EP1036296B1 - Flachrohr mit querversatz-umkehrbogenabschnitt und damit aufgebauter wärmeübertrager - Google Patents

Flachrohr mit querversatz-umkehrbogenabschnitt und damit aufgebauter wärmeübertrager Download PDF

Info

Publication number
EP1036296B1
EP1036296B1 EP99945947A EP99945947A EP1036296B1 EP 1036296 B1 EP1036296 B1 EP 1036296B1 EP 99945947 A EP99945947 A EP 99945947A EP 99945947 A EP99945947 A EP 99945947A EP 1036296 B1 EP1036296 B1 EP 1036296B1
Authority
EP
European Patent Office
Prior art keywords
flat
pipe
flat tube
flat pipe
duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99945947A
Other languages
English (en)
French (fr)
Other versions
EP1036296A1 (de
Inventor
Bernd Dienhart
Hans-Joachim Krauss
Hagen Mittelstrass
Karl-Heinz Staffa
Christoph Walter
Jochen Schumm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ford Werke GmbH
Original Assignee
Ford Werke GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ford Werke GmbH filed Critical Ford Werke GmbH
Publication of EP1036296A1 publication Critical patent/EP1036296A1/de
Application granted granted Critical
Publication of EP1036296B1 publication Critical patent/EP1036296B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0475Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend
    • F28D1/0476Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits having a single U-bend the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0085Evaporators

Definitions

  • the invention relates to a flat tube according to the preamble of claim 1 and a flat tube heat exchanger according to the preamble of claim 5.
  • Flat tube type constructed tube block of this type are in the published patent application EP 0 659 500 A1.
  • the flat tube there becomes a straight flat tube blank first bent out of the flat tube plane in a U-shape, until the flat tube legs run parallel to each other, after which the latter by 90 ° with respect to the U-bend area be destroyed.
  • the resulting flat tube thus has two flat pipe sections lying in one plane, the ends of their mouths are on the same, the reversing arc section opposite side.
  • the angle, the flat tube transverse axis along the reverse bend section with the plane in which the straight pipe legs lie initially over one torsion area from zero to that at the top of the reverse arc section present value of 90 ° to then over the other Torsional range again to decrease to 0 °. therefore corresponds to the expansion of the flat tube perpendicular to the plane the flat pipe leg in the head area of the reversing bend section the flat tube width.
  • the heat exchanger tube block there are several such flat tubes in the direction stacked vertically to the plane of the straight flat tube legs, being because of in this direction the Width of the flat tubes corresponding expansion of the reversing bend sections the stack distance between the straight lines Pipe legs of adjacent flat tubes larger than the flat tube width must be kept.
  • the one-chamber design Flat tubes of the tube block open into one on one Side of the pipe block arranged by a collector Longitudinal partition is divided into two collection rooms, in which the flat tubes with one or the other End at the end.
  • a heat exchanger is in Serpentine construction reveals that with a tube fin block includes several serpentine, spiral flat tubes, which are stacked one on top of the other in the serpentine winding direction are.
  • the tube / fin block has in the Plane perpendicular to the pipe stacking direction a U-shape, each Serpentine flat tube with one end on each of the two free U ends in a respective, parallel to the stacking direction running manifold opens out.
  • the two ends each flat tube twisted by 90 °, and the two header tubes have corresponding, spaced apart Through slots in which the twisted pipe ends are recorded in a fluid-tight manner.
  • each serpentine flat tube in a side block area near one Serpentine turn twisted by 180 ° so that each flow channel of the multi-chamber flat tubes used into one Part of a block front and the other part of the opposite Block back is facing.
  • a heat exchanger disclosed with a tube / finned block containing a stack includes straight multi-chamber flat tubes attached to their both opposite ends at an angle of at most Are twisted at 45 ° and open into assigned manifolds, which correspond to their circumference in the longitudinal direction of the collecting tube spaced consecutive oblique slots are provided.
  • the invention is a technical problem of providing a flat tube of the type mentioned, which itself relatively easy to manufacture and very easy to build pressure-stable heat exchanger with low internal volume and high heat transfer efficiency, as well as one heat exchanger constructed from such flat tubes.
  • the invention solves this problem by providing it a flat tube with the features of claim 1 and one Heat exchanger with the features of claim 5.
  • the longitudinal direction is the plan through the course of the longitudinal axes Pipe sections defined while the stacking direction is one Direction indicates in which several flat tubes in the Formation of a heat exchanger tube block in succession to be ordered.
  • the transverse direction represents that to this Longitudinal direction and perpendicular to the stacking direction defined in this way Direction represents.
  • the transverse direction so defined parallel to the transverse axis direction of the flat pipe sections however, this is not mandatory, as the alternative plan pipe sections against this transverse direction if necessary can also be inclined.
  • the reverse sheet section Through this inventive design of the reverse sheet section it is achieved that its expansion in the stacking direction kept significantly smaller than the flat tube width can be. Accordingly, the spaces between need adjacent flat tubes when stacking a Rchrblocks from these flat tubes are not as large or larger than the flat tube width can be kept, but can be significantly narrower as to what makes a compact and pressure-stable heat exchanger favors.
  • the reverse bend section through relatively simple tube bending processes realize.
  • the flat tube can be used once or several times be bent in this way, its depth, i.e. its extent in the as defined above Transverse direction, enlarged with every bend. This leaves with relatively narrow, pressure-stable flat tubes an arbitrarily lower, i.e.
  • this transverse or depth direction usually the direction in which one closes Cooling or heating medium on the outside of the flat tube surfaces is passed through the heat exchanger.
  • the pipe gaps can be kept very narrow use correspondingly low heat-conducting corrugated fins, which is also the compactness and stability of a tube-fin block thus formed improved.
  • a flat tube developed according to claim 2 is bent over in such a way that the over a respective reverse arc section connected, flat pipe sections in the same or different, parallel to each other or against one another Predeterminable tilt angle inclined longitudinal planes, namely in any case preferably with a mutual distance in Cross direction between 0.2mm and 20mm.
  • flat tubes can be a Form a tube block with a depth that is twice the flat tube width plus the said distance between the plans Corresponds to pipe sections.
  • Flat tubes increase the tube block depth per reversing bend section by the flat tube width plus the said transverse distance of the flat pipe sections.
  • By leaving the Corresponding gaps are formed in a column with tube block constructed of such flat tubes, which e.g. in use an evaporator of a motor vehicle air conditioning system the condensation removal is facilitated.
  • Thermal fins can be continuous if necessary across the entire pipe block depth and also slightly above extend out.
  • flat tube Seraentine flat tube by at least one of the two Flat tube parts connected via a reversing bend section in the stacking direction is bent to a tubular serpentine, i.e. it consists of serpentine turns which follow one another in the stacking direction.
  • serpentine heat exchanger With flat tubes designed in this way, one can so-called serpentine heat exchanger with any Number of successive serpentine block parts in the depth direction build up.
  • the heat exchanger according to claim 5 is by use one or more of the flat tubes according to the invention under construction characterized a corresponding pipe block, with the above-mentioned properties and advantages of such Tube block construction.
  • the heat exchanger is both in single layer Construction in which the flat tube sections between two reversing bend sections or between a reverse arc section and a flat tube end made of a flat, straight tube section exist, as well as in serpentine construction, in which these flat tube sections to a coil are bent.
  • trained heat exchangers are the tube ends of the flat tubes and used hence the associated collection and distribution channels, below uniformly as collection channels for the sake of simplicity designated, on opposite sides of the pipe block.
  • the collecting channels can then from a collecting box or collecting pipe be formed on the relevant tube block side along the stacking direction, also referred to as the block vertical direction run and the parallel feed or discharge of the tempering medium passed through the inside of the pipe serve or from the individual flat tubes.
  • the flat tube ends all on the same Tube block side. Due to the design of the flat tubes are the two tube ends of each flat tube to each other offset in the block depth direction so that they two correspondingly adjacent to each other in the block depth direction Known collection channels. To be done accordingly Inlet and outlet of the piped through the interior of the pipe Temperature control medium on the same heat exchanger side.
  • this type of heat exchanger with two side-by-side collecting channels on the same tube block side is provided according to claim 8, these collecting channels through two separate header pipes or header boxes, below
  • manifolds or to form through a common manifold.
  • the latter can be realized in that a first uniform manifold interior with a longitudinal partition in the two collecting channels is divided, or in that the Collecting tube as an extruded tube profile with two separate, the hollow chambers forming the collecting channels is manufactured.
  • heat exchanger is at least one of the two manifolds or at least one of the two hollow chambers of a longitudinally divided manifold through transverse partition walls in several, in the vertical direction from each other separate collection channels divided.
  • This will make one serial flow through the flat tubes in the tube block achieved by the tube block via a first collecting channel of the cross-divided manifold or the cross-divided Cavity medium supplied initially only in the part of all of the flat tubes opening there is fed.
  • the Collecting channel in which this part of the flat tubes with the other Pipe end opens, then acts as a deflection channel in which the temperature control medium from the flat pipes opening there in another, also ending there with one end Part of all flat tubes is deflected.
  • Number and location of the Cross partitions determine the division of the flat tubes into successive groups of parallel flows Flat tubes.
  • the flat tube 1 shown in a top view in FIG. 1 is made in one piece from a straight multi-chamber profile using suitable bending processes manufactured. It contains two flat, straight pipe sections 2a, 2b, which over a reverse arc section 3 are connected to each other and opposite Flow directions for one through the several parallel chambers tempering medium passed through inside the flat tube 1, e.g. have a refrigerant of a vehicle air conditioner.
  • One of both potential Flow profiles is in Fig. 1 by corresponding flow arrows 4a, 4b.
  • the parallel to the flow directions 4a, 4b longitudinal axes 5a, 5b of the two plan define straight pipe sections 2a, 2b a longitudinal direction x and are perpendicular to it Transverse direction y offset from each other.
  • both are plan pipe sections 2a, 2b in a common xy plane, which is perpendicular to a stacking direction z, in which several such flat tubes to form a heat exchanger tube block can be stacked on top of each other as shown below using the 3 and 4 explained in more detail.
  • the corresponding coordinate axes x, y, z shown.
  • the reversing sheet section 3 is obtained by the fact that the initial rectilinear flat tube profile of a desired Width b held at half its length and both tube halves are each turned at a 90 ° angle so that they are parallel to each other perpendicular to their original Run longitudinally and in this way the two straight lines Form tube sections 2a, 2b of the finished flat tube 1.
  • the bending process takes place in such a way that the two rectilinear pipe sections 2a, 2b lying in one plane with a distance a that can be selected depending on the application, which is preferably between about 0.2 mm and 20 mm, while the flat tube width b is typically between one and a few centimeters.
  • the killing takes place alternatively about the respective longitudinal central axis 5a, 5b also about a parallel longitudinal axis, i.e. with a transverse offset with respect to the longitudinal central axis, around any one Angle between 0 ° and 90 °, in the case shown the torsion angle is approximately 60 °, as is particularly clear from FIG. 4 can be seen.
  • FIG. 3 and 4 show an application for the flat tube type 1 and 2 in the form of a tube / fin block Evaporator, as used in particular in automotive air conditioning systems is usable. It is understood that the Sectional heat exchangers shown depending on the design can also be used for any other heat transfer purposes leaves. As can be seen from FIG. 3, this contains an evaporator a stack between two end cover plates 9, 10 several flat tubes 1 according to FIGS. 1 and 2 with intermediate, heat-conducting corrugated fins 8. The height of the heat-conducting fins 8 corresponds approximately to the height c of the flat tube reversing bend sections 3 and is therefore significantly smaller than the flat tube width b.
  • the use 1 and 2 a tube-fin block with in depth, i.e. in the y direction, two-part structure formed, with in each of the two block parts Pipe sections with the same flow direction in the Stack direction z one above the other.
  • Between the two Block parts is the distance a between the two straight lines Pipe sections 2a, 2b corresponding to each flat tube 1 Gap formed.
  • the corrugated ribs 8 extend in one piece over the entire flat tube depth and thus also over this Gap, being on both sides, i.e. at the Survive front and back of the block as needed can.
  • the block front is defined here that they are from an outside over the evaporator surfaces conducted away second temperature control medium, e.g. to cooling supply air for a vehicle interior, in the pipe transverse direction y, i.e. in the depth direction of the block.
  • the transverse extent d the flat tube ends are less due to their twisting than the flat tube width b.
  • a common manifold for Both stack rows of the tube ends 6a, 6b may be provided by means of a longitudinal partition into the two required, separate ones Collection channels is divided.
  • the one shown in the example Twisting the pipe ends by approx. 60 ° enables that relatively close succession of the single-layer flat tubes 1 in Stack with the said, compared to the flat tube width b smaller Stack height c is not hindered.
  • the evaporator with the tube / fin block thus formed in a compact design and very pressure-stable and has a high heat transfer efficiency having.
  • a heat transfer performance are achieved for the otherwise at least about twice so wide, not bent flat tubes would be required.
  • the unique flat tube deflection means that that the tempering medium to be passed through the tube interior fed in and out on one and the same tube block side can be, which is advantageous in some applications is.
  • 5 and 6 is an embodiment in a serpentine construction shown.
  • 5 shows the detail view thereby one of several serpentine flat tubes 11, which for Formation of the serpentine tube block there in any desired Number are stacked.
  • the one used for this Serpentine flat tube 11 is largely identical to that of FIGS. 1 and 2, with the exception that on both sides of the same as that of FIGS. 1 and 2 reversing arc section 3 'not just a straight line, single-layer pipe section, but a multiple serpentine convoluted coil section 12a, 12b connects, which in turn is a corresponding one in the block depth direction Face the gap offset, as in FIG. 6 can be seen more clearly.
  • each Pipe section 12a, 12b are through as usual Bend the flat tube at the relevant point around the pipe transverse axis formed there by an angle of 180 °.
  • Between the individual coils 13 and between successive serpentine flat tubes 11 are thermally conductive Corrugated ribs 14 continuously from the block front to. Block back introduced with optional overhang.
  • a row of corrugated ribs for each of the two pipe block rows offset in the block depth direction are provided can be, in which case the gap between the two rows of blocks can remain free.
  • the height of the thermal fins 14 and thus the Stack spacing between adjacent, straight flat tube sections both within a serpentine flat tube 11 as well approximately between two neighboring seroentine flat tubes the significantly lower height than the flat tube width b c of the reverse arc section 3 '.
  • the serpentine evaporator 5 and 6 In contrast to the evaporator in single-layer flat tube construction 3 and 4 is the serpentine evaporator 5 and 6 the reversing arc section 3 ' on the same tube block side as the twisted tube ends 15a, 15b.
  • the serpentine coils 13 impede the successive ones in the stacking direction twisted pipe ends 15a, 15b and reverse bend sections 3 'not.
  • the flat tube can be two or more turnaround sections and corresponding diversions exhibit.
  • An example with two consecutive reverse arc sections 17, 18 is schematic based on the associated Flow path shown in Fig. 7. From one Flat tube end 19 extends a first straight tube section 20 to the opposite first reverse arc section 17, where he is returning to a second rectilinear Flat tube section 21 merges with the opposite one second reversing arc section 18 into a third rectilinear pipe section 22 passes over to the other Flat tube end 23 extends.
  • This flat tube is suitable thus building a three-part block depth Heat exchanger tube blocks in single-layer construction, i.e. the rectilinear pipe sections 20, 21, 22 are essentially in a block level.
  • the two ends 19, 23 each Flat tubes open on opposite sides of the block which must therefore each be arranged with a manifold.
  • possible reverse arc section comes an additional straight line Flat tube section added in the block depth direction, and in addition the position of the one changes to the other Flat tube end and thus the positioning of the two associated Collection channels between an equilateral and an opposite position.
  • the serpentine flat tube can also be used in a corresponding manner 11 of Fig. 5 are modified so that by at least another serpentine turn in one and / or in other serpentine pipe section the relevant flat pipe end on the block side opposite to the reversing arch section comes to rest.
  • a serpentine flat tube of the type of Fig. 5 but with a or several additional reversing arc sections are provided to be analogous to e.g. 7 in the block depth direction at least three-part pipe block for one To build serpentine heat exchangers.
  • the flat tube ends can also be left undetected.
  • a two-chamber manifold can be used, which already in the production stage, two separate, longitudinal hollow chambers having.
  • Such a manifold 24 is in cross section shown in Fig. 8. It is extruded from one Profile manufactured and integrally includes two separate Longitudinal chambers 25, 26, which are the collecting channels for the form the relevant heat exchanger.
  • the several by means of appropriate transverse walls, in the Block vertical direction z contain separate collecting channels.
  • the flat tubes in the tube block become several Groups combined in such a way that the pipes of a group flows in parallel and flows through the various tube groups in series become.
  • a supplied tempering medium flows from one inlet-side collecting channel into the group of those opening there Flat tubes and then gets in at their other end a collecting duct that acts as a deflection space, into which a second flat tube group opens in addition to this first group, into which the temperature control medium is then deflected.
  • This can be done by appropriate Position the cross walls in one or both header pipes be continued in any way up to an outlet-side collecting channel, through which the temperature control medium then leaves the tube block.
  • the flat tubes according to the invention can be used to produce very compact, pressure-stable flat tube blocks in a single-layer construction or serpentine construction with a high heat transfer capacity.
  • Heat exchangers produced in this way are also suitable, for example, for CO 2 air conditioning systems operating at comparatively high pressure, as are increasingly being considered for motor vehicles.
  • FIGS. 9 and 10 The illustration of the reversing arch section (3) from FIG. 1 is shown in FIGS. 9 and 10 technically precise. In particular, it must be made clear that the Flat tube transverse axis in the area of the reversing bend section (3) of a straight line equivalent.
  • the flat tube is bent along a straight line (G1) at an angle of 45 ° to the longitudinal axis (5) of the Flat tube and deflected at a right angle with respect to the longitudinal axis (5), and after another redirection at an angle of 90 ° with respect to the longitudinal axis (5) the flat tube then runs in the opposite direction from the Reverse arc section (3) out.
  • the resulting outer contour is characterized by the angle of 45 °, with which in the top view according to FIG. 9 shows the bending edge (G1) in relation to Longitudinal axis (5) can be represented.
  • FIG. 10 shows the side view of the flat tube, which is the view of the left part of FIG. 2 corresponds.
  • the angle in Reverse arc section designated ⁇ 1, the size of 0 °. This corresponds to the Parallel shift by bending and another parallel shift after Another bend in the plane of the original flat tube cross section (7).
  • the resulting height C1 is practically the minimum according to the invention double the thickness of the flat tube.
  • FIG Reversing arc section 3.2 The representation of an angle ⁇ 2 lying between ⁇ 1 and ⁇ 3 is shown in FIG Reversing arc section 3.2 outlines, the contour line U2 being less strong is curved as the contour line U3, but does not represent a straight line like that Contour line U1. 10, the height c2 is between the height C1 and the C3 level.
  • the Top view in Fig. 9 clearly shows that strictly speaking, the contours in top view in the area of the reversing arc section 3 each represent straight lines which are clear and can be clearly characterized by their angle to a plane.
  • FIG. 9 follows the theoretical idea that during the molding process of the reversing arch section (3) a torsion-like deformation around that in FIG. 9 shown inner contour line of the flat tube is executed. If you look at that resulting geometry differentially, the flat tube transverse axis (7) always remains one Just.
  • the angle of the straight line or the flat tube transverse axis (7) can thus be correct Determine the x / y plane (2a, b) at any time. It can also be formulated correctly under the theoretical assumption of the flat tube transverse axis (7) as the straight line Angle of any differential flat tube transverse axis (7) exactly to one Stack direction z vertical plane in the specified angular range from 0 to Determine 45 °.
  • the flat tubes according to the invention can be used to produce very compact, pressure-stable flat tube blocks in a single-layer construction or serpentine construction with a high heat transfer capacity.
  • Heat exchangers produced in this way are also suitable, for example, for CO 2 air conditioning systems operating at comparatively high pressure, as are increasingly being considered for motor vehicles.

Description

Die Erfindung bezieht sich auf ein Flachrohr nach dem Oberbegriff des Anspruchs 1 sowie auf einen Flachrohr-Wärmeübertrager nach dem Oberbegriff des Anspruchs 5.
Ein Flachrohr und ein Wärmeübertrager mit einem aus diesem Flachrohrtyp aufgebauten Rohrblock dieser Art sind in der Offenlegungsschrift EP 0 659 500 A1 beschrieben. Zur Herstellung des dortigen Flachrohres wird ein geradliniger Flachrohr-Rohling zunächst U-förmig aus der Flachrohrebene herausgebogen, bis die Flachrohrschenkel zueinander parallel verlaufen, wonach letztere um jeweils 90° gegenüber dem U-Bogenbereich tordiert werden. Das dadurch entstehende Flachrohr besitzt somit zwei in einer Ebene liegende, plane Rohrabschnitte, deren Mündungsenden auf der gleichen, dem Umkehrbogenabschnitt entgegengesetzten Seite liegen. Der Winkel, den die Flachrohrquerachse entlang des Umkehrbogenabschnitts mit der Ebene einschließt, in welcher die geradlinigen Rohrschenkel liegen, nimmt zunächst über den einen Torsionsbereich hinweg von null auf den am Kopfende des Umkehrbogenabschnitts vorliegenden Wert von 90° zu, um dann über den anderen Torsionsbereich hinweg wieder auf 0° abzunehmen. Mithin entspricht die Ausdehnung des Flachrohrs senkrecht zur Ebene der planen Rohrschenkel im Kopfbereich des Umkehrbogenabschnitts der Flachrohrbreite. Im dortigen Wärmeübertrager-Rohrblock sind mehrere solcher Flachrohre in der Richtung senkrecht zur Ebene der geradlinigen Flachrohrschenkel übereinandergestapelt, wobei wegen der in dieser Richtung der Breite der Flachrohre entsprechenden Ausdehnung der Umkehrbogenabschnitte der Stapelabstand zwischen den geradlinigen Rohrschenkeln benachbarter Flachrohre größer als die Flachrohrbreite gehalten werden muß. Die in Einkammerbauweise ausgeführten Flachrohre des Rohrblocks münden in einen an einer Seite des Rohrblocks angeordneten Sammler, der durch eine Längstrennwand in zwei Sammelräume unterteilt ist, in welche die Flachrohre jeweils mit ihrem einen bzw. mit ihrem anderen Ende münden.
In der Offenlegungsschrift DE 39 36 109 A1 ist ein Wärmeübertrager mit einem Rohrblock offenbart, der aus einem Stapel von Rundrohren gebildet ist, die unter Verwendung eines einzelnen Umkehrbogenabschnitts U-förmig oder unter Verwendung mehrerer aufeinanderfolgender Umkehrbogenabschnitte als Rohrschlange ausgebildet sind, wobei die Rohrabschnitte zwischen den Umkehrbogenabschnitten geradlinig verlaufen und abgeplattet sind. Die abgeplatteten Rohrabschnitte des Rundrohres liegen querversetzt in einer Ebene, während der bzw. die Umkehrbogenabschnitte sowie die beiden, auf derselben Seite mündenden Rohrendbereiche den kreisrunden Rohrquerschnitt beibehalten. Das Abplatten der geradlinigen Rohrabschnitte erfolgt mittels Flachpressen. Die Rohre münden mit ihren runden Endbereichen in einen Sammel- bzw. Verteilerraum, die von je einem Sammel- und Verteilerrohr oder von einem längsgeteilten Sammel- und Verteilerkasten gebildet sind. Der Abstand der abgeplatteten Rohrabschnitte benachbarter Rohre im Rohrblockstapel muß zwangsläufig größer als der Durchmesser der verwendeten Rundrohre sein.
In der Patentschrift US 3.416.600 ist ein Wärmeübertrager in Serpentinenbauweise offenbart, der einen Rohrrippenblock mit mehreren serpentinenförmigen gewundenen Flachrohren beinhaltet, die im Block in der Serpentinenwindungsrichtung übereinandergestapelt sind. Der Rohr-/Rippenblock besitzt in der Ebene senkrecht zur Rohrstapelrichtung eine U-Form, wobei jedes Serpentinenflachrohr mit je einem Ende an den beiden freien U-Enden in ein jeweiliges, parallel zur Stapelrichtung verlaufendes Sammelrohr einmündet. Dabei sind die beiden Enden jedes Flachrohres um 90° tordiert, und die beiden Sammelrohre weisen korrespondierende, voneinander beabstandete Durchsteckschlitze auf, in denen die tordierten Rohrenden fluiddicht aufgenommen sind. Zusätzlich ist jedes Serpentinenflachrohr in einem seitlichen Blockbereich in der Nähe einer Serpentinenwindung um 180° tordiert, so daß jeder Strömungskanal der verwendeten Mehrkammer-Flachrohre zu einem Teil einer Blockvorderseite und zum anderen Teil der gegenüberliegenden Blockrückseite zugewandt ist.
In der Offenlegungsschrift FR 2 712 966 A1 ist ein Wärmeübertrager mit einem Rohr-/Rippenblock offenbart, der einen Stapel geradliniger Mehrkammer-Flachrohre beinhaltet, die an ihren beiden gegenüberliegenden Enden um einen Winkel von höchstens 45° tordiert sind und in zugeordnete Sammelrohre münden, die an ihrem Umfang mit korrespondierenden, in Sammelrohrlängsrichtung beabstandet aufeinanderfolgenden Schrägschlitzen versehen sind.
Der Erfindung liegt als technisches Problem die Bereitstellung eines Flachrohres der eingangs genannten Art, das sich relativ einfach herstellen läßt und sich zum Aufbau sehr druckstabiler Wärmeübertrager mit geringem innerem Volumen und hohem Wärmeübertragungswirkungsgrad eignet, sowie eines aus solchen Flachrohren aufgebauten Wärmeübertragers zugrunde.
Die Erfindung löst dieses Problem durch die Bereitstellung eines Flachrohres mit den Merkmalen des Anspruchs 1 sowie eines Wärmeübertragers mit den Merkmalen des Anspruchs 5.
Beim Flachrohr nach Anspruch 1 ist der Umkehrbogenabschnitt so gebildet, daß in diesem Bereich die Querachse des Flachrohres höchstens einen Winkel von 45° mit den Ebenen einschließt, die zu einer Längs- und einer Querrichtung parallel sowie zu einer Stapelrichtung senkrecht sind. Die Längsrichtung ist dabei durch den Verlauf der Längsachsen der planen Rohrabschnitte definiert, während die Stapelrichtung diejenige Richtung angibt, in welcher mehrere Flachrohre bei der Bildung eines Wärmeübertrager-Rohrblocks aufeinanderfolgend angeordnet werden. Die Querrichtung stellt die zu dieser Längsrichtung und zur so definierten Stapelrichtung senkrechte Richtung dar. Im allgemeinen ist die so definierte Querrichtung parallel zur Querachsenrichtung der planen Rohrabschnitte, dies ist jedoch nicht zwingend, da alternativ die planen Rohrabschnitte gegenüber dieser Querrichtung bei Bedarf auch geneigt sein können.
Durch diese erfindungsgemäße Gestaltung des Umkehrbogenab-Schnitts wird erreicht, daß dessen Ausdehnung in der Stapelrichtung deutlich kleiner als die Flachrohrbreite gehalten werden kann. Dementsprechend brauchen die Zwischenräume zwischen benachbarten Flachrohren beim stapelförmigen Aufbau eines Rchrblocks aus diesen Flachrohren nicht so groß oder größer als die Flachrohrbreite gehalten werden, sondern können deutlich enger sein, was die Herstellung eines kompakten und druckstabilen Wärmeübertragers begünstigt. Zudem läßt sich der Umkehrbogenabschnitt durch relativ einfache Rohrbiegevorgänge realisieren. Das Flachrohr kann dabei einmal oder mehrmals in dieser Weise umgebogen sein, wobei sich seine Tiefenausdehnung, d.h. seine Ausdehnung in der wie oben definierten Querrichtung, mit jeder Umbiegung vergrößert. Dadurch läßt sich mit verhältnismäßig schmalen, druckstabilen Flachrohren ein beliebig tiefer, d.h. sich in der Querrichtung ausdehnender Rohrblock bilden, wobei diese Quer- oder Tiefenrichtung üblicherweise diejenige Richtung derstellt, in welcher ein zu kühlendes oder erwärmendes Medium außen an den Flachrohrflächen vorbei durch den Wärmeübertrager hindurchgeleitet wird. Dabei sind meist zusätzliche Wärmeleitrippen zwischen den in Stapelrichtung aufeinanderfolgenden Rohrblockabschnitten zur Verbesserung der Wärmeübertragung vorgesehen. Da wie gesagt die Rohrzwischenräume sehr eng gehalten werden können, lassen sich auch entsprechend niedrige wärmeleitende Wellrippen einsetzen, was gleichfalls die Kompaktheit und Stabilität eines so gebildeten Rohr-Rippenblocks verbessert.
Ein nach Anspruch 2 weitergebildetes Flachrohr ist derart umgebogen, daß die über einen jeweiligen Umkehrbogenabschnitt verbundenen, planen Rohrabschnitte in derselben oder verschiedenen, zueinander parallelen oder gegeneinander um einen vorgebbaren Kippwinkel geneigten Längsebenen liegen, und zwar in jedem Fall vorzugsweise mit einem gegenseitigen Abstand in Querrichtung zwischen 0,2mm und 20mm. Bei Verwenden von einmalig dergestalt umgebogenen Flachrohren läßt sich somit ein Rohrblock mit einer Tiefe bilden, die der doppelten Flachrohrbreite zuzüglich des besagten Abstandes zwischen den planen Rohrabschnitten entspricht. Mit mehrmals so umgebogenen Flachrohren erhöht sich die Rohrblocktiefe pro Umkehrbogenabschnitt um die Flachrohrbreite zuzüglich des besagten Querabstands der planen Rohrabschnitte. Durch die Belassung des Querabstands bilden sich entsprechende Spalte in einem mit solchen Flachrohren aufgebauten Rohrblock, was z.B. im Anwendungsfall eines Verdampfers einer Kraftfahrzeug-Klimaanlage die Kondenswasserabscheidung erleichtert. Gegebenenfalls vorgesehene Wärmeleitrippen können sich bei Bedarf durchgängig über die ganze Rohrblocktiefe hinweg und auch etwas darüber hinaus erstrecken.
Ein nach Anspruch 3 weitergebildetes Flachrohr bildet ein Seraentinenflachrohr, indem mindestens der eine der beiden über einen Umkehrbogenabschnitt verbundenen Flachrohrteile in der Stapelrichtung zu einer Rohrserpentine gebogen ist, d.h. er besteht aus in Stapelrichtung aufeinanderfolgenden Serpentinenwindungen. Mit so gestalteten Flachrohren läßt sich ein sogenannter Serpentinen-Wärmeübertrager mit einer beliebigen Anzahl an in Tiefenrichtung aufeinanderfolgenden Serpentinenblockteilen aufbauen.
Bei einem nach Anspruch 4 weitergebildeten Flachrohr liegen die Mündungsenden auf der gleichen oder auf gegenüberliegenden Seiten, wobei wenigstens ein Ende vorzugsweise beide Enden gegenüber dem anschließenden Mittenbereich tordiert sind. Durch diese Tordierung wird die Flachrohrquerachse in Richtung Mündungsende zur Stapelrichtung hin gedreht, so daß die Ausdehnung der Flachrohrenden in der Querrichtung kleiner als die Flachrohrbreite gehalten werden kann. Maximal erfolgt die Tordierung um 90°, so daß dann bei senkrecht zur Stapelrichtung verlaufenden planen Rohrabschnitten die Rohrenden parallel zur Stapelrichtung liegen und ihre Ausdehnung in der Querrichtung nur noch so groß wie die Flachrohrdicke ist. Dies ermöglicht eine in Tiefenrichtung eines damit aufgebauten Rohrblocks vergleichsweise enge Anordnung zugehöriger, sich an der betreffenden Rohrblockseite in Stapelrichtung erstreckender Sammel- und Verteilerkanäle.
Der Wärmeübertrager gemäß Anspruch 5 ist durch die Verwendung eines oder mehrerer der erfindungscemäßen Flachrohre im Aufbau eines entsprechenden Rohrblocks charakterisiert, mit den oben erwähnten Eigenschaften und Vorteilen eines solchen Rohrblockaufbaus. Insbesondere läßt sich in dieser Weise ein kompakter, hoch druckstabiler Verdampfer mit relativ niedrigem Gewicht, geringem innerem Volumen und guter Kondenswasserabscheidung für eine Klimaanlage eines Kraftfahrzeuges realisieren, wobei vorzugsweise Mehrkammer-Flachrohre eingesetzt werden. Der Wärmeübertrager ist sowohl in einlagiger Bauweise, bei denen die Flachrohrabschnitte zwischen zwei Umkehrbogenabschnitten bzw. zwischen einem Umkehrbogenabschnitt und einem Flachrohrende aus einem planen, geradlinigen Rohrabschnitt bestehen, als auch in Serpentinenbauweise ausführbar, bei welcher diese Flachrohrabschnitte zu einer Rohrschlange gebogen sind.
Bei einem nach Anspruch. 6 weitergebildeten Wärmeübertrager befinden sich die Rohrenden der verwendeten Flachrohre und damit auch die zugehörigen Sammel- und Verteilerkanäle, nachfolgend der Einfachkeit halber einheitlich als Sammelkanäle bezeichnet, auf gegenüberliegenden Rohrblockseiten. Die Sammelkanäle können dann von je einem Sammelkasten oder Sammelrohr gebildet sein, die an der betreffenden Rohrblockseite entlang der Stapelrichtung, auch als Blockhochrichtung bezeichnet verlaufen und der parallelen Zuführung bzw. Abführung des durch das Rohrinnere geleiteten Temperiermediums zu den bzw. aus den einzelnen Flachrohren dienen.
In einer dazu alternativen Weiterbildung der Erfindung münden gemäß Anspruch 7 die Flachrohrenden sämtlich auf derselben Rohrblockseite. Bedingt durch die Gestaltung der Flachrohre sind dabei die beiden Rohrenden eines jeden Flachrohres zueinander in der Blocktiefenrichtung versetzt, so daß ihnen zwei entsprechend in Blocktiefenrichtung nebeneinanderliegende Sammelkanäle zugeordnet werden kennen. Dementsprechend erfolgen Zu- und Abführung des durch das Rohrinnere geleitete Temperiermediums an derselben Wärmeübertragerseite.
In weiterer Ausgestaltung dieses Wärmeübertragertyps mit zwei nebeneinanderliegenden Sammelkanälen auf derselben Rohrblockseite ist gemäß Anspruch 8 vorgesehen, diese Sammelkanäle durch zwei getrennte Sammelrohre bzw. Sammelkästen, nachfolgend der Einfachkeit halber einheitlich als Sammelrohre bezeichnet, oder durch ein gemeinsames Sammelrohr zu bilden. Letzteres läßt sich dadurch realisieren, daß ein zunächst einheitlicher Sammelrohrinnenraum mit einer Längstrennwand in die beiden Sammelkanäle abgeteilt wird, oder dadurch, daß das Sammelrohr als extrudiertes Rohrprofil mit zwei getrennten, die Sammelkanäle bildenden Hohlkammern gefertigt wird.
Bei einem nach Anspruch 9 weitergebildeten Wärmeübertrager ist wenigstens eines der beiden Sammelrohre bzw. wenigstens eine der beiden Hohlkammern eines längsgeteilten Sammelrohres durch Quertrennwände in mehrere, in Blockhochrichtung voneinander getrennte Sammelkanäle unterteilt. Dadurch wird eine gruppenweise serielle Durchströmung der Flachrohre im Rohrblock erzielt, indem das dem Rohrblock über einen ersten Sammelkanal des quergeteilten Sammelrohres bzw. der quergeteilten Hohlkammer zugeführte Temperiermedium zunächst nur in den dort mündenden Teil aller Flachrohre eingespeist wird. Der Sammelkanal, in den dieser Teil der Flachrohre mit dem anderen Rohrende mündet, fungiert dann als Umlenkkanal, in welchem das Temperiermedium von den dort mündenden Flachrohren in einen weiteren, ebenfalls dort mit einem Ende mündenden Teil aller Flachrohre umgelenkt wird. Anzahl und Lage der Quertrennwände bestimmen die Einteilung der Flachrohre in nach einander durchströmte Gruppen von parallel durchströmten Flachrohren.
Vorteilhafte Ausführungsformen der Erfindung sind in den Zeichnungen dargestellt und werden nachfolgend beschrieben. Hierbei zeigen:
Fig. 1
eine Draufsicht auf ein Flachrohr mit einem Umkehrbogenabschnitt und tordierten Rohrenden,
Fig. 2
eine Seitenansicht längs des Pfeils II von Fig. 1,
Fig. 3
eine ausschnittsweise Seitenansicht eines aus Flachrohren gemäß den Fig. 1 und 2 aufgebauten Rohr/Rippenblocks eines Verdampfers,
Fig. 4
eine Seitenansicht längs des Pfeils IV von Fig. 3,
Fig. 5
eine ausschnittsweise Seitenansicht eines Rohr/Rippenblocks eines Verdampfers mit serpentinenförmigen Flachrohren,
Fig. 6
eine Seitenansicht längs des Pfeils VI von Fig. 5,
Fig. 7
eine schematische Darstellung eines Flachrohres mit zwei Umkehrbogenabschnitten und
Fig. 8
eine Querschnittsansicht durch ein z.B. für den Verdampfer von Fig. 5 verwendbares Zweikammer-Sammelrohr.
Fig. 9
Fallvarianten 1 bis 3 zur Gestaltung des Umkehrbogenabschnittes in der Draufsicht
Fig. 10
Fallvarianten 1 bis 3 zur Gestaltung des Umkehrbogenabschnittes in der Seitenansicht
Das in Fig. 1 in einer Draufsicht gezeigte Flachrohr 1 ist einstückig aus einem geradlinigen Mehrkammerprofil unter Verwendung geeigneter Biegevorgänge gefertigt. Es beinhaltet zwei plane, geradlinige Rohrabschnitte 2a, 2b, die über einen Umkehrbogenabschnitt 3 miteinander verbunden sind und entgegengesetzte Durchströmungsrichtungen für ein durch die mehreren parallelen Kammern im Inneren des Flachrohres 1 hindurchgeleitetes Temperiermedium, z.B. ein Kältemittel einer Kraffahrzeug-Klimaanlage aufweisen. Einer der beiden möglichen Strömungsverläufe ist in Fig. 1 durch entsprechende Strömungspfeile 4a, 4b dargestellt. Die parallel zu den Durchströmungsrichtungen 4a, 4b verlaufenden Längsachsen 5a, 5b der beiden planen, geradlinigen Rohrabschnitte 2a, 2b definieren eine Längsrichtung x und sind in einer dazu senkrechten Querrichtung y gegeneinander versetzt. Wie insbesondere aus der Seitenansicht von Fig. 2 ersichtlich, liegen beide planen Rohrabschnitte 2a, 2b in einer gemeinsamen xy-Ebene, die senkrecht zu einer Stapelrichtung z ist, in welcher mehrere solche Flachrohre zur Bildung eines Wärmeübertrager-Rohrblocks aufeinandergestapelt werden, wie unten anhand der Fig. 3 und 4 näher erläutert. Zur besseren Orientierung sind in den Fig. 1 bis 6 jeweils die entsprechenden Koordinatenachsen x, y, z eingezeichnet.
Der Umkehrbogenabschnitt 3 wird dadurch erhalten, daß das anfängliche, geradlinige Flachrohrprofil einer gewünschten Breite b auf seiner halben Länge gehalten und beide Rohrhälften jeweils in einem 90° Winkel umgeschlagen werden, so daß sie parallel zueinander senkrecht zu ihrer ursprünglichen Längsrichtung verlaufen und auf diese Weise die beiden geradlinigen Rohrabschnitte 2a, 2b des fertigen Flachrohres 1 bilden. Der Biegevorgang erfolgt dergestalt, daß sich die beiden geradlinigen, in einer Ebene liegenden Rohrabschnitte 2a, 2b mit einem je nach Anwendungsfall wählbaren Abstand a gegenüberliegen, der vorzugsweise zwischen etwa 0,2mm und 20mm beträgt, während die Flachrohrbreite b typischerweise zwischen einem und einigen wenigen Zentimetern beträgt.
Während die geradlinigen Rohrabschnitte 2a, 2b auf der einen Seite über den Umkehrbogenabschnitt 3 miteinander verbunden sind, münden sie beide auf der gegenüberliegenden Seite in Form von tordierten Rohrenden 6a, 6b aus. Die Tordierung erfolge um die jeweilige Längsmittelachse 5a, 5b, alternativ auch um eine dazu parallele Längsachse, d.h. mit einem Querversatz bezüglich der Längsmittelachse, um einen beliebigen Winkel zwischen 0° und 90°, wobei im gezeigten Fall der Torsionswinkel ca. 60° beträgt, wie besonders deutlich aus Fig. 4 ersichtlich.
Aus Fig. 2 wird deutlich, daß aufgrund der geschilderten Bildung des Umkehrbogenabschnitts 3 die Flachrohrquerachse in diesem Bereich im wesentlichen parallel zur Ebene der geradlinigen Rohrabschnitte 2a, 2b bleibt, wie explizit anhand der gestrichelten Querachse 7 deutlich wird, welche die Quermittelachse des anfänglichen Flachrohr-Rohlings und damit auch des gefertigten, umgebogenen Flachrohrs 1 bildet und sich genau in der Mitte des Umkehrbogenabschnitts 3 befindet. Dies resultiert in einer nur geringen Höhe c, d.h. der Ausdehnung in der Stapelrichtung z, des Umkehrbogenabschnitts 3. Insbesondere bleibt diese Höhe c des Umkehrbogenabschnitts 3 deutlich kleiner als die Flachrohrbreite b. Dadurch können mehrere solche Flachrohre in einem Wärmeübertrager-Rohrblock mit einer Stapelhöhe übereinandergeschichtet werden, die deutlich kleiner gehalten werden kann als die Flachrohrbreite, wie die nachfolgend beschriebenen Wärmeübertragerbeispiele zeigen.
Dieser Vorteil wird in geringer werdendem Maße auch noch erreicht, wenn die Flachrohrquerachse über den Bereich des Umkehrbogenabschnitts 3 hinweg einen gewissen, spitzen Winkel mit der von den planen Rohrabschnitten 2a, 2b definierten Ebene einschließt, solange dieser Schrägwinkel einen Wert von ca. 45° nicht überschreitet. Eine weitere Modifikation des Flachrohres der Fig. 1 und 2 kann darin bestehen, daß die beiden planen Rohrabschnitte 2a, 2b nicht wie gezeigt in einer Ebene, sondern in zwei zueinander versetzten xy-Ebenen liegen oder aber der eine gegenüber dem anderen Rohrabschnitt um seine Längsachse um einen vorgebbaren Kippwinkel verdreht ist. In jedem Fall ist die Querrichtung y dadurch definiert, daß sie sowohl zur Längsrichtung x der geradlinigen Rohrabschnitte als auch zur Rohrblock-Stapelrichtung z senkrecht ist.
Die Fig. 3 und 4 zeigen einen Anwendungsfall für den Flachrohrtyp der Fig. 1 und 2 in Form eines Rohr-/Rippenblocks eines Verdampfers, wie er insbesondere in Kraftfahrzeug-Klimaanlagen verwendbar ist. Es versteht sich, daß sich der ausschnittweise gezeigte Wärmeübertrager je nach Auslegung auch für beliebige andere Wärmeübertragungszwecke einsetzen läßt. Wie aus Fig. 3 ersichtlich, beinhaltet dieser Verdampfer zwischen zwei endseitigen Deckblechen 9, 10 einen Stapel mehrerer Flachrohre 1 gemäß Fig. 1 und 2 mit zwischenliegenden, wärmeleitfähigen Wellrippen 8. Die Höhe der Wärmeleitrippen 8 entspricht ungefähr der Höhe c der Flachrohr-Umkehrbogenabschnitte 3 und ist damit deutlich kleiner als die Flachrohrbreite b.
Wie deutlicher aus Fig. 4 zu erkennen, wird durch die Verwendung des Flachrohres der Fig. 1 und 2 ein Rohr-Rippenblock mit in der Tiefe, d.h. in y-Richtung, zweiteiliger Struktur gebildet, wobei in jedem der beiden Blockteile jeweils die Rohrabschnitte mit gleicher Durchströmungsrichtung in der Stapelrichtung z übereinanderliegen. Zwischen den beiden Blockteilen ist ein dem Abstand a der beiden geradlinigen Rohrabschnitte 2a, 2b eines jeden Flachrohres 1 entsprechender Spalt gebildet. Die Wellrippen 8 erstrecken sich einteilig über die gesamte Flachrohrtiefe und damit auch über diesen Spalt hinweg, wobei sie zu beiden Seiten, d.h. an der Vorder- und an der Rückseite des Blocks, nach Bedarf überstehen können. Die Blockvorderseite ist hierbei dadurch definiert, daß sie von einem außenseitig über die Verdampferoberflächen hinweggeleiteten, zweiten Temperiermedium, z.B. zu kühlende Zuluft für einen Fahrzeuginnenraum, in der Rohrquerrichtung y, d.h. in Blocktiefenrichtung, angeströmt wird.
Wie aus Fig. 4 weiter ersichtlich, ist die Quererstreckung d der Flachrohrmündungsenden aufgrund ihrer Tordierung geringer als die Flachrohrbreite b. Dies erleichtert den Anschluß zweier zugehöriger, in den Fig. 3 und 4 nicht gezeigter Sammelkanäle. Denn diese können z.B. jeweils von einem Sammelkasten bzw. Sammelrohr gebildet sein, dessen Quererstreckung in y-Richtung nicht größer als die Flachrohrbreite b zu sein braucht und in seinem Durchmessser bei einem Torsionswinkel der Flachrohrenden von ca . 90° sogar nur noch wenig größer als die Flachrohrdicke zu sein braucht. Es ist daher problemlos möglich, zwei Sammelrohre auf der betreffenden Rohrblockseite nebeneinanderliegend in Stapelrichtung z verlaufend anzuordnen, um jeweils eines der beiden Enden jedes Flachrohres 1 aufzunehmen. Alternativ kann ein gemeinsames Sammelrohr für beide Stapelreihen der Rohrenden 6a, 6b vorgesehen sein, das mittels einer Längstrennwand in die zwei benötigten, getrennten Sammelkanäle unterteilt ist. Die im Beispiel gezeigte Tordierung der Rohrenden um ca. 60° ermöglicht es, daß das relativ enge Aufeinanderfolgen der einlagigen Flachrohre 1 im Stapel mit der besagten, gegenüber der Flachrohrbreite b geringeren Stapelhöhe c nicht behindert wird.
Es zeigt sich, daß der Verdampfer mit dem so gebildeten Rohr-/Rippenblock in kompakter Bauform und sehr druckstabil realisierbar ist und dabei einen hohen Wärmeübertragungs-Wirkungsgrad aufweist. Durch das Umbiegen der Flachrohre zu zwei in der Blocktiefe versetzten Rohrabschnitten 2a, 2b kann mit relativ schmalen' Flachrohren eine Wärmeübertragungsleistung erzielt werden, für die ansonsten mindestens etwa doppelt so breite, nicht gebogene Flachrohre erforderlich wären. Gleichzeitig wird durch die einmalige Flachrohrumlenkung erreicht, daß das durch das Rohrinnere hindurchzuführende Temperiermedium auf ein und derselben Rohrblockseite zu- und abgerührt werden kann, was in manchen Anwendungsfällen vorteilhaft ist.
In den Fig. 5 und 6 ist ein Ausführungsbeispiel in Serpentinenbauweise gezeigt. Die Ausschnittsansicht von Fig. 5 zeigt dabei eines von mehreren Serpentinen-Flachrohren 11, die zur Bildung des dortigen Serpentinenrohrblocks in beliebiger, gewünschter Anzahl übereinandergestapelt sind. Das hierfür verwendete Serpentinen-Flachrohr 11 ist weitgehend baugleich mit demjenigen der Fig. 1 und 2, mit der Ausnahme, daß sich beidseits des zu demjenigen der Fig. 1 und 2 gleichartigen Umkehrbogenabschnitts 3' jeweils nicht nur ein geradliniger, einlagiger Rohrabschnitt, sondern ein mehrfach serpentinenförmig gewundener Rohrschlangenabschnitt 12a, 12b anschließt, die sich somit wiederum in Blocktiefenrichtung um einen entsprechenden Spalt versetzt gegenüberstehen, wie aus Fig. 6 deutlicher zu ersehen. Die Serpentinenwindungen 13 des jeweiligen Rohrschlangenabschnitts 12a, 12b sind wie üblich durch Umbiegen des Flachrohrs an der betreffenden Stelle um die dortige Rohrquerachse um einen Winkel von 180° gebildet. Zwischen den einzelnen Rohrschlangenwindungen 13 sowie zwischen aufeinanderfolgenden Serpentinen-Flachrohren 11 sind wärmeleitfähige Wellrippen 14 durchgehend von der Blockvorderseite bis zur. Blockrückseite mit optionalem Überstand eingebracht. Es versteht sich, daß hier wie auch im Beispiel der Fig. 3 und 4 stattdessen je eine Wellrippenreihe für jeden der beiden in Blocktiefenrichtung versetzten Rohrblockreihen vorgesehen sein kann, wobei in diesem Fall auch der Spalt zwischen den beiden Blockreihen frei bleiben kann. Statt dieser hälftigen Teilung mit zwei gleich breiten Wellrippen können über die Rohrblocktiefe hinweg in jeder Wellrippenschicht selbstverständlich eine beliebige andere Anzahl von Wellrippen und/oder Wellrippen mit unterschiedlicher Breite eingesetzt werden, z.B. eine erste, sich über zwei Drittel der Rohrblocktiefe erstreckende und eine zweite, sich über das restliche Drittel der Rohrblocktiefe erstreckende Wellrippe. In jedem Fall begünstigt der Spalt die Kondenswasserabscheidung des Verdampfers.
Wie aus den Fig. 5 und 6 zu erkennen, entspricht auch in diesem Beispiel die Höhe der Wärmeleitrippen 14 und damit der Stapelabstand benachbarter, geradliniger Flachrohrabschnitte sowohl innerhalb eines Serpentinen-Flachrohres 11 als auch zwischen zwei benachbarten Seroentinen-Flachrohren in etwa der gegenüber der Flachrohrbreite b deutlich geringeren Höhe c des Umkehrbogenabschnitts 3'. Die in diesem Fall gewählte Tordierung der wiederum auf derselben Blockseite mündenden Flachrohrenden 15a, 15b von 90° kollidiert mit dieser geringen Stapelhöhe nicht, da die Serpentinen-Flachrohre aufgrund ihrer Rohrschlangenabschnitte 12a, 12b insgesamt jeweils eine gegenüber der Flachrohrbreite größere Höhe in Stapelrichtung z aufweisen. Die rechtwinklige Tordierung der Enden 15a, 15b um 90° ermöglicht, wie erwähnt, die Verwendung besonders schmaler Sammelkanäle bzw. diese bildende Sammelrohre. In Fig. 5 ist ein solches vorderseitiges Sammelrohr 16 dargestellt, in das die vordere Reihe der Flachrohrenden einmündet, während dieses sowie das parallel danebenliegende Sammelrohr für die hintere Reihe der Flachrohrenden in Fig. 6 der Übersichtlichkeit halber nicht dargestellt sind.
Im Unterschied zum Verdampfer in einlagiger Flachrohrbauweise gemäß den Fig. 3 und 4 befindet sich beim Verdampfer in Serpentinenbauweise der Fig. 5 und 6 der Umkehrbogenabschnitt 3' auf derselben Rohrblockseite wie die tordierten Rohrenden 15a, 15b. Durch die zwischenliegenden Serpentinenrohrschlangenwindungen 13 behindern sich die in Stapelrichtung aufeinanderfolgenden tordierten Rohrenden 15a, 15b und Umkehrbogenabschnitte 3' nicht.
Zu den beiden gezeigten Flachrohrgestaltungen sind zahlreiche weitere Alternativen möglich. So kann das Flachrohr zwei oder mehr Umkehrbogenabschnitte und dementsprechende Umlenkungen aufweisen. Ein Beispiel mit zwei aufeinanderfolgenden Umkehrbogenabschnitten 17, 18 ist schematisch anhand des zugehörigen Durchströmungspfades in Fig. 7 dargestellt. Vom einen Flachrohrende 19 erstreckt sich ein erster geradliniger Rohrabschnitt 20 zum gegenüberliegenden ersten Umkehrbogenabschnitt 17, wo er in einen zurückkehrenden, zweiten geradlinigen Flachrohrabschnitt 21 übergeht, der am wiederum gegenüberliegenden zweiten Umkehrbogenabschnitt 18 in einen dritten geradlinigen Rohrabschnitt 22 übergeht, der sich zum anderen Flachrohrende 23 erstreckt. Dieses Flachrohr eignet sich somit zum Aufbau eines in der Blocktiefe dreiteiligen Wärmeübertrager-Rohrblocks in einlagiger Bauweise, d.h. die geradlinigen Rohrabschnitte 20, 21, 22 befinden sich im wesentlichen in einer Blockebene. Die beiden Enden 19, 23 jedes Flachrohrs münden dabei an gegenüberliegenden Blockseiten, an denen somit je ein Sammelrohr anzuordnen ist. Pro weiterem, möglichem Umkehrbogenabschnitt kommt ein zusätzlicher geradliniger Flachrohrabschnitt in der Blocktiefenrichtung hinzu, und außerdem wechselt jeweils die Lage des einen zum anderen Flachrohrende und damit die Positionierung der beiden zugehörigen Sammelkanäle zwischen einer gleichseitigen und einer sich gegenüberliegenden Position.
In entsprechender Weise kann auch das Serpentinen-Flachrohr 11 von Fig. 5 dahingehend modifiziert werden, daß durch mindestens eine weitere Serpentinenwindung im einen und/oder im anderen Serpentinenrohrabschnitt das betreffende Flachrohrende auf der dem Umkehrbogenabschnitt gegenüberliegenden Blockseite zu liegen kommt. In einer weiteren Realisierung kann ein Serpentinen-Flachrohr der Art von Fig. 5, jedoch mit einem oder mehreren zusätzlichen Umkehrbogenabschnitten vorgesehen sein, um damit analog z.B. von Fig. 7 einen in Blocktiefenrichtung mindestens dreiteiligen Rohrblock für einen Serpentinen-Wärmeübertrager aufzubauen. Je nach Anwendungsfall können die Flachrohrenden auch untordiert belassen werden.
In denjenigen Ausführungsbeispielen, in denen die Flachrohrenden auf derselben Blockseite ausmünden, kann statt zweier Sammelrohre oder eines gemeinsamen Sammelrohrs, in das bei der Herstellung eine Längstrennwand separat eingebracht wird, ein Zweikammer-Sammelrohr verwendet werden, welches bereits im Fertigungsstadium zwei getrennte, längsverlaufende Hohlkammern aufweist. Ein solches Sammelrohr 24 ist im Querschnitt in Fig. 8 dargestellt. Es ist aus einem extrudierten Profil gefertigt und beinhaltet integral zwei voneinander getrennte Längskammern 25, 26, welche die Sammelkanäle für den betreffenden Wärmeübertrager bilden. Dazu sind, wie auch in den anderen Sammelrohrausführungen, geeignete umfangsseitige Schlitze in das Sammelrohr 24 einzubringen, in welche die Flachrohrenden dicht eingefügt werden.
Je nach Wärmeübertragertyp können zudem Sammelrohre verwendet werden, die mittels entsprechender Querwände mehrere, in der Blockhochrichtung z voneinander getrennte Sammelkanäle beinhalten. Dadurch werden die Flachrohre im Rohrblock zu mehreren Gruppen derart zusammengefaßt, daß die Rohre einer Gruppe parallel und die verschiedenen Rohrgruppen seriell durchströmt werden. Ein zugeführtes Temperiermedium strömt von einem eintrittsseitigen Sammelkanal in die Gruppe der dort mündenden Flachrohre und gelangt dann an deren anderem Ende in einen als Umlenkraum fungierenden Sammelkanal, in den neben dieser ersten Gruppe eine zweite Flachrohrgruppe einmündet, in die das Temperiermedium dann umgelenkt wird. Dies kann durch entsprechende Positionierung der Querwände in einem oder beiden Sammelrohren in beliebiger Weise bis zu einem austrittsseitigen Sammelkanal fortgesetzt werden, über den das Temperiermedium dann den Rohrblock verläßt.
Die obige Beschreibung verschiedener Ausführungsbeispiele zeigt, daß sich mit den erfindungsgemäßen Flachrohren sehr kompakte, druckstabile Flachrohrblöcke in einlagiger Bauweise oder Serpentinenbauweise mit hohem Wärmeübertragungsvermögen herstellen lassen. Damit hergestellte Wärmeübertrager eignen sich z.B. auch für mit vergleichsweise hohem Druck arbeitende CO2-Klimaanlagen, wie sie zunehmend für Kraftfahrzeuge in Betracht gezogen werden.
In Fig. 9 und Fig. 10 wird die Ausgestaltung des Umkehrbogenabschnittes zur Verdeutlichung in Draufsicht und Seitenansicht dargestellt.
Es wird klargestellt, wo und wie der Winkel im Bereich des Umkehrbogenabschnitts (3) zur Flachrohrquerachse (7) gemessen werden soll.
Die Darstellung des Umkehrbogenabschnitts (3) aus Fig. 1 wird in den Figuren 9 und 10 technisch exakt präzisiert. Insbesondere ist klarzustellen, dass die Flachrohrquerachse im Bereich des Umkehrbogenabschnitts (3) einer geraden Linie entspricht.
Im Folgenden wird zur Veranschaulichung des Bereichs des erfindungsgemäßen Gegenstandes dieser in den zwei Extremdarstellungen, einmal mit einem Winkel a1 von 0° und einmal mit einem Winkel a3 von 45° sowie einer Darstellung bei einem Winkel a2 von ca. 30°, dargestellt.
In Fig. 9 und Fig. 10 sind diese drei Fallvarianten jeweils durch die Indizierung 1 bis 3 angezeigt. Die Fallvariante 1 stellt dabei die bereits in Fig. 1 und Fig. 2 skizzierte Lösung dar, nach welcher der Winkel a1 = 0° beträgt.
Bei dieser ersten Realisierung der Erfindung wird das Flachrohr durch Biegung entlang einer Geraden (G1) mit einem Winkel von 45° zur Längsachse (5) des Flachrohres und im rechten Winkel mit Bezug auf die Längsachse (5) umgelenkt, und nach einer abermaligen Umlenkung im Winkel von 90° mit Bezug auf die Längsachse (5) verläuft das Flachrohr dann in entgegengesetzter Richtung aus dem Umkehrbogenabschnitt (3) heraus.
Die sich ergebende Außenkontur ist charakterisiert durch den Winkel von 45°, mit welchem sich in der Draufsicht gemäß Fig. 9 die Biegekante (G1) im Verhältnis zur Längsachse (5) darstellen lässt.
Folgt man der Außenkante des Flachrohres, so verläuft diese zunächst waagerecht und anschließend im rechten Winkel dazu senkrecht nach unten, um wiederum waagerecht dazu in entgegengesetzter Richtung aus dem Umkehrbogenabschnitt (3) herauszulaufen.
In Fig. 10 ist dazu die Seitenansicht des Flachrohrs dargestellt, welche der Ansicht des linken Teils von Fig. 2 entspricht. Dabei nimmt der Winkel im Umkehrbogenabschnitt, mit α1 bezeichnet, die Größe von 0° ein. Dies entspricht der Parallelverschiebung durch Biegung und erneuter Parallelverschiebung nach erneuter Biegung in die Ebene des ursprünglichen Flachrohrquerschnitts (7).
Die sich ergebende Höhe C1 ist dabei erfindungsgemäß im Minimum praktisch die doppelte Dicke des Flachrohres.
Das andere erfindungsgemäß offenbarte Extrem des in Fig. 10 mit α3 bezeichneten Winkels von 45° wird erreicht, indem der Umkehrbogenabschnitt 3.3 in Fig. 9 vergrößert wird, wobei die Konturlinie U3 im Umkehrbogenabschnitt eine relativ stark gekrümmte Linie ausbildet, im Gegensatz zur als Geraden U1 bei einem Winkel α1 von 0° ausgebildeten Linie.
Die Darstellung in Fig. 10 zeigt die Seitenansicht und verdeutlicht den Verlauf des Flachrohrs, welches im Unterschied zur Ausführung mit α1 = 0° nicht so stark geknickt wird, was zur Folge hat, dass die Strömungsbeeinflussung in den einzelnen Kanälen des Flachrohres weniger stark ist.
Weniger vorteilhaft ist an dieser Ausgestaltung, dass die Höhe c3 des Umkehrbogenabschnittes nach Fig. 10 damit maximal ist.
Die Darstellung eines zwischen α1 und α3 liegenden Winkels α2 ist in Fig. 9 mit dem Umkehrbogenabschnitt 3.2 skizziert, wobei die Konturlinie U2 weniger stark gekrümmt ist als die Konturlinie U3, jedoch nicht eine Gerade darstellt, wie die Konturlinie U1. Folglich ist gemäß Fig. 10 die Höhe c2 zwischen der Höhe C1 und der Höhe C3 anzusiedeln.
Betrachtet man nun diese drei erfindungsgemäßen Ausgestaltungen, so wird in der Draufsicht in Fig. 9 deutlich, dass streng genommen, die Konturen in der Draufsicht im Bereich des Umkehrbogenabschnitts 3 jeweils Geraden darstellen, welche klar und eindeutig durch ihren Winkel zu einer Ebene charakterisiert werden können.
Die Darstellung in Fig. 9 folgt der theoretischen Vorstellung, dass beim Formvorgang des Umkehrbogenabschnitts (3) eine torsionsähnliche Verformung um die in Fig. 9 dargestellte innere Konturlinie des Flachrohrs ausgeführt wird. Betrachtet man die entstehende Geometrie differenziell, so bleibt die Flachrohrquerachse (7) immer eine Gerade.
Der Winkel der Geraden bzw. der Flachrohrquerachse (7) lässt sich somit korrekt jederzeit zur x/y-Ebene (2a, b) bestimmen. Gleichfalls korrekt formuliert lässt sich unter der theoretischen Annahme der Flachrohrquerachse (7) als Geraden der Winkel einer beliebigen differenziellen Flachrohrquerachse (7) exakt zu einer zur Stapelrichtung z senkrechten Ebene in dem angegebenen Winkelbereich von 0 bis 45° bestimmen.
Die obige Beschreibung verschiedener Ausführungsbeispiele zeigt, daß sich mit den erfindungsgemäßen Flachrohren sehr kompakte, druckstabile Flachrohrblöcke in einlagiger Bauweise oder Serpentinenbauweise mit hohem Wärmeübertragungsvermögen herstellen lassen. Damit hergestellte Wärmeübertrager eignen sich z.B. auch für mit vergleichsweise hohem Druck arbeitende CO2-Klimaanlagen, wie sie zunehmend für Kraftfahrzeuge in Betracht gezogen werden.

Claims (10)

  1. Flachrohr für einen Wärmeübertrager-Rohrblock, insbesondere für einen Rohrblock eines Verdampfers einer Kraftfahrzeug-Klimaanlage, mit
    wenigstens einem Umkehrbogenabschnitt (3), in welchem es derart umgebogen ist, daß seine beiden daran anschließenden, planen Rohrabschnitte (2a, 2b) in Längsrichtung mit entgegengesetzten Durchströmungsrichtungen (4a, 4b) und mit gegeneinander mindestens in Querrichtung (y) versetzten Längsachsen (5a, 5b) verlaufen,
    dadurch gekennzeichnet, daß
    der Umkehrbogenabschnitt (3) dergestalt gebildet ist, daß in diesem Bereich die Flachrohrquerachse (7) einen Winkel von höchstens 45° mit einer zur Längsrichtung (x) und Querrichtung (y) parallelen, zu einer Stapelrichtung (z) senkrechten Ebene einschließt.
  2. Flachrohr nach Anspruch 1, weiter dadurch gekennzeichnet, daß die beiden, an den Umkehrbogenabschnitt (3) anschließenden, planen Rohrabschnitte (2a, 2b) in einer gemeinsamen oder in zueinander parallelen Ebenen senkrecht zur Stapelrichtung (z) liegend oder gegeneinander um einen vorgebbaren Kippwinkel um eine Längsachse verdreht angeordnet sind, bevorzugt mit einem Abstand in Querrichtung (y) zwischen 0,2mm und 20mm.
  3. Flachrohr nach Anspruch 1 oder 2, weiter dadurch gekennzeichnet, daß mindestens einer seiner beiden, über den Umkehrbogenabschnitt (3') miteinander verbundenen Teile eine in Stapelrichtung (z) gewundene Rohrserpentine (12a, 12b) bildet.
  4. Flachrohr nach einem der Ansprüche 1 bis 3, weiter dadurch gekennzeichnet, daß seine beiden Enden auf derselben oder auf gegenüberliegenden Seiten liegen und wenigstens eines der beiden Rohrenden um einen Winkel zwischen 0° und 90° tordiert ist.
  5. Flachrohr-Wärmeübertrager, insbesondere Verdampfer für eine Kraftfahrzeug-Klimaanlage, mit
    einem Rohrblock mit einem oder mehreren in einer Stapelrichtung (z) übereinandergestapelten-Flachrohren und
    seitlich am Rohrblock entlang der Stapelrichtung (z) verlaufend angeordneten Sammelkanälen, in welche die Flachrohre mit je einem Ende münden,
    dadurch gekennzeichnet, daß
    der Rohrblock ein oder mehrere Flachrohre (1, 11) nach einem der Ansprüche 1 bis 4 beinhaltet.
  6. Flachrohr-Wärmeübertrager nach Anspruch 5, weiter dadurch gekennzeichnet, daß die Enden (19, 23) eines jeden Flachrohrs und die zugehörigen Sammelkanäle auf gegenüberliegenden Rohrblockseiten liegen.
  7. Flachrohr-Wärmeübertrager nach Anspruch 5, weiter dadurch gekennzeichnet, daß die Enden (6a, 6b; 15a, 15b) eines jeden Flachrohrs und die zugehörigen Sammelkanäle in Rohrblocktiefenrichtung (y) versetzt auf derselben Rohrblockseite liegen.
  8. Flachrohr-Wärmeübertrager nach Anspruch 7, weiter dadurch gekennzeichnet, daß die Sammelkanäle von zwei separaten Sammelrohren oder einem gemeinsamen, mit einer Längstrennwand versehenen Sammelrohr oder von einem gemeinsamen, aus einem extrudierten Rohrprofil mit zwei getrennten Hohlkammern (25, 26) gefertigten Sammelrohr (24) gebildet sind.
  9. Flachrohr-Wärmeübertrager nach einem der Ansprüche 5 bis 8, weiter dadurch gekennzeichnet, daß wenigstens ein Sammelrohr durch Quertrennwände in mehrere, in Blockhochrichtung (z) getrennte Sammelkanäle unterteilt ist.
  10. Flachrohr-Wärmeübertrager nach einem der Ansprüche 5 bis 9, weiter gekennzeichnet durch zwischen geradlinigen, in Stapelrichtung (z) benachbarten Abschnitten der Flachrohre (1, 11) eingefügte wellrippen (8, 14), wobei in der jeweiligen Wellrippenschicht eine sich über die gesamte Rohrblocktiefe erstreckende Wellrippe oder mehrere, in Rohrblocktiefenrichtung (y) nebeneinanderliegende Wellrippen gleicher oder unterschiedlicher Breite vorgesehen sind.
EP99945947A 1998-07-10 1999-07-09 Flachrohr mit querversatz-umkehrbogenabschnitt und damit aufgebauter wärmeübertrager Expired - Lifetime EP1036296B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19830863 1998-07-10
DE19830863A DE19830863A1 (de) 1998-07-10 1998-07-10 Flachrohr mit Querversatz-Umkehrbogenabschnitt und damit aufgebauter Wärmeübertrager
PCT/DE1999/002125 WO2000003190A1 (de) 1998-07-10 1999-07-09 Flachrohr mit querversatz-umkehrbogenabschnitt und damit aufgebauter wärmeübertrager

Publications (2)

Publication Number Publication Date
EP1036296A1 EP1036296A1 (de) 2000-09-20
EP1036296B1 true EP1036296B1 (de) 2004-01-02

Family

ID=7873567

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99945947A Expired - Lifetime EP1036296B1 (de) 1998-07-10 1999-07-09 Flachrohr mit querversatz-umkehrbogenabschnitt und damit aufgebauter wärmeübertrager

Country Status (6)

Country Link
US (1) US6546999B1 (de)
EP (1) EP1036296B1 (de)
JP (1) JP2002520570A (de)
AU (1) AU5849199A (de)
DE (1) DE19830863A1 (de)
WO (1) WO2000003190A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006018688A1 (de) * 2006-04-13 2007-10-18 Visteon Global Technologies Inc., Van Buren Verfahren zum Biegen von Flachrohren für Wärmeübertrager und gebogenes Flachrohr
DE102009047620C5 (de) 2009-12-08 2023-01-19 Hanon Systems Wärmeübertrager mit Rohrbündel

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10146824A1 (de) * 2001-09-18 2003-04-24 Behr Gmbh & Co Wärmeübertrager-Flachrohrblock mit umgeformten Flachrohrenden
EP1452814A4 (de) * 2001-11-08 2008-09-10 Zexel Valeo Climate Contr Corp Wärmetauscher und rohr für wärmetauscher
US20030102113A1 (en) * 2001-11-30 2003-06-05 Stephen Memory Heat exchanger for providing supercritical cooling of a working fluid in a transcritical cooling cycle
JP4121085B2 (ja) * 2001-12-21 2008-07-16 ベール ゲーエムベーハー ウント コー カーゲー 特に自動車用の熱交換器
CN100533043C (zh) * 2002-07-26 2009-08-26 贝洱两合公司 热交换装置
EP1527310A2 (de) 2002-07-26 2005-05-04 Behr GmbH & Co. Vorrichtung zum austausch von w rme
BR0316006A (pt) * 2002-11-07 2005-09-13 Behr Gmbh & Co Kg Trocador de calor
DE10306848A1 (de) 2003-02-18 2004-08-26 Behr Gmbh & Co. Kg Flachrohr mit Umkehrbogenabschnitt und damit aufgebauter Wärmeübertrager
DE10351138B4 (de) * 2003-11-03 2005-10-06 Daimlerchrysler Ag Verfahren zur Herstellung eines länglichen hohlen Bauteils mit einem Anlagebauteil
JP2005188849A (ja) * 2003-12-26 2005-07-14 Zexel Valeo Climate Control Corp 熱交換器
DE102004002252B4 (de) * 2004-01-08 2006-10-26 Visteon Global Technologies, Inc., Dearborn Wärmeübertrager für Fahrzeuge
US7322404B2 (en) * 2004-02-18 2008-01-29 Renewability Energy Inc. Helical coil-on-tube heat exchanger
US7281387B2 (en) * 2004-04-29 2007-10-16 Carrier Commercial Refrigeration Inc. Foul-resistant condenser using microchannel tubing
US7104314B2 (en) * 2004-06-29 2006-09-12 Modine Manufacturing Company Multi-pass heat exchanger
US7874349B2 (en) * 2006-03-16 2011-01-25 Visteon Global Technologies, Inc. Heat exchanger tank
FR2899959B1 (fr) * 2006-04-14 2008-08-08 Valeo Systemes Thermiques Echangeur de chaleur ameliore et module d'echange de chaleur comportant un tel echangeur
US7921904B2 (en) * 2007-01-23 2011-04-12 Modine Manufacturing Company Heat exchanger and method
US8480651B2 (en) 2007-08-02 2013-07-09 Covidien Lp Cannula system
JP2009216315A (ja) * 2008-03-11 2009-09-24 Showa Denko Kk 熱交換器
CN101850391B (zh) * 2009-03-31 2012-07-04 三花丹佛斯(杭州)微通道换热器有限公司 扁管加工方法及扁管、热交换器加工方法及热交换器
ATE554361T1 (de) * 2009-04-28 2012-05-15 Abb Research Ltd Wärmerohr mit gewundenem rohr
EP2246654B1 (de) * 2009-04-29 2013-12-11 ABB Research Ltd. Mehrreihiger Thermosyphon-Wärmetauscher
WO2010150747A1 (ja) * 2009-06-22 2010-12-29 株式会社明電舎 ヒートシンク
JP2011099630A (ja) * 2009-11-06 2011-05-19 Mitsubishi Electric Corp 熱交換器及びこの熱交換器を用いた冷蔵庫、空気調和機
DE102010032899A1 (de) * 2010-07-30 2012-02-02 Valeo Klimasysteme Gmbh Kühlvorrichtung für eine Fahrzeugbatterie sowie Fahrzeugbatteriebaugruppe mit einer solchen Kühlvorrichtung
CN201945091U (zh) * 2010-11-18 2011-08-24 三花丹佛斯(杭州)微通道换热器有限公司 一种换热器
DE102012222664A1 (de) * 2012-08-09 2014-03-06 Behr Gmbh & Co. Kg Kondensator
US9733024B2 (en) * 2012-11-30 2017-08-15 Carlos Quesada Saborio Tubing element with fins for a heat exchanger
US9341418B2 (en) * 2013-03-01 2016-05-17 International Business Machines Corporation Thermal transfer structure with in-plane tube lengths and out-of-plane tube bend(s)
US9891007B2 (en) * 2013-03-21 2018-02-13 Sanhua (Hangzhou) Micro Channel Heat Exchanger Co., Ltd. Bent heat exchanger and method for manufacturing the same
US10247482B2 (en) 2013-12-13 2019-04-02 Hangzhou Sanhua Research Institute Co., Ltd. Bent heat exchanger and method for bending the heat exchanger
DE102014206612A1 (de) * 2014-04-04 2015-10-29 Mahle International Gmbh Wärmetauscher
ES2826524T3 (es) * 2014-11-25 2021-05-18 Sapa As Diseño de tubería de Extrusión de Múltiples Puertos
US10619932B2 (en) 2015-10-23 2020-04-14 Hyfra Industriekuhlanlagen Gmbh System for cooling a fluid with a microchannel evaporator
US11193715B2 (en) * 2015-10-23 2021-12-07 Hyfra Industriekuhlanlagen Gmbh Method and system for cooling a fluid with a microchannel evaporator
CN106642826B (zh) * 2015-10-28 2019-04-19 丹佛斯微通道换热器(嘉兴)有限公司 换热器
CA3038059A1 (en) 2016-08-26 2018-03-01 Inertech Ip Llc Cooling systems and methods using single-phase fluid and a flat tube heat exchanger with counter-flow circuiting
EP3653950A4 (de) * 2017-07-13 2020-11-25 Hangzhou Sanhua Research Institute Co., Ltd. Wärmetauscher
KR20190032106A (ko) * 2017-09-19 2019-03-27 엘지전자 주식회사 냉장고용 응축기
US11226139B2 (en) 2019-04-09 2022-01-18 Hyfra Industriekuhlanlagen Gmbh Reversible flow evaporator system
US20220221226A1 (en) * 2021-01-13 2022-07-14 Mahle International Gmbh Flat tube and heat exchanger

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3273227A (en) * 1963-06-12 1966-09-20 Olin Mathieson Fabrication of heat exchange devices
US3416600A (en) * 1967-01-23 1968-12-17 Whirlpool Co Heat exchanger having twisted multiple passage tubes
US4217953A (en) * 1976-03-09 1980-08-19 Nihon Radiator Co. Ltd. (Nihon Rajiecta Kabushiki Kaisha) Parallel flow type evaporator
DE2907810C2 (de) * 1979-02-28 1985-07-04 MTU Motoren- und Turbinen-Union München GmbH, 8000 München Wärmetauscher zur Führung von Gasen stark unterschiedlicher Temperaturen
IT1234289B (it) * 1989-06-14 1992-05-14 Piemontese Radiatori Perfezionamenti apportati ad uno scambiatore di calore a tubi appiattiti
US5036909A (en) * 1989-06-22 1991-08-06 General Motors Corporation Multiple serpentine tube heat exchanger
US5099576A (en) * 1989-08-29 1992-03-31 Sanden Corporation Heat exchanger and method for manufacturing the heat exchanger
JPH04177094A (ja) * 1990-11-13 1992-06-24 Sanden Corp 積層型熱交換器
US5314013A (en) * 1991-03-15 1994-05-24 Sanden Corporation Heat exchanger
FR2712966B1 (fr) 1993-11-24 1996-01-19 Valeo Thermique Moteur Sa Echangeur de chaleur à tubes plats, en particulier pour véhicule automobile.
JP3305460B2 (ja) 1993-11-24 2002-07-22 昭和電工株式会社 熱交換器
IT1272091B (it) * 1993-12-20 1997-06-11 Borletti Climatizzazione Procedimento per la piegatura di un tubo a sezione trasversale oblunga e scambiatore di calore con tubi a sezione oblunga piegati a u
JPH09137245A (ja) * 1995-11-09 1997-05-27 Denso Corp 熱交換器用アルミニウム管体および該アルミニウム管体を使用したアルミニウム製熱交換器
EP0845648B1 (de) * 1996-11-27 2002-01-30 Behr GmbH & Co. Flachrohr-Wärmeübertrager, insbesondere Kondensator vom Serpentinentyp
DE19729497A1 (de) * 1997-07-10 1999-01-14 Behr Gmbh & Co Flachrohr-Wärmeübertrager

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006018688A1 (de) * 2006-04-13 2007-10-18 Visteon Global Technologies Inc., Van Buren Verfahren zum Biegen von Flachrohren für Wärmeübertrager und gebogenes Flachrohr
DE102006018688B4 (de) * 2006-04-13 2009-08-27 Visteon Global Technologies Inc., Van Buren Verfahren zum Biegen von Multiportrohren für Wärmeübertrager
DE102009047620C5 (de) 2009-12-08 2023-01-19 Hanon Systems Wärmeübertrager mit Rohrbündel

Also Published As

Publication number Publication date
DE19830863A1 (de) 2000-01-13
WO2000003190A1 (de) 2000-01-20
AU5849199A (en) 2000-02-01
US6546999B1 (en) 2003-04-15
JP2002520570A (ja) 2002-07-09
EP1036296A1 (de) 2000-09-20

Similar Documents

Publication Publication Date Title
EP1036296B1 (de) Flachrohr mit querversatz-umkehrbogenabschnitt und damit aufgebauter wärmeübertrager
EP1042641B1 (de) Wärmeübertragender rohrblock und dafür verwendbares mehrkammer-flachrohr
EP0519334B1 (de) Flachrohrwärmetauscher, Herstellungsverfahren desselben, Anwendungen und Flachrohre zum Einbau in den Flachrohrwärmetauscher
EP0401752B1 (de) Verflüssiger für ein Kältemittel einer Fahrzeugklimaanlage
EP0845647B1 (de) Flachrohr-Wärmeübertrager mit tordiertem Flachrohrendabschnitt
WO1998050745A1 (de) Zweiflutiger und in luftrichtung einreihiger hartverlöteter flachrohrverdampfer für eine kraftfahrzeugklimaanlage
EP0917638A1 (de) Verteil-/sammel-kasten eines mindestens zweiflutigen verdampfers einer kraftfahrzeugklimaanlage
EP1203922A2 (de) Kondensator und Rohr dafür
DE10257767A1 (de) Wärmeübertrager
EP1597529B1 (de) Flachrohr mit umkehrbogenabschnitt und damit aufgebauter w r me bertrager
EP0566899A1 (de) Wärmetauscher, insbesondere Verdampfer
EP1411310B1 (de) Wärmeübertrager in Serpentinenbauweise
DE19719259A1 (de) Flachrohrwärmetauscher für Kraftfahrzeuge mit an Krägen eines Rohrbodens gehaltenen Flachrohren
DE19719257C2 (de) Sammelkasten eines Verdampfers in Flachrohr- oder Plattenbauweise für eine Kraftfahrzeugklimaanlage und Herstellungsverfahren
EP1588115B1 (de) Wärmeübertrager, insbesondere gaskühler
WO2004048875A1 (de) Wärmeübertrager
EP3001130A1 (de) Heizkörper, kühlkreislauf, klimagerät für eine kraftfahrzeug-klimaanlage sowie klimaanlage für ein kraftfahrzeug
EP1166025B1 (de) Mehrblock-wärmeübertrager
EP1248063B1 (de) Wärmeübertrager
DE202019103964U1 (de) Wärmeaustauscher
EP0451507A1 (de) Wärmetauscher
DE19616034C2 (de) Wärmetauscher zur Wetterkühlung in Arbeitsbereichen des Berg- und Tunnelbaus

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20020313

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): ES FR GB IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20040102

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040102

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040413

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041005

EN Fr: translation not filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050627

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060709

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060709