EP2026028B1 - Wärmeübertrager, insbesondere für ein Kraftfahrzeug - Google Patents

Wärmeübertrager, insbesondere für ein Kraftfahrzeug Download PDF

Info

Publication number
EP2026028B1
EP2026028B1 EP08018381.7A EP08018381A EP2026028B1 EP 2026028 B1 EP2026028 B1 EP 2026028B1 EP 08018381 A EP08018381 A EP 08018381A EP 2026028 B1 EP2026028 B1 EP 2026028B1
Authority
EP
European Patent Office
Prior art keywords
plate
heat exchanger
tube
flow
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP08018381.7A
Other languages
English (en)
French (fr)
Other versions
EP2026028A2 (de
EP2026028A3 (de
Inventor
Hans-Joachim Dipl.-Ing. Krauss
Hagen Dipl.-Ing. Mittelstrass
Walter Dipl.-Ing. Demuth
Martin Dipl.-Ing. Kotsch
Karl-Heinz Dipl.-Ing. Staffa
Christoph Dipl.-Ing. Walter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Mahle Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle Behr GmbH and Co KG filed Critical Mahle Behr GmbH and Co KG
Publication of EP2026028A2 publication Critical patent/EP2026028A2/de
Publication of EP2026028A3 publication Critical patent/EP2026028A3/de
Application granted granted Critical
Publication of EP2026028B1 publication Critical patent/EP2026028B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/026Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits
    • F28F9/0278Header boxes; End plates with static flow control means, e.g. with means for uniformly distributing heat exchange media into conduits in the form of stacked distribution plates or perforated plates arranged over end plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05391Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits combined with a particular flow pattern, e.g. multi-row multi-stage radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0219Arrangements for sealing end plates into casing or header box; Header box sub-elements
    • F28F9/0221Header boxes or end plates formed by stacked elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0068Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for refrigerant cycles
    • F28D2021/0073Gas coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2280/00Mounting arrangements; Arrangements for facilitating assembling or disassembling of heat exchanger parts

Definitions

  • the invention relates to a heat exchanger with pipes and with an end piece, which has a tube plate consisting of plates.
  • Such a heat exchanger is for example in the EP 0 563 471 A1 described.
  • the local heat exchanger is designed as a double-row flat tube evaporator, which is flowed through in two bends. Between the flat tubes are corrugated fins, which are covered by ambient air.
  • the refrigerant flows through the seen in the main flow direction of the air rear row of flat tubes first from top to bottom and is then collected and deflected by a deflecting counter to the flow direction of the air, enters the first, ie front row of flat tubes and flows through them from bottom to top. In this design, the refrigerant is thus deflected "in the depth", ie counter to the flow direction of the air.
  • the flow paths for the refrigerant each comprise two sections, each section corresponding to a tube length.
  • the distribution and collection of the refrigerant is carried out by a collecting and distributing device, which is formed by a plurality of stacked, soldered together plates. It is in the essentially around a base plate, an overlying distributor plate with a longitudinally extending partition and a cover plate with inlet and outlet opening for the refrigerant.
  • the deflector arranged on the opposite side is composed of individual plates. This results in a low overall height for this evaporator.
  • a so-called stop plate is provided, which is placed in each case on the bottom plate and forms a stop for the pipe ends.
  • a disadvantage of this evaporator design is that the refrigerant is distributed unevenly on the individual tubes due to the over the entire width of the evaporator extending distribution or collection chamber.
  • the double-row design requires increased installation costs.
  • An evaporator for a fuel cell system which includes a header having a bottom plate and a cover plate attached thereto. Fuel passes through a connecting part in a fuel distribution chamber, from there into guide channels and through openings in the bottom plate in heat receiving ducts of the evaporator.
  • the plates of the head are small in number, but very expensive in their production.
  • the heat receiving channels are acted upon very unevenly with fuel depending on the pressure distribution in the fuel distributor chamber and in the guide channels.
  • the EP 0 328 414 A discloses a heat exchanger, eg an evaporator for a vehicle air conditioner, comprising a plurality of ribbed U-shaped tubes having free ends permanently attached, eg, adhesively bonded to an end plate assembly formed from a number of end plate means defining connecting channels, the pairs from free ends of the tubes to provide at least one flow passage for heat exchange fluid.
  • the end plate means are permanently joined together, for example by gluing, to form with the end portions of the U-shaped tubes a permanently bonded integral end plate assembly.
  • the DE 692 19 107 T2 discloses a two-pass evaporator with elongate tubes and header.
  • Each distributor head consists of several layers arranged together soldered plates.
  • the upper header may therefore consist of three plates, including a cover plate, a header plate and a tube plate.
  • the object of the invention is to provide a heat exchanger, in which a simple and / or lightweight construction and optionally at the same time a uniform distribution of a medium to a plurality of flow paths and / or a pressure-stable construction of the heat exchanger can be realized.
  • a heat exchanger with the features of claim 1.
  • a heat exchanger according to the invention on tubes which can be flowed through by a first medium and a second medium flow around, so that through walls of the tubes Heat from the first to the second medium or vice versa transferable.
  • there are heat transfer channels in the tubes, through which the first medium can be conducted wherein a single tube has either a heat transfer channel or as a so-called multi-chamber tube a plurality of adjacent heat transfer channels.
  • the tubes may have a circular, an oval, a substantially rectangular or any other cross section.
  • the tubes are designed as flat tubes.
  • optionally ribs, in particular corrugated fins are arranged between the tubes, wherein the tubes and the ribs are in particular solderable to one another.
  • the heat exchanger various uses are conceivable, for example as an evaporator of a refrigerant circuit, in particular an automotive air conditioning system.
  • the first medium is a refrigerant, for example, R134a or R744
  • the second medium is air, whereby heat is transferred from the air to the refrigerant.
  • the heat exchanger is also suitable for other media, where appropriate, the heat is also transferable from the first to the second medium.
  • At least two collection chambers are present, wherein the first medium can be conducted from a first to a second collection chamber.
  • the first medium can be conducted along one or more flow paths, which optionally consist of several sections.
  • a flow path section in the sense of the invention is to be understood as meaning one or more heat transfer channels which run from one side of the heat exchanger to an opposite side and are connected hydraulically in parallel to one another.
  • the heat transfer channels of a flow path section are arranged, for example, in a single tube, one on several tubes However, distributed arrangement of the heat transfer channels of a flow path section is also conceivable.
  • the heat exchanger has an end piece, which comprises a tube plate consisting of adjacent plates, wherein the adjacent plates consist of a bottom plate, a voltage applied to the bottom plate baffle plate and applied to the Urnschplatte Abdeckpiatte.
  • the bottom plate is connectable to ends of the tubes by the bottom plate, for example, has recesses into which the pipe ends are receivable.
  • other types of connection between pipes and the bottom plate are conceivable, for example, by extensions at the edges of recesses in the bottom plate, so that the tubes are attachable to the extensions.
  • Recesses in the deflection plate serve for the formation of passage channels and / or deflection channels, which can be closed fluid-tight with respect to an environment of the heat exchanger with a cover plate. Due to the plate structure of the tube plate a very pressure-stable construction of the tail and the entire heat exchanger is possible.
  • the tube bottom comprehensive tail is provided with a collecting box, which has at least one collecting chamber for the first medium in a housing. As a result, an optionally necessary anyway component is integrated into the tail and ensures a compact and therefore simple construction of the heat exchanger.
  • Flow path sections can be connected to one another by means of deflection channels in the deflection plate.
  • the heat exchanger can be built flexibly for various applications due to its modular design.
  • a tube is inserted to a predetermined stop in the tube sheet to achieve increased manufacturing reliability and thus a simplified production.
  • the stop is realized by a web between two recesses in the bottom plate, which is receivable in a recess in a pipe end, wherein the web is substantially as wide as the recess in the pipe end.
  • the recess is slightly wider than the web to facilitate insertion of the tube into the bottom plate.
  • the insertion depth of the tube is given by the height of the recess in the pipe end.
  • the recess is higher than the web, whereby the risk of unwanted clogging of one or more heat transfer channels by solder located on the bottom plate during a. Soldering process is reduced.
  • the height difference is, for example, 1 mm or more, on the other hand, should be less than the thickness of the baffle, since the pipe otherwise abuts the cover plate.
  • a height difference that is about half as large as the thickness of the baffle plate.
  • a basic idea of the invention is to design a plurality of plates of the tubesheet in one piece in order to reduce the number of production and, if necessary, the cost of materials.
  • the tube plate then only consists of a plate in which the bottom plate, the baffle plate and the cover plate are integrated.
  • the cost of materials for the tubesheet and thus also for the heat exchanger is reduced by one or more, preferably all plates of the tubesheet have additional recesses between passage and / or deflection channels, the For example, as breakthroughs or lateral indentations are formed.
  • the plates are severed between passage and / or deflection channels, whereby the plates may disintegrate into many small sub-plates. This allows a particularly lightweight construction, which has a positive effect on material costs and weight of the heat exchanger alike.
  • the bottom plate, the baffle plate and / or the cover plate on an edge of at least one opening on an extension which engages in an opening of an adjacent plate.
  • a simplified construction is made possible according to the principles of the invention by U-shaped tubes, wherein the tubes are simply or repeatedly formed into an even simpler design. As a result, in the region of the U-shaped forming two pipe-floor connections and possibly a deflection channel can be saved. With the exclusive use of U-tubes, it is even possible to save an end piece, if on one side of the heat exchanger all deflections are realized by Rohrumformungen. In this case, the ends of each tube are connectable to the same bottom plate.
  • Preferred embodiments of the heat exchanger according to the invention are the subject of the subordinate claims. According to a preferred embodiment, it is to provide the heat exchanger with exactly one end piece, in which in particular a collecting box is integrated with two collecting chambers. This is possible except through the use of U-tubes through any conceivable hydraulic connection of pipes on a side opposite exactly one end of the heat exchanger, for example by placing suitably constructed caps on a plurality of, in particular two tubes.
  • an optionally integrated into the tail collecting tank with the cover plate is soldered fluid-tight or welded.
  • the collecting box is integrally formed with the cover plate, whereby the production is simplified.
  • a particularly lightweight design is achieved by a tubular design of the collecting tank according to a further embodiment of the invention.
  • the cover plate on edges of openings on extensions which engage in openings of a housing of the collecting tank.
  • it is possible according to a further embodiment to provide openings of the collection box housing with extensions which engage in openings of the cover plate. In both cases, the manufacturing safety is increased by an alignment of the mutually aligned openings in the cover plate and in the collection box housing.
  • the passage openings which are formed by the mutually aligned openings in the cover plate and in the collection box housing, have different flow cross-sections.
  • an adaptation of the distribution of the first medium to the flow conditions in the associated collection chamber is made possible in a simple manner.
  • a uniform distribution over a plurality of flow paths is desirable, but also a deliberately uneven distribution is conceivable, for example, at uneven mass flow of the second medium over an end face of the heat exchanger.
  • the passage openings are arranged with different flow cross-sections upstream of the heat transfer channels, whereby the flow in the flow paths is particularly easily compensated.
  • the passage openings on the outlet side can be made larger, for example with a flow cross section which corresponds to the flow cross section of the respective flow path.
  • the Heat exchangers for example, used as an evaporator in a refrigerant circuit, the pressure conditions along the circuit are more advantageous for the performance of the heat exchanger when flow cross sections are narrowed before heating the refrigerant, as in a narrowing of the flow cross sections after heating.
  • the flow cross-sections of the passage openings are adaptable according to an embodiment of a pressure distribution of the first medium within the respective collection chamber.
  • the flow cross sections can be adapted to a density distribution of the first medium within the respective collection chamber.
  • the density of a medium is to be understood as the physical density in single-phase media, while in the case of multiphase media, for example in media which are partly liquid and partly gaseous, a density averaged over the volume in question is to be understood.
  • the cross sectional areas of the first and second plenums are different from one another in a preferred embodiment.
  • the cross-sectional areas of the collecting chambers can be adapted to the density ratios of the first medium in the chambers.
  • heat exchanger according to the invention relate to the interconnection of the flow path sections by means of deflection channels in the deflection plate.
  • flow path sections which are arranged side by side in the main flow direction of the second medium are connected to one another by a deflection channel are.
  • One speaks then of a deflection in the width This makes it possible to connect several or possibly all flow path sections within a row or within a row of pipes together to form a flow path.
  • the interconnected flow path sections are aligned in the main flow direction of the second medium.
  • One speaks then of a deflection in the depth This makes it possible to connect flow paths for the first medium parallel or antiparallel to the main flow direction of the second medium. This leads to an at least partial countercurrent construction of the heat exchanger.
  • two flow path sections are interconnected within a tube by a deflection channel. This means that the first medium flows in one direction through the tube and flows back in the opposite direction through the same tube.
  • the number of sections of at least one flow path is divisible by two.
  • a two-row arrangement of the flow path sections is easily interconnected by the first half of the sections of a flow path arranged in a first row and connected by deflections in the width, whereas the second half of the sections arranged in a second row and also through Deflections in the width is connected to each other, wherein the two halves of the flow path are connected by a deflection in the depth.
  • This deflection in depth is done for example in a deflection of a baffle plate of a tube plate on the Sammelkammem opposite side of the heat exchanger.
  • the number of sections of the flow path is divisible by four.
  • the first and last flow path sections within one or more rows of tubes are not acted upon as hydraulically first sections of flow paths, since in the edge region of collection chambers, which are usually arranged along rows of tubes, the flow and / or pressure conditions of the first medium unfavorable for an admission of flow paths are.
  • two adjacent flow paths are mirror-symmetrical to each other.
  • deflection channels communicate at least two flow paths.
  • an additional compensation of the flow is effected within the flow paths.
  • communication of the optionally adjacent deflection channels is particularly easy to accomplish, for example by omitting a web which may otherwise be present between two deflection channels.
  • a flow cross section of a flow path changes during its course. This is very easy to realize, for example, by flow path sections with few heat transfer channels over correspondingly configured deflection channels with flow path sections are connected to many heat transfer channels. An adaptation of the flow cross section of a flow path to a density of the first medium changing along the flow path is particularly preferred.
  • An embodiment is advantageous in which all sections of at least one flow path in the main flow direction of the second medium are aligned with one another. Particularly advantageously, all flow paths of the heat exchanger are formed in this manner, whereby a pure countercurrent construction of the heat exchanger in a simple manner, namely by appropriately configured deflection channels in a baffle is possible.
  • the heat exchanger consists of flat tubes through which a liquid and / or vapor refrigerant flows, corrugated fins exposed to ambient air, a collection and distribution device for the supply and removal of the refrigerant, arranged between the flat tubes.
  • each one flat tube has two parallel flow sections, which flows through one after the other and are connected via the deflection, wherein each flat tube end a groove between the two flow Sections in the middle of the flat tube end and that the bottom plate between the receiving openings webs, which in terms of their dimensions Height and width correspond to the grooves and each form a joint connection with the grooves.
  • the deflection device is formed by a further base plate with receiving openings and webs, which form a joint connection with the end-side groove of the flat tubes.
  • the deflection device additionally has a channel plate with through slots and a closed cover plate.
  • the collecting and distributing device has a channel plate with channel openings and webs between the channel openings, a cover plate with refrigerant inlet and -austrittsö réelleen and a refrigerant supply and a refrigerant discharge channel, which are arranged parallel to each other and in the longitudinal direction of the heat exchanger on wherein the bottom plate, the channel plate and the cover plate are arranged one above the other in such a way that the openings in the plates are aligned with the flat tube ends.
  • the refrigerant inlet openings are formed as calibrated bores, wherein the diameter of the bores is in particular variable.
  • the cover plate and the refrigerant supply and -abbowkanäle are integrally formed.
  • the heat exchanger which is particularly useful as an evaporator for motor vehicle air conditioners, consisting of flat tubes, which are flowed through by a liquid and / or vapor refrigerant, arranged between the flat tubes, acted upon by ambient air corrugated fins, a collecting and distributing device for the supply and the removal of the refrigerant, wherein the Collection and distribution device consists of a plurality of stacked, perforated plates, whereby refrigerant channels are formed, wherein the ends of the flat tubes are held in receiving openings of a bottom plate, and a deflection device for deflecting the refrigerant in the flow direction of the ambient air.
  • the heat exchanger consists of a series of flat tubes, wherein in each case a flat tube two parallel flow sections, which are successively flowed through and connected via the deflection, and wherein the collecting and distributing device has a between refrigerant inlet and outlet arranged calibration device, which serves as a cover plate is formed with calibration openings for the refrigerant distribution.
  • the calibration openings are arranged on the refrigerant inlet side.
  • the calibration openings have different flow cross sections.
  • the flow cross sections of the calibration openings are preferably larger in the direction of the pressure drop of the refrigerant in the feed channel.
  • the flow cross sections of the calibration openings are variable as a function of the specific volume of the refrigerant or its vapor content.
  • the flat tubes are designed as serpentine segments and the deflection device is arranged in the collecting and distributing device.
  • the collecting and distributing device has a channel plate with through-channel openings for deflecting the refrigerant and channel openings with webs, a cover plate with refrigerant inlet and outlet openings and a refrigerant supply and a refrigerant discharge channel.
  • the channel openings with webs are in each case with the first flat tube end of the Serpentine segment arranged in alignment, whereas the through-channel openings are arranged in alignment with the second flat tube end of the serpentine segment, wherein the refrigerant inlet and -austrittsö réelleen are aligned with the channel openings and the through-channel openings are covered by the cover plate.
  • the serpentine segments have two or three deflections in width.
  • the flat tubes are designed as U-tubes, that is, each with a deflection (in width).
  • Two U-tubes are particularly preferably connected in series on the refrigerant side, and two adjacent channel openings, which are assigned to a U-tube outlet and a U-tube inlet, are in refrigerant communication with each other through a transverse channel in the channel plate.
  • the width b of the channel openings in the channel plate is greater than the width a of the receiving openings in the bottom plate.
  • the depth of the groove in the flat tube ends is greater than the thickness of the bottom plate.
  • one or more of the following dimensions apply to the heat exchanger: Width: 200 to 360 mm, in particular. 260 to 315 mm Height: 180 to 280 mm, in particular. 200 to 250 mm Depth: 30 to 80 mm, preferably 35 to 65 mm Volume: 0.003 to 0.006 m3, in particular.
  • Fig. 1 shows as the first embodiment, an evaporator for an operated with CO 2 as a refrigerant automotive air conditioning system, in an exploded view.
  • This evaporator 1 is designed as a single-row flat tube evaporator and has a plurality of flat tubes, of which only two flat tubes 2, 3 are shown.
  • These flat tubes 2, 3 are formed as extruded multi-chamber flat tubes, which have a plurality of flow channels 4. All flat tubes 2, 3 have the same length l and the same depth t.
  • a groove 5, 6 symmetrical to the central axis 2c in the flat tube 2 is incorporated.
  • corrugated fins 7 Between the individual flat tubes 2, 3 are corrugated fins 7, which are acted upon by ambient air in the direction of the arrow L.
  • the corrugated fins 7 are continuous in the depth direction, but may also be interrupted, for example in the middle of the depth t, in order to ensure better condensate drainage and / or thermal separation.
  • a bottom plate 8 is shown, in which a first row of slot-shaped openings 9a - 9f and a second series of such openings 10a - 10f are arranged.
  • the openings 9a and 10a, 9b and 10b, etc. lie in the direction of the depth (air flow direction L) one behind the other and leave between each webs 11a, 11b - 11f. With regard to their width in the depth direction, these webs 11a-11f correspond to the width of the cutout 5 of the pipe ends 2a.
  • the number of openings 9a-9f or 10a-10f corresponds to the number of flat tubes 2, 3.
  • baffle 12 in which two rows of openings 13a - 13f and 14a - 14f (partially hidden) are arranged.
  • the arrangement of the apertures 13a-f and 14a-f corresponds to the arrangement of the apertures 9a-9f or 10a-10f, but the apertures 13a-f and 14a-f are larger in their width b and depth than the corresponding dimensions of the apertures 9a - 9f or 10a - 10f, each having only a width of a, which corresponds to the thickness of the flat tubes 2, 3.
  • Between the openings 13a, 14a, 13b, 14b - 13f u. 14f are each webs 15a - 15f left. With regard to their dimensions in the depth direction, these webs 15a-15f are smaller than the corresponding dimensions of the webs 11a-11f of the bottom plate 8.
  • a so-called cover plate 16 which has a first row of refrigerant inlet openings 17a-17f and a second row of refrigerant outlet openings 18a-18f.
  • These openings 17a - 17f u. 18a-18f are preferably formed as circular bores and adapted in terms of their diameter to the desired refrigerant distribution or flow rate.
  • a collecting box 19 with a housing and in each case a collecting chamber 20, 21 for the supply and the discharge of the refrigerant.
  • the collection box has openings 22a-f and 23a-f for both collection chambers on its underside, shown in dashed lines, which correspond in terms of position and size to the openings 17a-f and 18a-f.
  • a further bottom plate 24 which has two rows of slot-shaped openings 25a-f and 26a-f analogous to the first bottom plate 8. Also located between the openings 25a and 26a to 25f and 26f are webs 27a-f (partially concealed), these webs, with respect to their width in the depth direction, corresponding to the width of the recess 6 in the end of the flat tube 2.
  • a further baffle plate 28 is shown, the continuous deflection channels 29a - 29f has. These deflection channels 29a-f extend over the entire depth t of the flat tubes 2, 3.
  • a cover plate 30 which has no openings, but closes the deflection channels 29a-29f with respect to the surroundings of the heat exchanger.
  • the above-described constituent parts of the evaporator 1 are mounted as follows: On the flat tube ends 2a, etc., the bottom plate 8 is placed, so that the webs 11a - 11f come to lie in the recesses 5 of the flat tube ends. About the bottom plate 8 then the baffle 12, the cover plate 16 and the collection box 19 with the collection chambers 20, 21 are stacked. In an analogous manner, the lower bottom plate 24 is pushed onto the flat tube ends 2b, so that the webs 27a - 27f come to lie in the recesses 6; Thereafter, the channel plate 28 and the cover plate 29 are added. After the evaporator 1 is thus joined together, it is soldered in a soldering furnace to form a solid block. During the soldering process, the plates by a form or non-positive tension held in position to each other. But it is also possible to first mount the tail of base plate, baffle and cover plate and then connect with flat tubes.
  • the refrigerant in this case CO 2 , thus flows through the evaporator initially on the front side from top to bottom, specifically in the front section 2 d of the flat tube 2, in the lower, consisting of the plates 24, 28, 30 tube plate in depth deflected and flows on the back of the evaporator 1, ie in the rear flow section 2e of the flat tube 2 from bottom to top, corresponding to the arrows R1, R2 and R3 to the collection chamber 21st
  • Fig. 2 shows a further embodiment of the invention, namely an evaporator 40, in which the aforementioned flat tubes are formed as serpentine segments 41.
  • a serpentine segment 41 consists of four flat tube legs 42, 43, 44 u. 45, which are interconnected by three Umlenkbögen 46, 47, 48. Between the individual Flachrohrschenkeln 42 - 45 corrugated fins 49 are arranged.
  • the other parts of the evaporator are also shown in an exploded view, ie a bottom plate 50, a baffle 51, a cover plate 52 and collecting chambers 53, 54 for a refrigerant supply or removal.
  • the bottom plate 50 has a front row of slot-shaped openings 55 a, 55 b u.
  • This web 60a is in turn smaller than the recess 58 of the flat tube leg 42.
  • a deflection channel 61 Adjacent to the opening 59a and at a distance corresponding to that of the flat tube ends 42a-45a, a deflection channel 61 is arranged which extends over the entire depth of the flat tube leg 45. Adjacent to the deflection channel 61 then follows an opening 59b, which corresponds in size to the opening 59a. It corresponds to the next Flachrohrserpentinensegment, which is not shown here.
  • Above the baffle 51 is the cover plate 52, in the front row two refrigerant supply openings 62, 63 and in the rear row two refrigerant outlets 64 u. 65 has. The latter correspond in terms of size and location with the dashed lines in the collection chambers 53, 54 openings (without reference number).
  • the refrigerant flow path is illustrated by arrows: First, the refrigerant leaves the collection chamber 53 via the arrow E1, then follows the arrows E2, E3, E4 and enters the front flow section of the flat tube leg 42 and flows through the entire serpentine segment 41 on its front side and enters E6 from the last leg 45, enters the deflection channel 61, where it is deflected in accordance with the arrow U in the depth, and then, following the arrow R1, to flow through the back of the serpentine segment, ie in the opposite direction as on the Front. Finally, this refrigerant flow passes via the arrow R2, ie through the opening 64 into the collecting chamber 54.
  • serpentine segment portion 41 can also be traversed in the opposite direction in the width, ie in the drawing from left to right or from outside to inside. In view of the end face of the evaporator, this would therefore flow symmetrically from the outside to the inside on the front side; in the middle, both refrigerant flows - combined in a common deflection channel, which then functions as a mixing chamber - can be deflected in depth and again on the rear side flow from the inside to the outside.
  • Fig. 3 shows a further embodiment of the invention, namely an evaporator 70, the flat tubes of individual U-tubes 71a, 71b, 71c, etc. are formed. It is thus a serpentine segment section with a deflection and two legs 72 u. 73.
  • the not visible in the drawing ends of this flat tube leg 72 u. 73 are analogously, ie as described above, fixed in a bottom plate 74 with corresponding receptacles.
  • a baffle 75 is arranged, which alternately two in the depth direction one behind the other slot-shaped openings 76, 77, leaving a web 78 and a depth direction has continuous deflection channel 79.
  • the cover plate - analogous to the embodiments described above - is omitted in this illustration.
  • the flow of the refrigerant takes place according to the arrows; i.e.
  • the refrigerant enters at E in the front flow section of the U-tube 71a, first flows down, is deflected down, then flows upwards and enters the deflection channel 79, where it is deflected according to the arrow U, then flows on the back down, is deflected there and then flows back up to pass through the arrow A through the opening 77.
  • the supply and discharge of the refrigerant will be described with reference to the following figure, corresponding to the sections IV - IV and V - V.
  • Fig. 4 shows a section along the line IV - IV through the evaporator according to Fig. 3 in an enlarged view and supplemented by a cover plate 80 and a collection box 81 and a collection box 82.
  • the remaining parts are denoted by the same reference numerals as in Fig. 3 referred to, ie the baffle 75, the bottom plate 74 and the flat tube leg 71c.
  • the baffle 75 has two apertures 76c and 77c which are separated by the web 78c.
  • a refrigerant inlet opening 83 is provided, which is arranged with an aligned refrigerant opening 84 in the collecting box 81.
  • a refrigerant discharge opening 85 in the cover plate 80 and an aligned refrigerant opening 86 are arranged in the header box 82.
  • the collecting boxes 81, 82 are sealed tightly and pressure-resistant with the cover plate 80, as are the other parts 80, 75, 74 and 71c.
  • Fig. 5 shows a further section along the line V - V in Fig. 3 , ie through the deflection channel 79d. Same parts are in turn with the same Reference numbers designated. It can be seen that the refrigerant, represented by the arrows, is deflected in the left flat tube section from bottom to top in the deflection channel 79d to the right and reaches the right or rear portion of the flat tube leg 71c to flow there from top to bottom.
  • Fig. 6 shows as a further embodiment of the invention, an evaporator 90, which in turn is constructed of U-tubes 91a, 91b, 91c, etc.
  • the ends of the U-tube legs are again - which is not shown in the drawing - received in a bottom plate 92, over which a baffle plate 93 is located.
  • the baffle plate 93 has a configuration of openings, in which in each case after two U-tubes, so z. B. 91a and 91b, a pattern repeated.
  • Fig. 1 are collection chambers 20 and 21 and in Fig. 4 Collecting boxes 81 and 82 for the supply and discharge of refrigerant shown.
  • a distribution device according to the DE 33 11 579 A1 , ie a coiled profile body, or according to the DE 31 36 374 A1 the applicant, a so-called slide body, use, so that a uniform refrigerant distribution and thus a uniform temperature distribution is achieved at the evaporator.
  • Fig. 7 shows a cross section of a heat exchanger 110 with an end piece 120, which has a bottom plate 130, a baffle 140, a cover plate 150 and manifolds 160, 170.
  • a tube 180 is received in two openings 190, 200 in the bottom plate 130, wherein a recess 210 in one end of the tube 180 rests against a web 220 of the bottom plate 130.
  • the recess 210 is slightly higher than the web 220, so that the pipe end protrudes slightly beyond the bottom plate 130.
  • Heat transfer channels (not shown) in the pipe 180 communicate with passages 230, 240 in the baffle plate 140.
  • the passages 230, 240 are again via recesses 250, 260 in the cover plate 150 and recesses 270, 280 in the housings 290, 300 of the headers 160, 170 connected to collection chambers 310, 320.
  • the edges of the recesses 250, 260 are provided with extensions 330, 340, which engage in the recesses 270, 280, whereby an orientation of the headers 160, 170 with respect to the cover plate 150 is accomplished such that the recesses 250th or 260 in the cover plate 150 with the recesses 270 and 280 in the collection box housings 290, 300 are aligned.
  • Fig. 8 shows a development of the heat exchanger Fig. 6
  • the configuration of Umlenkkanälen has in the heat exchanger 410 also a pattern that repeats after every two U-tubes 420, and that corresponds to a flow path through the heat exchanger 410.
  • two adjacent flow paths are arranged mirror-symmetrically to each other. This means that either the passageways 430, 440 of a flow path 450 adjacent to the passageways 460, 470 of an adjacent flow path 480 or a deflection channel 490 of a flow path 500 adjacent to one Deflection channel 510 of an adjacent flow path 520 comes to rest.
  • the flow paths 450, 480, 485, 500, 520, 550, 560 each consist of eight sections, whereas the flow path 445 consists of only four sections to reduce a pressure drop along the flow path 445, also due to the unfavorable flow conditions in the peripheral areas of one heat exchanger. In this case, mixing with the adjacent flow path 450 is also appropriate.
  • Fig. 9 11 shows another example of a connection pattern of flow path sections of a heat exchanger 610.
  • the flow path sections 620 on the inlet side 630 of the heat exchanger 610 have a smaller flow cross section than the flow path sections 640 on the exit side 650.
  • this asymmetry serves for a Adapting the flow cross-sections to the density of the first medium along the flow paths 660.
  • FIG. 12 shows another example of a wiring pattern of flow path portions of a heat exchanger 710 accomplished by a configuration of pass and turn passages of a baffle 720.
  • the flow paths 730 and 740 respectively each aligned so that an inlet and an outlet of the first medium, given by passages 750, 760 and 770, 780, as far as possible from edges 790 and 800 of the heat exchanger 710 are arranged.
  • FIG. 12 shows another example of a wiring pattern of flow path sections of a heat exchanger 810 accomplished by a configuration of the bypass and bypass passages 812, 814 of a baffle 820.
  • the flow path sections are in the order 1 (down) - 2 (up) - 3 (down) - 4 (up) - 5 (down) - 6 (up) etc. interconnected with each other.
  • Fig. 12 shows a tube sheet 1010 with a cover plate 1020 and a plate 1030, which is formed by a one-piece design of a baffle plate with a bottom plate.
  • the cover plate 1020 has recesses 1040 for connection to two collection chambers, while in the plate 1030 passageways 1050 of the baffle plate and below it narrower tube receptacles 1060 can be seen in the bottom plate.
  • FIGS. 13 and 14 show the tubesheet Fig. 12 in a cross section or in a longitudinal section, in each case in the installed state with a tube 1070th
  • Fig. 15 shows a similar tube sheet 1110, the cover plate 1120 has no recesses.
  • deflection channels 1140 are arranged for deflection in the depth.
  • Fig. 16 shows a further possibility of the embodiment of a two-part tube sheet 1210.
  • the baffle plate is integrally formed with the cover plate, whereby a plate 1220 is formed.
  • the plate has a Deflection channel 1230 for a deflection in the depth, which is given by a curvature.
  • the bottom plate 1240 is also curved, so that the 1260 received in the recess 1250 of the bottom plate 1240 tube 1260 is held firm and thus more pressure stable.
  • the tube 1260 abuts the edge 1270, 1280 of the Umlenkkanals 1230, since the curvature in the plate 1220 is not as wide as the curvature in the plate 1240th
  • Fig. 17 shows a heat exchanger 1310 in pure countercurrent construction.
  • the pure countercurrent design is characterized in that deflections take place only in depth, but not in width. It does not matter from how many sections the flow paths exist. The flow paths may for example consist of four sections, in each case then three deflections in depth are necessary.
  • the heat exchanger 1310 has flow paths 1320, each with a deflection in the depth and thus with two flow path sections, which are aligned with each other in the main flow direction of the second medium on.
  • the upper end piece 1330 has a tube plate 1340 and two collection boxes not shown for clarity.
  • the tube plate consists of a bottom plate 1350, a baffle 1360, which serves in this case only a passage of the first medium, and a cover plate 1370 with openings 1380 for connection to the collecting boxes.
  • the lower end consists of only one plate 1400, in which a bottom plate, a baffle plate and a cover plate is integrated. The construction of the plate 1400 will be described with reference to the following FIGS. 18 and 19 explained.
  • Fig. 18 shows a cross section and Fig. 19 a broken oblique view of the plate 1400 from Fig. 17 .
  • a tube 1410 is received in a recess 1420, which also serves as a deflection channel for the first medium, wherein the deflection channel is closed to the outside through the area 1430 of the plate 1400.
  • a rejuvenation points the Recess 1420 edges 1440, 1450, which serve the pipe 1410 as a stop.
  • the tube 1410 serves to represent two sections (downwards 1460 and upwards 1470) of a flow path.
  • Fig. 20 shows a similarly constructed tube sheet 1800, which is also constructed in one piece and on the Umlenkkanäle 1820 and the pipe stops 1830 addition openings 1810 in the region of the cover plate to be connectable to one or two headers.
  • the invention allows a heat exchanger, which consists of a series of tubes (for the realization of heat transfer channels), two plates (the tubesheets) and two tubes (the collection boxes). This is an extremely simple and also pressure-stable construction of the heat exchanger feasible.
  • FIGS. 21 to 24 show exemplary embodiments of a tube sheet with little material and thus associated with low material costs and low weight.
  • the tube sheet 2010 in Fig. 21 has between the pipe receiving recesses 2020 with the pipe stop edges 2030 for material savings as openings 2040 formed recesses.
  • the tube sheet 2110 in FIG Fig. 22 provided as side notches 2120 formed recesses.
  • the tubesheet 2210 in FIGS. 23 and 24 is completely severed between the 2220 pipe receiving cutouts. In this case, the tubes 2230 may be stabilized only by the corrugated fins 2240.
  • FIG. 12 shows another example of a wiring pattern of flow path portions of a heat exchanger 2310 accomplished by a configuration of pass and turn channels 2320, 2330 of a baffle 2340.
  • the flow path sections are in the order 1 (down) -2 (up) -3 (down) - 4 (up) - 5 (down) - 6 (up) interconnected.
  • a tube for each flow path section.
  • a tube preferably contains two or more flow path sections, for example the flow path sections 1, 4 and 5 or the flow path sections 2, 3 and 6.
  • flat tubes are particularly well suited for this purpose. Any further interconnection patterns of flow path sections are also conceivable over the ones shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Motor Or Generator Cooling System (AREA)
  • General Induction Heating (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

  • Die Erfindung betrifft einen Wärmeübertrager mit Rohren und mit einem Endstück, das einen aus Platten bestehenden Rohrboden aufweist.
  • Ein solcher Wärmeübertrager ist beispielsweise in der EP 0 563 471 A1 beschrieben. Der dortige Wärmeübertrager ist als zweireihiger Flachrohrverdampfer ausgebildet, der zweiflutig durchströmt wird. Zwischen den Flachrohren befinden sich Wellrippen, die von Umgebungsluft überströmt werden. Das Kältemittel durchströmt die in Hauptströmungsrichtung der Luft gesehen hintere Flachrohrreihe zunächst von oben nach unten und wird dann gesammelt und mittels einer Umlenkeinrichtung entgegen der Strömungsrichtung der Luft umgelenkt, tritt in die erste, d. h. vordere Flachrohrreihe ein und durchströmt diese von unten nach oben. Bei dieser Bauart wird somit das Kältemittel "in der Tiefe", d. h. entgegen der Strömungsrichtung der Luft umgelenkt. Dadurch umfassen die Strömungspfade für das Kältemittel jeweils zwei Abschnitte, wobei jeder Abschnitt einer Rohrlänge entspricht. Die Verteilung und Sammlung des Kältemittels erfolgt durch eine Sammel- und Verteileinrichtung, die durch eine Vielzahl von aufeinander geschichteten, miteinander verlöteten Platten gebildet ist. Dabei handelt es sich im wesentlichen um eine Bodenplatte, eine darüberliegende Verteilerplatte mit einer in Längsrichtung verlaufenden Trennwand sowie einer Abdeckplatte mit Zu- und Abführöffnung für das Kältemittel. In ähnlicher Weise ist die auf der entgegengesetzten Seite angeordnete Umlenkeinrichtung aus einzelnen Platten aufgebaut. Dadurch ergibt sich eine niedrige Bauhöhe für diesen Verdampfer. Zusätzlich ist optional eine sogenannte Anschlagplatte vorgesehen, die jeweils auf die Bodenplatte aufgelegt wird und einen Anschlag für die Rohrenden bildet. Nachteilig bei dieser Verdampferbauart ist, daß das Kältemittel aufgrund der sich über die gesamte Breite des Verdampfers erstreckenden Verteil- bzw. Sammelkammer ungleichmäßig auf die einzelnen Rohre verteilt wird. Darüber hinaus erfordert die zweireihige Bauweise einen erhöhten Montageaufwand.
  • Man hat für einen ähnlichen Verdampfer in der EP 0 634 615 A1 eine sogenannte Teilerplatte mit einzelnen Öffnungen für die Verteilung des Kältemittels auf die einzelnen Rohre vorgeschlagen. Hierdurch wird eine gleichmäßigere Verteilung des Kältemittels auf die Rohre erreicht, was jedoch durch eine vergrößerte Plattenanzahl und damit höheren Material- und Montageaufwand erkauft wird.
  • In der US 5,242,016 wird ein Verdampfer mit einer Kältemittelverteilung durch Kanäle in einer Vielzahl von Platten beschrieben, die ebenfalls zu einer gleichmäßigeren Verteilung des Kältemittels auf Wärmeübertragerrohre beitragen. Dafür ist jedoch eine sehr große Plattenanzahl und ein hoher Herstellungsaufwand notwendig.
  • Durch die DE 100 20 763 A1 wurde eine weitere Verdampferbauart bekannt, die für einen Betrieb mit CO2 als Kältemittel bestimmt ist und bei der ein druckfestes Sammlergehäuse dadurch erreicht werden soll, daß eine Vielzahl von mit Durchbrechungen versehenen Platten aufeinander gestapelt und miteinander verlötet sind. Dieser Verdampfer ist einreihig ausgebildet, und zwar mit Mehrkammerflachrohren, die sowohl nach oben als auch nach unten durchströmt werden, was durch eine am unteren Rohrende befindliche Umlenkeinrichtung ermöglicht wird. Nachteilig bei dieser Verdampferbauweise ist die hohe Anzahl an Platten mit relativ schmalen Kanälen, was einerseits zusätzliches Gewicht bedeutet und andererseits die Gefahr beinhaltet, daß die Kanäle des Sammlergehäuses beim Verlöten zulaufen, d. h. durch Lot verstopft werden.
  • In der EP 1 221 580 A2 ist ein Verdampfer für ein Brennstoffzellensystem beschrieben, der ein Kopfstück umfaßt, das eine Bodenplatte und eine daran befestigte Abdeckplatte aufweist. Brennstoff gelangt über ein Anschlußteil in eine Brennstoffverteilerkammer, von dort in Leitkanäle und über Durchbrüche in der Bodenplatte in Wärmeaufnahmekanäle des Verdampfers. Bei diesem Brennstoffverdampfer sind die Platten des Kopfstücks in ihrer Anzahl gering, in ihrer Fertigung jedoch sehr aufwendig. Außerdem werden die Wärmeaufnahmekanäle je nach Druckverteilung in der Brennstoffverteilerkammer und in den Leitkanälen sehr ungleichmäßig mit Brennstoff beaufschlagt.
  • Die EP 0 328 414 A offenbart einen Wärmetauscher, z.B. einen Verdampfer für eine Fahrzeugklimaanlage, der mehrere gerippte U-förmige Rohre mit freien Enden aufweist, die dauerhaft befestigt sind, z.B. klebend verbunden mit einer Endplattenanordnung, die aus einer Anzahl von Endplattenmitteln gebildet ist, die Verbindungskanäle definieren, die Paare von freien Enden der Rohre miteinander verbinden, um mindestens einen Strömungskanal für Wärmeaustauschfluid bereitzustellen. Die Endplattenmittel sind dauerhaft vereinigt, z.B. durch Verkleben miteinander verbunden, um mit den Endabschnitten der U-förmigen Rohre eine dauerhaft verbundene integrale Endplattenanordnung zu bilden.
  • Die DE 692 19 107 T2 offenbart einen Zweidurchgangs-Verdampfer mit langgestreckten Rohren und Verteilerköpfen. Jeder Verteilerkopf besteht aus mehreren schichtförmig angeordneten miteinander verlöteten Platten. Die oberen Verteilerköpfe können daher aus drei Platten bestehen, einschließlich einer Abdeckplatte, einer Verteilerkopfplatte und einer Rohrplatte. Die Aufgabe der Erfindung ist es, einen Wärmeübertrager bereitzustellen, bei dem eine einfache und/oder leichte Bauweise und gegebenenfalls gleichzeitig eine gleichmäßige Verteilung eines Mediums auf mehrere Strömungspfade und/oder ein druckstabiler Aufbau des Wärmeübertragers realisierbar ist.
  • Diese Aufgabe wird durch einen Wärmeübertrager mit den Merkmalen des Anspruchs 1 gelöst. Gemäß dieses Anspruchs weist ein erfindungsgemäßer Wärmeübertrager Rohre auf, die von einem ersten Medium durchströmbar und von einem zweiten Medium umströmbar sind, so daß durch Wandungen der Rohre Wärme von dem ersten auf das zweite Medium oder umgekehrt übertragbar ist. Hierzu befinden sich in den Rohren Wärmeübertragungskanäle, durch die das erste Medium leitbar ist, wobei ein einzelnes Rohr entweder einen Wärmeübertragungskanal oder als sogenanntes Mehrkammerrohr mehrere nebeneinanderliegende Wärmeübertragungskanäle aufweist. Die Rohre können dabei einen kreisförmigen, einen ovalen, einen im wesentlichen rechteckförmigen oder einen beliebigen anderen Querschnitt besitzen. Beispielsweise sind die Rohre als Flachrohre ausgebildet. Für eine Erhöhung des Wärmeübertrags sind gegebenenfalls Rippen, insbesondere Wellrippen, zwischen den Rohren angeordnet, wobei die Rohre und die Rippen insbesondere miteinander verlötbar sind.
  • Für den Wärmeübertrager sind verschiedene Verwendungen denkbar, beispielsweise als Verdampfer eines Kältemittelkreislaufs, insbesondere einer Kraftfahrzeugklimaanlage. In diesem Fall ist das erste Medium ein Kältemittel, beispielsweise R134a oder R744, und das zweite Medium Luft, wobei Wärme von der Luft auf das Kältemittel übertragen wird. Der Wärmeübertrager ist aber auch für andere Medien geeignet, wobei gegebenenfalls die Wärme auch von dem ersten auf das zweite Medium übertragbar ist.
  • Gegebenenfalls sind zumindest zwei Sammelkammern vorhanden, wobei das erste Medium von einer ersten zu einer zweiten Sammelkammer leitbar ist. Das erste Medium ist entlang eines oder mehrerer Strömungspfade leitbar, die gegebenenfalls aus mehreren Abschnitten bestehen. Unter einem Strömungspfadabschnitt im Sinne der Erfindung ist ein oder mehrere Wärmeübertragungskanäle zu verstehen, die von einer Seite des Wärmeübertragers zu einer gegenüberliegenden Seite verlaufen und hydraulisch parallel zueinander geschaltet sind. Die Wärmeübertragungskanäle eines Strömungspfadabschnittes sind beispielsweise in einem einzigen Rohr angeordnet, eine auf mehrere Rohre verteilte Anordnung der Wärmeübertragungskanäle eines Strömungspfadabschnittes ist jedoch ebenso denkbar.
  • Desweiteren weist der Wärmeübertrager ein Endstück auf, das einen aus aneinanderliegenden Platten bestehenden Rohrboden umfasst, wobei die aneinanderliegenden Platten aus einer Bodenplatte, einer an der Bodenplatte anliegenden Umlenkplatte und einer an der Urnlenkplatte anliegenden Abdeckpiatte bestehen. Die Bodenplatte ist mit Enden der Rohre verbindbar, indem die Bodenplatte beispielsweise Aussparungen aufweist, in die die Rohrenden aufnehmbar sind. Im Rahmen der Erfindung sind auch andere Arten der Verbindung zwischen Rohren und der Bodenplatte denkbar, zum Beispiel durch Fortsätze an den Rändern von Aussparungen in der Bodenplatte, so daß die Rohre auf die Fortsätze aufsteckbar sind. Aussparungen in der Umlenkplatte dienen der Bildung von Durchleitkanälen und/oder von Umlenkkanälen, die gegenüber einer Umgebung des Wärmeübertragers mit einer Abdeckplatte fluiddicht verschließbar sind. Durch die Plattenstruktur des Rohrbodens ist eine sehr druckstabile Bauweise des Endstücks und des gesamten Wärmeübertragers möglich. Gegebenenfalls ist das den Rohrboden umfassende Endstück mit einem Sammelkasten versehen, der in einem Gehäuse zumindest eine Sammelkammer für das erste Medium aufweist. Dadurch wird ein gegebenenfalls ohnehin notwendiges Bauteil in das Endstück integriert und eine kompakte und damit einfache Bauweise des Wärmeübertragers gewährleistet. Strömungspfadabschnitte können mittels Umlenkkanälen in der Umlenkplatte miteinander verbunden werden. Die Verschaltung der Strömungspfadabschnitte zu einem oder mehreren hydraulisch parallelen Strömungspfaden ist dann nach beliebigen Anforderungen auslegbar, indem eine einzige Platte, nämlich die Umlenkplatte, entsprechend der erforderlichen Strömungspfadverschaltung konfiguriert wird. Somit ist der Wärmeübertrager durch seine modulare Bauweise für verschiedene Anwendungen flexibel aufbaubar. Ein Rohr wird bis zu einem vorgegebenem Anschlag in den Rohrboden eingeführt, um eine erhöhte Fertigungssicherheit und damit eine vereinfachte Herstellung zu erzielen. Der Anschlag wird durch einen Steg zwischen zwei Aussparungen in der Bodenplatte verwirklicht, der in eine Aussparung in einem Rohrende aufnehmbar ist, wobei der Steg im wesentlichen genauso breit ist wie die Aussparung in dem Rohrende. Vorteilhafterweise ist die Aussparung etwas breiter als der Steg, um ein Einstecken des Rohres in die Bodenplatte zu erleichtern. Die Einstecktiefe des Rohres ist durch die Höhe der Aussparung in dem Rohrende gegeben. Besonders vorteilhaft ist die Aussparung höher als der Steg, wodurch die Gefahr einer ungewünschten Verstopfung eines oder mehrerer Wärmeübertragungskanäle durch auf der Bodenplatte befindliches Lot während eines. Lötprozesses verringert wird. Der Höhenunterschied ist beispielsweise 1 mm oder mehr, sollte andererseits geringer sein als die Dicke der Umlenkplatte, da das Rohr sonst an die Abdeckplatte anstößt. Vorteilhaft ist ein Höhenunterschied, der in etwa halb so groß ist wie die Dicke der Umlenkplatte.
  • Ein Grundgedanke der Erfindung ist es, mehrere Platten des Rohrbodens einstückig zu gestalten, um die Anzahl den Fertigungs- und gegebenenfalls den Materialaufwand zu reduzieren. Unter Umständen besteht der Rohrboden dann nur aus einer Platte, in die die Bodenplatte, die Umlenkplatte und die Abdeckplatte integriert sind.
  • Gemäß des Erfindungsgedankens wird der Materialaufwand für den Rohrboden und damit auch für den Wärmeübertrager reduziert, indem eine oder mehrere, bevorzugt alle Platten des Rohrbodens zusätzliche Aussparungen zwischen Durchleit- und/oder Umlenkkanälen aufweisen, die beispielsweise als Durchbrüche oder seitliche Einkerbungen ausgebildet sind. Vorteilhaft sind die Platten zwischen Durchleit- und/oder Umlenkkanälen durchtrennt, wodurch die Platten unter Umständen in viele kleine Teilplatten zerfallen. Dadurch wird eine besonders leichte Bauweise ermöglicht, die sich auf Materialkosten und Gewicht des Wärmeübertragers gleichermaßen positiv auswirkt.
  • Gemäß der Erfindung weisen die Bodenplatte, die Umlenkplatte und/oder die Abdeckplatte an einem Rand zumindest eines Durchbruchs einen Fortsatz auf, der in einen Durchbruch einer benachbarten Platte eingreift. Eine vereinfachte Bauweise wird nach dem Grundgedanken der Erfindung auch durch U-förmig umgeformte Rohre ermöglicht, wobei die Rohre einfach oder zu einer noch einfacheren Bauweise mehrfach umgeformt sind. Dadurch wird im Bereich der U-förmigen Umformung zwei Rohr-Boden-Verbindungen und gegebenenfalls ein Umlenkkanal eingespart. Bei ausschließlicher Verwendung von U-Rohren ist es sogar möglich, ein Endstück einzusparen, wenn auf einer Seite des Wärmeübertragers sämtliche Umlenkungen durch Rohrumformungen verwirklicht sind. In diesem Fall sind die Enden jeweils eines Rohres mit derselben Bodenplatte verbindbar.
  • Bevorzugte Ausführungsformen des erfindungsgemäßen Wärmeübertragers sind Gegenstand der untergeordneten Ansprüche. Gemäß einer bevorzugten Ausführungsform ist es, den Wärmeübertrager mit genau einem Endstück zu versehen, in das insbesondere ein Sammelkasten mit zwei Sammelkammern integriert ist. Dies ist außer durch Verwendung von U-Rohren durch jede denkbare hydraulische Verbindung von Rohren auf einer dem genau einen Endstück gegenüberliegenden Seite des Wärmeübertragers möglich, beispielsweise durch Aufsetzen von geeignet aufgebauten Kappen auf jeweils mehrere, insbesondere zwei Rohre.
  • Gemäß einer bevorzugten Ausführungsform ist ein gegebenenfalls in das Endstück integrierter Sammelkasten mit der Abdeckplatte fluiddicht verlötet oder verschweißt. Nach einer anderen vorteilhaften Ausführungsform ist der Sammelkasten mit der Abdeckplatte einstückig ausgebildet, wodurch die Fertigung vereinfacht wird. Eine besonders leichte Bauweise wird durch eine rohrförmige Ausbildung des Sammelkastens gemäß einer weiteren Ausgestaltung der Erfindung erreicht. Besonders bevorzugt weist die Abdeckplatte an Rändern von Durchbrüchen Fortsätze auf, die in Durchbrüche eines Gehäuses des Sammelkastens eingreifen. Umgekehrt ist es nach einer weiteren Ausführungsform möglich, Durchbrüche des Sammelkastengehäuses mit Fortsätzen zu versehen, die in Durchbrüche der Abdeckplatte eingreifen. In beiden Fällen ist die Fertigungssicherheit durch eine Ausrichtung der miteinander fluchtenden Durchbrüche in der Abdeckplatte und in dem Sammelkastengehäuse erhöht.
  • Gemäß einer bevorzugten Ausführungsform weisen die Durchtrittsöffnungen, die durch die miteinander fluchtenden Durchbrüche in der Abdeckplatte und in dem Sammelkastengehäuse gebildet werden, unterschiedliche Strömungsquerschnitte auf. Dadurch wird auf einfache Weise eine Anpassung der Verteilung des ersten Mediums an die Strömungsverhältnisse in der zugehörigen Sammelkammer ermöglicht. Insbesondere eine gleichmäßige Verteilung auf mehrere Strömungspfade ist dabei erstrebenswert, wobei aber auch eine bewußt ungleichmäßige Verteilung denkbar ist, beispielsweise bei ungleichmäßigem Massenstrom des zweiten Mediums über eine Stirnfläche des Wärmeübertragers. Vorteilhafterweise sind die Durchtrittsöffnungen mit unterschiedlichen Strömungsquerschnitten stromaufwärts der Wärmeübertragungskanäle angeordnet, wodurch die Strömung in den Strömungspfaden besonders einfach ausgleichbar ist. Wenn Durchströmmengen durch die Strömungspfade auf einer Eintrittsseite für das erste Medium geregelt werden, sind die Durchtrittsöffnungen auf der Austrittsseite größer gestaltbar, beispielsweise mit einem Strömungsquerschnitt, der dem Strömungsquerschnitt des jeweiligen Strömungspfades entspricht. Wird der Wärmeübertrager beispielsweise als Verdampfer in einem Kältemittelkreislauf verwendet, sind die Druckverhältnisse entlang des Kreislaufs vorteilhafter für die Leistungsfähigkeit des Wärmeübertragers, wenn Strömungsquerschnitte vor einer Erwärmung des Kältemittels eingeengt sind, als bei einer Einengung der Strömungsquerschnitte nach der Erwärmung.
  • Die Strömungsquerschnitte der Durchtrittsöffnungen sind gemäß einer Ausgestaltung an eine Druckverteilung des ersten Mediums innerhalb der betreffenden Sammelkammer anpaßbar. Bei einer anderen Ausgestaltung sind die Strömungsquerschnitte an eine Dichteverteilung des ersten Mediums innerhalb der betreffenden Sammelkammer anpaßbar. Unter der Dichte eines Mediums im Sinne der Erfindung ist bei einphasigen Medien die physikalische Dichte zu verstehen, während bei mehrphasigen Medien, beispielsweise bei Medien, die teilweise flüssig und teilweise gasförmig vorliegen, eine über das jeweils betreffende Volumen gemittelte Dichte zu verstehen ist.
  • Aus ähnlichen Gründen sind die Querschnittsflächen der ersten und der zweiten Sammelkammer bei einer bevorzugten Ausführung voneinander verschieden. Besonders bevorzugt sind die Querschnittsflächen der Sammelkammern an die Dichteverhältnisse des ersten Mediums in den Kammern anpaßbar.
  • Weitere Ausführungformen des erfindungsgemäßen Wärmeübertragers beziehen sich auf die Verschaltung der Strömungspfadabschnitte mittels Umlenkkanälen in der Umlenkplatte.
  • Gemäß einer vorteilhaften Ausgestaltung werden durch einen Umlenkkanal Strömungspfadabschnitte miteinander verbunden, die in Hauptströmungsrichtung des zweiten Mediums nebeneinander angeordnet sind. Man spricht dann von einer Umlenkung in der Breite. Dadurch ist es möglich, mehrere oder eventuell alle Strömungspfadabschnitte innerhalb einer Reihe beziehungsweise innerhalb einer Rohrreihe miteinander zu einem Strömungspfad zu verbinden. Dies führt zu einer zumindest teilweisen Serpentinenbauweise des Wärmeübertragers. Bei einer anderen Ausgestaltung fluchten die miteinander verbundenen Strömungspfadabschnitte in Hauptströmungsrichtung des zweiten Mediums. Man spricht dann von einer Umlenkung in der Tiefe. Dadurch ist es möglich, Strömungspfade für das erste Medium parallel oder antiparallel zur Hauptströmungsrichtung des zweiten Mediums zu verschalten. Dies führt zu einer zumindest teilweisen Gegenstrombauweise des Wärmeübertragers.
  • Gemäß einer weiteren Ausführungsform werden durch einen Umlenkkanal zwei Strömungspfadabschnitte innerhalb eines Rohres miteinander verbunden. Das bedeutet, daß das erste Medium in einer Richtung durch das Rohr strömt und in Gegenrichtung durch dasselbe Rohr zurückströmt. Durch eine Verwendung von Rohren mit vielen Wärmeübertragungskanälen wird so die Gesamtanzahl der Rohre und damit der Fertigungsaufwand verringert.
  • Gemäß einer bevorzugten Ausgestaltung ist die Anzahl der Abschnitte zumindest eines Strömungspfades durch zwei teilbar. Dies bedeutet, daß eine zweireihige Anordnung der Strömungspfadabschnitte einfach verschaltbar ist, indem die erste Hälfte der Abschnitte eines Strömungspfades in einer ersten Reihe angeordnet und durch Umlenkungen in der Breite miteinander verbunden ist, wohingegen die zweite Hälfte der Abschnitte in einer zweiten Reihe angeordnet und ebenfalls durch Umlenkungen in der Breite miteinander verbunden ist, wobei die beiden Hälften des Strömungspfades durch eine Umlenkung in der Tiefe verbunden sind. Diese Umlenkung in der Tiefe geschieht beispielsweise in einem Umlenkkanal einer Umlenkplatte eines Rohrbodens auf der den Sammelkammem gegenüberliegenden Seite des Wärmeübertragers. Besonders bevorzugt ist die Anzahl der Abschnitte des Strömungspfades durch vier teilbar. Dies bedeutet, daß bei einer zweireihigen Anordnung der Strömungspfadabschnitte mit der oben beschriebenen Verschaltung die Umlenkung in der Tiefe auf der Seite des Wärmeübertragers geschieht, auf der sich auch die Sammelkammern befinden. Dadurch ist nur eine Umlenkplatte des Wärmeübertragers zu konfigurieren, wenn der Wärmeübertrager für vorgegebene Anforderungen ausgelegt wird, während andere Bauteile unverändert übernommen werden.
  • Bei einer Ausgestaltung werden die ersten und letzten Strömungspfadabschnitte innerhalb einer oder mehrerer Rohrreihen nicht als hydraulisch erste Abschnitte von Strömungspfaden beaufschlagt, da im Randbereich von Sammelkammern, die üblicherweise entlang Rohrreihen angeordnet sind, die Strömungs- und/oder Druckverhältnisse des ersten Mediums ungünstig für eine Beaufschlagung von Strömungspfaden sind.
  • Gemäß einer vorteilhaften Ausführung verlaufen zwei benachbarte Strömungspfade spiegelsymmetrisch zueinander. Besonders bevorzugt kommunizieren Umlenkkanäle zumindest zweier Strömungspfade. Dadurch wird innerhalb der Strömungspfade ein zusätzlicher Ausgleich der Durchströmung bewirkt. Bei einem spiegelsymmetrischen Verlauf der miteinander kommunizierenden Strömungspfade ist eine Kommunikation der dann gegebenenfalls benachbarten Umlenkkanäle besonders einfach zu bewerkstelligen, beispielsweise durch ein Weglassen eines Steges, der unter Umständen ansonsten zwischen zwei Umlenkkanälen vorhanden ist.
  • Bei einer weiteren bevorzugten Ausführung ändert sich ein Strömungsquerschnitt eines Strömungspfades während seines Verlaufes. Dies ist sehr einfach zu verwirklichen, indem beispielsweise Strömungspfadabschnitte mit wenigen Wärmeübertragungskanälen über entsprechend konfigurierte Umlenkkanäle mit Strömungspfadabschnitten mit vielen Wärmeübertragungskanälen verbunden werden. Besonders bevorzugt ist eine Anpassung des Strömungsquerschnitts eines Strömungspfades an eine sich entlang des Strömungspfades ändernde Dichte des ersten Mediums.
  • Vorteilhaft ist eine Ausgestaltung, bei der alle Abschnitte zumindest eines Strömungspfades in Hauptströmungsrichtung des zweiten Mediums miteinander fluchten. Besonders vorteilhaft sind alle Strömungspfade des Wärmeübertragers in dieser Weise ausgebildet, wodurch eine reine Gegenstrombauweise des Wärmeübertragers auf einfache Weise, nämlich durch entsprechend konfigurierte Umlenkkanäle in einer Umlenkplatte, ermöglicht wird.
  • Bei einer weiteren Ausführungsform besteht der Wärmeübertrager aus Flachrohren, die von einem flüssigen und/oder dampfförmigen Kältemittel durchströmt werden, zwischen den Flachrohren angeordneten, von Umgebungsluft beaufschlagten Wellrippen, einer Sammel- und Verteileinrichtung für die Zufuhr und die Abfuhr des Kältemittels, wobei die Sammel- und Verteileinrichtung aus einer Mehrzahl von übereinander geschichteten, durchbrochenen Platten besteht, wodurch Kältemittelkanäle gebildet werden, wobei die Enden der Flachrohre in Aufnahmeöffnungen einer Bodenplatte gehalten sind und einer Umlenkeinrichtung zur Umlenkung des Kältemittels in Strömungsrichtung der Umgebungsluft, und wobei der Wärmeübertrager aus einer Reihe von Flachrohren besteht, wobei jeweils ein Flachrohr zwei parallel verlaufende Strömungsabschnitte, die nacheinander durchströmt und über die Umlenkeinrichtung verbunden sind, aufweist, wobei jedes Flachrohr endseitig eine Nut zwischen den beiden Strömungsabschnitten in der Mitte des Flachrohrendes aufweist und daß die Bodenplatte zwischen den Aufnahmeöffnungen Stege aufweist, die in ihren Abmessungen bezüglich Höhe und Breite den Nuten entsprechen und mit den Nuten jeweils eine Fügeverbindung bilden.
  • Besonders bevorzugt wird die Umlenkeinrichtung durch eine weitere Bodenplatte mit Aufnahmeöffnungen und Stegen gebildet, die mit der endseitigen Nut der Flachrohre eine Fügeverbindung bilden.
  • Besonders bevorzugt weist die Umlenkeinrichtung zusätzlich eine Kanalplatte mit durchgehenden Schlitzen und eine geschlossene Abdeckplatte auf.
  • Besonders bevorzugt weist die Sammel- und Verteileinrichtung eine Kanalplatte mit Kanalöffnungen und Stegen zwischen den Kanalöffnungen, eine Abdeckplatte mit Kältemitteleintritts- und -austrittsöffnungen und einen Kältemittel-Zufuhr- und einen Kältemittel-Abfuhrkanal, die parallel zueinander und in Längsrichtung des Wärmeübertragers angeordnet sind, auf, wobei die Bodenplatte, die Kanalplatte und die Abdeckplatte derart übereinander angeordnet sind, daß die Öffnungen in den Platten mit den Flachrohrenden fluchten.
  • Besonders bevorzugt sind die Kältemitteleintrittsöffnungen als kalibrierte Bohrungen ausgebildet, wobei der Durchmesser der Bohrungen insbesondere variabel ist. Ebenfalls bevorzugt sind die Abdeckplatte sowie die Kältemittelzufuhr- und -abfuhrkanäle einstückig ausgebildet.
  • Gemäß einer weiteren Ausgestaltungsform besteht der Wärmeübertrager, der insbesondere als Verdampfer für Kraftfahrzeugklimaanlagen verwendbar ist, aus Flachrohren, die von einem flüssigen und/oder dampfförmigen Kältemittel durchströmt werden, zwischen den Flachrohren angeordneten, von Umgebungsluft beaufschlagten Wellrippen, einer Sammel- und Verteileinrichtung für die Zufuhr und die Abfuhr des Kältemittels, wobei die Sammel- und Verteileinrichtung aus einer Mehrzahl von übereinander geschichteten, durchbrochenen Platten besteht, wodurch Kältemittel-Kanäle gebildet werden, wobei die Enden der Flachrohre in Aufnahmeöffnungen einer Bodenplatte gehalten sind, und einer Umlenkeinrichtung zur Umlenkung des Kältemittels in Strömungsrichtung der Umgebungsluft. Der Wärmeübertrager besteht dabei aus einer Reihe von Flachrohren, wobei jeweils ein Flachrohr zwei parallel verlaufende Strömungsabschnitte, die nacheinander durchströmbar und über die Umlenkeinrichtung verbunden sind, aufweist und wobei die Sammel- und Verteileinrichtung eine zwischen Kältemitteleintritt und -austritt angeordnete Kalibriereinrichtung aufweist, die als Abdeckplatte mit Kalibrieröffnungen für die Kältemittelverteilung ausgebildet ist. Bevorzugt sind die Kalibrieröffnungen auf der Kältemitteleintrittsseite angeordnet.
  • Gemäß einer vorteilhaften Weiterbildung weisen die Kalibrieröffnungen unterschiedliche Strömungsquerschnitte auf. Bevorzugt werden die Strömungsquerschnitte der Kalibrieröffnungen in Richtung des Druckabfalles des Kältemittels im Zufuhrkanal größer. Besonders bevorzugt sind die Strömungsquerschnitte der Kalibrieröffnungen in Abhängigkeit vom spezifischen Volumen des Kältemittels bzw. dessen Dampfgehatt variabel.
  • Bei einer anderen Ausführungsform des Wärmeübertragers sind die Flachrohre als Serpentinensegmente ausgebildet und die Umlenkeinrichtung in der Sammel- und Verteileinrichtung angeordnet.
  • Gemäß einer weiteren Ausgestaltung weist die Sammel- und Verteileinrichtung eine Kanalplatte mit durchgehenden Kanalöffnungen zur Umlenkung des Kältemittels und Kanalöffnungen mit Stegen, eine Abdeckplatte mit Kältemitteleintitts- und Austrittsöffnungen und einen Kältemittelzufuhr- und einen Kältemittelabfuhrkanal auf. Die Kanalöffnungen mit Stegen sind dabei jeweils mit dem ersten Flachrohrende des Serpentinensegments fluchtend angeordnet, wohingegen die durchgehenden Kanalöffnungen mit dem zweiten Flachrohrende des Serpentinensegments fluchtend angeordnet sind, wobei die Kältemittelein- und -austrittsöffnungen mit den Kanalöffnungen fluchten und die durchgehenden Kanalöffnungen durch die Abdeckplatte abgedeckt sind. Bevorzugt weisen die Serpentinensegmente zwei oder drei Umlenkungen in der Breite auf.
  • Gemäß einer vorteilhaften Ausführungsform des Wärmeübertragers sind die Flachrohre als U-Rohre, das heißt mit je einer Umlenkung (in der Breite) ausgebildet. Besonders bevorzugt sind jeweils zwei U-Rohre kältemittelseitig hintereinander geschaltet, und jeweils zwei benachbarte Kanalöffnungen, die einem U-Rohrauslaß und einem U-Rohreinlaß zugeordnet sind, stehen durch einen Querkanal in der Kanalplatte miteinander in Kältemittelverbindung.
  • Bevorzugt ist die Breite b der Kanalöffnungen in der Kanalplatte größer als die Breite a der Aufnahmeöffnungen in der Bodenplatte. Ebenfalls vorteilhaft ist die Tiefe der Nut in den Flachrohrenden größer als die Dicke der Bodenplatte.
  • Vorteilhafterweise treffen auf den Wärmeübertrager eine oder mehrere der folgenden Maßangaben zu:
    Breite: 200 bis 360 mm, insbesond. 260 bis 315 mm
    Höhe: 180 bis 280 mm, insbesond. 200 bis 250 mm
    Tiefe: 30 bis 80 mm, vorzugsweise 35 bis 65 mm
    Volumen: 0,003 bis 0,006 m3, insbesond. 0,0046 m3
    Rohranzahl pro Kältemittelpfad: 1 bis 8, bevorzugt 2 bis 4
    Durchmesser der Wärmeübertragungskanäle: 0,6 bis 2 mm, insbesondere 1 bis 1,4 mm
    Mittenabstand der Wärmeübertragungskanäle in Tiefenrichtung: 1 bis 5 mm, vorzugsweise 2 mm
    Querteilung: 6 bis 12 mm, insbesondere 10 mm
    Rohrhöhe: 1 bis 2,5 mm, insbesondere 1,4 bis 1,8 mm
    Stirnfläche SF in Hauptströmungsrichtung des zweiten Mediums: 0,04 bis 0,1 m2, insbes. 0,045 bis 0,07 m2
    Freier Strömungsquerschnitt BF für das zweite Medium: 0,03 bis 0,06 m2, insbesondere 0,053 m2
    Verhältnis BF/SF: 0,5 bis 0,9, insbesondere 0,75
    Wärmeübertragende Fläche: 3 bis 8 m2, insbesondere 4 bis 6 m2
    Lamellendichte bei Wellrippen: 400 bis 1000 m-1, insbesondere 650 m-1
    Kanalhöhe: 4 bis 10 mm, insbesondere 6 bis 8 mm
    Lamellenschlitzlänge: 4 bis 10 mm, insbesondere 6,6 mm
    Lamellenschlitzhöhe: 0,2 bis 0,4 mm, insbesondere 0,26 mm
    Dicke der Bodenplatte: 1 bis 3 mm, insbes. 1,5 oder 2 oder 2,5 mm
    Dicke der Umlenkplatte: 2,5 bis 6 mm, insbes. 3 oder 3,5 oder 4 mm
    Dicke der Abdeckplatte: 1 bis 3 mm, insbes. 1,5 oder 2 oder 2,5 mm
    Sammelkastendurchmesser: 4 bis 10 mm, insbesondere 6 bis 8 mm
    Gehäusewandstärke eines Sammelkastens: 1 bis 3 mm, insbesondere 1,5 bis 2 mm
  • Die Erfindung wird nachfolgend anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen näher erläutert. Es zeigen:
  • Fig. 1
    einen nicht erfindungsgemäßen Parallelstromverdampfer in Explosivdarstellung,
    Fig. 2
    einen Verdampfer mit Serpentinensegment (Umlenkung in der Breite),
    Fig. 3
    einen Verdampfer mit U-Rohren,
    Fig. 4
    einen Schnitt IV-IV durch Verdampfer gemäß Fig. 3,
    Fig. 5
    einen Schnitt V-V durch Verdampfer gemäß Fig. 3,
    Fig. 6
    einen Verdampfer mit hintereinandergeschalteten U-Rohren (Umlenkung in der Breite),
    Fig. 7
    einen Wärmeübertrager in Querschnittsdarstellung,
    Fig. 8
    einen Wärmeübertrager in einer Teilansicht,
    Fig. 9
    einen Wärmeübertrager in einer Teilansicht,
    Fig. 10
    eine Umlenkplatte,
    Fig. 11
    einen Rohrboden in einer Teilansicht,
    Fig. 12
    einen Rohrboden in Explosivdarstellung,
    Fig. 13
    einen Rohrboden in Querschnittsdarstellung,
    Fig. 14
    einen Rohrboden in Längsschnittsdarstellung,
    Fig. 15
    einen Rohrboden,
    Fig. 16
    einen Rohrboden in Querschnittsdarstellung,
    Fig. 17
    einen Wärmeübertrager in einer Teilansicht,
    Fig. 18
    einen Rohrboden in Querschnittsdarstellung,
    Fig. 19
    einen Rohrboden,
    Fig. 20
    einen Rohrboden,
    Fig. 21
    einen Rohrboden,
    Fig. 22
    einen Rohrboden,
    Fig. 23
    einen Rohrboden,
    Fig. 24
    einen Wärmeübertrager in einer Teilansicht und
    Fig. 25
    einen Rohrboden in einer Teilansicht.
  • Fig. 1 zeigt als erstes Ausführungsbeispiel einen Verdampfer für eine mit CO2 als Kältemittel betriebene Kraftfahrzeugklimaanlage, und zwar in Explosivdarstellung. Dieser Verdampfer 1 ist als einreihiger Flachrohrverdampfer ausgebildet und weist eine Vielzahl von Flachrohren auf, von denen lediglich zwei Flachrohre 2, 3 dargestellt sind. Diese Flachrohre 2, 3 sind als extrudierte Mehrkammerflachrohre ausgebildet, welche eine Vielzahl von Strömungskanälen 4 aufweisen. Sämtliche Flachrohre 2, 3 weisen die selbe Länge l sowie die selbe Tiefe t auf. An jedem Rohrende 2a, 2b ist eine Nut 5, 6 symmetrisch zur Mittelachse 2c in das Flachrohr 2 eingearbeitet. Zwischen den einzelnen Flachrohren 2, 3 befinden sich Wellrippen 7, die von Umgebungsluft in Richtung des Pfeiles L beaufschlagt werden. Die Wellrippen 7 sind in Tiefenrichtung durchgehend, können aber auch unterbrochen sein, beispielsweise in der Mitte der Tiefe t, um einen besseren Kondensatablauf und/oder eine thermische Trennung zu gewährleisten.
  • In der Zeichnung oberhalb der Flachrohre 2, 3 ist eine Bodenplatte 8 dargestellt, in welcher eine erste Reihe von schlitzförmigen Durchbrüchen 9a - 9f und eine zweite Reihe von ebensolchen Durchbrüchen 10a - 10f angeordnet sind. Die Öffnungen 9a und 10a, 9b und 10b usw. liegen in Richtung der Tiefe (Luftströmungsrichtung L) hintereinander und belassen zwischen sich jeweils Stege 11a, 11b - 11f. Diese Stege 11a - 11f entsprechen hinsichtlich ihrer Breite in Tiefenrichtung der Breite der Aussparung 5 der Rohrenden 2a. Die Zahl der Öffnungen 9a - 9f bzw. 10a - 10f entspricht der Zahl der Flachrohre 2, 3.
  • In der Zeichnung oberhalb der Bodenplatte 8 ist eine sogenannte Umlenkplatte 12 dargestellt, in welcher zwei Reihen von Durchbrüchen 13a - 13f und 14a - 14f (teilweise verdeckt) angeordnet sind. Die Anordnung der Durchbrüche 13a - f und 14a - f entspricht der Anordnung der Durchbrüche 9a - 9f bzw. 10a - 10f, allerdings sind die Durchbrüche 13a - f und 14a - f hinsichtlich ihrer Breite b und Tiefe größer als die entsprechenden Abmessungen der Durchbrüche 9a - 9f bzw. 10a - 10f, die jeweils nur eine Breite von a aufweisen, welche der Dicke der Flachrohre 2, 3 entspricht. Zwischen den Durchbrüchen 13a, 14a, 13b, 14b - 13f u. 14f sind jeweils Stege 15a - 15f belassen. Diese Stege 15a - 15f sind hinsichtlich ihren Abmessungen in Tiefenrichtung kleiner als die entsprechenden Abmessungen der Stege 11a - 11f der Bodenplatte 8.
  • In der Zeichnung oberhalb der Umlenkplatte 12 ist eine sogenannte Abdeckplatte 16 dargestellt, die eine erste Reihe von Kältemitteleintrittsdurchbrüchen 17a - 17f und eine zweite Reihe von Kältemittelaustrittsdurchbrüchen 18a - 18f aufweist. Diese Durchbrüche 17a - 17f u. 18a - 18f sind vorzugsweise als kreisförmige Bohrungen ausgebildet und hinsichtlich ihres Durchmessers an die gewünschte Kältemittelverteilung bzw.-strömungsmenge angepaßt.
  • Schließlich befindet sich in der Zeichnung oberhalb der Abdeckplatte 16 ein Sammelkasten 19 mit einem Gehäuse und jeweils einer Sammelkammer 20, 21 für die Zufuhr und die Abfuhr des Kältemittels. Der Sammelkasten weist für beide Sammelkammern an ihrer Unterseite, gestrichelt dargestellt, Durchbrüche 22a - f und 23a - f auf, die hinsichtlich Lage und Größe mit den Durchbrüchen 17a - f und 18a - f korrespondieren.
  • In der Zeichnung unterhalb der Flachrohre 2, 3 ist eine weitere Bodenplatte 24 dargestellt, die analog zu der ersten Bodenplatte 8 zwei Reihen von schlitzförmigen Durchbrüchen 25a - f und 26a - f aufweist. Zwischen den Durchbrüchen 25a und 26a bis 25f und 26f befinden sich ebenfalls Stege 27a - f (teilweise verdeckt), wobei diese Stege hinsichtlich ihrer Breite in Tiefenrichtung der Breite der Aussparung 6 in dem Ende des Flachrohres 2 entsprechen. In der Zeichnung unterhalb der zweiten Bodenplatte 24 ist eine weitere Umlenkplatte 28 dargestellt, die durchgehende Umlenkkanäle 29a - 29f aufweist. Diese Umlenkkanäle 29a - f erstrecken sich über die gesamte Tiefe t der Flachrohre 2, 3.
  • Schließlich ist in der Zeichnung unten eine Abdeckplatte 30 dargestellt, die keine Durchbrüche aufweist, sondern die Umlenkkanäle 29a - 29f gegenüber der Umgebung des Wärmeübertragers verschließt.
  • Die oben beschriebenen Einzelteile des Verdampfers 1 werden wie folgt montiert: Auf die Flachrohrenden 2a usw. wird die Bodenplatte 8 aufgesetzt, so daß die Stege 11a - 11f in den Aussparungen 5 der Flachrohrenden zu liegen kommen. Über die Bodenplatte 8 werden dann die Umlenkplatte 12, die Abdeckplatte 16 sowie der Sammelkasten 19 mit den Sammelkammern 20, 21 gestapelt. In analoger Weise wird die untere Bodenplatte 24 auf die Flachrohrenden 2b geschoben, so daß die Stege 27a - 27f in den Aussparungen 6 zu liegen kommen; danach werden die Kanalplatte 28 und die Abdeckplatte 29 angefügt. Nachdem der Verdampfer 1 somit zusammengefügt ist, wird er im Lötofen zu einem festen Block verlötet. Während des Lötprozesses werden die Platten durch eine form- oder kraftschlüssige Verspannung in ihrer Position zueinander gehalten. Es ist aber auch möglich, zuerst das Endstück aus Bodenplatte, Umlenkplatte und Abdeckplatte zu montieren und anschließend mit Flachrohren zu verbinden.
  • Der Verlauf der Kältemittelströmung ist exemplarisch anhand einer Reihe von Pfeilen V1 - V5 auf der Vorderseite des Verdampfers, durch den Umlenkpfeil U in dem Umlenkkanal 29c und die Pfeile R1, R2 und R3 auf der Rückseite des Verdampfers 1 dargestellt. Das Kältemittel, hier also CO2, durchströmt den Verdampfer somit zunächst auf der Vorderseite von oben nach unten, und zwar in dem vorderen Abschnitt 2d des Flachrohres 2, wird in dem unteren, aus den Platten 24, 28, 30 bestehenden Rohrboden in der Tiefe umgelenkt und strömt auf der Rückseite des Verdampfers 1, d. h. in dem rückwärtigen Strömungsabschnitt 2e des Flachrohres 2 von unten nach oben, entsprechend den Pfeilen R1, R2 und R3 bis in die Sammelkammer 21.
  • Fig. 2 zeigt ein weiteres Ausführungsbeispiel der Erfindung, und zwar einen Verdampfer 40, bei welchem die zuvor erwähnten Flachrohre als Serpentinensegmente 41 ausgebildet sind. Ein solches Serpentinensegment 41 besteht aus vier Flachrohrschenkeln 42, 43, 44 u. 45, die durch drei Umlenkbögen 46, 47, 48 miteinander verbunden sind. Zwischen den einzelnen Flachrohrschenkeln 42 - 45 sind Wellrippen 49 angeordnet. Die weiteren Teile des Verdampfers sind ebenfalls in Explosivdarstellung gezeigt, d. h. eine Bodenplatte 50, eine Umlenkplatte 51, eine Abdeckplatte 52 sowie Sammelkammern 53, 54 für eine Kältemittelzufuhr beziehungsweise -abfuhr. Die Bodenplatte 50 weist eine vordere Reihe von schlitzförmigen Durchbrüchen 55a, 55b u. 55c auf, hinter der sich eine zweite Reihe (teilweise verdeckt) von entsprechenden Durchbrüchen befindet. Zwischen beiden Reihen von Durchbrüchen sind wiederum Stege 56a, 56b u. 56c belassen, die mit Aussparungen 57 u. 58 in den Enden 42a u. 45a des Serpentinensegmentes 41 korrespondieren. Diese Flachrohrenden werden somit durch die Durchbrüche in der Bodenplatte gesteckt, wobei die Stege in den Aussparungen zu liegen kommen. Oberhalb der Bodenplatte 50 folgt die Umlenkplatte 51, die einen mit dem Durchbruch 55a der Bodenplatte 50 fluchtenden Durchbruch 59a aufweist. In Tiefenrichtung hinter dem Durchbruch 59a befindet sich (teilweise verdeckt) ein entsprechender Durchbruch, der durch einen Steg 60a von dem Durchbruch 59a getrennt ist. Dieser Steg 60a ist wiederum kleiner als die Aussparung 58 des Flachrohrschenkels 42. Benachbart zu dem Durchbruch 59a und in einem Abstand, der dem der Flachrohrenden 42a - 45a entspricht, ist eine Umlenkkanal 61 angeordnet, die sich über die gesamte Tiefe des Flachrohrschenkels 45 erstreckt. Benachbart zu dem Umlenkkanal 61 folgt dann ein Durchbruch 59b, der hinsichtlich seiner Größe dem Durchbruch 59a entspricht. Er korrespondiert mit dem nächsten Flachrohrserpentinensegment, welches hier nicht dargestellt ist. Oberhalb der Umlenkplatte 51 liegt die Abdeckplatte 52, die in der vorderen Reihe zwei Kältemittelzufuhrdurchbrüche 62, 63 und in der rückwärtigen Reihe zwei Kältemittelaustrittsdurchbrüche 64 u. 65 aufweist. Letztere korrespondieren hinsichtlich Größe und Lage mit den bei den Sammelkammern 53, 54 gestrichelt eingezeichneten Öffnungen (ohne Bezugszahl).
  • Der Kältemittelströmungsweg ist durch Pfeile verdeutlicht: Zunächst verläßt das Kältemittel über den Pfeil E1 die Sammelkammer 53, folgt dann entsprechend den Pfeilen E2, E3, E4 und gelangt in den vorderen Strömungsabschnitt des Flachrohrschenkels 42 und durchströmt das gesamte Serpentinensegment 41 auf seiner Vorderseite und tritt bei E6 aus dem letzten Schenkel 45 aus, gelangt in den Umlenkkanal 61, wo es entsprechend dem Pfeil U in der Tiefe umgelenkt wird, um dann, dem Pfeil R1 folgend, die Rückseite des Serpentinensegmentes zu durchströmen, also in der entgegengesetzten Richtung, wie auf der Vorderseite. Schließlich gelangt dieser Kältemittelstrom über den Pfeil R2, d. h. durch den Durchbruch 64 in die Sammelkammer 54.
  • Durch diese Bauweise wird also eine Umlenkung des Kältemittels in der Breite des Verdampfers, d.h. quer zur Hauptströmungsrichtung der Luft erzielt, und zwar zunächst in der Zeichnung von rechts nach links auf der Vorderseite, und dann von links nach rechts auf der Rückseite. Wie bereits oben erwähnt, schließen sich an den in der Zeichnung dargestellten Serpentinensegmentabschnitt 41 ein oder mehrere nicht dargestellte Serpentinensegmentabschnitte an.
  • In Fig. 2 ist nur ein in der Zeichnung rechts angeordneter Serpentinensegmentabschnitt 41 dargestellt. Entgegen der obigen Beschreibung kann der nächste sich an diesem Serpentinensegmentabschnitt 41 anschließende auch in entgegengesetzter Richtung in der Breite durchströmt werden, d. h. in der Zeichnung von links nach rechts oder von außen nach innen. Mit Blick auf die Stirnfläche des Verdampfers würde dieser also auf der Vorderseite symmetrisch von außen nach innen durchströmt, in der Mitte können beide Kältemittelströme - in einem gemeinsamen Umlenkkanal, der dann als Mischraum fungiert - zusammengeführt, in der Tiefe umgelenkt werden und auf der Rückseite wieder von innen nach außen strömen.
  • Fig. 3 zeigt ein weiteres Ausführungsbeispiel der Erfindung, und zwar einen Verdampfer 70, dessen Flachrohre aus einzelnen U-Rohren 71a, 71b, 71c usw. gebildet werden. Dabei handelt es sich also um einen Serpentinensegmentabschnitt mit einer Umlenkung und zwei Schenkeln 72 u. 73. Die hier in der Zeichnung nicht sichtbaren Enden dieser Flachrohrschenkel 72 u. 73 sind in analoger Weise, d. h. wie oben beschrieben, in einer Bodenplatte 74 mit entsprechenden Aufnahmen befestigt. Über der Bodenplatte 74 ist eine Umlenkplatte 75 angeordnet, welche abwechselnd zwei in Tiefenrichtung hintereinander liegende schlitzförmige Durchbrüche 76, 77 unter Belassung eines Steges 78 sowie einen in Tiefenrichtung durchgehenden Umlenkkanal 79 aufweist. Die Abdeckplatte - analog zu den oben beschriebenen Ausführungsbeispielen - ist bei dieser Darstellung weggelassen.
  • Die Strömung des Kältemittels erfolgt entsprechend den Pfeilen; d.h. das Kältemittel tritt bei E in den vorderen Strömungsabschnitt des U-Rohres 71a ein, strömt zunächst nach unten, wird unten umgelenkt, strömt dann nach oben und gelangt in den Umlenkkanal 79, wo es dem Pfeil U entsprechend umgelenkt wird, strömt dann auf der Rückseite nach unten, wird dort umgelenkt und strömt dann wieder nach oben, um über den Pfeil A durch den Durchbruch 77 durchzutreten. Die Zu- und Abfuhr des Kältemittels wird anhand der folgenden Figur, entsprechend den Schnitten IV - IV und V - V beschrieben.
  • Fig. 4 zeigt einen Schnitt entlang der Linie IV - IV durch den Verdampfer gemäß Fig. 3, in vergrößerter Darstellung und ergänzt durch eine Abdeckplatte 80 sowie einen Sammelkasten 81 und einen Sammelkasten 82. Die übrigen Teile sind mit den gleichen Bezugsziffern wie in Fig. 3 bezeichnet, d.h. die Umlenkplatte 75, die Bodenplatte 74 und der Flachrohrschenkel 71c. Die Umlenkplatte 75 weist zwei Durchbrüche 76c und 77c auf, die durch den Steg 78c voneinander getrennt sind. In der Abdeckplatte 80 ist ein Kältemitteleintrittsdurchbruch 83 vorgesehen, der mit einem fluchtend angeordneten Kältemitteldurchbruch 84 im Sammelkasten 81 angeordnet ist. In ähnlicher Weise sind auf der Seite des Sammelkastens 82 ein Kältemittelaustrittsdurchbruch 85 in der Abdeckplatte 80 und ein fluchtend angeordneter Kältemitteldurchbruch 86 im Sammelkasten 82 angeordnet. Die Sammelkästen 81, 82 sind dicht- und druckfest mit der Abdeckplatte 80 verlötet, ebenso wie die anderen Teile 80, 75, 74 und 71c.
  • Fig. 5 zeigt einen weiteren Schnitt längs der Linie V - V in Fig. 3, d.h. durch den Umlenkkanal 79d. Gleiche Teile sind wiederum mit gleichen Bezugszahlen bezeichnet. Man sieht, daß das Kältemittel, dargestellt durch die Pfeile, im linken Flachrohrabschnitt von unten nach oben strömend in dem Umlenkkanal 79d nach rechts umgelenkt wird und in den rechten bzw. hinteren Abschnitt des Flachrohrschenkels 71c gelangt, um dort von oben nach unten zu strömen.
  • Diese Bauweise des Verdampfers gemäß Fig. 3, 4 und 5 mit einfachen U-Rohren erlaubt also jeweils eine einfache Umlenkung in der Breite und in der Tiefe.
  • Fig. 6 zeigt als weiteres Ausführungsbeispiel der Erfindung einen Verdampfer 90, der wiederum aus U-Rohren 91a, 91b, 91c usw. aufgebaut ist. Die Enden der U-Rohrschenkel sind wiederum - was in der Zeichnung nicht dargestellt ist - in einer Bodenplatte 92 aufgenommen, über welcher sich eine Umlenkplatte 93 befindet. Die Umlenkplatte 93 weist eine Konfiguration von Durchbrüchen auf, bei welcher sich jeweils nach zwei U-Rohren, also z. B. 91a und 91b, ein Muster wiederholt. Im folgenden wird dieses Muster beschrieben, und zwar in der Zeichnung links oben beginnend: Dort befinden sich zwei in Tiefenrichtung hintereinander angeordnete Durchbrüche 94 und 95, in Breitenrichtung schließen sich die Durchbrüche 96 und 97 sowie 98 und 99 an, wobei die Durchbrüche 96 und 98 in Breitenrichtung über einen Querkanal 101 und die Durchbrüche 97 und 99 über einen Querkanal 100 in Kältemittelverbindung stehen, so daß sich zwei H-förmige Durchbrüche ergeben. Den H-förmigen Durchbrüchen benachbart ist eine durchgehender Umlenkkanal 102 angeordnet. Danach wiederholt sich das soeben beschriebene Muster von Durchbrüchen 94 - 102. Durch diese Konfiguration von Durchbrüchen ist es möglich, jeweils zwei U-förmige Kältemittelrohre kältemittelseitig hintereinander zu schalten, also hier die U-Rohre 91a und 91b. Der Kältemittelverlauf ist durch Pfeile dargestellt: Das Kältemittel tritt bei A in den vorderen Teil des linken Schenkels des U-Rohres 91a ein und strömt nach unten, wird umgelenkt. strömt wieder nach oben und wird in der Umlenkplatte 93 über den Querkanal 101, d. h. dem Pfeil B folgend in das nächste U-Rohr 91b umgelenkt. Dort strömt es nach unten, wird umgelenkt, strömt wieder nach oben und gelangt in den Umlenkkanal 102, wird dort, dem Pfeil C folgend, in der Tiefe umgelenkt und durchströmt dann den rückwärtigen Teil der beiden Flachrohrschenkel 91b und 91a, um schließlich bei D wieder auszutreten. Die Abdeckplatte und die Kältemittelzu- und -abführung und hier zwecks besserer Darstellung des Kältemittelflusses weggelassen. Durch diese Hintereinanderschaltung von zwei U-Rohren ist einerseits eine dreifache Umlenkung in der Breite möglich, andererseits ist jeder U-Rohrschenkel in der Bodenplatte aufgenommen, so daß sich eine druckstabile Bauweise ergibt. Natürlich kann nach diesem Muster auch eine vier- oder mehrfache Umlenkung in der Breite realisiert werden, wozu lediglich U-förmige Flachrohre benötigt werden. Die obere Umlenkung findet also jeweils in der Kanalplatte 93 statt.
  • In Fig. 1 sind Sammelkammern 20 und 21 und in Fig. 4 Sammelkästen 81 und 82 für die Zufuhr und Abfuhr von Kältemittel dargestellt. Gemäß einer Weiterbildung der Erfindung ist es möglich, insbesondere auf der jeweiligen Kältemitteleintrittsseite, eine Verteileinrichtung gemäß der DE 33 11 579 A1 , d.h. einen gewendelten Profilkörper, oder gemäß der DE 31 36 374 A1 der Anmelderin, einen sogenannten Einschubkörper, einzusetzen, so daß eine gleichmäßige Kältemittelverteilung und damit auch eine gleichmäßige Temperaturverteilung am Verdampfer erreicht wird. Dabei kann es vorteilhaft sein, wenn jeweils mehrere, beispielsweise vier benachbarte Kältemitteleintrittsdurchbrüche über eine gemeinsame Kammer versorgt werden; dadurch ist es möglich, daß bei einem Profilkörper mit beispielsweise fünf Kanälen vier mal fünf gleich 20 Kältemitteleintrittsdurchbrüchen mit Kältemittel versorgt werden können. Dazu werden die zunächst achsparallel verlaufenden (fünf) Kanäle jeweils hinter einer Gruppe von Kältemitteleintrittsdurchbrüchen gewendelt (um etwa 72°), so daß die benachbarte Kammer in Verbindung mit der nächsten Gruppe von Kättemitteleintrittsdurchbrüchen kommt.
  • Fig. 7 zeigt einen Querschnitt eines Wärmeübertragers 110 mit einem Endstück 120, das eine Bodenplatte 130, eine Umlenkplatte 140, eine Abdeckplatte 150 und Sammelkästen 160, 170 aufweist. Ein Rohr 180 ist in zwei Durchbrüchen 190, 200 in der Bodenplatte 130 aufgenommen, wobei eine Aussparung 210 in einem Ende des Rohres 180 an einem Steg 220 der Bodenplatte 130 anliegt. Die Aussparung 210 ist etwas höher als der Steg 220, so daß das Rohrende etwas über die Bodenplatte 130 hinausragt. Nicht gezeigte Wärmeübertragungskanäle in dem Rohr 180 kommunizieren mit Durchleitkanälen 230, 240 in der Umlenkplatte 140. Die Durchleitkanäle 230, 240 sind wiederum über Aussparungen 250, 260 in der Abdeckplatte 150 und Aussparungen 270, 280 in den Gehäusen 290, 300 der Sammelkästen 160, 170 mit Sammelkammern 310, 320 verbunden. Für eine verbesserte Fertigungssicherheit sind die Ränder der Aussparungen 250, 260 mit Fortsätzen 330, 340 versehen, die in die Aussparungen 270, 280 eingreifen, wodurch eine Ausrichtung der Sammelkästen 160, 170 in Bezug auf die Abdeckplatte 150 derart bewerkstelligt ist, daß die Aussparungen 250 beziehungsweise 260 in der Abdeckplatte 150 mit den Aussparungen 270 beziehungsweise 280 in den Sammelkastengehäusen 290, 300 fluchten.
  • Fig. 8 zeigt eine Weiterbildung des Wärmeübertragers aus Fig. 6. Die Konfiguration von Umlenkkanälen weist bei dem Wärmeübertrager 410 ebenfalls ein Muster auf, das sich nach jeweils zwei U-Rohren 420 wiederholt, und das einem Strömungspfad durch den Wärmeübertrager 410 entspricht. Hier sind jedoch jeweils zwei benachbarte Strömungspfade spiegelsymmetrisch zueinander angeordnet. Das bedeutet, daß entweder die Durchtrittskanäle 430, 440 eines Strömungspfades 450 neben den Durchtrittskanälen 460, 470 eines benachbarten Strömungspfades 480 oder ein Umlenkkanal 490 eines Strömungspfades 500 neben einem Umlenkkanal 510 eines benachbarten Strömungspfades 520 zu liegen kommt. In letzterem Fall ist es möglich, die benachbarten Umlenkkanäle 530, 540 mit einem Verbindungskanal 545 zu verbinden, so daß eine Mischung und ein Strömungsausgleich zwischen den beteiligten Strömungspfaden 550, 560 realisiert ist. Dies ist in einem Bereich des Randes des Wärmeübertragers besonders effektiv, da gegebenenfalls dort die Strömungsverhältnisse ansonsten besonders ungünstig für die Leistungsfähigkeit eines Wärmeübertragers sind. In anderen Bereichen des Wärmeübertagers ist eine Mischung des ersten Mediums mittels eines Verbindungskanals zwischen zwei benachbarten Umlenkkanälen ebenso möglich. Die Strömungspfade 450, 480, 485, 500, 520, 550, 560 bestehen aus jeweils acht Abschnitten, wohingegen der Strömungspfad 445 nur aus vier Abschnitten besteht, um einen Druckabfall entlang des Strömungspfades 445 zu verringern, ebenfalls wegen der ungünstigen Strömungsverhältnisse in den Randbereichen eines Wärmeübertragers. In diesem Fall ist eine Durchmischung mit dem benachbarten Strömungspfad 450 ebenfalls angebracht.
  • Fig. 9 zeigt ein weiteres Beispiel für ein Verschaltungsmuster von Strömungspfadabschnitten eines Wärmeübertragers 610. Hier besitzen die Strömungspfadabschnitte 620 auf der Eintrittsseite 630 des Wärmeübertragers 610 einen kleineren Strömungsquerschnitt als die Strömungspfadabschnitte 640 auf der Austrittsseite 650. Beispielsweise bei einer Verwendung des Wärmeübertragers 610 als Verdampfer dient diese Asymmetrie einer Anpassung der Strömungsquerschnitte an die Dichte des ersten Mediums entlang der Strömungspfade 660.
  • Fig. 10 zeigt ein weiteres Beispiel für ein Verschaltungsmuster von Strömungspfadabschnitten eines Wärmeübertragers 710, bewerkstelligt durch eine Konfiguration von Durchleit- und Umlenkkanälen einer Umlenkplatte 720. Hier sind die Strömungspfade 730 beziehungsweise 740 jeweils so ausgerichtet, daß ein Eintritt und ein Austritt des ersten Mediums, gegeben durch Durchleitkanäle 750, 760 beziehungsweise 770, 780, möglichst weit von Rändern 790 beziehungsweise 800 des Wärmeübertragers 710 entfernt angeordnet sind.
  • Fig. 11 zeigt ein weiteres Beispiel für ein Verschaltungsmuster von Strömungspfadabschnitten eines Wärmeübertragers 810, bewerkstelligt durch eine Konfiguration von Durchleit- und Umlenkkanälen 812, 814 einer Umlenkplatte 820. Hier sind die Strömungspfadabschnitte in der Reihenfolge 1 (abwärts) - 2 (aufwärts) - 3 (abwärts) - 4 (aufwärts) - 5 (abwärts) - 6 (aufwärts) usw. miteinander verschaltet.
  • Fig. 12 zeigt einen Rohrboden 1010 mit einer Abdeckplatte 1020 und einer Platte 1030, die durch eine einstückige Ausgestaltung einer Umlenkplatte mit einer Bodenplatte gebildet ist. Die Abdeckplatte 1020 weist Aussparungen 1040 für eine Verbindung zu zwei Sammelkammern auf, während in der Platte 1030 Durchleitkanäle 1050 der Umlenkplatte und darunter schmalere Rohraufnahmen 1060 in der Bodenplatte zu sehen sind.
  • Fig. 13 und Fig. 14 zeigen den Rohrboden aus Fig. 12 in einem Querschnitt beziehungsweise in einem Längsschnitt, jeweils in eingebautem Zustand mit einem Rohr 1070.
  • Fig. 15 zeigt einen ähnlichen Rohrboden 1110, dessen Abdeckplatte 1120 keine Aussparungen aufweist. In der die Umlenkplatte und die Bodenplatte umfassenden Platte 1130 sind Umlenkkanäle 1140 für eine Umlenkung in der Tiefe angeordnet.
  • Fig. 16 zeigt eine weitere Möglichkeit der Ausgestaltung eines zweiteiligen Rohrbodens 1210. Hier ist die Umlenkplatte mit der Abdeckplatte einstückig ausgebildet, wodurch eine Platte 1220 entstanden ist. Die Platte weist einen Umlenkkanal 1230 für eine Umlenkung in der Tiefe auf, der durch eine Wölbung gegeben ist. Die Bodenplatte 1240 ist ebenfalls gewölbt, so daß das in der Aussparung 1250 der Bodenplatte 1240 aufgenommene Rohr 1260 fester und damit druckstabiler gehalten ist. Das Rohr 1260 stößt dabei an den Rand 1270, 1280 des Umlenkkanals 1230, da die Wölbung in der Platte 1220 nicht so breit ist wie die Wölbung in der Platte 1240.
  • Fig. 17 zeigt einen Wärmeübertrager 1310 in reiner Gegenstrombauweise. Die reine Gegenstrombauweise zeichnet sich dadurch aus, daß Umlenkungen nur in der Tiefe, nicht aber in der Breite stattfinden. Dabei spielt es keine Rolle, aus wievielen Abschnitten die Strömungspfade bestehen. Die Strömungspfade können beispielsweise aus jeweils vier Abschnitten bestehen, wobei dann jeweils drei Umlenkungen in der Tiefe notwendig sind. Der Wärmeübertrager 1310 weist Strömungspfade 1320 mit jeweils einer Umlenkung in der Tiefe und demnach mit jeweils zwei Strömungspfadabschnitten, die in Hauptströmungsrichtung des zweiten Mediums miteinander fluchten, auf. Das obere Endstück 1330 weist einen Rohrboden 1340 und zwei zur besseren Übersicht nicht dargestellte Sammelkästen auf. Der Rohrboden besteht aus einer Bodenplatte 1350, einer Umlenkplatte 1360, die in diesem Fall nur einer Durchleitung des ersten Mediums dient, und einer Abdeckplatte 1370 mit Durchbrüchen 1380 zur Verbindung mit den Sammelkästen. Das untere Endstück besteht aus nur einer Platte 1400, in die eine Bodenplatte, eine Umlenkplatte und eine Abdeckplatte integriert ist. Der Aufbau der Platte 1400 wird anhand der folgenden Figuren 18 und 19 erläutert.
  • Fig. 18 zeigt einen Querschnitt und Fig. 19 eine aufgebrochene Schrägansicht der Platte 1400 aus Fig. 17. Ein Rohr 1410 ist in eine Aussparung 1420 aufgenommen, die gleichzeitig als Umlenkkanal für das erste Medium dient, wobei der Umlenkkanal nach außen durch den Bereich 1430 der Platte 1400 verschlossen ist. Durch eine Verjüngung weist die Aussparung 1420 Kanten 1440, 1450 auf, die dem Rohr 1410 als Anschlag dienen. Auf diese Weise ist ein einteiliger Rohrboden mit sehr einfacher Bauweise und hoher Druckstabilität gegeben. Das Rohr 1410 dient dabei der Darstellung zweier Abschnitte (abwärts 1460 und aufwärts 1470) eines Strömungspfades.
  • Fig. 20 zeigt einen ähnlich aufgebauten Rohrboden 1800, der ebenfalls einstückig aufgebaut ist und über die Umlenkkanäle 1820 und die Rohranschläge 1830 hinaus Durchbrüche 1810 im Bereich der Abdeckplatte aufweist, um mit einem oder zwei Sammelkästen verbindbar zu sein.
  • Zusammenfassend ermöglicht die Erfindung einen Wärmeübertrager, der aus einer Reihe von Rohren (zur Realisierung von Wärmeübertragungskanälen), zwei Platten (die Rohrböden) und zwei Rohren (die Sammelkästen) besteht. Damit ist ein äußerst einfacher und darüberhinaus druckstabiler Aufbau des Wärmeübertragers realisierbar.
  • Die Figuren 21 bis 24 zeigen Ausgestaltungsbeispiele eines Rohrbodens mit wenig Materialaufwand und damit verbunden mit geringen Materialkosten und geringem Gewicht.
  • Der Rohrboden 2010 in Fig. 21 weist zwischen den Rohraufnahmeaussparungen 2020 mit den Rohranschlagskanten 2030 für eine Materialeinsparung als Durchbrüche 2040 ausgebildete Aussparungen auf. Aus dem gleichen Grund sind bei dem Rohrboden 2110 in Fig. 22 als seitliche Einkerbungen 2120 ausgebildete Aussparungen vorgesehen. Der Rohrboden 2210 in Fig. 23 und Fig. 24 ist zwischen den Rohraufnahmeaussparungen 2220 gänzlich durchtrennt. In diesem Fall werden die Rohre 2230 unter Umständen nur durch die Wellrippen 2240 stabilisiert.
  • Fig. 25 zeigt ein weiteres Beispiel für ein Verschaltungsmuster von Strömungspfadabschnitten eines Wärmeübertragers 2310, bewerkstelligt durch eine Konfiguration von Durchleit- und Umlenkkanälen 2320, 2330 einer Umlenkplatte 2340. Hier sind die Strömungspfadabschnitte in der Reihenfolge 1 (abwärts) - 2 (aufwärts) - 3 (abwärts) - 4 (aufwärts) - 5 (abwärts) - 6 (aufwärts) miteinander verschaltet. Es ist möglich, für jeden Strömungspfadabschnitt ein Rohr vorzusehen. Bevorzugt jedoch beinhaltet ein Rohr zwei oder mehrere Strömungspfadabschnitte, beispielsweise die Strömungspfadabschnitte 1, 4 und 5 beziehungsweise die Strömungspfadabschnitte 2, 3 und 6. Bei diesem Ausführungsbeispiel eignen sich Flachrohre besonders gut zu diesem Zweck. Über die gezeigten sind auch noch beliebige weitere Verschaltungsmuster von Strömungspfadabschnitten denkbar.
  • Die vorliegende Erfindung wurde teilweise am Beispiel eines Verdampfers beschrieben. Es wird jedoch darauf hingewiesen, daß der erfindungsgemäße Wärmeübertrager auch für andere Verwendungen geeignet ist.

Claims (11)

  1. Wärmeübertrager, insbesondere für ein Kraftfahrzeug, mit Rohren, die von einem ersten Medium in Wärmeübertragungskanälen durchströmbar und von einem zweiten Medium umströmbar sind, wobei das erste Medium entlang eines oder mehrerer Strömungspfade leitbar ist und mit zumindest einem Endstück, das einen aus aneinanderliegenden Platten bestehenden Rohrboden umfasst, wobei die aneinanderliegenden Platten aus einer Bodenplatte (50), einer an der Bodenplatte anliegenden Umlenkplatte (51) und einer an der Umlenkplatte anliegenden Abdeckplatte (52) bestehen, wobei Enden der Rohre mit der Bodenplatte des Rohrbodens verbindbar sind, und wobei zumindest ein Durchleit- und/oder Umlenkkanal (61) durch eine Aussparung in der Umlenkplatte (51) des Rohrbodens gebildet wird und mit der Abdeckplatte gegenüber einer Umgebung des Wärmeübertragers fluiddicht verschließbar ist, wobei die Umlenkplatte (51) mit der Bodenplatte (50) und mit der Abdeckplatte (52) einstückig ausgebildet ist, wobei ein Rohr einfach oder mehrfach in etwa U-förmig umgeformt ist und die Enden des zumindest einen umgeformten Rohres mit derselben Bodenplatte (50) verbindbar sind, dadurch gekennzeichnet, dass die Bodenplatte (50), die Umlenkplatte (51) und/oder die Abdeckplatte (52) in Bereichen zwischen Durchleit- und/oder Umlenkkanälen durchtrennt sind und/oder Aussparungen in Form von Durchbrüchen (2040) oder Einkerbungen (2120) aufweisen, wobei die Bodenplatte (50), die Umlenkplatte (51) und/oder die Abdeckplatte (52) an einem Rand zumindest eines Durchbruchs einen Fortsatz aufweist, der in einen Durchbruch einer benachbarten Platte eingreift.
  2. Wärmeübertrager nach Anspruch 1, dadurch gekennzeichnet, dass der Wärmeübertrager genau ein Endstück mit einem aus aneinanderliegenden Platten bestehenden Rohrboden aufweist.
  3. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rohre mit der Bodenplatte (50) verlötet oder verschweißt sind.
  4. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Rohre als Flachrohre (42 - 45) ausgebildet sind, insbesondere mit dazwischenliegenden Wellrippen (49).
  5. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Strömungspfade aus mehreren Abschnitten bestehen, wobei ein Umlenkkanal (61), der durch eine Aussparung in der Umlenkplatte (51) gebildet wird, die Wärmeübertragungskanäle zweier Strömungspfadabschnitte, die nacheinander von dem ersten Medium durchströmbar sind, miteinander verbindet, insbesondere nach vorgegebenen Kriterien.
  6. Wärmeübertrager nach Anspruch 5, dadurch gekennzeichnet, dass die zwei miteinander verbundenen Strömungspfadabschnitte in Hauptströmungsrichtung des zweiten Mediums nebeneinander angeordnet sind.
  7. Wärmeübertrager nach Anspruch 5, dadurch gekennzeichnet, dass die zwei miteinander verbundenen Strömungspfadabschnitte in Hauptströmungsrichtung des zweiten Mediums miteinander fluchten.
  8. Wärmeübertrager nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass die zwei miteinander verbundenen Strömungspfadabschnitte in einem einzigen Rohr angeordnet sind.
  9. Wärmeübertrager nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass Umlenkkanäle (530, 540) zumindest zweier Strömungspfade (550, 560) miteinander kommunizieren.
  10. Wärmeübertrager nach einem der Ansprüche 5 bis 9, dadurch gekennzeichnet, dass sich ein Strömungsquerschnitt eines Strömungspfads von einem Abschnitt zu einem hydraulisch nachfolgenden Abschnitt ändert.
  11. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Rohr an einem Rohrende (42a, 45a) eine Aussparung (58) und der Rohrboden eine Rohraufnahme mit einem Steg (56a - 56c) aufweist, wobei die Aussparung und der Steg eine gleiche Breite und insbesondere eine gleiche Höhe aufweisen.
EP08018381.7A 2001-12-21 2002-12-19 Wärmeübertrager, insbesondere für ein Kraftfahrzeug Expired - Lifetime EP2026028B1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10163202 2001-12-21
DE10234118 2002-07-26
DE10240556 2002-08-29
EP02798351A EP1459027B1 (de) 2001-12-21 2002-12-19 Wärmeübertrager, insbesondere für ein kraftfahrzeug
PCT/EP2002/014581 WO2003054466A1 (de) 2001-12-21 2002-12-19 Wärmeübertrager, insbesondere für ein kraftfahrzeug

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP02798351.9 Division 2002-12-19
EP02798351A Division EP1459027B1 (de) 2001-12-21 2002-12-19 Wärmeübertrager, insbesondere für ein kraftfahrzeug

Publications (3)

Publication Number Publication Date
EP2026028A2 EP2026028A2 (de) 2009-02-18
EP2026028A3 EP2026028A3 (de) 2012-06-20
EP2026028B1 true EP2026028B1 (de) 2018-07-18

Family

ID=27214689

Family Applications (4)

Application Number Title Priority Date Filing Date
EP08018381.7A Expired - Lifetime EP2026028B1 (de) 2001-12-21 2002-12-19 Wärmeübertrager, insbesondere für ein Kraftfahrzeug
EP02798351A Expired - Lifetime EP1459027B1 (de) 2001-12-21 2002-12-19 Wärmeübertrager, insbesondere für ein kraftfahrzeug
EP02795237A Expired - Lifetime EP1459026B1 (de) 2001-12-21 2002-12-19 Wärmeübertrager, insbesondere für ein kraftfahrzeug
EP02793087A Expired - Lifetime EP1459025B1 (de) 2001-12-21 2002-12-19 Vorrichtung zum austausch von wärme

Family Applications After (3)

Application Number Title Priority Date Filing Date
EP02798351A Expired - Lifetime EP1459027B1 (de) 2001-12-21 2002-12-19 Wärmeübertrager, insbesondere für ein kraftfahrzeug
EP02795237A Expired - Lifetime EP1459026B1 (de) 2001-12-21 2002-12-19 Wärmeübertrager, insbesondere für ein kraftfahrzeug
EP02793087A Expired - Lifetime EP1459025B1 (de) 2001-12-21 2002-12-19 Vorrichtung zum austausch von wärme

Country Status (13)

Country Link
US (4) US7481266B2 (de)
EP (4) EP2026028B1 (de)
JP (4) JP4121085B2 (de)
KR (1) KR100925910B1 (de)
CN (2) CN100368752C (de)
AT (3) ATE461407T1 (de)
AU (3) AU2002358769A1 (de)
BR (3) BR0215235A (de)
CA (1) CA2471164C (de)
DE (6) DE50214246D1 (de)
ES (1) ES2316640T3 (de)
MX (1) MXPA04006151A (de)
WO (3) WO2003054465A1 (de)

Families Citing this family (166)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7481266B2 (en) 2001-12-21 2009-01-27 Behr Gmbh & Co. Kg Heat exchanger for a motor vehicle
DE10322406A1 (de) * 2003-05-16 2004-12-02 Api Schmidt-Bretten Gmbh & Co. Kg Platten-Wärmeübertrager
JP4248931B2 (ja) * 2003-05-20 2009-04-02 カルソニックカンセイ株式会社 熱交換器
DE10336625A1 (de) * 2003-08-05 2005-03-10 Behr Gmbh & Co Kg Vorrichtung zum Austausch von Wärme und Verfahren zu deren Herstellung
DE10349150A1 (de) * 2003-10-17 2005-05-19 Behr Gmbh & Co. Kg Wärmeübertrager, insbesondere für Kraftfahrzeuge
FR2863044B1 (fr) * 2003-11-27 2006-01-13 Valeo Climatisation Module pour l'echange de chaleur entre fluides en circulation
DE102004001786A1 (de) * 2004-01-12 2005-08-04 Behr Gmbh & Co. Kg Wärmeübertrager, insbesondere für überkritischen Kältekreislauf
WO2005088225A1 (en) * 2004-03-17 2005-09-22 Showa Denko K.K. Heat exchanger header tank and heat exchanger comprising same
DE102004011608A1 (de) * 2004-03-18 2005-10-13 Obrist Engineering Gmbh Wärmetauscher einer Fahrzeugklimaanlage
JP2005326135A (ja) * 2004-04-12 2005-11-24 Showa Denko Kk 熱交換器
CN100487344C (zh) * 2004-04-12 2009-05-13 昭和电工株式会社 热交换器
DE102004044861A1 (de) * 2004-09-14 2006-03-16 Behr Gmbh & Co. Kg Wärmetauscher für Kraftfahrzeuge
DE102004048767A1 (de) * 2004-10-05 2006-04-06 Behr Gmbh & Co. Kg Verfahren zur Herstellung eines Wärmeübertragers
DE102004056557A1 (de) * 2004-11-23 2006-05-24 Behr Gmbh & Co. Kg Dimensionsoptimierte Vorrichtung zum Austausch von Wärme und Verfahren zur Optimierung der Dimensionen von Vorrichtungen zum Austausch von Wärme
DE102004058499A1 (de) * 2004-12-04 2006-06-14 Modine Manufacturing Co., Racine Wärmeübertrager, insbesondere für Kraftfahrzeuge
JP2006183962A (ja) * 2004-12-28 2006-07-13 Denso Corp 蒸発器
JP2006194522A (ja) * 2005-01-13 2006-07-27 Japan Climate Systems Corp 熱交換器
KR101090225B1 (ko) * 2005-01-27 2011-12-08 한라공조주식회사 열교환기
WO2006094583A1 (de) * 2005-03-07 2006-09-14 Behr Gmbh & Co. Kg Wärmetauscher, insbesondere verdampfer einer kraftfahrzeug-klimaanlage
US7275394B2 (en) * 2005-04-22 2007-10-02 Visteon Global Technologies, Inc. Heat exchanger having a distributer plate
DE102005020499A1 (de) 2005-04-29 2006-11-09 Behr Gmbh & Co. Kg Verdampfer, insbesondere Heckverdampfer für ein Kraftfahrzeug
DE102006025727A1 (de) * 2005-08-04 2007-02-08 Visteon Global Technologies, Inc., Van Buren Township Wärmeübertrager für Fahrzeuge und Verfahren zu seiner Herstellung
DE102005059919A1 (de) * 2005-12-13 2007-06-14 Behr Gmbh & Co. Kg Wärmetauscher, insbesondere Verdampfer
DE102005059920B4 (de) 2005-12-13 2019-07-04 Mahle International Gmbh Wärmetauscher, insbesondere Verdampfer
JP2007198721A (ja) * 2005-12-26 2007-08-09 Denso Corp 熱交換器
DE102006004710A1 (de) * 2006-01-31 2007-08-02 Behr Gmbh & Co. Kg Wärmeübertrageranordnung, insbesondere eines Heckverdampfers in einem Kraftfahrzeug
FR2898405B1 (fr) * 2006-03-07 2008-06-06 Valeo Systemes Thermiques Echangeur de chaleur, en particulier refroidisseur de gaz, comportant deux nappes de tubes reliees
JP4811087B2 (ja) * 2006-03-31 2011-11-09 株式会社デンソー 熱交換器
JP4724594B2 (ja) * 2006-04-28 2011-07-13 昭和電工株式会社 熱交換器
DE102006035951B4 (de) * 2006-07-31 2019-09-05 Mahle International Gmbh Wärmetauscher in Plattenbauweise, insbesondere Verdampfer und Vorrichtung zur Montage eines Sammlers in Plattenbauweise
KR101280618B1 (ko) * 2006-09-04 2013-07-02 한라비스테온공조 주식회사 증발기
DE102006046671A1 (de) * 2006-09-29 2008-04-03 Behr Gmbh & Co. Kg Wärmetauscher in Plattenbauweise, insbesondere Verdampfer für eine Kraftfahrzeug-Klimaanlage
US20080105419A1 (en) * 2006-11-07 2008-05-08 Kwangheon Oh Heat exchanger
US7965508B2 (en) * 2007-03-27 2011-06-21 Denso Corporation Cooling device for electronic component and power converter equipped with the same
CN101675313B (zh) * 2007-04-12 2012-02-15 汽车热技术有限公司 用于汽车的大功率采暖热交换器以及具有大功率采暖热交换器的采暖-空调设备
DE102008023055A1 (de) * 2007-05-22 2008-11-27 Behr Gmbh & Co. Kg Wärmeübertrager
JP5114771B2 (ja) * 2007-05-29 2013-01-09 株式会社ケーヒン・サーマル・テクノロジー 熱交換器
US20100170664A1 (en) * 2007-06-01 2010-07-08 Vaisman Igor B Parallel flow heat exchanger with connectors
KR100941301B1 (ko) * 2007-06-15 2010-02-11 주식회사 경동나비엔 열교환기
JP5046771B2 (ja) * 2007-07-27 2012-10-10 三菱重工業株式会社 冷媒蒸発器
JP4972488B2 (ja) * 2007-08-07 2012-07-11 昭和電工株式会社 熱交換器
FR2921471A1 (fr) * 2007-09-21 2009-03-27 Hades Soc Par Actions Simplifi Boitier repartiteur de fluide caloporteur, pour le couplage d'une pompe a chaleur a une pluralite de circuits de captage et de distribution de chaleur
US9328966B2 (en) * 2007-11-01 2016-05-03 Modine Manufacturing Company Heat exchanger with a baffle reinforcement member
CN101487669B (zh) * 2008-01-17 2012-08-22 开利公司 包括多管式分配器的热交换器
EP2090851A1 (de) * 2008-02-15 2009-08-19 Delphi Technologies, Inc. Wärmetauscher mit Mischkammer
CN202013133U (zh) * 2008-02-22 2011-10-19 利厄伯特公司 热交换器和热交换器系统
EP2108909A1 (de) * 2008-04-07 2009-10-14 Delphi Technologies, Inc. Mit einem Montageblock ausgestatteter Wärmetauscher
DE102008025910A1 (de) 2008-05-29 2009-12-03 Behr Gmbh & Co. Kg Wärmeübertrager
EP2131131A1 (de) 2008-06-06 2009-12-09 Scambia Industrial Developments AG Wärmetauscher
WO2009151282A2 (ko) * 2008-06-10 2009-12-17 한라공조주식회사 Hfo 1234yf 물질 냉매를 사용하는 튜브-핀 타입 증발기를 사용하는 차량용 공조 시스템
FR2933178A1 (fr) * 2008-06-26 2010-01-01 Valeo Systemes Thermiques Echangeur de chaleur et carter pour l'echangeur
US9759495B2 (en) * 2008-06-30 2017-09-12 Lg Chem, Ltd. Battery cell assembly having heat exchanger with serpentine flow path
DE102008047560A1 (de) 2008-09-16 2010-04-15 Behr Gmbh & Co. Kg Verwendung einer Aluminiumlegierung, Herstellung eines Verdampfers unter Verwendung der Aluminiumlegierung und Verdampfer für eine insbesondere mit CO2 betriebene Kraftfahrzeugklimaanlage
JP5408951B2 (ja) * 2008-10-16 2014-02-05 三菱重工業株式会社 冷媒蒸発器およびそれを用いた空調装置
TWI361880B (en) * 2008-11-17 2012-04-11 Heat exchanging module and working fluid distributor thereof and method for manufacturing heat exchange module
DE102008058210A1 (de) 2008-11-19 2010-05-20 Voith Patent Gmbh Wärmetauscher und Verfahren für dessen Herstellung
FR2941522B1 (fr) * 2009-01-27 2012-08-31 Valeo Systemes Thermiques Echangeur de chaleur pour deux fluides, en particulier evaporateur de stockage pour dispositif de climatisation
US8177932B2 (en) * 2009-02-27 2012-05-15 International Mezzo Technologies, Inc. Method for manufacturing a micro tube heat exchanger
JP5904351B2 (ja) * 2009-03-16 2016-04-13 藤本 雅久 吸収冷却器、熱交換器
FR2943775B1 (fr) * 2009-03-24 2012-07-13 Valeo Systemes Thermiques Echangeur de stockage pourvu d'un materiau stockeur et boucle de climatisation ou circuit de refroidissement comprenant un tel echangeur.
US8403030B2 (en) * 2009-04-30 2013-03-26 Lg Chem, Ltd. Cooling manifold
US20100275619A1 (en) * 2009-04-30 2010-11-04 Lg Chem, Ltd. Cooling system for a battery system and a method for cooling the battery system
US8663829B2 (en) 2009-04-30 2014-03-04 Lg Chem, Ltd. Battery systems, battery modules, and method for cooling a battery module
FR2947332B1 (fr) * 2009-06-25 2011-07-22 Valeo Systemes Thermiques Boite collectrice pour echangeur de chaleur ayant une aptitude au brasage amelioree
US8399118B2 (en) * 2009-07-29 2013-03-19 Lg Chem, Ltd. Battery module and method for cooling the battery module
US8399119B2 (en) * 2009-08-28 2013-03-19 Lg Chem, Ltd. Battery module and method for cooling the battery module
DE102009041524A1 (de) * 2009-09-15 2011-03-24 Mahle International Gmbh Plattenwärmetauscher
CN101660870B (zh) * 2009-09-16 2012-07-18 三花丹佛斯(杭州)微通道换热器有限公司 具有改进制冷剂分配性能的换热器
DE102009044119A1 (de) * 2009-09-28 2011-03-31 Contitech Kühner Gmbh & Cie. Kg Innerer Wärmetauscher, insbesondere für Kraftfahrzeugklimaanlagen
DE102009047620C5 (de) * 2009-12-08 2023-01-19 Hanon Systems Wärmeübertrager mit Rohrbündel
JP4715963B1 (ja) * 2010-02-15 2011-07-06 ダイキン工業株式会社 空気調和機用熱交換器
US8203839B2 (en) * 2010-03-10 2012-06-19 Toyota Motor Engineering & Manufacturing North America, Inc. Cooling devices, power modules, and vehicles incorporating the same
CN101799253A (zh) * 2010-03-18 2010-08-11 王子异 一种具有密封盖板结构的热交换器
EP2372289B1 (de) 2010-03-31 2018-11-14 Modine Manufacturing Company Wärmetauscher
DE202010007533U1 (de) * 2010-06-02 2010-08-19 Tfc Cooling Products E.K. Wärmetauscher
US9151540B2 (en) 2010-06-29 2015-10-06 Johnson Controls Technology Company Multichannel heat exchanger tubes with flow path inlet sections
US9267737B2 (en) 2010-06-29 2016-02-23 Johnson Controls Technology Company Multichannel heat exchangers employing flow distribution manifolds
JP4983998B2 (ja) * 2010-09-29 2012-07-25 ダイキン工業株式会社 熱交換器
US8662153B2 (en) 2010-10-04 2014-03-04 Lg Chem, Ltd. Battery cell assembly, heat exchanger, and method for manufacturing the heat exchanger
EP2444770B1 (de) * 2010-10-20 2020-02-12 ABB Schweiz AG Wärmetauscher nach dem Prinzip des pulsierenden Wärmerohrs
JP5413433B2 (ja) * 2010-11-09 2014-02-12 株式会社デンソー 熱交換器
DE102011003649A1 (de) * 2011-02-04 2012-08-09 Behr Gmbh & Co. Kg Wärmeübertrager
CN102095315B (zh) * 2011-03-04 2012-01-25 刘小江 一种蜂窝孔式换热器
JP2012225634A (ja) * 2011-04-04 2012-11-15 Denso Corp 熱交換器
KR101283591B1 (ko) 2011-09-19 2013-07-05 현대자동차주식회사 차량용 열교환기
US9671181B2 (en) * 2011-09-30 2017-06-06 L&M Radiator, Inc. Heat exchanger with improved tank and tube construction
JP5796563B2 (ja) * 2011-11-29 2015-10-21 株式会社デンソー 熱交換器
JP5796564B2 (ja) * 2011-11-30 2015-10-21 株式会社デンソー 熱交換器
US9105950B2 (en) 2012-03-29 2015-08-11 Lg Chem, Ltd. Battery system having an evaporative cooling member with a plate portion and a method for cooling the battery system
US9605914B2 (en) 2012-03-29 2017-03-28 Lg Chem, Ltd. Battery system and method of assembling the battery system
US9379420B2 (en) 2012-03-29 2016-06-28 Lg Chem, Ltd. Battery system and method for cooling the battery system
US8852781B2 (en) 2012-05-19 2014-10-07 Lg Chem, Ltd. Battery cell assembly and method for manufacturing a cooling fin for the battery cell assembly
KR101339250B1 (ko) * 2012-06-11 2013-12-09 현대자동차 주식회사 차량용 열교환기
KR101315359B1 (ko) * 2012-06-27 2013-10-08 주식회사 고산 열교환기
US9306199B2 (en) 2012-08-16 2016-04-05 Lg Chem, Ltd. Battery module and method for assembling the battery module
DE102013106209B4 (de) 2012-09-20 2020-09-10 Hanon Systems Klimatisierungsvorrichtung eines Kraftfahrzeuges mit einer Wärmeübertrageranordnung zur Wärmeaufnahme
US9083066B2 (en) 2012-11-27 2015-07-14 Lg Chem, Ltd. Battery system and method for cooling a battery cell assembly
US8852783B2 (en) 2013-02-13 2014-10-07 Lg Chem, Ltd. Battery cell assembly and method for manufacturing the battery cell assembly
US20140231059A1 (en) * 2013-02-20 2014-08-21 Hamilton Sundstrand Corporation Heat exchanger
DE102013203222A1 (de) 2013-02-27 2014-08-28 Behr Gmbh & Co. Kg Wärmeübertrager
WO2014149389A1 (en) * 2013-03-15 2014-09-25 Carrier Corporation Heat exchanger for air-cooled chiller
EP2984433A1 (de) * 2013-04-10 2016-02-17 Carrier Corporation Falzrohrwärmetauschereinheit mit mehreren banken
US9647292B2 (en) 2013-04-12 2017-05-09 Lg Chem, Ltd. Battery cell assembly and method for manufacturing a cooling fin for the battery cell assembly
EP2998680B1 (de) * 2013-05-15 2018-11-07 Mitsubishi Electric Corporation Laminiertes kopfteil, wärmetauscher und klimaanlage
US10107570B2 (en) * 2013-05-15 2018-10-23 Mitsubishi Electric Corporation Stacking-type header, heat exchanger, and air-conditioning apparatus
US20160116231A1 (en) * 2013-05-15 2016-04-28 Mitsubishi Electric Corporation Stacking-type header, heat exchanger, and air-conditioning apparatus
EP2998678B1 (de) * 2013-05-15 2018-12-26 Mitsubishi Electric Corporation Laminiertes kopfteil, wärmetauscher und klimaanlage
WO2014205799A1 (en) * 2013-06-28 2014-12-31 Ingersoll Rand (China) Industrial Technologies Microchannel heat exchangers
US9184424B2 (en) 2013-07-08 2015-11-10 Lg Chem, Ltd. Battery assembly
CN105580505B (zh) * 2013-09-12 2018-04-03 翰昂系统株式会社 用于冷却电气元件的热交换器
CN105492855B (zh) * 2013-09-26 2017-07-18 三菱电机株式会社 层叠型集管、换热器以及空调装置
EP2857783A1 (de) * 2013-10-04 2015-04-08 ABB Technology AG Wärmeaustauschvorrichtung auf Basis eines pulsierenden Wärmerohrs
US9257732B2 (en) 2013-10-22 2016-02-09 Lg Chem, Ltd. Battery cell assembly
US10054376B2 (en) * 2013-10-29 2018-08-21 Mitsubishi Electric Corporation Heat exchanger and air-conditioning apparatus
US9444124B2 (en) 2014-01-23 2016-09-13 Lg Chem, Ltd. Battery cell assembly and method for coupling a cooling fin to first and second cooling manifolds
EP3112791B1 (de) * 2014-01-27 2018-12-19 Mitsubishi Electric Corporation Laminiertes kopfteil, wärmetauscher und klimaanlagenvorrichtung
DE102014203038A1 (de) * 2014-02-19 2015-08-20 MAHLE Behr GmbH & Co. KG Wärmeübertrager
DE102014204935A1 (de) * 2014-03-17 2015-10-01 Mahle International Gmbh Heizkühlmodul
US10084218B2 (en) 2014-05-09 2018-09-25 Lg Chem, Ltd. Battery pack and method of assembling the battery pack
US10770762B2 (en) 2014-05-09 2020-09-08 Lg Chem, Ltd. Battery module and method of assembling the battery module
US20170131043A1 (en) * 2014-06-27 2017-05-11 Titanx Engine Cooling Holding Ab Heat Exchanger With Reinforced Header Plate
DE102014219210A1 (de) * 2014-09-22 2016-03-24 Mahle International Gmbh Wärmeübertrager
US9484559B2 (en) 2014-10-10 2016-11-01 Lg Chem, Ltd. Battery cell assembly
US9412980B2 (en) 2014-10-17 2016-08-09 Lg Chem, Ltd. Battery cell assembly
US9786894B2 (en) 2014-11-03 2017-10-10 Lg Chem, Ltd. Battery pack
KR102031021B1 (ko) * 2014-11-04 2019-10-11 미쓰비시덴키 가부시키가이샤 적층형 헤더, 열교환기, 및, 공기 조화 장치
DE102014117256B8 (de) 2014-11-25 2022-01-05 Denso Automotive Deutschland Gmbh Wärmetauscher für eine Klimaanlage eines Fahrzeugs
US9627724B2 (en) 2014-12-04 2017-04-18 Lg Chem, Ltd. Battery pack having a cooling plate assembly
JP2016153718A (ja) * 2015-02-12 2016-08-25 カルソニックカンセイ株式会社 熱交換器、熱交換器の組み立て装置、及び熱交換器の組み立て方法
WO2016178278A1 (ja) * 2015-05-01 2016-11-10 三菱電機株式会社 積層型ヘッダ、熱交換器、及び、空気調和装置
US9816766B2 (en) * 2015-05-06 2017-11-14 Hamilton Sundstrand Corporation Two piece manifold
US11480398B2 (en) * 2015-05-22 2022-10-25 The Johns Hopkins University Combining complex flow manifold with three dimensional woven lattices as a thermal management unit
US9960465B2 (en) 2015-07-30 2018-05-01 Lg Chem, Ltd. Battery pack
CN106482398A (zh) * 2015-08-28 2017-03-08 杭州三花家电热管理系统有限公司 微通道换热器
US11421947B2 (en) * 2015-09-07 2022-08-23 Mitsubishi Electric Corporation Laminated header, heat exchanger, and air-conditioning apparatus
US9755198B2 (en) 2015-10-07 2017-09-05 Lg Chem, Ltd. Battery cell assembly
US10821509B2 (en) * 2016-01-20 2020-11-03 General Electric Company Additive heat exchanger mixing chambers
US20170211888A1 (en) * 2016-01-21 2017-07-27 Hamilton Sundstrand Corporation Heat exchanger with center manifold and thermal separator
US10267576B2 (en) 2016-01-28 2019-04-23 L & M Radiator, Inc. Heat exchanger with tanks, tubes and retainer
JP6803061B2 (ja) * 2016-09-26 2020-12-23 伸和コントロールズ株式会社 熱交換器
WO2018078746A1 (ja) * 2016-10-26 2018-05-03 三菱電機株式会社 分配器および熱交換器
US10563895B2 (en) * 2016-12-07 2020-02-18 Johnson Controls Technology Company Adjustable inlet header for heat exchanger of an HVAC system
JP6746234B2 (ja) * 2017-01-25 2020-08-26 日立ジョンソンコントロールズ空調株式会社 熱交換器、及び、空気調和機
WO2018179311A1 (ja) * 2017-03-31 2018-10-04 三菱電機株式会社 熱交換器およびそれを備えた冷凍サイクル装置
JP6717256B2 (ja) 2017-05-10 2020-07-01 株式会社デンソー 冷媒蒸発器およびその製造方法
US11435149B2 (en) * 2017-07-31 2022-09-06 Gd Midea Heating & Ventilating Equipment Co., Ltd. Heat exchanger and household appliance
DE102017218818A1 (de) * 2017-10-20 2019-04-25 Mahle International Gmbh Wärmeübertrager
WO2019211893A1 (ja) * 2018-05-01 2019-11-07 三菱電機株式会社 熱交換器及び冷凍サイクル装置
CN110530065A (zh) * 2018-05-25 2019-12-03 三花控股集团有限公司 换热器
CN110530180A (zh) * 2018-05-25 2019-12-03 三花控股集团有限公司 换热器
WO2019223797A1 (zh) 2018-05-25 2019-11-28 杭州三花研究院有限公司 集管箱及换热器
CN109316769B (zh) * 2018-10-15 2023-06-16 李强 降膜蒸发器的布膜组件
CN109405573B (zh) * 2018-10-15 2024-01-12 李小强 换热装置
CN115111939A (zh) * 2018-10-29 2022-09-27 三菱电机株式会社 热交换器、室外机以及制冷循环装置
JP7044991B2 (ja) * 2018-11-07 2022-03-31 ダイキン工業株式会社 熱交換器および空気調和機
CN109520355A (zh) * 2018-12-21 2019-03-26 广东美的白色家电技术创新中心有限公司 换热装置及制冷设备
CN110118505A (zh) * 2019-06-19 2019-08-13 浙江银轮机械股份有限公司 集流管组件及热交换器
CN112186213B (zh) * 2019-07-02 2022-07-15 钦瑞工业股份有限公司 燃料电池堆的流道板改良结构
DE202019103964U1 (de) * 2019-07-18 2020-10-21 Akg Verwaltungsgesellschaft Mbh Wärmeaustauscher
JP6923051B2 (ja) * 2019-08-07 2021-08-18 ダイキン工業株式会社 熱交換器およびヒートポンプ装置
JP6939869B2 (ja) * 2019-11-14 2021-09-22 ダイキン工業株式会社 熱交換器
US20230032094A1 (en) * 2019-12-12 2023-02-02 Zhejiang Sanhua Automotive Components Co., Ltd. Heat exchanger and assembly method therefor
CN112432522B (zh) * 2020-03-31 2022-09-06 杭州三花研究院有限公司 换热器
EP3907459A1 (de) * 2020-05-04 2021-11-10 Valeo Autosystemy SP. Z.O.O. Wärmetauscher
CN117321373A (zh) * 2021-05-18 2023-12-29 东芝开利株式会社 热交换器以及制冷循环装置
US20230392837A1 (en) * 2022-06-03 2023-12-07 Trane International Inc. Evaporator charge management and method for controlling the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69219107T2 (de) * 1992-03-31 1997-08-07 Modine Mfg Co Verdampfer

Family Cites Families (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1817948A (en) * 1929-11-16 1931-08-11 Carrier Construction Company I Heat exchange device
US2332336A (en) * 1941-01-16 1943-10-19 Gen Electric Elastic fluid condenser
US2950092A (en) * 1957-11-01 1960-08-23 Carrier Corp Heat exchange construction
GB991914A (en) * 1962-10-24 1965-05-12 Foster Wheeler Ltd Tube connecting members
US3416600A (en) * 1967-01-23 1968-12-17 Whirlpool Co Heat exchanger having twisted multiple passage tubes
US3703925A (en) * 1971-03-11 1972-11-28 Stewart Warner Corp Heat exchanger core
JPS5264733A (en) * 1975-11-21 1977-05-28 Hitachi Ltd Evaporator
DE3136374C2 (de) 1981-09-14 1985-05-09 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co KG, 7000 Stuttgart Kältemittelverdampfer, insbesondere für Klimaanlagen in Kraftfahrzeugen
US4502297A (en) * 1981-12-18 1985-03-05 Sueddeutsche Kuehlerfabrik Julius Fr. Behr Gmbh & Co., Kg Evaporator particularly suitable for air conditioners in automotive vehicles
DE3311579C2 (de) 1983-03-30 1985-10-03 Süddeutsche Kühlerfabrik Julius Fr. Behr GmbH & Co. KG, 7000 Stuttgart Wärmetauscher
JPS6124953A (ja) * 1984-07-12 1986-02-03 株式会社デンソー 蒸発器
JPH0613957B2 (ja) 1985-12-04 1994-02-23 松下冷機株式会社 熱交換器
JPS62153685A (ja) 1985-12-24 1987-07-08 Showa Alum Corp 熱交換器
US4936379A (en) * 1986-07-29 1990-06-26 Showa Aluminum Kabushiki Kaisha Condenser for use in a car cooling system
JPS63134267A (ja) 1986-11-27 1988-06-06 Alps Electric Co Ltd プリンタ
JPS63134267U (de) * 1987-02-26 1988-09-02
EP0328414A3 (de) * 1988-02-12 1989-09-27 Acr Heat Transfer Manufacturing Limited Wärmeaustauscher
DE3813339C2 (de) * 1988-04-21 1997-07-24 Gea Happel Klimatechnik Wärmetauscher für Kraftfahrzeuge und Verfahren zu seiner Herstellung
JPH01296087A (ja) * 1988-05-19 1989-11-29 Nippon Denso Co Ltd 熱交換用チューブ
JP2576197B2 (ja) * 1988-06-29 1997-01-29 日本電装株式会社 熱交換器
JPH0258665U (de) * 1988-10-18 1990-04-26
US5060563A (en) * 1989-05-22 1991-10-29 Rex Plant Apparatus for producing a vegetable product
US5036909A (en) * 1989-06-22 1991-08-06 General Motors Corporation Multiple serpentine tube heat exchanger
JPH0387169U (de) * 1989-12-22 1991-09-04
JP2997816B2 (ja) 1990-07-09 2000-01-11 昭和アルミニウム株式会社 コンデンサ
US5174373A (en) * 1990-07-13 1992-12-29 Sanden Corporation Heat exchanger
JP2997817B2 (ja) 1990-07-23 2000-01-11 昭和アルミニウム株式会社 熱交換器
US5314013A (en) * 1991-03-15 1994-05-24 Sanden Corporation Heat exchanger
US5241839A (en) * 1991-04-24 1993-09-07 Modine Manufacturing Company Evaporator for a refrigerant
JP2864173B2 (ja) 1991-05-30 1999-03-03 株式会社ゼクセル 熱交換器
JPH0526592A (ja) 1991-07-19 1993-02-02 Matsushita Refrig Co Ltd 冷媒分流器とその製造方法
JPH0566073A (ja) * 1991-09-05 1993-03-19 Sanden Corp 積層型熱交換器
US5242016A (en) 1992-04-02 1993-09-07 Nartron Corporation Laminated plate header for a refrigeration system and method for making the same
US5172761A (en) * 1992-05-15 1992-12-22 General Motors Corporation Heat exchanger tank and header
JPH05346297A (ja) * 1992-06-15 1993-12-27 Nippon Light Metal Co Ltd 熱交換器
JP2979926B2 (ja) * 1993-10-18 1999-11-22 株式会社日立製作所 空気調和機
JP3305460B2 (ja) * 1993-11-24 2002-07-22 昭和電工株式会社 熱交換器
EP0656517B1 (de) * 1993-12-03 1999-02-10 Valeo Klimatechnik GmbH & Co. KG Wasser/Luft-Wärmetauscher aus Aluminium für Kraftfahrzeuge
DE9400687U1 (de) * 1994-01-17 1995-05-18 Thermal Waerme Kaelte Klima Verdampfer für Klimaanlagen in Kraftfahrzeugen mit Mehrkammerflachrohren
JPH07305990A (ja) * 1994-05-16 1995-11-21 Sanden Corp 多管式熱交換器
US5622219A (en) 1994-10-24 1997-04-22 Modine Manufacturing Company High efficiency, small volume evaporator for a refrigerant
JP3367235B2 (ja) * 1994-11-11 2003-01-14 株式会社デンソー 車両用空調装置の冷凍サイクル
JPH08254399A (ja) * 1995-01-19 1996-10-01 Zexel Corp 熱交換器
DE19515526C1 (de) * 1995-04-27 1996-05-23 Thermal Werke Beteiligungen Gm Flachrohrwärmetauscher mit mindestens zwei Fluten für Kraftfahrzeuge
DE19519740B4 (de) * 1995-06-02 2005-04-21 Mann + Hummel Gmbh Wärmetauscher
US7234511B1 (en) * 1995-06-13 2007-06-26 Philip George Lesage Modular heat exchanger having a brazed core and method for forming
FR2738905B1 (fr) 1995-09-20 1997-12-05 Valeo Climatisation Tube d'echangeur de chaleur a canaux de circulation a contre-courant
JPH09189498A (ja) 1996-01-09 1997-07-22 Nippon Light Metal Co Ltd 熱媒体分流促進機構付ヘッダ及びその成形方法
EP0845648B1 (de) 1996-11-27 2002-01-30 Behr GmbH & Co. Flachrohr-Wärmeübertrager, insbesondere Kondensator vom Serpentinentyp
JPH10185463A (ja) 1996-12-19 1998-07-14 Sanden Corp 熱交換器
DE19719256B4 (de) * 1997-05-07 2005-08-18 Valeo Klimatechnik Gmbh & Co. Kg Mehr als zweiflutiger Flachrohrwärmetauscher für Kraftfahrzeuge mit Umlenkboden sowie Herstelungsverfahren
DE19719261C2 (de) 1997-05-07 2001-06-07 Valeo Klimatech Gmbh & Co Kg Zweiflutiger Flachrohrverdampfer einer Kraftfahrzeugklimaanlage
DE19729497A1 (de) * 1997-07-10 1999-01-14 Behr Gmbh & Co Flachrohr-Wärmeübertrager
DE69815616T2 (de) * 1997-09-24 2004-05-13 Showa Denko K.K. Verdampfer
US5941303A (en) * 1997-11-04 1999-08-24 Thermal Components Extruded manifold with multiple passages and cross-counterflow heat exchanger incorporating same
JPH11287587A (ja) * 1998-04-03 1999-10-19 Denso Corp 冷媒蒸発器
DE19819247A1 (de) * 1998-04-29 1999-11-11 Valeo Klimatech Gmbh & Co Kg Wärmetauscher für Kraftfahrzeuge, insbesondere Wasser/Luft-Wärmetauscher oder Verdampfer
DE19825561A1 (de) * 1998-06-08 1999-12-09 Valeo Klimatech Gmbh & Co Kg Wärmetauscher mit verrippten Flachrohren, insbesondere Heizungswärmetauscher, Motorkühler, Verflüssiger oder Verdampfer, für Kraftfahrzeuge
DE19826881B4 (de) 1998-06-17 2008-01-03 Behr Gmbh & Co. Kg Wärmeübertrager, insbesondere Verdampfer
DE19830863A1 (de) * 1998-07-10 2000-01-13 Behr Gmbh & Co Flachrohr mit Querversatz-Umkehrbogenabschnitt und damit aufgebauter Wärmeübertrager
DE19833845A1 (de) * 1998-07-28 2000-02-03 Behr Gmbh & Co Wärmeübertrager-Rohrblock und dafür verwendbares Mehrkammer-Flachrohr
JP2000304472A (ja) * 1999-04-23 2000-11-02 Calsonic Kansei Corp 冷凍サイクル用熱交換器
FR2793016B1 (fr) 1999-04-30 2001-09-07 Valeo Climatisation Boite collectrice allongee pour echangeur de chaleur resistant aux fortes pressions internes
US6449979B1 (en) 1999-07-02 2002-09-17 Denso Corporation Refrigerant evaporator with refrigerant distribution
JP2001027484A (ja) 1999-07-15 2001-01-30 Zexel Valeo Climate Control Corp サーペンタイン型熱交換器
DE19933913C2 (de) 1999-07-20 2003-07-17 Valeo Klimatechnik Gmbh Verdampfer einer Kraftfahrzeugklimaanlage
JP2001059694A (ja) * 1999-08-20 2001-03-06 Zexel Valeo Climate Control Corp 熱交換器
US6185957B1 (en) 1999-09-07 2001-02-13 Modine Manufacturing Company Combined evaporator/accumulator/suctionline heat exchanger
FR2803378B1 (fr) * 1999-12-29 2004-03-19 Valeo Climatisation Echangeur de chaleur a tubes a plusieurs canaux, en particulier pour vehicule automobile
JP2001194087A (ja) 2000-01-13 2001-07-17 Zexel Valeo Climate Control Corp 熱交換器
JP2001248995A (ja) * 2000-03-03 2001-09-14 Zexel Valeo Climate Control Corp 熱交換器
JP2001330391A (ja) 2000-05-19 2001-11-30 Zexel Valeo Climate Control Corp 熱交換器
EP1167911B1 (de) 2000-06-26 2013-12-25 Keihin Thermal Technology Corporation Verdampfer
JP4686062B2 (ja) 2000-06-26 2011-05-18 昭和電工株式会社 エバポレータ
DE10049256A1 (de) * 2000-10-05 2002-04-11 Behr Gmbh & Co Serpentinen-Wärmeübertrager
DE10056074B4 (de) 2000-11-07 2017-03-23 Mahle International Gmbh Wärmeübertrager
JP3647375B2 (ja) 2001-01-09 2005-05-11 日産自動車株式会社 熱交換器
DE10105202A1 (de) * 2001-01-31 2002-08-01 Behr Gmbh & Co Wärmeübertrager-Rohrblock mit mehreren geschlitzten Sammelrohren
DE10123247B4 (de) 2001-05-12 2006-02-09 Hubert Herrmann Schutzhelm
TW552382B (en) * 2001-06-18 2003-09-11 Showa Dendo Kk Evaporator, manufacturing method of the same, header for evaporator and refrigeration system
EP1300644A3 (de) * 2001-10-02 2003-05-14 Behr GmbH & Co. KG Wärmeübertrager und Verfahren zu seiner Herstellung
EP1300645A3 (de) * 2001-10-02 2008-09-03 Behr GmbH & Co. KG Verfahren zur Herstellung einer Flachrohranschlussstruktur für einen Wärmeübertrager
EP1321734A1 (de) * 2001-10-02 2003-06-25 Behr GmbH & Co. KG Flachrohr-Wärmeübertrager sowie Herstellungsverfahren hierfür
US7481266B2 (en) 2001-12-21 2009-01-27 Behr Gmbh & Co. Kg Heat exchanger for a motor vehicle
JP3960233B2 (ja) * 2002-04-03 2007-08-15 株式会社デンソー 熱交換器
DE102005044291A1 (de) * 2005-09-16 2007-03-29 Behr Industry Gmbh & Co. Kg Stapelscheiben-Wärmeübertrager, insbesondere Ladeluftkühler
KR100645734B1 (ko) * 2005-12-14 2006-11-15 주식회사 경동나비엔 난방/온수 겸용 콘덴싱 보일러의 열교환기
JP5351386B2 (ja) * 2006-05-17 2013-11-27 カルソニックカンセイ株式会社 熱交換器の配管コネクタ
US8371366B2 (en) * 2006-10-03 2013-02-12 Showa Denko K.K. Heat exchanger
ES2387134T3 (es) * 2006-10-13 2012-09-14 Carrier Corporation Intercambiadores de calor multipasos que tienen colectores de retorno con insertos de distribución
US8191615B2 (en) * 2006-11-24 2012-06-05 Dana Canada Corporation Linked heat exchangers having three fluids
DE102007024630A1 (de) * 2007-05-24 2008-11-27 Behr Gmbh & Co. Kg Wärmetauscher, insbesondere Ladeluftkühler oder Abgaskühler für eine Brennkraftmaschine eines Kraftfahrzeuges und dessen Herstellungsverfahren
JP5114771B2 (ja) * 2007-05-29 2013-01-09 株式会社ケーヒン・サーマル・テクノロジー 熱交換器
DE602007008714D1 (de) * 2007-07-11 2010-10-07 Joao De Deus & Filhos S A Wärmetauscheranordnung
EP2175222B1 (de) * 2007-07-23 2013-08-21 Tokyo Roki Co. Ltd. Stapelwärmetauscher
JP5046771B2 (ja) * 2007-07-27 2012-10-10 三菱重工業株式会社 冷媒蒸発器
GB0715979D0 (en) * 2007-08-15 2007-09-26 Rolls Royce Plc Heat exchanger
US8353330B2 (en) * 2007-11-02 2013-01-15 Halla Climate Control Corp. Heat exchanger
US8210246B2 (en) * 2008-03-11 2012-07-03 Delphi Technologies, Inc. High performance three-fluid vehicle heater
US8322407B2 (en) * 2008-04-29 2012-12-04 Honda Motor Co., Ltd. Heat exchanger with pressure reduction
JP4645681B2 (ja) * 2008-05-19 2011-03-09 株式会社デンソー 蒸発器ユニット
JP5142109B2 (ja) * 2008-09-29 2013-02-13 株式会社ケーヒン・サーマル・テクノロジー エバポレータ
US8408284B2 (en) * 2011-05-05 2013-04-02 Delphi Technologies, Inc. Heat exchanger assembly

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69219107T2 (de) * 1992-03-31 1997-08-07 Modine Mfg Co Verdampfer

Also Published As

Publication number Publication date
WO2003054466A1 (de) 2003-07-03
JP2005513401A (ja) 2005-05-12
KR20040063952A (ko) 2004-07-14
JP4473321B2 (ja) 2010-06-02
ATE412863T1 (de) 2008-11-15
US7481266B2 (en) 2009-01-27
JP4331611B2 (ja) 2009-09-16
BR0215235A (pt) 2004-11-16
CN100342196C (zh) 2007-10-10
AU2002363887A1 (en) 2003-07-09
US20050039901A1 (en) 2005-02-24
US7650935B2 (en) 2010-01-26
CA2471164A1 (en) 2003-07-03
WO2003054465A1 (de) 2003-07-03
DE10260107A1 (de) 2003-10-02
US20050103486A1 (en) 2005-05-19
WO2003054467A1 (de) 2003-07-03
ATE458975T1 (de) 2010-03-15
DE50214246D1 (de) 2010-04-08
DE50214296D1 (de) 2010-04-29
DE50212972D1 (de) 2008-12-11
JP2005513402A (ja) 2005-05-12
EP1459026B1 (de) 2010-02-24
EP2026028A2 (de) 2009-02-18
EP1459025B1 (de) 2010-03-17
EP1459027A1 (de) 2004-09-22
US7318470B2 (en) 2008-01-15
CN1620589A (zh) 2005-05-25
ATE461407T1 (de) 2010-04-15
DE10260030A1 (de) 2003-07-03
CA2471164C (en) 2009-10-06
DE10260029A1 (de) 2004-02-05
EP1459026A1 (de) 2004-09-22
AU2002358769A1 (en) 2003-07-09
US8590607B2 (en) 2013-11-26
EP2026028A3 (de) 2012-06-20
US20090126920A1 (en) 2009-05-21
ES2316640T3 (es) 2009-04-16
BRPI0215085A2 (pt) 2016-06-28
AU2002360056A1 (en) 2003-07-09
KR100925910B1 (ko) 2009-11-09
JP2005513403A (ja) 2005-05-12
BR0215231A (pt) 2004-11-16
US20050006073A1 (en) 2005-01-13
CN100368752C (zh) 2008-02-13
MXPA04006151A (es) 2004-11-01
EP1459025A1 (de) 2004-09-22
EP1459027B1 (de) 2008-10-29
CN1620590A (zh) 2005-05-25
JP2008180503A (ja) 2008-08-07
JP4121085B2 (ja) 2008-07-16

Similar Documents

Publication Publication Date Title
EP2026028B1 (de) Wärmeübertrager, insbesondere für ein Kraftfahrzeug
EP1042641B1 (de) Wärmeübertragender rohrblock und dafür verwendbares mehrkammer-flachrohr
EP2232183B1 (de) Wärmeübertrager, insbesondere heizkörper für kraftfahrzeuge
EP0845647B1 (de) Flachrohr-Wärmeübertrager mit tordiertem Flachrohrendabschnitt
DE69911131T2 (de) Wärmetauscher
EP1036296A1 (de) Flachrohr mit querversatz-umkehrbogenabschnitt und damit aufgebauter wärmeübertrager
EP1798506B1 (de) Verdampfer
DE102009034352A1 (de) Wärmetauscher
DE10314782A1 (de) Wärmetauscher für den Wärmeaustausch zwischen einem inneren und einem äußeren Fluid und Verfahren zur Herstellung desselben
DE10049256A1 (de) Serpentinen-Wärmeübertrager
DE10349150A1 (de) Wärmeübertrager, insbesondere für Kraftfahrzeuge
EP1411310B1 (de) Wärmeübertrager in Serpentinenbauweise
EP0912869A1 (de) Mehr als zweiflutiger flachrohrwärmetauscher für kraftfahrzeuge mit umlenkboden sowie herstellungsverfahren
DE10150213A1 (de) Stranggepreßtes Profil, insbesondere für Wärmetauscher
EP1597529B1 (de) Flachrohr mit umkehrbogenabschnitt und damit aufgebauter w r me bertrager
DE102005059920B4 (de) Wärmetauscher, insbesondere Verdampfer
EP1588115B1 (de) Wärmeübertrager, insbesondere gaskühler
EP0845648B1 (de) Flachrohr-Wärmeübertrager, insbesondere Kondensator vom Serpentinentyp
EP1717530B1 (de) Wärmeübertrager, insbesondere Heckverdampfer für ein Kraftfahrzeug
DE102008025910A1 (de) Wärmeübertrager
EP1934545B1 (de) Heizkörper, kühlkreislauf, klimagerät für eine kraftfahrzeug-klimaanlage sowie klimaanlage für ein kraftfahrzeug
EP1843115A2 (de) Rohr/Rippenblock-Wärmeübertrager mit umgelenkter Strömung
EP1552238B1 (de) Wärmeübertrager, insbesondere verdampfer
DE10146824A1 (de) Wärmeübertrager-Flachrohrblock mit umgeformten Flachrohrenden
DE102006004983A1 (de) Wärmetauscher, insbesondere Verdampfer einer Kraftfahrzeug-Klimaanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1459027

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RIC1 Information provided on ipc code assigned before grant

Ipc: F28F 1/02 20060101ALI20120515BHEP

Ipc: F28D 1/053 20060101AFI20120515BHEP

Ipc: F28D 1/047 20060101ALI20120515BHEP

Ipc: F28F 9/02 20060101ALI20120515BHEP

17P Request for examination filed

Effective date: 20121220

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAHLE BEHR GMBH & CO. KG

17Q First examination report despatched

Effective date: 20160229

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180208

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

GRAR Information related to intention to grant a patent recorded

Free format text: ORIGINAL CODE: EPIDOSNIGR71

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTC Intention to grant announced (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: KOTSCH, MARTIN, DIPL.-ING.

Inventor name: STAFFA, KARL-HEINZ, DIPL.-ING.

Inventor name: WALTER, CHRISTOPH, DIPL.-ING.

Inventor name: DEMUTH, WALTER, DIPL.-ING.

Inventor name: KRAUSS, HANS-JOACHIM, DIPL.-ING.

Inventor name: MITTELSTRASS, HAGEN, DIPL.-ING.

AC Divisional application: reference to earlier application

Ref document number: 1459027

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

INTG Intention to grant announced

Effective date: 20180608

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1019829

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50216296

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181018

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181221

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50216296

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190109

Year of fee payment: 17

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

26N No opposition filed

Effective date: 20190423

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181219

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181219

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1019829

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50216296

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701