixdorf International GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wincor Nixdorf International GmbH filed Critical Wincor Nixdorf International GmbH
Publication of EP3441336A1 publication Critical patent/EP3441336A1/fr
Application granted granted Critical
Publication of EP3441336B1 publication Critical patent/EP3441336B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H3/00Separating articles from piles
    • B65H3/08Separating articles from piles using pneumatic force
    • B65H3/10Suction rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H1/00Supports or magazines for piles from which articles are to be separated
    • B65H1/02Supports or magazines for piles from which articles are to be separated adapted to support articles on edge
    • B65H1/022Supports or magazines for piles from which articles are to be separated adapted to support articles on edge with non-controlled means for advancing the pile to present the pile to the separating device, e.g. weights or spring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H1/00Supports or magazines for piles from which articles are to be separated
    • B65H1/02Supports or magazines for piles from which articles are to be separated adapted to support articles on edge
    • B65H1/025Supports or magazines for piles from which articles are to be separated adapted to support articles on edge with controlled positively-acting mechanical devices for advancing the pile to present the articles to the separating device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H1/00Supports or magazines for piles from which articles are to be separated
    • B65H1/02Supports or magazines for piles from which articles are to be separated adapted to support articles on edge
    • B65H1/027Support fully or partially removable from the handling machine, e.g. cassette, drawer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H29/00Delivering or advancing articles from machines; Advancing articles to or into piles
    • B65H29/38Delivering or advancing articles from machines; Advancing articles to or into piles by movable piling or advancing arms, frames, plates, or like members with which the articles are maintained in face contact
    • B65H29/40Members rotated about an axis perpendicular to direction of article movement, e.g. star-wheels formed by S-shaped members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H3/00Separating articles from piles
    • B65H3/02Separating articles from piles using friction forces between articles and separator
    • B65H3/04Endless-belt separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H3/00Separating articles from piles
    • B65H3/02Separating articles from piles using friction forces between articles and separator
    • B65H3/06Rollers or like rotary separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H3/00Separating articles from piles
    • B65H3/02Separating articles from piles using friction forces between articles and separator
    • B65H3/06Rollers or like rotary separators
    • B65H3/0638Construction of the rollers or like rotary separators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H3/00Separating articles from piles
    • B65H3/02Separating articles from piles using friction forces between articles and separator
    • B65H3/06Rollers or like rotary separators
    • B65H3/0653Rollers or like rotary separators for separating substantially vertically stacked articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H3/00Separating articles from piles
    • B65H3/02Separating articles from piles using friction forces between articles and separator
    • B65H3/06Rollers or like rotary separators
    • B65H3/0669Driving devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H3/00Separating articles from piles
    • B65H3/02Separating articles from piles using friction forces between articles and separator
    • B65H3/06Rollers or like rotary separators
    • B65H3/0676Rollers or like rotary separators with two or more separator rollers in the feeding direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H31/00Pile receivers
    • B65H31/04Pile receivers with movable end support arranged to recede as pile accumulates
    • B65H31/06Pile receivers with movable end support arranged to recede as pile accumulates the articles being piled on edge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H31/00Pile receivers
    • B65H31/04Pile receivers with movable end support arranged to recede as pile accumulates
    • B65H31/08Pile receivers with movable end support arranged to recede as pile accumulates the articles being piled one above another
    • B65H31/10Pile receivers with movable end support arranged to recede as pile accumulates the articles being piled one above another and applied at the top of the pile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H31/00Pile receivers
    • B65H31/04Pile receivers with movable end support arranged to recede as pile accumulates
    • B65H31/12Devices relieving the weight of the pile or permitting or effecting movement of the pile end support during piling
    • B65H31/18Positively-acting mechanical devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H31/00Pile receivers
    • B65H31/22Pile receivers removable or interchangeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H31/00Pile receivers
    • B65H31/26Auxiliary devices for retaining articles in the pile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H5/00Feeding articles separated from piles; Feeding articles to machines
    • B65H5/06Feeding articles separated from piles; Feeding articles to machines by rollers or balls, e.g. between rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H83/00Combinations of piling and depiling operations, e.g. performed simultaneously, of interest apart from the single operation of piling or depiling as such
    • B65H83/02Combinations of piling and depiling operations, e.g. performed simultaneously, of interest apart from the single operation of piling or depiling as such performed on the same pile or stack
    • B65H83/025Combinations of piling and depiling operations, e.g. performed simultaneously, of interest apart from the single operation of piling or depiling as such performed on the same pile or stack onto and from the same side of the pile or stack
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D11/00Devices accepting coins; Devices accepting, dispensing, sorting or counting valuable papers
    • G07D11/10Mechanical details
    • G07D11/12Containers for valuable papers
    • G07D11/13Containers for valuable papers with internal means for handling valuable papers
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D11/00Devices accepting coins; Devices accepting, dispensing, sorting or counting valuable papers
    • G07D11/10Mechanical details
    • G07D11/16Handling of valuable papers
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D11/00Devices accepting coins; Devices accepting, dispensing, sorting or counting valuable papers
    • G07D11/10Mechanical details
    • G07D11/16Handling of valuable papers
    • G07D11/165Picking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/42Piling, depiling, handling piles
    • B65H2301/421Forming a pile
    • B65H2301/4214Forming a pile of articles on edge
    • B65H2301/42142Forming a pile of articles on edge by introducing articles from beneath
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2301/00Handling processes for sheets or webs
    • B65H2301/40Type of handling process
    • B65H2301/44Moving, forwarding, guiding material
    • B65H2301/442Moving, forwarding, guiding material by acting on edge of handled material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2402/00Constructional details of the handling apparatus
    • B65H2402/40Details of frames, housings or mountings of the whole handling apparatus
    • B65H2402/45Doors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/10Rollers
    • B65H2404/11Details of cross-section or profile
    • B65H2404/111Details of cross-section or profile shape
    • B65H2404/1114Paddle wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/10Rollers
    • B65H2404/11Details of cross-section or profile
    • B65H2404/111Details of cross-section or profile shape
    • B65H2404/1115Details of cross-section or profile shape toothed roller
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/20Belts
    • B65H2404/23Belts with auxiliary handling means
    • B65H2404/231Belts with auxiliary handling means pocket or gripper type
    • B65H2404/2311Belts with auxiliary handling means pocket or gripper type integrally attached to or part of belt material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/20Belts
    • B65H2404/23Belts with auxiliary handling means
    • B65H2404/232Blade, plate, finger
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/60Other elements in face contact with handled material
    • B65H2404/64Other elements in face contact with handled material reciprocating perpendicularly to face of material, e.g. pushing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/60Other elements in face contact with handled material
    • B65H2404/65Other elements in face contact with handled material rotating around an axis parallel to face of material and perpendicular to transport direction, e.g. star wheel
    • B65H2404/652Other elements in face contact with handled material rotating around an axis parallel to face of material and perpendicular to transport direction, e.g. star wheel having two elements diametrically opposed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/60Other elements in face contact with handled material
    • B65H2404/65Other elements in face contact with handled material rotating around an axis parallel to face of material and perpendicular to transport direction, e.g. star wheel
    • B65H2404/655Means for holding material on element
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2404/00Parts for transporting or guiding the handled material
    • B65H2404/60Other elements in face contact with handled material
    • B65H2404/69Other means designated for special purpose
    • B65H2404/693Retractable guiding means, i.e. between guiding and non guiding position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2405/00Parts for holding the handled material
    • B65H2405/20Cassettes, holders, bins, decks, trays, supports or magazines for sheets stacked on edge
    • B65H2405/21Parts and details thereof
    • B65H2405/211Parts and details thereof bottom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2405/00Parts for holding the handled material
    • B65H2405/30Other features of supports for sheets
    • B65H2405/31Supports for sheets fully removable from the handling machine, e.g. cassette
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2407/00Means not provided for in groups B65H2220/00 – B65H2406/00 specially adapted for particular purposes
    • B65H2407/30Means for preventing damage of handled material, e.g. by controlling atmosphere
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/10Handled articles or webs
    • B65H2701/19Specific article or web
    • B65H2701/1912Banknotes, bills and cheques or the like

Definitions

  • the invention relates to a single sheet handling device for inputting and outputting rectangular single sheets into or from a container.
  • rectangular single sheets are in particular bank notes which are automatically fed to the container for storage or which are automatically removed from the container for output.
  • a banknote storage container for cash dispensers is known.
  • a bank note storage container is known in which a multiplicity of feed elements and, alternatively, a multiplicity of separating elements are arranged in the bank note storage container itself, which is designed as a cassette.
  • these elements must also be present in exchange cassettes and space must be provided in the cassette itself for the feed and separation elements, which space is lost for the banknote deposit.
  • a further disadvantage of the arrangement of feed and separation elements in the cassette is that they increase the weight of the cassette and, as a result, the cost of transporting the cassette is increased.
  • the feeding and separating elements must be positioned exactly to the stack surface or to the front of the banknote stack in the container in order to ensure reliable banknote transport in and out of the container to enable.
  • document GB 2 135 493 A discloses an arrangement according to the preamble of claim 1 with a cassette which comprises a bank note storage area to which bank notes can be fed with the aid of feed elements and from which bank notes can be removed with the aid of separating elements.
  • the position of a movable element can be changed from a position for feeding notes of value into the note storage area into a position for removing notes of value from the note storage area.
  • EP 2 252 980 A1 ( WO 2009/047742 A1 ) is considered state of the art according to Article 54 (3) EPC and discloses an ATM in which the feed and separation elements are arranged outside of a cash cassette and in which there is an actively driven limiting device which can be moved in the stacking direction and in the opposite direction to the stacking direction and limits the stacking space.
  • document US 2004/0256784 A1 discloses an automated teller machine for paying in and out of notes of value, in which notes of value of different sizes are stored together in a cash box.
  • the cash box contains a pressure element that delimits the stacking area for stacking the notes of value.
  • the object of the invention is to provide a single sheet handling device for inputting and outputting rectangular single sheets, in particular banknotes, into or from a container, in which a simply constructed can be separated from the feeding and separating elements of the single sheet handling device Container can be used.
  • single sheets can be fed to a container in a simple manner and single sheets can be removed from the same container.
  • feed elements and the separating elements separately from the container, a simple construction of the container is possible and the weight of the container can be considerably reduced compared to an arrangement of feeding elements and separating elements in the container.
  • Such a single sheet handling device is particularly suitable for use in an automated teller machine, with an operational exchange of full and / or empty ones as required
  • Containers takes place, so that for each container arranged in the ATM at least one further exchange container is kept available for the exchange against this container arranged in the ATM.
  • the containers can be manufactured with relatively little effort. This is possible in a simple manner by arranging the feed elements and the separating elements separately from the container.
  • the feed elements position a single sheet to be fed to the container in front of the stack surface formed by an end face of the stack. As a result, this supplied single sheet is subsequently the foremost single sheet of the stack. Thus, the front or back of the fed single sheet subsequently forms the end of the stack.
  • At least some of the feed elements and at least some of the separating elements are designed and arranged in such a way that, at least in a feeding or separating operation of the single sheet handling device, at least one single sheet located in a single sheet receiving area of the container through at least one opening in a frontal boundary wall of the single sheet receiving area contact through.
  • the feed elements and the separating elements can easily access the foremost single sheet of the stack or a single sheet to be fed.
  • the single sheet handling device has at least one active drive for changing the position of an end-face delimiting wall of the container designed as a flap, the drive initiating or effecting the movement of the flap into a feed and / or separation position in which a feed and / or removal opening is released for feeding or removing the single sheets.
  • the single sheets can be transported into and out of the container in a simple manner via the released feed and / or removal opening.
  • This embodiment can in particular be developed in that the active drive moves the flap into a rest position before or during the operational separation of the container from the supply and separation elements, preferably before or during a removal process for operational removal of the container from an ATM, whereby the flap is arranged in the rest position in such a way that the feed and / or removal opening is closed and preferably locked.
  • the flap is moved into the rest position, at least some of the individual sheets of the stack are preferably pressed into the individual sheet receiving area of the container.
  • all the single sheets of the stack are securely arranged in the single sheet receiving area when the container is separated from the feeding and separating elements will.
  • the flap is arranged in the rest position, unauthorized removal of the banknotes is made more difficult.
  • the drive moves the flap from the feeding and / or separating position into the rest position and from the rest position into the feeding and / or separating position at least when the operating mode is changed from feeding operation to separating operation or if the operating mode is changed from separating operation to feeding operation.
  • the flap moves the flap from the feeding and / or separating position into the rest position and from the rest position into the feeding and / or separating position at least when the operating mode is changed from feeding operation to separating operation or if the operating mode is changed from separating operation to feeding operation.
  • the single sheet handling device has engagement elements for actuating the flap when the container comes into contact with the elements of the single sheet handling device arranged separately from the container, the drive unit opening the flap when moving into the feed and / or separating position via the Engaging elements actively drives against a spring force for moving and / or holding the flap in the rest position. This makes it possible to arrange the drive separately from the container and to operate the flap safely via the engagement elements.
  • At least one separating element has at least one separating wheel, preferably a suction roller with suction elements arranged on its outer circumferential surface for contacting a single sheet. It is advantageous if suction cups are provided on the outer surface of the suction roll, through which a single sheet adheres to the suction roll.
  • the separating wheel can be a haul-off wheel with an outer circumferential surface having a profile, the profile preferably consisting of transverse ribs.
  • the separating device has at least two separating rollers which are arranged on the same driven shaft and have a uniform circumferential surface.
  • the separating rollers are preferably resiliently mounted on the shaft so that the separating rollers, at least in one separating mode, evenly contact the first banknote on the front or rear side of the stack, in order to avoid twisting the banknote during the separation and removal.
  • the separating rollers preferably have a profiled surface, at least the surface of the separating rollers having a material with a high coefficient of friction. Further It is advantageous that the separating rollers have a profile, preferably transverse grooves or suction cups, on the circumferential surface.
  • the container can have a relatively low overall height, as a result of which several containers can be arranged one above the other in conventional cash machines or in conventional automatic safe tills. Furthermore, the containers can be transported horizontally, which ensures that the containers can be easily stacked.
  • the container is preferably a closed, replaceable cassette.
  • a closed cassette With such a closed cassette, unauthorized removal of single sheets by persons who come into contact with the cassette can be made more difficult or avoided, since the removal of single sheets from the cassette requires manipulation of the cassette, which usually leaves visible traces, whereby the manipulation the cassette can be noticed and detected immediately.
  • a cassette offers the possibility of feeding bank notes to an ATM in a simple manner and of removing bank notes from the ATM.
  • the closed cassette means that no further outer packaging is required for transport, for example by a money transport company.
  • the container has several interconnected sliding lamellae that prevent at least unauthorized access to the flap in a closed position, with a drive element or an engagement element automatically engaging the lamellae before or when removing the container from the feed and separation elements brings the locking position.
  • a separation takes place in particular when a container is removed from an ATM or from an automatic safe, for example when the container is replaced.
  • the interconnected slats are also known as roller shutters or blinds.
  • the active drive elements for driving the separating elements and the active drive elements for driving the feed elements are not part of the container and are therefore separate from the container.
  • these drive elements do not have to be provided once for each container, but only for a container space provided by the single sheet handling device. If at least one exchange container is provided, the effort involved in producing the container can be reduced considerably.
  • the containers are subject to greater wear, so that when a worn container is replaced, these drive units and possibly the Container-provided feed elements and / or separating elements would each have to be replaced with the container, whereby a considerable additional effort is required compared to the proposed solution.
  • At least one actively driven delimitation element is provided, which can be moved in the stacking direction and in the opposite stacking direction and variably delimits the stacking space in the individual sheet receiving area through its position.
  • the active drive of the delimitation element which can be implemented, for example, by an electric motor arranged in the container, enables the stacking space to be enlarged and reduced as required in a simple manner.
  • the stack located in the container can be compressed or compressed if necessary.
  • the actively driven delimitation element it is possible to move the stack towards a feed and / or separation area so that the foremost single sheet of the stack safely comes into contact with the feed and / or separation elements.
  • the individual sheets can be held in a position in which they are arranged as a stack, standing on their horizontal edge.
  • the delimitation element can, for example, be designed as a sliding carriage.
  • a double-sheet stripping element is provided on a transport path for further transport of the single sheets withdrawn with the aid of the separating element, which one together with a first Separates single sheet removed from the stack second single sheet from the first single sheet and holds in the feed and removal area or transported back to a feed area and / or back into the container.
  • the double sheet scraper element comprises at least one scraper wheel arranged on a shaft and / or at least one scraper roller arranged on the shaft.
  • the stripping wheel or the stripping roller are non-rotatably connected to the shaft, the shaft being stationary in the separation mode or being driven against the transport direction of a single sheet to be removed.
  • the direction of rotation of the stripping wheel or the stripping roller corresponds to the transport direction of a single sheet to be fed.
  • the shaft can be a stationary shaft, the stripping wheel or the stripping roller having a free wheel in only one direction of rotation, so that a rotation of the stripping wheel or the stripping roller is possible without rotating the shaft when feeding a single sheet into the feed area or into the container .
  • the double sheet stripping element does not hinder the transport of the single sheet to be fed into the feed area.
  • the stripping wheel or the stripping roller can be driven via the shaft on which it is arranged with the aid of a drive unit, the direction of rotation of the Stripping wheel or the stripping roller for stripping the second single sheet of the movement of the single sheet to be removed is directed in the opposite direction.
  • the feed device has at least one at least one single-winged impeller as the feed element and comprises at least one drive unit for driving the at least one impeller.
  • the drive unit rotates the impeller when feeding a single sheet into the container in such a way that the wing presses against the face of a stack of single sheets located in the single sheet receiving area of the container and at least temporarily presses at least some of these single sheets into the single sheet receiving area and a free supply area for positioning the generated single sheet to be fed in front of the face of the stack.
  • a control unit controls the drive unit in such a way that the vane of the impeller is at a distance from the front edge of the single sheet fed during feeding and that the single sheet fed does not contact the wing during feeding. This prevents the movement of the single sheet from contacting the Wing obstructed.
  • the single sheet is thus not deformed during feeding, in particular not compressed, and can simply be positioned in front of the end face of the existing stack.
  • impellers that have the same axis of rotation, preferably connected non-rotatably to a single shaft that can be driven with the aid of a drive unit of the feed device, the blades of the impellers preferably being laterally spaced from one another and aligned the same, ie at the same angle protrude from the rotatable shaft.
  • the drive unit rotates the shaft and thus the impellers when feeding a further single sheet in such a way that both wings press at a lateral distance from one another, i.e.
  • the vanes of the vane wheels are laterally offset from one another so that the upper side of the stack, ie the end face of the stack, are contacted by the vanes at several contact points which are arranged essentially parallel to the front edge or parallel to the rear edge of the single sheet.
  • the impellers are preferably arranged distributed over the entire width of a sheet width that is permissible for a single sheet to be fed. It is advantageous to provide in particular six impellers, the same first distance being provided between the four inner impellers and the outer impellers having a second distance from the second or fifth impeller which is smaller than the first distance.
  • the first embodiment of the invention to additionally provide a sensor arrangement, preferably a light barrier arrangement, for detecting a sheet edge of a single sheet to be fed to the container with the aid of the feed device.
  • the drive unit of the feed device starts the drive of the at least one impeller a preset time after the sheet edge of the single sheet has been detected by the sensor arrangement, the sensor arrangement preferably detecting the leading edge of the single sheet.
  • the impeller is preferably in a basic feed position in which the blade is aligned essentially horizontally and the end of the stack as far as possible with the blades into the single sheet receiving area of the container pushes in or pushes in.
  • the enveloping circle of the vane of the impeller is chosen and if the impeller is arranged in such a way that the apex of the enveloping circle is arranged approximately at the same height as the leading edge of the largest possible one that can be fed to the container Single sheet when it is arranged in the single sheet receiving area of the container.
  • the lowest possible overall height of the container can be achieved with a reliable function, since no structural space is required above the stack of notes, at least for the impeller.
  • the first embodiment of the invention provides at least one inclined deflector through which the front edge of a single sheet fed is guided to the end of the stack and held on the stack, the oblique deflector being laterally offset to the impeller and the oblique deflector preferably is resiliently mounted.
  • the inclined diverter thus ensures that even with a relatively wide feed area, a product transported into this feed area Single sheet rests at least with the front edge on the face of the stack.
  • the oblique deflector Due to the resilient mounting of the oblique deflector, the oblique deflector is pressed by the spring force in the direction of the front side of the stack, so that the front edge of a single sheet touches the oblique deflector when entering the feed area, at least in the last part of the transport path, with the oblique deflector deflecting against the spring force if necessary can be.
  • the end of the oblique deflector facing the end of the stack presses against the front of the single sheet facing the oblique deflector and presses it against the stack in the container or limits the maximum distance between the single sheet fed in and the end of the stack already in the container.
  • the oblique deflector is deflected against the spring force when the stack is shifted further towards the separating elements, ie out of the single sheet receiving area, in the separating operation.
  • the front region of the blade of the impeller has a curvature counter to the direction of rotation of the impeller when the single sheet is fed.
  • the face of the stack in the container is in contact with the outer curvature, which means that only a relatively small amount of force is required to guide the wing past the face of the stack and to push at least part of the stack into the single sheet receiving area of the container.
  • the curvature reduces the friction between the wing surface and the on the single sheet arranged on the end face of the stack is reduced and edges that scrape on the surface of the single sheet and can interfere with damage to the single sheet are avoided. Due to the curvature of the wing, a smooth and trouble-free process is possible.
  • the wing including the curved front area is not flexible but rigid, so that the wing and the curved front area of the wing are not or only slightly elastically deformed upon contact with the end face of the stack.
  • the wing is therefore preferably rigid.
  • the at least one impeller has a hub from which the at least one wing protrudes, the wing protruding essentially tangentially from the hub.
  • the hub allows the impeller to be easily arranged on an axis or shaft. Due to the tangential connection of the wing to the hub, the longitudinal axis of the wing is skewed to the axis of rotation, the curvature in the front area of the wing being oriented in such a way that an axis intersecting the axis of rotation and parallel to the longitudinal axis of the wing intersects the curved front area of the wing.
  • the impeller With a vertical alignment of the blades, ie a vertical alignment of the blade axes, the impeller is in a basic removal position, since the blades are not required to remove single sheets from the container.
  • the single sheets contact a pull-off wheel or another separating element for removing at least one single sheet from the stack.
  • the longitudinal axis of the non-curved area of the wing is regarded as the wing axis.
  • the first embodiment of the invention it is also advantageous to provide at least two further impellers which are arranged on a common drivable shaft and whose wings move at least the rear edge of a single sheet fed to the container towards the stack when the single sheet is fed to the stack when the shaft rotates the end of the stack already in the container is positioned.
  • the lower part of the single sheet can be moved in a standing arrangement of the single sheets on their long side towards the stack, whereby the single sheet is then positioned at the end of the stack and subsequently forms the end of the stack.
  • At least one area of the blades of the impellers is flexible and is elastically deformed when the blade is passed in the lower area of the single sheet, with the elastic deformation and additionally due to the rotary movement exerting a force on the lower area of the single sheet towards the existing stack is exercised.
  • the wings are preferably made of an elastic material. It is also advantageous if the three vanes are provided which protrude from a hub of the impeller at 0 °, 90 ° and 180 °, preferably tangentially. As a result, the blades can be aligned by a suitable rotation of the shaft in such a way that no blades protrude into the transport path, so that a single sheet can get into the feed area without it coming into contact with one of the blades of the other fan wheels.
  • the feed device has at least one circulating conveyor belt, the conveyor belt having at least one transport tab for receiving a region of a single sheet to be fed to the container.
  • the single sheet located in the transport flap can be guided in front of the stack located in the container, with no or only a relatively small feed space then being required between a front flap of the container and the front side of the stack located in the single sheet receiving area of the container.
  • At least two, in particular three, conveyor belts are arranged next to one another, the at least one transport flap of each conveyor belt being arranged in the same circulating position, so that a single sheet fed is simultaneously fed into a transport flap of each conveyor belt arranged at a lateral distance from one another and transported further in the transport flap until it is in front of the face of the im Container located stack is positioned.
  • the transport strap is preferably connected to the transport belt at an edge transverse to the direction of rotation of the latter. It is also advantageous if the transport flap extends from the edge along the transport belt.
  • the other edges of the transport flap are not connected to the transport belt, so that in an advantageous further development of the second embodiment the transport flap protrudes tangentially from the curvature when the edge is arranged on a curve of the transport belt.
  • the transport flap preferably has essentially the same width as the transport belt. This means that the entire bandwidth can be used as a receiving area for the transport strap.
  • the endless conveyor belt is deflected via at least one driven shaft and driven in a transport direction with the aid of this shaft, the edge at which the transport flap is connected to the conveyor belt in the transport direction of the conveyor belt is provided on the front edge of the transport flap.
  • the conveyor belt has two conveyor tabs which, in the case of a circular arrangement of the conveyor belt, are arranged offset by 180 ° on the outer circumference of the conveyor belt.
  • the conveyor belt is preferably guided over two shafts so that the conveyor belt does not have a circular circumference in the installed position.
  • at least the conveyor belt or the conveyor belt and the at least one conveyor tab have a perforation in the circumferential direction of the endless conveyor belt for engaging a sprocket.
  • Such a sprocket wheel and such a perforation can prevent slippage between the drive shaft and the conveyor belt. This is particularly important when at least two conveyor belts are provided with a time offset to one another, each of which uses at least one transport tab to accommodate an area of a single sheet to be fed in order to permanently ensure parallel alignment of the transport tabs.
  • a first, preferably rotatable, actuating element which, in a first operating mode for removing the single sheet from the container, presses at least the rear edge of the transport flap opposite the front edge against the conveyor belt and / or in a second operating mode for feeding a single sheet into the container, a gap is created between the rear edge of the transport flap and the conveyor belt and / or this gap is enlarged. This ensures that an area of a single sheet to be fed is safely guided into the transport flap or that when a single sheet is removed from the container, a transport flap protruding from the conveyor belt does not protrude into the transport path for transporting the single sheet away.
  • the actuating element can have a feed and removal area in the first operating mode by the pressure of the rear edge of the transport flap on the conveyor belt caused by the actuating element and / or the actuating element in the second operating mode open the transport flap in the input and output area in such a way that a single sheet transported into the feed and removal area is transported into the transport flap and into the transport flap is positioned in a position in front of which the first single sheet of the stack, which forms the end face of the stack present in the container, is positioned.
  • At least one pressure element preferably at least one impeller, which presses a fed single sheet and / or at least some of the other single sheets of the stack present in the container into the container.
  • the second embodiment of the invention provides at least one stripping element that is arranged in such a way that the stripping element holds a single sheet transported with the help of the transport tab in front of the end of the stack during a further circular movement of the transport belt in the feed and removal area holds back in front of the end of the stack in the container and thereby pulls it out of the transport flap.
  • the single sheet can be positioned in a simple manner in front of the end face of the stack.
  • the second embodiment of the invention it is advantageous to provide at least one inclined deflector through which the front edge of a fed note and / or the upper area of a fed note is guided towards the stack.
  • the inclined deflector has a lateral offset to the circulating conveyor belt, the inclined deflector preferably being resiliently mounted.
  • the inclined deflector also serves as a stripping element, the device then having a combined inclined deflector and stripping element.
  • the feed device and the separating device have at least one combined stacking and separating wheel as a combined feeding and separating element.
  • This stacking and separating wheel has chambers which form a stop on their chamber floor for the single sheets to be fed to the container.
  • the stacking and separating wheel comprises at least one separating element which can be moved out of the circumferential surface of the stacking and separating wheel.
  • the stacking and separating wheel has two chambers, which are preferably arranged at a distance of 180 °.
  • the stacking and separating wheels are preferably driven via the stacking and separating wheel shaft. It can thereby be ensured that the chambers are aligned in parallel in such a way that a single sheet that has been fed is guided into one chamber of each stacking and separating wheel, each with one area. It is therefore not necessary to coordinate several drive units.
  • the at least one stacking and separating wheel is preferably positioned so that a region of the single sheet fed can be introduced into the chamber.
  • a drive unit rotates the stacking and separating wheel parallel to part of the feed movement of the single sheet, with the single sheet remaining in the chamber and with a control element actuating a clamping element assigned to the chamber during a rotary movement of the stacking and separating wheel, so that the clamping element holds the single sheet in the Holds chamber via a clamp connection.
  • a cam is preferably used as the control element.
  • a separation mode in which a control element moves the at least one separation element out of the circumferential surface of the stacking and separating wheel for at least a preset period of time, a drive unit rotating the stacking and separating wheel so that the from the Perimeter surface moved out separating element that the contacting the front single sheet of the stack in the container, forming the face of the stack surface.
  • a control element controls a separating lever in such a way that the separating element is moved outward, ie away from the axis of rotation of the separating and stacking wheel.
  • This control element can in particular comprise a cam disk. Furthermore, it is particularly advantageous to provide a stripping element that stops a single sheet located in the chamber of the stacking and separating wheel in its movement, a clamping connection established by the clamping element between the stacking and separating wheel and the single sheet being released when the stripping element the Movement of the cut sheet stops. The release is in turn controlled by the or a further control element, which preferably comprises at least one cam disk. It is particularly advantageous if a drive unit continues to rotate the stacking and separating wheel after the stripping element has stopped the direction of movement of the single sheet. As a result, the fed single sheet is simply pulled out of the chamber.
  • the third embodiment which is not claimed, it is advantageous to provide at least one inclined deflector through which the leading edge of a single sheet fed is guided towards the stack.
  • the inclined divider has one Lateral offset to the stacking and separating wheel, the inclined deflector preferably being resiliently mounted. It is particularly advantageous to provide a combined oblique deflector and stripping element.
  • a sensor arrangement preferably a light barrier arrangement, for detecting a sheet edge of the single sheet to be fed to the container with the aid of the stacking and separating wheel, and that the drive unit sets the drive of the at least one stacking and separating wheel to a preset value The time after the sheet edge has been detected after the single sheet has been detected by the sensor arrangement starts. It is particularly advantageous if the sensor arrangement detects the leading edge of the single sheet, since then there is only a small distance between the detection area of the sensor arrangement and the receiving chamber of the stacking and separating wheel positioned for feeding the single sheet.
  • Another aspect that is not claimed relates to a money deposit and withdrawal device, with one of the above-mentioned single sheet handling devices and with a container, the container with a single sheet possibly located in the container or with several single sheets possibly located in the container being removable from the cash deposit and cash dispensing apparatus and wherein the single sheet handling device with the driven feeding elements of the feeding device the driven separating elements of the separating device in the Money deposit and money withdrawal device remains. It is advantageous if, in the case of the cash in and out device, the container can be exchanged for a container of the same type.
  • a third aspect relates to a system with at least one cash deposit machine and at least one cash withdrawal machine, in which the cash deposit machine has at least one feed device with feed elements for sheet-by-sheet feeding of single sheets and for storing these single sheets in a stack of single sheets in an exchangeable container.
  • the cash dispenser has at least one separating device with separating elements for removing the single sheets of the stack from the same container sheet by sheet.
  • the container is removed from the cash deposit machine and inserted into the cash pay machine. At least some of the individual sheets fed to the container in the cash deposit machine are removed from the container again in the cash dispenser.
  • the feed elements and the separating elements are each not part of the container but are preferably part of the cash in or cash out machine. It is advantageous if at least the cash deposit machine has an authenticity checking unit for checking the authenticity of the deposited banknotes.
  • a fourth aspect relates to a circulating conveyor belt with a first elastically deformable one Strip of material and with a second elastically deformable Strip of material.
  • a first end of the first strip of material is connected to the inside of the second strip of material via a first strip-shaped first connecting region extending transversely to the running direction of the conveyor belt.
  • a region of the second material strip with the first end of the second material strip extends beyond the first connection region and forms a transport flap for receiving a region of a single sheet between the transport flap and the first material strip.
  • an area of the first material strip with the second end of the first material strip extends beyond the second connection area and forms a second transport flap for receiving an area of a single sheet between the transport flap and the second material strip.
  • the transport tabs are preferably arranged offset by 180 ° on the outer circumference of the conveyor belt.
  • the first and the second strip of material preferably have the same dimensions.
  • first and the second strip of material have a perforation for engaging a sprocket. This ensures a slip-free drive of the Conveyor belt possible through the sprocket.
  • this perforation runs along the circumference of the conveyor belt approximately in the middle of the conveyor belt.
  • a sprocket or a roller with spikes has to be provided in order to drive the conveyor belt securely without slipping.
  • the engagement of the spikes of the pin wheel approximately in the middle of the conveyor belt ensures that the conveyor belt does not warp when it is driven.
  • the conveyor belt can be positioned axially by the pin wheel, whereby a displacement of the conveyor belt in the direction of the shaft ends of a deflecting shaft, d. H. drifting away is avoided.
  • the first and second strips of material are preferably strips of film, for example strips of polyethylene film.
  • the film strips have a uniform material cover that is in the range between 0.001 mm and 0.5 mm.
  • Such polyethylene film strips and other suitable film strips can, in particular, be welded to one another by means of a welding method, such as an ultrasonic welding method, in order to produce the first and second connecting areas in particular.
  • FIG. 1 a safe 10 arranged in an ATM is shown with a total of four interchangeable cassettes 12a to 12d arranged one above the other.
  • Each cassette 12a to 12d is assigned a separating and stacking module 14a to 14d, with the aid of which banknotes present in the respective cassette 12a to 12d are removed and, alternatively, banknotes are fed to the respective cassette 12a to 12d with the aid of the separating and stacking module 14a to 14d can.
  • the banknotes are stored in the cassettes 12a to 12d as a stack, the banknotes standing on their long sides in the cassettes 12a to 12d.
  • the bank notes can be fed to the separating and stacking modules 14a to 14d and removed from these separating and stacking modules 14a to 14d.
  • the transport elements 16a to 16d which in particular comprise belts, rollers and / or switches, a transport path 18 is formed, via which banknotes from a transfer point 20, via which the banknotes are fed to the safe 10 or output from the safe 10 a selected separating and stacking module 14a to 14d are transported.
  • a banknote removed from one of the cassettes 12a to 12d with the aid of the separating and stacking module 14a to 14d assigned to this cassette can be fed to the transport elements 16a to 16d and along the transport path 18 via the transfer interface 20 to a control part of the ATM arranged above the safe 10 be transported further with at least one input and output compartment.
  • Banknotes to be deposited are usually stored as bundles in the input and output compartment and separated in the upper part of the ATM so that they are fed one after the other along the transport path 18 via the transfer interface 20 to the safe 10. Furthermore, the banknotes removed from the cassettes 12a to 12d are transported individually one after the other along the transport path 18 via the transfer interface 20 from the safe 10 and then stacked to form a stack or bundle with the aid of a known stacking device, which is designed, for example, as a stacker wheel. This bundle is then output via the input and output tray. Furthermore, the cash machine has a suitable operating unit and other elements, such as a card reader and possibly security devices for authenticating an operator.
  • the in Figure 1 The safe 10 shown with the cassettes 12a to 12d, the separating and stacking modules 14a to 14d and the transport elements 16a to 16d can also be used in an automatic safe cash register.
  • the bank notes are preferably transported along the transport path 18 at a transport speed of ⁇ 1.2 m per second, preferably ⁇ 1.4 m per second, and removed from the cassettes 12a to 12d or with these cassettes 12a to 12d at a corresponding speed fed at a corresponding speed.
  • a separating and stacking module 30 according to a first embodiment of the invention is shown.
  • the separating and stacking module 30 can according to Figure 2 as a separating and stacking module 14a to 14d according to Figure 1 can be used.
  • Elements with the same structure and / or the same function are identified by the same reference symbols.
  • the separating and stacking module 30 has, as separating elements, three take-off wheels 32 arranged next to one another, which are resiliently mounted on a take-off wheel shaft 34 and are connected to this shaft 34 in a rotationally fixed manner. At the in Figure 2 Only one of the puller wheels 32 is visible in the side view shown.
  • withdrawal wheel shaft 34 is resiliently mounted at one end so that it is horizontally displaceable at this shaft end and, with the aid of the spring force, is pressed towards the front side of the cassette 12a and thus against the front side of a stack 36 of banknotes arranged in the cassette 12a when this is pressed Stack 36 is arranged in a separation position.
  • a bank note 38 to be fed first in the direction of arrow P0 is fed with the aid of drive wheels 44 arranged on a main drive shaft 42 into a feed area 46 in front of the stack 36 located in the cassette 12a.
  • a guide element 48 is provided that partially surrounds the drive wheels 44 and that the movement the banknote 38 leads around the drive wheels 44.
  • a pressure roller 50 is also provided, with the aid of which the bank note 38 is pressed against the drive wheels 44 for transport.
  • two stripping rollers 52 are arranged on a shaft 53, which in the present exemplary embodiment have a freewheel so that they rotate with a rotational movement of the drive wheels 44 in the direction of the arrow P1 drawn even without rotating the shaft 53.
  • the stripping rollers 52 When driving the drive wheels 44 opposite to that in Figure 2
  • the stripping rollers 52 preferably have a circumferential surface made of rubber or another material with a relatively high coefficient of static friction, so that when two banknotes get into the gap between drive wheel 44 and stripping roller 52, the stripping roller 52 faces the stripping roller 52
  • the bank note is stripped from the bank note facing the drive wheel 44 and is not transported any further to the pressure roller 50. In this way it can be ensured that when banknotes are transported away from the cassette 12a, only one banknote is removed at the same time.
  • the separating and stacking module 30 also has, as a feed element, a plurality of impellers 54 which are arranged on a drive shaft 62 and each have two blades 58, 60 projecting tangentially from a hub 56 of the impeller 54.
  • the vanes 58, 60 are non-rotatably connected to the drive shaft 62, so that the vane wheels 54 can be driven with the aid of a drive unit via this shaft 62 in the direction of rotation of the arrow P2 shown.
  • the ends of the vanes 58, 60 are curved counter to the direction of rotation, so that they face the end face during a rotational movement in the direction of the arrow P2 of the stack 36 with their curved outside contact.
  • the stack 36 comprises several bank notes with a relatively small first height, one of which forms the front side of the stack 36, and several bank notes of a greater second height, of which one bank note forms the rear side of the stack 36.
  • the impeller 54 is in Figure 2 shown in a basic stack position, in which a horizontally aligned wing 60 of the impeller 54 presses against the face of the stack 36 and presses the banknotes of the stack 36 out of the feed area 46 into the cassette 12a.
  • the bank note 38 is transported into the feed area 46.
  • the pull-off wheel 32 is additionally driven in the direction of the arrow P6, ie in the feed direction of the bank note 38. If the leading edge of this banknote 38 falls below a preset distance from the wing 60, the impeller 54 is rotated via the drive shaft 62 so that the leading edge of the banknote 38 does not contact the wing 60.
  • the separating and stacking module 30 furthermore comprises a total of four inclined deflectors 64, which in the present exemplary embodiment are pressed with their end facing the stack 36 with the aid of a pretensioned spring 65 against the end face of the stack 36. Due to the inclined arrangement of the inclined deflectors 64, the upper area of the bank note becomes 38 is moved towards the end face of the stack 36 upon contact with the oblique deflector 64.
  • the separating and stacking module 30 has a pressure device 45 which contacts a banknote 38 positioned in the feed area 46 in front of the face of the stack 36 and presses this banknote 38 against the face of the stack 36 at least at the contact points.
  • the pressure device 45 is designed in such a way that it contacts the bank note 38 in its lower half when it is positioned in front of the end face of the stack 36.
  • the pressure device 45 can comprise at least one armature of a pull or push magnet designed as a pressure pin or a pressure pin coupled to the armature.
  • two cassette vane wheels 72 arranged on a drive shaft 71 are provided at the bottom of the banknote receiving area of the cassette 12a, which are connected to the drive shaft 71 in a rotationally fixed manner together with pulleys for deflecting belts 70 arranged at the bottom of the banknote receiving area of the cassette 12a.
  • a gearwheel (not shown) is arranged on this drive shaft 71, which is non-rotatably connected to this drive shaft 71 and via which the drive shaft 71 can be driven by a drive unit arranged separately from the cassette 12a when a further gearwheel coupled to the drive unit is connected to it on the drive shaft 71 arranged gear is in engagement. These gears are brought into engagement when the cassette 12a has been inserted into receptacles provided in the safe 10 and is in the operating position for feeding and removing banknotes.
  • the lower impeller 66 is rotated so that at least one wing 74, 76, 78 of the lower impeller 66 presses the rear edge and / or the lower region of the bank note 38 against the face of the stack 36. This pressing of the lower area with the aid of the lower impeller 66 takes place essentially simultaneously with the movement of the bank note 38 towards the stack 36 brought about by the inclined deflector 64.
  • the separating and stacking module 30 comprises a light barrier arrangement 39 which detects the front edge of a fed banknote 38 in the area between the drive wheel 44, so that, based on the time of arrival of the front edge of the fed banknote 38 and a preset delay time, the drive of the impeller 54 is over the drive shaft 62 is started.
  • the light barrier arrangement 39 comprises a prism arrangement for two-fold deflection of a light beam emitted by a light source, the light source and a light sensor for detecting the light beam emitted by the light source being arranged on the same side of the transport path for supplying and removing a bank note 38.
  • the prism arrangement is arranged on the opposite side of the transport path. This ensures reliable detection, in particular, since the light beam crosses the transport path of the banknotes twice. Furthermore, a simple, compact arrangement of the light source and the light sensor is possible on only one side of the transport path.
  • the separating and stacking module 30 comprises a stripping element 75 in order to remove banknotes 38 if necessary Adhere to the surface of the drive wheel 44, detach it from it and guide it into the feed area 46.
  • the stripping element 75 is preferably pressed against a stop with a spring force and is thereby held in the position shown.
  • FIG 3 is that in Figure 2 The separating and stacking module 30 shown is shown, the feed elements 52, 54 and the bank note 38 transported into the feed area 46 being shown in a second feed position, which differs from the one shown in FIG Figure 2 shown stack basic position differs.
  • the banknote 38 is at the in Figure 3 shown feed position compared to the in Figure 2
  • the position shown has been transported further into the feed area 46. Because of the already related Figure 2 described control of the drive of the impeller 54, this has been driven via the drive shaft 62 in the direction of the arrow P2, so that it is now the in Figure 2 position shown. This ensures that a distance is maintained between the leading edge of the banknote 38 and the wing 60, so that the fed banknote 38 does not contact the wing 60 and the feed movement of the banknote 38 is not impaired by contact with the wing 60.
  • the lower impeller 66 is rotated further so that the wing 74 of the lower impeller 66 approaches the rear edge of the fed bank note 38 and subsequently presses the rear edge or the lower region of the fed bank note 38 against the stack 36.
  • the blades 74, 76, 78 project tangentially from a hub of the lower impeller 66, preferably at 0 °, 90 ° and 180 °.
  • the blades 74, 76, 78 of the impeller 66 are made of an elastic material, preferably from a rubber and / or plastic material, and are preferably curved in the direction of rotation of the lower impeller indicated by the arrow P4.
  • the wings 74 to 78 press with a relatively large force against the lower area of the fed bank note 38 and then deform to move between the front lower edge of the stack 36 and the hub of the lower one Impeller 66 to be pulled through.
  • the vanes 74 to 78 protrude from the hub of the vane wheel 66 in such a way that when the arrow P4 rotates, they only have to be pivoted through a relatively small angle to the hub in order to at least partially rest against the peripheral surface of the hub.
  • FIG. 3 is a further schematic representation of the separating and stacking module 30 according to FIGS Figures 2 and 3 shown, wherein the feed elements 54, 66 and the fed bank note 38 are shown in a third feed position. In this third feed position, the upper impeller 54 is rotated further in the direction of the arrow P2.
  • FIG. 3 is a schematic representation of the separating and stacking module 30 according to FIGS Figures 2 to 4 shown, wherein the feed elements 54, 66 and the fed bank note 38 are shown in a fourth feed position.
  • the upper impeller 54 has been rotated further in the direction of the arrow P2, so that the wing 58 is pivoted into the feed area 46 and then into the in Figure 2
  • the basic stack position shown is rotated further, in which the front curved area of the wing 58 presses against the supplied banknote 38 and presses it together with further banknotes of the stack 36 into the banknote receiving area of the cassette 12a.
  • the three wings 74 to 78 are guided past the rear edge of the fed bank note 38 until they are back in the FIG Figure 2 are arranged stack basic position shown. Furthermore, the lower region of the banknote 38 is pressed by the pressure device 45 against the face of the stack 58, which reduces fluttering of the banknote 38, which is caused in particular by the wings 74 to 78 being moved past.
  • the note retraction flap 68 has a multiplicity of openings through which the upper impeller 54, the inclined deflector 64 and the pull-off wheel 32 pass and contact a bank note 38 depending on the operating state of the separating and stacking module 30. Further openings are provided in the note retraction flap 68 for the further take-off wheels 32, the further upper vane wheels 54 and the further inclined deflectors 64, so that these too, in the same way as for the feed and separation elements 32, 54, 64 explains, the bank note 38 can contact through the note retraction flap 68 through.
  • a feed and removal opening which is indicated by the arrow P5
  • a banknote 38 to be fed reaches the feed area 46 via this feed and removal opening are driven in the direction of the arrow P1, transported further to the transport elements 16a.
  • FIG. 3 is a further schematic representation of the separating and stacking module 30 according to FIGS Figures 2 to 5
  • the feed elements and the separating elements as well as the banknote stack 36 arranged in the cassette 12a are shown in a separating position for withdrawing a banknote 38 from the banknote stack 36 present in the cassette 12a.
  • the blades 58, 60 of the upper impeller 54 are in an in Figure 6
  • the basic stack position shown has been rotated and remain in this basic stack position during the entire separation process for removing and transporting a banknote 38 from the cassette 12a.
  • the stack 36 With the aid of a shifting carriage 82 driven by an electric motor 80, the stack 36 is shifted into a separating position towards the take-off wheel 32, so that the The end face of the stack 36 or the bank note 38 forming the end face of the stack 36 is pressed against the outer surface of the take-off wheel 32 and against the surface of the further take-off wheels 32 arranged parallel to the take-off wheel 32.
  • the oblique deflector 64 is pivoted about the axis of rotation 63, whereby the spring 65 generating the pressure force of the oblique deflector 64 is pretensioned or further pretensioned.
  • a drive unit is used to rotate the pull-off wheel 32 in the direction of the arrow P7 Figures 2 to 5 is directed.
  • the foremost bank note 38 of the stack 36 is pushed or transported downward past the stripping rollers 52 into the area between drive wheels 44 and pressure roller 50.
  • the surfaces of the drive wheels 44 and the haul-off wheels 32 preferably have a relatively high coefficient of friction.
  • the surfaces of the puller wheels 32 and the drive wheels 44 are formed from rubber or some other material with similar coefficients of friction.
  • the surface of the haul-off wheel 32 is structured by transverse grooves. By means of these transverse grooves, greater adhesion can be produced between the surface of the pull-off wheel 32 and the bank note 38 to be displaced downwards.
  • the drive wheels 44 are driven in the direction of the arrow P8. That Lower impeller 66 is positioned in a basic singling position so that its wings 74 to 78 do not protrude into the transport path for transporting the banknote 38 away and onward.
  • the sliding carriage 82 has axes 84, 86 which each extend from the sliding carriage 82 to the side walls of the cassette 12a which laterally delimit the stack 36, guide wheels 92, 93 being provided at the ends of the axes which engage in guide rails 88, 90.
  • the guide rails 80, 90 are formed in or on the side walls.
  • Figure 7 is an arrangement with the separating and stacking module 30 according to the Figures 2 to 6 with further elements of the cassette 12a for storing the banknotes and with a drive for actuating the note retraction flap 68, the note retraction flap 68 in the illustration according to Figure 7 is shown in an open position.
  • a drive unit 96 displaces a thrust element 98 via gear stages 100, 102 in the direction of arrow P10.
  • the gear stages 100, 102 each generate a reduction.
  • the output gear of the gear stage 102 engages in a rack 104 formed on the thrust element 98 in order to move the thrust element 98.
  • the thrust element 98 also has elongated holes 106, 108 through which guide bolts (not shown) protrude, the displacement range of the thrust element 98 being limited by these guide bolts and the elongated holes 106, 108.
  • the thrust element 98 also has a slope 110. In Figure 7 the thrust element 98 is shown in a position in which no further displacement in the direction of arrow P10 is possible due to the already mentioned limitation of the displacement range.
  • a lever 114 which can be pivoted about the axis of rotation 112 has been pivoted.
  • the note retraction flap 68 has been moved away from the end face of the stack 36, whereby an already in connection with the Figures 2 to 5 explained feed and separation opening P5 is opened.
  • a spring 116 provided for retracting the note retraction flap 68 is tensioned and exerts a restoring force on the note retraction flap 68. This restoring force is at least partially transmitted from the note retraction flap 68 to the lever arm 118.
  • the second lever arm 120 is pressed from below against the thrust element 98 in the present exemplary embodiment.
  • the bevel 110 of the thrust element 18 is designed as a wedge-shaped incline, as a result of which the thrust element 98 is also referred to as a wedge slide. Below in connection with Figure 8 the closing of the note retraction flap 68 is explained in more detail.
  • FIG. 7 Also shown is a drive shaft 122 driven by the motor 80 for moving the sliding carriage 82 and a gear 124 connected to the shaft 122 in a rotationally fixed manner at one end of the drive shaft 112. That Gear 124 engages in a rack 120 formed on the lower guide rail 90 and fixedly connected to the cassette 12a.
  • the toothed wheel 124 can be combined with one of the guide rollers 92, 94 for engagement in a toothed rack formed on the cassette 12a or can replace it.
  • a further sensor arrangement 126 is provided in addition to the light barrier arrangement 39 already mentioned above.
  • the sensor arrangement is provided for monitoring the feed area 46 and, in the present exemplary embodiment, is designed as a transverse light barrier. With the aid of the transverse light barrier 126, banknotes 38 can be detected when they are in the feed area 46.
  • a drive unit 128 and a gear stage 130 for driving the drive shaft 42 are shown, on which the drive wheel 44 is arranged.
  • the drive units 128, 96, 80 are designed as electric motors, preferably as stepper motors or as DC motors, some of the drive units also being able to be designed as stepper motors and some as DC motors.
  • Figure 8 is the arrangement according to Figure 7 shown with a closed note retraction flap 68.
  • the push element 98 is with the aid of the drive unit 96 and the gear stages 100, 102 has been moved in the direction of arrow P11.
  • the lever 114 has been pivoted by the force introduced by the spring 116 into the note retraction flap 68 after a rotatable guide roller 134 arranged at the end of the lever arm 120 has been guided upward on the slope 110 during the sliding movement in the direction of the arrow P11.
  • the lever arm 118 is also pivoted counterclockwise about the axis of rotation 112, so that the note retraction flap 68 is rotated about an axis of rotation 136 and the removal and feed opening P5 is closed at least to such an extent that the removal of a banknote from the stack 36 is not possible or is only possible with great difficulty is.
  • FIG. 9 a section of the cassette 12a for storing banknotes after the cassette 12a has been separated from the separating and stacking module 30 is shown.
  • the cassette 12a is for separating from the feeding and separating elements of the stacking and separating module 30 in the direction of the arrow P12 (see FIG Figure 8 ) has been separated by pulling the cassette 12a out of an opening of the safe 10.
  • the note retraction flap 68 has previously been pivoted into its closed rest position by an active drive with the aid of the drive unit 96 by a corresponding movement of the push element 98. Until the note retraction flap 68 is not arranged in the rest position, the cassette 12a is locked against being pulled out.
  • the pivoting of the note retraction flap 68 takes place when the cassette 12a is moved in the direction of the arrow P12 automatically via the spring force of the spring 116, since the guide roller 134 of the lever arm 120 is guided along the slope 110 of the thrust element 98 even when the cassette 12a moves in the direction of the arrow P12, so that the lever 114 is pivoted by the spring force of the spring 116 and the note retraction flap 68 is closed.
  • the cassette 12a has several interconnected lamellae 138a to 138g for closing the end face 140 of the cassette 12a.
  • the lamellae 138a to 138g are connected to the respective adjacent lamellae or designed in the connection area in such a way that a relative pivoting of the lamellae 138a to 138g about the axes of rotation 142a to 142e is possible in a limited angular range, so that the lamellae guided laterally in guide rails 144 138a to 138g are guided along a curved path predetermined by the guide rails.
  • the lamellae 138a to 138g are displaced into an area below the bank note receiving area of the cassette 12a when the inserted cassette 12a is in a working position.
  • the feed and separation elements can contact a bank note 38 arranged on the end face of the stack 38 through the openings in the note retraction flap 68.
  • the lamellae 138a to 138g cover both the essentially vertical face 140 of the cassette 12a and an area starting from the face 140 below the note retraction flap, so that the entire feed and removal area is completely covered by the lamellae 138a to 238g, when the cassette 12a is removed from the safe 10.
  • the slats 138a to 138g like a roller shutter or a blind are opened when the cassette 12a is pushed further into the safe 10, ie in a direction opposite to the arrow P12, so that the end face 140 of the cassette 12a as well as an area on the underside of the cassette 12a is opened from the end face 140 of the cassette 12a.
  • This lower region preferably extends to the end face of the banknote stack 38, so that in particular the wings 74 to 78 of the lower impeller 66 can contact the banknote stack 36 as described.
  • the lamellae 138a to 138d are moved back into the position shown in FIG Figure 9
  • the closed position shown is displaced, in which no access to the note retraction flap 68 or the bank note stack 36 located in the cassette 12a is possible.
  • the lamella 138g is at least partially covered by a base plate of the cassette 12a, so that the cassette 12a is caused by the displacement of the lamellae 138a until 138g is fully closed in the closed position.
  • this closed position there are no openings through which bank notes or parts of bank notes could be removed.
  • FIG 10 a three-dimensional view of the drive elements for driving the cassette impeller wheels 72 arranged in the cassette 12a near the end face 140 and the shaft 53 with the lower impeller wheels 66 arranged thereon and the stripping rollers 52 arranged thereon is shown.
  • the drive shaft 71 is driven by an electric motor 146 via several gear stages 148 to 154, on which a gear 158, two toothed belt pulleys 160a, 160b and several cassette vane wheels 72a to 72e are non-rotatably arranged.
  • the floor belts 70a, 70b designed as toothed belts are guided and deflected over the belt pulleys 160a, 160b.
  • the belts 70a, 70b contact the underside of the banknotes which are arranged standing on the belts 70a, 70b and which are present in the stack 36 in the cassette 12a or at least some of these banknotes.
  • the impeller 72e has been shown and designated as an impeller 72 and the belt 70b as a belt 70.
  • similar elements that are present several times in a specific arrangement are provided with the reference number themselves if they are only shown once in the corresponding figure and with an additional consecutive small letter in each case if the element is present several times in a figure is.
  • FIG 11 a three-dimensional representation of the drive elements for driving the note retraction flap 68 is shown.
  • the drive of the note retraction flap 68 takes place via an electric motor 96, which moves the thrust elements 98a, 98b in parallel via gear stages 100, 102 and a rack 104a, 104b formed on the thrust elements 98a, 98b.
  • the rotary movement initiated by the motor 96 is transmitted via a shaft 166 and a toothed wheel 103 which is arranged at the other end of the shaft 166 and which meshes with the toothed rack 104a.
  • the driving rotational movement is converted into a linear movement, by means of which the thrust elements 98a, 98b are displaced in parallel.
  • the pushing element 98a has an opening 162 through which further elements of the separating and stacking module 30 can be passed.
  • the push element 98b has a further opening 164 through which further elements of the separating and stacking module 30 can be guided.
  • the Lever arms 118a, 118b contact the note retraction flap 68 on opposite sides, so that this note retraction flap 68 is opened or closed simultaneously via the ends of the lever arms 118a, 118b when the pushing elements 98a, 98b are moved in parallel.
  • FIG 12 a three-dimensional representation of a lower 55 and with transmission elements for driving this impeller shaft 55 is shown.
  • two stripping rollers 52a, 52b are arranged on the shaft 55.
  • the lower impellers 66a and 66b are arranged on a sleeve 168a which is pushed over the shaft 55 and can rotate freely relative to the shaft 55 and are connected to this sleeve 168a in a rotationally fixed manner.
  • a gear 170a is also connected to this sleeve 168a in a rotationally fixed manner, so that the sleeve 168a can be driven independently of the shaft 55 via the gear 170a.
  • a double gear 172 is arranged freely rotatable on the shaft.
  • This double gearwheel 172 is used together with further gearwheels 174, 176 and together with a belt drive 178 to reduce the drive speeds of a drive unit 175.
  • the rotary motion is transmitted from the gear 176, which is fixedly arranged on a drive shaft 180, to the drive shaft 180 and from this drive shaft 180 via further gears 182, 184, 186 are transferred to the gearwheels 170a, 170b, 170c connected in a rotationally fixed manner to the sleeves 168a, 168b, 168c.
  • a further gear 186 is arranged, which has a Freewheel is connected to the shaft 55, so that a rotary movement of the stripping rollers 52a, 52b in the direction of the arrows P20, P22 is possible when the shaft 55 is not driven by the gearwheel 186 in the direction of the arrows P20, P22.
  • the stripping rollers 52a, 52b are likewise driven in the direction of rotation of the arrows P20, P22 via the shaft 55 and the gearwheel 186.
  • the gear wheel 186 can be connected to the shaft 55 in a rotationally fixed manner, which means that the freewheel can be dispensed with. Then, when a bank note 38 is being fed into the feed area 46, the stripping rollers 52a, 52b are to be driven by a drive unit via the gearwheel 186 and the shaft 55 in the direction of the arrows P20, P22.
  • FIG. 13 a three-dimensional representation of separating elements for removing a banknote 38 from the cassette 12a and for further transporting the removed banknote 38 is shown.
  • the shaft 34 is connected to a drive unit (not shown) via a magnetic coupling 188, with the magnetic coupling 188 being able to establish or disconnect the connection to the drive unit as required.
  • This possibility of separation via the coupling 188 is particularly useful when the drive unit for driving the shaft 34 has additional elements of the separating and stacking module 30 and / or drives further transport elements 16a to 16d and the take-off wheels 32a to 32c should not always rotate when the other elements are being driven.
  • the drive wheels 44a to 44n are arranged on the main drive shaft 42.
  • a retaining element 190a to 190f is arranged in each case between the drive wheels 44d, 44e, 44f, 44g and between the drive wheels 44h, 44i, 44j, 44k.
  • the retaining elements 190a to 190f protrude like fingers from a shaft 194 to which they are connected in a rotationally fixed manner.
  • the retaining elements 190a to 190f can be moved with their end remote from the shaft 194 out of the spaces between the drive wheels 44d to 44g and 44h to 44k, so that they are moved out of the envelope surface around them Drive wheels 44b to 44k step out and are pressed against the surface of the stripping rollers 52a, 52b.
  • the bank notes present between the stripping rollers 52a, 52b and the retaining elements 190a to 190f are thus pressed by the retaining elements 190a to 190f against the stripping rollers 52a, 52b in order to prevent a double pull.
  • the pivot arrangement comprises a pull magnet 192 as a drive unit.
  • the drive shaft 34 is driven via the magnetic coupling 188 and the gear wheel 189 arranged at one end of the shaft 34.
  • the opposite end of the shaft 34 is pressed in the direction of the note stack 36 with the aid of a pressing device 195.
  • the pressure device 195 further comprises a pressure sensor that detects at least one position of the The end of the drive roller 34 held in the pressure device 195 is detected.
  • the take-off wheels 32a to 32c Due to the resilient mounting of the take-off wheels 32a to 32c, which are preferably arranged on a common sleeve 196, the sleeve 196 being resiliently mounted on the drive shaft 34, the take-off wheels 32a to 32c can be aligned parallel to the end face of the stack with a desired preset pressure force 36 are pressed so that the banknotes 38 to be removed from the cassette 12a are not withdrawn at an angle.
  • the take-off wheels 32a to 32c are arranged in a rotationally fixed manner on the sleeve 196, the sleeve 196 being connected in a rotationally fixed manner to the drive shaft 134.
  • the drive shaft 42 is driven via the gear 198 arranged at one end of the drive shaft 42 via drive elements of a central distributor module arranged in the safe 10, which drives further transport elements 16a to 16d of the transport path 18.
  • This gear 198 is designed as a double gear and drives the drive side of the magnetic coupling 188. As a result, no separate drive is required for driving the drive wheels 44 and the pull-off wheels 32 in the separating and stacking module 30.
  • the separation and stacking module 30 results in a module separation between the cassette 12a and the feed and separation elements.
  • a simply constructed, inexpensive cassette 12a can be used, the feeding and separating elements being arranged in the safe 10 or in the ATM and remaining in the safe 10 or in the ATM when the cassette 12a is removed.
  • the cassette 12a can be used in a first ATM for depositing and withdrawing banknotes (cash recycling) and can be used as a pure payout cassette 12a in a new configuration of the same ATM or when this cassette 12a is used in another ATM. It is advantageous to arrange the cassette 12a in such a way that the end face of a banknote stack 36 present in the cassette 12a is arranged vertically, i.e. H.
  • the separating and stacking module 30 and the cassette 12a can, however, also be arranged in such a way that the stacking direction or the stacking depth runs vertically, with the front side of the stack 36 from which banknotes can be pulled from the stack 36 and further banknotes can be fed to the stack 36 , is then arranged horizontally at the top of the stack 36.
  • the upper two-bladed impellers 54 with rigid blades 58, 60 are designed and arranged in such a way that the enveloping circle of the blades 58, 60 ends at the top with approximately the largest allowable note height and horizontally Stack basic position also supports a stack 36 formed from the smallest admissible bank notes 38 or pushes it further into the cassette 12a.
  • a wing flip takes place, ie before the bank note 38 is fed in, the first wing 60 contacts the end face of the stack 36 and after the bank note 38 has been fed in, the second wing 58 contacts the end face of the stack 36 a dynamic triggering of the wing turnover as a function of the front edge of the banknote 38 to be fed in detected by the light barrier arrangement 39, the turnover time being selected so that a banknote 38 that has just been fed is shifted towards the stack 36 or struck with the outer curvature of the curved wing end towards the stack 36 will.
  • the turnaround time is preferably set as a function of the size of the supplied bank note 38, that is, it is varied as a function of size.
  • the oblique deflectors 64 lead a fed bank note 38 away from the center of the wing 60 or 58 of the impeller 54 towards the end face of the stack 36.
  • the wings 74, 76, 78 of the lower impeller are connected tangentially to a hub of the impeller 66, the front Area of the wings 74, 76, 78 each has a curvature.
  • the curvature is formed in such a way that the wing tips in the direction of rotation of the impeller 54 run ahead of the remaining part of the wings 58, 60 when a bank note 38 is fed in.
  • the main drive shaft 42 with the drive wheels 44 is continuously driven by an electric motor to drive the transport elements of the transport path 18, wherein the drive shaft 34 with the haul-off wheels 32 arranged thereon can optionally be coupled or decoupled to the drive of the drive wheels 44 via the magnetic coupling 188.
  • the continuous drive of the drive wheels 44 and the optional drive of the withdrawal wheels 32 are provided by a central drive for the transport elements 16a to 16d arranged in the safe 10, which has a large torque reserve so that even banknotes that are difficult to separate, e.g. B. adherent, freshly printed banknotes or notes with polymer film, can be isolated with the help of the puller wheels 32 and transported with the help of the drive wheels 44.
  • the withdrawal wheels 32 are driven via the switched magnetic coupling 188 until the bank note has reached the detection area of the light barrier arrangement 75 arranged in the area of the drive wheels 44.
  • This has the advantage that the overall process for withdrawing and further transport of the banknote 38 does not get out of step in the event of delays in withdrawal or further transport, for example as a result of banknotes sticking to one another, as can occur with rigid, mechanically coupled separating drives. Rather, when a sheet edge of the banknote 38 to be removed arrives, the removal is simply continued, so that the control for transporting the banknote 38 is event-controlled as a function of the event “the edge of the removed banknote 38 arrives in the detection area of the light barrier arrangement”.
  • the already mentioned stack pressure is determined in particular by the stack thickness, the state and the properties of the banknotes arranged in the stack 36 and the position of the shifting carriage 82.
  • the stack 36 is pressed out of the feed area 46 with the aid of the upper impellers 54.
  • several impellers 54 are arranged on the drive shaft 62, which is arranged horizontally in the first embodiment of the invention, distributed over the maximum permissible note width.
  • the drive shaft 62 is driven with the impellers 54, preferably with the aid of a stepping motor, the drive shaft 62 being rotated through 180 ° each time a bank note 38 is fed in.
  • the impellers 54 are driven in such a way that the front edge of a fed bank note 38 protrudes into the feed area 46 Wing 58, 60 is not contacted, but rather that a minimum distance between the front edge of the fed bank note 38 and the wing 58, 60 is achieved by a suitable control of the stepping motor for driving the drive shaft 62.
  • the wings 58, 60 have a relatively small width. In the present exemplary embodiment, they have a width of 6 mm.
  • the vane wheels 54 are in the basic stacking position, in which the vane 60 protruding into the feed area 46 makes contact with the stack of notes 36 below the smallest allowable note height. In the present exemplary embodiment, the smallest permissible note height is 58 mm.
  • pressure element 45 described in the in Figure 5 is activated, so that it contacts the fed bank note 38 in the lower half and presses it against the end face of the stack 36 already in the cassette 12a.
  • the pressure element 45 comprises in particular a push magnet, the armature of which is moved when the push magnet is activated that one end of the armature or a further element connected to one end of the armature presses against the front or back of the banknote 38 facing the pressure element 45 and the Banknote 38 is displaced towards the end face of the already existing stack 36 at least in the contact area and presses against this end face of the existing stack 36.
  • the rotation time of the upper impeller 54 when rotated by 180 ° is preferably preset in such a way that the fed bank note 38 is pushed by the second wing 58 to the end face of the stack 36 and is pressed against it as soon as the fed bank note 38 reaches the contact area between the drive wheel 44 and the pinch roller 50 has left.
  • the inclined deflectors 64 have the effect in particular that relatively large banknotes, which are arranged as a stack 36 in the cassette 12a, do not bend above the wing 60 pressing against the end face of the stack 36 in the basic stack position and into the area above the wing 60 in the basic stack position protrude.
  • the bank note arranged on the front side or several bank notes of the stack 36 could be drawn upwards by the wing 60 when the impeller 54 rotates.
  • the lower impeller 66 is preferably rotated together with the drive wheels 44 when a banknote 38 is fed in, the lower impeller 66, as already described, being drivable or rotatable independently of the counter-rotating shaft 55.
  • the flexible wings 74 to 78 of the lower impellers 66 are elastically deformed and wound onto the hub of the respective impeller 66, so that the wound wings 74 to 78 are arranged in a spiral shape.
  • the first wing 74 to 78 which engages under the rear edge of the banknote, hits the lower area of the banknote 38 and presses this lower area upwards and against the stack 36.
  • the lower impellers 66 are also driven by a separate stepper motor, which drives the shaft 55 with the stripping rollers 52a, 52b arranged thereon via a freewheel, so that the stripping rollers 52a, 52b are also driven in the supply direction of the banknote 38 when a banknote 38 is fed in thereby at least not hinder the feeding of the bank note 38.
  • the lower vane wheels 66 each have three vanes 74 to 78, the base points of which are not evenly distributed over the circumference, and in the present exemplary embodiment leave a gap of 180 °.
  • the lower impeller 66 is then aligned such that no wing 74 to 78 protrudes into the transport path for the removal of the withdrawn banknote 38. This position of the blades 74 to 78 of the lower impeller 66 are shown in FIG Figure 6 shown.
  • the vanes 74 to 78 are not arranged centrally on the hub of the lower vane wheel 66, but project laterally tangentially.
  • the wings 74 to 78 can perform the elastic deformation described with a relatively low stress on the material.
  • the root zone connected to the hub of the impeller 66 becomes each of the blades 74 to 78 when applied the vanes 74 to 78 are not angled to the hub as much during a rotary movement of the vane wheel 66 as when the vanes 74 to 78 are connected to the hub in the center.
  • the note retraction flap 68 is in its in Figure 8
  • the rest position shown is preferably locked with the aid of locking elements on the cassette housing in order to ensure that the note retraction flap 68 remains in the rest position when the cassette 12a is transported.
  • the movement of the note retraction flap 68 is controlled via scenes which are provided in or on the outer walls of the cassette 12a.
  • guide elements connected to the note retraction flap 68 are in engagement with the connecting links, these guide elements preferably being locked with the aid of the locking elements.
  • the note retraction flap 68 must remain in this rest position in the locked state as long as the locking elements are in engagement with the guide elements.
  • the sliding carriage 82 After the sliding carriage 82 has pressed the bank note stack 36 present in the cassette 12a against the pull-off wheels 32 with a preset maximum pressure, the direction of movement of the sliding carriage 82 is reversed and a preset retraction path is covered. Due to different note qualities, the required stacking space is different, particularly in the case of a stack of notes 36 with a relatively large number of banknotes, so that with a constant retraction path of the shifting carriage 82, a different pressing force of the notes on the feed and separation elements of the separation and stacking module 30 occurs. In a first step, the sliding carriage 82 is moved a first distance away from the separating and stacking module 30.
  • An indirect stack pressure determination is then carried out, with the upper impeller 54 to be rotated from the basic separation position into the basic stack position. Parallel to this rotary movement of the With the upper impeller 54, the sliding carriage 82 is moved further away from the singling and stacking module 30, the bottom belts 70 being driven at the same time in such a way that they move the banknotes standing on the belt 70 away from the singling and stacking module 30. This is continued until the vanes 58, 60 of the upper vane wheel 54 have reached the basic stack position or until the sensor arrangement 126 no longer detects any bank notes in the detection area.
  • the upper impeller 54 is driven with the aid of the stepping motor with a reduced stepping motor current and a frequency that is lower than the normal drive frequency.
  • the permissible note pressure can thus be determined by the moment of the stepping motor.
  • Stepper motors are in principle unsuitable for torque controls, since a stepper motor skips setting steps when a limit torque is exceeded, the torque falling to zero when skipping setting steps. The torque is only built up again after four more steps.
  • a freewheel is arranged on the drive shaft 62.
  • a pulsating control signal is used to control the stepper motor, which increases with each pulse up to the value applicable for the selected low frequency. This is repeated until the basic feed position or basic stack position of the impeller 54 is reached, in which the non-curved area of the blades 58, 60 is aligned essentially horizontally.
  • a DC collector motor or a brushless DC motor can be used instead of the stepper motor.
  • DLBC brushless DC motor
  • a positioning control takes place in the lower region of the bank notes arranged as a stack 36.
  • a sensor arrangement 126 designed as a transverse light barrier is provided, which is arranged at the limit of the maximum required feed area 46 in the so-called stack foot zone and thus monitors the area in front of the end face of the stack 36.
  • the bottom belts 70 and the impeller wheels 72 arranged in the cassette 12a are also driven to transport the stack of notes 36 from the feed area 46 into the note receiving area of the cassette 12a until the light barrier arrangement 126 no longer detects any banknotes in its detection area.
  • the feeding of banknotes 38 then takes place with continuously rotating drive wheels 44 and continuously rotating lower impeller wheels 66 are rotated at least temporarily via the magnetic coupling 188, in particular to prevent the front edge of the fed banknote 38 from getting caught on the outer surface of the pull-off wheels 32.
  • Up to 200 banknotes 38 can be fed to the cassette 12a for each transaction.
  • the shifting carriage 82 is moved synchronously with the bottom belt 70 by a preset retraction distance away from the separating and stacking module 30, i. H. retracted in the cassette 12a. If this preset withdrawal path is not sufficient, after a banknote 38 has been fed in, it will at least partially remain in the detection area of the monitoring light barrier arrangement 126 and will be detected by the latter, since this banknote 38 could not be pushed sufficiently far into the ban node receiving area.
  • the preset retraction path is in particular insufficient when used bank notes 38 have a greater resulting note thickness in the stack due to their deformation.
  • the preset retraction path of the shifting carriage 82 is therefore not sufficient to provide sufficient stacking space for the supplied bank notes. If the light barrier arrangement 126 detects a bank note in the detection area, the shifting carriage 82 is shifted away from the separating and stacking module 30 by an additional retraction path.
  • Intermediate compression is also provided, since a relative poor degree of filling in the cassette 12a would be achieved.
  • an intermediate compression process is provided before a further transaction if more than 150 banknotes, a maximum of 200 banknotes, have been supplied.
  • the sequence corresponds to the process already described for setting the stack pressure after feeding the cassette 12a or before positioning the upper impeller 54 in the basic stack position.
  • the air gaps generated by a preset generous step size when the sliding carriage 82 is withdrawn are at least partially removed from the stack 36 by compressing the entire stack 36.
  • the impeller 54 is rotated again into a basic stack position in which the non-bent areas of the blades 58, 60 of the upper impeller 54 are essentially aligned horizontally.
  • this basic stack position all banknotes of the stack 36 are arranged in the cassette 12a, so that the cassette 12a can be removed from the safe 10 as soon as the note retraction flap 68 has been pivoted inward.
  • the pivoting of the note retraction flap 68 into the rest position takes place, as already mentioned, with the aid of the in Figure 11 Drive shown for the note retraction flap 68. If the cassette 12a can be removed without further preparation, especially when the ATM is de-energized, the note retraction flap 68 must always be swiveled into the rest position if no feeding and no removal process is currently being carried out.
  • FIG 14 is a three-dimensional representation of a separating and stacking module 200 according to a second embodiment of the invention with three juxtaposed conveyor belts 202 to 206 each with transport tabs 202a to 206a. With the aid of the transport tabs 202a to 206a, bank notes are fed to the cassette 12b. Furthermore, the separating and stacking module 200 has two pull-off wheels 208, 210 with the aid of which the banknotes present as a stack 36 in the cassette 12b are individually removed from the cassette 12b, ie the banknotes are separated.
  • the endless conveyor belts 202 to 206 are guided over upper deflection rollers 212 to 216, which have lateral guides in the manner of a belt pulley for laterally guiding the endless conveyor belts 202 to 206.
  • the deflection rollers 212 to 216 are non-rotatably connected to a drive shaft 218, which can be driven by an electric motor 220.
  • the drive of the shaft 218 takes place via a belt drive 222.
  • a lower deflection roller 224 to 228 is provided for each conveyor belt 202 to 206, which are freely rotatably arranged on a drive shaft 230 for driving the take-off wheels 208, 210 and via suitable axial limiting elements in their axial position on the drive shaft 230 are held.
  • the endless conveyor belts 202 to 206 and the conveyor tabs 202a to 206a have a perforation along the circumference of the endless conveyor belt 202 to 206 with a plurality of holes arranged at equal distances from one another.
  • the upper pulleys 212 to 216 have complementary protruding spikes to the perforation of the conveyor belts 202 to 206, which engage in the perforation so that both further lateral guidance and a slip-free drive of the conveyor belts 202 to 206 takes place.
  • the conveyor belts 202 to 206 are driven in the direction of arrow P50.
  • engaging elements each of which is preferably designed as a single-winged impeller 232 to 240, a gap can be created or enlarged between the circulating conveyor belt 202 to 206 and the respective downwardly open conveyor flaps 202a to 206a, so that the conveyor belts 202 to 206 have a basic feed position exhibit.
  • a bank note 38 is fed via the drive wheels 44 generated on the outside of the transport flaps 202a to 206a adjacent banknote stacks 36.
  • a bank note 38 to be fed is transported into this feed area.
  • a region of this bank note 38 is introduced into the transport tabs 202a to 206a or guided between the transport tabs 202a to 206a and the conveyor belts 202 to 206.
  • the transport belts 202 to 206 are essentially aligned in the direction of arrow P50
  • the same rotational speed driven as the speed at which the supplied bank note 38 has been conveyed into the transport flaps 202a to 206a with the aid of the drive wheels 44.
  • stripping elements (not shown) are provided which prevent the bank note arranged with areas in the transport tabs 202a to 206a from continuing to circulate with the transport belts 202 to 206 and thereby pulls the transport belts 202 to 206 out of the transport tabs 202a to 206a when the transport belts 202 to 206 are driven further.
  • stripping elements are arranged in such a way that the bank note 38 drawn from the transport tabs 202a to 206a is positioned opposite the end face of the stack 36 already located in the cassette 12a. Furthermore, pressure elements 242 to 248 are provided, which protrude from the areas between the transport belts 202 to 206 via a pull magnet 247 and which thereby press the banknote 38 positioned opposite the front side of the stack 36 already present in the cassette 12a against the front side of the stack 36, so that the supplied bank note 38 forms the new end face of the stack 36.
  • the lower region of a fed bank note 38 is additionally pressed against the bank note stack 36 by the impellers 232 to 240.
  • individual elements of the cassette 12b such as the transport belts 70a, 70b and transport rollers 249a to 249d are shown.
  • the stripping elements 52a, 52b and those already in connection with Figure 13 and the retaining elements 190a to 190f explained in the first embodiment of the invention are shown in their rest position according to the first embodiment and the second embodiment of the invention.
  • the separating and stacking module 200 shown also has a magnetic coupling 242, via which the main drive shaft 42 with the drive wheels 44 can be optionally driven.
  • FIG. 8 is a simplified side view of the singulation and stacking module 200 of FIG Figure 14 shown, wherein the feed and separation elements are shown in a first position for feeding a bank note 38.
  • a lower impeller 232 engages in the transport flap 202a after the transport belt 202 has been moved into a basic feed position against the direction of the arrow P50.
  • the impeller 232 has two protruding rigid blades. The engagement of a wing of the impeller 232 in the transport flap 202a opens the latter further, so that a supplied bank note 38 is guided into the area between the endless circulating conveyor belt 202 and the transport flap 202a provided on the outer circumferential surface.
  • the separating and stacking module 200 also includes a stepping motor 250 as a drive unit, which drives the drive shaft 53 for driving the impellers 232 via a belt drive 251 and the magnetic coupling 242.
  • the cassette 12b shown in connection with the second embodiment does not have any impellers arranged in the cassette 12a, but the already mentioned transport rollers 249a to 249d with a profiled circumferential surface.
  • the profile of the transport rollers 249a to 249d has transverse ribs, by means of which a form-fitting connection is created with the bank notes which are in contact with the wheels 249a to 249d with their lower edge will.
  • the pressure element 242 is in Figure 15 shown simplified as a pivotable lever. Both the pivotable levers 242 to 248 serving as pressure elements and the profiled transport rollers 249a to 249d can also be used in the first embodiment of the invention, whereby the impellers of the first embodiment and the one in FIG Figure 8
  • the pressure element shown and described in this context can be used in the second embodiment of the invention.
  • FIG. 14 is the side view of the separating and stacking module 200 according to FIG Figure 15 shown, wherein the feeding and separating elements are shown in a second position when feeding a bank note 38.
  • the endless conveyor belt 202 continues to circulate P50, the banknote 38 located in the transport tabs 202a to 206a has been pulled out of these transport tabs 202a to 206a, with the banknote 38 and the entire stack 36 being pressed away from the conveyor belt 202 with the aid of the pressure elements 242 to 248 have been.
  • the endless conveyor belt 202 is driven counter to the direction of the arrow P50, the lower impeller 232 being further driven and rotated parallel thereto. A wing of the impeller 232 presses the lower region of the banknote 38 against the banknote stack 36.
  • FIG. 14 is the side view of the separating and stacking module 200 according to FIGS Figures 15 and 16 shown, wherein the feeding and separating elements are shown in a third position when feeding the bank note 38. In this position it can be seen that a wing of the lower impeller 232 simultaneously engages around the rear edge of the fed bank note 38 and also engages in the transport flap 202a.
  • FIG 18 is the side view of the separating and stacking module according to the Figures 15 to 17
  • the feeding and separating elements are shown in a fourth position, in which the lower region of the fed banknote 38 has been shifted towards the stack with the aid of the lower impeller 232 and at the same time the transport flap 202a has been opened to feed another banknote.
  • FIG. 11 is a simplified side view of a module 200 for the isolation and stacking according to FIG Figures 14 to 18 shown alternative separation and stacking module 252 for stacking and separating banknotes.
  • the feeding and separating elements are shown in a first position when feeding a bank note.
  • the separating and stacking module 252 differs from the separating and stacking module 200 according to FIGS Figures 14 to 18 by the formation of the lower impeller 232, the two blades of the lower impeller 232 in the separating and stacking modules 200, 252 each having an angular distance of 141 ° and 219 °.
  • the impeller 232 is rotated in such a way that, when a banknote 38 is fed in, the wings are arranged in such a way that they face the banknote 38 with their smaller angular spacing of 141 °.
  • the lower impeller 232 is rotated in such a way that the blades of the impeller 232 face the fed bank note 38 with their large angular spacing of 219 °.
  • Figure 19 is the transport flap 202a in the same way as in connection with Figure 15 opened for a bank note 38 to be fed.
  • FIG. 13 is the side view of the singulation and stacking module 252 of FIG Figure 19
  • the feeding and separating elements are shown in a second position when the bank note 38 is being fed in.
  • the lower impeller is rotated at the same time as the conveyor belt 202 is driven against the direction P50, so that the in Figure 16 Wings of the impeller 232 arranged at the bottom encompass the rear edge of the fed banknote 38 and at the same time reach into the transport flap 202a, as shown in FIG Figure 21 is shown.
  • the wing pushes the lower area of the fed bank note 38 towards the stack 36 and at the same time opens the transport flap 202a, as shown in FIG Figure 22 is shown.
  • FIG 23 is one in the vault 10 after Figure 1 arranged banknote cassette 12b with a separating and stacking module 200 according to the second embodiment of the invention shown for feeding and removing banknotes. Furthermore, a section of the transport path 18 and a pair of transport rollers 260 with a drive roller 262 and a pressure roller 264 are shown. With the aid of the pair of transport rollers 260, a transport path for bank notes is formed between the separating and stacking module 200 and the transport path 18. The transport elements of the transport path 18 and switches arranged in this transport path are shown in FIG Figure 23 not shown.
  • the separation and stacking module 200 is already in the basic stacking position in the illustration according to FIG.
  • the sliding carriage 82 arranged in the cassette 12b is shown in FIG Figure 23 not shown.
  • the conveyor belts 202 to 206 with the conveyor lugs 202a to 206a are also referred to as imbricated belts, since the conveyor lugs 202a to 206a lie like scales on the respective conveyor belt 202 to 206.
  • Both the endless conveyor belts 202 to 206 and the conveyor flaps 202a to 206a are preferably made from a polyester film with a uniform thickness in the range from 0.1 to 0.75 mm, preferably in the range from 0.2 to 0.35 mm. A thickness of 0.25 has proven to be advantageous.
  • the separating and stacking module 200 according to the second embodiment of the invention is also particularly suitable for a vertical cassette arrangement, ie when the cassette is arranged in such a way that the end face of the stack 36 is arranged in a horizontal plane, preferably at the top of the stack.
  • a particular advantage of the separating and stacking module 200, 252 with the conveyor belts 202 to 206 is that a bank note 38 to be fed is protected in the transport tabs 202a to 206a when it is transported in front of the end face of the stack 36.
  • the front note section of the banknote 38 is covered by the relatively wide transport flaps 202a to 206a and has no direct contact with the end face of the stack 36 in the area of the transport flaps 202a to 206a.
  • the supplied banknote 38 cannot get caught in protruding areas of used banknotes.
  • the requirements placed on the rigidity of the bank notes to be fed in against buckling are lower.
  • the conveyor belts 202 to 206 allow a flat and low-mass design of the feed elements. Furthermore, a linear guidance of the bank note is achieved by means of the transport belt 202, which is deflected by means of two deflection rollers with the transport tabs 202a to 206a.
  • the endless transport belt 202 with the at least one transport flap 202a preferably with two transport flaps each, can be made from two punched foils, which are welded together at at least two connection points, preferably by a welded connection, to form the endless transport belt 202 with transport flap 202a.
  • An ultrasonic welding process is particularly suitable as the welding process.
  • a bank note is withdrawn from the cassette 12b in the embodiments according to FIGS Figures 14 to 23 in the same way as for the first embodiment in connection with the Figures 2 to 13 described.
  • FIG 24 is a plan view of a stacking and separating wheel shaft 270 of a separating and stacking module of a third embodiment not claimed with a total of three stacking and separating wheels 272 to 276 arranged on this shaft.
  • the stacking wheel shaft 270 is driven by an electric motor, the shaft 270 being driven via a toothed belt pulley 278 connected to the shaft 270 in a rotationally fixed manner.
  • a total of three toothed belt pulleys 280 to 284 are non-rotatably connected to the stacking and separating wheel shaft 270, via which cam disks freely rotatably mounted on a shaft arranged parallel to the stacking and separating shaft 270 can be driven with the aid of toothed belts 286 to 290.
  • the separating and stacking wheels 272 to 2776 each have two pull-off elements 272a, 272b, 274a, 274b, 276a, 276b that can be moved out of the circumferential surface of the separating and stacking wheels 272 to 276.
  • the outsides of these pull-off elements 272a to 276b are each profiled by transverse grooves and have a relatively high coefficient of friction, so that bank notes are already used with a relatively low pressure force with the help of the pull-off elements 272a to 276b can be shifted or withdrawn.
  • at least the surface of the trigger elements 272a to 276b is made of a rubber material.
  • the stacking and separating wheel shaft 270 has control levers 296, 298 whose end remote from the stacking and separating wheel shaft 270 is used to control the movement of the retaining or pressure elements 190_. Furthermore, clamping elements arranged in the stacking and separating wheels 272 to 276 can be controlled via the control levers 296, 298 via a cam disk arranged on the aforementioned parallel shaft and / or via cam disks arranged in the stacking and separating wheels.
  • the belt drives 280 to 290 for driving the cam disks of which in Figure 24 the pulleys 280 to 284 arranged on the stacking and separating wheel shaft 270 and the toothed belts 286 to 290 are shown, have a transmission to the pulleys coupled to the cam disks.
  • the separating and stacking wheels 272 to 270 each have two stacking chambers, a transmission ratio of 1 to 2 being provided so that the cam disks have twice the number of revolutions as the stacking and separating wheel shaft 270.
  • Figure 25 shows a perspective view of the separating and stacking wheel shaft 270 according to FIG Figure 24 .
  • each a chamber 272c to 276c for receiving an area of a bank note to be fed of the singling and stacking wheels 272 to 276 and the Stacking wheels 292 and 294 are shown.
  • the visible chamber of the singling and stacking wheel 272 is denoted by the reference number 272c
  • the visible chamber of the singling and stacking wheel 274 is denoted by the reference number 274c
  • the chamber of the singling and stacking wheel 276 is denoted by the reference number 274c.
  • the visible chamber of the stacking wheel 292 is denoted by the reference number 292c and the visible chamber of the stacking wheel 294 is denoted by the reference number 294c.
  • FIG. 14 is a side view of the stacking and separating wheel shaft 270 of FIGS Figures 24 and 25th shown, in which the second chamber 292d of the stacking wheel 292 is visible.
  • the Figure 27 shows the side view of the separating and stacking wheel 272 with the chambers 272c and 272d for receiving banknotes. Furthermore, the axis of rotation 300 of the cam disk 302, which runs parallel to the separating and stacking wheel shaft 270, is shown.
  • the cam disk 302 is scanned via the lever 296, and depending on the course of the cam disk 302, at least one of the two trigger elements 272a, 272b can be moved out of the circumferential surface of the separating and stacking wheel 270 via the lever 296 in order to move the one in the cassette 12c To contact the face of the stack 36 arranged bank note.
  • FIG 27 is a starting position for separating (basic separating position) those present in the cassette 12c
  • Bank notes arranged in a stack 36 are shown.
  • An impeller 304 with a wing 306 is rotated in a singling mode so that the wing 306 does not protrude into the transport path for transporting away the banknotes pushed down from the end face of the stack 36 with the aid of the pull-off elements 272a, 272b.
  • the bank note arranged on one end of the stack 36 is pushed downward into a transport gap between the drive wheel 44 and the pressure roller 50.
  • the in Figure 27 shown arrangement stripping rollers 52, which are not rotated when a banknote is transported or which are alternately rotated against the transport direction of the banknote during transport, so that in the event of a double withdrawal, the second banknote behind the banknote contacted by the stripping element 272a, 272b with the banknote shifted down does not enter the Transport gap between the drive wheel 44 and the pressure roller 50 comes.
  • the arrangement also has a sensor arrangement for detecting the leading edge of a bank note 38 to be removed.
  • the sensor arrangement can detect the rear edge of the bank note 38 that has been transported away.
  • the sensor arrangement comprises in particular a light source 308 and a receiver 310, which together with an evaluation unit (not shown) form a light barrier sensor arrangement.
  • the impeller 304 is rotated in such a way that the wing 304 protrudes into the transport path for discharging bank notes, so that in particular the fed bank notes cannot get into this transport gap.
  • Figure 28 is the arrangement according to Figure 27 with the pull-off element 272a pivoted outward, the pull-off element 272a in the moved-out state making contact with the surface of the banknote 38 arranged on the front side of the stack 36 and, with a further rotary movement of the separating and stacking wheel 272, the banknote 38 downwards into the transport gap between the Stripping element 52 and the drive wheel 44 or between the pressure roller 50 and the drive wheel 44 pushes.
  • the cam disk 304 can also be driven via an electric motor, preferably a stepper motor, possibly together with further cam disks.
  • FIG 29 is the arrangement according to the Figures 27 and 28
  • the feeding and separating elements are shown in a position in which the bank note 38 arranged on the end face of the stack 36 has already been pushed into the transport gap between the drive wheel 44 and the pressure roller 50.
  • the bank note 38 interrupts the light beam between the light source 308 and the receiver 310, so that the light barrier arrangement detects the discharged bank note 38.
  • FIG 30 is the arrangement according to the Figures 24 to 29 shown, the feed and separation elements being shown in an operating mode for feeding bank notes into the cassette 12c.
  • the impeller 304 with the wing 306 is rotated in such a way that the banknotes of the Stack 36 and other supplied bank notes 38 cannot get into the area between drive wheel 44 and stripping element 52 or drive wheel 44 and pressure roller 50.
  • a bank note 38 to be fed is fed to the arrangement from the transport path 18 via transport elements 312, 314, 316 and a switch 318, the switch 318 still serving as a guide element.
  • the fed bank note 38 is transported into the chamber 272c with sections of its front region.
  • the separating and stacking wheel 272 is in Figure 30 shown in a starting position for feeding banknotes into the cassette 12c.
  • Figure 31 is the arrangement according to the Figures 27 to 30 shown, wherein the feeding and separating elements are shown in a second feeding position.
  • a clamping element (not shown) controlled by a further cam disk and a further lever 320a presses the banknote 38 in the chamber 272c from the inside against the outside of the chamber, so that the banknote 38 is clamped in the chamber 272c.
  • the sequence is controlled so that a rotation of the singling and stacking wheel 272 is started at the latest when the front edge of the fed banknote 38 has reached the chamber bottom or the front of the chamber 272c, which forms a stop for the banknote 38 in the transport direction.
  • the banknote 38 is clamped in the chamber 272c, controlled by the cam disk, controlled by the lever 320a.
  • the lever 320a is pressed against the spring force of a spring 322a against the outside of the chamber 272c.
  • Figure 32 is the arrangement according to the Figures 27 to 31 shown, wherein the feeding and separating elements are shown in a third feeding position, in which the separating and stacking wheel 272 compared to the in Figure 31 illustrated second feed position is rotated further. In this feed position, the area of the bank note 38 clamped in the chamber 272c is still arranged in the chamber 272c. In the in Figure 32 In the position shown in the figure, the clamping lever 322a is released via the cam, so that although the area of the bank note 238 is still in the chamber 272c, it is no longer clamped.
  • the rear region of the banknote 38 is no longer in engagement with the transport elements 312 to 318, as a result of which the banknote 38, due to its rigidity, is lifted from the outer surface of the separating and stacking wheel 272 and thus erects towards the front of the stack 36.
  • the front edge of the fed bank note strikes against several stripping elements 324 arranged between the drive wheels 44, by means of which the movement of the bank note 38 is stopped.
  • the separating and stacking wheel 272 is rotated further, so that the front area of the banknote 38 is no longer arranged in the chamber 272c when the separating and stacking wheel 272 is rotated further.
  • the supplied banknote 38 is no longer in engagement with the singling and stacking wheel 272. Due to the rigidity of the supplied banknote 38, it is erected so that it is immediately in front of the face of the one already in the cassette 12c Stack 36 is arranged and forms the new face of the stack.
  • FIG. 33 a side view of the stacking and separating wheel 272 according to the third embodiment not claimed is shown without an inner cam disk.
  • the cam disk not shown, controls or guides the movement of the clamping levers 320a, 320b, the springs 322a, 322b pressing the lever ends against the cam disk.
  • Figure 34 is the stacking and separating wheel 272 according to Figure 33 in another side view and in Figure 35 shown in a perspective view.
  • Figure 36 FIG. 11 shows a further side view of the stacking and separating wheel 272, the one in FIG Figure 33 Side shown opposite side of the stacking and separating wheel 272 is shown without a second cam.
  • the movement of the stripping elements 272a, 272b out of the circumferential surface of the stacking and separating wheel 272 is controlled via a lever assigned to the respective stripping element 272a, 272b.
  • Springs are provided which press the lever end of the lever, which is not connected to the stripping elements, against the cam disk.
  • the stripping elements are moved out of the circumferential surface of the stacking and separating wheel 272 with the aid of the spring force of these springs, depending on the course of the cam disk.
  • Figure 12 is a side view of the cassette 12c along with a note retraction door 326 similar to the note retraction door 68, which has cutouts that are adapted to the stacking and separating wheels 272 to 278 and the separating wheels compared to the note retraction flap 68. Further transport elements for providing a transport path 18 are also shown.
  • two switches are to be arranged in the transport path 18 for the singling and stacking module according to the third embodiment, which is not claimed, since the banknotes 38 to be fed to the singling and stacking module are in the stacking and singling wheels 272 to 276 in The upper area is supplied and the removed bank note can be carried away by the stacking and separating wheels 272 to 276 in the lower area.
  • the note retraction flap 326 and the bank note stack 36 are shown in FIG Figure 37 in its stacking and singling position and in a rest position, the note retraction flap being denoted in the rest position with the reference number 326 'and the bank note stack with the reference number 36'.
  • FIG 38 is a side view of a separating and stacking module 350 according to a fourth embodiment, which as an alternative to the separating and stacking modules 30, 200, 252, 270 of the first three embodiments as a separating and stacking module 14a to 14d according to Figure 1 can be used.
  • the separating and stacking module 350 is in engagement with the cassette 12a in the same way as in connection with the first exemplary embodiment of the invention according to FIGS Figures 2 to 13 explained.
  • the function and the structure are correct the impellers 54, the note retraction flap 68, the drive wheel 44, the stripping wheel 52 correspond to the first embodiment of the invention.
  • a pressure device 352 is provided.
  • the pressure device 352 comprises a pull magnet drive 354 which is coupled to a pressure ram 358 via a lever 356.
  • the movement of the pull magnet drive 354 is deflected about a stationary axis of rotation 360.
  • the movement of the plunger 358 is preferably limited or guided via further guide elements, not shown.
  • the axis of rotation 360 is preferably formed by a housing frame protruding from a housing frame 362 arranged on the side of the separating and stacking module 350, which protrudes through a complementary opening provided in the lever 356 and thereby forms a deflection axis or axis of rotation 360.
  • FIG 40 a further subsequent feed position is shown when feeding the bank note 38 into the cassette 12a.
  • the lower impeller 232 and the upper impeller 54 have been rotated further, as a result of which the second wing 58 makes more contact with the outside of the curved area of the wing 58, the fed banknote 38 in its upper half and the banknote 38 through the further movement of the impeller 54 is moved further in the direction of the stack 36 until it is in its basic stack position and presses against the face of the stack 36.
  • the lower impeller 232 is rotated further and contacts the fed bank note 38 in its lower half, preferably on its lower edge, and presses the lower region of the fed bank note 38 against the end face of the stack 36 already present in the cassette 12a Figure 40 It is shown that a further bank note 40 is already being transported into the supply area 46 in this supply position. By pressing the bank note 38 against the end face of the stack 36, the bank note 38 subsequently forms the Front side of the stack 36.
  • the further sequence when feeding the bank note 40 corresponds to the sequence described for feeding the bank note 38.
  • Figure 41 is the separation and stacking module 350 according to the Figures 38 to 40 shown, wherein the separation and stacking elements are shown in a separation position.
  • the upper impeller 54 has been rotated to the basic stack position already described in connection with the first exemplary embodiment.
  • the stack 36 located in the cassette 12a has been shifted towards the pull-off wheel 32, so that the front side of the bank note 38 forming the end face of the stack 36 is pressed against the outer surface of the pull-off wheel 32.
  • the pull-off wheel 32 By rotating the pull-off wheel 32, the bank note 38 is pushed down into the gap between the drive wheel 44 and the stripping roller 52 and between the drive wheel 44 and the pressure roller 50.
  • the note retraction flap 68 is in the Figures 38 to 41 Views shown in an open position and can be operated in the same way as in connection with the first two embodiments in connection with the Figures 2 to 37 described.

Claims (15)

  1. Agencement
    muni d'un contenant pour la réception de feuilles individuelles rectangulaires, notamment de billets de banque, et muni d'un dispositif de manipulation de feuilles individuelles pour l'entrée et pour la sortie des feuilles individuelles dans le ou hors du contenant, le dispositif de manipulation de feuilles individuelles comprenant :
    un appareil d'introduction (14a à 14d, 30, 200, 252, 270, 350), qui comprend des éléments d'introduction pour l'introduction feuille à feuille de feuilles individuelles (38) et pour le dépôt de ces feuilles individuelles dans une pile (36) de feuilles individuelles (38) dans le contenant (12a à 12d), et
    un dispositif d'individualisation (14a à 14d, 30, 200, 252, 270, 350), qui comprend des éléments d'individualisation pour le soutirage feuille à feuille de feuilles individuelles (38) de la pile (36) hors du contenant (12a à 12d),
    les éléments d'introduction et les éléments d'individualisation étant agencés séparément du contenant (12a à 12d),
    au moins un élément d'individualisation ayant au moins une roue d'individualisation (32, 208, 210),
    l'appareil d'introduction comprenant en tant qu'élément d'introduction au moins une roue à pale à au moins une pale (54), l'appareil d'introduction comprenant au moins une unité d'entraînement pour l'entraînement de l'au moins une roue à pale (54),
    caractérisé en ce que
    l'unité d'entraînement fait tourner la roue à pale (54) lors de l'introduction d'une feuille individuelle supplémentaire (38), de telle sorte que la pale (58, 60) presse contre le côté frontal d'une pile (36) de feuilles individuelles (38) se trouvant dans une zone de réception de feuilles individuelles du contenant (12a à 12d) et enfonce au moins une partie de ces feuilles individuelles (38) au moins temporairement dans la zone de réception de feuilles individuelles du contenant (12a à 12d) et crée une zone d'introduction libre pour le positionnement de la feuille individuelle supplémentaire (38) devant le côté frontal de la pile (38) .
  2. Agencement selon la revendication 1, caractérisé en ce que les éléments d'introduction comprennent au moins un élément de coulissement (45, 42 à 48, 352), qui fait coulisser une feuille individuelle (38) introduite, positionnée devant le côté frontal de la pile (36), au moins dans une zone de contact avec l'élément de coulissement (45, 242 à 248, 352), vers le côté frontal de la pile (36).
  3. Agencement selon l'une quelconque des revendications précédentes, caractérisé en ce que les feuilles individuelles (38) sont agencées chacune les unes derrière les autres debout sur leur bord longitudinal sous la forme d'une pile (36) dans le contenant (12a à 12d).
  4. Agencement selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une unité de commande commande l'unité d'entraînement de telle sorte que la pale (58, 60) de la roue à pale (54) présente, pendant l'introduction, un écart par rapport au bord avant d'une feuille individuelle introduite (38), et de telle sorte que la feuille individuelle introduite (38) ne vient pas en contact avec la pale (58, 60) lors de l'introduction dans une zone d'introduction (46) devant le côté frontal de la pile (36) .
  5. Agencement selon l'une quelconque des revendications précédentes, caractérisé en ce qu'au moins deux roues à pale (54) sont prévues, qui sont agencées de manière immobile en rotation sur un arbre (62) pouvant être entraîné en rotation à l'aide de l'unité d'entraînement de l'appareil d'introduction, les pales (58, 60) des deux roues à pale (54) étant orientées dans le même sens et, lors d'un mouvement de rotation, la pale (58, 60) de chaque roue à pale (54) pressant à chaque fois contre le côté frontal de la pile (36) se trouvant dans le contenant (12a à 12d).
  6. Agencement selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un agencement de capteur (39, 126), de préférence un agencement à barrière photoélectrique, est prévu pour la détection d'un bord de feuille d'une feuille individuelle (38) à introduire dans le contenant (12a à 12d) à l'aide de l'appareil d'introduction, et en ce que l'unité d'entraînement de l'appareil d'introduction débute l'entraînement de l'au moins une roue à pale (54) à un temps préajusté après la détection du bord de feuille de la feuille individuelle par l'agencement de capteur (39, 126), l'agencement de capteur (39, 126) détectant de préférence le bord avant de la feuille individuelle (38).
  7. Agencement selon l'une quelconque des revendications précédentes, caractérisé en ce que le cercle enveloppant de la pale (58, 60) de la roue à pale (54) est choisi et en ce que la roue à pale (54) est agencée de telle sorte que le sommet du cercle enveloppant est agencé approximativement à la même hauteur que le bord avant de la feuille individuelle (38) la plus grande possible pouvant être introduite dans le contenant (12a à 12d) lors de son agencement dans la zone de réception de feuilles individuelles du contenant (12a à 12d).
  8. Agencement selon l'une quelconque des revendications précédentes, caractérisé en ce que la pale (58, 60) de l'au moins une roue à pale (54) enfonce la pile (36) au moins lors d'une orientation verticale de la pale (58, 60) dans la zone de réception de feuilles individuelles du contenant (12a à 12d).
  9. Agencement selon l'une quelconque des revendications précédentes, caractérisé en ce qu'au moins un déflecteur oblique (68) est prévu, par lequel le bord avant d'une feuille individuelle introduite (38) est guidée vers le côté frontal de la pile (36), le déflecteur oblique (68) ayant un décalage latéral par rapport à la roue à pale (54) et le déflecteur oblique (68) étant de préférence monté à ressort.
  10. Agencement selon l'une quelconque des revendications précédentes, caractérisé en ce que la zone avant de la pale (58, 60) de la roue à pale (54) présente une courbure à l'encontre de la direction de rotation de la roue à pale (54) lors de l'introduction d'une feuille individuelle (38).
  11. Agencement selon l'une quelconque des revendications précédentes, caractérisé en ce que la pale (58, 60) est raide en flexion, de préférence rigide.
  12. Agencement selon l'une quelconque des revendications précédentes, caractérisé en ce que l'au moins une roue à pale (54) a un moyeu (56), à partir duquel la pale (58, 60) fait saillie, la pale (58, 60) faisant de préférence saillie de manière essentiellement tangentielle à partir du moyeu (58).
  13. Agencement selon l'une quelconque des revendications précédentes, caractérisé en ce que l'au moins une roue à pale (54) comprend deux pales (58, 60), qui font saillie à partir de la roue à pale (54) à un décalage de 180°, une position de base d'introduction avec des pales (58, 60) orientées horizontalement et une position de base de soutirage avec des pales (58, 60) orientées verticalement étant prévues.
  14. Agencement selon l'une quelconque des revendications précédentes, caractérisé en ce qu'au moins deux roues à pale supplémentaires (66, 232) sont prévues, qui sont agencées sur un arbre supplémentaire (53) pouvant être entraîné conjointement et dont les pales (74 à 78, 234) déplacent au moins le bord arrière d'une feuille individuelle (38) introduite dans le contenant (12a à 12c) vers la pile (36) lors d'un mouvement de rotation de l'arbre (53), lorsque la feuille individuelle (38) est positionnée devant le côté frontal de la pile (36) se trouvant déjà dans le contenant (12a à 12d).
  15. Agencement selon la revendication 14, caractérisé en ce que les roues à pale supplémentaires (66) comprennent chacune trois pales élastiques (74 à 78), qui font saillie à partir d'un moyeu de la roue à pale (66) à 0°, 90° et 180°, de préférence de manière tangentielle.
EP18189944.4A 2008-04-15 2009-04-15 Dispositif de manipulation de feuille individuelle destiné à l'entrée et à la sortie de feuilles individuelles rectangulaires, en particulier de billets de banque dans un récipient ou à partir de ce dernier Active EP3441336B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102008018935A DE102008018935A1 (de) 2008-04-15 2008-04-15 Einzelblatthandhabungsvorrichtung zur Eingabe und zur Ausgabe von rechteckigen Einzelblättern, insbesondere von Banknoten, in einen bzw. aus einem Behälter
PCT/EP2009/054446 WO2009127648A2 (fr) 2008-04-15 2009-04-15 Dispositif de manipulation feuille par feuille pour introduire dans un conteneur et en sortir des feuilles individuelles rectangulaires, en particulier des billets de banque
EP09731979.2A EP2268563B1 (fr) 2008-04-15 2009-04-15 Dispositif de manipulation feuille par feuille pour introduire dans un conteneur et en sortir des feuilles individuelles rectangulaires, en particulier des billets de banque

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP09731979.2A Division EP2268563B1 (fr) 2008-04-15 2009-04-15 Dispositif de manipulation feuille par feuille pour introduire dans un conteneur et en sortir des feuilles individuelles rectangulaires, en particulier des billets de banque

Publications (2)

Publication Number Publication Date
EP3441336A1 EP3441336A1 (fr) 2019-02-13
EP3441336B1 true EP3441336B1 (fr) 2021-10-20

Family

ID=41078545

Family Applications (6)

Application Number Title Priority Date Filing Date
EP18189947.7A Active EP3441338B1 (fr) 2008-04-15 2009-04-15 Dispositif de manipulation de feuille individuelle destiné à l'entrée et à la sortie de feuilles individuelles rectangulaires, en particulier de billets de banque dans un récipient ou à partir de ce dernier
EP18189945.1A Active EP3441337B1 (fr) 2008-04-15 2009-04-15 Dispositif de manipulation de feuille individuelle destiné à l'entrée et à la sortie de feuilles individuelles rectangulaires, en particulier de billets de banque dans un récipient ou à partir de ce dernier
EP09731979.2A Active EP2268563B1 (fr) 2008-04-15 2009-04-15 Dispositif de manipulation feuille par feuille pour introduire dans un conteneur et en sortir des feuilles individuelles rectangulaires, en particulier des billets de banque
EP18189949.3A Active EP3441340B1 (fr) 2008-04-15 2009-04-15 Dispositif de manipulation de feuille individuelle destiné à l'entrée et à la sortie de feuilles individuelles rectangulaires, en particulier de billets de banque dans un récipient ou à partir de ce dernier
EP18189944.4A Active EP3441336B1 (fr) 2008-04-15 2009-04-15 Dispositif de manipulation de feuille individuelle destiné à l'entrée et à la sortie de feuilles individuelles rectangulaires, en particulier de billets de banque dans un récipient ou à partir de ce dernier
EP18189948.5A Active EP3441339B1 (fr) 2008-04-15 2009-04-15 Dispositif de manipulation de feuille individuelle destiné à l'entrée et à la sortie de feuilles individuelles rectangulaires, en particulier de billets de banque dans un récipient ou à partir de ce dernier

Family Applications Before (4)

Application Number Title Priority Date Filing Date
EP18189947.7A Active EP3441338B1 (fr) 2008-04-15 2009-04-15 Dispositif de manipulation de feuille individuelle destiné à l'entrée et à la sortie de feuilles individuelles rectangulaires, en particulier de billets de banque dans un récipient ou à partir de ce dernier
EP18189945.1A Active EP3441337B1 (fr) 2008-04-15 2009-04-15 Dispositif de manipulation de feuille individuelle destiné à l'entrée et à la sortie de feuilles individuelles rectangulaires, en particulier de billets de banque dans un récipient ou à partir de ce dernier
EP09731979.2A Active EP2268563B1 (fr) 2008-04-15 2009-04-15 Dispositif de manipulation feuille par feuille pour introduire dans un conteneur et en sortir des feuilles individuelles rectangulaires, en particulier des billets de banque
EP18189949.3A Active EP3441340B1 (fr) 2008-04-15 2009-04-15 Dispositif de manipulation de feuille individuelle destiné à l'entrée et à la sortie de feuilles individuelles rectangulaires, en particulier de billets de banque dans un récipient ou à partir de ce dernier

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP18189948.5A Active EP3441339B1 (fr) 2008-04-15 2009-04-15 Dispositif de manipulation de feuille individuelle destiné à l'entrée et à la sortie de feuilles individuelles rectangulaires, en particulier de billets de banque dans un récipient ou à partir de ce dernier

Country Status (6)

Country Link
US (6) US8485432B2 (fr)
EP (6) EP3441338B1 (fr)
JP (2) JP5518839B2 (fr)
CN (2) CN104609266B (fr)
DE (1) DE102008018935A1 (fr)
WO (1) WO2009127648A2 (fr)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008018935A1 (de) * 2008-04-15 2009-10-22 Wincor Nixdorf International Gmbh Einzelblatthandhabungsvorrichtung zur Eingabe und zur Ausgabe von rechteckigen Einzelblättern, insbesondere von Banknoten, in einen bzw. aus einem Behälter
DE102008039357A1 (de) 2008-08-22 2010-02-25 Wincor Nixdorf International Gmbh Vorrichtung zum Stapeln von Wertscheinen
DE102008061529A1 (de) 2008-12-10 2010-06-17 Wincor Nixdorf International Gmbh Vorrichtung und Verfahren zum Verschließen mindestens eines dünnwandigen, mindestens eine Öffnung aufweisenden Transportbehälters für Wertgegenstände
DE102008061530A1 (de) 2008-12-10 2010-06-17 Wincor Nixdorf International Gmbh Verfahren zum Befüllen mindestens eines dünnwandigen Transportbehälters mit mindestens einem Wertgegenstand und Vorrichtung zur Aufbewahrung mindestens eines Wertgegenstandes
DE102009006810A1 (de) 2009-01-30 2010-08-05 Wincor Nixdorf International Gmbh Vorrichtung und Verfahren zur Einzahlung und/oder Auszahlung zumindest von Banknoten mit einem ersten Nennwert und Banknoten mit einem zweiten Nennwert
CN102227754B (zh) * 2009-07-23 2014-04-02 乐金信世股份有限公司 自动柜员机及媒介检测装置
DE102009058519A1 (de) 2009-12-16 2011-06-22 WINCOR NIXDORF International GmbH, 33106 Vorrichtung zur Handhabung von Wertscheinen
DE102010004581A1 (de) 2010-01-14 2011-07-21 WINCOR NIXDORF International GmbH, 33106 Vorrichtung zur Handhabung von Wertscheinen
DE102010004577A1 (de) * 2010-01-14 2011-09-01 Wincor Nixdorf International Gmbh Vorrichtung zur Handhabung von Wertscheinen
DE102010004669A1 (de) 2010-01-14 2011-07-21 WINCOR NIXDORF International GmbH, 33106 System zum Zuführen von Wertscheinen zu der Wertscheintransporteinheit mit Hilfe einer Dockingstation
DE102011109193A1 (de) * 2011-08-02 2013-02-07 Giesecke & Devrient Gmbh Behälter zur Aufnahme von Blattgut
US8777222B2 (en) * 2011-11-30 2014-07-15 Ncr Corporation Document stacking
ITFI20120179A1 (it) * 2012-09-12 2014-03-13 Cespro Srl Macchina per accumulo/estrazione di banconote
EP2722827A1 (fr) 2012-10-18 2014-04-23 Wincor Nixdorf International GmbH Coffret à argent avec élément de maintien et dispositif de manipulation de documents de valeur
DE102012022922A1 (de) * 2012-11-23 2014-05-28 Giesecke & Devrient Gmbh Verfahren und Vorrichtung für die Bearbeitung von Wertdokumenten
EP2778105B1 (fr) * 2013-03-11 2016-10-26 Wincor Nixdorf International GmbH Dispositif et procédé de remplissage d'un récipient de transport avec des documents de valeur
EP2810891B1 (fr) 2013-06-05 2016-03-16 Wincor Nixdorf International GmbH Dispositif et procédé de soudage d'au moins un récipient de transport à paroi mince, présentant au moins une ouverture et destiné à des objets de valeur
EP2814008B1 (fr) 2013-06-14 2018-09-05 Wincor Nixdorf International GmbH Boîte à finance avec unité de fermeture partiellement fermée en forme de plaque et dispositif de manipulation des billets de valeurs
US10504315B2 (en) * 2013-08-05 2019-12-10 Ncr Corporation Clamping of media items
KR101627027B1 (ko) * 2014-02-04 2016-06-02 주식회사 엘지씨엔에스 매체처리장치 및 금융기기
JP6555850B2 (ja) * 2014-03-27 2019-08-07 沖電気工業株式会社 媒体取引装置
US9764581B2 (en) 2014-03-27 2017-09-19 ACCO Brands Corporation Sheet stacking device
EP2940662B1 (fr) * 2014-04-30 2019-10-30 Wincor Nixdorf International GmbH Procédé de fonctionnement d'un distributeur de billets pour des retraits multiples
CN104077838B (zh) * 2014-07-23 2016-05-11 广州广电运通金融电子股份有限公司 一种联动装置
KR20170113591A (ko) * 2015-01-23 2017-10-12 반키트 에이비 적재 및 분배 모듈
KR101830770B1 (ko) * 2016-02-24 2018-04-04 노틸러스효성 주식회사 가변 스토퍼가 구비된 다권종 지폐카세트 및 그 지폐집적방법
JP6763212B2 (ja) * 2016-06-28 2020-09-30 沖電気工業株式会社 媒体集積装置及び媒体処理装置
KR101868226B1 (ko) 2016-09-22 2018-06-18 효성티앤에스 주식회사 지폐집적장치
CN108665607B (zh) * 2017-03-29 2020-10-27 山东新北洋信息技术股份有限公司 纸币集积分离装置及纸币处理装置
KR101916576B1 (ko) * 2017-03-31 2018-11-08 효성티앤에스 주식회사 지폐 분리집적부
DE102017115203A1 (de) 2017-07-07 2019-01-10 Wincor Nixdorf International Gmbh Geldkassette mit einem Aufnahmebereich zum Aufnehmen von Wertscheinen
US10995544B2 (en) * 2017-08-18 2021-05-04 Lorin Zitting Method and apparatus for stacking strip material of cellular blind fabrics
SE542506C2 (en) * 2018-07-10 2020-05-26 Suzohapp Canada Ulc A device, an apparatus and a method for directing bank notes
US10872506B2 (en) * 2018-12-19 2020-12-22 Hyosung TNS Inc. Automated teller machine
CN109570205B (zh) * 2019-01-28 2024-04-05 山东汇融电子设备有限公司 残币冲孔压块机
EP3736782A1 (fr) * 2019-05-10 2020-11-11 Wincor Nixdorf International GmbH Dispositif destiné à la manipulation de documents de valeur
EP3739555B1 (fr) * 2019-05-13 2022-07-13 Wincor Nixdorf International GmbH Cassette pour documents de valeur
CN114008696B (zh) * 2019-06-25 2024-04-19 迪堡多富公司 用于自动交易机的盒
US11312086B1 (en) * 2020-12-08 2022-04-26 GM Global Technology Operations LLC Roll-and-peel tool and method of installing a trim component using the roll-and-peel tool
JP2023065964A (ja) * 2021-10-28 2023-05-15 日立チャネルソリューションズ株式会社 紙幣処理装置及び自動取引装置
CN114789924B (zh) * 2022-03-07 2024-03-01 上海伊诺尔实业集团有限公司 一种多功能配页机

Family Cites Families (82)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6117501Y2 (fr) * 1978-03-03 1986-05-28
JPS5561553A (en) * 1978-11-01 1980-05-09 Ricoh Co Ltd Paper feeding apparatus
GB2039264B (en) * 1978-12-08 1983-09-28 De La Rue Crosfield Security cassettes
JPS5810288A (ja) * 1981-02-10 1983-01-20 オムロン株式会社 現金カセツト
JPS5839391A (ja) * 1981-08-31 1983-03-08 ロ−レルバンクマシン株式会社 自動入出金機における入出金機構
JPS5864586A (ja) * 1981-10-15 1983-04-16 ロ−レルバンクマシン株式会社 自動入出金機
JPS5911491A (ja) 1982-07-12 1984-01-21 株式会社東芝 入出金装置
JPS5911487A (ja) * 1982-07-12 1984-01-21 株式会社東芝 入出金装置
JPS59120756A (ja) 1982-12-27 1984-07-12 Hino Motors Ltd ピストン
FR2538797B1 (fr) * 1982-12-30 1986-02-14 Hotchkiss Brandt Sogeme Dispositif d'empilage d'objets plats
JPS59120756U (ja) 1983-02-03 1984-08-14 オムロン株式会社 紙葉類収納装置
JPS59153264A (ja) * 1983-02-18 1984-09-01 Toshiba Corp 自動取引装置
JPS59205693A (ja) 1983-05-06 1984-11-21 オムロン株式会社 紙幣処理装置
JPS59205694A (ja) 1983-05-09 1984-11-21 株式会社東芝 紙葉類取出装置
US4529119A (en) * 1983-08-12 1985-07-16 Ncr Corporation Tampering-proof cassette used in a cash dispenser
JPS6118670A (ja) * 1984-07-05 1986-01-27 Omron Tateisi Electronics Co 紙葉類収納装置
JPS6194936A (ja) * 1984-10-17 1986-05-13 Hitachi Ltd 紙葉類収納分離装置
JPS61127522A (ja) 1984-11-28 1986-06-14 Hitachi Ltd 紙葉類収納装置
JPH061514B2 (ja) * 1985-01-21 1994-01-05 沖電気工業株式会社 紙幣自動処理装置
JPS61168086U (fr) 1985-04-08 1986-10-18
JPS6244852U (fr) * 1985-09-03 1987-03-18
JPS62100329A (ja) * 1985-10-28 1987-05-09 Omron Tateisi Electronics Co 紙葉類処理装置の集積・繰出し方法
JPH0439243Y2 (fr) 1986-03-20 1992-09-14
JP2600157B2 (ja) * 1986-12-25 1997-04-16 オムロン株式会社 紙幣処理装置
JPS63208466A (ja) * 1987-02-24 1988-08-29 Hitachi Ltd 紙葉類取扱い装置
DE3706829A1 (de) * 1987-03-03 1988-09-15 Nixdorf Computer Ag Ausgabeeinheit fuer wertscheine
JP2628881B2 (ja) 1988-03-04 1997-07-09 インターナショナル・ビジネス・マシーンズ・コーポレーシヨン 紙幣集積装置
US5000322A (en) * 1988-05-31 1991-03-19 Laurel Bank Machines Co., Ltd. Bill receiving and dispensing machine
SE462089B (sv) * 1988-09-30 1990-05-07 Sapia Mekatronik Ab Inmatningsanordning foer arkformiga objekt, fraemst sedlar, med hjaelp av ett aendloest band foersett med griporgan i form av flappar
JPH0295627A (ja) 1988-09-30 1990-04-06 Omron Tateisi Electron Co 紙葉類の繰出・集積装置
JP2949301B2 (ja) * 1990-07-23 1999-09-13 株式会社日立製作所 紙葉類収納箱及び紙葉類取扱い装置
US5058880A (en) * 1990-08-17 1991-10-22 Xerox Corporation Disk stacker including wiping member for registration assist
US5098080A (en) * 1990-12-19 1992-03-24 Xerox Corporation Ski jump stack height sensor
JP3015161B2 (ja) 1991-08-26 2000-03-06 沖電気工業株式会社 循環式紙幣入出金装置
GB9216806D0 (en) * 1992-08-07 1992-09-23 Ncr Int Inc Apparatus for loading and picking sheets
US5326184A (en) * 1992-10-26 1994-07-05 Hewlett-Packard Company Apparatus and method for picking paper from a stack
JP2908169B2 (ja) * 1993-03-16 1999-06-21 甲府日本電気株式会社 紙幣集積装置
JPH07172601A (ja) 1993-12-20 1995-07-11 Casio Electron Mfg Co Ltd 給紙装置
US5553320A (en) * 1994-03-16 1996-09-03 Hitachi, Ltd. Automatic cash transaction machine
DE9404474U1 (de) * 1994-03-16 1994-05-11 Siemens Nixdorf Inf Syst Vorrichtung zum Ausrichten eines Wertscheinstapels
WO1995032486A1 (fr) 1994-05-20 1995-11-30 Fujitsu Limited Dispositif de manipulation de feuilles de papier et dispositif de gestion de feuilles de papier
JP3614465B2 (ja) 1994-06-23 2005-01-26 グローリー工業株式会社 循環式紙幣入出金機
US5720477A (en) * 1994-07-20 1998-02-24 Pfu Limited Paper-feeding device
JPH0834533A (ja) 1994-07-22 1996-02-06 Seiko Epson Corp 紙送り機構
GB9510296D0 (en) 1995-05-22 1995-07-19 De La Rue Systems Ltd Sheet transfer member and system
DE19702304C2 (de) * 1997-01-23 2000-05-18 Eastman Kodak Co Vorrichtung zur Abnahme von flächigen Gegenständen von einem Stapel
US6682068B1 (en) 1997-11-28 2004-01-27 Diebold, Incorporated Document alignment mechanism for currency recycling automated banking machine
CN1301891C (zh) * 1998-09-17 2007-02-28 迪布尔特有限公司 自动银行机装置和操作自动银行机的方法
JP3183288B2 (ja) * 1998-10-12 2001-07-09 株式会社日立製作所 紙幣入出金装置
GB9823337D0 (en) * 1998-10-23 1998-12-23 Rue De Int Ltd Sheet stacking apparatus
JP4135238B2 (ja) * 1998-12-08 2008-08-20 日立オムロンターミナルソリューションズ株式会社 紙幣入出金機
DE19904540A1 (de) 1999-02-04 2000-08-17 Siemens Nixdorf Banking Syst Banknotenbehälter für Geldausgabeautomaten
DE19904853A1 (de) * 1999-02-05 2000-08-17 Siemens Nixdorf Banking Syst Verfahren und Vorrichtung zur Bildung eines Bündels von Einzelblättern
AU2001222727A1 (en) * 2000-02-22 2001-09-03 Bosx, Llc Slip feed roller feeding
JP3658268B2 (ja) * 2000-03-01 2005-06-08 日立オムロンターミナルソリューションズ株式会社 紙葉類集積装置および紙葉類収納庫および紙葉類取扱装置
JP3977982B2 (ja) * 2000-05-19 2007-09-19 日立オムロンターミナルソリューションズ株式会社 紙幣収納放出庫及び紙幣入出金機
WO2001096220A2 (fr) * 2000-06-13 2001-12-20 Giesecke & Devrient Gmbh Appareil de regulation de roue empileuse et procede mettant en oeuvre une synchronisation arythmique
JP3721953B2 (ja) * 2000-06-20 2005-11-30 株式会社日立製作所 紙幣取扱装置
DE10101563A1 (de) * 2001-01-15 2002-08-01 Wincor Nixdorf Gmbh & Co Kg Vorrichtung zur Abgabe oder Entgegennahme von Einzelblättern
JP3766002B2 (ja) 2001-07-13 2006-04-12 富士通フロンテック株式会社 紙葉類処理装置、及び紙葉類収納ユニット
JP2003085616A (ja) * 2001-09-11 2003-03-20 Fujitsu Ltd 紙葉処理装置
DE10147134B4 (de) * 2001-09-25 2008-06-19 Wincor Nixdorf International Gmbh Stackerriemen mit geschalteten Einzahlkassetten
JP2003155158A (ja) 2001-11-21 2003-05-27 Takamisawa Cybernetics Co Ltd 紙葉類収納庫および紙葉類処理装置
JP3795387B2 (ja) * 2001-12-07 2006-07-12 日立オムロンターミナルソリューションズ株式会社 紙葉類処理装置および取引処理装置
JP3861007B2 (ja) * 2002-01-07 2006-12-20 日立オムロンターミナルソリューションズ株式会社 紙幣入出金装置および現金自動取引装置
JP3934447B2 (ja) 2002-03-26 2007-06-20 富士通株式会社 自動給紙機構
JP3799320B2 (ja) 2002-11-15 2006-07-19 日立オムロンターミナルソリューションズ株式会社 紙幣カセット及び紙幣取扱装置
EP1609054B1 (fr) * 2002-12-31 2012-01-25 Diebold, Incorporated Dispositif de cassette a billets de banque pour distributeur automatique de billets
JP2005010967A (ja) * 2003-06-18 2005-01-13 Hitachi Ltd 紙幣入出金装置および現金自動取引装置
US7856401B2 (en) * 2003-07-11 2010-12-21 Ncr Corporation Self-service terminal
JP4332379B2 (ja) 2003-07-29 2009-09-16 日立オムロンターミナルソリューションズ株式会社 紙幣取扱装置
JP4207850B2 (ja) * 2003-10-10 2009-01-14 沖電気工業株式会社 紙葉類取扱装置
JP4120636B2 (ja) * 2004-11-25 2008-07-16 コニカミノルタビジネステクノロジーズ株式会社 給紙装置
US7300049B2 (en) * 2005-01-12 2007-11-27 Pitney Bowes Ltd. Feed of sheet material in a feeder/separator
JP5153627B2 (ja) * 2005-07-27 2013-02-27 エムイーアイ インコーポレーテッド 紙幣等の保管用カセット
JP2007076844A (ja) * 2005-09-15 2007-03-29 Toshiba Corp 紙葉類取り出し装置
JP2007131410A (ja) 2005-11-10 2007-05-31 Toshiba Corp 紙葉類取り出し装置
US20070235522A1 (en) * 2006-04-05 2007-10-11 Diebold Self-Service Systems, Division Of Diebold, Incorporated Automated banking machine system and method
WO2008001056A2 (fr) * 2006-06-28 2008-01-03 De La Rue International Limited Appareil de manipulation de documents
ITTO20070721A1 (it) * 2007-10-12 2009-04-13 Cts Cashpro Spa Apparecchiatura per il deposito ed il prelevamento automatico di banconote e relativi moduli di ricezione ed erogazione
DE102008018935A1 (de) * 2008-04-15 2009-10-22 Wincor Nixdorf International Gmbh Einzelblatthandhabungsvorrichtung zur Eingabe und zur Ausgabe von rechteckigen Einzelblättern, insbesondere von Banknoten, in einen bzw. aus einem Behälter
JP6001514B2 (ja) * 2013-09-03 2016-10-05 株式会社ブリヂストン 空気入りタイヤ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
US20150246781A1 (en) 2015-09-03
JP2011516366A (ja) 2011-05-26
CN102007059B (zh) 2016-10-05
US20150246783A1 (en) 2015-09-03
EP3441340B1 (fr) 2023-09-20
DE102008018935A1 (de) 2009-10-22
JP2014167803A (ja) 2014-09-11
EP3441338A1 (fr) 2019-02-13
CN104609266A (zh) 2015-05-13
EP3441337A1 (fr) 2019-02-13
EP2268563A2 (fr) 2011-01-05
EP3441339B1 (fr) 2021-09-15
EP3441339A1 (fr) 2019-02-13
EP3441336A1 (fr) 2019-02-13
EP3441338B1 (fr) 2021-10-13
US20160207722A1 (en) 2016-07-21
US9302867B2 (en) 2016-04-05
WO2009127648A2 (fr) 2009-10-22
CN102007059A (zh) 2011-04-06
WO2009127648A3 (fr) 2010-05-27
EP2268563B1 (fr) 2018-08-22
EP3441340A1 (fr) 2019-02-13
US9321602B2 (en) 2016-04-26
US10266354B2 (en) 2019-04-23
US9517904B2 (en) 2016-12-13
US20130285307A1 (en) 2013-10-31
US9505570B2 (en) 2016-11-29
US20110031308A1 (en) 2011-02-10
JP5980261B2 (ja) 2016-08-31
JP5518839B2 (ja) 2014-06-11
EP3441337B1 (fr) 2022-11-09
US20130285309A1 (en) 2013-10-31
CN104609266B (zh) 2017-07-04
US8485432B2 (en) 2013-07-16

Similar Documents

Publication Publication Date Title
EP3441336B1 (fr) Dispositif de manipulation de feuille individuelle destiné à l'entrée et à la sortie de feuilles individuelles rectangulaires, en particulier de billets de banque dans un récipient ou à partir de ce dernier
EP2274219B1 (fr) Dispositif de manipulation de feuilles individuelles pour introduire des feuilles individuelles rectangulaires dans un contenant
EP2495174B1 (fr) Dispositif de remplissage d'un récipient de transport à paroi mince avec des documents de valeur
DE2717345C2 (de) Wertscheingeber
EP2586015B1 (fr) Dispositif pour la distribution de billets de banque à élément support fixe
DE2506195A1 (de) Banknotenausgabegeraet
WO2010020611A2 (fr) Dispositif d'empilage de coupons de valeur
CH644327A5 (de) Stapelvorrichtung fuer flaches foerdergut.
EP1149037A2 (fr) Procede et dispositif permettant de former une liasse de feuilles individuelles
EP0451091B1 (fr) Margeur
EP1976784B1 (fr) Dispositif pour deposer des feuilles en piles
EP2669870B1 (fr) Dispositif de collecte pour la formation de liasses de feuilles, notamment de billets de banque
DE3248458C2 (fr)
EP1351872B1 (fr) Dispositif pour distribuer ou recevoir des feuillets individuels
EP1331189B1 (fr) Dispositif collecteur pour former et délivrer une liasse d'objects en forme de feuilles
DE10101565C1 (de) Ausgabeeinheit zur Ausgabe von Einzelblättern
DE2939941A1 (de) Blattsortier- und -stapeleinrichtung
EP1387811B1 (fr) Dispositif et procede pour introduire et deposer des billets de banque
DE102010017668B4 (de) Vorrichtung zum Stapeln von Wertscheinen mit einem getakteten Stackerrad

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AC Divisional application: reference to earlier application

Ref document number: 2268563

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190813

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: B65H 31/22 20060101ALI20200828BHEP

Ipc: B65H 29/40 20060101ALI20200828BHEP

Ipc: B65H 31/06 20060101AFI20200828BHEP

Ipc: G07D 11/00 20190101ALI20200828BHEP

Ipc: B65H 31/18 20060101ALI20200828BHEP

Ipc: B65H 31/10 20060101ALI20200828BHEP

Ipc: B65H 83/02 20060101ALI20200828BHEP

Ipc: B65H 3/10 20060101ALI20200828BHEP

Ipc: G07D 11/13 20190101ALI20200828BHEP

Ipc: B65H 31/26 20060101ALI20200828BHEP

Ipc: G07D 11/165 20190101ALI20200828BHEP

Ipc: B65H 1/02 20060101ALI20200828BHEP

INTG Intention to grant announced

Effective date: 20201002

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

INTG Intention to grant announced

Effective date: 20210412

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20210415

INTG Intention to grant announced

Effective date: 20210428

INTG Intention to grant announced

Effective date: 20210512

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 2268563

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009016404

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1439787

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211115

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20211020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220120

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220220

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220221

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220120

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220121

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009016404

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220721

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220415

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20230323 AND 20230329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220415

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230321

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230321

Year of fee payment: 15

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1439787

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220415

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20230525 AND 20230601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220415

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230321

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502009016404

Country of ref document: DE

Owner name: DIEBOLD NIXDORF SYSTEMS GMBH, DE

Free format text: FORMER OWNER: WINCOR NIXDORF INTERNATIONAL GMBH, 33106 PADERBORN, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20090415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211020

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240320

Year of fee payment: 16