WO2000060298A1 - Mehrblock-wärmeübertrager - Google Patents

Mehrblock-wärmeübertrager Download PDF

Info

Publication number
WO2000060298A1
WO2000060298A1 PCT/EP2000/001966 EP0001966W WO0060298A1 WO 2000060298 A1 WO2000060298 A1 WO 2000060298A1 EP 0001966 W EP0001966 W EP 0001966W WO 0060298 A1 WO0060298 A1 WO 0060298A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
block
tube
collecting
header
Prior art date
Application number
PCT/EP2000/001966
Other languages
English (en)
French (fr)
Inventor
Karl-Heinz Staffa
Hans-Joachim Krauss
Hagen Mittelstrass
Christoph Walter
Bernd Dienhart
Jochen Schumm
Original Assignee
Behr Gmbh & Co.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr Gmbh & Co. filed Critical Behr Gmbh & Co.
Priority to US09/958,090 priority Critical patent/US6810949B1/en
Priority to AU36574/00A priority patent/AU3657400A/en
Priority to JP2000609753A priority patent/JP2002541423A/ja
Priority to DE50010925T priority patent/DE50010925D1/de
Priority to EP00915170A priority patent/EP1166025B1/de
Priority to AT00915170T priority patent/ATE301813T1/de
Publication of WO2000060298A1 publication Critical patent/WO2000060298A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0243Header boxes having a circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0089Oil coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2270/00Thermal insulation; Thermal decoupling

Definitions

  • the invention relates to a multi-block heat exchanger according to the preamble of claim 1.
  • a heat exchanger two or more heat exchanger units are integrated in a common structural unit.
  • the individual heat exchanger units each contain a block of heat exchanger tubes and can be flowed through by various heat exchanger media in order to e.g. to bring them into thermal contact with an outside air flow over the pipe blocks.
  • Such a multi-block heat exchanger is suitable e.g. as a combined oil cooler and condenser / gas cooler in motor vehicles.
  • With the oil cooler heat exchanger unit operating oil circulating in an oil circuit, e.g. of a motor vehicle transmission, are cooled, while in the condenser or gas cooler heat exchanger unit a high-pressure refrigerant of a motor vehicle air conditioning system can be condensed or cooled.
  • a second pipe block together with lateral collecting tanks of a further heat exchanger unit is accommodated in a lateral recess in a first pipe block of a first heat exchanger unit between lateral collecting tanks thereof, the second pipe block being connected to an adjoining end wall of the first Pipe blocks is welded on.
  • the published patent application DE 195 36 116 AI describes a heat exchanger in which a tube / finned block with two side header tubes is divided into two areas for different heat transfer media in that the two header tubes are divided into two separate header spaces at corresponding points by a transverse partition arrangement are assigned their own connection structures. At the level of this separation area, a separator is inserted into the tube / fin block instead of the flat tubes otherwise provided.
  • the invention is based on the technical problem of providing a multi-block heat exchanger of the type mentioned at the outset, in which at least one further heat exchanger unit of flexible construction is attached to a first heat exchanger unit with relatively little effort and largely thermally decoupled.
  • the invention solves this problem by providing a multi-block heat exchanger with the features of claim 1.
  • the tube blocks of the different heat exchanger units are each provided with their own manifolds, which in particular the use of manifolds with different sizes for the cross sections individual pipe blocks.
  • Two heat exchanger units are connected to each other at least via an end-side header pipe connection, in that the two header tubes involved are inserted into one another at the end face and are connected in a fluid-tight manner.
  • the header pipes are designed in this end area so that the outer cross-section of the header pipe inserted essentially corresponds to the inner cross-section of the encompassing header pipe.
  • a cross partition provided in the pipe connection area keeps the collecting spaces belonging to the two collecting pipes separate from one another.
  • This type of integration of two or more heat exchanger units in a common structural unit has the advantage that different heat exchanger units can be flexibly assembled to form a multi-block heat exchanger, ie various other heat exchanger units can optionally be attached to a given first heat exchanger unit.
  • the two manifolds of two assembled heat exchanger units have cross sections of different sizes in their central region, in which the tubes of the associated tube block each open.
  • the header pipe with the larger central area cross section is tapered to a smaller cross section in the corresponding end connection area, which is then just sufficient to accommodate the header pipe with the smaller cross section.
  • the collecting tube, which is tapered on the end face, is manufactured with relatively little effort by a drawing-in, hammering or expanding method or as an extruded part.
  • the outer header pipe is solder-plated on its inside and / or the inner header pipe on its outside in the pipe connection area of the two plugged-together header pipes.
  • the connection The two header pipes are fertilized in a soldering process in which the heat exchanger tubes are preferably soldered to the header tubes and the heat-conducting fins, if any, are soldered to the heat exchanger tubes.
  • a further developed according to claim 4 heat exchanger includes at least two tube blocks, which are arranged side by side in the block vertical direction. At least two heat-conducting fins and / or an air gap and / or a thermally insulating block end wall are located between the opposing tubes of the respective tube block, which are last on this side, so that these two heat exchanger tubes can be largely thermally decoupled from one another if necessary.
  • At least two heat exchanger units are provided with pipe blocks offset in the block depth direction, ie in the direction perpendicular to the planes of the pipe blocks.
  • a header pipe of the one heat exchanger unit is provided with a U-bend, via which it is guided from the level of its associated tube block to the offset level of the other tube block, in which the header tube of the other tube block connected thereto lies .
  • a multi-block heat exchanger further developed according to claim 6 contains at least three heat exchanger units with associated tube blocks, wherein on the same side of a first heat exchanger unit two further heat exchanger units are arranged next to one another in the longitudinal direction of the heat exchanger tubes.
  • the overall width of the two further heat exchanger units which is essentially determined by the total length of the heat exchanger tubes, is preferably selected so that it corresponds approximately to the width of the third heat exchanger unit, so that overall a structural unit is formed with dimensions that are approximately constant over the areas of the various heat exchanger units.
  • This also makes it easier to connect one header pipe of each of the two further heat exchanger units to one header pipe of the first heat exchanger unit, since in this case the interconnected header pipes are largely coaxial with one another.
  • the two mutually facing collecting spaces of the two further heat exchanger units are integrated in a compact manner in a common collecting tube with a corresponding longitudinal partition.
  • the cross section of the header pipe of at least one of the heat exchanger units is selected to be smaller than the width of the flat pipes used to build up the associated pipe block.
  • FIG. 1 is a side view of a two-block heat exchanger with adjacent pipe blocks and header tubes connected at the end,
  • FIG. 2 is a longitudinal sectional view along the line II-II of FIG. 1.
  • FIG. 3 shows a side view of a three-block heat exchanger with two smaller pipe blocks which adjoin one another on the collecting space side and are arranged on one side of a larger pipe block
  • FIG. 4 shows a cross-sectional view of a common inner collecting tube of the two tube blocks of FIG. 3 adjoining one another on the collecting space side
  • Fig. 5 is a perspective view of a two-block heat exchanger with pipe blocks arranged offset in the block depth direction and
  • FIG. 6 is a partial side view of the two-block heat exchanger from FIG. 5.
  • the tube / finned block 1 belonging to the first heat exchanger unit consists of a plurality of serpentine flat tubes 3 which follow one another in the block vertical direction. Furthermore, this heat exchanger unit has two header pipes 4, 5 which extend along opposite block sides in the block vertical direction.
  • Each flat tube 3 ends with an end region 3a, 3b in the two header tubes, 4, 5, of which, depending on the direction of flow, one for distributing a supplied heat transfer medium in parallel to the various serpentine flat tubes 3 and the other for collecting this heat transfer tube mediums is used when it emerges from the serpentine flat tubes.
  • the serpentine flat tubes 3 are placed next to each other with mutually facing inlet-side regions and mutually facing outlet-side regions in order to avoid undesired heat transfer effects between an inlet-side region of one and an outlet-side region of the adjacent serpentine flat tube 3.
  • Heat-conducting corrugated fins 16 are introduced between adjacent flat serpentine tubes 3 as well as between the individual turns of each flat serpentine tube 3.
  • the various corrugated fins are only explicitly reproduced to a small extent in FIG. 1 and also in FIGS. 3, 5 and 6.
  • the two header tubes 4, 5 of this first heat exchanger unit are manufactured with a relatively small outside diameter, which is in particular smaller than the width of the serpentine flat tubes 3. For this reason, the flat tube ends 3a, 3b are twisted into the header tubes by 90 ° around the longitudinal axis of the flat tube 4, 5 inserted.
  • the tube / fin block 2 of the other heat exchanger unit is constructed from straight flat tubes 6, a heat-conducting corrugated fin 7 being provided on each side of each straight flat tube 6.
  • the rectilinear flat tubes 6 in turn open on opposite block sides in a respective header tube 8, 9.
  • These two header tubes 8, 9 have a larger outside and inside diameter than those of the other heat exchanger unit, the inside diameter being chosen sufficiently large that the straight lines Flat tubes 6 with non-twisted ends, which run transversely to the longitudinal axis of the header tube, are inserted into corresponding transverse slots of the header tubes 8, 9.
  • the two tube / fin blocks 1, 2 are arranged to form a common, compact structural unit such that the rectilinear flat tubes 6 run parallel to the rectilinear sections of the serpentine flat tubes 3 and the two closest adjacent heat exchanger tube sections 6a, 3c of the two blocks 1, 2 are spaced apart from one another by two rows of corrugated fins 16a which, if necessary, are thermally largely decoupled from one another, for example by an air gap can, so that there is no noticeable heat transfer from one to the other pipe block.
  • the two tube / fin blocks 1, 2 are each closed off with an associated end wall 18a, 18b.
  • the two heat exchanger units are primarily characterized grown to each other that their respective same side manifolds 4, 5, 8, 9 into each gesture 'ckt and by soldering or welding gas-tightly connected together.
  • An additional fixation of the two tube / fin blocks 1, 2 to one another can therefore be omitted if necessary, which also facilitates the thermal decoupling of the two blocks 1, 2.
  • the two larger-diameter manifolds 8, 9 of the one heat exchanger unit are tapered in their corresponding front-end pipe connection area.
  • tapered header pipes 8, 9 can be produced by a drawing-in, hammering or expanding method, or these header pipes 8, 9 can be manufactured as an extruded part, as is assumed in the sectional representation of FIG. 2.
  • the relevant collecting tube 8 tapers from its central region of larger cross-section, which defines an associated collecting space 10, to an end-end region 8a of smaller cross-section such that the inside diameter of the tapered end-end region 8a roughly corresponds to the outside diameter of the end face therein inserted, thinner header 5 corresponds to the other heat exchanger unit.
  • the collecting space 11 defined by the thinner, ie smaller-diameter collecting tube 5 is separated from the collecting space 10 of the other collecting tube 8 by a transverse partition wall 12, which is formed by a bottom of the larger-diameter collecting tube 8 in the transition area from its larger cross-section to the tapered front end 8a.
  • the multi-block heat exchanger of FIG. 1 can be used in particular as a combined oil cooler-gas cooler / condenser heat exchanger in motor vehicles.
  • the heat exchanger unit with the flat tube serpentine block 1 forms a condenser or gas cooler for the condensation or cooling of a high-pressure side refrigerant flow of an air conditioning system
  • the other heat exchanger unit with the tube block 1 consists of straight flat tubes, an oil cooler for cooling an operating oil of the motor vehicle circulating in an oil circuit, eg in a gear oil or servo oil circuit.
  • the oil cooler manifolds 8, 9 are designed with a larger cross section than the refrigerant manifolds 4, 5.
  • the latter manifolds 4, 5 thus define a relatively small manifold volume, as is desired for a condenser or gas cooler is, especially when using carbon dioxide as a refrigerant.
  • the choice of a relatively small diameter for the associated manifolds 4, 5 also has the advantage that they can be designed with a comparable wall thickness to the other two manifolds 8, 9 very pressure-stable, so that they are the C0 2 air conditioning Withstand the pressures typically occurring on the high pressure side without any problems.
  • the assembly of the two heat exchanger units to form the common structural unit can take place, on the one hand, in that both heat exchanger units, ie the respective tube / finned block 1, 2 with the associated lateral header tubes 4, 5, 8, 9, are separately constructed and soldered and then the two prefabricated heat exchanger units by plugging the same-sided manifolds 4, 9 and 5, 8, respectively, and firmly connecting them, for example by means of one Soldering or welding process can be fixed together. Alternatively, the entire assembly can be assembled from the two heat exchanger units and then soldered or welded in a single soldering or welding process.
  • the inside of the outer collecting pipe 8, 9 and / or the outside of the inner collecting pipe 4, 5 is solder-plated in the collecting pipe connection area, so that at the same time the fixed connection at the end in a suitable soldering oven during the soldering process of the same-sided manifolds 4, 9 or 5, 8 can be brought about by soldering together.
  • the two adjacent heat exchanger units are provided with associated connection structures, not shown, via which the respective heat transfer medium can be fed axially or radially into the one collector pipe and can be removed axially or radially from the opposite collector pipe.
  • Fig. 3 shows a variant of the embodiment of Fig. 1, which forms a three-block heat exchanger, the same reference numerals being used for functionally identical components and in this respect reference can be made to the above description of Fig. 1.
  • 3 contains the same heat exchanger unit with the tube / fin block 1 made of serpentine flat tubes 3 and small-volume side manifolds 4, 5, as is suitable, for example, as a gas cooler in a C0 2 air conditioning system.
  • two tube / fin blocks 2a, 2b are combined with the tube / fin block 1 constructed from the serpentine flat tubes 3.
  • the length of the flat tubes 19a, 19b used for the two further blocks 2a, 2b is chosen to be approximately half as long as the length of the straight sections of the serpentine flat tubes 3.
  • the two other blocks 2a, 2b are on the one hand along a respective inner header side fitting and on the other hand, with a side parallel to the flat tube extension in the block vertical direction, each adjacent to a common side of the serpentine tube / finned block 1, so that overall there is a compact, cuboidal structural unit with an approximately constant width in the vertical block direction.
  • the straight flat tubes 19a, 19b of the two further, smaller tube / fin blocks 2a, 2b open into header tubes 8a, 9a, which correspond to the corresponding, larger-diameter header tubes 8, 9 of FIG. 1.
  • the rectilinear flat tubes 19a, 19b open on the facing sides of the two smaller tube / fin blocks 2a, 2b into two collecting spaces 20, 21 there, which are formed by a common collecting tube 22, as shown in the associated cross-sectional view of FIG. 4 detect.
  • This two-channel manifold 22 can e.g. be produced as an extruded tube and has a central longitudinal partition 23 which divides the tube interior into the two separate, longitudinally extending collecting spaces 20, 21.
  • Each of the two smaller tube / fin blocks 2a, 2b is connected via its outer manifold 8a, 9a to the same-sided manifold 4, 5 of the larger heat exchanger unit and consequently together with its tube / fin block 1 to form the common structural unit.
  • the end connections of the same-sided manifolds 4, 9a and 5, 8a correspond to those of FIG. 1, to which reference can be made.
  • An additional fixation of the two smaller blocks 2a, 2b to the larger block 1 can be provided only if required, via a connection which is then preferably designed to be thermally insulating between the two rows of corrugated fins 16b opposite one another, for example in the form of a thermally insulating partition.
  • the two smaller tube / fin blocks 2a, 2b are each provided with an end wall 18c, 18d.
  • the straight flat tubes 19a, 19b of the two smaller blocks 2a, 2b are also formed with a larger passage cross section than the serpentine flat tubes 3 in the heat exchanger of FIG.
  • the heat exchanger unit with the serpentine flat tube block 1 as a condenser or gas cooler, for example a C0 2 air conditioning system, and the two other heat exchanger units with the straight flat tubes 2a, 2b and the larger-diameter manifolds 8a, 9a, 22 are used as oil coolers, for example the one as gear oil cooler and the other as servo oil cooler.
  • exemplary connection structures in the form of a radial connection 24, 25 to the two outer manifolds 8a, 9a and an axial connection 26, 27 to the respective inner manifold 20, 21 are indicated in FIG.
  • FIG. 5 shows a further variant of the example from FIG. 1, in which, in turn, functionally identical components are designated with the same reference numerals and in this respect reference can be made to the above description of FIG. 1.
  • the embodiment of Fig. 5, shown there with a cut-away corner area, also represents a two-block heat exchanger, in which the same two tube / fin blocks 1, 2 are used as in the example of Fig.
  • the smaller tube / fin block 2 with the straight flat tubes 6 lies in the direction of the flow medium, such as air, which is passed through the two blocks 1, 2 on the tube outside, in front of or behind the larger tube / fin block 1 with the serpentine flat tubes 3.
  • the smaller tube / fin block 2 is attached to the larger tube / fin block 1 solely via the two side header pipe connections.
  • the two header tubes 8, 9 of larger cross-section for the smaller tube / fin block 2 correspond to those of FIG. 1.
  • modified header tubes 4a, 5a are used for the serpentine flat tube heat exchanger unit, which differ from the two corresponding header tubes 4, 5 of the heat exchanger Distinguish from Fig. 1 in that they are bent by 180 ° on the upper block side in Fig. 5 to form a U-bend 4b, 5b so that their bent end region is coaxial with the same-sized, larger-diameter manifold 8, 9 of the smaller one Pipe / fin blocks 2 come to rest and are inserted in the tapered end 8a, 9a in a fluid-tight manner. Otherwise, the two header pipe connections correspond to those of FIG. 1. Otherwise, the advantages and properties mentioned above for the embodiment of FIG. 1 apply analogously to the heat exchanger of FIG. 5.
  • both blocks 1, 2 are exposed on both sides in the block vertical direction and are provided with associated end walls on one or both sides as required, in Fig. 5 e.g. on the respective lower block side with the corresponding end walls 18a, 18b of FIG. 1.
  • the multi-block heat exchanger according to the invention includes an integration of two or more heat exchanger units in a common structural unit, the heat exchanger units exclusively or each if primary manifolds are connected to one another via front connections. This allows a flexible assembly of different further heat exchanger units to a respective first heat exchanger unit. While in the examples shown one or two further heat exchanger units are coupled to the first heat exchanger unit in only one side region, it is of course possible to provide such a coupling of one or more further heat exchanger units on two opposite sides of the first heat exchanger unit.
  • any number of heat exchanger units with associated tube blocks can be arranged next to one another in the vertical direction of the block and each attached to one another by means of identical, end-side header tube connections and in this way connected to form a common, integrated structural unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

Die Erfindung bezieht sich auf einen Mehrblock-Wärmeübertrager mit einer ersten Wärmeübertragereinheit, die einen ersten Wärmeübertrager-Rohrblock (1) mit wenigstens einem ersten seitlichen Sammelraum (4, 5) beinhaltet, und wenigstens einer an die erste angebauten zweiten Wärmeübertragereinheit, die einen zweiten Wärmeübertrager-Rohrblock (2) mit wenigstens einem zweiten seitlichen Sammelraum (8, 9) beinhaltet. Erfindungsgemäss sind der erste und der zweite Sammelraum von je einem eigenen Sammelrohr (4, 9) gebildet, und die beiden Sammelrohre sind stirnseitig ineinandergesteckt und fluiddicht verbunden, wobei in diesem Rohrverbindungsbereich der Aussenquerschnitt des einen Sammelrohrs im wesentlichen dem Innenquerschnitt des anderen Sammelrohrs entspricht und eine Quertrennwand zur Trennung der beiden Sammelräume vorgesehen ist. Verwendung z.B. als kombinierter Ölkühler-Gaskühler-Wärmeübertrager für Kraftfahrzeuge mit Ölkühlkreislauf und CO2-Klimaanlage.

Description

Mehrblock-Wärmeübertrager
Die Erfindung bezieht sich auf einen Mehrblock-Wärmeübertrager nach dem Oberbegriff des Anspruchs 1. In einem solchen Wärmeübertrager sind zwei oder mehr Wärmeübertragereinheiten in eine gemeinsame Baueinheit integriert. Die einzelnen Wärmeübertragereinheiten beinhalten jeweils einen Block aus Wärmeübertragerrohren und können von verschiedenen Wärmeübertragermedien durchströmt werden, um diese z.B. mit einem rohraußenseitig über die Rohrblöcke hinweggeführten Luftstrom in Wärmekontakt zu bringen. Ein solcher Mehrblock- Wärmeübertrager eignet sich z.B. als kombinierter Ölkühler und Kondensator/Gaskühler in Kraftfahrzeugen. Mit der Ölkühler-Wärmeübertragereinheit kann in einem Ölkreislauf zirkulierendes Betriebsöl, z.B. eines Kraftfahrzeuggetriebes, gekühlt werden, während in der Kondensator- oder Gaskühler- Wärmeübertragereinheit ein hochdruckseitiges Kältemittel einer Kraftfahrzeug-Klimaanlage kondensiert bzw. gekühlt werden kann.
Es ist z.B. aus den Offenlegungsschriften EP 0 367 078 AI und EP 0 431 917 AI bekannt, zwei Wärmeübertragereinheiten mit jeweiligem Flachrohrblock dadurch in einer gemeinsamen Baueinheit zu integrieren, daß die beiden Flachrohrblöcke mit zugehörigen seitlichen Sammelrohren in Blocktiefenrichtung hintereinanderliegend angeordnet und durch eine gemeinsame wärmeleitende Wellrippenstruktur miteinander verbunden werden.
Bei einem in der Offenlegungsschrift DE 33 44 220 AI offenbarten Mehrblock-Wärmeübertrager ist in einer seitlichen Aussparung eines ersten Rohrblocks einer ersten Warmeubertragereinheit zwischen seitlichen Sammelbehältern derselben ein zweiter Rohrblock samt seitlichen Sammelbehältern einer weiteren Wärmeübertragereinheit aufgenommen, wobei der zweite Rohrblock an eine angrenzende Abschlußwand des ersten Rohrblocks angeschweißt ist.
In der Offenlegungsschrift DE 195 36 116 AI ist ein Wärmeübertrager beschrieben, bei dem ein Rohr-/Rippenblock mit zwei seitlichen Sammelrohren dadurch in zwei Bereiche für unterschiedliche Wärmeübertragermedien aufgeteilt ist, daß die beiden Sammelrohre an korrespondierenden Stellen durch eine Quertrennwandanordnung in je zwei getrennte Sammelräume unterteilt sind, denen eigene Anschlußstrukturen zugeordnet sind. Auf Höhe dieses Trennbereichs ist in den Rohr-/Rippenblock statt der sonst vorgesehenen Flachrohre ein Trennsteg eingefügt .
Der Erfindung liegt als technisches, Problem die Bereitstellung eines Mehrblock-Wärmeübertragers der eingangs genannten Art zugrunde, bei dem mit relativ geringem Aufwand an eine erste Wärmeübertragereinheit wenigstens eine weitere Warmeubertragereinheit flexiblen Aufbaus thermisch weitgehend entkoppelt angebaut ist .
Die Erfindung löst dieses Problem durch die Bereitstellung eines Mehrblock-Wärmeübertragers mit den Merkmalen des Anspruchs 1. Bei diesem Wärmeübertrager sind die Rohrblöcke der verschiedenen Wärmeübertragereinheiten mit jeweils eigenen Sammelrohren versehen, was insbesondere die Verwendung von Sammelrohren mit unterschiedlich großen Querschnitten für die einzelnen Rohrblöcke ermöglicht. Je zwei Wärmeübertragereinheiten sind wenigstens über eine stirnseitige Sammelrohrver- bindung miteinander verbunden, indem die beiden beteiligten Sammelrohre stirnseitig ineinandergesteckt und fluiddicht verbunden sind. Die Sammelrohre sind hierzu in diesem stirn- endseitigen Bereich so gestaltet, daß der Außenguerschnitt des hineingesteckten Sammelrohres im wesentlichen dem Innenquerschnitt des umgreifenden Sammelrohres entspricht. Eine im Rohrverbindungsbereich vorgesehene Quertrennwand hält die zu den beiden Sammelrohren gehörigen Sammelräume voneinander getrennt. Diese Art der Integration von zwei oder mehr Wärmeübertragereinheiten in eine gemeinsame Baueinheit hat den Vorteil, daß in flexibler Weise unterschiedliche Wärmeübertragereinheiten zu einem Mehrblock-Wärmeübertrager zusammengebaut sein können, d.h. an eine gegebene erste Warmeubertragereinheit lassen sich wahlweise verschiedene andere Wärmeübertragereinheiten anbauen.
Bei einem nach Anspruch 2 weitergebildeten Mehrblock- Wärmeübertrager besitzen die beiden Sammelrohre zweier zusammengebauter Wärmeübertragereinheiten unterschiedlich große Querschnitte in ihrem Mittelbereich, in welchem jeweils die Rohre des zugehörigen Rohrblocks einmünden. Um die Sammel- rohrverbindung zu realisieren, ist das Sammelrohr mit dem größeren Mittelbereich-Querschnitt im entsprechenden stirnseitigen Verbindungsbereich auf einen kleineren Querschnitt verjüngt, der dann gerade ausreicht, das Sammelrohr mit dem kleineren Querschnitt aufzunehmen. Das stirnseitig verjüngte Sammelrohr ist mit relativ wenig Aufwand durch ein Einzieh-, Hämmer- oder Aufweitverfahren oder als Fließpreßteil gefertigt.
Bei einem nach Anspruch 3 weitergebildeten Mehrblock- Wärmeübertrager ist im Rohrverbindungsbereich von den beiden zusammengesteckten Sammelrohren das äußere Sammelrohr an seiner Innenseite und/oder das innere Sammelrohr an seiner Außenseite lotplattiert. Durch diese Maßnahme kann die Verbin- düng der beiden Sammelrohre in einem Lötvorgang erfolgen, in welchem vorzugsweise zugleich das Dichtlöten der Wärmeübertragerrohre mit den Sammelrohren und das Verlöten von Wärme- leitrippen, falls vorhanden, mit den Wärmeübertragerrohren erfolgt .
Ein nach Anspruch 4 weitergebildeter Wärmeübertrager beinhaltet wenigstens zwei Rohrblöcke, die in Blockhochrichtung nebeneinanderliegend angeordnet sind. Zwischen den einander gegenüberliegenden, jeweils auf dieser Seite letzten Rohren des jeweiligen Rohrblocks befinden sich wenigstens zwei Wärmeleitrippen und/oder ein Luftspalt und/oder eine thermisch isolierende Blockabschlußwand, so daß diese beiden Wärmeübertragerrohre bei Bedarf weitestgehend thermisch voneinander entkoppelt sein können.
Bei einem nach Anspruch 5 weitergebildeten Wärmeübertrager sind wenigstens zwei Wärmeübertragereinheiten mit in Blocktiefenrichtung, d.h. in der zu den Ebenen der Rohrblöcke senkrechten Richtung, versetzten Rohrblöcken vorgesehen. Zur Realisierung der stirnseitigen Sammelrohrverbindung der beiden Wärmeübertragereinheiten ist ein Sammelrohr der einen Wärmeübertragereinheit mit einem U-Bogen versehen, über den es von der Ebene seines zugehörigen Rohrblocks in die dagegen versetzte Ebene des anderen Rohrblocks geführt ist, in welchem das damit verbundene Sammelrohr des anderen Rohrblocks liegt . Mit dieser Maßnahme können folglich mehrere eigenständige Wärmeübertrager-Rohrblöcke weitestgehend thermisch entkoppelt und insbesondere ohne gemeinsame Wärmeleitrippenver- bindung und ohne sonstige gemeinsame Verbindung der Rohrblockkörper in Blocktiefenrichtung versetzt in einer gemeinsamen Baueinheit angeordnet werden. Im Fall eines rohraußen- seitig z.B. von Luft durchströmten Rohrblocks ist die Blocktiefenrichtung hierbei parallel zur Strömungsrichtung des rohraußenseitig hindurchgeführten Mediums . Ein nach Anspruch 6 weitergebildeter Mehrblock-Wärmeübertrager beinhaltet wenigstens drei Wärmeübertragereinheiten mit zugehörigen Rohrblδcken, wobei an derselben Seite einer ersten Wärmeübertragereinheit zwei weitere Wärmeübertragereinheiten in Längsrichtung der Wärmeübertragerrohre nebeneinanderliegend angeordnet sind. Die im wesentlichen von der Gesamtlänge der Wärmeübertragerrohre bestimmte Gesamtbreite der beiden weiteren Wärmeübertragereinheiten ist bevorzugt so gewählt, daß sie in etwa der Breite der dritten Warmeubertragereinheit entspricht, so daß insgesamt eine Baueinheit mit über die Bereiche der verschiedenen Wärmeübertragereinheiten hinweg ungefähr gleichbleibenden Abmessungen gebildet ist . Dies erleichtert zudem das Verbinden je eines Sammelrohres der beiden weiteren Wärmeübertragereinheiten mit einem Sammelrohr der ersten Wärmeübertragereinheit, da die miteinander verbundenen Sammelrohre in diesem Fall weitgehend koaxial zueinander liegen. In einer weiteren Ausgestaltung dieses Wärmeübertragers sind gemäß Anspruch 7 die beiden einander zugewandten Sammelräume der beiden weiteren Wärmeübertragereinheiten auf kompakte Weise in ein gemeinsames Sammelrohr mit entsprechender Längstrennwand integriert .
Bei einem nach Anspruch 8 weitergebildeten Mehrblock- Wärmeübertrager ist der Querschnitt des Sammelrohres wenigstens einer der Wärmeübertragereinheiten kleiner gewählt als die Breite der zum Aufbau des zugehörigen Rohrblocks verwendeten Flachrohre . Diese münden endseitig mit tordierten Endbereichen in das relativ dünn gehaltene Sammelrohr, das dann stirnseitig in ein Sammelrohr größeren Querschnitts einer benachbarten Wärmeübertragereinheit eingefügt sein kann. Wärmeübertragereinheiten mit solch dünnen Sammelrohren eignen sich besonders für Klimaanlagen mit hohen Betriebsdrücken, wie C02-Klimaanlagen.
Vorteilhafte Ausführungsformen der Erfindung sind in den Zeichnungen dargestellt und werden nachfolgend beschrieben. Hierbei zeigen: Fig. 1 eine Seitenansicht eines Zweiblock-Wärmeübertragers mit nebeneinanderliegenden Rohrblöcken und stirnseitig verbundenen Sammelröhren,
Fig. 2 eine Längsschnittansicht längs der Linie II-II von Fig. 1.
Fig. 3 eine Seitenansicht eines Dreiblock-Wärmeübertragers mit zwei kleineren, sammelraumseitig aneinandergren- zenden und an einer Seite eines größeren Rohrblocks angeordneten Rohrblöcken,
Fig. 4 eine Querschnittansicht eines gemeinsamen inneren Sammelrohres der zwei sammelraumseitig aneinander- grenzenden Rohrblöcke von Fig. 3,
Fig. 5 eine Perspektivansicht eines Zweiblock-Wärmeübertragers mit in Blocktiefenrichtung versetzt angeordneten Rohrblöcken und
Fig. 6 eine ausschnittweise Seitenansicht des Zweiblock- Wärmeübertragers von Fig. 5.
In dem in Fig. 1 gezeigten Zweiblock-Wärmeübertrager sind zwei Wärmeübertragereinheiten mit in Blockhochrichtung nebeneinanderliegenden Rohr-/Rippenblöcken 1, 2 zu einer gemeinsamen Baueinheit integriert. Der zur einen, ersten Warmeubertragereinheit gehörige Rohr-/Rippenblock 1 besteht aus mehreren, in Blockhochrichtung aufeinanderfolgenden Serpentinen- flachrohren 3. Des weiteren weist diese Warmeubertragereinheit zwei sich entlang gegenüberliegender Blockseiten in Blockhochrichtung erstreckende Sammelrohre 4, 5 auf. Jedes Flachrohr 3 mündet mit je einem Endbereich 3a, 3b in die beiden Sammelrohre, 4, 5, von denen somit je nach Strömungsrichtung das eine zum parallelen Verteilen eines zugeführten Wärmeübertragungsmediums auf die verschiedenen Serpentinenflach- rohre 3 und das andere zum Sammeln dieses Wärmeübertragungs- mediums dient, wenn es aus den Serpentinenflachrohren austritt. Dabei sind die Serpentinenflachrohre 3 jeweils mit einander zugewandten eintrittsseitigen Bereichen und einander zugewandten austrittsseitigen Bereichen nebeneinander gelegt, um unerwünschte Wärmeübertragungseffekte zwischen einem eintrittsseitigen Bereich des einen und einem austrittsseitigen Bereich des benachbarten Serpentinenflachrohres 3 zu vermeiden. Zwischen benachbarten Serpentinenflachrohren 3 ebenso wie zwischen den einzelnen Windungen jedes Serpentinenflach- rohrs 3 sind wärmeleitfähige Wellrippen 16 eingebracht. Die diversen Wellrippen sind hierbei der Übersichtlichkeit halber in Fig. 1 wie auch in den Fig. 3, 5 und 6 nur zu einem kleinen Teil explizit wiedergegeben.
Die beiden Sammelrohre 4, 5 dieser ersten Warmeubertragereinheit sind mit relativ geringem Außendurchmesser gefertigt, der insbesondere kleiner ist als die Breite der verwendeten Serpentinenflachrohre 3. Aus diesem Grund sind die Flachrohrenden 3a, 3b gegenüber dem Flachrohrmittenbereich um 90° um die Flachrohrlängsachse tordiert in die Sammelrohre 4, 5 eingefügt .
Der Rohr-/Rippenblock 2 der anderen Wärmeübertragereinheit ist aus geradlinigen Flachrohren 6 aufgebaut, wobei zu beiden Seiten jedes geradlinigen Flachrohres ,6 je eine wärmeleitende Wellrippe 7 vorgesehen ist. Die geradlinigen Flachrohre 6 münden wiederum an entgegengesetzten Blockseiten in je ein dortiges Sammelrohr 8, 9. Diese beiden Sammelrohre 8, 9 besitzen gegenüber denjenigen der anderen Warmeubertragereinheit einen größeren Außen- und Innendurchmesser, wobei der Innendurchmesser insbesondere so ausreichend groß gewählt ist, daß die geradlinigen Flachrohre 6 mit nicht tordierten Enden, die quer zur Sammelrohrlängsachse verlaufen, in entsprechende Querschlitze der Sammelrohre 8, 9 eingefügt sind.
Die beiden Rohr-/Rippenblδcke 1, 2 sind unter Bildung einer gemeinsamen, kompakten Baueinheit derart angeordnet, daß die geradlinigen Flachrohre 6 parallel zu den geradlinigen Abschnitten der Serpentinenflachrohre 3 verlaufen und die beiden am nächsten benachbarten Wärmeübertrager-Rohrabschnitte 6a, 3c der beiden Blöcke 1, 2 über zwei Wellrippenreihen 16a voneinander beabstandet sind, die bei Bedarf z.B. durch einen Luftspalt thermisch weitestgehend voneinander entkoppelt sein können, so daß kein merklicher Wärmeübergang vom einen zum anderen Rohrblock auftritt. An den beiden parallel zu den geradlinigen Flachrohrbereichen verlaufenden Querseiten sind die beiden Rohr-/Rippenblöcke 1, 2 mit je einer zugehörigen Abschlußwand 18a, 18b abgeschlossen.
Die beiden Wärmeübertragereinheiten sind primär dadurch aneinander angebaut, daß ihre jeweiligen seitengleichen Sammelrohre 4, 5, 8, 9 ineinandergeste'ckt und durch Löten oder Schweißen gasdicht miteinander verbunden sind. Eine zusätzliche Fixierung der beiden Rohr-/Rippenblöcke 1, 2 aneinander kann daher bei Bedarf entfallen, was zudem die thermische Entkopplung der beiden Blöcke 1, 2 erleichtert. Um die besagten Sammelrohrverbindungen zu bewerkstelligen, sind die beiden durchmessergrößeren Sammelrohre 8, 9 der einen Warmeubertragereinheit in ihrem entsprechenden, stirnendseitigen Rohrverbindungsbereich verjüngt.
Die Fertigung dieser sich verjüngenden Sammelrohre 8, 9 kann durch ein Einzieh-, Hämmer- oder Aufweitverfahren erfolgen, oder diese Sammelrohre 8, 9 können als Fließpreßteil gefertigt sein, wie dies in der Schnittdarstellung von Fig. 2 angenommen ist. Wie aus Fig. 2 genauer zu erkennen, verjüngt sich das betreffende Sammelrohr 8 von seinem Mittenbereich größeren Querschnitts, der einen zugehörigen Sammelraum 10 definiert, auf einen Stirnendbereich 8a kleineren Querschnitts derart, daß der Innendurchmesser des verjüngten Stirnendbereichs 8a in etwa dem Außendurchmesser des darin stirnseitig eingefügten, dünneren Sammelrohres 5 der anderen Wärmeübertragereinheit entspricht. Der vom dünneren, d.h. durchmesserkleineren Sammelrohr 5 definierte Sammelraum 11 ist vom Sammelraum 10 des anderen Sammelrohrs 8 durch eine Quertrennwand 12 getrennt, die von einem Boden des durchmessergrößeren Sammelrohrs 8 im Übergangsbereich von dessen größerem Querschnitt zum verjüngten Stirnende 8a gebildet ist.
Der Mehrblock-Wärmeübertrager von Fig. 1 ist insbesondere als kombinierter Ölkühler-Gaskühler/Kondensator-Wärmeübertrager in Kraftfahrzeugen verwendbar. Bei dieser Anwendung bildet die Wärmeübertragereinheit mit dem Flachrohrserpentinenblock 1 einen Kondensator oder Gaskühler zur Kondensation bzw. Kühlung eines hochdruckseitigen Kältemittelstroms einer Klimaanlage, während die andere Wärmeübertragereinheit mit dem Rohrblock 1 aus geradlinigen Flachrohren einen Ölkühler zur Kühlung eines in einem Ölkreislauf zirkulierenden Betriebsöls des Kraftfahrzeugs bildet, z.B. in einem Getriebeöl- oder Servoölkreislauf . Diesem Anwendungsfall angepaßt sind die Ölkühler-Sammelrohre 8, 9 mit größerem Querschnitt ausgelegt als die Kältemittel-Sammelrohre 4, 5. Die letztgenannten Sammelrohre 4, 5 definieren auf diese Weise ein relativ kleines Sammelraumvolumen, wie dies für einen Kondensator bzw. Gas- kühler erwünscht ist, insbesondere bei Einsatz von Kohlendioxid als Kältemittel. Bei Verwendung dieses Kältemittels hat die Wahl eines relativ geringen Durchmessers für die zugehörigen Sammelrohre 4, 5 zudem den Vorteil, daß sie bei vergleichbarer Wandstärke wie die beiden anderen Sammelrohre 8 , 9 sehr druckstabil ausgelegt werden können, so daß sie den bei C02-Klimaanlagen hochdruckseitig typischerweise auftretenden Drücken problemlos standhalten.
Der Zusammenbau der beiden Wärmeübertragereinheiten zu der gemeinsamen Baueinheit kann zum einen dadurch erfolgen, daß zunächst beide Wärmeübertragereinheiten, d.h. der jeweilige Rohr-/Rippenblock 1, 2 mit den zugehörigen seitlichen Sammel- rohren 4 , 5 , 8 , 9 , getrennt aufgebaut und gelötet und anschließend die beiden vorgefertigten Wärmeübertragereinheiten durch Ineinanderstecken der seitengleichen Sammelrohre 4, 9 bzw. 5, 8 , und festes Verbinden derselben z.B. durch einen Löt- oder Schweißvorgang aneinander fixiert werden. Alternativ kann die gesamte Baueinheit aus den beiden Wärmeübertragereinheiten gemeinsam aufgebaut und anschließend in einem einzigen Löt- oder Schweißprozeß gelötet bzw. geschweißt werden. In diesem Zusammenhang ist es von Vorteil, wenn im Sam- melrohrverbindungsbereich die Innenseite des äußeren Sammelrohres 8, 9 und/oder die Außenseite des inneren Sammelrohres 4, 5 lotplattiert ist, so daß bei dem Lötprozeß in einem geeigneten Lötofen zugleich auch die feste stirnseitige Verbindung der seitengleichen Sammelrohre 4, 9 bzw. 5, 8 durch Zu- sammenlöten bewirkt werden kann.
Es versteht sich, daß die beiden nebeneinanderliegenden Wärmeübertragereinheiten mit zugehörigen, nicht gezeigten An- schlußstrukturen versehen sind, über die das jeweilige Wärmeübertragungsmedium in das eine Sammelrohr axial oder radial zugeführt und aus dem jeweils gegenüberliegenden Sammelrohr wiederum axial oder radial abgeführt werden kann.
Fig. 3 zeigt eine Variante des Ausführungsbeispiels von Fig. 1, die einen Dreiblock-Wärmeübertrager bildet, wobei für funktionell gleiche Komponenten dieselben Bezugszeichen verwendet sind und insoweit auf die obige Beschreibung zu Fig. 1 verwiesen werden kann. So beinhaltet der Dreiblock- Wärmeübertrager von Fig. 3 dieselbe Wärmeübertragereinheit mit dem Rohr-/Rippenblock 1 aus serpentinenförmigen Flachrohren 3 und kleinvolumigen, seitlichen Sammelrohren 4, 5, wie sie z.B. als Gaskühler einer C02-Klimaanlage geeignet ist. Anstelle des zweiten Rohr-/Rippenblocks 2 von Fig. 1 sind beim Wärmeübertrager von Fig. 3 zwei Rohr-/Rippenblöcke 2a, 2b mit dem aus den serpentinenförmigen Flachrohren 3 aufgebauten Rohr-/Rippenblock 1 kombiniert. Dabei ist die Länge der für die beiden weiteren Blöcke 2a, 2b verwendeten Flachrohre 19a, 19b jeweils etwa halb so groß gewählt wie die Länge der geradlinigen Abschnitte der Serpentinenflachrohre 3. Die beiden weiteren Blöcke 2a, 2b sind zum einen entlang einer jeweiligen inneren Sammelrohrseite aneinander anliegend und zum anderen mit einer zur Flachrohrerstreckung parallelen Seite in Blockhochrichtung jeweils benachbart zu einer gemeinsamen Seite des Serpentinenrohr-/Rippenblocks 1 angeordnet, so daß sich insgesamt eine kompakte, quaderförmige Baueinheit mit in Blockhochrichtung in etwa gleichbleibender Breite ergibt.
Nach außen münden die geradlinigen Flachrohre 19a, 19b der beiden weiteren, kleineren Rohr-/Rippenblöcke 2a, 2b in Sammelrohre 8a, 9a, die den korrespondierenden, durchmessergrößeren Sammelrohren 8, 9 von Fig. 1 entsprechen. Nach innen münden die geradlinigen Flachrohre 19a, 19b an den zugewandten Seiten der beiden kleineren Rohr-/Rippenblöcke 2a, 2b in zwei dortige Sammelräume 20, 21, die von einem gemeinsamen Sammelrohr 22 gebildet sind, wie aus der zugehörigen Querschnittansicht von Fig. 4 zu erkennen. Dieses zweikanalige Sammelrohr 22 kann z.B. als extrudiertes Rohr gefertigt sein und weist eine mittige Längstrennwand 23 auf, die den Rohrinnenraum in die beiden getrennten, längs verlaufenden Sammel- räume 20, 21 aufteilt.
Jeder der beiden kleineren Rohr-/Rippenblöcke 2a, 2b ist über sein äußeres Sammelrohr 8a, 9a mit dem seitengleichen Sammelrohr 4, 5 der größeren ärmeübertragereinheit und folglich zusammen mit deren Rohr-/Rippenblock 1 zu der gemeinsamen Baueinheit verbunden. Die stirnseitigen Verbindungen der sei- tengleichen Sammelrohre 4, 9a bzw. 5, 8a entsprechen denjenigen von Fig. 1, worauf verwiesen werden kann. Nur bei Bedarf kann eine zusätzliche Fixierung der beiden kleineren Blöcke 2a, 2b am größeren Block 1 über eine dann vorzugsweise thermisch isolierend ausgelegte Verbindung zwischen den beiden gegenüberliegenden Wellrippenreihen 16b vorgesehen sein, z.B. in Form einer thermisch isolierenden Zwischenwand. An der in Blockhochrichtung freien Außenseite sind die beiden kleineren Rohr-/Rippenblöcke 2a, 2b mit je einer Abschlußwand 18c, 18d versehen. Wie im Beispiel von Fig. 1 sind auch beim Wärmeübertrager von Fig. 3 die geradlinigen Flachrohre 19a, 19b der beiden kleineren Blöcke 2a, 2b mit größerem Durchtrittsquerschnitt gebildet als die Serpentinenflachrohre 3, was ihn in gleicher Weise zur Verwendung in Kraftfahrzeugen dergestalt geeignet macht, daß die Wärmeübertragereinheit mit dem Serpentinen- flachrohrblock 1 als Kondensator oder Gaskühler z.B. einer C02-Klimaanlage und die beiden anderen Wärmeübertragereinheiten mit den geradlinigen Flachrohren 2a, 2b und den durchmes- sergrößeren Sammelrohren 8a, 9a, 22 als Ölkühler eingesetzt werden, z.B. der eine als Getriebeölkühler und der andere als Servoölkühler . Für die beiden kleineren Wärmeübertragereinheiten sind in Fig. 3 beispielhafte Anschlußstrukturen in Form je eines radialen Anschlusses 24, 25 zu den beiden äußeren Sammelrohren 8a, 9a und je eines axialen Anschlusses 26, 27 zum jeweiligen inneren Sammelraum 20, 21 angedeutet.
Im übrigen gelten die oben zum Ausführungsbeispiel von Fig. 1 angegebenen Vorteile und Eigenschaften, insbesondere auch was die möglichen Herstellungsvarianten betrifft, in analoger Weise für den Dreiblock-Wärmeübertrager von Fig. 3.
In Fig. 5 ist eine weitere Variante des Beispiels von Fig. 1 dargestellt, bei der wiederum funktionell gleiche Komponenten mit denselben Bezugszeichen bezeichnet sind und insoweit auf die obige Beschreibung von Fig. 1 verwiesen werden kann. Das Ausführungsbeispiel von Fig. 5, dort mit einem weggeschnittenen Eckbereich gezeigt, stellt ebenfalls einen Zweiblock- Wärmeübertrager dar, bei dem die gleichen beiden Rohr-/Rippenblöcke 1, 2 wie im Beispiel von Fig. 1 verwendet sind, die hier jedoch nicht in Blockhochrichtung nebeneinander, sondern in Blocktiefenrichtung hintereinander angeordnet sind, d.h. der kleinere Rohr-/Rippenblock 2 mit den geradlinigen Flachrohren 6 liegt in Richtung des rohraußenseitig durch die beiden Blöcke 1, 2 hindurchgeleiteten Strömungsmediums, wie z.B. Luft, vor oder hinter dem größeren Rohr-/Rippenblock 1 mit den Serpentinenflachrohren 3. Der kleinere Rohr-/Rippenblock 2 ist an den größeren Rohr-/ Rippenblock 1 allein über die beiden seitlichen Sammelrohr- verbindungen angebaut. Dabei entsprechen die beiden Sammelrohre 8, 9 größeren Querschnitts für den kleineren Rohr-/ Rippenblock 2 denjenigen von Fig. 1. Hingegen sind für die Serpentinenflachrohr-Wärmeübertragereinheit modifizierte Sammelrohre 4a, 5a verwendet, die sich von den beiden korrespondierenden Sammelrohren 4, 5 des Wärmeübertragers von Fig. 1 dadurch unterscheiden, daß sie an der in Fig. 5 oberen Blockseite zu einem U-Bogen 4b, 5b um 180° so umgebogen sind, daß ihr umgebogener Endbereich jeweils koaxial zum seiten- gleichen, durchmessergrößeren Sammelrohr 8, 9 des kleineren Rohr-/Rippenblocks 2 zu liegen kommt und in dessen verjüngtes Stirnende 8a, 9a fluiddicht eingefügt ist. Im übrigen entsprechen die beiden Sammelrohrverbindungen denjenigen von Fig. 1. Auch ansonsten gelten für den Wärmeübertrager von Fig. 5 die oben zum Ausführungsbeispiel von Fig. 1 erwähnten Vorteile und Eigenschaften analog.
Wie insbesondere aus der ausschnittweisen Seitenansicht von Fig. 6 ersichtlich, ragt der in Blocktiefenrichtung zum größeren Rohr-/Rippenblock 1 versetzte kleinere Rohr- /Rippenblock 2 in Blockhochrichtung nicht über den größeren Block 1 hinaus, so daß durch die Ankopplung des kleineren Blocks 2 kein über den größeren Block 1 hinausgehender Bauraum in der Ebene senkrecht zur Blocktiefenrichtung benötigt wird. Beide Blöcke 1, 2 liegen in diesem Fall in Blockhochrichtung beidseits frei und sind dort je nach Bedarf auf einer oder beiden Seiten mit zugehörigen Abschlußwänden versehen, in Fig. 5 z.B. an der jeweils unteren Blockseite mit den entsprechenden Abschlußwänden 18a, 18b von Fig. 1.
Die gezeigten und oben erläuterten Ausführungsbeispiele machen deutlich, daß der erfindungsgemäße Mehrblock-Wärmeübertrager eine Integration von zwei oder mehr Wärmeübertragereinheiten in einer gemeinsamen Baueinheit beinhaltet, wobei die Wärmeübertragereinheiten ausschließlich oder jeden- falls primär über stirnseitige Verbindungen zugehöriger Sammelrohre aneinandergebaut sind. Dies erlaubt ein flexibles Zusammenbauen unterschiedlicher weiterer Wärmeübertragereinheiten an eine jeweils erste Wärmeübertragereinheit. Während bei den gezeigten Beispielen eine oder zwei weitere Wärmeübertragereinheiten in nur einem Seitenbereich einer ersten Wärmeübertragereinheit an diese angekoppelt sind, ist es selbstverständlich möglich, eine solche Ankopplung einer oder mehrerer weiterer Wärmeübertragereinheiten an zwei gegenüberliegenden Seiten der ersten Wärmeübertragereinheit vorzusehen. Zudem können bei Bedarf jede beliebige Anzahl von Wärme- Übertragereinheiten mit zugehörigen Rohrblöcken in Blockhochrichtung nebeneinanderliegend angeordnet und jeweils über seitengleiche, stirnseitige Sammelrohrverbindungen aneinander befestigt und auf diese Weise zu einer gemeinsamen, integrierten Baueinheit verbunden sein.

Claims

Patentansprüche
1 . Mehrblock-Wärmeübertrager mit einer ersten Wärmeübertragereinheit, die einen ersten Wärmeübertrager-Rohrblock (1) mit wenigstens einem ersten seitlichen Sammelraum (10) beinhaltet, und wenigstens einer an die erste Wärmeübertragereinheit angebauten, zweiten Wärmeübertragereinheit, die einen zweiten Wärmeübertrager-Rohrblock (2) mit wenigstens einem zweiten seitlichen Sammelraum (11) beinhaltet, d a d u r c h g e k e n n z e i c h n e t , d a ß der erste und der zweite Sammelraum (10, 11) von je einem eigenen Sammelrohr (4, 9) gebildet sind und die beiden Sammelrohre stirnseitig ineinandergesteckt und fluiddicht verbunden sind, wobei in diesem Rohrverbin- dungsbereich der Außenquerschnitt des einen Sammelrohres (4) im wesentlichen dem Innenquerschnitt des anderen Sammelrohres (9) entspricht und eine Quertrennwand (12) zur Trennung der beiden Sammelräume (10, 11) vorgesehen ist.
2. Mehrblock-Wärmeübertrager nach Anspruch 1, weiter dadurch gekennzeichnet, daß sich das im Rohrverbindungsbereich äußere Sammelrohr (9) von einem größeren Mittelbereich- Querschnitt zu einem demgegenüber kleineren Verbindungsbe- reich-Querschnitt verjüngt und durch ein Einzieh-, Hämmeroder Aufweitverfahren oder als Fließpreßteil gefertigt ist.
3. Mehrblock-Wärmeübertrager nach Anspruch 1 oder 2, weiter dadurch gekennzeichnet, daß im Rohrverbindungsbereich das äußere Sammelrohr (9) an seiner Innenseite oder das innere Sammelrohr (4) an seiner Außenseite lotplattiert ist.
4. Mehrblock-Wärmeübertrager nach einem der Ansprüche 1 bis 3, weiter dadurch gekennzeichnet, daß die beiden Rohrblöcke (1, 2) in Blockhochrichtung nebeneinanderliegend angeordnet sind, wobei sich zwischen den beiden einander am nächsten zu- gewandten Wärmeübertragerrohren (6a, 3c) des einen und des anderen Rohrblocks (1, 2) wenigstens zwei Wärmeleitrippen (16a) und/oder ein Luftspalt und/oder eine thermisch isolierende Blockabschlußwand befinden.
5. Mehrblock-Wärmeübertrager nach einem der Ansprüche 1 bis 3, weiter dadurch gekennzeichnet, daß die beiden Rohrblöcke (1, 2) in Blocktiefenrichtung versetzt angeordnet sind und eines der beiden Sammelrohre (4a, 9) mit einem U-Bogen (4b) versehen ist, über den es von der Ebene seines zugehörigen Rohrblocks zum Rohrverbindungsbereich in der Ebene des anderen Rohrblocks geführt ist.
6. Mehrblock-Wärmeübertrager nach einem der Ansprüche 1 bis 5, weiter dadurch gekennzeichnet, daß an die erste Warmeubertragereinheit wenigstens zwei weitere Wärmeübertragereinheiten mit jeweiligem Rohrblock (2a, 2b) und seitlichen Sammelrohren (8b, 9b, 22) angebaut sind, wobei sie längs einer inneren Sammelraumseite gegeneinanderliegend sowie in Blockhochrichtung der ersten Wärmeübertragereinheit benachbart angeordnet sind und je ein zugehöriges äußeres Sammelrohr (8b, 9b) stirnseitig mit einem Sammelrohr (4, 5) der ersten Warmeubertragereinheit verbunden ist.
7. Mehrblock-Wärmeübertrager nach Anspruch 6, weiter dadurch gekennzeichnet, daß für die beiden weiteren Wärmeübertragereinheiten ein gemeinsames, inneres, zweikanaliges Sammelrohr (22) vorgesehen ist, das zwei durch eine Längstrennwand (23) getrennte Sammelräume (20, 21) aufweist.
8. Mehrblock-Wärmeübertrager nach einem der Ansprüche 1 bis 7, weiter dadurch gekennzeichnet, daß der Rohrblock (1) der ersten Wärmeübertragereinheit von Flachrohren (3) gebildet ist, die mit tordierten Enden (3a, 3b) in seitliche Sammelrohre (4, 5) mit gegenüber der Flachrohrbreite geringerem Innendurchmesser eingefügt sind.
PCT/EP2000/001966 1999-04-06 2000-03-07 Mehrblock-wärmeübertrager WO2000060298A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US09/958,090 US6810949B1 (en) 1999-04-06 2000-03-07 Multiblock heat-transfer system
AU36574/00A AU3657400A (en) 1999-04-06 2000-03-07 Multiblock heat-transfer system
JP2000609753A JP2002541423A (ja) 1999-04-06 2000-03-07 多ブロック熱交換器
DE50010925T DE50010925D1 (de) 1999-04-06 2000-03-07 Mehrblock-wärmeübertrager
EP00915170A EP1166025B1 (de) 1999-04-06 2000-03-07 Mehrblock-wärmeübertrager
AT00915170T ATE301813T1 (de) 1999-04-06 2000-03-07 Mehrblock-wärmeübertrager

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19915389A DE19915389A1 (de) 1999-04-06 1999-04-06 Mehrblock-Wärmeübertrager
DE19915389.2 1999-04-06

Publications (1)

Publication Number Publication Date
WO2000060298A1 true WO2000060298A1 (de) 2000-10-12

Family

ID=7903600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/001966 WO2000060298A1 (de) 1999-04-06 2000-03-07 Mehrblock-wärmeübertrager

Country Status (8)

Country Link
US (1) US6810949B1 (de)
EP (1) EP1166025B1 (de)
JP (1) JP2002541423A (de)
AT (1) ATE301813T1 (de)
AU (1) AU3657400A (de)
DE (2) DE19915389A1 (de)
ES (1) ES2246839T3 (de)
WO (1) WO2000060298A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009021339A1 (de) * 2009-05-14 2010-11-25 Andreas Jahn Medienleitung mit zumindest einem Rohrabschnitt und zumindest einem Koppelelement

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10328748B4 (de) * 2003-06-25 2017-12-14 Mahle International Gmbh Wärmeübertrager, insbesondere Ladeluftkühler für Nutzfahrzeuge
US20050236146A1 (en) * 2003-12-11 2005-10-27 Behr Gmbh & Co. Kg. Assembly configuration for devices for exchanging heat
US7263848B2 (en) * 2005-08-24 2007-09-04 Delphi Technologies, Inc. Heat pump system
WO2010047320A1 (ja) * 2008-10-20 2010-04-29 昭和電工株式会社 コンデンサ
US8783335B2 (en) * 2010-04-16 2014-07-22 Showa Denko K.K. Condenser

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3344220A1 (de) 1983-12-07 1985-06-20 Audi AG, 8070 Ingolstadt Waermetauschvorrichtung, insbesondere fuer kraftfahrzeuge
EP0361358A1 (de) * 1988-09-30 1990-04-04 FIAT AUTO S.p.A. Integrierte Wasser-/Öl-Kühler, insbesondere für Fahrzeuge
EP0367078A1 (de) 1988-10-24 1990-05-09 Sanden Corporation Wärmeaustauscher
EP0431917A1 (de) 1989-12-07 1991-06-12 Showa Aluminum Kabushiki Kaisha Duplex-Wärmetauscher
FR2676273A1 (fr) * 1991-05-10 1992-11-13 Valeo Thermique Moteur Sa Boite a fluide de forme generale tubulaire pour echangeur de chaleur.
US5197538A (en) * 1991-04-22 1993-03-30 Zexel Corporation Heat exchanger apparatus having fluid coupled primary heat exchanger unit and auxiliary heat exchanger unit
DE19536116A1 (de) 1995-09-28 1997-04-03 Behr Gmbh & Co Wärmeübertrager für ein Kraftfahrzeug

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1117520A (en) * 1980-06-27 1982-02-02 Bozo Dragojevic Heat exchange assembly
US4770240A (en) * 1985-05-13 1988-09-13 Stark Manufacturing, Inc. Manifold for a heat exchanger
US4936379A (en) * 1986-07-29 1990-06-26 Showa Aluminum Kabushiki Kaisha Condenser for use in a car cooling system
US5246064A (en) * 1986-07-29 1993-09-21 Showa Aluminum Corporation Condenser for use in a car cooling system
US5458190A (en) * 1986-07-29 1995-10-17 Showa Aluminum Corporation Condenser
US5190100B1 (en) * 1986-07-29 1994-08-30 Showa Aluminum Corp Condenser for use in a car cooling system
US5482112A (en) * 1986-07-29 1996-01-09 Showa Aluminum Kabushiki Kaisha Condenser
EP0360362B1 (de) * 1986-07-29 1992-07-22 Showa Aluminum Kabushiki Kaisha Kondensator
US5090477A (en) * 1988-10-11 1992-02-25 Brazeway, Inc. Evaporator having integrally baffled tubes
US4917180A (en) * 1989-03-27 1990-04-17 General Motors Corporation Heat exchanger with laminated header and tank and method of manufacture
US5101890A (en) * 1989-04-24 1992-04-07 Sanden Corporation Heat exchanger
JPH02140166U (de) * 1989-04-24 1990-11-22
JPH0616310Y2 (ja) * 1989-04-27 1994-04-27 サンデン株式会社 熱交換器
DE3938842A1 (de) 1989-06-06 1991-05-29 Thermal Waerme Kaelte Klima Verfluessiger fuer ein kaeltemittel einer fahrzeugklimaanlage
DE3918455A1 (de) * 1989-06-06 1990-12-20 Thermal Waerme Kaelte Klima Verfluessiger fuer ein kaeltemittel einer fahrzeugklimaanlage
US5529116A (en) * 1989-08-23 1996-06-25 Showa Aluminum Corporation Duplex heat exchanger
JPH0346778U (de) * 1989-09-11 1991-04-30
DE4327213C2 (de) * 1993-08-13 1997-12-11 Ruecker Gmbh Rekuperativer Wärmetauscher, insbesondere Kühler für Kraftfahrzeuge
US5348081A (en) * 1993-10-12 1994-09-20 General Motors Corporation High capacity automotive condenser
DE19509654A1 (de) * 1995-03-17 1996-09-19 Kloeckner Humboldt Deutz Ag Wärmetauschereinheit
US5826649A (en) * 1997-01-24 1998-10-27 Modine Manufacturing Co. Evaporator, condenser for a heat pump
PT981715E (pt) * 1997-05-12 2002-03-28 Norsk Hydro As Permutador de calor
US5765393A (en) * 1997-05-28 1998-06-16 White Consolidated Industries, Inc. Capillary tube incorporated into last pass of condenser
KR100264815B1 (ko) * 1997-06-16 2000-09-01 신영주 다단기액분리형응축기
JP3324464B2 (ja) * 1997-10-01 2002-09-17 株式会社デンソー 車両用熱交換装置
JP4062775B2 (ja) * 1998-02-24 2008-03-19 株式会社デンソー 複式熱交換器
DE19833845A1 (de) * 1998-07-28 2000-02-03 Behr Gmbh & Co Wärmeübertrager-Rohrblock und dafür verwendbares Mehrkammer-Flachrohr
KR100297189B1 (ko) * 1998-11-20 2001-11-26 황해웅 열전달촉진효과를갖는고효율모듈형오엘에프열교환기
JP3879296B2 (ja) * 1999-01-19 2007-02-07 株式会社デンソー 熱交換器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3344220A1 (de) 1983-12-07 1985-06-20 Audi AG, 8070 Ingolstadt Waermetauschvorrichtung, insbesondere fuer kraftfahrzeuge
EP0361358A1 (de) * 1988-09-30 1990-04-04 FIAT AUTO S.p.A. Integrierte Wasser-/Öl-Kühler, insbesondere für Fahrzeuge
EP0367078A1 (de) 1988-10-24 1990-05-09 Sanden Corporation Wärmeaustauscher
EP0431917A1 (de) 1989-12-07 1991-06-12 Showa Aluminum Kabushiki Kaisha Duplex-Wärmetauscher
US5197538A (en) * 1991-04-22 1993-03-30 Zexel Corporation Heat exchanger apparatus having fluid coupled primary heat exchanger unit and auxiliary heat exchanger unit
FR2676273A1 (fr) * 1991-05-10 1992-11-13 Valeo Thermique Moteur Sa Boite a fluide de forme generale tubulaire pour echangeur de chaleur.
DE19536116A1 (de) 1995-09-28 1997-04-03 Behr Gmbh & Co Wärmeübertrager für ein Kraftfahrzeug

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009021339A1 (de) * 2009-05-14 2010-11-25 Andreas Jahn Medienleitung mit zumindest einem Rohrabschnitt und zumindest einem Koppelelement
DE102009021339B4 (de) * 2009-05-14 2015-05-21 Andreas Jahn Medienleitung mit zumindest einem Rohrabschnitt und zumindest einem Koppelelement

Also Published As

Publication number Publication date
EP1166025A1 (de) 2002-01-02
ATE301813T1 (de) 2005-08-15
DE19915389A1 (de) 2000-10-12
DE50010925D1 (de) 2005-09-15
JP2002541423A (ja) 2002-12-03
EP1166025B1 (de) 2005-08-10
AU3657400A (en) 2000-10-23
ES2246839T3 (es) 2006-03-01
US6810949B1 (en) 2004-11-02

Similar Documents

Publication Publication Date Title
EP1042641B1 (de) Wärmeübertragender rohrblock und dafür verwendbares mehrkammer-flachrohr
EP1036296B1 (de) Flachrohr mit querversatz-umkehrbogenabschnitt und damit aufgebauter wärmeübertrager
EP0845647B1 (de) Flachrohr-Wärmeübertrager mit tordiertem Flachrohrendabschnitt
DE112004002386T5 (de) Mehrfluid-Wärmeaustauscher und Verfahren zu seiner Herstellung
EP1792135B1 (de) Wärmetauscher für kraftfahrzeuge
EP0929784B1 (de) Flachrohrwärmetauscher für kraftfahrzeuge mit an krägen eines rohrbodens gehaltenen flachrohren
EP1460363B1 (de) Verdampfer
DE112020000756T5 (de) Umgekehrte Sammlergestaltung für thermischen Kreislauf
DE102004002252B4 (de) Wärmeübertrager für Fahrzeuge
DE10257767A1 (de) Wärmeübertrager
EP1643202B1 (de) Wärmetauscher
EP1597529B1 (de) Flachrohr mit umkehrbogenabschnitt und damit aufgebauter w r me bertrager
EP1738125A1 (de) Wärmeübertrager für kraftfahrzeuge
EP1166025B1 (de) Mehrblock-wärmeübertrager
DE10147521A1 (de) Wärmeübertrager, insbesondere Gaskühler CO2 - Klimaanlagen
DE112005000422T5 (de) Ein ein Flachrohr bildender plattenförmiger Körper, ein Flachrohr, ein Wärmetauscher und ein Verfahren zur Herstellung eines Wärmetauschers
EP1625339A1 (de) Wärmetauscher
EP2049859B1 (de) Kraftfahrzeugklimaanlage
WO2005057116A1 (de) Bauordnung für vorrichtungen zum austausch von wärme
EP1623173B1 (de) Wàrmetauschereinheit für kraftfahrzeuge
EP1682831B1 (de) Wärmetauscher
EP1668304A1 (de) Wärmetauschereinheit für kraftfahrzeuge
DE2121473A1 (de) Röhrenwärmeaustauscher
WO2005017437A1 (de) Vorrichtung zum austausch von wärme
WO2004005826A1 (de) Wärmeübertrager

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000915170

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2000 609753

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2000915170

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09958090

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2000915170

Country of ref document: EP