EP1166025B1 - Mehrblock-wärmeübertrager - Google Patents

Mehrblock-wärmeübertrager Download PDF

Info

Publication number
EP1166025B1
EP1166025B1 EP00915170A EP00915170A EP1166025B1 EP 1166025 B1 EP1166025 B1 EP 1166025B1 EP 00915170 A EP00915170 A EP 00915170A EP 00915170 A EP00915170 A EP 00915170A EP 1166025 B1 EP1166025 B1 EP 1166025B1
Authority
EP
European Patent Office
Prior art keywords
tube
collecting
heat exchanger
heat
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00915170A
Other languages
English (en)
French (fr)
Other versions
EP1166025A1 (de
Inventor
Karl-Heinz Staffa
Hans-Joachim Krauss
Hagen Mittelstrass
Christoph Walter
Bernd Dienhart
Jochen Schumm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Publication of EP1166025A1 publication Critical patent/EP1166025A1/de
Application granted granted Critical
Publication of EP1166025B1 publication Critical patent/EP1166025B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0243Header boxes having a circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0089Oil coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2270/00Thermal insulation; Thermal decoupling

Definitions

  • the invention relates to a multi-block heat exchanger According to the preamble of claim 1.
  • a multi-block - heat exchanger is known from document DE-A-195 36 116.
  • the single ones Heat exchanger units each include one Block of heat exchanger tubes and can of different Heat transfer media are flowed through these, e.g. With a rohrau finish section passed over the pipe blocks To bring air flow into thermal contact.
  • Such a multi-block heat exchanger is suitable e.g. as a combined oil cooler and condenser / gas cooler in motor vehicles. With the oil cooler heat exchanger unit can be circulating in an oil circuit Operating oil, e.g. a motor vehicle transmission, cooled while in the condenser or gas cooler heat exchanger unit a high pressure side refrigerant a Automotive air conditioning condensed or cooled can.
  • A1 multi-block heat exchanger is in a lateral recess of a first Tube block of a first heat exchanger unit between lateral collecting containers the same a second block of pipes together with lateral collecting containers received a further heat exchanger unit, wherein the second tube block to an adjacent end wall of the first tube block is welded.
  • a heat exchanger is known in which in a Collection tube partitions are arranged, which are obtained by the Collecting tube of individual cup-like, rocksteckbaren sections is composed of a bottom of the sections and the respective partition forms.
  • the invention is a technical problem to provide a multi-block heat exchanger based on the type mentioned, in which relatively little effort on a first heat exchanger unit at least a further heat exchanger unit of flexible construction thermally largely decoupled is grown.
  • the invention solves this problem by providing a multi-block heat exchanger with the features of claim 1.
  • this heat exchanger are the tube blocks of the various heat exchanger units each provided with their own manifolds, which in particular the Use of manifolds with different sizes of cross sections for the allows individual pipe blocks.
  • Two heat exchanger units each are at least about a front header connection connected by the two involved Collecting tubes frontally nested and fluid-tight are connected.
  • the headers are for this purpose in this front end Area designed so that the outer cross section of the inserted collecting tube essentially the inner cross section of the encompassing manifold corresponds.
  • An im Pipe joint area provided transverse partition wall holds the The collection rooms belonging to the two collecting pipes are separated from each other.
  • This type of integration of two or more heat exchanger units in a common unit has the Advantage that in a flexible manner different heat transfer units assembled to a multi-block heat exchanger can be, i. to a given first heat exchanger unit can be optionally various other heat transfer units plant.
  • multi-block heat exchanger own the two headers of two assembled Heat exchanger units of different sizes Cross sections in their central region, in which each of the Open pipes of the associated pipe block.
  • the manifold connection to realize is the manifold with the larger central area cross-section in the corresponding frontal Connection area on a smaller cross-section tapered, which then just enough, the manifold with the take smaller cross section.
  • the frontally tapered Manifold is relatively easy through a retractable, Hammering or Aufweithabilit or manufactured as extruded part.
  • multi-block heat exchanger is in the pipe connection area of the two assembled collecting pipes, the outer manifold at his Inside and / or the inner manifold on its outside solder-plated.
  • a further developed according to claim 4 heat exchanger includes at least two pipe blocks, juxtaposed in block height direction are arranged. Between the opposite, each on this page last pipes of the respective pipe block are at least two heat-conducting ribs and / or an air gap and / or a thermal insulating block end wall, so that these two heat exchanger tubes as needed largely thermally from each other can be decoupled.
  • heat exchanger are at least two heat exchanger units in the block depth direction, i.e. in the to the levels of the pipe blocks vertical direction, offset pipe blocks provided.
  • a further developed according to claim 6 multi-block heat exchanger includes at least three heat exchanger units with associated pipe blocks, wherein on the same side of a first heat transfer unit two more heat transfer units in the longitudinal direction of the heat exchanger tubes next to each other are arranged.
  • the essentially of the total length the heat exchanger tubes certain total width of the two further heat exchanger units is preferably selected that it is approximately the width of the third heat exchanger unit corresponds, so that a total of one unit across the areas of the various heat exchanger units is formed approximately constant dimensions.
  • This also facilitates the connection of each manifold the two other heat transfer units with a manifold the first heat exchanger unit, since the one with each other connected collecting pipes in this case largely coaxial with each other lie.
  • this heat exchanger are according to claim 7, the two facing each other Collecting chambers of the two other heat transfer units in a compact way in a common manifold with integrated longitudinal partition.
  • the cross section of the manifold of at least one of the heat exchanger units is chosen smaller than the width of the flat tubes used to build the associated tube block.
  • the first heat exchanger unit associated tube / rib block 1 consists of several, in block height successive serpentine flat tubes 3. Furthermore, this heat exchanger unit has two along opposite block sides in Block Hochhalle extending manifolds 4, 5 on. each Flat tube 3 opens with one end 3a, 3b in the two Manifolds, 4, 5, of which thus depending on the direction of flow one for parallel distribution of a supplied heat transfer medium on the different serpentine flat tubes 3 and the other for collecting this heat transfer medium serves as it emerges from the serpentine flat tubes.
  • the serpentine flat tubes 3 are each with facing each other on the entrance side areas and each other facing side-facing areas next to each other, to unwanted heat transfer effects between an entrance side Area of one and one exit side Area of the adjacent serpentine flat pipe 3 to avoid. Between adjacent serpentine flat tubes 3 as well as between the individual turns of each serpentine flat tube 3 thermally conductive corrugated fins 16 are introduced.
  • the various corrugated ribs are here for clarity in Fig. 1 as well as in Figs. 3, 5 and 6 only to a small Part explicitly reproduced.
  • the two manifolds 4, 5 of this first heat exchanger unit are made with a relatively small outer diameter, in particular smaller than the width of the used Serpentine flat tubes 3. For this reason, the flat tube ends 3a, 3b with respect to the flat tube center region by 90 ° the flat tube longitudinal axis twisted into the manifolds 4, 5 inserted.
  • the tube / fin block 2 of the other heat exchanger unit is constructed of straight flat tubes 6, wherein to both Side of each straight flat tube 6 each have a heat conducting Corrugated rib 7 is provided.
  • the straight-line flat tubes 6 lead in turn on opposite block sides in each one there collection manifold 8, 9.
  • These two manifolds 8, 9 have to those of the other heat exchanger unit a larger outer and inner diameter, wherein the Inner diameter in particular chosen to be sufficiently large is that the rectilinear flat tubes 6 with not twisted Ends which extend transversely to the collection tube longitudinal axis, in corresponding Transverse slots of the manifolds 8, 9 are inserted.
  • the two tube / rib blocks 1, 2 are to form a common, compact unit arranged such that the rectilinear flat tubes 6 parallel to the rectilinear sections the serpentine flat tubes 3 run and the two nearest adjacent heat exchanger pipe sections 6a, 3c of the two blocks 1, 2 via two corrugated rows 16a spaced from each other, which may be required e.g. through a Air gap thermally be largely decoupled from each other can, so that no noticeable heat transfer from one to other tube block occurs.
  • the two tube / rib blocks 1, 2 each with an associated End wall 18a, 18b completed.
  • the two heat exchanger units are primarily characterized by each other grown, that their respective same side collecting pipes 4, 5, 8, 9 nested and by soldering or Welding are connected to each other gas-tight.
  • An additional Fixation of the two tube / rib blocks 1, 2 to each other can therefore be omitted if necessary, which also the thermal Decoupling of the two blocks 1, 2 facilitates.
  • To the said Collecting pipe connections to accomplish, are the two larger diameter headers 8, 9 of a heat exchanger unit in their corresponding, front end pipe connection area rejuvenated.
  • these tapered manifolds 8, 9 can by a pulling-in, hammering or flaring method, or these headers 8, 9 can be manufactured as Frissapreßteil be, as assumed in the sectional view of FIG is.
  • smaller diameter manifold 5 defined collecting space 11th is from the plenum 10 of the other manifold 8 by a Cross partition 12 separated by a bottom of the larger diameter Sammelrohrs 8 in the transition region of the larger Cross-section is formed to the tapered front end 8a.
  • the multi-block heat exchanger of Fig. 1 is particularly useful as a combined oil cooler gas cooler / condenser heat exchanger in motor vehicles.
  • the heat exchanger unit with the Flachrohrserpentinenblock 1 forms a condenser or gas cooler for condensing or cooling a high-pressure side refrigerant flow of an air conditioner, while the other heat exchanger unit with the tube block 1 of straight flat tubes forms an oil cooler for cooling a circulating in an oil circuit operating oil of the motor vehicle, eg in a transmission oil or servo oil circuit.
  • the oil cooler manifolds 8, 9 designed with a larger cross section than the refrigerant manifolds 4, 5.
  • the latter manifolds 4, 5 define in this way a relatively small collection chamber volume, as is desirable for a condenser or gas cooler, especially when using carbon dioxide as a refrigerant.
  • the choice of a relatively small diameter for the associated manifolds 4, 5 also has the advantage that they can be designed very pressure stable at comparable wall thickness as the other two manifolds 8, 9, so that they are in CO 2 air conditioners high pressure side typically withstand pressures easily withstand.
  • the assembly of the two heat exchanger units to the common structural unit can be done firstly by the fact that first both heat exchanger units, i. the respective one Pipe / rib block 1, 2 with the associated side collecting pipes 4, 5, 8, 9, separated and soldered and then the two prefabricated heat exchanger units by nesting the same side collecting pipes 4, 9th or 5, 8 and firmly connecting the same e.g. through a Soldering or welding are fixed together.
  • alternative can the entire assembly of the two heat exchanger units built together and then in one single soldering or welding process to be soldered or welded.
  • Fig. 3 shows a variant of the embodiment of Fig. 1, which forms a triblock heat exchanger, wherein the same reference numerals are used for functionally identical components and to that extent can be made to the above description of FIG.
  • the three-block heat exchanger of Fig. 3 includes the same heat exchanger unit with the tube / rib block 1 of serpentine flat tubes 3 and small-volume, lateral manifolds 4, 5, as it is suitable for example as a gas cooler CO 2 -Air conditioning.
  • the heat exchanger of FIG. 3 instead of the second tube / fin block 2 of FIG. 1, two tube / fin blocks 2 a, 2 b are combined with the tube / fin block 1 constructed from the serpentine flat tubes 3.
  • the length of the flat tubes 19a, 19b used for the two further blocks 2a, 2b is in each case selected to be approximately half the length of the straight sections of the serpentine flat tubes 3.
  • the two further blocks 2a, 2b are adjacent to one another along a respective inner header side adjacent and arranged on the other with a side parallel to the flat tube extension in block height direction each adjacent to a common side of the serpentine tube / rib block 1, so that overall results in a compact, cuboidal unit in block height direction approximately constant width.
  • This two-channel Collection tube 22 may be e.g. be made as an extruded tube and has a central longitudinal partition wall 23, which the pipe interior in the two separate, longitudinal collecting spaces 20, 21 divides.
  • Each of the two smaller tube / rib blocks 2a, 2b is over its outer manifold 8a, 9a with the same side manifold 4, 5 of the larger heat exchanger unit and therefore together with their tube / rib block 1 to the common Unit connected.
  • the frontal connections of the same side Collecting tubes 4, 9a and 5, 8a correspond to those of Fig. 1, to which reference may be made.
  • Only if required can be an additional fixation of the two smaller blocks 2a, 2b at the larger block 1 via a then preferably thermally insulating designed connection between the two opposite corrugated rows 16b may be provided, e.g. in the form of a thermally insulating partition.
  • the two smaller ones Tube / rib blocks 2a, 2b each with a closure wall 18c, 18d Mistake.
  • the straight flat tubes 19a, 19b of the two smaller blocks 2a, 2b with a larger passage cross section than the serpentine flat tubes 3 are also formed in the heat exchanger of FIG. 3, which makes it equally suitable for use in motor vehicles in such a way, that the heat exchanger unit with the Serpentinenflachrohrblock 1 as a condenser or gas cooler eg a CO 2 air conditioning and the other two heat exchanger units with the straight flat tubes 2a, 2b and the larger diameter headers 8a, 9a, 22 are used as oil cooler, for example one as transmission oil cooler and the other than servo oil cooler.
  • exemplary connection structures in the form of one radial connection 24, 25 to the two outer collection tubes 8a, 9a and one axial connection 26, 27 to the respective inner collecting space 20, 21 are indicated in FIG.
  • FIG. 5 shows a further variant of the example of FIG. 1 represented, in turn, functionally the same components are denoted by the same reference numerals and in so far on the above description of Fig. 1 can be referenced.
  • the Embodiment of Fig. 5, there with a cut away Corner shown also provides a two-block heat exchanger in which the same two tube / rib blocks 1, 2 are used as in the example of Fig. 1, the Here, however, not in block upright next to each other, but are arranged one behind the other in the block depth direction, i. the smaller tube / rib block 2 with the straight flat tubes 6 lies in the direction of the rohrau touchmen by the two Blocks 1, 2 passed through flow medium, such. Air, in front of or behind the larger tube / rib block 1 with the serpentine flat tubes 3.
  • the smaller tube / fin block 2 is at the larger tube / rib block 1 alone via the two lateral header connections grown.
  • the two manifolds correspond 8, 9 larger cross section for the smaller tube / rib block 2 those of Fig. 1.
  • Serpentine flat tube heat exchanger unit modified manifolds 4a, 5a used which differ from the two Collecting pipes 4, 5 of the heat exchanger of FIG. 1 differ in that they are at the upper in Fig.
  • the multi-block heat exchanger an integration of two or more heat exchanger units in a common unit, wherein the heat exchanger units exclusively or at least primarily via end connections of associated manifolds are built together.
  • This allows a flexible Assembling different additional heat exchanger units to a respective first heat exchanger unit.
  • one or two further heat transfer units in only one page area of a first Heat exchanger unit are coupled to this, it is Of course possible, such a coupling of one or several further heat transfer units at two opposite Provide sides of the first heat exchanger unit.
  • any number of heat transfer units with associated pipe blocks in Blockrochraum arranged side by side and each above same-side, end-side manifold connections to each other attached and in this way to a common, integrated Unit be connected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

Die Erfindung bezieht sich auf einen Mehrblock-Wärmeübertrager nach dem Oberbegriff des Anspruchs 1. Ein solchen Mehrblock - Wärmeübertrager ist aus Dokument DE-A-195 36 116 bekannt. In einem solchen Wärmeübertrager sind zwei oder mehr Wärmeübertragereinheiten in eine gemeinsame Baueinheit integriert. Die einzelnen Wärmeübertragereinheiten beinhalten jeweils einen Block aus Wärmeübertragerrohren und können von verschiedenen Wärmeübertragermedien durchströmt werden, um diese z.B. mit einem rohraußenseitig über die Rohrblöcke hinweggeführten Luftstrom in Wärmekontakt zu bringen. Ein solcher Mehrblock-Wärmeübertrager eignet sich z.B. als kombinierter Ölkühler und Kondensator/Gaskühler in Kraftfahrzeugen. Mit der Ölkühler-Wärmeübertragereinheit kann in einem Ölkreislauf zirkulierendes Betriebsöl, z.B. eines Kraftfahrzeuggetriebes, gekühlt werden, während in der Kondensator- oder Gaskühler-Wärmeübertragereinheit ein hochdruckseitiges Kältemittel einer Kraftfahrzeug-Klimaanlage kondensiert bzw. gekühlt werden kann.
Es ist z.B. aus den Offenlegungsschriften EP 0 367 078 A1 und EP 0 431 917 A1 bekannt, zwei Wärmeübertragereinheiten mit jeweiligem Flachrohrblock dadurch in einer gemeinsamen Baueinheit zu integrieren, daß die beiden Flachrohrblöcke mit zugehörigen seitlichen Sammelrohren in Blocktiefenrichtung hintereinanderliegend angeordnet und durch eine gemeinsame wärmeleitende Wellrippenstruktur miteinander verbunden werden.
Bei einem in der Offeniegungsschrift DE 33 44 220 A1 offenbarten Mehrblock-Wärmeübertrager ist in einer seitlichen Aussparung eines ersten Rohrblocks einer ersten Wärmeübertragereinheit zwischen seitlichen Sammelbehältern derselben ein zweiter Rohrblock samt seitlichen Sammelbehältern einer weiteren Wärmeübertragereinheit aufgenommen, wobei der zweite Rohrblock an eine angrenzende Abschlußwand des ersten Rohrblocks angeschweißt ist.
In der Offeniegungsschrift DE 195 36 116 A1 ist ein Wärmeübertrager beschrieben, bei dem ein Rohr-/Rippenblock mit zwei seitlichen Sammelrohren dadurch in zwei Bereiche für unterschiedliche Wärmeübertragermedien aufgeteilt ist, daß die beiden Sammelrohre an korrespondierenden Stellen durch eine Quertrennwandanordnung in je zwei getrennte Sammelräume unterteilt sind, denen eigene Anschlußstrukturen zugeordnet sind. Auf Höhe dieses Trennbereichs ist in den Rohr-/Rippenblock statt der sonst vorgesehenen Flachrohre ein Trennsteg eingefügt.
Aus der FR-A 2 676 273 ist ein Wärmetauscher bekannt, bei dem in einem Sammelrohr Trennwände angeordnet sind, die erhalten werden, indem das Sammelrohr aus einzelnen becherartigen, zusammensteckbaren Teilstücken zusammengesetzt ist und ein Boden der Teilstücke die jeweilige Trennwand bildet.
Der Erfindung liegt als technisches Problem die Bereitstellung eines Mehrblock-Wärmeübertragers der eingangs genannten Art zugrunde, bei dem mit relativ geringem Aufwand an eine erste Wärmeübertragereinheit wenigstens eine weitere Wärmeübertragereinheit flexiblen Aufbaus thermisch weitgehend entkoppelt angebaut ist.
Die Erfindung löst dieses Problem durch die Bereitstellung eines Mehrblock-Wärmeübertragers mit den Merkmalen des Anspruchs 1. Bei diesem Wärmeübertrager sind die Rohrblöcke der verschiedenen Wärmeübertragereinheiten mit jeweils eigenen Sammelrohren versehen, was insbesondere die Verwendung von Sammelrohren mit unterschiedlich großen Querschnitten für die einzelnen Rohrblöcke ermöglicht. Je zwei Wärmeübertragereinheiten sind wenigstens über eine stirnseitige Sammelrohrverbindung miteinander verbunden, indem die beiden beteiligten Sammelrohre stirnseitig ineinandergesteckt und fluiddicht verbunden sind. Die Sammelrohre sind hierzu in diesem stirnendseitigen Bereich so gestaltet, daß der Außenquerschnitt des hineingesteckten Sammelrohres im wesentlichen dem Innenquerschnitt des umgreifenden Sammelrohres entspricht. Eine im Rohrverbindungsbereich vorgesehene Quertrennwand hält die zu den beiden Sammelrohren gehörigen Sammelräume voneinander getrennt. Diese Art der Integration von zwei oder mehr Wärmeübertragereinheiten in eine gemeinsame Baueinheit hat den Vorteil, daß in flexibler Weise unterschiedliche Wärmeübertragereinheiten zu einem Mehrblock-Wärmeübertrager zusammengebaut sein können, d.h. an eine gegebene erste Wärmeübertragereinheit lassen sich wahlweise verschiedene andere Wärmeübertragereinheiten anbauen.
Bei einem nach Anspruch 2 weitergebildeten Mehrblock-Wärmeübertrager besitzen die beiden Sammelrohre zweier zusammengebauter Wärmeübertragereinheiten unterschiedlich große Querschnitte in ihrem Mittelbereich, in welchem jeweils die Rohre des zugehörigen Rohrblocks einmünden. Um die Sammelrohrverbindung zu realisieren, ist das Sammelrohr mit dem größeren Mittelbereich-Querschnitt im entsprechenden stirnseitigen Verbindungsbereich auf einen kleineren Querschnitt verjüngt, der dann gerade ausreicht, das Sammelrohr mit dem kleineren Querschnitt aufzunehmen. Das stirnseitig verjüngte Sammelrohr ist mit relativ wenig Aufwand durch ein Einzieh-, Hämmer- oder Aufweitverfahren oder als Fließpreßteil gefertigt.
Bei einem nach Anspruch 3 weitergebildeten Mehrblock-Wärmeübertrager ist im Rohrverbindungsbereich von den beiden zusammengesteckten Sammelrohren das äußere Sammelrohr an seiner Innenseite und/oder das innere Sammelrohr an seiner Außenseite lotplattiert. Durch diese Maßnahme kann die Verbindung der beiden Sammelrohre in einem Lötvorgang erfolgen, in welchem vorzugsweise zugleich das Dichtlöten der Wärmeübertragerrohre mit den Sammelrohren und das Verlöten von Wärmeleitrippen, falls vorhanden, mit den Wärmeübertragerrohren erfolgt.
Ein nach Anspruch 4 weitergebildeter Wärmeübertrager beinhaltet wenigstens zwei Rohrblöcke, die in Blockhochrichtung nebeneinanderliegend angeordnet sind. Zwischen den einander gegenüberliegenden, jeweils auf dieser Seite letzten Rohren des jeweiligen Rohrblocks befinden sich wenigstens zwei Wärmeleitrippen und/oder ein Luftspalt und/oder eine thermisch isolierende Blockabschlußwand, so daß diese beiden Wärmeübertragerrohre bei Bedarf weitestgehend thermisch voneinander entkoppelt sein können.
Bei einem nach Anspruch 5 weitergebildeten Wärmeübertrager sind wenigstens zwei Wärmeübertragereinheiten mit in Blocktiefenrichtung, d.h. in der zu den Ebenen der Rohrblöcke senkrechten Richtung, versetzten Rohrblöcken vorgesehen. Zur Realisierung der stirnseitigen Sammelrohrverbindung der beiden Wärmeübertragereinheiten ist ein Sammelrohr der einen Wärmeübertragereinheit mit einem U-Bogen versehen, über den es von der Ebene seines zugehörigen Rohrblocks in die dagegen versetzte Ebene des anderen Rohrblocks geführt ist, in welchem das damit verbundene Sammelrohr des anderen Rohrblocks liegt. Mit dieser Maßnahme können folglich mehrere eigenständige Wärmeübertrager-Rohrblöcke weitestgehend thermisch entkoppelt und insbesondere ohne gemeinsame Wärmeleitrippenverbindung und ohne sonstige gemeinsame Verbindung der Rohrblockkörper in Blocktiefenrichtung versetzt in einer gemeinsamen Baueinheit angeordnet werden. Im Fall eines rohraußenseitig z.B. von Luft durchströmten Rohrblocks ist die Blocktiefenrichtung hierbei parallel zur Strömungsrichtung des rohraußenseitig hindurchgeführten Mediums.
Ein nach Anspruch 6 weitergebildeter Mehrblock-Wärmeübertrager beinhaltet wenigstens drei Wärmeübertragereinheiten mit zugehörigen Rohrblöcken, wobei an derselben Seite einer ersten Wärmeübertragereinheit zwei weitere Wärmeübertragereinheiten in Längsrichtung der Wärmeübertragerrohre nebeneinanderliegend angeordnet sind. Die im wesentlichen von der Gesamtlänge der Wärmeübertragerrohre bestimmte Gesamtbreite der beiden weiteren Wärmeübertragereinheiten ist bevorzugt so gewählt, daß sie in etwa der Breite der dritten Wärmeübertragereinheit entspricht, so daß insgesamt eine Baueinheit mit über die Bereiche der verschiedenen Wärmeübertragereinheiten hinweg ungefähr gleichbleibenden Abmessungen gebildet ist. Dies erleichtert zudem das Verbinden je eines Sammelrohres der beiden weiteren Wärmeübertragereinheiten mit einem Sammelrohr der ersten Wärmeübertragereinheit, da die miteinander verbundenen Sammelrohre in diesem Fall weitgehend koaxial zueinander liegen. In einer weiteren Ausgestaltung dieses Wärmeübertragers sind gemäß Anspruch 7 die beiden einander zugewandten Sammelräume der beiden weiteren Wärmeübertragereinheiten auf kompakte Weise in ein gemeinsames Sammelrohr mit entsprechender Längstrennwand integriert.
Bei einem nach Anspruch 8 weitergebildeten Mehrblock-Wärmeübertrager ist der Querschnitt des Sammelrohres wenigstens einer der Wärmeübertragereinheiten kleiner gewählt als die Breite der zum Aufbau des zugehörigen Rohrblocks verwendeten Flachrohre. Diese münden endseitig mit tordierten Endbereichen in das relativ dünn gehaltene Sammelrohr, das dann stirnseitig in ein Sammelrohr größeren Querschnitts einer benachbarten Wärmeübertragereinheit eingefügt sein kann. Wärmeübertragereinheiten mit solch dünnen Sammelrohren eignen sich besonders für Klimaanlagen mit hohen Betriebsdrücken, wie CO2-Klimaanlagen.
Vorteilhafte Ausführungsformen der Erfindung sind in den Zeichnungen dargestellt und werden nachfolgend beschrieben. Hierbei zeigen:
Fig. 1
eine Seitenansicht eines Zweiblock-Wärmeübertragers mit nebeneinanderliegenden Rohrblöcken und stirnseitig verbundenen Sammelrohren,
Fig. 2
eine Längsschnittansicht längs der Linie II-II von Fig. 1,
Fig. 3
eine Seitenansicht eines Dreiblock-Wärmeübertragers mit zwei kleineren, sammelraumseitig aneinandergrenzenden und an einer Seite eines größeren Rohrblocks angeordneten Rohrblöcken,
Fig. 4
eine Querschnittansicht eines gemeinsamen inneren Sammelrohres der zwei sammelraumseitig aneinandergrenzenden Rohrblöcke von Fig. 3,
Fig. 5
eine Perspektivansicht eines Zweiblock-Wärmeübertragers mit in Blocktiefenrichtung versetzt angeordneten Rohrblöcken und
Fig. 6
eine ausschnittweise Seitenansicht des Zweiblock-Wärmeübertragers von Fig. 5.
In dem in Fig. 1 gezeigten Zweiblock-Wärmeübertrager sind zwei Wärmeübertragereinheiten mit in Blockhochrichtung nebeneinanderliegenden Rohr-/Rippenblöcken 1, 2 zu einer gemeinsamen Baueinheit integriert. Der zur einen, ersten Wärmeübertragereinheit gehörige Rohr-/Rippenblock 1 besteht aus mehreren, in Blockhochrichtung aufeinanderfolgenden Serpentinenflachrohren 3. Des weiteren weist diese Wärmeübertragereinheit zwei sich entlang gegenüberliegender Blockseiten in Blockhochrichtung erstreckende Sammelrohre 4, 5 auf. Jedes Flachrohr 3 mündet mit je einem Endbereich 3a, 3b in die beiden Sammelrohre, 4, 5, von denen somit je nach Strömungsrichtung das eine zum parallelen Verteilen eines zugeführten Wärmeübertragungsmediums auf die verschiedenen Serpentinenflachrohre 3 und das andere zum Sammeln dieses Wärmeübertragungsmediums dient, wenn es aus den Serpentinenflachrohren austritt. Dabei sind die Serpentinenflachrohre 3 jeweils mit einander zugewandten eintrittsseitigen Bereichen und einander zugewandten austrittsseitigen Bereichen nebeneinander gelegt, um unerwünschte Wärmeübertragungseffekte zwischen einem eintrittsseitigen Bereich des einen und einem austrittsseitigen Bereich des benachbarten Serpentinenflachrohres 3 zu vermeiden. Zwischen benachbarten Serpentinenflachrohren 3 ebenso wie zwischen den einzelnen Windungen jedes Serpentinenflachrohrs 3 sind wärmeleitfähige Wellrippen 16 eingebracht. Die diversen Wellrippen sind hierbei der Übersichtlichkeit halber in Fig. 1 wie auch in den Fig. 3, 5 und 6 nur zu einem kleinen Teil explizit wiedergegeben.
Die beiden Sammelrohre 4, 5 dieser ersten Wärmeübertragereinheit sind mit relativ geringem Außendurchmesser gefertigt, der insbesondere kleiner ist als die Breite der verwendeten Serpentinenflachrohre 3. Aus diesem Grund sind die Flachrohrenden 3a, 3b gegenüber dem Flachrohrmittenbereich um 90° um die Flachrohrlängsachse tordiert in die Sammelrohre 4, 5 eingefügt.
Der Rohr-/Rippenblock 2 der anderen Wärmeübertragereinheit ist aus geradlinigen Flachrohren 6 aufgebaut, wobei zu beiden Seiten jedes geradlinigen Flachrohres 6 je eine wärmeleitende Wellrippe 7 vorgesehen ist. Die geradlinigen Flachrohre 6 münden wiederum an entgegengesetzten Blockseiten in je ein dortiges Sammelrohr 8, 9. Diese beiden Sammelrohre 8, 9 besitzen gegenüber denjenigen der anderen Wärmeübertragereinheit einen größeren Außen- und Innendurchmesser, wobei der Innendurchmesser insbesondere so ausreichend groß gewählt ist, daß die geradlinigen Flachrohre 6 mit nicht tordierten Enden, die quer zur Sammelrohrlängsachse verlaufen, in entsprechende Querschlitze der Sammelrohre 8, 9 eingefügt sind.
Die beiden Rohr-/Rippenblöcke 1, 2 sind unter Bildung einer gemeinsamen, kompakten Baueinheit derart angeordnet, daß die geradlinigen Flachrohre 6 parallel zu den geradlinigen Abschnitten der Serpentinenflachrohre 3 verlaufen und die beiden am nächsten benachbarten Wärmeübertrager-Rohrabschnitte 6a, 3c der beiden Blöcke 1, 2 über zwei Wellrippenreihen 16a voneinander beabstandet sind, die bei Bedarf z.B. durch einen Luftspalt thermisch weitestgehend voneinander entkoppelt sein können, so daß kein merklicher Wärmeübergang vom einen zum anderen Rohrblock auftritt. An den beiden parallel zu den geradlinigen Flachrohrbereichen verlaufenden Querseiten sind die beiden Rohr-/Rippenblöcke 1, 2 mit je einer zugehörigen Abschlußwand 18a, 18b abgeschlossen.
Die beiden Wärmeübertragereinheiten sind primär dadurch aneinander angebaut, daß ihre jeweiligen seitengleichen Sammelrohre 4, 5, 8, 9 ineinandergesteckt und durch Löten oder Schweißen gasdicht miteinander verbunden sind. Eine zusätzliche Fixierung der beiden Rohr-/Rippenblöcke 1, 2 aneinander kann daher bei Bedarf entfallen, was zudem die thermische Entkopplung der beiden Blöcke 1, 2 erleichtert. Um die besagten Sammelrohrverbindungen zu bewerkstelligen, sind die beiden durchmessergrößeren Sammelrohre 8, 9 der einen Wärmeübertragereinheit in ihrem entsprechenden, stirnendseitigen Rohrverbindungsbereich verjüngt.
Die Fertigung dieser sich verjüngenden Sammelrohre 8, 9 kann durch ein Einzieh-, Hämmer- oder Aufweitverfahren erfolgen, oder diese Sammelrohre 8, 9 können als Fließpreßteil gefertigt sein, wie dies in der Schnittdarstellung von Fig. 2 angenommen ist. Wie aus Fig. 2 genauer zu erkennen, verjüngt sich das betreffende Sammelrohr 8 von seinem Mittenbereich größeren Querschnitts, der einen zugehörigen Sammelraum 10 definiert, auf einen Stirnendbereich 8a kleineren Querschnitts derart, daß der Innendurchmesser des verjüngten Stirnendbereichs 8a in etwa dem Außendurchmesser des darin stirnseitig eingefügten, dünneren Sammelrohres 5 der anderen Wärmeübertragereinheit entspricht. Der vom dünneren, d.h. durchmesserkleineren Sammelrohr 5 definierte Sammelraum 11 ist vom Sammelraum 10 des anderen Sammelrohrs 8 durch eine Quertrennwand 12 getrennt, die von einem Boden des durchmessergrößeren Sammelrohrs 8 im Übergangsbereich von dessen größerem Querschnitt zum verjüngten Stirnende 8a gebildet ist.
Der Mehrblock-Wärmeübertrager von Fig. 1 ist insbesondere als kombinierter Ölkühler-Gaskühler/Kondensator-Wärmeübertrager in Kraftfahrzeugen verwendbar. Bei dieser Anwendung bildet die Wärmeübertragereinheit mit dem Flachrohrserpentinenblock 1 einen Kondensator oder Gaskühler zur Kondensation bzw. Kühlung eines hochdruckseitigen Kältemittelstroms einer Klimaanlage, während die andere Wärmeübertragereinheit mit dem Rohrblock 1 aus geradlinigen Flachrohren einen Ölkühler zur Kühlung eines in einem Ölkreislauf zirkulierenden Betriebsöls des Kraftfahrzeugs bildet, z.B. in einem Getriebeöl- oder Servoölkreislauf. Diesem Anwendungsfall angepaßt sind die Ölkühler-Sammelrohre 8, 9 mit größerem Querschnitt ausgelegt als die Kältemittel-Sammelrohre 4, 5. Die letztgenannten Sammelrohre 4, 5 definieren auf diese Weise ein relativ kleines Sammelraumvolumen, wie dies für einen Kondensator bzw. Gaskühler erwünscht ist, insbesondere bei Einsatz von Kohlendioxid als Kältemittel. Bei Verwendung dieses Kältemittels hat die Wahl eines relativ geringen Durchmessers für die zugehörigen Sammelrohre 4, 5 zudem den Vorteil, daß sie bei vergleichbarer Wandstärke wie die beiden anderen Sammelrohre 8, 9 sehr druckstabil ausgelegt werden können, so daß sie den bei CO2-Klimaanlagen hochdruckseitig typischerweise auftretenden Drücken problemlos standhalten.
Der Zusammenbau der beiden Wärmeübertragereinheiten zu der gemeinsamen Baueinheit kann zum einen dadurch erfolgen, daß zunächst beide Wärmeübertragereinheiten, d.h. der jeweilige Rohr-/Rippenblock 1, 2 mit den zugehörigen seitlichen Sammelrohren 4, 5, 8, 9, getrennt aufgebaut und gelötet und anschließend die beiden vorgefertigten Wärmeübertragereinheiten durch Ineinanderstecken der seitengleichen Sammelrohre 4, 9 bzw. 5, 8 und festes Verbinden derselben z.B. durch einen Löt- oder Schweißvorgang aneinander fixiert werden. Alternativ kann die gesamte Baueinheit aus den beiden Wärmeübertragereinheiten gemeinsam aufgebaut und anschließend in einem einzigen Löt- oder Schweißprozeß gelötet bzw. geschweißt werden. In diesem Zusammenhang ist es von Vorteil, wenn im Sammelrohrverbindungsbereich die Innenseite des äußeren Sammelrohres 8, 9 und/oder die Außenseite des inneren Sammelrohres 4, 5 lotplattiert ist, so daß bei dem Lötprozeß in einem geeigneten Lötofen zugleich auch die feste stirnseitige Verbindung der seitengleichen Sammelrohre 4, 9 bzw. 5, 8 durch Zusammenlöten bewirkt werden kann.
Es versteht sich, daß die beiden nebeneinanderliegenden Wärmeübertragereinheiten mit zugehörigen, nicht gezeigten Anschlußstrukturen versehen sind, über die das jeweilige Wärmeübertragungsmedium in das eine Sammelrohr axial oder radial zugeführt und aus dem jeweils gegenüberliegenden Sammelrohr wiederum axial oder radial abgeführt werden kann.
Fig. 3 zeigt eine Variante des Ausführungsbeispiels von Fig. 1, die einen Dreiblock-Wärmeübertrager bildet, wobei für funktionell gleiche Komponenten dieselben Bezugszeichen verwendet sind und insoweit auf die obige Beschreibung zu Fig. 1 verwiesen werden kann. So beinhaltet der Dreiblock-Wärmeübertrager von Fig. 3 dieselbe Wärmeübertragereinheit mit dem Rohr-/Rippenblock 1 aus serpentinenförmigen Flachrohren 3 und kleinvolumigen, seitlichen Sammelrohren 4, 5, wie sie z.B. als Gaskühler einer CO2-Klimaanlage geeignet ist. Anstelle des zweiten Rohr-/Rippenblocks 2 von Fig. 1 sind beim Wärmeübertrager von Fig. 3 zwei Rohr-/Rippenblöcke 2a, 2b mit dem aus den serpentinenförmigen Flachrohren 3 aufgebauten Rohr-/Rippenblock 1 kombiniert. Dabei ist die Länge der für die beiden weiteren Blöcke 2a, 2b verwendeten Flachrohre 19a, 19b jeweils etwa halb so groß gewählt wie die Länge der geradlinigen Abschnitte der Serpentinenflachrohre 3. Die beiden weiteren Blöcke 2a, 2b sind zum einen entlang einer jeweiligen inneren Sammelrohrseite aneinander anliegend und zum anderen mit einer zur Flachrohrerstreckung parallelen Seite in Blockhochrichtung jeweils benachbart zu einer gemeinsamen Seite des Serpentinenrohr-/Rippenblocks 1 angeordnet, so daß sich insgesamt eine kompakte, quaderförmige Baueinheit mit in Blockhochrichtung in etwa gleichbleibender Breite ergibt.
Nach außen münden die geradlinigen Flachrohre 19a, 19b der beiden weiteren, kleineren Rohr-/Rippenblöcke 2a, 2b in Sammelrohre 8a, 9a, die den korrespondierenden, durchmessergrößeren Sammelrohren 8, 9 von Fig. 1 entsprechen. Nach innen münden die geradlinigen Flachrohre 19a, 19b an den zugewandten Seiten der beiden kleineren Rohr-/Rippenblöcke 2a, 2b in zwei dortige Sammelräume 20, 21, die von einem gemeinsamen Sammelrohr 22 gebildet sind, wie aus der zugehörigen Querschnittansicht von Fig. 4 zu erkennen. Dieses zweikanalige Sammelrohr 22 kann z.B. als extrudiertes Rohr gefertigt sein und weist eine mittige Längstrennwand 23 auf, die den Rohrinnenraum in die beiden getrennten, längs verlaufenden Sammelräume 20, 21 aufteilt.
Jeder der beiden kleineren Rohr-/Rippenblöcke 2a, 2b ist über sein äußeres Sammelrohr 8a, 9a mit dem seitengleichen Sammelrohr 4, 5 der größeren Wärmeübertragereinheit und folglich zusammen mit deren Rohr-/Rippenblock 1 zu der gemeinsamen Baueinheit verbunden. Die stirnseitigen Verbindungen der seitengleichen Sammelrohre 4, 9a bzw. 5, 8a entsprechen denjenigen von Fig. 1, worauf verwiesen werden kann. Nur bei Bedarf kann eine zusätzliche Fixierung der beiden kleineren Blöcke 2a, 2b am größeren Block 1 über eine dann vorzugsweise thermisch isolierend ausgelegte Verbindung zwischen den beiden gegenüberliegenden Wellrippenreihen 16b vorgesehen sein, z.B. in Form einer thermisch isolierenden Zwischenwand. An der in Blockhochrichtung freien Außenseite sind die beiden kleineren Rohr-/Rippenblöcke 2a, 2b mit je einer Abschlußwand 18c, 18d versehen.
Wie im Beispiel von Fig. 1 sind auch beim Wärmeübertrager von Fig. 3 die geradlinigen Flachrohre 19a, 19b der beiden kleineren Blöcke 2a, 2b mit größerem Durchtrittsquerschnitt gebildet als die Serpentinenflachrohre 3, was ihn in gleicher Weise zur Verwendung in Kraftfahrzeugen dergestalt geeignet macht, daß die Wärmeübertragereinheit mit dem Serpentinenflachrohrblock 1 als Kondensator oder Gaskühler z.B. einer CO2-Klimaanlage und die beiden anderen Wärmeübertragereinheiten mit den geradlinigen Flachrohren 2a, 2b und den durchmessergrößeren Sammelrohren 8a, 9a, 22 als Ölkühler eingesetzt werden, z.B. der eine als Getriebeölkühler und der andere als Servoölkühler. Für die beiden kleineren Wärmeübertragereinheiten sind in Fig. 3 beispielhafte Anschlußstrukturen in Form je eines radialen Anschlusses 24, 25 zu den beiden äußeren Sammelrohren 8a, 9a und je eines axialen Anschlusses 26, 27 zum jeweiligen inneren Sammelraum 20, 21 angedeutet.
Im übrigen gelten die oben zum Ausführungsbeispiel von Fig. 1 angegebenen Vorteile und Eigenschaften, insbesondere auch was die möglichen Herstellungsvarianten betrifft, in analoger Weise für den Dreiblock-Wärmeübertrager von Fig. 3.
In Fig. 5 ist eine weitere Variante des Beispiels von Fig. 1 dargestellt, bei der wiederum funktionell gleiche Komponenten mit denselben Bezugszeichen bezeichnet sind und insoweit auf die obige Beschreibung von Fig. 1 verwiesen werden kann. Das Ausführungsbeispiel von Fig. 5, dort mit einem weggeschnittenen Eckbereich gezeigt, stellt ebenfalls einen Zweiblock-Wärmeübertrager dar, bei dem die gleichen beiden Rohr-/Rippenblöcke 1, 2 wie im Beispiel von Fig. 1 verwendet sind, die hier jedoch nicht in Blockhochrichtung nebeneinander, sondern in Blocktiefenrichtung hintereinander angeordnet sind, d.h. der kleinere Rohr-/Rippenblock 2 mit den geradlinigen Flachrohren 6 liegt in Richtung des rohraußenseitig durch die beiden Blöcke 1, 2 hindurchgeleiteten Strömungsmediums, wie z.B. Luft, vor oder hinter dem größeren Rohr-/Rippenblock 1 mit den Serpentinenflachrohren 3.
Der kleinere Rohr-/Rippenblock 2 ist an den größeren Rohr-/Rippenblock 1 allein über die beiden seitlichen Sammelrohrverbindungen angebaut. Dabei entsprechen die beiden Sammelrohre 8, 9 größeren Querschnitts für den kleineren Rohr-/Rippenblock 2 denjenigen von Fig. 1. Hingegen sind für die Serpentinenflachrohr-Wärmeübertragereinheit modifizierte Sammelrohre 4a, 5a verwendet, die sich von den beiden korrespondierenden Sammelrohren 4, 5 des Wärmeübertragers von Fig. 1 dadurch unterscheiden, daß sie an der in Fig. 5 oberen Blockseite zu einem U-Bogen 4b, 5b um 180° so umgebogen sind, daß ihr umgebogener Endbereich jeweils koaxial zum seitengleichen, durchmessergrößeren Sammelrohr 8, 9 des kleineren Rohr-/Rippenblocks 2 zu liegen kommt und in dessen verjüngtes Stirnende 8a, 9a fluiddicht eingefügt ist. Im übrigen entsprechen die beiden Sammelrohrverbindungen denjenigen von Fig. 1. Auch ansonsten gelten für den Wärmeübertrager von Fig. 5 die oben zum Ausführungsbeispiel von Fig. 1 erwähnten Vorteile und Eigenschaften analog.
Wie insbesondere aus der ausschnittweisen Seitenansicht von Fig. 6 ersichtlich, ragt der in Blocktiefenrichtung zum größeren Rohr-/Rippenblock 1 versetzte kleinere Rohr-/Rippenblock 2 in Blockhochrichtung nicht über den größeren Block 1 hinaus, so daß durch die Ankopplung des kleineren Blocks 2 kein über den größeren Block 1 hinausgehender Bauraum in der Ebene senkrecht zur Blocktiefenrichtung benötigt wird. Beide Blöcke 1, 2 liegen in diesem Fall in Blockhochrichtung beidseits frei und sind dort je nach Bedarf auf einer oder beiden Seiten mit zugehörigen Abschlußwänden versehen, in Fig. 5 z.B. an der jeweils unteren Blockseite mit den entsprechenden Abschlußwänden 18a, 18b von Fig. 1.
Die gezeigten und oben erläuterten Ausführungsbeispiele machen deutlich, daß der erfindungsgemäße Mehrblock-Wärmeübertrager eine Integration von zwei oder mehr Wärmeübertragereinheiten in einer gemeinsamen Baueinheit beinhaltet, wobei die Wärmeübertragereinheiten ausschließlich oder jedenfalls primär über stirnseitige Verbindungen zugehöriger Sammelrohre aneinandergebaut sind. Dies erlaubt ein flexibles Zusammenbauen unterschiedlicher weiterer Wärmeübertragereinheiten an eine jeweils erste Wärmeübertragereinheit. Während bei den gezeigten Beispielen eine oder zwei weitere Wärmeübertragereinheiten in nur einem Seitenbereich einer ersten Wärmeübertragereinheit an diese angekoppelt sind, ist es selbstverständlich möglich, eine solche Ankopplung einer oder mehrerer weiterer Wärmeübertragereinheiten an zwei gegenüberliegenden Seiten der ersten Wärmeübertragereinheit vorzusehen. Zudem können bei Bedarf jede beliebige Anzahl von Wärmeübertragereinheiten mit zugehörigen Rohrblöcken in Blockhochrichtung nebeneinanderliegend angeordnet und jeweils über seitengleiche, stirnseitige Sammelrohrverbindungen aneinander befestigt und auf diese Weise zu einer gemeinsamen, integrierten Baueinheit verbunden sein.

Claims (8)

  1. Mehrblock-Wärmeübertrager mit
    einem ersten Wärmetauscher, der einen ersten Wärmeübertrager-Rohrblock (1) mit wenigstens einem ersten seitlichen Sammelraum (11) beinhaltet, und von einem ersten Wärmeübertragermedium durchströmbar ist und
    wenigstens einem an den ersten Wärmetauscher angebauten, zweiten Wärmetauscher, der einen zweiten Wärmeübertrager-Rohrblock (2) mit wenigstens einem zweiten seitlichen Sammelraum (10) beinhaltet, und von einem zweiten Wärmeübertragermedium durchströmbar ist
    dadurch gekennzeichnet, daß
    der erste und der zweite Sammelraum (10, 11) von je einem eigenen Sammelrohr (4, 9) gebildet sind und
    die beiden Sammelrohre stirnseitig ineinandergesteckt und fluiddicht verbunden sind, wobei in diesem Rohrverbindungsbereich der Außenquerschnitt des einen Sammelrohres (4) im wesentlichen dem Innenquerschnitt des anderen Sammelrohres (9) entspricht und eine Quertrennwand (12) zur Trennung der beiden Sammelräume (10, 11) vorgesehen ist.
  2. Mehrblock-Wärmeübertrager nach Anspruch 1, weiter dadurch gekennzeichnet, daß sich das im Rohrverbindungsbereich äußere Sammelrohr (9) von einem größeren Mittelbereich-Querschnitt zu einem demgegenüber kleineren Verbindungsbereich-Querschnitt verjüngt und durch ein Einzieh-, Hämmer- oder Aufweitverfahren oder als Fließpreßteil gefertigt ist.
  3. Mehrblock-Wärmeübertrager nach Anspruch 1 oder 2, weiter dadurch gekennzeichnet, daß im Rohrverbindungsbereich das äußere Sammelrohr (9) an seiner Innenseite oder das innere Sammelrohr (4) an seiner Außenseite lotplattiert ist.
  4. Mehrblock-Wärmeübertrager nach einem der Ansprüche 1 bis 3, weiter dadurch gekennzeichnet, daß die beiden Rohrblöcke (1, 2) in Blockhochrichtung nebeneinanderliegend angeordnet sind, wobei sich zwischen den beiden einander am nächsten zugewandten Wärmeübertragerrohren (6a, 3c) des einen und des anderen Rohrblocks (1, 2) wenigstens zwei Wärmeleitrippen (16a) und/oder ein Luftspalt und/oder eine thermisch isolierende Blockabschlußwand befinden.
  5. Mehrblock-Wärmeübertrager nach einem der Ansprüche 1 bis 3, weiter
    dadurch gekennzeichnet, daß
    die beiden Rohrblöcke (1, 2) in Blocktiefenrichtung versetzt angeordnet sind und
    eines der beiden Sammelrohre (4a, -9) mit einem U-Bogen (4b) versehen ist, über den es von der Ebene seines zugehörigen Rohrblocks zum Rohrverbindungsbereich in der Ebene des anderen Rohrblocks geführt ist.
  6. Mehrblock-Wänneübertrager nach einem der Ansprüche 1 bis 5, weiter dadurch gekennzeichnet, daß an den ersten Wärmetauscher wenigstens zwei weitere Wärmetauscher mit jeweiligem Rohrblock (2a, 2b) und seitlichen Sammelrohren (8b, 9b, 22) angebaut sind, wobei die zwei weiteren Wärmetauscher längs einer inneren Sammelraumseite gegeneinanderliegend sowie in Blockhochrichtung des ersten Wärmetauschers benachbart angeordnet sind und je ein zugehöriges äußeres Sammelrohr (8b, 9b) stirnseitig mit einem Sammelrohr (4, 5) der ersten Wärmetauschers verbunden ist.
  7. Mehrblock-Wärmeübertrager nach Anspruch 6, weiter dadurch gekennzeichnet, daß für die beiden weiteren Wärmetauscher ein gemeinsames, inneres, zweikanaliges Sammelrohr (22) vorgesehen ist, das zwei durch eine Längstrennwand (23) getrennte Sammelräume (20, 21) aufweist.
  8. Mehrblock-Wärmeübertrager nach einem der Ansprüche 1 bis 7, weiter dadurch gekennzeichnet, daß der Rohrblock (1) des ersten Wärmetauschers von Flachrohren (3) gebildet ist, die mit tordierten Enden (3a, 3b) in seitliche Sammelrohre (4, 5) mit gegenüber der Flachrohrbreite geringerem Innendurchmesser eingefügt sind.
EP00915170A 1999-04-06 2000-03-07 Mehrblock-wärmeübertrager Expired - Lifetime EP1166025B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19915389A DE19915389A1 (de) 1999-04-06 1999-04-06 Mehrblock-Wärmeübertrager
DE19915389 1999-04-06
PCT/EP2000/001966 WO2000060298A1 (de) 1999-04-06 2000-03-07 Mehrblock-wärmeübertrager

Publications (2)

Publication Number Publication Date
EP1166025A1 EP1166025A1 (de) 2002-01-02
EP1166025B1 true EP1166025B1 (de) 2005-08-10

Family

ID=7903600

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00915170A Expired - Lifetime EP1166025B1 (de) 1999-04-06 2000-03-07 Mehrblock-wärmeübertrager

Country Status (8)

Country Link
US (1) US6810949B1 (de)
EP (1) EP1166025B1 (de)
JP (1) JP2002541423A (de)
AT (1) ATE301813T1 (de)
AU (1) AU3657400A (de)
DE (2) DE19915389A1 (de)
ES (1) ES2246839T3 (de)
WO (1) WO2000060298A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10328748B4 (de) * 2003-06-25 2017-12-14 Mahle International Gmbh Wärmeübertrager, insbesondere Ladeluftkühler für Nutzfahrzeuge

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0416193A (pt) * 2003-12-11 2007-01-16 Behr Gmbh & Co Kg disposição estrutural para dispositivos para troca de calor
US7263848B2 (en) * 2005-08-24 2007-09-04 Delphi Technologies, Inc. Heat pump system
DE112009001070T5 (de) * 2008-10-20 2011-05-19 Showa Denko K.K. Kondensator
DE102009021339B4 (de) * 2009-05-14 2015-05-21 Andreas Jahn Medienleitung mit zumindest einem Rohrabschnitt und zumindest einem Koppelelement
US8783335B2 (en) * 2010-04-16 2014-07-22 Showa Denko K.K. Condenser

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1117520A (en) * 1980-06-27 1982-02-02 Bozo Dragojevic Heat exchange assembly
DE3344220C2 (de) 1983-12-07 1987-02-05 Audi AG, 8070 Ingolstadt Wärmetauschvorrichtung, insbesondere für Kraftfahrzeuge
US4770240A (en) * 1985-05-13 1988-09-13 Stark Manufacturing, Inc. Manifold for a heat exchanger
US5190100B1 (en) * 1986-07-29 1994-08-30 Showa Aluminum Corp Condenser for use in a car cooling system
EP0479775B1 (de) * 1986-07-29 2000-11-08 Showa Aluminum Kabushiki Kaisha Kondensator
US4936379A (en) * 1986-07-29 1990-06-26 Showa Aluminum Kabushiki Kaisha Condenser for use in a car cooling system
US5458190A (en) * 1986-07-29 1995-10-17 Showa Aluminum Corporation Condenser
US5482112A (en) * 1986-07-29 1996-01-09 Showa Aluminum Kabushiki Kaisha Condenser
US5246064A (en) * 1986-07-29 1993-09-21 Showa Aluminum Corporation Condenser for use in a car cooling system
IT1224459B (it) 1988-09-30 1990-10-04 Fiat Auto Spa Radiatore integrato acqua olio in particolare per veicoli
US5090477A (en) * 1988-10-11 1992-02-25 Brazeway, Inc. Evaporator having integrally baffled tubes
JPH0645155Y2 (ja) 1988-10-24 1994-11-16 サンデン株式会社 熱交換器
US4917180A (en) * 1989-03-27 1990-04-17 General Motors Corporation Heat exchanger with laminated header and tank and method of manufacture
US5101890A (en) * 1989-04-24 1992-04-07 Sanden Corporation Heat exchanger
JPH02140166U (de) * 1989-04-24 1990-11-22
JPH0616310Y2 (ja) * 1989-04-27 1994-04-27 サンデン株式会社 熱交換器
DE3918455A1 (de) * 1989-06-06 1990-12-20 Thermal Waerme Kaelte Klima Verfluessiger fuer ein kaeltemittel einer fahrzeugklimaanlage
DE3938842A1 (de) 1989-06-06 1991-05-29 Thermal Waerme Kaelte Klima Verfluessiger fuer ein kaeltemittel einer fahrzeugklimaanlage
US5529116A (en) * 1989-08-23 1996-06-25 Showa Aluminum Corporation Duplex heat exchanger
JPH0346778U (de) * 1989-09-11 1991-04-30
JP2786702B2 (ja) 1989-12-07 1998-08-13 昭和アルミニウム株式会社 複式一体型熱交換器
US5197538A (en) * 1991-04-22 1993-03-30 Zexel Corporation Heat exchanger apparatus having fluid coupled primary heat exchanger unit and auxiliary heat exchanger unit
FR2676273B1 (fr) 1991-05-10 1998-06-05 Valeo Thermique Moteur Sa Boite a fluide de forme generale tubulaire pour echangeur de chaleur.
DE4327213C2 (de) * 1993-08-13 1997-12-11 Ruecker Gmbh Rekuperativer Wärmetauscher, insbesondere Kühler für Kraftfahrzeuge
US5348081A (en) * 1993-10-12 1994-09-20 General Motors Corporation High capacity automotive condenser
DE19509654A1 (de) * 1995-03-17 1996-09-19 Kloeckner Humboldt Deutz Ag Wärmetauschereinheit
DE19536116B4 (de) * 1995-09-28 2005-08-11 Behr Gmbh & Co. Kg Wärmeübertrager für ein Kraftfahrzeug
US5826649A (en) * 1997-01-24 1998-10-27 Modine Manufacturing Co. Evaporator, condenser for a heat pump
BR9714663A (pt) * 1997-05-12 2000-07-11 Norsk Hydro As Trocador de calor
US5765393A (en) * 1997-05-28 1998-06-16 White Consolidated Industries, Inc. Capillary tube incorporated into last pass of condenser
KR100264815B1 (ko) * 1997-06-16 2000-09-01 신영주 다단기액분리형응축기
JP3324464B2 (ja) * 1997-10-01 2002-09-17 株式会社デンソー 車両用熱交換装置
JP4062775B2 (ja) * 1998-02-24 2008-03-19 株式会社デンソー 複式熱交換器
DE19833845A1 (de) * 1998-07-28 2000-02-03 Behr Gmbh & Co Wärmeübertrager-Rohrblock und dafür verwendbares Mehrkammer-Flachrohr
KR100297189B1 (ko) * 1998-11-20 2001-11-26 황해웅 열전달촉진효과를갖는고효율모듈형오엘에프열교환기
JP3879296B2 (ja) * 1999-01-19 2007-02-07 株式会社デンソー 熱交換器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10328748B4 (de) * 2003-06-25 2017-12-14 Mahle International Gmbh Wärmeübertrager, insbesondere Ladeluftkühler für Nutzfahrzeuge

Also Published As

Publication number Publication date
US6810949B1 (en) 2004-11-02
EP1166025A1 (de) 2002-01-02
WO2000060298A1 (de) 2000-10-12
DE19915389A1 (de) 2000-10-12
ATE301813T1 (de) 2005-08-15
ES2246839T3 (es) 2006-03-01
DE50010925D1 (de) 2005-09-15
AU3657400A (en) 2000-10-23
JP2002541423A (ja) 2002-12-03

Similar Documents

Publication Publication Date Title
EP1036296B1 (de) Flachrohr mit querversatz-umkehrbogenabschnitt und damit aufgebauter wärmeübertrager
EP1042641B1 (de) Wärmeübertragender rohrblock und dafür verwendbares mehrkammer-flachrohr
DE3780648T2 (de) Kondensator.
DE69415779T2 (de) Wärmetauscher
DE69031047T2 (de) Verdampfer für Kühler in Kraftwagen
DE3856032T2 (de) Wärmetauscher mit verbesserter Kondensatsammlung
EP0845647B1 (de) Flachrohr-Wärmeübertrager mit tordiertem Flachrohrendabschnitt
EP0964218B1 (de) Wärmetauscher mit verrippten Flachrohren, insbesondere Heizungswärmetauscher, Motorkühler, Verflüssiger oder Verdampfer, für Kraftfahrzeuge
DE112004002386T5 (de) Mehrfluid-Wärmeaustauscher und Verfahren zu seiner Herstellung
DE4305060C2 (de) Gelöteter Wärmetauscher, insbesondere Verdampfer
DE102004002252B4 (de) Wärmeübertrager für Fahrzeuge
WO2006029720A1 (de) Wärmetauscher für kraftfahrzeuge
EP1203922A2 (de) Kondensator und Rohr dafür
DE10257767A1 (de) Wärmeübertrager
EP1597529B1 (de) Flachrohr mit umkehrbogenabschnitt und damit aufgebauter w r me bertrager
EP1166025B1 (de) Mehrblock-wärmeübertrager
EP1738125A1 (de) Wärmeübertrager für kraftfahrzeuge
DE112005000422T5 (de) Ein ein Flachrohr bildender plattenförmiger Körper, ein Flachrohr, ein Wärmetauscher und ein Verfahren zur Herstellung eines Wärmetauschers
DE10147521A1 (de) Wärmeübertrager, insbesondere Gaskühler CO2 - Klimaanlagen
DE4327213C2 (de) Rekuperativer Wärmetauscher, insbesondere Kühler für Kraftfahrzeuge
EP2937658B1 (de) Innerer wärmeübertrager
DE102007001430A1 (de) Wärmetauscher
EP1625339A1 (de) Wärmetauscher
EP1623173B1 (de) Wàrmetauschereinheit für kraftfahrzeuge
EP1248063B1 (de) Wärmeübertrager

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20011106

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20030915

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BEHR GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050810

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050810

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50010925

Country of ref document: DE

Date of ref document: 20050915

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051110

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051110

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060110

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2246839

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060511

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: BEHR G.M.B.H. & CO. KG

Effective date: 20060331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080328

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080326

Year of fee payment: 9

Ref country code: IT

Payment date: 20080318

Year of fee payment: 9

Ref country code: NL

Payment date: 20080326

Year of fee payment: 9

Ref country code: SE

Payment date: 20080320

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20080325

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090307

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090307

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20091001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090307

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090309

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100408

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090309

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100323

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090308

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50010925

Country of ref document: DE

Effective date: 20111001