EP0845648B1 - Flachrohr-Wärmeübertrager, insbesondere Kondensator vom Serpentinentyp - Google Patents

Flachrohr-Wärmeübertrager, insbesondere Kondensator vom Serpentinentyp Download PDF

Info

Publication number
EP0845648B1
EP0845648B1 EP19970120670 EP97120670A EP0845648B1 EP 0845648 B1 EP0845648 B1 EP 0845648B1 EP 19970120670 EP19970120670 EP 19970120670 EP 97120670 A EP97120670 A EP 97120670A EP 0845648 B1 EP0845648 B1 EP 0845648B1
Authority
EP
European Patent Office
Prior art keywords
flat tube
flat
tube
twisted
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19970120670
Other languages
English (en)
French (fr)
Other versions
EP0845648A3 (de
EP0845648A2 (de
Inventor
Wolfgang Geiger
Karl-Heinz Dipl.-Ing. Staffa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19649129A external-priority patent/DE19649129A1/de
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Priority to EP19970120670 priority Critical patent/EP0845648B1/de
Publication of EP0845648A2 publication Critical patent/EP0845648A2/de
Publication of EP0845648A3 publication Critical patent/EP0845648A3/de
Application granted granted Critical
Publication of EP0845648B1 publication Critical patent/EP0845648B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features

Definitions

  • the invention relates to a flat tube heat exchanger with a flat tube block with one or more Flat tubes with their two end sections in one each terminal compartment component open with at least one end section is twisted section relative to the flat tube.
  • Such heat exchangers can be used, for example, as serpentine-type capacitors use in air conditioning systems of motor vehicles.
  • Such a heat exchanger is in US Pat. No. 3,416,600 of the serpentine type in which a stack is disclosed serpentine curved flat tubes is provided, which in their end sections are twisted by 90 ° so that the longitudinal axis of the twisted end sections with the longitudinal axis of the not twisted flat tube middle section coincides.
  • the flat tubes With these twisted end sections are the flat tubes in associated side collecting tubes inserted, this with circumferential introduced in the pipe longitudinal direction and longitudinal slots arranged in a line are provided.
  • the flat tubes can be in a middle area be twisted by 180 °.
  • To form the serpentine flat tube stack are the individual serpentine curved Flat tubes arranged side by side in the same position.
  • each have an inlet-side flat tube section a flat tube and an outlet-side section of a opposite flat tube opposite. Because in the operation of the heat exchanger these two opposite sections generally at significantly different temperatures lie, there may be undesirable heat transfer effects come between these flat tube sections, the efficiency reduce the heat exchanger.
  • the invention is a technical problem of providing a flat tube heat exchanger of the type mentioned Type based on low dead volume, high efficiency, sufficient burst pressure security and given Manufacture flat tube width comparatively small depth lets and if necessary in particular as a capacitor for a Air conditioning is usable.
  • the invention solves this problem by providing it a flat tube heat exchanger with the features of the claim 1.
  • each Flat tube is eccentrically, eccentrically twisted, i.e. that the longitudinal axis of the twisted end section opposite the Longitudinal axis of the undistorted flat tube middle section in is offset in a lateral direction.
  • connection space components e.g. corresponding manifolds
  • the small depth of the connection space components has the further advantage that the same for Achieving a predetermined burst pressure safety with relative Small wall thickness can be made and only a relative have low dead volume. You can also do that Flow through heat exchanger volume for a given heat exchanger output keep comparatively low, what if necessary a reduction in the volume of the heat transfer fluid flowing through compared to conventional flat tube heat exchangers allowed.
  • the off-center twisting of the flat tube ends creates the Prerequisite for realizing even more compact designs of the Heat exchanger. So with appropriate lateral displacement neighboring, in each case the same terminal compartment component the end of the flat tube end sections the distance of the flat tubes in the non-twisted middle area even with a torsion angle 90 ° smaller than the flat tube width, without the flat tubes in their central areas must be laterally offset. Besides, can by corresponding cross-displacement of the twisted flat tube ends A heat exchanger is implemented in the depth direction of the pipe block be in which the terminal compartment components on one side of the pipe block are arranged.
  • the invention according to claim 2 are at least two adjacent end sections in a row Flat tubes twisted so that their longitudinal axis perpendicular to Plane of the undistorted flat tube middle section, i.e. in a pipe block vertical direction, opposite the longitudinal central axis of the undistorted flat tube middle section is offset.
  • the two adjacent flat tubes are like this in the flat tube block arranged that they are offset from each other in the vertical direction open twisted ends in the same terminal compartment component.
  • the opposing twisting of the two Flat tube ends allow the two adjacent flat tubes despite the end twisting with comparatively little Distance from each other.
  • This enables if necessary e.g. the realization of heat exchangers in which serpentine Flat tubes with both ends on the same tube block side open into the two terminal compartment components, the there separately or integrated into a single component Block vertical direction.
  • the have the features of one or more of claims 1 to 3 can is a tube block from a stack of serpentine Flat tubes are provided, which are arranged so that in the stack of adjacent flat tubes always either with their inlet-side or with their outlet-side sections contiguous. If the volume is as small as possible is desired for the terminal compartment components, can this is advantageous by suitable twisting of the flat tube ends, according to one of claims 1 to 3, with a corresponding off-center twisting maintain a small distance between adjacent flat tubes can be.
  • Fig. 1 shows an end flat tube twisting, in which the flat tube end section 3 opposite the flat tube middle section 2 is twisted by 90 ° and off center in such a way that the longitudinal axis 1 of the twisted end section by a selectable Amount dy with respect to the longitudinal axis 4 of the und twisted Middle section 2 in the vertical direction defined above, i.e. perpendicular to the plane of the undistorted flat tube middle section 2, is offset.
  • Fig. 2 shows e.g. as a condenser in a motor vehicle air conditioning system usable flat tube heat exchanger from Serpentine type, in which twisted according to FIG. 1, serpentine Flat tubes 5 are used.
  • the heat exchanger contains a tube / fin block in which the serpentine, flat tubes 5 in. each having four bends a stack successively arranged in the vertical direction y are, in the spaces between adjacent Flat tube middle sections 2 introduced heat-conducting corrugated fins 30 are.
  • Each flat tube 5 opens with its two according to Fig. 1 twisted off-center in the vertical direction End sections 3 on opposite long sides of the tube / fin block into a collecting pipe running longitudinally there 6, 7 a.
  • the manifolds 6, 7 act as connection space components, one of which has an end face Inlet 8 and the other via a corresponding end face Outlet 9 has.
  • This can be a heat transfer fluid 10 fed via the inlet 8 into a collecting tube 6 be where it opens into this manifold 6 Flat tube ends in the entry-side section 11 each Flat tube is forwarded to then through the respective to flow through the serpentine flat tube and from it outlet-side flat tube section 12 over those twisted flat tube ends to get into the other manifold 7, from which it flows out via the outlet 9.
  • adjacent flat tubes are always arranged so that they are either with their entry-side Sections 11 or with their outlet-side sections 12 face each other. Because these sections with each other are each at practically the same temperature no undesirable heat transfer effects between fluid, that flows in a flat tube, and fluid that flows in an adjacent one Flat tube flows on, causing a corresponding deterioration the efficiency of the intended heat transfer between the heat transfer fluid 10 on the one hand and one perpendicular to the plane of FIG. 2 by the Pipe / fin block medium flowing through, e.g. Air, avoids. It is through this special arrangement of the flat tubes 5 also no special measures for thermal insulation from opposite sections of adjacent Flat tubes are required, as in conventional arrangements It is expedient, in each case the entry side Section of a flat tube an outlet-side section opposite of the other flat tube.
  • Fig. 1 ensures that the distance between the not twisted middle sections of two neighboring inlet-side or outlet-side pipe sections 11, 12 is not larger, but is just as large as the distance between the remaining, not twisted flat tube middle sections 2 of the serpentine flat tubes 5. This has the consequence that the same corrugated fins between two adjacent flat tubes 5 30 can be used as between the middle sections 2 of each serpentine flat tube 5.
  • the Compliance with this condition allows one in the longitudinal direction of the block aligned arrangement of the on the block side concerned outflowing flat tube ends 3 and accordingly one aligned insertion of the corresponding push-through slots in the manifolds 6, 7.
  • the rectangular one chosen in this example Twisting of the flat tube ends 3 allows on the other hand achieving a minimal overall depth for the header pipes 6, 7, whose diameter is only slightly larger than the thickness the flat tubes 5 need to be.
  • the manifolds 6, 7 can are kept so small in their cross-section in this way, that they are not in the depth direction over the tube / fin block stand out, but noticeably if necessary can be designed narrower.
  • it goes without saying also twisting of the flat tube ends by less than 90 ° and / or with additional displacement in the depth direction possible.
  • FIG. 3 to 5 show application examples in which the Twisting the flat tube ends a lateral displacement in the Depth direction z includes.
  • Fig. 3 shows a section such a flat tube with a non-twisted middle section 13 and in contrast twisted end section 14.
  • the pipe end section 14 opposite the pipe middle section 13 at an angle of 90 ° and with an offset twisted by an amount dz, i.e. the longitudinal axis 15 of the twisted end section 14 is from the longitudinal axis 16 of the Middle section 13 by the amount dz in the z direction of selected coordinate system, i.e. in the pipe or block depth direction, added.
  • Fig. 4 shows a partial plan view of a tube / fin block with flat tubes 17 and between adjacent ones Flat tube middle sections lying corrugated fins 18, in which the flat tube ends are twisted according to FIG. 3.
  • the flat tubes 17 are serpentine in this example designed so that they have both ends 19a, 19b on the same Block side open.
  • the two end regions 19a, 19b are twisted in opposite directions in the z direction, i.e. the Both end regions 19a, 19b are symmetrical with their longitudinal axes to the longitudinal axis 20 of the non-twisted tube middle section 21 each removed from it by the amount dz.
  • each Flat tube 17 of the tube / fin block opens with his one twisted end portion 19a in a manifold 22 and with the other end region 19b into the other manifold 23.
  • the two are thus Collecting tubes 22, 23 running longitudinally on the same block side.
  • the manifolds 22, 23 can in turn be used produce a relatively small diameter so that they are both together side by side, as can be seen from FIG. 4, not project significantly beyond the depth of the tube / fin block.
  • the two can act as a collection or distribution channel Terminal compartment components in a common terminal compartment component be integrated, which has two chambers, the are separated by a longitudinal partition and in which each flat tube ends with one end.
  • Fig. 5 shows a detail of a perspective schematic sketch in a side view a modification of the tube / fin block of Fig. 4.
  • this variant there is a stack serpentine flat tubes 24 provided with their Ends on the same block side in two side by side Collecting pipes 25, 26 open.
  • the two manifolds 25, 26 lie here again offset next to each other in the block depth direction, as is the case with the heat exchanger of FIG. 4.
  • Flat tubes 24 corresponding to the heat exchanger of Fig. 2 so are arranged so that they are either with their entry-side Pipe sections 27 or their outlet side Pipe sections 28 are opposite.
  • This has the above too Fig. 2 described advantage of avoiding heat transfer losses noticeable between adjacent pipe sections different temperature.
  • the variant 5 which open into the respective manifold 25, 26 Ends of the adjoining inlet-side or outlet-side pipe sections 27, 28 of adjacent flat pipes 24 again relatively close to each other.
  • the flat tubes 24 are rectangular in their end sections and combines both in the vertical direction y and in the deep direction z staggered.
  • the displacement in the block vertical direction y is implemented in accordance with the example of FIG. 2, i.e. of the two twisted pipe ends, two neighboring ones Flat tubes 24 is one in positive and the other in the negative y direction by an appropriate amount with respect to the longitudinal axis of the flat tube middle section added.
  • a twisting of the offset in the block depth direction z Flat tube end area opposite the flat tube middle section can also be advantageous for straight line heat exchangers Use flat tubes on opposite tube block sides open into a respective terminal compartment component. Because by such a twisted transfer need equilateral Ends of adjacent flat tubes in the block vertical direction not be spaced apart, but can be in the block depth direction partially overlap. This can, for example the distance of the flat tubes in their middle section and thus the height of any corrugated ribs to be introduced there despite a right-angled twisting of the flat tube ends noticeably smaller than the width, i.e. Depth, the rectilinear Flat tubes are held.
  • two are offset in the block depth direction Rows of through-slots spaced from one another in the block direction provided for inserting the pipe ends.
  • the flat tube heat exchangers described above can be due to the properties mentioned for a given, required Heat transfer performance very compact and with comparative manufacture with little effort. It should be noted here in particular also that for the construction of the respective tube / fin block only one type of flat tube is required which is identical or in a 180 ° around the x-axis tilted position successively arranged in the tube block stack become. It is understood that in addition to those described Examples of further implementations of the invention Flat tube heat exchanger are possible, in particular also those with straight instead of serpentine flat tubes and with end twisting by less than 90 ° and / or any combination of up and down twisting offset by a desired amount. It further understood that the heat exchanger according to the invention is usable in all areas where traditionally Flat tube heat exchangers are used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Die Erfindung bezieht sich auf einen Flachrohr-Wärmeübertrager mit einem Flachrohrblock mit einem oder mehreren Flachrohren, die mit ihren beiden Endabschnitten in ein jeweiliges Anschlußraumbauteil münden wobei wenigstens ein Endabschnitt gegenüber den Flachrohr mittel abschnitt tordiert ist. Derartige Wärmeübertrager lassen sich beispielsweise als Kondensatoren vom Serpentinentyp in Klimaanlagen von Kraftfahrzeugen einsetzen.
In der Patentschrift US 3.416.600 ist ein derartiger Wärmeübertrager vom Serpentinentyp offenbart, bei dem ein Stapel serpentinenförmig gebogener Flachrohre vorgesehen ist, die in ihren Endabschnitten um 90° so tordiert sind, daß die Längsachse der tordierten Endabschnitte mit der Längsachse des nicht tordierten Flachrohrmittelabschnitts zusammenfällt. Mit diesen tordierten Endabschnitten sind die Flachrohre in zugehörige seitliche Sammelrohre eingefügt, die hierzu mit umfangsseitig eingebrachten, in Rohrlängsrichtung verlaufenden und in einer Linie angeordneten Längsschlitzen versehen sind. Zusätzlich können die Flachrohre in einem mittleren Bereich um 180° tordiert sein. Zur Bildung des Serpentinenflachrohrstapels sind die einzelnen serpentinenförmig gebogenen Flachrohre in gleicher Lage nebeneinander angeordnet. Dadurch stehen sich jeweils ein eintrittsseitiger Flachrohrabschnitt eines Flachrohres und ein austrittsseitiger Abschnitt eines benachbarten Flachrohres gegenüber. Da im Betrieb des Wärmeübertragers diese beiden sich gegenüberliegenden Abschnitte im allgemeinen auf deutlich unterschiedlichen Temperaturen liegen, kann es zu unerwünschten Wärmeübertragungseffekten zwischen diesen Flachrohrabschnitten kommen, die den Wirkungsgrad des Wärmeübertragers verringern.
Der Erfindung liegt als technisches Problem die Bereitstellung eines Flachrohr-Wärmeübertragers der eingangs genannten Art zugrunde, der sich mit geringem Totvolumen, hohem Wirkungsgrad, ausreichender Berstdrucksicherheit und bei gegebener Flachrohrbreite vergleichsweise geringer Bautiefe fertigen läßt und bei Bedarf insbesondere als Kondensator für eine Klimaanlage verwendbar ist.
Die Erfindung löst dieses Problem durch die Bereitstellung eines Flachrohr-Wärmeübertragers mit den Merkmalen des Anspruchs 1.
Beim Wärmeübertrager nach Anspruch 1 ist speziell vorgesehen, daß wenigstens einer der beiden Endabschnitte eines jeweiligen Flachrohres außermittig, exzentrisch tordiert ist, d.h. daß die Längsachse des tordierten Endabschnitts gegenüber der Längsachse des nicht tordierten Flachrohrmittelabschnitts in einer lateralen Richtung versetzt ist.
Durch das Tordieren der Flachrohrenden läßt sich deren Quererstreckung bei im wesentlichen konstant gehaltenem Durchtrittsquerschnitt vermindern. Dies ermöglicht es, die seitlichen Anschlußraumbauteile, z.B. entsprechende Sammelrohre, mit einer Bautiefe zu realisieren, die nur wenig größer als die verringerte Quererstreckung des tordierten Flachrohrendes zu sein braucht und beispielsweise kleiner als die Bautiefe der Flachrohre sein kann. Die geringe Bautiefe der Anschlußraumbauteile hat den weiteren Vorteil, daß sich selbige zur Erzielung einer vorgegebenen Berstdrucksicherheit mit relativ geringer Wandstärke fertigen lassen und nur ein verhältnismäßig geringes Totvolumen besitzen. Außerdem läßt sich das durchströmte Wärmeübertragervolumen bei gegebener Wärmeübertragerleistung vergleichsweise gering halten, was bei Bedarf eine Mengenreduzierung des durchströmenden Wärmeübertragungsfluides gegenüber konventionellen Flachrohr-Wärmeübertragern erlaubt.
Die außermittige Tordierung der Flachrohrenden schafft die Voraussetzung zur Realisierung noch kompakterer Bauformen des Wärmeübertragers. So kann bei entsprechender lateraler Versetzung benachbarter, in jeweils dasselbe Anschlußraumbauteil einmündender Flachrohrendabschnitte der Abstand der Flachrohre im nicht tordierten Mittelbereich selbst bei einem Torsionswinkel von 90° geringer gewählt werden als die Flachrohrbreite, ohne daß dazu die Flachrohre in ihren Mittelbereichen lateral versetzt angeordnet werden müssen. Außerdem kann durch entsprechende Querversetzung der tordierten Flachrohrenden in Rohrblocktiefenrichtung ein Wärmeübertrager realisiert werden, bei dem die Anschlußraumbauteile auf einer Seite des Rohrblocks angeordnet sind.
In einer Ausgestaltung der Erfindung nach Anspruch 2 sind wenigstens zwei benachbarte Endabschnitte aufeinanderfolgender Flachrohre so tordiert, daß ihre Längsachse senkrecht zur Ebene des nicht tordierten Flachrohrmittelabschnitts, d.h. in einer Rohrblockhochrichtung, gegenüber der Längsmittelachse des nicht tordierten Flachrohrmittelabschnitts versetzt ist. Im Flachrohrblock sind die zwei benachbarten Flachrohre so angeordnet, daß sie mit in Hochrichtung voneinanderweg versetzt tordierten Enden in dasselbe Anschlußraumbauteil einmünden. Das entgegengesetzt versetzte Tordieren der beiden Flachrohrenden ermöglicht es, die zwei benachbarten Flachrohre trotz der endseitigen Tordierung mit vergleichsweise geringem Abstand voneinander anzuordnen. So kann bei Realisierung des Flachrohrblocks als Rohr-/Rippenblock der Abstand der beiden Flachrohre selbst bei endseitiger Tordierung um 90° im Flachrohrmittelabschnitt auf die Höhe einer üblichen Wellrippe beschränkt bleiben, ohne daß hier eine unüblich hohe Wellrippe oder ein Doppelwellrippenkomplex benötigt wird.
In einer Ausgestaltung der Erfindung nach Anspruch 3 ist eine laterale Versetzung der tordierten Flachrohrendabschnitte gegenüber dem Flachrohrmittelabschnitt in der Ebene des nicht tordierten Flachrohrmittelabschnitts, d.h. in einer Rohrblocktiefenrichtung, vorgesehen. Dies ermöglicht bei Bedarf z.B. die Realisierung von Wärmeübertragern, bei denen serpentinenförmige Flachrohre mit beiden Enden auf derselben Rohrblockseite in die beiden Anschlußraumbauteile einmünden, die dort separat oder in ein einziges Bauteil integriert in Blockhochrichtung verlaufen.
Beim Wärmeübertrager nach Anspruch 4, der die Merkmale eines oder mehrerer der Ansprüche 1 bis 3 aufweisen kann, ist ein Rohrblock aus einem Stapel serpentinenförmiger Flachrohre vorgesehen, die so angeordnet sind, daß im Stapel benachbarte Flachrohre stets entweder mit ihren eintrittsseitigen oder mit ihren austrittsseitigen Abschnitten aneinandergrenzen. Wenn hierbei ein möglichst kleines Volumen für die Anschlußraumbauteile erwünscht ist, läßt sich dies vorteilhaft durch geeignete Tordierung der Flachrohrenden, gemäß einem der Ansprüche 1 bis 3, erzielen, wobei durch entsprechende außermittige Tordierung ein geringer Abstand zwischen benachbarten Flachrohren beibehalten werden kann.
Vorteilhafte Ausführungsformen der Erfindung sind in den Zeichnungen dargestellt und werden nachfolgend beschrieben. Hierbei zeigen:
Fig. 1
eine teilweise Seitenansicht eines Flachrohrs mit rechtwinkliger, in Hochrichtung außermittig versetzter endseitiger Tordierung zur Verwendung in einem Flachrohr-Wärmeübertrager,
Fig. 2
eine schematische Seitenansicht eines Flachrohr-Kondensators vom Serpentinentyp, in welchem gemäß Fig. 1 tordierte Flachrohre verwendet sind,
Fig. 3
eine Seitenansicht entsprechend Fig. 1, jedoch für den Fall einer in Tiefenrichtung, d.h. in der Ebene des nicht tordierten Flachrohrmittelabschnitts, versetzten Tordierung des Flachrohrendabschnitts,
Fig. 4
eine schematische Draufsicht auf einen Teil eines weiteren Beispiels eines Wärmeübertragers vom Serpentinentyp mit serpentinenförmigen, in zwei seitengleiche Anschlußraumbauteile einmündenden Flachrohren und
Fig. 5
eine teilweise, stark schematisierte, perspektivische Darstellung eines mit Flachrohren entsprechend Fig. 4 realisierten Kondensators.
In den Figuren sind verschiedene Wärmeübertrager und zugehörige Flachrohrgestaltungen dargestellt, wobei zur besseren Orientierung jeweils ein kartesisches xyz-Koordinatensytem angegeben ist, bei welchem die x-Achse eine Längsrichtung eines jeweiligen Rohrblocks bzw. der zugehörigen Flachrohre, die y-Achse eine Block- bzw. Rohr-Hochrichtung und die z-Achse eine Block- bzw. Rohr-Tiefenrichtung bezeichnen.
Fig. 1 zeigt eine endseitige Flachrohrtordierung, bei welcher der Flachrohrendabschnitt 3 gegenüber dem Flachrohrmittelabschnitt 2 um 90° und außermittig dergestalt tordiert ist, daß die Längsachse 1 des tordierten Endabschnitts um einen wählbaren Betrag dy gegenüber der Längsachse 4 des nicht tordierten Mittelabschnitts 2 in der oben definierten Hochrichtung, d.h. senkrecht zur Ebene des nicht tordierten Flachrohrmittelabschnitts 2, versetzt ist.
Fig. 2 zeigt einen z.B. als Kondensator in einer Kraftfahzeug-Klimaanlage verwendbaren Flachrohr-Wärmeübertrager vom Serpentinentyp, in welchem gemäß Fig. 1 tordierte, serpentinenförmige Flachrohre 5 verwendet sind. Der Wärmeübertrager beinhaltet einen Rohr-/Rippenblock, in welchem die serpentinenförmigen, jeweils vier Bögen aufweisenden Flachrohre 5 in einem Stapel in der Hochrichtung y aufeinanderfolgend angeordnet sind, wobei in die Zwischenräume zwischen benachbarten Flachrohrmittelabschnitten 2 wärmeleitende Wellrippen 30 eingebracht sind. Jedes Flachrohr 5 mündet mit seinen beiden gemäß Fig. 1 außermittig in Hochrichtung versetzt tordierten Endabschnitten 3 an gegenüberliegenden Längsseiten des Rohr-/Rippenblocks in ein jeweils dort längsverlaufendes Sammelrohr 6, 7 ein. Die Sammelrohre 6, 7 fungieren als Anschlußraumbauteile, von denen das eine über einen stirnseitigen Einlaß 8 und das andere über einen entsprechenden stirnseitigen Auslaß 9 verfügt. Damit kann ein Wärmeübertragungsfluid 10 über den Einlaß 8 in das eine Sammelrohr 6 eingespeist werden, wo es über die in dieses Sammelrohr 6 einmündenden Flachrohrenden in den eintrittsseitigen Abschnitt 11 jedes Flachrohres weitergeleitet wird, um dann durch das jeweilige serpentinenförmige Flachrohr hindurchzuströmen und von dessen austrittsseitigem Flachrohrabschnitt 12 über die dortigen tordierten Flachrohrenden in das andere Sammelrohr 7 zu gelangen, aus dem es über den Auslaß 9 abströmt.
Wie aus Fig. 2 zu erkennen, sind benachbarte Flachrohre stets so angeordnet, daß sie sich entweder mit ihren eintrittsseitigen Abschnitten 11 oder mit ihren austrittsseitigen Abschnitten 12 gegenüberliegen. Da diese Abschnitte untereinander jeweils auf praktisch gleicher Temperatur liegen, treten keine unerwünschten Wärmeübertragungseffekte zwischen Fluid, das im einen Flachrohr strömt, und Fluid, das in einem angrenzenden Flachrohr strömt, auf, was eine entsprechende Verschlechterung des Wirkungsgrades der beabsichtigten Wärmeübertragung zwischen dem Wärmeübertragungsfluid 10 einerseits und einem senkrecht zur Zeichenebene von Fig. 2 durch den Rohr-/Rippenblock hindurchströmenden Medium, wie z.B. Luft, vermeidet. Es sind durch diese spezielle Anordnung der Flachrohre 5 auch keine besonderen Maßnahmen zur thermischen Isolierung von sich gegenüberliegenden Abschnitten benachbarter Flachrohre erforderlich, wie dies in herkömmlichen Anordnungen zweckmäßig ist, bei denen jeweils der eintrittsseitige Abschnitt des einen Flachrohres einem austrittsseitigen Abschnitt des anderen Flachrohres gegenüberliegt.
Bedingt durch das Anordnen der Flachrohre 5 mit sich gegenüberliegenden eintrittsseitigen bzw. austrittsseitigen Abschnitten, sind entsprechend die tordierten Endabschnitte 3 je zweier benachbarter Flachrohre 5 einander direkt benachbart. Die tordierten Flachrohrenden 3 münden folglich jeweils in Gruppen von zwei direkt benachbarten Rohrenden, die von der nächsten Zweiergruppe um die doppelte Flachrohrausdehnung in Hochrichtung beabstandet sind, in das jeweilige Sammelrohr 6, 7 ein. Durch geeignete, außermittige Tordierung entsprechend Fig. 1 ist dafür gesorgt, daß der Abstand zwischen den nicht tordierten Mittelabschnitten je zweier benachbarter eintrittsseitiger oder austrittsseitiger Rohrabschnitte 11, 12 nicht größer, sondern genauso groß ist wie der Abstand der übrigen, nicht tordierten Flachrohrmittelabschnitte 2 der serpentinenförmigen Flachrohre 5. Dies hat zur Folge, daß zwischen je zwei benachbarten Flachrohren 5 dieselben Wellrippen 30 verwendet werden können wie zwischen den Mittelabschnitten 2 jedes serpentinenförmigen Flachrohrs 5.
Dazu sind je zwei benachbarte, rechtwinklig tordierte Flachrohrendabschnitte 3 entgegengesetzt in der Hochrichtung y versetzt, d.h. in Fig. 2 das eine Rohrende nach oben und das andere Rohrende nach unten. Damit ist es möglich, trotz der rechtwinkligen Tordierung der Flachrohrenden Wellrippen zu verwenden, deren Höhe bei Bedarf geringer sein kann als die Breite, d.h. Tiefe der Flachrohre 5. Aus einer einfachen geometrischen Betrachtung ergibt sich, daß hierzu der Betrag dy an lateraler Versetzung der tordierten Rohrendabschnitte 3 größer als die halbe Differenz zwischen Flachrohrbreite und Wellrippenhöhe zu wählen ist, d.h. bei gegebener Flachrohrbreite B und gegebener Wellrippenhöhe W gilt dy>(B-W)/2. Die Einhaltung dieser Bedingung erlaubt eine in der Blocklängsrichtung fluchtende Anordnung der auf der betreffenden Blockseite ausmündenden Flachrohrenden 3 und entsprechend eine fluchtende Einbringung der zugehörigen Durchsteckschlitze in den Sammelrohren 6, 7. Die in diesem Beispiel gewählte rechtwinklige Tordierung der Flachrohrenden 3 erlaubt andererseits die Erzielung einer minimalen Bautiefe für die Sammelrohre 6, 7, deren Durchmesser dadurch nur wenig größer als die Dicke der Flachrohre 5 zu sein braucht. Die Sammelrohre 6, 7 können auf diese Weise in ihrem Querschnitt so klein gehalten werden, daß sie in Tiefenrichtung nicht über den Rohr-/Rippenblock herausragen, sondern bei Bedarf sogar merklich schmaler ausgelegt sein können. Alternativ ist selbstverständlich auch eine Tordierung der Flachrohrenden um weniger als 90° und/oder mit zusätzlicher Versetzung in der Tiefenrichtung möglich.
Die Fig. 3 bis 5 zeigen Anwendungsbeispiele, bei denen die Tordierung der Flachrohrenden eine laterale Versetzung in der Tiefenrichtung z beinhaltet. Fig. 3 zeigt ausschnittweise ein derartiges Flachrohr mit nicht tordiertem Mittelabschnitt 13 und demgegenüber tordiertem Endabschnitt 14. Wie aus Fig. 3 ersichtlich, ist der Rohrendabschnitt 14 gegenüber dem Rohrmittelabschnitt 13 um einen Winkel von 90° und mit einer Versetzung um einen Betrag dz tordiert, d.h. die Längsachse 15 des tordierten Endabschnitts 14 ist von der Längsachse 16 des Mittelabschnitts 13 um den Betrag dz in der z-Richtung des gewählten Koordinatensystems, d.h. in der Rohr- bzw. BlockTiefenrichtung, versetzt.
Fig. 4 zeigt eine ausschnittweise Draufsicht auf einen Rohr-/Rippenblock mit Flachrohren 17 und zwischen benachbarten Flachrohrmittelabschnitten liegenden Wellrippen 18, bei dem die Flachrohrenden entsprechend Fig. 3 tordiert sind. Speziell sind die Flachrohre 17 in diesem Beispiel serpentinenförmig so gestaltet, daß sie mit beiden Enden 19a, 19b an derselben Blockseite münden. Die beiden Endbereiche 19a, 19b sind dabei entgegengesetzt in z-Richtung tordiert, d.h. die beiden Endbereiche 19a, 19b liegen mit ihren Längsachsen symmetrisch zur Längsachse 20 des nicht tordierten Rohrmittelabschnitts 21 jeweils um den Betrag dz von dieser entfernt. Korrespondierend dazu befindet sich auf jeder Seite der Längsachse 20 der nicht tordierten Flachrohrmittelabschnitte 21 ein in Blocklängsrichtung, d.h. Blockhochrichtung, verlaufendes Sammelrohr 22, 23, von denen wiederum das eine als Verteilerkanal und das andere als Sammelkanal fungiert. Jedes Flachrohr 17 des Rohr-/Rippenblocks mündet mit seinem einen tordierten Endbereich 19a in das eine Sammelrohr 22 und mit dem anderen Endbereich 19b in das andere Sammelrohr 23.
Bei dem solchermaßen realisierten Wärmeübertrager, wie er insbesondere als Kondensator für eine KraftfahrzeugKlimaanlage einsetzbar ist, befinden sich somit die beiden Sammelrohre 22, 23 längsverlaufend an derselben Blockseite. Durch die rechtwinklig tordiert einmündenden Flachrohrenden 19a, 19b lassen sich die Sammelrohre 22, 23 wiederum mit realtiv kleinem Durchmesser fertigen, so daß sie beide zusammen nebeneinanderliegend, wie aus Fig. 4 ersichtlich, nicht wesentlich über die Tiefe des Rohr-/Rippenblocks hinausragen. Alternativ zur gezeigten Anordnung zweier separater Sammelrohre können die beiden als Sammel- bzw. Verteilerkanal fungierenden Anschlußraumbauteile in einem gemeinsamen Anschlußraumbauteil integriert sein, das zwei Kammern aufweist, die durch eine längsverlaufende Trennwand separiert sind und in die jedes Flachrohr mit je einem Ende einmündet.
Fig. 5 zeigt als perspektivische Schemaskizze ausschnittweise in einer Seitenansicht eine Modifikation des Rohr-/Rippenblocks von Fig. 4. Bei dieser Variante ist ein Stapel serpentinenförmiger Flachrohre 24 vorgesehen, die mit ihren Enden auf derselben Blockseite in zwei nebeneinanderliegende Sammelrohre 25, 26 münden. Die beiden Sammelrohre 25, 26 liegen dabei wiederum in Blocktiefenrichtung versetzt nebeneinander, wie dies beim Wärmeübertrager von Fig. 4 der Fall ist. Aus Fig. 5 wird deutlich, daß bei diesem Wärmeübertrager die Flachrohre 24 entsprechend dem Wärmeübertrager von Fig. 2 so angeordnet sind, daß sie sich jeweils entweder mit ihren eintrittsseitigen Rohrabschnitten 27 oder ihren austrittsseitigen Rohrabschnitten 28 gegenüberliegen. Dies hat den oben zu Fig. 2 beschriebenen Vorteil der Vermeidung von Wärmeübertragungsverlusten zwischen benachbarten Rohrabschnitten merklich unterschiedlicher Temperatur. Dadurch liegen bei der Variante von Fig. 5 die in das jeweilige Sammelrohr 25, 26 einmündenden Enden der aneinandergrenzenden eintrittsseitigen bzw. austrittsseitigen Rohrabschnitte 27, 28 benachbarter Flachrohre 24 wiederum relativ nahe beieinander.
Um nun einerseits entsprechend dem Beispiel von Fig. 2 unerwünscht große Abstände zwischen benachbarten Flachrohren zu vermeiden und andererseits entsprechend Fig. 4 die Anordnung der beiden Sammelrohre 25, 26 auf derselben Seite des Rohr-/Rippenblocks mit geringem Sammelrohrtotvolumen zu erlauben, sind die Flachrohre 24 in ihren Endabschnitten rechtwinklig und kombiniert sowohl in Hochrichtung y als auch in Tiefenrichtung z versetzt tordiert. Die Versetzung in Blockhochrichtung y ist entsprechend dem Beispiel von Fig. 2 realisiert, d.h. von den beiden tordierten Rohrenden je zwei benachbarter Flachrohre 24 ist das eine in positive und das andere in negative y-Richtung um einen jeweils geeigneten Betrag gegenüber der Längsachse des Flachrohrmittelabschnitts versetzt. Dadurch lassen sich benachbarte Flachrohre 24 mit vergleichsweise geringem Abstand unter Zwischenfügung einer einfachen Wellrippe anordnen. Die zusätzliche Versetzung der tordierten Rohrenden in der Tiefenrichtung z erlaubt die in dieser Richtung versetzte Anordnung der beiden Sammelrohre 25, 26 entsprechend Fig. 4.
Eine in der Blocktiefenrichtung z versetzte Tordierung des Flachrohrendbereichs gegenüber dem Flachrohrmittelabschnitt läßt sich vorteilhaft auch für Wärmeübertrager mit geradlinigen Flachrohren verwenden, die an gegenüberliegenden Rohrblockseiten in ein jeweiliges Anschlußraumbauteil einmünden. Denn durch eine solche tordierte Versetzung brauchen seitengleiche Enden benachbarter Flachrohre in Blockhochrichtung nicht beabstandet sein, sondern können sich in Blocktiefenrichtung teilweise überlappen. Dadurch kann beispielsweise der Abstand der Flachrohre in ihrem Mittelabschnitt und damit die Höhe von dort gegebenenfalls einzubringenden Wellrippen trotz einer rechtwinkligen Tordierung der Flachrohrenden merklich kleiner als die Breite, d.h. Tiefe, der geradlinigen Flachrohre gehalten werden. Im zugehörigen Anschlußraumbauteil sind in diesem Fall zwei in Blocktiefenrichtung versetzte Reihen voneinander in Blockrichtung beabstandeter Durchsteckschlitze zum Einfügen der Rohrenden vorgesehen.
Die oben beschriebenen Flachrohr-Wärmeübertrager lassen sich aufgrund der erwähnten Eigenschaften bei gegebener, geforderter Wärmeübertragungsleistung sehr kompakt und mit vergleichsweise geringem Aufwand fertigen. Zu bemerken ist hierzu insbesondere auch, daß zum Aufbau des jeweiligen Rohr-/Rippenblocks nur eine einzige Sorte von Flachrohren benötigt wird, die in identischer oder in einer um die x-Achse um 180° gekippten Lage aufeinanderfolgend im Rohrblockstapel angeordnet werden. Es versteht sich, daß neben den beschriebenen Beispielen weitere Realisierungen des erfindungsgemäßen Flachrohr-Wärmeübertragers möglich sind, insbesondere auch solche mit geradlinigen statt serpentinenförmigen Flachrohren und mit endseitiger Tordierung um weniger als 90° und/oder beliebiger Kombination von in Hochrichtung und Tiefenrichtung um einen jeweils gewünschten Betrag versetzter Tordierung. Es versteht sich weiter, daß der erfindungsgemäße Wärmeübertrager auf allen Gebieten verwendbar ist, in denen herkömmlicherweise Flachrohr-Wärmeübertrager zum Einsatz kommen.

Claims (4)

  1. Flachrohr-Wärmeübertrager, insbesondere Kondensator vom Serpentinentyp, mit
    einem Flachrohrblock mit einem oder mehreren Flachrohren (5), die mit ihren beiden Endabschnitten (3) in ein jeweiliges Anschlußraumbauteil (6, 7) münden, wobei wenigstens ein Endabschnitt (3) gegenüber dem Flachrohrmittelabschnitt (2) tordiert ist,
    dadurch gekennzeichnet, dass
    wenigstens einer der beiden Flachrohrendabschnitte (3) auβermittig tordiert ist, so dass seine Längsachse (1) gegenüber der Längsachse (4) des Flachrohrmittelabschnitts (2) in einer lateralen Richtung (y, z) versetzt ist.
  2. Flachrohr-Wärmeübertrager nach Anspruch 1, weiter dadurch gekennzeichnet, dass der Flachrohrblock einen Stapel mit mehreren geradlinigen oder serpentinenförmigen Flachrohren (5) beinhaltet, wobei wenigstens ein Paar seitengleicher Endabschnitte (3) benachbarter Flachrohre (5) so außermittig tordiert ist, dass die beiden Längsachsen der tordierten Flachrohrendabschnitte bezüglich der Längsachse des Flachrohrmittelabschnitts parallel zur Stapelrichtung in entgegengesetzter Richtung versetzt sind.
  3. Flachrohr-Wärmeübertrager nach Anspruch 1 oder 2, weiter
    dadurch gekennzeichnet, dass der Flachrohrblock einen Stapel mehrerer geradliniger oder serpentinenförmiger Flachrohre (17) beinhaltet, deren jeweilige beiden Endbereiche (19a, 19b) an entgegengesetzten Rohrblockseiten oder an derselben Rohrblockseite münden, wobei wenigstens ein Teil der Endbereiche (19a, 19b) gegenüber der Längsachse (20) des Flachrohrmittelabschnitts (21) in der zur Ebene des Flachrohrmittelabschnitts parallelen Lateralrichtung (z) versetzt tordiert ist.
  4. Flachrohr-Wärmeübertrager nach einem der Ansprüche 1 bis 3, weiter dadurch gekennzeichnet, dass der Flachrohrblock einen Stapel mit mehreren serpentinenförmigen Flachrohren (5) beinhaltet, die mit ihren beiden Endabschnitten an gegenüberliegenden Rohrblockseiten oder an derselben Rohrblockseite in ein jeweiliges, längs der betreffenden Rohrblockseite verlaufendes Anschlussraumbauteil münden, wobei je zwei benachbarte Flachrohre so angeordnet sind, dass ein eintrittsseitiger Rohrabschnitt des einen Flachrohrs einem eintrittsseitigen Rohrabschnitt des anderen Flachrohrs benachbart ist oder ein austrittsseitiger Rohrabschnitt des einen Flachrohrs einem austrittsseitigen Rohrabschnitt des anderen Flachrohrs benachbart ist.
EP19970120670 1996-11-27 1997-11-26 Flachrohr-Wärmeübertrager, insbesondere Kondensator vom Serpentinentyp Expired - Lifetime EP0845648B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19970120670 EP0845648B1 (de) 1996-11-27 1997-11-26 Flachrohr-Wärmeübertrager, insbesondere Kondensator vom Serpentinentyp

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19649129 1996-11-27
DE19649129A DE19649129A1 (de) 1996-11-27 1996-11-27 Flachrohr-Wärmeübertrager mit umgeformtem Flachrohrendabschnitt
EP19970120670 EP0845648B1 (de) 1996-11-27 1997-11-26 Flachrohr-Wärmeübertrager, insbesondere Kondensator vom Serpentinentyp

Publications (3)

Publication Number Publication Date
EP0845648A2 EP0845648A2 (de) 1998-06-03
EP0845648A3 EP0845648A3 (de) 1998-06-10
EP0845648B1 true EP0845648B1 (de) 2002-01-30

Family

ID=26031657

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19970120670 Expired - Lifetime EP0845648B1 (de) 1996-11-27 1997-11-26 Flachrohr-Wärmeübertrager, insbesondere Kondensator vom Serpentinentyp

Country Status (1)

Country Link
EP (1) EP0845648B1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19830863A1 (de) 1998-07-10 2000-01-13 Behr Gmbh & Co Flachrohr mit Querversatz-Umkehrbogenabschnitt und damit aufgebauter Wärmeübertrager
DE19911334A1 (de) 1999-03-15 2000-09-21 Behr Gmbh & Co Sammelrohr für einen Wärmeübertrager und Herstellungsverfahren hierfür
EP1321734A1 (de) * 2001-10-02 2003-06-25 Behr GmbH & Co. KG Flachrohr-Wärmeübertrager sowie Herstellungsverfahren hierfür
US20030102113A1 (en) * 2001-11-30 2003-06-05 Stephen Memory Heat exchanger for providing supercritical cooling of a working fluid in a transcritical cooling cycle
BRPI0215085A2 (pt) 2001-12-21 2016-06-28 Behr Gmbh & Co dispositivo para a troca de calor.
DE10229973A1 (de) * 2002-07-03 2004-01-29 Behr Gmbh & Co. Wärmeübertrager
WO2004013558A2 (de) * 2002-07-26 2004-02-12 Behr Gmbh & Co. Vorrichtung zum austausch von wärme
CN100533043C (zh) * 2002-07-26 2009-08-26 贝洱两合公司 热交换装置
DE10326381B4 (de) * 2003-06-12 2005-09-22 Jähn, Peter Turbulenzerzeuger
JP2005214459A (ja) * 2004-01-27 2005-08-11 Zexel Valeo Climate Control Corp 熱交換器用偏平チューブ、これを用いた熱交換器、及び熱交換器用偏平チューブの成形方法
CN114588865B (zh) * 2022-03-28 2023-09-15 江西红土地化工有限公司 一种农药用釜内物料恒温的冷却装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3416600A (en) * 1967-01-23 1968-12-17 Whirlpool Co Heat exchanger having twisted multiple passage tubes
US5036909A (en) * 1989-06-22 1991-08-06 General Motors Corporation Multiple serpentine tube heat exchanger
FR2693546B1 (fr) * 1992-07-09 1994-09-30 Valeo Thermique Moteur Sa Echangeur de chaleur à faisceau de tubes parallèles, en particulier pour véhicule automobile.

Also Published As

Publication number Publication date
EP0845648A3 (de) 1998-06-10
EP0845648A2 (de) 1998-06-03

Similar Documents

Publication Publication Date Title
DE69428219T2 (de) Plattenwärmetauscher
EP2026028B1 (de) Wärmeübertrager, insbesondere für ein Kraftfahrzeug
EP0845647B1 (de) Flachrohr-Wärmeübertrager mit tordiertem Flachrohrendabschnitt
EP0401752B1 (de) Verflüssiger für ein Kältemittel einer Fahrzeugklimaanlage
EP1654508B1 (de) Wärmeübertrager sowie verfahren zu dessen herstellung
DE69019633T2 (de) Duplex-Wärmetauscher.
EP2267393B1 (de) Strömungskanal für einen wärmeübertrager
DE69519445T2 (de) Wärmetauscher
EP1036296A1 (de) Flachrohr mit querversatz-umkehrbogenabschnitt und damit aufgebauter wärmeübertrager
DE60310992T2 (de) Hochdruckwärmetauscher
EP1701125A2 (de) Wärmeübertrager mit flachen Rohren und flaches Wärmeübertragerrohr
EP2169338B1 (de) Gaskühler
WO2004065876A1 (de) Wärmeübertrager, insbesondere abgaskühler für kraftfahrzeuge
DE10314782A1 (de) Wärmetauscher für den Wärmeaustausch zwischen einem inneren und einem äußeren Fluid und Verfahren zur Herstellung desselben
EP0964218A2 (de) Wärmetauscher mit verrippten Flachrohren, insbesondere Heizungswärmetauscher, Motorkühler, Verflüssiger oder Verdampfer, für Kraftfahrzeuge
EP0845648B1 (de) Flachrohr-Wärmeübertrager, insbesondere Kondensator vom Serpentinentyp
EP1411310B1 (de) Wärmeübertrager in Serpentinenbauweise
EP1792135A1 (de) Wärmetauscher für kraftfahrzeuge
DE69500676T2 (de) Wärmetauscher
DE102004002252B4 (de) Wärmeübertrager für Fahrzeuge
EP1573259A1 (de) Wärmeübertrager
EP3491323B1 (de) Wärmetauscher mit mikrokanal-struktur oder flügelrohr-struktur
EP1597529B1 (de) Flachrohr mit umkehrbogenabschnitt und damit aufgebauter w r me bertrager
EP1738125A1 (de) Wärmeübertrager für kraftfahrzeuge
EP1248063B1 (de) Wärmeübertrager

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19981113

AKX Designation fees paid

Free format text: DE FR SE

RBV Designated contracting states (corrected)

Designated state(s): DE FR SE

17Q First examination report despatched

Effective date: 20001218

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR SE

REF Corresponds to:

Ref document number: 59706228

Country of ref document: DE

Date of ref document: 20020314

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20071121

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071116

Year of fee payment: 11

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101201

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59706228

Country of ref document: DE

Effective date: 20120601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120601