EP0845647B1 - Flachrohr-Wärmeübertrager mit tordiertem Flachrohrendabschnitt - Google Patents

Flachrohr-Wärmeübertrager mit tordiertem Flachrohrendabschnitt Download PDF

Info

Publication number
EP0845647B1
EP0845647B1 EP97120669A EP97120669A EP0845647B1 EP 0845647 B1 EP0845647 B1 EP 0845647B1 EP 97120669 A EP97120669 A EP 97120669A EP 97120669 A EP97120669 A EP 97120669A EP 0845647 B1 EP0845647 B1 EP 0845647B1
Authority
EP
European Patent Office
Prior art keywords
flat
heat exchanger
flat tubes
flat tube
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97120669A
Other languages
English (en)
French (fr)
Other versions
EP0845647A1 (de
Inventor
Ulrich Dipl.-Ing. Salzer
Karl-Heinz Dipl.-Ing. Staffa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Priority to EP01130598A priority Critical patent/EP1213556B1/de
Publication of EP0845647A1 publication Critical patent/EP0845647A1/de
Application granted granted Critical
Publication of EP0845647B1 publication Critical patent/EP0845647B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins

Definitions

  • the invention relates to a constructed from flat tubes Heat exchanger in which the flat tubes at least one, in a connection space-forming component, e.g. a distributor and / or a header pipe, reshaped end portion are.
  • a connection space-forming component e.g. a distributor and / or a header pipe
  • Heat exchangers constructed from flat tubes, in which the Flat tubes with an unformed end section parallel in one Connection space-forming component, such as a collector and / or a Distribution pipe, open, are used, for example, as capacitors and evaporators used in vehicle air conditioners.
  • flat tube heat exchanger should be present heat exchangers in disc design are also understood, where rectangular, elongated, hollow discs as "Flat tubes” are used, through the inside of which the refrigerant the air conditioner is passed through.
  • connection space-forming Components So with a larger flat tube width a larger inner diameter is required for this component, so that to realize it a larger wall thickness is required if the bursting strength is the same should stay.
  • pipes as connection space-forming Components also have the difficulty that with increasing flat tube width and thus increasing diameter of the connection space-forming pipes whose dead volume increases. In in any case is the width of the connection space-forming component to choose larger in these conventional heat exchangers than that of the flat tubes.
  • a heat exchanger is disclosed in EP 0 659 500 A1 disclosed, which consists of several, spaced one above the other, U-shaped bent flat tubes is constructed.
  • the two legs of the U-shaped flat tubes are opposite the connection area twisted by 90 °, so that they both lie in a common transverse plane.
  • One free each The end of the flat tubes is on a distribution channel and that in each case other free ends connected to a collecting channel, with distribution and collection duct on the same heat exchanger side are arranged and that introduced via the distribution channel Heat transfer medium U-shaped parallel through the individual flat tubes flows to the collecting duct.
  • US Pat. No. 3,416,600 describes a heat exchanger from Serpentine type disclosed, in which a stack of serpentine curved flat tubes is provided in its end portions are twisted by 90 °. With these twisted end sections the flat tubes are inserted in the associated header tubes, which are introduced on the circumferential side, in the longitudinal direction of the pipe extending and spaced apart Longitudinal slots are provided. In addition, the flat tubes be twisted by 180 ° in a central area.
  • the invention is a technical problem of providing a flat tube heat exchanger of the type mentioned Type based on a comparatively low dead volume in Has connection space, given the wall thickness of the connection space forming Component has a high burst pressure safety, for a given flat tube width with comparatively can be built to a shallow depth and in particular if required can be used as a condenser for air conditioning.
  • the invention solves this problem by providing it a flat tube heat exchanger with the features of the claim 1.
  • the flat tubes are in its end section opening into the connection space-forming component to a smaller one than its subsequent section Cross extension twisted by 90 °. It leaves their passage cross-section also in the formed end section keep essentially constant.
  • the lower transverse extent of the twisted flat tube end section opposite the subsequent flat tube section makes it possible Connection space-forming component, e.g. a manifold, to realize with a construction depth that is little greater than the reduced transverse extent of the flat tube end section needs to be and therefore smaller than the overall depth the flat tubes can be or at least not bigger as the same needs to be.
  • Both end sections can twisted each flat tube in the manner according to the invention be, while the flat tubes in the intermediate section e.g. rectilinear with their larger compared to the end sections Lateral extension can run, which is then the depth the flat tubes and possibly also the entire heat exchanger certainly.
  • Construction depth of the connection space-forming components for a given Flat tube width has the further advantage that the same to achieve a predetermined burst pressure safety with relative Small wall thickness can be made and only a relative have low dead volume.
  • the flow of heat transfer volume for a given heat transfer capacity keep what is comparatively low Requires a reduction in the volume of the heat transfer fluid flowing through compared to conventional flat tube heat exchangers allowed.
  • the flat tube end portions are close to each other in a line in a common longitudinal slot of the terminal space-forming component inserted.
  • This measure has the further advantage that the introduction of a continuous Longitudinal slot in the component forming the connection space in terms of production technology is easier to implement than the introduction of one corresponding number of individual slots.
  • connection space Component When further developed according to claim 2 flat tube heat exchanger are specially one or more partitions in the connection space Component provided that the terminal compartment divide into several parts. This measure can do this be used, the refrigerant passed through the flat tubes with deflection in a respective lateral connection space forming Component sequentially through successive sections of the flat tube stack.
  • heat exchanger are the flat tubes around their longitudinal central axis or around one this parallel longitudinal axis twisted.
  • heat exchanger with corrugated fins inserted between the flat tubes provided to choose the width of the corrugated fins larger than that of the flat tubes.
  • the resulting rib overhang increases the efficiency of the heat-transmitting corrugated fins and protects the flat tubes against external damage.
  • heat exchanger are the flat tubes in a technically advantageous manner manufactured as extruded tubes.
  • heat exchanger is the respective partition axially from one end in inserted the connection space-forming component and has a suitable, with those protruding into the connection space-forming component Flat tube ends in engagement recess.
  • the in Fig. 1 in a partial, schematic side view heat exchanger shown is for example as Condenser can be used in a vehicle air conditioning system. He includes a tube / fin block, which in the usual way from a Stack of spaced apart flat tubes 30 and one introduced into the spaces between the flat tubes 30
  • Corrugated rib structure consists of corrugated ribs 31.
  • the flat tubes 30 are in the conventional manner with a inside or several flow channels through which the refrigerant an air conditioning system can be passed through. ends the flat tubes 30 open into one of a side connecting tube 33, 34, i.e. Distributor or manifold formed Connection compartment, one of which is used as a distribution channel and the other acts as a collection channel.
  • the heat exchanger can be a flow medium through which with the Corrugated fin structure 31 provided spaces between the Flat tubes 30 is passed through, in heat transfer connection with one passed through the flat tubes 30 Fluid are brought.
  • the flat tube distance T1 in the block corresponds to the flat tube width Q minus the flat tube thickness.
  • the flat tube ends 30a twisted at right angles lie on each the two connection sides of the tube / fin block in one Line touching each other, parallel to the longitudinal axis 32 two lateral connecting pipes 33, 34 runs.
  • Each of the two connecting pipes 33, 34 has one on its circumference introduced, continuous longitudinal slot 35, in which the associated, close to each other in a line, twisted flat tube ends 30a are inserted sealed.
  • the flat tubes 30 e.g. when used for a capacitor
  • the refrigerant flows sequentially in groups As shown, it is possible to use one or more Partitions 36 to be provided in one or both connecting pipes 33, 34.
  • the partitions 36 are perpendicular to the longitudinal axis of the connecting pipe 32 and subdivide the connection space of the person concerned Connection pipe 33, 34 in several sub-rooms 37a, 37b.
  • the 1 shows the left connecting pipe 33 shown in section a refrigerant inlet opening into a first compartment 37a 38 so that the refrigerant introduced there, such as indicated by the flow arrows in the in this subspace 37a discharging flat tubes, from there into the right connecting pipe 34 transported, there in a subsequent Group of with a next subspace 37b of the left Connection pipe 33 connected flat tubes deflected and through this is directed into said next subspace 37b.
  • This meandering flow is as often as necessary repeated until the refrigerant is e.g.
  • refrigerant outlet 39 is brought out.
  • the respective partition 36 can be in the transition area between two adjoining, twisted flat tube ends 30a or but, as shown in Fig. 1, within the end region of a Flat tube 30b may be arranged when the flat tubes 30 as Multi-chamber flat tubes are formed.
  • the partition 36 then lies between the walls of two adjacent chambers of the flat tube 30b, at least this flat tube 30b is twisted at the end so that each of its chambers on both End faces in the same direction, i.e. up or down below, curved, so that in a connecting pipe 33rd refrigerants introduced into the upper chambers on the other Connection pipe 34 again from the overhead chambers exit.
  • the Partition 36 has a slot 36a that the twisted end portion 30a of the corresponding flat tube 30 receives sealed.
  • the partition 36 is axially from one end of the Connection pipe 33 used here, whereby by engaging the flat tube ends 30a secured against rotation in their slot 36a is carried out before reaching the Mounting position is sealed, e.g. by sealing soldering.
  • Fig. 3 shows a section of a longitudinal sectional view a tube / fin block as described for the above Heat exchanger can be used. It is characteristic of this Pipe / fin block that the width W of the corrugated fins 40th is chosen larger than the width Q of the multi-chamber tubes realized flat tubes 41. This results in a rib overhang provided that the efficiency of the corrugated fins 40 in terms their heat transfer capacity increases and the Protects flat tubes 41 against external damage.
  • the Ratio Q / W can be 2/3, for example.
  • connection space-forming components are one or more pieces and with curved or flat
  • the flat tube ends receiving the floor can.
  • the required pipe openings can be milled, punched, laser cut or by hydroforming introduced and realized with or without swaths.
  • the Flat tubes, which are also specially designed for heat exchangers can be in slice construction, for example, are in one piece by extrusion or by welding several Pipe parts or by forming and subsequent welding of a blank can be produced.
  • the flat tubes in their area between the twisted end sections also have a curved course. Furthermore understands yourself that, depending on your needs, the flat tubes only on one their two end sections can be twisted and with the other end section then not to a lesser transverse extent transformed into an associated terminal space Open component. Twisting the flat tube end sections can be done in such a way that the passage cross-section the flat tubes are also essentially constant in this area can hold, which is preferred for most applications is.
  • the flat tube end sections can also be twisted off-center, i.e. offset around a parallel to its longitudinal central axis Axis, be twisted.
  • the manifold and manifold can then opposite the intermediate tube / fin block be laterally offset when the flat tubes of this type are arranged sequentially that their eccentric twisted end sections all on one side of the Longitudinal center plane of the tube / fin block. This can be for certain installation situations may be advantageous.
  • the flat tubes advantageously be made as extruded tubes.
  • the pipes in front of your end twisting or bending with a solder and flux plating to provide. This facilitates a sealed one Insert the flat tube ends into the connecting tubes using Tight soldering.

Description

Die Erfindung bezieht sich auf einen aus Flachrohren aufgebauten Wärmeübertrager, bei dem die Flachrohre an wenigstens einem, in ein anschlußraumbildendes Bauteil, z.B. ein Verteiler- und/oder ein Sammelrohr, mündenden Endabschnitt umgeformt sind.
Aus Flachrohren aufgebaute Wärmeübertrager, bei denen die Flachrohre mit nicht umgeformtem Endabschnitt parallel in ein anschlußraumbildendes Bauteil, wie ein Sammel- und/oder ein Verteilerrohr, münden, werden beispielsweise als Kondensatoren und Verdampfer in Fahrzeugklimaanlagen verwendet. Unter der Bezeichnung Flachrohr-Wärmeübertrager sollen vorliegend auch Wärmeübertrager in Scheibenbauweise verstanden werden, bei denen rechteckförmige, langgestreckte, hohle Scheiben als "Flachrohre" verwendet werden, durch deren Inneres das Kältemittel der Klimaanlage hindurchgeführt wird. Bei diesen herkömmlichen Wärmeübertragern mit über ihre gesamte Länge geradlinig verlaufenden Flachrohren ist der Innendurchmesser des den Anschlußraum bildenden Bauteils durch die Breite der Flachrohre bestimmt. Mit größerer Flachrohrbreite ist somit ein größerer Innendurchmesser für dieses Bauteil erforderlich, so dass zu dessen Realisierung eine größere Wandstärke benötigt wird, wenn die Berstdruckfestigkeit gleich groß bleiben soll. Bei Verwendung von Rohren als anschlußraumbildende Bauteile tritt zudem die Schwierigkeit auf, daß mit wachsender Flachrohrbreite und damit wachsendem Durchmesser der anschlußraumbildenden Rohre deren Totvolumen ansteigt. In jedem Fall ist die Breite des anschlußraumbildenden Bauteils bei diesen herkömmlichen Wärmeübertragern größer zu wählen als diejenige der Flachrohre.
In der Patentschrift EP 0 565 813 B1 ist ein Wärmeübertrager beschrieben, der aus einer Mehrzahl von Rohren mit vorzugsweise ovalem Querschnitt aufgebaut ist, die endseitig in dreieckförmige Öffnungen einer Bodenplatte eines Sammelkastens eingesetzt und zu diesem Zweck an ihrem Rohrendabschnitt in eine Dreieckform umgeformt sind. Nach Einsetzen der dreieckförmigen Rohrendabschnitte in die dreieckförmigen Öffnungen der Bodenplatte werden die Rohrenden aufgeweitet, um die Rohre an der jeweiligen Bodenplatte zweier beidseitig angeordneter Sammelkästen festzulegen.
In der Offenlegungsschrift EP 0 659 500 A1 ist ein Wärmeübertrager offenbart, der aus mehreren, beabstandet übereinanderliegenden, U-förmig umgebogenen Flachrohren aufgebaut ist. Dabei sind die beiden Schenkel der U-förmigen Flachrohre gegenüber deren Verbindungsbereich um 90° tordiert, so dass sie beide in einer gemeinsamen Querebene liegen. Je ein freies Ende der Flachrohre ist an einen Verteilerkanal und das jeweils andere freie Ende an einen Sammelkanal angeschlossen, wobei Verteiler- und Sammelkanal auf derselben Wärmeübertragerseite angeordnet sind und das über den Verteilerkanal eingeleitete Wärmeübertragermedium U-förmig parallel durch die einzelnen Flachrohre zum Sammelkanal strömt.
In der Patentschrift US 3 416 600 ist ein Wärmeübertrager vom Serpentinentyp offenbart, bei dem ein Stapel serpentinenförmig gebogener Flachrohre vorgesehen ist, die in ihren Endabschnitten um 90° tordiert sind. Mit diesen tordierten Endabschnitten sind die Flachrohre in zugehörige Sammelrohre eingefügt, die hierzu mit umfangsseitig eingebrachten, in Rohrlängsrichtung verlaufenden und voneinander beabstandeten Längsschlitzen versehen sind. Zusätzlich können die Flachrohre in einem mittleren Bereich um 180° tordiert sein.
Die Offenlegungsschrift FR 2 712 966 und die Patentschrift US 5.099.576 offenbaren Flachrohr-Wärmeübertrager mit einem Rohr-/Rippenblock, der geradlinige, beidseits um einen Winkel von vorzugsweise etwa 45° oder weniger tordierte Flachrohre aufweist, die in jeweils eigene, schräge Einsteckschlitze seitlicher Anschlußrohre eingefügt sind.
Der Erfindung liegt als technisches Problem die Bereitstellung eines Flachrohr-Wärmeübertragers der eingangs genannten Art zugrunde, der ein vergleichsweise geringes Totvolumen im Anschlußraum besitzt, bei gegebener Wandstärke des anschlußraumbildenden Bauteils eine hohe Berstdrucksicherheit aufweist, sich bei gegebener Flachrohrbreite mit vergleichsweise geringer Bautiefe fertigen läßt und bei Bedarf insbesondere als Kondensator für eine Klimaanlage verwendbar ist.
Die Erfindung löst dieses Problem durch die Bereitstellung eines Flachrohr-Wärmeübertragers mit den Merkmalen des Anspruchs 1. Bei diesem Wärmeübertrager sind die Flachrohre in ihrem in den anschlußraumbildende Bauteil mündenden Endabschnitt auf eine gegenüber ihrem anschließenden Abschnitt geringere Quererstreckung um 90° tordiert. Dabei läßt sich ihr Durchtrittsquerschnitt auch im umgeformten Endabschnitt im wesentlichen konstant halten. Die geringere Quererstreckung des tordierten Flachrohrendabschnitts gegenüber dem anschließenden Flachrohrabschnitt macht es möglich, das anschlußraumbildende Bauteil, z.B. ein Sammel- bzw. Verteilerrohr, mit einer Bautiefe zu realisieren, die nur wenig größer als die verringerte Quererstreckung des Flachrohrendabschnitts zu sein braucht und dadurch kleiner als die Bautiefe der Flachrohre sein kann oder jedenfalls nicht größer als selbige zu sein braucht. Dabei können beide Endabschnitte jedes Flachrohrs in der erfindungsgemäßen Weise tordiert sein, während die Flachrohre im zwischenliegenden Abschnitt z.B. geradlinig mit ihrer gegenüber den Endabschnitten größeren Quererstreckung verlaufen können, die dann die Bautiefe der Flachrohre und damit eventuell auch des gesamten Wärmeübertragers bestimmt. Die erfindungsgemäß erzielbare geringe Bautiefe der anschlußraumbildenden Bauteile bei gegebener Flachrohrbreite hat den weiteren Vorteil, dass sich selbige zur Erzielung einer vorgegebenen Berstdrucksicherheit mit relativ geringer Wandstärke fertigen lassen und nur ein verhältnismäßig geringes Totvolumen besitzen. Außerdem läßt sich das durchströmte Wärmeübertragervolumen bei gegebener Wärme-übertragungsleistung vergleichsweise gering halten, was bei Bedarf eine Mengenreduzierung des durchströmenden Wärme-übertragungsfluides gegenüber konventionellen Flachrohr-Wärmeübertragern erlaubt.
Zur Erzielung einer kompakten Bauweise auch in der Richtung, in welcher die Flachrohre nebeneinanderliegend angeordnet sind, sind die Flachrohrendabschnitte in einer Linie eng aneinanderliegend in einen gemeinsamen Längsschlitz des anschlußraumbildenden Bauteils eingefügt. Diese Maßnahme hat den weiteren Vorteil, daß das Einbringen eines durchgehenden Längsschlitzes im anschlußraumbildenden Bauteil fertigungstechnisch einfacher zu realisieren ist als das Einbringen einer entsprechenden Anzahl einzelner Schlitze.
Beim nach Anspruch 2 weitergebildeten Flachrohr-Wärmeübertrager sind speziell eine oder mehrere Trennwände im anschlußraumbildenden Bauteil vorgesehen, die den Anschlußraum in mehrere Teilräume unterteilen. Diese Maßnahme kann dazu benutzt werden, das durch die Flachrohre geführte Kältemittel unter Umlenkung in einem jeweiligen seitlichen anschlußraumbildenden Bauteil sequentiell durch aufeinanderfolgende Abschnitte des Flachrohrstapels zu leiten.
Bei einem nach Anspruch 3 weitergebildeten Wärmeübertrager sind die Flachrohre um ihre Längsmittelachse oder um eine zu dieser parallelen Längsachse tordiert.
Bei einem nach Anspruch 4 weitergebildeten Wärmeübertrager mit zwischen den Flachrohren eingebrachten Wellrippen ist vorgesehen, die Breite der Wellrippen größer zu wählen als diejenige der Flachrohre. Der dadurch entstehende Rippenüberstand erhöht den Wirkungsgrad der wärmeübertragenden Wellrippen und schützt die Flachrohre gegen Beschädigungen von außen.
Bei einem nach Anspruch 5 weitergebildeten Wärmeübertrager sind die Flachrohre in fertigungstechnisch vorteilhafter Weise als extrudierte Rohre gefertigt.
Bei einem nach Anspruch 6 weitergebildeten Wärmeübertrager ist die jeweilige Trennwand axial von einer Stirnseite her in das anschlußraumbildende Bauteil eingefügt und weist eine geeignete, mit den in das anschlußraumbildende Bauteil hineinragenden Flachrohrenden in Eingriff stehende Ausnehmung auf.
Bevorzugte Ausführungsformen werden nachfolgend unter Bezugnahme auf die Zeichnungen beschrieben, in denen zeigen:
Fig. 1
eine schematische Seitenansicht eines Flachrohr-Wärmeübertragers mit rechtwinklig tordierten Flachrohrendabschnitten und einem mit einer Trennwand versehenen, geschnitten gezeigten Sammel- bzw. Verteilerrohr,
Fig. 2
eine schematische Schnittansicht längs der Linie VIII-VIII von Fig. 1 und
Fig. 3
eine ausschnittweise Schnittansicht eines für den gezeigten Flachrohr-Wärmeübertrager verwendbaren Rohr-/Rippenblocks.
Der in Fig. 1 in einer ausschnittweisen, schematischen Seitenansicht gezeigte Wärmeübertrager ist beispielsweise als Kondensator in einer Fahrzeugklimaanlage verwendbar. Er beinhaltet einen Rohr-/Rippenblock, der in üblicher Weise aus einem Stapel voneinander beabstandeter Flachrohre 30 und einer in die Zwischenräume zwischen den Flachrohren 30 eingebrachte Wellrippenstruktur aus Wellrippen 31 besteht. Die Flachrohre 30 sind in herkömmlicher Weise in ihrem Inneren mit einem oder mehreren Strömungskanälen versehen, durch die das Kältemittel einer Klimaanlage durchgeleitet werden kann. Endseitig münden die Flachrohre 30 in je einen von einem seitlichen Anschlussrohr 33, 34, d.h. Verteiler- bzw. Sammelrohr, gebildeten Anschlußraum, von denen der eine als Verteilerkanal und der andere als Sammelkanal fungiert. Mittels des Wärmeübertragers kann ein Strömungsmedium, das durch die mit der Wellrippenstruktur 31 versehenen Zwischenräume zwischen den Flachrohren 30 hindurchgeleitet wird, in Wärmeübertragungsverbindung mit einem durch die Flachrohre 30 hindurchgeleiteten Strömungsmedium gebracht werden.
Charakteristisch für den gezeigten Wärmeübertrager ist, daß die Flachrohre 30 in ihren beiden Endabschnitten 30a gegenüber ihrem zwischenliegenden Mittenabschnitt um einen Winkel α von 90° um ihre Längsmittelachse tordiert sind.
Der Flachrohrabstand T1 im Block entspricht der Flachrohrbreite Q abzüglich der Flachrohrdicke. Mit anderen Worten liegen die rechtwinklig tordierten Flachrohrenden 30a auf jeder der beiden Anschlußseiten des Rohr-/Rippenblocks in einer Linie sich berührend aneinander, die parallel zur Längsachse 32 zweier seitlicher Anschlußrohre 33, 34 verläuft. Jedes der beiden Anschlußrohre 33, 34 besitzt einen an seinem Umfang eingebrachten, durchgehenden Längsschlitz 35, in welchen die zugehörigen, in einer Linie dicht nebeneinanderliegenden, tordierten Flachrohrenden 30a abgedichtet eingefügt sind.
Wenn die Flachrohre 30 z.B. bei Verwendung für einen Kondensator gruppenweise sequentiell vom Kältemittel durchströmt werden sollen, ist es wie gezeigt möglich, eine oder mehrere Trennwände 36 in einem oder beiden Anschlußrohren 33, 34 vorzusehen. Die Trennwände 36 liegen senkrecht zur Anschlußrohrlängsachse 32 und unterteilen den Anschlußraum des betreffenden Anschlußrohres 33, 34 in mehrere Teilräume 37a, 37b. Das in Fig. 1 geschnitten gezeigte, linke Anschlußrohr 33 weist einen in einen ersten Teilraum 37a mündenden Kältemitteleinlaß 38 auf, so dass das dort eingeleitete Kältemittel, wie durch die Strömungspfeile angedeutet, in die in diesen Teilraum 37a mündende Flachrohre eingespeist, von dort in das rechte Anschlußrohr 34 transportiert, dort in eine anschließende Gruppe von mit einem nächsten Teilraum 37b des linken Anschlußrohres 33 verbundenen Flachrohren umgelenkt und durch diese in den besagten nächsten Teilraum 37b geleitet wird. Diese mäanderförmige Strömungsführung wird so oft wie erforderlich wiederholt, bis das Kältemittel über einen z.B. ebenfalls im erstgenannten Anschlußrohr 33 vorgesehenen Kältemittelauslaß 39 herausgeführt wird.
Die jeweilige Trennwand 36 kann im Übergangsbereich zwischen zwei aneinandergrenzenden, tordierten Flachrohrenden 30a oder aber, wie in Fig. 1 gezeigt, innerhalb des Endbereichs eines Flachrohres 30b angeordnet sein, wenn die Flachrohre 30 als Mehrkammer-Flachrohre ausgebildet sind. Die Trennwand 36 liegt dann zwischen den Wandungen zweier benachbarter Kammern des Flachrohrs 30b, wobei wenigstens dieses Flachrohr 30b endseitig so tordiert ist, daß jedes seiner Kammern auf beiden Endseiten in gleicher Richtung, d.h. nach oben oder nach unten, gebogen verläuft, so dass das im einen Anschlußrohr 33 in die oberen Kammern eingeleitete Kältemittel am anderen Anschlußrohr 34 auch wieder aus den obenliegenden Kammern austritt. Wie speziell aus Fig. 2 zu erkennen, weist die Trennwand 36 einen Schlitz 36a auf, der den tordierten Endbereich 30a des entsprechenden Flachrohres 30 abgedichtet aufnimmt. Die Trennwand 36 wird axial von einem Stirnende des Anschlußrohres 33 her eingesetzt, wobei sie durch das Eingreifen der Flachrohrenden 30a in ihren Schlitz 36a verdrehgesichert geführt wird, bevor sie dann nach Erreichen der Montagelage abgedichtet festgelegt wird, z.B. durch Dichtlöten.
Fig. 3 zeigt ausschnittweise eine Längsschnittansicht durch einen Rohr-/Rippenblock, wie er für den oben beschriebenen Wärmeübertrager verwendbar ist. Charakteristisch ist bei diesem Rohr-/Rippenblock, daß die Breite W der Wellrippen 40 größer gewählt ist als die Breite Q der als Mehrkammerrohre realisierten Flachrohre 41. Dadurch wird ein Rippenüberstand bereitgestellt, der den Wirkungsgrad der Wellrippen 40 hinsichtlich ihrer Wärmeübertragungsfähigkeit erhöht und die Flachrohre 41 gegen Beschädigungen von außen schützt. Das Verhältnis Q/W kann beispielsweise 2/3 betragen.
Ersichtlich lassen sich mit der rechtwinkligen Tordierung der Flachrohrendabschnitte für das Verteiler- und das Sammelrohr Rohre mit besonders geringer Bautiefe, d.h. geringem Durchmesser R verwenden. Dementsprechend lassen sich deren Totvolumina minimal halten, und es genügt eine relativ geringe Wandstärke zur Erzielung einer ausreichenden Berstdrucksicherheit. Dabei kann der Außendurchmesser R des Verteiler- und des Sammelrohrs kleiner als die Quererstreckung Q der Flachrohre gewählt werden.
Es versteht sich, dass anstelle der gezeigten Rundrohre auch Verteiler- bzw. Sammelkästen mit beliebigem andersartigem Querschnitt als anschlußraumbildende Bauteile verwendbar sind, die ein- oder mehrstückig und mit gewölbtem oder ebenem, die Flachrohrenden aufnehmendem Boden gefertigt sein können. Die erforderlichen Rohrdurchbrüche können gefräst, gestanzt, lasergeschnitten oder durch Innenhochdruckumformen eingebracht und mit oder ohne Durchzüge realisiert sein. Die Flachrohre, die speziell auch Scheiben eines Wärmeübertragers in Scheibenbauweise sein können, sind beispielsweise einstükkig durch Extrudieren oder mittels Zusammenschweißen mehrerer Rohrteile oder durch Umformen und anschließendes Verschweißen eines Rohlings herstellbar.
Neben dem gezeigten geradlinigen Verlauf können die Flachrohre in ihrem Bereich zwischen den tordierten Endabschnitten auch einen geschwungenen Verlauf besitzen. Des weiteren versteht sich, daß je nach Bedarf die Flachrohre auch nur an einem ihrer beiden Endabschnitte tordiert sein können und mit dem anderen Endabschnitt dann nicht zu einer geringeren Quererstreckung umgeformt in ein zugehöriges anschlußraumbildendes Bauteil münden. Das Tordieren der Flachrohrendabschnitte kann jeweils so erfolgen, daß sich der Durchtrittsquerschnitt der Flachrohre auch in diesem Bereich im wesentlichen konstant halten läßt, was für die meisten Anwendungsfälle bevorzugt ist.
Anstelle der in den Fig. 1 bis 3 gezeigten, längsmittigen Tordierung können die Flachrohrendabschnitte auch außermittig, d.h. um eine zu ihrer Längsmittelachse parallel versetzte Achse, tordiert sein. Das Verteiler- und das Sammelrohr können dann gegenüber dem zwischenliegenden Rohr-/Rippenblock lateral versetzt angeordnet sein, wenn die Flachrohre dergestalt aufeinanderfolgend angeordnet sind, daß ihre exzentrisch tordierten Endabschnitte sämtlich auf einer Seite der Längsmittelebene des Rohr-/Rippenblocks liegen. Dies kann für bestimmte Einbausituationen vorteilhaft sein.
In allen oben erwähnten Beispielen können die Flachrohre vorteilhafterweise als extrudierte Rohre gefertigt sein. Dabei kann es außerdem von Vorteil sein, die Rohre vor ihrem endseitigen Tordieren bzw. Umbiegen mit einer Lot- und Flußmittelplattierung zu versehen. Dies erleichtert ein abgedichtetes Einfügen der Flachrohrenden in die Anschlußrohre mittels Dichtlöten.

Claims (6)

  1. Flachrohr-Wärmeübertrager mit
    Flachrohren (30), die wenigstens an einem, in ein anschlußraumbildendes Bauteil (33) mündenden Endabschnitt (30a) umgeformt sind,
    dadurch gekennzeichnet, daß
    die Flachrohre (30) in ihrem in das anschlußraumbildende Bauteil (33) mündenden Endabschnitt (30a) gegenüber dem mittleren Flachrohrabschnitt um einen Winkel von 90° um eine Längsachse tordiert und mit diesen um 90° tordierten Endabschnitten (30a) in einer Linie eng aneinanderliegend in einen gemeinsamen Längsschlitz (35) des anschlußraumbildenden Bauteils (33) eingefügt sind.
  2. Flachrohr-Wärmeübertrager nach Anspruch 1, weiter dadurch gekennzeichnet, dass eine oder mehrere Trennwände (36) im anschlußraumbildenden Bauteil (33) vorgesehen sind, die den Anschlußraum in mehrere Teilräume (37a, 37b) unterteilen, in die eine jeweils zugehörige Gruppe aufeinanderfolgender Flachrohre mündet.
  3. Flachrohr-Wärmeübertrager nach Anspruch 1 oder 2, weiter dadurch gekennzeichnet, daß die Flachrohre in ihrem in das anschlußraumbildende Bauteil mündenden Endabschnitt um ihre Längsmittelachse mittig oder um eine zu dieser parallel versetzte Längsachse außermittig tordiert sind.
  4. Flachrohr-Wärmeübertrager nach einem der Ansprüche 1 bis 3, weiter dadurch gekennzeichnet, daß zwischen benachbarten Flachrohren (41) Wellrippen (40) eingebracht sind, deren Breite (W) größer als die Flachrohrbreite (Q) ist.
  5. Flachrohr-Wärmeübertrager nach einem der Ansprüche 1 bis 4, weiter dadurch gekennzeichnet, daß die Flachrohre von extrudierten, vor dem Tordieren vorzugsweise lot- und flußmittelplattierten Rohren gebildet sind.
  6. Flachrohr-Wärmeübertrager nach einem der Ansprüche 2 bis 5, weiter dadurch gekennzeichnet, daß die jeweilige Trennwand (36) eine Ausnehmung (36a) aufweist und axial von einem Stirnende her in das anschlußraumbildende Bauteil (33) eingesetzt ist, wobei die in das anschlußraumbildende Bauteil hineinragenden Flachrohrenden (30a) in die Trennwandausnehmung (36a) eingreifen.
EP97120669A 1996-11-27 1997-11-26 Flachrohr-Wärmeübertrager mit tordiertem Flachrohrendabschnitt Expired - Lifetime EP0845647B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01130598A EP1213556B1 (de) 1996-11-27 1997-11-26 Flachrohr-Wärmeübertrager mit umgeformtem Flachrohrendabschnitt

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19649129 1996-11-27
DE19649129A DE19649129A1 (de) 1996-11-27 1996-11-27 Flachrohr-Wärmeübertrager mit umgeformtem Flachrohrendabschnitt

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP01130598A Division EP1213556B1 (de) 1996-11-27 1997-11-26 Flachrohr-Wärmeübertrager mit umgeformtem Flachrohrendabschnitt
EP01130598.4 Division-Into 2001-12-21

Publications (2)

Publication Number Publication Date
EP0845647A1 EP0845647A1 (de) 1998-06-03
EP0845647B1 true EP0845647B1 (de) 2002-07-03

Family

ID=7812923

Family Applications (2)

Application Number Title Priority Date Filing Date
EP97120669A Expired - Lifetime EP0845647B1 (de) 1996-11-27 1997-11-26 Flachrohr-Wärmeübertrager mit tordiertem Flachrohrendabschnitt
EP01130598A Expired - Lifetime EP1213556B1 (de) 1996-11-27 1997-11-26 Flachrohr-Wärmeübertrager mit umgeformtem Flachrohrendabschnitt

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP01130598A Expired - Lifetime EP1213556B1 (de) 1996-11-27 1997-11-26 Flachrohr-Wärmeübertrager mit umgeformtem Flachrohrendabschnitt

Country Status (2)

Country Link
EP (2) EP0845647B1 (de)
DE (4) DE19649129A1 (de)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19729239A1 (de) * 1997-07-09 1999-01-14 Behr Gmbh & Co Rohr-/Rippenblock für einen Wärmeübertrager und Herstellungsverfahren hierfür
DE19833845A1 (de) * 1998-07-28 2000-02-03 Behr Gmbh & Co Wärmeübertrager-Rohrblock und dafür verwendbares Mehrkammer-Flachrohr
DE19846267A1 (de) 1998-10-08 2000-04-13 Behr Gmbh & Co Sammelrohreinheit für einen Wärmeübertrager
DE19911334A1 (de) 1999-03-15 2000-09-21 Behr Gmbh & Co Sammelrohr für einen Wärmeübertrager und Herstellungsverfahren hierfür
DE19916475A1 (de) 1999-04-13 2000-10-19 Behr Gmbh & Co Wärmeübertragungseinheit für ein Kraftfahrzeug
FR2793013B1 (fr) * 1999-04-28 2001-07-27 Valeo Thermique Moteur Sa Echangeur de chaleur brase, en particulier pour vehicule automobile
DE10146824A1 (de) * 2001-09-18 2003-04-24 Behr Gmbh & Co Wärmeübertrager-Flachrohrblock mit umgeformten Flachrohrenden
DE10147521A1 (de) 2001-09-26 2003-04-10 Behr Gmbh & Co Wärmeübertrager, insbesondere Gaskühler CO2 - Klimaanlagen
EP1321734A1 (de) * 2001-10-02 2003-06-25 Behr GmbH & Co. KG Flachrohr-Wärmeübertrager sowie Herstellungsverfahren hierfür
EP1300644A3 (de) * 2001-10-02 2003-05-14 Behr GmbH & Co. KG Wärmeübertrager und Verfahren zu seiner Herstellung
DE10249724B4 (de) 2002-10-25 2005-03-17 Bayer Industry Services Gmbh & Co. Ohg Hochleistungs-Temperierkanäle
DE10326381B4 (de) * 2003-06-12 2005-09-22 Jähn, Peter Turbulenzerzeuger
DE10336625A1 (de) * 2003-08-05 2005-03-10 Behr Gmbh & Co Kg Vorrichtung zum Austausch von Wärme und Verfahren zu deren Herstellung
DE102004042692A1 (de) * 2004-09-01 2006-03-02 Behr Gmbh & Co. Kg Wärmeübertrager, insbesondere für Klimaanlagen
FR2887972B1 (fr) * 2005-06-30 2007-08-24 Valeo Systemes Thermiques Echangeur de chaleur a tubes plats tordus en extremite
DE102006025727A1 (de) * 2005-08-04 2007-02-08 Visteon Global Technologies, Inc., Van Buren Township Wärmeübertrager für Fahrzeuge und Verfahren zu seiner Herstellung
WO2007048888A1 (fr) * 2005-10-28 2007-05-03 Valeo Systemes Thermiques Echangeur de chaleur à tubes plats déformés par torsion
US20080289808A1 (en) * 2007-05-21 2008-11-27 Liebert Corporation Heat exchanger core tube for increased core thickness
DE202010000951U1 (de) 2010-01-22 2010-04-22 Behr Gmbh & Co. Kg Wärmeübertrager, insbesondere Gaskühler für Klimaanlagen in Kraftfahrzeugen
CN106461295A (zh) * 2014-04-29 2017-02-22 开利公司 经改进的热交换器
CN107504836A (zh) * 2017-09-20 2017-12-22 杭州三花家电热管理系统有限公司 换热器、换热系统及室内采暖系统
CN109990627A (zh) * 2017-12-29 2019-07-09 浙江盾安机械有限公司 一种多层蛇形扁管换热器及其加工工艺
CN110207528A (zh) * 2019-06-25 2019-09-06 珠海格力电器股份有限公司 一种扁管及微通道换热器
DE102019210366A1 (de) * 2019-07-12 2021-01-14 Mahle International Gmbh Wärmeübertrager
CN114483316B (zh) * 2021-12-31 2023-06-06 北京动力机械研究所 一种具有变形协调功能的大温差换热器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2733899A (en) * 1956-02-07 Lehmann
US2184657A (en) * 1936-04-10 1939-12-26 Fred M Young Heat exchanger
DE729699C (de) * 1939-10-24 1942-12-21 Ernst Heinkel Flugzeugwerke G Kuehler, insbesondere fuer Kuehlanlagen von Brennkraftmaschinen
US3416600A (en) 1967-01-23 1968-12-17 Whirlpool Co Heat exchanger having twisted multiple passage tubes
NO141963L (de) * 1975-03-19
DE3803885A1 (de) * 1988-02-09 1989-08-17 Thomae Rudolf Wasserkasten fuer einen roehrenwaermetauscher zur motorkuehlung oder fahrgastraumheizung von kraftfahrzeugen, die mit verbrennungsmotoren ausgeruestet sind und verfahren zur abdichtung der waermetauscherrohre im bodenteil des wasserkastens
DE3813339C2 (de) * 1988-04-21 1997-07-24 Gea Happel Klimatechnik Wärmetauscher für Kraftfahrzeuge und Verfahren zu seiner Herstellung
JPH02287094A (ja) * 1989-04-26 1990-11-27 Zexel Corp 熱交換器
IT1234289B (it) * 1989-06-14 1992-05-14 Piemontese Radiatori Perfezionamenti apportati ad uno scambiatore di calore a tubi appiattiti
US5099576A (en) * 1989-08-29 1992-03-31 Sanden Corporation Heat exchanger and method for manufacturing the heat exchanger
DE4212717A1 (de) * 1992-04-16 1993-10-21 Laengerer & Reich Gmbh & Co Wärmeaustauscher
FR2711236B1 (fr) * 1993-10-12 1995-11-24 Valeo Thermique Habitacle Echangeur de chaleur à deux rangées de tubes, en particulier pour véhicule automobile.
FR2712966B1 (fr) * 1993-11-24 1996-01-19 Valeo Thermique Moteur Sa Echangeur de chaleur à tubes plats, en particulier pour véhicule automobile.
IT1272091B (it) * 1993-12-20 1997-06-11 Borletti Climatizzazione Procedimento per la piegatura di un tubo a sezione trasversale oblunga e scambiatore di calore con tubi a sezione oblunga piegati a u
FR2715217B1 (fr) * 1994-01-20 1996-03-01 Valeo Thermique Moteur Sa Tube d'échangeur de chaleur, en particulier pour véhicule automobile, procédé pour sa conformation et échangeur de chaleur comprenant de tels tubes.
FR2715216B1 (fr) * 1994-01-20 1996-02-16 Valeo Thermique Moteur Sa Tube d'échangeur de chaleur, procédé pour sa conformation et échangeur de chaleur comprenant de tels tubes.

Also Published As

Publication number Publication date
DE59707641D1 (de) 2002-08-08
EP0845647A1 (de) 1998-06-03
DE59711309D1 (de) 2004-03-18
DE59706228D1 (de) 2002-03-14
EP1213556B1 (de) 2004-02-11
DE19649129A1 (de) 1998-05-28
EP1213556A1 (de) 2002-06-12

Similar Documents

Publication Publication Date Title
EP0845647B1 (de) Flachrohr-Wärmeübertrager mit tordiertem Flachrohrendabschnitt
EP2026028B1 (de) Wärmeübertrager, insbesondere für ein Kraftfahrzeug
DE60011616T2 (de) Wärmetauscher mit mehrkanalrohren
EP1544564B1 (de) Wärmeübertrager mit flachen Rohren und flaches Wärmeübertragerrohr
EP1036296B1 (de) Flachrohr mit querversatz-umkehrbogenabschnitt und damit aufgebauter wärmeübertrager
EP1042641B1 (de) Wärmeübertragender rohrblock und dafür verwendbares mehrkammer-flachrohr
EP1701125A2 (de) Wärmeübertrager mit flachen Rohren und flaches Wärmeübertragerrohr
DE60310992T2 (de) Hochdruckwärmetauscher
WO2004088234A2 (de) Wärmeübertrager
EP1881288B1 (de) Rohr-Rippen-Block-Wärmetauscher mit Verbindungs- bzw. Anschlussblöcken
DE102004002252B4 (de) Wärmeübertrager für Fahrzeuge
DE10054158A1 (de) Mehrkammerrohr mit kreisförmigen Strömungskanälen
DE112005000423T5 (de) Wärmetauscher
EP1411310B1 (de) Wärmeübertrager in Serpentinenbauweise
EP1573259A1 (de) Wärmeübertrager
DE19719259A1 (de) Flachrohrwärmetauscher für Kraftfahrzeuge mit an Krägen eines Rohrbodens gehaltenen Flachrohren
EP0912869A1 (de) Mehr als zweiflutiger flachrohrwärmetauscher für kraftfahrzeuge mit umlenkboden sowie herstellungsverfahren
WO2000022365A2 (de) Sammelrohreinheit für einen wärmeübertrager
EP0845648B1 (de) Flachrohr-Wärmeübertrager, insbesondere Kondensator vom Serpentinentyp
WO2005100895A1 (de) Wärmeübertrager für kraftfahrzeuge
EP1567820B1 (de) Wärmeübertrager
WO2004074756A2 (de) Flachrohr mit umkehrbogenabschnitt und damit aufgebauter wärmeübertrager
DE19515528C2 (de) Umlenkkammer aus Blech für zwei- oder mehrflutige Flachrohre von Wärmetauschern für Kraftfahrzeuge
DE102007001430A1 (de) Wärmetauscher
EP3491323B1 (de) Wärmetauscher mit mikrokanal-struktur oder flügelrohr-struktur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19981113

AKX Designation fees paid

Free format text: DE FR SE

RBV Designated contracting states (corrected)

Designated state(s): DE FR SE

17Q First examination report despatched

Effective date: 20001220

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR SE

REF Corresponds to:

Ref document number: 59707641

Country of ref document: DE

Date of ref document: 20020808

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030404

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20071121

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071116

Year of fee payment: 11

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101201

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59707641

Country of ref document: DE

Effective date: 20120601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120601