EP1654508B1 - Wärmeübertrager sowie verfahren zu dessen herstellung - Google Patents

Wärmeübertrager sowie verfahren zu dessen herstellung Download PDF

Info

Publication number
EP1654508B1
EP1654508B1 EP04763632.9A EP04763632A EP1654508B1 EP 1654508 B1 EP1654508 B1 EP 1654508B1 EP 04763632 A EP04763632 A EP 04763632A EP 1654508 B1 EP1654508 B1 EP 1654508B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
plates
plate
profile
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04763632.9A
Other languages
English (en)
French (fr)
Other versions
EP1654508A1 (de
EP1654508B2 (de
Inventor
Peter Geskes
Jens Richter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Mahle Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34111969&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1654508(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mahle Behr GmbH and Co KG filed Critical Mahle Behr GmbH and Co KG
Publication of EP1654508A1 publication Critical patent/EP1654508A1/de
Publication of EP1654508B1 publication Critical patent/EP1654508B1/de
Application granted granted Critical
Publication of EP1654508B2 publication Critical patent/EP1654508B2/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0049Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for lubricants, e.g. oil coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0089Oil coolers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/355Heat exchange having separate flow passage for two distinct fluids
    • Y10S165/356Plural plates forming a stack providing flow passages therein
    • Y10S165/364Plural plates forming a stack providing flow passages therein with fluid traversing passages formed through the plate
    • Y10S165/372Adjacent heat exchange plates having joined bent edge flanges for forming flow channels therebetween

Definitions

  • the present invention relates to a heat exchanger according to the preamble of claim 1, as it finds particular use in vehicles as oil cooler. Such in the heat exchanger is out DE 19959780 A1 known.
  • Platterf chipsschreiber which are formed from a stack of adjacent plates. Between the plates cavities are formed, which are alternately traversed by a first and a second medium.
  • the first medium cooling water and the second medium to be cooled working fluid - in the case of an oil cooler of an internal combustion engine engine oil - is also a use as an evaporator cooling device such as a vehicle air conditioning conceivable, in which case one of both media is the coolant and the other is the refrigerant.
  • first and second medium are supplied in each case by a corresponding inflow line and led away via a drain line.
  • inflow lines and outflow lines each serve as manifolds in which the fluid flow of all corresponding cavities is supplied or removed.
  • a demoeü such turbulence plates is that in the production of the passage openings easily chip formation occurs, which can lead to contamination of the medium flowing through.
  • dirt accumulates easily in the area of the turbulence plates.
  • the passage of the cavity can be hindered in an undesirable manner.
  • they represent an additional component to be produced, which entails an increase in the cost of the heat exchanger due to increased production costs and material costs.
  • a heat exchanger as used in particular as an oil cooler in the field of motor vehicles, is formed from interconnected plates. Between the plates outwardly closed cavities are formed. The cavities are alternating over each supplied at least one inflow and outflow line with first or second medium and are also traversed by the corresponding medium.
  • the plates are profiled in such a way that contact points occur between the respective profiles of the plates. In the area of these contact points, the plates are connected to each other. In this case, the plates are designed such that the flow forming between the plates of first or second medium does not run in a straight line from the corresponding inflow line to the corresponding outflow line.
  • This measure has the advantage that the medium flowing through is partially diverted several times on its flow path. This improves the distribution of the fluids across the plate width. Depending on the flow behavior (viscosity) of the medium flowing through, turbulent flows may also occur. The ever-changing changes in direction of the fluid in the channel and in the region of the opening wave channel under certain circumstances forming vortices tear the forming boundary layer again and again. This leads to an improved heat transfer.
  • the plates have a repeating wave profile which then extends at least in a direction transverse to the flow direction, which is the straight connection from the point of entry of the medium to the exit point.
  • the wave profile runs zigzag.
  • Such a wave profile forms in a simple manner Strömungsleit Schemee which are suitable to direct the flow of the medium flowing through the corresponding cavity.
  • the flow is advantageously deflected several times in its course, in particular not only in the plane of the plate, but also out of the plane of the plate. In areas where the distance between the plates is designed to be different in size, the flow rate may vary.
  • the medium is distributed over the entire surface of the plates as a whole and as optimized as possible utilization of the entire heat exchange surface takes place.
  • the wave profile between flow regions on rectilinear legs wherein the course of the wave profile is characterized by the leg length of the legs, the leg angle between the legs and the profile depth of the wave profile.
  • the profile of a wave profile is determined in its cross section by the course in the region of the legs and in the curvature region, wherein preferred embodiments can provide a deviation of the cross-sectional shape in these areas.
  • the zigzag-shaped wave profile is characterized in particular by the leg length, the leg angle between adjacent legs and the tread depth.
  • the leg length is in the range of 8 to 15 mm, preferably in the range of 9 to 12 mm.
  • Typical values of the tread depth - which is measured, for example, from the distance between a wave crest and the plate center plane - are in the range of 0.3 to 1.5 mm.
  • a tread depth between 0.5 and 1 mm may be advantageous, with values of about 0.75 mm being preferred.
  • the leg angle between two legs of the wave profile is preferably between 45 ° and 135 °. In particular values around 90 ° represent a good compromise with regard to distribution of the fluid, throughflow rate and flow rate of the heat exchanger.
  • leg length and the leg angle influenced on the one hand the flow guiding function of the wave profile, on the other hand, the arrangement of contact points of adjacent plates together, which are required for the stability of the heat exchanger.
  • the inherent rigidity of Plates against pressurization by the media can not be guaranteed without the mutual support, if the material thickness of the plate is chosen low, as is desirable in many applications for reasons of weight saving and heat exchange.
  • a bonding of the plates in the region of the contact points by brazing for which purpose the plates are coated at least on one side with a soldering agent such as solder.
  • a soldering agent such as solder.
  • the choice of leg length and leg angle is preferably carried out as a function of the medium flowing through and its viscosity. Thigh length and leg angle have a great influence on the flow velocities occurring and the associated heat exchange, so that they are adaptable to the respective intended use.
  • the above values relate in particular to the use of heat exchangers as oil coolers in vehicles, where the heat exchange between engine oil and cooling water takes place. In addition, of course, they are also dependent on the dimensioning of the plates and the gap resulting from the spacing of the plates.
  • the shape of the wave profile is essentially determined by the shape of the cross section perpendicular to the outer edge of the profile in this area and the sequence of the profiles defined by the pitch in the course transverse to the extension direction of a wave profile across the plate.
  • Preferred embodiments provide a constant pitch, that is to say a fixed distance between any two adjacent wave profiles.
  • the shape of the wave profile is particularly advantageous if it has a flat area on the outside of the wave back. In particular, the flat area has a width of 0.1 to 0.4 mm. The flat area allows a good, flat contact with each other adjacent plates together and thus a light and stable production of Support or connection - as by brazing - adjacent plates together.
  • the material of the plates is preferably aluminum.
  • This material has the advantage of having a low density and at the same time to allow the production of the wave profile, for example by embossing in a simple manner. It can be coated over the entire area with soldering aids such as brazing alloy on at least one side to produce the connection between two adjacent plates in the region of the contact points and in the region of the edges. Depending on the choice of soldering agent and the layer thickness of the order of the soldering agent may also be given a double-sided coating with soldering agent.
  • the coating with soldering agent should serve in particular in the region of the edges and the inlet and outlet lines in the block reliable production of a fluid-tight connection of two plates together in a joining process with a joining tool (brazing furnace) without using additional aids or auxiliaries.
  • the plates have bores which serve as inflow and outflow lines in the region of the heat exchanger and whose bore axis runs perpendicular to the plane of the plate.
  • the bores are introduced, in particular, in a region raised in relation to the ground plane of the plates.
  • the raised region is preferably raised in such a way that in every second plate gap there is a tight connection between the raised region and the subsequent further plate, so that only every second plate gap creates a fluidic connection between the holes and the plate gap.
  • the fluid-tight contact between an elevated area and an adjacent plate can be achieved not only by positive engagement but also by other connection technology, such as brazing.
  • the raised region in particular has a preferably planar contact section, which is in contact with a preferably flat abutment edge of the adjacent plate, to which a fluid-tight connection results.
  • the raised area and the holes in the raised area can not only have a circular cross section, but also oval or slot-like designs are possible and advantageous.
  • the longer of the two axes of the slot-like design is preferably to be arranged transversely to the main flow direction of the fluid. This measure also serves to improve the heat exchange between the two media, since then with the same overall extent of the plates a larger heat transfer surface remains.
  • distribution channels are provided in the region of the inflow lines and the bores assigned to the inflow lines, which distribution channels are preferably likewise designed as a wave profile. It is particularly preferred further developments of the invention, when the wave profile of the distribution channels is different from the other wave profiles with respect to the characteristic sizes of the wave profile.
  • the wave profile of the distribution channels has a leg angle which is less than 45 ° and is in particular in the range of approximately 5 ° and approximately 25 °. It can be formed in the other plate areas both a sudden and a continuous transition in the profile design between the distributor profile and the wave profile.
  • the distribution channels assume the task of the most even distribution of the fluid flow over the entire width of the plate away.
  • flow channels surround the raised areas.
  • the flow channels are preferably formed by a wave profile-free section, which is guided in particular like a ring around the raised area. It is thus formed a reduced flow resistance section, in which open several wave profiles, so that also a distribution function for the medium is fulfilled.
  • a heat exchanger may in particular be formed from a stack of such plates designed identically to one another. For it is in this case possible in particular that mutually adjacent plates are rotated by 180 degrees to each other, wherein the axis of rotation extends perpendicular to the plate plane.
  • This type of stack of plates is particularly advantageous if the holes associated with the inflow holes are formed from raised points and these should be assigned to two different different alternating cable guides.
  • the elevations in the region of the inflow lines can be designed in particular as a substantially frusto-conical dome. Alternatively, dom-shaped elevations, which have an elliptical cross-section.
  • the plates can be designed to be identical to each other or similar or different. Identically identical plates have the same characteristics as regards the characteristic properties of the wave profile and the shape of the wave profile on. Corresponding plates are structurally equal to each other, however, it is possible that the plates have, for example, mutually different leg angles. Corresponding plates preferably have a mutually different shape of the wave profile and / or mutually different values of characterizing sizes, but are in terms of the formation of the edge and formation of front and back of the plates corresponding to each other.
  • the alternating use, for example, of two corresponding plates, which differ only by different leg angle in the characteristic sizes, has the advantage that the position and relative position of contact points of the plates together in the profiled area in view of the required stiffness and the required flow in can be easily optimized.
  • connection between the plates is made in particular by brazing.
  • the plates have a bent edge whose height is selected so that at least two mutually adjacent plates abut each other in this edge region and overlap.
  • the number of overlapping in the edge region plates can be up to five. The greater the number of overlapping plates, the stiffer is the wall formed thereby and closing the heat exchanger towards the outside. This simultaneously supports the production of a permanently stable, resistant, fluid-tight closure of the plates to the outside.
  • Preferred further embodiments provide that the wave profile extends into the edge and in particular over its entire width. Care must be taken in the design of the wave profile to ensure that the plates still remain stackable, which is done by the fact that the course of the wave profile in the edge region is matched to the mounting position of two adjacent plates to each other.
  • the wave profile extends into the edge when the wave profile ends in the root region of the bend, so that the profile with its tread depth extends into the edge.
  • the root of the edge is in a wave profile-free area, since then the bending of the edge can be done in a non-stiffened by profile area.
  • Preferred embodiments then provide that the groove forming between edge and wave profile area is as narrow as possible. In particular, it is selected to be so narrow that, during brazing, a solder flow enters, which completely or at least so far adds this channel that only a negligible amount of medium flows through the channel.
  • the channel must be designed so that it does not serve as a bypass channel for the medium and a significant proportion of media flows through the channel rather than in the region of the wave profile.
  • an outer profile-less end plate is arranged on at least one of the end faces of the heat exchanger.
  • the outside profileless end plate has in particular flanges as connection points.
  • the end plates may in particular also have a greater material thickness than the other plates and thus represent a particular stiffening, stabilizing element which forms a the end faces to the outside final housing part.
  • the lateral housing walls, which close off the heat exchanger to the outside, are formed over the edge, which limits the plates and which coincides with the edge overlapping adjacent plates.
  • the edges are fluid-tightly connected to each other, which can be done in particular by brazing.
  • the hydraulic diameter represents a ratio between the flow-through channel cross-section and heat exchange surface.
  • the hydraulic diameter hD is defined as four times the ratio of the area ratio Fv to the area density Fd.
  • the hydraulic diameter should remain as constant as possible over the entire main flow direction of the medium. As a result, a possibly improved and optionally uniform flowability of the plate gap, which forms the channel is achieved.
  • the hydraulic diameter is according to a preferred embodiment of the invention and in particular when using the heat exchanger as an oil cooler between 1.1 mm and 2 mm.
  • Preferred values for the hydraulic diameter are around 1.4 mm.
  • the deviation of the hydraulic diameter over the period of profiling of a pair of plates preferably not more than by 10%, in particular by less than 5%.
  • the selection of the hydraulic diameter also depends on the media flowing in the spaces between the plates.
  • the stated values apply to an oil cooler in which, on the one hand, water and, on the other hand, an oil flows through the heat exchanger.
  • the contact points between two mutually adjacent plates of the heat exchanger are distributed uniformly over the plate surface.
  • the contact points between two mutually adjacent plates have a surface density of 4 to 7 per cm 2 , more preferably from 5 to 6 per cm 2 . In such a configuration, a sufficient strength of the heat exchanger without excessive increase in the pressure loss is possible.
  • Heat exchangers according to the invention can on the one hand serve as oil coolers, but also as evaporators or condensers.
  • the refrigeration cycle of such a device can serve not only for air conditioning a (vehicle) interior, but also for cooling heat sources, such as electrical consumers, energy storage and voltage sources or Ladeiuft a turbocharger.
  • the heat exchanger is a capacitor when, for example, by condensation of the refrigerant of an air conditioner in a coolant-loaded compact heat exchanger takes place and the coolant gives off the heat in a heat exchanger in air as another medium.
  • the evaporation or condensation of another medium in a heat exchanger according to the invention can also take place, for example, in applications in fuel cell systems.
  • FIGS. 1a and 1b show the representation of a front or a back of a plate according to the invention, while the Fig. 2 the representation of a corresponding, from plates according to the FIGS. 1a and 1b formed stack shows.
  • a plate 10 has a base body 11, which is provided on its front and back in each case with a wave profile 12, which has been introduced by embossing in the base body 11.
  • the corrugated profile 12 corresponds to the back according to the Fig. 1b the negative profile of the front as shown in Fig. 1a ,
  • the corrugated profile 12 is formed from a plurality of mutually standing in a leg angle 13 legs 10, each having a fixed leg length 15 and the curvature region 16 adjoin one another.
  • the corrugated profile extends across the plate 10.
  • the plate 10 Over the length of the plate 10 across a plurality of wave profiles 12 is formed one behind the other, wherein the wave profiles follow one another in particular at a close distance and in alignment with each other are aligned.
  • the plate 10 in this case has a circumferential bent edge 17, which limits the plate laterally.
  • the wave profile 12 extends into the edge.
  • the wave profile 12 can be introduced by embossing in the plate 10.
  • the embossing can be carried out so that the two sides have in the plate 10 differing wave profiles, in particular, the wave profile 12 can represent the negative of the wave profile 12 of the other sides on one side, as for example from the embodiment according to the FIGS. 1 a and 1 b can be seen.
  • a plate 10 has the same wave profile 12 on both sides. Both times, the wave profiles on the two sides of a plate 10 may be aligned with each other or offset from each other.
  • the corrugated profile 12 is characterized in cross-section mainly in that it has a wave back, which forms a flat region, which runs parallel to the plate plane.
  • the flat area preferably has a width between 0.1 mm and 0.4 mm.
  • the plate In the area of the corners, the plate has a bore 18, which passes through the plate perpendicular to its level. Two of the holes are introduced in a raised area 19. One of the holes serves for the supply of working medium in the area between two plates, while in particular the diametrically opposite bore serves the outflow of working medium. Another pair of holes serves for the inflow and outflow of cooling medium.
  • Be plates 10 as in the Fig. 2 stacked on top of one another, either the lines associated with the working fluid or the cooling medium are alternately fluidly connected to the intermediate space 20 between two plates 10, since the raised area 19 abuts corresponding bores 18 on the adjacent plate 10.
  • the holes 18 thus form through a stack 21 of plates through the supply lines or drain lines for cooling medium and working medium.
  • the Fig. 2 shows in perspective view of such a stack 21 of plates 10 according to the FIGS. 1 a and 1 b ..
  • Fig. 3 is the sectional view through a stack 21 according to the Fig. 2 shown.
  • Plates 10 abut each other and are stacked on top of each other.
  • the bent edge 17 of adjacent plates abut each other and is formed so that the edge of a plurality of plates overlap each other.
  • these are connected to each other by brazing.
  • two mutually adjacent plates in different areas of their wave profiles 12 to each other. Even in these areas, the plates are connected by brazing.
  • the plates can be coated on one or both sides with a solder.
  • a gap 20 is formed in each case, wherein the intermediate space is flowed through either by working medium or by cooling medium.
  • the stack of plates is designed in particular in which the intermediate spaces 20 are alternately flowed through by working medium and cooling medium, so that each of the plates 10 flows around on the one hand by cooling medium and on the other hand by working medium.
  • a heat exchange between the cooling medium and the working medium on each of the plates 10 away take place.
  • the gap 20 is of different width at a plurality of locations.
  • the constantly changing directional changes of the fluid in the channel and the vortex forming in the region of the opening wave channel tear the forming boundary layer over again and again. This results in a greatly improved heat transfer compared to a smooth channel.
  • the Fig. 4 shows an enlarged view of a plate 10 with a wave profile 12, which is formed by the legs 14 which each have a leg angle 13 of 45 °.
  • the plate 10 is replaced by a bent edge 17 is limited, wherein the wave profile 12 extends into the region of the edge 17 into it.
  • the one between two holes 18, one of which is formed in a dome-shaped raised portion 19 is shown.
  • distribution channels 22 are formed in the area between the two holes 18, which extends in particular in the region between the holes 18 and the adjacent edge 17.
  • the distribution channels 22 are formed by a wave profile 23, which differs from the wave profile 12 in the remaining region of the plate 10 with respect to the leg angle and the leg lengths.
  • the leg angles are in particular in a range below 45 °.
  • the distribution channels 22 lead in particular in the region of the bore, which is not introduced in a raised portion 19, in the corresponding space entering medium transverse to the main extension of the plate 10 and thus ensure a uniform distribution of the fluid flow over the entire width of the plate.
  • the raised region 19, in which the other bore 18 is introduced lies in particular sealingly against the bore region of the plate 10 disposed above it in a stack and may be connected thereto by brazing.
  • a fluid-tight closure to the gap 20 is provided to the overlying plate 10, so that no media flow can take place between this bore 18 and the gap and the medium flowing through this bore 18 only enter behind the overlying plate 10 in the then following gap 20 can.
  • the bores 18 can also be designed as elongated holes for increasing the cross section, the slot axis then preferably extends transversely to the main flow direction H.
  • the annular region 19 has an embossing depth which substantially corresponds to the embossing depth of the wave profile 23.
  • the Fig. 5 shows in a plan view of an end plate 24, which has four connecting flanges 25 which are arranged in alignment with the holes 18 of the plates 10 of a plate stack 21.
  • Such an end plate can be arranged on the one hand or on both sides of the stack 10 and complete it to the outside.
  • the end plate 24 has at least on the outer side no wave profile 12. If a connection plate 24 is arranged on each side of the plate stack, then it is possible that one of the two plates has four connection flanges 25 or that one plate has one, two or three connection flanges 25 and the opposite plate has the remaining number of the 4 connection flanges 25 ,
  • the connecting flanges 25 are each assigned to the connection bores.
  • the connecting flanges 25 are used to connect the external lines for the supply and removal of working fluid and cooling medium.
  • the end plate 24 stiffens the plate stack 21 and forms the frontal housing wall.
  • the end plate 24 may have an edge 17 which is adapted to the edge 17 of the plates 10.
  • the superimposed edges 17 of the plates form in a plate stack 21, as in the Fig. 2 is shown, the lateral housing of the heat exchanger.
  • a plate stack according to the Fig. 2 provided with connecting flanges 25 and a cover plate 24 thus forms - a heat exchanger.
  • Such a heat exchanger can serve in particular as an oil cooler in a vehicle.
  • FIG. 6 shows a plate stack 21, consisting of a base plate 88, plates 10 and a cover plate 89 having three holes 18, 18a.
  • the holes 18 serve to guide a first medium, is performed between the plates so that the plate interspaces 20 are flowed through in parallel.
  • Through the bore 18a enters a second medium into the plate stack, which emerges through the bore 18b in the base plate again from the plate stack.
  • the flow channels for the second medium are divided into at least two flow paths, which are flowed through successively and each consist of one or more flow channels.
  • the flow channels for the first medium are flowed through in parallel.
  • the flow channels for the first medium are also divided into at least two flow paths, which are flowed through successively.
  • the Fig. 7a to 7d show different orientations of the main flow direction H of the plate interspace 20 with respect to the direction of gravity G in the installation position of the heat exchanger, as well as the favorable influence on the distribution of the medium in the plate interspace, in particular when used as a capacitor.
  • the FIGS. 7a and 7c show the application of an evaporator. From the Fig. 7a and 7c It can be seen that the main flow direction H should be transverse or antiparallel to the direction of gravity G, depending on whether the longer L or the narrower side S of the plates is aligned in the direction of gravity G, if it is a liquid medium. By gravity, a transverse distribution of the medium with respect to the main flow direction is supported.
  • the show Fig. 7b and 7d in that a gaseous medium is best distributed between the plates 10 when the gravitational direction G counteracts the distribution of the medium between the plates.
  • FIG. 8 shows the hydraulic diameter over an entire wave profile in the main flow direction H away
  • Fig. 8a the formation of the wave profile 23 is shown with the contact areas of adjacent plates 10 shown as circles 98. It can be seen that over the entire period of the pattern resulting from the wave profiles 23 of the adjacent plates, the wave profile varies in a bandwidth between 1.2 and 1.6 and averages about 1.4.
  • the formation of the wave profiles is preferably selected such that the result is a hydraulic diameter that is as constant as possible in the main flow direction.
  • Fig. 8a the contact points between two mutually adjacent plates of the heat exchanger in a plan view of one of the plate are shown as circles. It can be clearly seen that the contact points are evenly distributed over the plate surface. A preferred areal density of the contact points for sufficient strength is 4 to 7 per cm 2 , more preferably 5 to 6 per cm 2 . This is based on Fig. 8b, 8c clear.
  • Fig. 8b shows the hydraulic diameter hD of a flow channel between two plates over several profile periods, again in the main flow direction H of the medium.
  • a large surface density of the contact points can be expected a course, which by the broken curve in Fig. 8b is shown, since many points of contact in the main flow direction H seen side by side restrict the flow channel cross-section. This is illustrated by the breaks 40 in the hydraulic diameter. Due to the inventive design, in particular the uniform distribution of the contact points, these burglaries are eliminated or reduced, so that there is a solid line shown for the hydraulic diameter. The fewer of these burglaries have a flow channel, the fewer bottlenecks for the flowing medium, the channel, that is, the pressure loss can be reduced for the same area density of the contact points.
  • a uniform distribution is achieved, in particular, in that a curvature region between two, in particular straight legs of a wave profile of a plate does not come to lie exactly over a curvature region of an adjacent plate. Rather, it may be advantageous if the areas of curvature of adjacent plates - seen in the main flow direction - are offset from each other so that each curvature region is flanked transversely to the main flow direction of two contact points of the two plates, which advantageously have a same or similar distance from each other as to other points of contact and thus release between them a flow passage which allows appreciable flow and thus does not contribute undesirably to pressure loss of the flow channel formed between the plates. On the other hand, the distance between two points of contact should not be too large, as otherwise local weak points in the strength of the heat exchanger could possibly form.
  • Fig. 8c A plot of the strength F and pressure loss DV of a heat exchanger versus the density BD of the contact points between two plates is shown.
  • the strength of the heat exchanger increases linearly with the contact point density BD and is reflected in Fig. 8c as a straight 41 down.
  • the pressure loss DV in this plot (42) shows a progression; so that a maximum 43 at a contact point density BD1 results for the ratio F / DV of strength F to pressure loss DV.
  • the pressure loss is lowered according to the invention (44)
  • the mentioned maximum is increased (45) and possibly shifted to a higher contact point density BD2.
  • experimental It has been found that a touch-point density of 4 to 7 per cm 2 , preferably 5 to 6 per cm 2 , leads to good strength with acceptable pressure loss.
  • a section of a plate 30 of a heat exchanger is shown.
  • the connection points between two adjacent plates are given by the crossing points of the respective wave profiles of the two plates.
  • the leg angle 2b of the outer legs 31 differs from the leg angle 2a of the inner legs 32
  • Fig. 10 shows a plate 35 of a heat exchanger in which a wave profile 34 extends to the bent plate edge 36, wherein a remaining channel 37, which may allow an undesirable bypass flow, has a very small cross-section, so that the bypass flow is reducible.
  • a brazed heat exchanger that is, when the plate 35 is solder plated, form between the outermost legs 38 of the wave profile 34 and the bent edge of the plate 36 Lotmenisken that reduce the edge channel 37 or close particularly advantageous.
  • the apertures 38 of the plate and thus the cross sections of the collection channels formed thereby are widened in an oval shape.
  • Fig. 11a shows a cross section of a plate 41 of a heat exchanger 42, which is composed of a plurality of plates 41, as in Fig. 11b displayed.
  • the plates 41 each have a few holes 43 perpendicular to the plate plane as inflow lines and outflow lines, the holes 43 being raised relative to the base plane of the respective plate 41 such that a fluidic connection of one of the two holes exists alternately only to every second plate interspace 44 ,
  • Fig. 11b is in each case a raised bore 43 at a non-raised portion of an adjacent plate 41, so that the height of the raised portion, for example, is as large as the height of a wave profile of the plate 41st
  • Fig. 12a shows a cross section of a plate 51 of a heat exchanger 52, which is composed of a plurality of plates 51, as in Fig. 12b displayed.
  • the plates 51 each have a few bores 53 perpendicular to the plate plane as inflow and outflow lines, the bores 53 being raised in relation to the base plane of the respective plate 51 in such a way that a fluidic connection of one of the two bores exists alternately only to every second plate interspace 54 ,
  • Fig. 12b is in each case a raised bore 53 at a raised bore 53 of an adjacent plate 51, so that the height of the raised portion, for example, only half as large as the height of a wave profile of the plate 41.
  • This construction reduces under certain circumstances a material thinning when producing the raised areas, so that a tensile strength, ie internal pressure resistance of the heat exchanger 52 is favorably influenced, at least in these areas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

  • Die vorliegende Erfindung betrifft einen Wärmeübertrager nach dem Oberbegriff des Anspruchs 1, wie er insbesondere bei Fahrzeugen als Ölkühler Verwendung findet. Solch im Wärmeübertrager ist aus DE 19959780 A1 bekannt.
  • Es sind so genannte Platterfwärmeübertrager bekannt, die aus einem Stapel nebeneinander liegender Platten gebildet sind. Zwischen den Platten sind Hohlräume ausgebildet, die wechselweise mit einem ersten bzw. einem zweiten Medium durchströmt werden.
  • Neben der Verwendung als Kühler, wobei dann beispielsweise das erste Medium Kühlwasser und das zweite Medium das zu kühlende Arbeitsmedium - im Falle eines Ölkühlers einer Brennkraftmaschine das Motoröl - ist, ist auch eine Verwendung als Verdampfer einer Kühleinrichtung wie einer Fahrzeugklimaanlage denkbar, wobei dann eines der beiden Medien das Kühlmittel und das andere das Kältemittel ist.
  • Dabei ist es bekannt, dass die Platten profiliert sind, so dass zwischen den Platten Berührungsstellen auftreten. Im Bereich der Berührungsstellen werden die Platten aneinander befestigt. Darüber hinaus liegen die Platten außenseitig dichtend aneinander an, damit das Kühlmedium bzw. das Arbeitsmedium ausschließlich den Hohlraum durchströmt. Erstes und zweites Medium werden dabei jeweils durch eine entsprechende Zuflussleitung zugeführt und über eine Abflussleitung weggeführt. Dabei dienen Zuflussleitungen und Abflussleitungen jeweils als Sammelleitungen, in denen der Fluidstrom aller entsprechenden Hohlräume zu - bzw. abgeführt wird.
  • Üblicherweise werden bei Plattenwärmeübertragem turbulenzsteigemde Einbauten zur Verbesserung des Wärmeübergangs und zur Oberflächenvergrößerung in die Fluidkanäle eingebracht und fest mit der Wärmeübertragenden Platte verbunden. Hierdurch wird neben der thermodynamischen Eigenschaft des Kanals die Festigkeitseigenschaft des Kühlers stark verbessert.
  • Ein Nachteü solcher Turbulenzplatten ist, dass bei der Herstellung der Durchtrittsöffnungen leicht Spanbildung auftritt, die zur Verunreinigung des durchströmenden Mediums führen kann. Darüber hinaus lagern sich Verschmutzungen leicht im Bereich der Turbulenzplatten an. Hierdurch kann das Durchströmen des Hohlraums in unerwünschter Weise behindert werden. Darüber hinaus stellen sie ein zusätzlich herzustellendes Bauteil dar, das durch erhöhte Herstellungskosten sowie Materialkosten eine Verteuerung des Wärmeübertragers nach sich zieht.
  • Daher ist es Aufgabe der Erfindung, einen Wärmeübertrager bereitzustellen, der Nachteile bekannter Wärmeübertrager nicht aufweist.
  • Diese Aufgabe wird durch einen Plattenwärmeübertrager nach Anspruch 1 gelöst.
  • Einen Wärmeübertrager, wie er insbesondere als Ölkühler im Bereich von Kraftfahrzeugen Verwendung findet, wird aus miteinander verbundenen Platten gebildet. Zwischen den Platten sind nach außen hin abgeschlossene Hohlräume ausgebildet. Die Hohlräume sind dabei alternierend über jeweils zumindest eine Zu- und Abflussleitung mit erstem bzw. zweitem Medium versorgt und werden auch von dem entsprechenden Medium durchströmt. Dabei sind die Platten derart profiliert, dass zwischen den jeweiligen Profilen der Platten Berührungsstellen auftreten. Im Bereich dieser Berührungsstellen sind die Platten miteinander verbunden. Dabei sind die Platten so ausgestaltet, dass sich die zwischen den Platten ausbildende Strömung von erstem bzw. zweitem Medium von der entsprechenden Zuflussleitung zur entsprechenden Abflussleitung nicht geradlinig verläuft.
  • Diese Maßnahme hat den Vorteil, dass das durchströmende Medium auf seinem Strömungspfad teilweise mehrfach umgelenkt wird. Hierdurch wird die Verteilung der Fluide über die Plattenbreite verbessert. In Abhängigkeit von dem Strömungsverhalten (Viskosität) des durchströmenden Mediums treten unter Umständen auch turbulente Strömungen auf. Die sich immer wieder einstellenden Richtungsänderungen des Fluids im Kanal und sich im Bereich des sich öffnenden Wellenkanals unter Umständen ausbildende Wirbel reißen die sich bildende Grenzschicht immer wieder auf. Dies führt zu einem verbesserten Wärmeübergang.
  • Gemäß der Erfindung weisen die Platten ein sich wiederholendes Wellenprofil auf, das dann zumindest in einer Richtung quer zur Durchflussrichtung, welche die gerade Verbindung von Eintrittsstelle des Mediums zur Austrittsstelle ist, verläuft. Um diese Richtung herum verläuft das Wellenprofil zickzackförmig. Ein solches Wellenprofil bildet in einfacher Weise Strömungsleitbereiche, die geeignet sind, die Strömung des den entsprechenden Hohlraum durchströmenden Mediums zu leiten. Die Strömung wird in ihrem Verlauf dadurch in vorteilhafter Weise mehrfach umgelenkt, und zwar insbesondere nicht nur in der Plattenebene, sondern auch aus der Plattenebene heraus. In Bereichen, in denen der Abstand der Platten zueinander unterschiedlich groß gestaltet ist, variiert unter Umständen die Strömungsgeschwindigkeit. Gleichzeitig wird in vorteilhafter Weise erreicht, dass das Medium insgesamt über die gesamte Fläche der Platten verteilt wird und so ein möglichst optimiertes Ausnutzen der gesamten Wärmeaustauschfläche erfolgt.
  • Gemäß weiterführender Ausgestaltung weist das Wellenprofil zwischen Strömungsbereichen geradlinig verlaufende Schenkel auf, wobei der Verlauf des Wellenprofils durch die Schenkellänge der Schenkel, den zwischen den Schenkeln gegebenen Schenkelwinkel und die Profiltiefe des Wellenprofils charakterisiert ist. Das Profil eines Wellenprofils wird in seinem Querschnitt durch den Verlauf im Bereich der Schenkel sowie im Krümmungsbereich festgelegt, wobei bevorzugte Ausgestaltungen eine Abweichung der Querschnittsform in diesen Bereichen vorsehen können.
  • Das zickzackförmig verlaufende Wellenprofil wird dabei insbesondere durch die Schenkellänge, den Schenkelwinkel zwischen benachbarten Schenkeln sowie die Profiltiefe charakterisiert. Bevorzugte Ausgestaltungen der Erfindung sehen vor, dass die Schenkellänge im Bereich von 8 bis 15 mm, vorzugsweise im Bereich von 9 bis 12 mm liegt. Typische Werte der Profiltiefe - die sich beispielsweise aus dem Abstand zwischen einem Wellenkamm und der Plattenmittelebene bemisst - liegen im Bereich von 0,3 bis 1,5 mm. Für viele Anwendungen kann eine Profiltiefe zwischen 0,5 und 1 mm vorteilhaft sein, wobei Werte von ungefähr 0,75 mm bevorzugt sein können. Der Schenkelwinkel zwischen zwei Schenkeln des Wellenprofils beträgt vorzugsweise zwischen 45° und 135°. Insbesondere Werte um 90° stellen einen guten Kompromiss hinsichtlich Verteilung des Fluids, Durchströmgeschwindigkeit und Durchflussleistung des Wärmeübertragers dar.
  • Die Schenkellänge und der Schenkelwinkel beeinflussenen zum einen die Strömungsleitfunktion des Wellenprofils, zum anderen aber auch die Anordnung von Berührungsstellen benachbarter Platten aneinander, welche für die Stabilität des Wärmeübertragers erforderlich sind. Die Eigensteifigkeit der Platten gegenüber einer Druckbeaufschlagung durch die Medien kann ohne die gegenseitige Abstützung nicht gewährleistet sein, wenn die Materialstärke der Platte gering gewählt wird, wie dies bei vielen Anwendungen aus Gründen der Gewichtsersparnis sowie des Wärmeaustausches erwünscht ist.
  • Dabei erfolgt in bevorzugter Ausgestaltung ein Verbinden der Platten im Bereich der Berührungsstellen durch Hartlöten, wozu die Platten zumindest einseitig mit einem Löthilfsmittel wie Lötmittel beschichtet sind. Die Auswahl von Schenkellänge und Schenkelwinkel erfolgt vorzugsweise in Abhängigkeit des durchströmenden Mediums und dessen Viskosität. Schenkellänge und Schenkelwinkel haben einen großen Einfluss auf die auftretenden Strömungsgeschwindigkeiten und den damit verbundenen Wärmeaustausch, so dass diese an den jeweiligen Verwendungszweck anpassbar sind. Die vorstehend genannten Werte beziehen sich dabei insbesondere auf die Verwendung von Wärmeübertragern als Ölkühler bei Fahrzeugen, wo der Wärmeaustausch zwischen Motoröl und Kühlwasser erfolgt. Darüber hinaus sind sie natürlich auch von der Dimensionierung der Platten und des sich aus dem Abstand der Platten ergebenden Zwischenraums abhängig.
  • Die Gestalt des Wellenprofils wird im Wesentlichen durch die Form des Querschnitts senkrecht zur Außenkante des Profils in diesem Bereich sowie die durch die Teilung festgelegte Abfolge der Profile aufeinander im Verlauf quer zur Erstreckungsrichtung eines Wellenprofils über die Platte hinweg festgelegt. Bevorzugte Ausgestaltungen sehen eine konstante Teilung, also einen festen Abstand zweier beliebiger zueinander benachbarter Wellenprofile vor. Die Gestalt des Wellenprofils ist insbesondere dann vorteilhaft, wenn sie auf der Außenseite des Wellenrückens einen Flachbereich aufweist. Der Flachbereich weißt dabei insbesondere eine Breite von 0,1 bis 0,4 mm auf. Der Flachbereich ermöglicht eine gute, flächige Anlage zueinander benachbarter Platten aneinander und damit eine leichte und stabile Herstellung der Abstützung bzw. Verbindung - wie durch Hartlöten - benachbarter Platten miteinander.
  • Bei dem Material der Platten handelt es sich vorzugsweise um Aluminium. Dieses Material hat den Vorteil, eine niedere Dichte aufzuweisen und gleichzeitig das Erzeugen des Wellenprofils beispielsweise durch Prägen in einfacher Weise zu ermöglichen. Es kann zur Herstellung der Verbindung zweier benachbarter Platten im Bereich der Berührungsstellen sowie im Bereich der Ränder auf zumindest einer Seite vollflächig mit Löthilfsmittel wie Hartlot beschichtet sein. Je nach Auswahl des Löthilfsmittels sowie der Schichtdicke des Auftrags des Löthilfsmittels kann auch eine beidseitige Beschichtung mit Löthilfsmittel gegeben sein. Die Beschichtung mit Löthilfsmittel soll insbesondere im Bereich der Ränder und der Zu- und Abflussleitungen im Block dem zuverlässigen Herstellen einer fluiddichten Verbindung zweier Platten miteinander in einem Fügevorgang mit einem Fügewerkzeug (Hartlötofen) ohne Benutzen weiterer Hilfsmittel bzw. Hilfsstoffe dienen.
  • In weiterführender Ausgestaltung kann vorgesehen seien, dass die Platten Bohrungen aufweisen, die im Bereich des Wärmeübertragers als Zuflussleitungen und Abflussleitungen dienen und deren Bohrungsachse senkrecht zur Plattenebene verläuft. Dabei sind die Bohrungen insbesondere in einem gegenüber der Grundebene der Platten erhabenen Bereich eingebracht. Der erhabene Bereich ist dabei vorzugsweise so erhaben, dass sich in jedem zweiten Plattenzwischenraum eine dichte Verbindung zwischen dem erhabenen Bereich und darauf folgender weiterer Platte ergibt, sodass nur bei jedem zweiten Plattenzwischenraum eine fluidische Verbindung zwischen den Bohrungen und dem Plattenzwischenraum entsteht. Durch diese Maßnahme wird ohne das Verwenden von Leitungen eine Fluidzufuhr und - abfuhr aus den Plattenzwischenräumen ermöglicht, so dass diese alternierend entweder mit Kühlmedium bzw. mit Arbeitsmedium durchströmt werden.
  • Dabei kann die fluiddichte Anlage zwischen einem erhöhten Bereich und einer benachbarten Platte nicht nur durch Formschluss sondern auch durch andere Verbindungstechnik, wie dem Hartlöten erreicht werden. Hierzu weist der erhabene Bereich insbesondere einen vorzugsweise flächigen Anlageabschnitt auf, der mit einem vorzugsweise flächigen Anlagerand der benachbarten Platte, zu der sich eine fluiddichte Verbindung ergibt, in Anlage befindet.
  • Der erhabene Bereich sowie die Bohrungen im erhabenen Bereich können dabei nicht nur einen kreisrunden Querschnitt aufweisen, vielmehr sind auch ovale oder langlochartige Gestaltungen möglich und vorteilhaft. Dabei ist die längere der beiden Achsen der langlochartigen Gestaltung vorzugsweise quer zur Hauptfließrichtung des Fluids anzuordnen. Auch diese Maßnahme dient der Verbesserung des Wärmeaustauschs zwischen den beiden Medien, da dann bei gleicher Gesamtausdehnung der Platten eine größere Wärmeübertragungsfläche verbleibt.
  • Darüber hinaus ist es möglich, dass im Bereich der Zuflussleitungen und der den Zuflussleitungen zugeordneten Bohrungen Verteilerkanäle vorgesehen sind, welche vorzugsweise ebenfalls als Wellenprofil ausgebildet sind. Es entspricht besonders bevorzugter weiterführender Ausgestaltungen der Erfindung, wenn das Wellenprofil der Verteilerkanäle sich von den übrigen Wellenprofilen hinsichtlich der charakteristischen Größen des Wellenprofils unterscheidet. Das Wellenprofil der Verteilerkanäle weist dabei insbesondere einen Schenkelwinkel aus, der geringer als 45° beträgt und insbesondere im Bereich von ungefähr 5° und ungefähr 25° liegt. Es kann sowohl ein schlagartiger als auch ein kontinuierlicher Übergang in der Profilgestaltung zwischen dem Verteilerprofil und dem Wellenprofil in übrigen Plattenbereichen ausgebildet sein. Die Verteilerkanäle übernehmen dabei die Aufgabe eines möglichst gleichmäßigen Verteilens des Fluidstroms über die gesamte Breite der Platte hinweg. Dies verbessert die Effizienz des Wärmeübertragers, da in diesem Fall eine größere Wärmeaustauschfläche tatsächlich auch zum Austausch genutzt wird. Auch können zur Verbesserung der Verteilung des Mediums über die gesamte Fläche des Wärmeübertragers hinweg Umströmungskanäle die erhabenen Bereiche umgeben. Die Umströmungskanäle werden dabei vorzugsweise durch einen wellenproflfreien Abschnitt gebildet, der insbesondere ringartig um den erhabenen Bereich herumgeführt ist. Es wird so ein Abschnitt verringerten Strömungswiderstandes gebildet, in den mehrere Wellenprofile einmünden, so dass auch hierdurch eine Verteilfunktion für das Medium erfüllt wird.
  • Es entspricht einer besonders einfach und kostengünstig herzustellenden Ausführungsform eines erfindungsgemäßen Wärmeübertragers, wenn dieser aus einer Abfolge von Platten hergestellt ist. Dabei können die Platten auf ihren beiden Seiten hinsichtlich ihrer Wellenprofile voneinander verschiedene Profile aufweisen. Ein Wärmeübertrager kann insbesondere aus einem Stapel von solchen untereinander identisch ausgestalteten Platten gebildet sein. Denn es ist hierbei insbesondere möglich, dass zueinander benachbarte Platten um 180 Grad zueinander verdreht sind, wobei sich die Drehachse senkrecht zur Plattenebene erstreckt. Diese Art des Stapels von Platten ist insbesondere dann vorteilhaft, wenn die den Zuflussleitungen zugeordneten Bohrungen aus erhabenen Stellen ausgebildet sind und diese alternierend zwei unterschiedlichen Leitungsführungen zugeordnet sein sollen. Dabei können die Erhebungen im Bereich der Zuflussleitungen insbesondere als im Wesentlichen kegelstumpfförmiger Dom ausgebildet sein. Alternativ hierzu sind domförmige Erhebungen, welche einen elliptischen Querschnitt aufweisen.
  • Die Platten können dabei sowohl untereinander identisch einander entsprechend oder ähnlich oder unterschiedlich gestaltet sein. Untereinander identische Platten weisen das hinsichtlich der charakteristischen Eigenschaften des Wellenprofils sowie der Gestalt des Wellenprofils identische Eigenschaften auf. Einander entsprechende Platten sind im Aufbau einander gleich, jedoch ist es möglich, dass die Platten beispielsweise voneinander verschiedene Schenkelwinkel aufweisen. Einander entsprechende Platten weisen vorzugsweise eine voneinander unterschiedliche Gestalt des Wellenprofils und/oder voneinander verschiedene Werte charakterisierender Größen auf, sind jedoch hinsichtlich der Ausbildung des Randes sowie von Ausbildung von Vorder- und Rückseite der Platten einander entsprechend. Die alternierende Verwendung beispielsweise zweier einander entsprechender Platten, die sich lediglich durch unterschiedliche Schenkelwinkel in den charakteristischen Größen unterscheiden, hat den Vorteil, dass die Position und relative Lage von Berührungsstellen der Platten aneinander im profilierten Bereich im Hinblick auf die erforderliche Steifigkeit und die erforderliche Durchströmung in einfacher Weise optimierbar sind.
  • Die Verbindung zwischen den Platten ist insbesondere durch Hartlöten hergestellt. Um im Bereich des Randes der Platten eine gute Dichtwirkung und gleichzeitig einen stabilen Aufbau des Wärmeübertragers zu erreichen, kann es vorgesehen sein, dass die Platten einen abgekröpften Rand aufweisen dessen Höhe so gewählt ist, dass wenigstens zwei zueinander benachbarte Platten in diesem Randbereich aneinander anliegen und sich überlappen. Die Anzahl der sich im Randbereich überlappenden Platten kann dabei bis zu fünf betragen. Je größer die Anzahl der sich überlappenden Platten ist, desto steifer ist die hierdurch gebildete und nach außen hin den Wärmeübertrager abschließende Wandung. Dies unterstützt gleichzeitig die Herstellung eines dauerhaft stabilen, widerstandsfähigen, fluiddichten Abschlusses der Platten nach außen hin. Bevorzugte weiterführende Ausgestaltungen sehen dabei vor, dass das Wellenprofil sich bis in den Rand hinein und insbesondere über dessen gesamte Breite hinweg erstreckt. Dabei ist bei der Gestaltung des Wellenprofils darauf zu achten, dass die Platten dennoch stapelbar bleiben, was dadurch geschieht, dass der Verlauf des Wellenprofils im Randbereich auf die Montagelage zweier benachbarter Platten zueinander abgestimmt wird.
  • Das Wellenprofil erstreckt sich bis in den Rand hinein, wenn im Wurzelbereich der Abkröpfung das Wellenprofil endet, so dass das Profil mit seiner Profiltiefe sich in den Rand hinein erstreckt. Insbesondere aus Gründen der Produktionstechnik kann es vorteilhaft sein, wenn die Wurzel des Randes in einem wellenprofilfreien Bereich liegt, da dann das Biegen des Randes in einem nicht durch Profil versteiften Bereich erfolgen kann. Bevorzugte Ausgestaltungen sehen dann vor, dass sich die sich zwischen Rand und Wellenprofilbereich ausbildende Rinne möglichst schmal ist. Sie wird insbesondere so schmal gewählt, dass beim Hartlöten ein Lotfluss eintritt, der diese Rinne vollständig oder wenigstens so weit zusetzt, dass nur eine vernachlässigbare Menge von Medium durch die Rinne durchströmt. Die Rinne muss so gestaltet sein, dass sie nicht als Bypasskanal für das Medium dient und ein wesentlicher Medienanteil durch die Rinne strömt statt im Bereich des Wellenprofils.
  • Zum Verbessern der Stabilität des Wärmeübertragers nach außen hin sowie zum Vereinfachen des Anschlusses der externen Zuflussleitungen und externen Abflussleitungen von Kühlmittel und Arbeitsmedium kann es vorgesehen sein, dass an wenigstens einer der Stirnseiten des Wärmeübertragers eine außenseitig profillose Abschlussplatte angeordnet wird. Die außenseitig profillose Abschlussplatte weist dabei insbesondere Flansche als Anschlussstellen auf. Die Abschlussplatten können insbesondere auch eine größere Materialstärke als die anderen Platten aufweisen und somit ein insbesondere versteifendes, stabilisierendes Element darstellen, das ein die Stirnseiten nach außen abschließendes Gehäuseteil bildet. Die seitlichen Gehäusewandungen, die den Wärmeübertrager nach außen hin abschließen, werden über den Rand gebildet, der die Platten begrenzt und der sich mit dem Rand benachbarter Platten überlappt. Die Ränder sind dabei fluiddicht miteinander verbunden, was insbesondere durch Hartlöten erfolgen kann.
  • Eine Möglichkeit, die Durchströmbarkeit eines Stapels von Platten zu charakterisieren liegt in der Bestimmung des hydraulischen Durchmessers zwischen zwei benachbarten Platten entlang der Hauptstömungsrichtung des Mediums. Der hydraulische Durchmesser stellt dabei ein Verhältnis zwischen dem durchströmbaren Kanalquerschnitt und Wärmeaustauschfläche dar. Der hydraulische Durchmesser hD ist dabei als das Vierfache des Verhältnisses aus Flächenverhältnis Fv zu Flächendichte Fd definiert. Das Flächenverhältnis Fv bestimmt sich als das Verhältnis von freiem Kanalquerschnitt fK zu Gesamtstirnfläche S des Kanals zwischen zwei benachbarten Platten, die Flächendichte Fd aus dem Verhältnis zwischen wärmeübertragender Fläche wF zu Blockvolumen V. Es gilt also: hD = 4 fK S wF V
    Figure imgb0001
  • Der hydraulische Durchmesser sollte dabei gemäß bevorzugter Ausgestaltung der Erfindung über die gesamte Hauptströmungsrichtung des Mediums hinweg möglichst konstant bleiben. Hierdurch wird eine unter Umständen verbesserte und gegebenenfalls eine gleichmäßige Durchströmbarkeit des Plattenzwischenraumes, der den Kanal bildet, erzielt.
  • Der hydraulische Durchmesser liegt gemäß bevorzugter Ausgestaltung der Erfindung und insbesondere bei der Verwendung des Wärmeübertrager als Ölkühler zwischen 1,1 mm und 2 mm. Bevorzugte Werte für den hydraulischen Durchmesser liegen um 1,4 mm. Dabei sollte die Abweichung des hydraulischen Durchmessers über die Periode der Profilierung eines Plattenpaares hinweg vorzugsweise nicht mehr als um 10%, insbesondere um weniger als 5% schwanken. Selbstverständlich ist die Auswahl des hydraulischen Durchmessers auch von den in den Zwischenräumen zwischen den Platten strömenden Medien abhängig. Die genannten Werte gelten für einen Ölkühler, bei dem zum einen Wasser und zum anderen ein Öl den Wärmeübertrager durchströmt.
  • Gemäß einer bevorzugten Ausführung sind die Berührungsstellen zwischen zwei zueinander benachbarten Platten des Wärmeübertragers gleichmäßig über die Plattenfläche verteilt. Bevorzugt weisen die Berührungsstellen zwischen zwei zueinander benachbarten Platten eine Flächendichte von 4 bis 7 pro cm2, besonders bevorzugt von 5 bis 6 pro cm2 auf. Bei einer solchen Ausgestaltung ist eine ausreichende Festigkeit des Wärmeübertragers ohne übermäßige Erhöhung des Druckverlustes möglich.
  • Wärmeübertrager gemäß der Erfindung können einerseits als Ölkühler, aber auch als Verdampfer oder Kondensatoren dienen. Dabei kann der Kältekreislauf einer solchen Einrichtung nicht nur zum Klimatisieren eines (Fahrzeug-)Innenraumes dienen, sondern auch zum Kühlen von Wärmequellen, wie elektrischen Verbrauchern, Energiespeichern und Spannungsquellen oder von Ladeiuft eines Turboladers. Der Wärmeübertrager ist ein Kondensator, wenn beispielsweise durch Kondensation des Kältemittels einer Klimaanlage in einem kühlmittelbeaufschlagten kompakten Wärmeüberträger erfolgt und das Kühlmittel die Wärme in einem Wärmeübertrager an Luft als weiteres Medium abgibt. Das Verdampfen bzw. Kondensieren eines anderen Mediums in einem erfindungsgemäßen Wärmeübertrager kann beispielsweise auch in Anwendungen bei Brennstoffzellensystemen erfolgen.
  • Bei all diesen Anwendungen als Kondensator oder Verdampfer ist der Einsatz eines leistungsstarken kompakten Wärmeübertragers wünschenswert, in dem ein Kühlmittel als zweites Medium die Wärme abgibt oder aufnimmt. Hierbei können aufgrund sehr hoher Innenreinheitsanforderungen auf der Kältemittelseite keine gestanzten Turbulenzeinlagen eingesetzt werden, durch die Aluminiumpartikel in den Kältemittelkreislauf eingetragen werden. Neben diesen Reinheitsanforderungen ist ebenfalls eine optimale Verteilung des Fluides am Eintritt notwendig, das anschließend im Wärmeübertrager verdampft oder kondensiert. Idealerweise wird das Fluid, das bei der Verdampfung am Eintritt vorwiegend in flüssiger Form und bei der Kondensation in dampfförmiger Form vorliegt, über die gesamte Scheibenbreite verteilt. Eine Besonderheit der Verdampfung und Kondensation ist die oft vorhandene geringe Temperaturdifferenz zwischen beiden Fluiden. Bei einer nicht optimalen Querverteilung des zu verdampfenden flüssigen Fluides oder des zu kondensierenden dampfförmigen Fluides können schnell hohe Leistungseinbußen auftreten. Erfindungsgemäße Wärmeübertrager bieten Lösungen zu diesen Problemen an.
  • Im Übrigen ist die Erfindung nachfolgend anhand des in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Es zeigt:
  • Fig. 1a, 1b:
    die Vorderseite und Rückseite einer erfindungsgemäßen Platte;
    Fig. 2:
    die Ansicht eines Stapels von solchen Platten;
    Fig. 3:
    eine Schnittdarstellung mehrfacher aufeinander gestapelter Platten im Bereich des Randes;
    Fig. 4:
    in vergrößerter Darstellung die Ausbildung der Verteilerkanäle im Bereich der Bohrungen;
    Fig. 5:
    eine schematische Darstellung einer Abschlussplatte mit Anschlussflaschen;
    Fig. 6:
    die Fluidführung durch die Platten, wenn bei einem der Fluide ein Durchströmen aller Plattenzwischenräume vorliegt;
    Fig. 7a-7d:
    die Auswirkungen der Gravitation auf die Flüsssigkeitsverteilung;
    Fig. 8
    den hydraulischen Durchmesser über eine Periode des Wellenprofils in Hauptströmungsrichtung des Mediums im Zwischenraum zweier Platten;
    Fig. 8a
    eine Aufsicht auf eine Platte eines Wärmeübertragers;
    Fig. 8b
    den hydraulischen Durchmesser in Hauptströmungsrichtung des Mediums im Zwischenraum zweier Platten;
    Fig.8c
    eine Auftragung der Festigkeit und des Druckverlustes eines Wärmeübertragers über der Dichte der Berührungsstellen zwischen zwei Platten;
    Fig. 9
    einen Ausschnitt aus einer Wärmeübertragerplatte;
    Fig.10
    eine Platte eines Wärmeübertragers;
    Fig. 11a,b
    jeweils einen ausschnittsweisen Querschnitt eines Wärmeübertragers;
    Fig. 12a,b
    jeweils einen ausschnittsweisen Querschnitt eines Wärmeübertragers.
  • Die Figuren 1a und 1b zeigen die Darstellung einer Vorderseite bzw. einer Rückseite einer erfindungsgemäßen Platte, während die Fig. 2 die Darstellung eines entsprechenden, aus Platten gemäß der Figuren 1a und 1b gebildeten Stapels zeigt.
  • Eine Platte 10 weist einen Grundkörper 11 auf, welcher an seiner Vorder- und Rückseite jeweils mit einem Wellenprofil 12 versehen ist, welches durch Prägen in den Grundkörper 11 eingebracht worden ist. Bei der in den Figuren 1a und 1b dargestellten Ausführungsform entspricht das Wellenprofil 12 der Rückseite gemäß der Fig. 1b dem negativen Profil der Vorderseite gemäß der Darstellung in Fig. 1a. Dabei wird das Wellenprofil 12 aus mehreren zueinander in einem Schenkelwinkel 13 stehenden Schenkeln 10 gebildet, die jeweils eine feste Schenkellänge 15 aufweisen und dem Krümmungsbereich 16 aneinander anschließen. Das Wellenprofil erstreckt sich quer über die Platte 10 hinweg. Über die Länge der Platte 10 hinweg ist eine Vielzahl von Wellenprofilen 12 hintereinander ausgebildet, wobei die Wellenprofile insbesondere in dichtem Abstand aufeinander folgen und fluchtend zueinander ausgerichtet sind. Die Platte 10 weist dabei einen umlaufenden abgekröpften Rand 17 auf, welcher die Platte lateral begrenzt. Dabei verläuft das Wellenprofil 12 bis in den Rand hinein.
  • Das Wellenprofil 12 kann dabei durch Prägen in die Platte 10 eingebracht werden. Das Prägen kann dabei so durchgeführt werden, dass die beiden Seiten in der Platte 10 voneinander abweichende Wellenprofile aufweisen, insbesondere kann das Wellenprofil 12 auf einer Seite das Negativ des Wellenprofils 12 der anderen Seiten darstellen, wie dies beispielsweise aus dem Ausführungsbeispiel gemäß den Figuren 1 a und 1 b ersichtlich ist. Es ist auch möglich, dass eine Platte 10 auf beiden Seiten das gleiche Wellenprofil 12 aufweist. Beides Mal können die Wellenprofile auf den beiden Seiten einer Platte 10 fluchtend zueinander oder versetzt zueinander ausgebildet sein. Das Wellenprofil 12 wird im Querschnitt vor allem dadurch charakterisiert, dass es einen Wellenrücken aufweist, der einen Flachbereich bildet, welcher parallel zur Plattenebene verläuft. Der Flachbereich hat dabei vorzugsweise eine Breite zwischen 0,1 mm und 0,4 mm.
  • Im Bereich der Ecken weist die Platte eine Bohrung 18 auf, welche die Platte senkrecht zu ihrer Verlaufsebene durchsetzt. Zwei der Bohrungen sind dabei in einem erhabenen Bereich 19 eingebracht. Eine der Bohrungen dient dabei der Zufuhr von Arbeitsmedium in den Bereich zwischen zwei Platten, während insbesondere die diametral gegenüberliegende Bohrung dem Abfluss von Arbeitsmedium dient. Ein anderes Bohrungspaar dient dem Zu- und Abfluss von Kühlmedium. Werden Platten 10 wie in der Fig. 2 dargestellt aufeinander gestapelt, so sind jeweils alternierend entweder die dem Arbeitsmedium oder Kühlmedium zugeordneten Leitungen fluidisch mit dem Zwischenraum 20 zwischen zwei Platten 10 verbunden, da der erhabene Bereich 19 entsprechender Bohrungen 18 an der benachbarten Platte 10 anliegt. Die Bohrungen 18 bilden somit durch einen Stapel 21 von Platten hindurch die Zufuhrleitungen beziehungsweise Abflussleitungen für Kühlmedium und Arbeitsmedium. Die Fig. 2 zeigt in perspektivischer Darstellung einen solchen Stapel 21 von Platten 10 gemäß der Figuren 1 a und 1 b..
  • In der Fig. 3 ist die Schnittdarstellung durch einen Stapel 21 gemäß der Fig. 2 gezeigt. Platten 10 liegen aneinander an und sind übereinander gestapelt. Der abgekröpfte Rand 17 benachbarter Platten liegt aneinander an und ist so ausgebildet, dass sich der Rand mehrerer Platten jeweils überlappt. Um eine fluiddichte Verbindung zwischen dem Rand 17 zweier benachbarter Platten zu erreichen, sind diese durch Hartlöten miteinander verbunden. Darüber hinaus liegen zwei zueinander benachbarte Platten in unterschiedlichen Bereichen ihrer Wellenprofile 12 aneinander an. Auch in diesen Bereichen sind die Platten durch Hartlöten miteinander verbunden. Zum Herstellen der Lötverbindungen können die Platten einseitig oder beidseitig mit einem Lot beschichtet sein. Zwischen zwei zueinander benachbarte Platten 10 ist jeweils ein Zwischenraum 20 ausgebildet, wobei der Zwischenraum entweder von Arbeitsmedium oder von Kühlmedium durchströmt wird. Der Stapel von Platten ist dabei insbesondere so ausgebildet, in das die Zwischenräume 20 alternierend von Arbeitsmedium und Kühlmedium durchströmt werden, sodass jede der Platten 10 einerseits von Kühlmedium und andererseits von Arbeitsmedium umströmt wird. Somit kann ein Wärmeaustausch zwischen Kühlmedium und Arbeitsmedium über jede der Platten 10 hinweg erfolgen.
  • Dadurch, dass die Platten ein Wellenprofil aufweisen, ist an einer Vielzahl von Stellen der Zwischenraum 20 von unterschiedlicher lichter Weite. Die sich immer wieder einstellenden Richtungsänderungen des Fluids im Kanal und die sich im Bereich des sich öffnenden Wellenkanals ausbildenden Wirbel reißen die sich bildende Grenzschicht immer wieder auf. Dies führt zu einem, verglichen mit einem glatten Kanal, stark verbesserten Wärmeübergang.
  • Dies fördert den anderen Austausch zwischen den beiden Medien über eine Platte 10 hinweg. Zusätzlich wird durch die Ausgestaltung der Platten 10 erreicht, dass keine lineare, geradlinige Strömung von der Zufuhrleitung zur Abflussleitung möglich ist. In Abhängigkeit von der Viskosität des Mediums kann eine solche Gestaltung des Zwischenraums 20 auch dazu führen, dass ganz oder teilweise turbulente Strömungen auftreten und somit ein verbesserter Wärmeaustausch zwischen Arbeitsmedium und Kühlmedium erzielt wird. Darüber hinaus wird durch den Verlauf des Wellenprofils 12 quer zur Erstreckung der Platte 10 das entsprechende Medium auch über die gesamte Breite der Platte 10 hinweg geleitet, so dass das Ausnutzen der Wärmeaustauschfläche, die eine Platte 10 bietet, verbesserter wird, wodurch die Effizienz eines solchen Wärmeübertragers weiter erhöht wird. Ein wesentliches Leitelement für die Strömungsführung ist auch darin zu sehen, dass dies zwischen zwei benachbarten Platten 10 gleich einem Daltongitter immer wieder zu Berührungsstellen kommt, die als Strömungshindernis und Strömungsumlenkungsstellen wirken. Darüber hinaus wirken diese Berührungsstellen als Abstützung der Platten aneinander und haben somit Stabilisierungsfunktion für die Platten 10, insbesondere bezüglich dem Bestimmungsverhalten der Platten 10. Um einen in der Fig. 8 dargestellten gleichmäßigen Wert des hydraulischen Durchmessers zwischen zwei Platten zu erhalten, ist die Anordnung der Berührstellen der Profile benachbarter Platten wichtig. Diese ergeben sich aus den Wellenprofilen einander zugewandter Seiten der Platten sowie aus den Profilverläufen. Ein gleichmäßiger hydraulischer Durchmesser stellt einen gleichmäßigen Durchfluss des Fluids über ein Wellenprofil hinweg und über die gesamte Breite des Plattenzwischenraums sicher. Durch konstruktive Gestaltungsauswahl des Wellenprofils wird ein für den Anwendungszweck optimierter hydraulischer Durchmesser erreicht.
  • Die Fig. 4 zeigt in vergrößerter Darstellung eine Platte 10 mit einem Wellenprofil 12, welches durch die Schenkel 14, welche zueinander einen Schenkelwinkel 13 von 45° aufweisen, gebildet wird. Die Platte 10 wird durch einen abgekröpften Rand 17 begrenzt, wobei sich das Wellenprofil 12 bis in den Bereich des Randes 17 hinein erstreckt.
  • In dieser Fig. ist insbesondere der zwischen zwei Bohrungen 18, von denen eine in einem domförmigen, erhabenen Bereich 19 ausgebildet ist, gezeigt. Im Bereich zwischen den beiden Bohrungen 18, der sich insbesondere auch in den Bereich zwischen den Bohrungen 18 und dem nahe liegenden Rand 17 erstreckt, sind Verteilerkanäle 22 ausgebildet. Die Verteilerkanäle 22 werden dabei durch ein Wellenprofil 23 gebildet, welches sich von dem Wellenprofil 12 im restlichen Bereich der Platte 10 hinsichtlich des Schenkelwinkel und der Schenkellängen unterscheidet. Die Schenkelwinkel liegen insbesondere in einem Bereich unterhalb von 45°. Die Verteilerkanäle 22 führen insbesondere im Bereich der Bohrung, welche nicht in einem erhabenen Bereich 19 eingebracht ist, in den entsprechenden Zwischenraum eintretende Medium quer zur Haupterstreckung der Platte 10 und sorgen somit für eine gleichmäßige Verteilung des Fluidstroms über die gesamte Breite der Platte hinweg. Der erhabene Bereich 19, in den die andere Bohrung 18 eingebracht ist, liegt dabei insbesondere am Bohrungsbereich der in einem Stapel darüberliegenden Platte 10 dichtend an und kann mit diesem durch Hartlöten verbunden sein. Hierdurch wird ein fluiddichter Abschluss zum Zwischenraum 20 zu der darüber liegenden Platte 10 geschaffen, sodass zwischen dieser Bohrung 18 und dem Zwischenraum keine Medienströmung erfolgen kann und das durch diese Bohrung 18 durchströmende Medium erst hinter der darüber liegenden Platte 10 in den dann folgenden Zwischenraum 20 eintreten kann. Die Bohrungen 18 können zur Querschnittserhöhung auch langlochförmig ausgebildet sein, die Langlochachse erstreckt sich dann bevorzugt quer zur Hauptdurchströmungsrichtung H.
  • Weiter kann, wie in der Figur 4a gezeigt, ein profilfreier Ringbereich 99 um einen domförmig erhabenen Bereich 19 herum einen Kanal bilden, welcher mehrere Wellenprofile 23 und Verteilerkanäle 22 miteinander verbindet und für eine gute Querverteilung von Medium sorgt, da er einen strömungswiderstandsarmen Bereich bildet. Der Ringbereich 19 weist dabei eine Einprägtiefe auf, die im Wesentlichen der Einprägtiefe des Wellenprofils 23 entspricht.
  • Die Fig. 5 zeigt in einer Aufsicht die Darstellung einer Abschlussplatte 24, welche vier Anschlussflansche 25 aufweist, die fluchtend zu den Bohrungen 18 der Platten 10 eines Plattenstapels 21 angeordnet sind. Eine solche Abschlussplatte kann einerseits oder beiderseits des Stapels 10 angeordnet sein und diesen nach außen hin abschließen. Die Abschlussplatte 24 weist zumindest auf der außen liegenden Seite kein Wellenprofil 12 auf. Wird beiderseits des Plattenstapels jeweils eine Anschlussplatte 24 angeordnet, so ist es möglich, dass eine der beiden Platten vier Anschlussflansche 25 aufweist oder aber, dass eine Platte ein, zwei oder drei Anschlussflansche 25, und die gegenüberliegende Platte die restliche Anzahl der 4 Anschlussflansche 25 aufweist. Die Anschlussflansche 25 sind jeweils den Anschlussbohrungen zugeordnet. Die Anschlussflansche 25 dienen dem Anschluss der externen Leitungen für die Zufuhr und Abfuhr von Arbeitsmedium und Kühlmedium. Darüber hinaus versteift die Abschlussplatte 24 den Plattenstapel 21 und bildet die stirnseitige Gehäusewandung. Dabei kann die Abschlussplatte 24 einen Rand 17 aufweisen, der an den Rand 17 der Platten 10 angepasst ist. Die übereinander liegenden Ränder 17 der Platten bilden in einem Plattenstapel 21, wie er in der Fig. 2 dargestellt ist, die seitliche Gehäusewandung des Wärmeübertragers. Ein Plattenstapel gemäß der Fig. 2, versehen mit Anschlussflanschen 25 und einer Abschlussplatte 24 bildet somit - einen Wärmeübertrager. Ein solcher Wärmeübertrager kann insbesondere als Ölkühler in einem Fahrzeug dienen.
  • Die Figur 6 zeigt einen Plattenstapel 21, bestehend aus einer Grundplatte 88, aus Platten 10 und aus einer Abdeckplatte 89, die drei Bohrungen 18, 18a aufweist. Die Bohrungen 18 dienen der Führung eines ersten Mediums, das zwischen den Platten so durchgeführt wird, dass die Plattenzwischenräume 20 parallel zueinander durchströmt werden. Durch die Bohrung 18a tritt ein zweites Medium in den Plattenstapel ein, das durch die Bohrung 18b in der Grundplatte wieder aus dem Plattenstapel austritt.
  • Durch zumindest eine zwischen den Bohrungen 18a und 18b angeordnete und von außen nicht sichtbare Trennwand werden die Strömungskanäle für das zweite Medium in zumindest zwei Strömungspfade aufgeteilt, die nacheinander durchströmt werden und jeweils aus einem oder mehreren Strömungskanälen bestehen. Die Strömungskanäle für das erste Medium werden dagegen parallel durchströmt. Bei einem abgewandelten Ausführungsbeispiel werden die Strömungskanäle für das erste Medium dagegen ebenfalls in zumindest zwei Strömungspfade aufgeteilt, die nacheinander durchströmt werden.
  • Die Fig. 7a bis 7d zeigen unterschiedliche Ausrichtungen der Hauptdurchströmungsrichtung H des Plattenzwischenraums 20 in Bezug auf die Gravitationsrichtung G in Einbaulage des Wärmeübertragers, sowie den günstigen Einfluss auf die Verteilung des Mediums im Plattenzwischenraum insbesondere bei der Verwendung als Kondensator. Die Figuren 7a und 7c zeigen den Anwendungsfall eines Verdampfers. Aus den Fig. 7a und 7c ist ersichtlich, dass die Hauptdurchströmungsrichtung H quer oder antiparallel der Gravitationsrichtung G erfolgen sollte, je nachdem ob die längere L oder die schmalere Seite S der Platten in Gravitationsrichtung G ausgerichtet ist, falls es sich um ein flüssiges Medium handelt. Durch die Gravitation wird eine Querverteilung des Mediums bezüglich der Hauptdurchströmungsrichtung unterstützt. Dagegen zeigen die Fig. 7b und 7d, dass sich ein gasförmiges Medium am besten zwischen den Platten 10 verteilt, wenn die Gravitationsrichtung G der Verteilung des Mediums zwischen den Platten entgegenwirkt.
  • Die Figur 8 zeigt den hydraulischen Durchmesser über ein gesamtes Wellenprofil in der Hauptdurchströmungsrichtung H hinweg, wobei in Fig. 8a die Ausbildung des Wellenprofils 23 mit den sich als Kreise 98 eingezeichneten Berührstellen benachbarter Platten 10 dargestellt ist. Man sieht, dass sich das Wellenprofil über die gesamte Periode des sich aus dem aus den Wellenprofilen 23 der benachbarten Platten ergebenden Musters hinweg in einer Bandbreite zwischen 1,2 und 1,6 bewegt und im Mittel ungefähr 1,4 beträgt. Die Ausbildung der Wellenprofile wird bevorzugt so gewählt, dass sich ein möglichst konstanter hydraulischer Durchmesser in der Hauptdurchströmungsrichtung ergibt.
  • In Fig. 8a sind die Berührungsstellen zwischen zwei zueinander benachbarten Platten des Wärmeübertragers in einer Aufsicht auf eine der Platte als Kreise dargestellt. Es ist deutlich zu erkennen, dass die Berührungsstellen gleichmäßig über die Plattenfläche verteilt sind. Eine bevorzugte Flächendichte der Berührungsstellen für eine ausreichende Festigkeit ist 4 bis 7 pro cm2, besonders bevorzugt von 5 bis 6 pro cm2. Dies wird anhand Fig. 8b, 8c deutlich.
  • Fig. 8b zeigt den hydraulischen Durchmesser hD eines Strömungskanals zwischen zwei Platten über mehrere Profilperioden hinweg, und zwar wiederum in Hauptströmungsrichtung H des Mediums. Eine große Flächendichte der Berührungsstellen läßt einen Verlauf erwarten, der durch die durchbrochene Kurve in Fig. 8b dargestellt ist, da viele Berührungsstellen in Hauptströmungsrichtung H gesehen nebeneinander angeordnet den Strömungskanalquerschnitt einschränken. Dies wird durch die Einbrüche 40 im hydraulischen Durchmesser verdeutlicht. Durch die erfindungsgemäße Ausgestaltung, insbesondere die gleichmäßige Verteilung der Berührungsstellen, werden diese Einbrüche beseitigt oder reduziert, so dass sich der durchgezogen dargestellte Verlauf für den hydraulischen Durchmesser ergibt. Je weniger dieser Einbrüche ein Strömungskanal aufweist, desto weniger Engstellen für das strömende Medium weist der Kanal auf, das heißt der Druckverlust kann bei gleicher Flächendichte der Berührungsstellen verringert werden.
  • Eine gleichmäßige Verteilung wird insbesondere dadurch erreicht, dass ein Krümmungsbereich zwischen zwei insbesondere geradlinigen Schenkeln eines Wellenprofils einer Platte nicht genau über einem Krümmungsbereich einer benachbarten Platte zu liegen kommt. Unter Umständen ist es vielmehr vorteilhaft, wenn die Krümmungsbereiche benachbarter Platten - in Hauptströmungsrichtung gesehen - derart zueinander versetzt sind, dass jeder Krümmungsbereich quer zur Hauptströmungsrichtung von zwei Berührungsstellen der beiden Platten flankiert wird, die vorteilhafterweise einen gleichen oder ähnlichen Abstand zueinander aufweisen wie zu anderen Berührungsstellen und somit zwischen sich einen Strömungsdurchlass freigeben, der eine nennenswerte Durchströmung erlaubt und damit nicht in unerwünschtem Ausmaß zu einem Druckverlust des zwischen den Platten ausgebildeten Strömungskanals beitragen. Der Abstand zwischen zwei Berührungsstellen ist andererseits auch nicht zu groß zu wählen, da sich ansonsten unter Umständen lokale Schwachpunkte in der Festigkeit des Wärmeübertragers bilden könnten.
  • In Fig. 8c ist eine Auftragung der Festigkeit F und des Druckverlustes DV eines Wärmeübertragers über der Dichte BD der Berührungsstellen zwischen zwei Platten dargestellt. Die Festigkeit des Wärmeübertragers steigt mit der Berührungsstellendichte BD linear an und schlägt sich in Fig. 8c als Gerade 41 nieder. Im Gegensatz dazu weist der Druckverlust DV in dieser Auftragung (42) eine Progression auf; so dass sich für das Verhältnis F/DV von Festigkeit F zu Druckverlust DV ein Maximum 43 bei einer Berührungsstellendichte BD1 ergibt. Wird nun der Druckverlust erfindungsgemäß abgesenkt (44), so wird das erwähnte Maximum erhöht (45) und gegebenenfalls zu einer höheren Berührungsstellendichte BD2 verschoben. Experimentell hat sich gezeigt, dass eine Berührungsstellendichte von 4 bis 7 pro cm2, vorzugsweise von 5 bis 6 pro cm2, zu einer guten Festigkeit bei akzeptablem Druckverlust führt.
  • Anders betrachtet kann, wie in Fig. 8c durch den Pfeil 46 dargestellt, bei gleichbleibendem Druckverlust DV zu einer höheren Berührungsstellendichte BD übergegangen werden, die zu einer erhöhten Festigkeit F des Wärmeübertragers führt.
  • In Fig. 9 ist ein Ausschnitt einer Platte 30 eines Wärmeübertrager dargestellt. Die Verbindungspunkte zwischen zwei benachbarten Platten sind durch die Kreuzungspunkte der jeweiligen Wellenprofile der beiden Platten gegeben. Um zu erreichen, daß ein Abstand zwischen dem Plattenrand und den rahdnahen Kreuzungspunkten nicht zu groß ist, ist es unter Umständen vorteilhaft, die Geometrie der äußersten Schenkel gegenüber der Geometrie der platteninneren Schenkel der Wellenprofile abzuändern. Bei der Platte in Fig. 9 unterscheidet sich aus diesem Grund der Schenkelwinkel 2b der äußeren Schenkel 31 von dem Schenkelwinkel 2a der inneren Schenkel 32. Wie in Fig. 9 zu sehen ist, beträgt der halbe Schenkelwinkel b in einem Randbereich der Platte 30 beispielsweise 60° bei einem halben Schenkelwinkel von 45° in einem Mittelbereich der Platte. Dadurch wird in Randbereichen 33 der Platten eine gleichmäßigere Verteilung der Verbindungspunkte und damit eine gesteigerte Druckfestigkeit des Wärmeübertragers erreicht.
  • Fig. 10 zeigt eine Platte 35 eines Wärmeübertragers, bei der sich ein Wellenprofil 34 bis zum umgekröpften Plattenrand 36 erstreckt, wobei ein verbleibender Kanal 37, der unter Umständen eine unerwünschte Bypassströmung zuläßt, einen sehr geringen Querschnitt aufweist, so daß die Bypassströmung reduzierbar ist. Insbesondere bei einem gelöteten Wärmeübertrager, das heißt wenn die Platte 35 lotplattiert ist, bilden sich zwischen den äußersten Schenkeln 38 des Wellenprofils 34 und dem umgekröpften Plattenrand 36 Lotmenisken aus, die den Randkanal 37 verkleinern oder besonders vorteilhaft verschließen.
  • Um eine Verkleinerung des durch den Wärmeübertrager verursachten Druckverlustes zu bewirken, sind die Durchbrüche 38 der Platte und damit die Querschnitte der dadurch gebildeten Sammelkanäle ovalförmig verbreitert.
  • Fig. 11a zeigt einen Querschnitt einer Platte 41 eines Wärmeübertragers 42, der aus mehreren Platten 41 aufgebaut ist, wie in Fig. 11b abgebildet. Die Platten 41 weisen als Zuflussleitungen und Abflussleitungen je ein paar Bohrungen 43 senkrecht zur Plattenebene auf, wobei die Bohrungen 43 gegenüber der Grundebene der jeweiligen Platte 41 derart erhaben sind, dass eine fluidische Verbindung von einer der beiden Bohrungen alternierend nur zu jedem zweiten Plattenzwischenraum 44 besteht. Wie in Fig. 11b zu sehen ist, liegt jeweils eine erhabene Bohrung 43 an einem nicht erhabenen Bereich einer benachbarten Platte 41 an, so dass die Höhe des erhabenen Bereiches beispielsweise so groß ist wie die Höhe eines Wellenprofils der Platte 41.
  • Fig. 12a zeigt einen Querschnitt einer Platte 51 eines Wärmeübertragers 52, der aus mehreren Platten 51 aufgebaut ist, wie in Fig. 12b abgebildet. Die Platten 51 weisen als Zuflussleitungen und Abflussleitungen je ein paar Bohrungen 53 senkrecht zur Plattenebene auf, wobei die Bohrungen 53 gegenüber der Grundebene der jeweiligen Platte 51 derart erhaben sind, dass eine fluidische Verbindung von einer der beiden Bohrungen alternierend nur zu jedem zweiten Plattenzwischenraum 54 besteht. Wie in Fig. 12b zu sehen ist, liegt jeweils eine erhabene Bohrung 53 an einer erhabenen Bohrung 53 einer benachbarten Platte 51 an, so dass die Höhe des erhabenen Bereiches beispielsweise nur halb so groß ist wie die Höhe eines Wellenprofils der Platte 41. Durch diese Bauweise reduziert sich unter Umständen eine Materialausdünnung beim Herstellen der erhabenen Bereiche, so dass eine Zugfestigkeit, d.h. Innendruckfestigkeit des Wärmeübertragers 52 zumindest in diesen Bereichen günstig beeinflusst wird.

Claims (28)

  1. Wärmeübertrager, insbesondere Ölkühler, für Kraftfahrzeuge, wobei der Wärmeübertrager aus miteinander verbundenen Platten gebildet wird, wobei zwischen den Platten nach außen hin abgeschlossene. Hohlräume ausgebildet sind, welche über jeweils mindestens eine Zuflussleitung und Abflussleitung alternierend von einem ersten und einem zweiten Medium durchströmt werden, wobei die Platten derart profiliert sind, dass zwischen den jeweiligen Profilen der Platten Berührungsstellen auftreten, im Bereich derer die Platten miteinander befestigt sind, dadurch gekennzeichnet, dass die Profile der Platten (10) und ihre Berührstellen derart ausgebildet sind, dass die sich zwischen den Platten (10) ausbildende Strömung von erstem und zweitem Medium von der entsprechenden Zuflussleitung zur entsprechenden Abflussleitung nicht geradlinig verläuft, wobei die Platten (10) ein sich wiederholendes Wellenprofil (12) aufweisen, welches sich im Wesentlichen quer zur Hauptdurchflussrichtung (H) erstreckt und zickzackförmig um die Erstreckungsrichtung herum gewellt ist.
  2. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Wellenprofil (12) zwischen Krümmungsbereichen geradlinig verlaufende Schenkel (14) aufweist, wobei das Wellenprofil (12) durch die Schenkellänge (15) der Schenkel (14), den zwischen den Schenkeln (14) gegebenen Schenkelwinkel (13) und die Profiltiefe des Wellenprofils charakterisiert ist.
  3. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Gestalt des Wellenprofils durch den Verlauf des Profils im Bereich der Schenkel und der Krümmungsbereiche charakterisiert ist, wobei einander benachbarte Profile sich in einer vorgegebenen Teilung wiederholen.
  4. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Wellenprofil auf der Außenseite eines Wellenrückens einen Flachbereich aufweist.
  5. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Flachbereich im Querschnitt des Wellenprofils zwischen 0,1 mm und 0,4 mm liegt.
  6. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Schenkelwinkel (13) vorzugsweise zwischen 45°und 135°, vorzugsweise um 90° beträgt.
  7. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Profiltiefe zwischen 0,3 mm und 2 mm, bei flüssigen Medien vorzugsweise zwischen 0,5 mm und 1 mm liegt und insbesondere zwischen 0,7 mm und 0,8 mm beträgt und bei gasförmigen Medien vorzugsweise im Bereich zwischen 0,6 mm und 2 mm liegt und insbesondere um 1,5 mm beträgt.
  8. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Schenkellänge (15) im Bereich von 8 mm bis 15 mm und insbesondere im Bereich von 9 mm bis 12 mm liegt.
  9. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Wellenprofil (12) als Einprägung in der Platte (10) ausgebildet ist, wobei die Platten (10) vorzugsweise aus einem metallischen Werkstoff, insbesondere Aluminium bestehen, wobei die Platten vorzugsweise auf wenigstens einer Seite mit Löthüfsmaterial beschichtet sind.
  10. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Platten (10) als Zuflussleitungen und Abflussleitungen je ein paar Bohrungen (18) senkrecht zur Plattenebene aufweisen, wobei die Bohrungen (18) gegenüber der Grundebene derart erhaben sind, dass eine fluidische Verbindung von einer der beiden Bohrungen alternierend nur zu jedem zweiten Plattenzwischenraum (20) besteht.
  11. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erhabene Bereich wenigstens eines Teils der Bohrungen von einem vorzugsweise ringförmig herumführenden, wellenprofilfreien Bereich umgeben ist.
  12. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass im Bereich der den Zuflussleitungen zugeordneten Bohrungen (18) Verteilerkanäle (23) vorgesehen sind, welche vorzugsweise durch ein Wellenprofil (12) mit einem Schenkelwinkel, der gegenüber dem Schenkelwinkel des Wellenprofils erhöht ist, gegeben sind.
  13. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die den Zuflussleitungen zugeordneten Bohrungen oval, elliptisch oder rechteckig sind.
  14. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass alternierend zwei voneinander hinsichtlich des Wellenprofils (12) verschiedene Platten (10) Verwendung finden, wobei die Wellenprofile (12) sich wenigstens hinsichtlich eines der Merkmale aus Schenkellänge (15), Schenkelwinkel (13) und Profiltiefe unterscheiden.
  15. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Wellenprofil (12) der einen Seite der Platte (10) sich von dem Wellenprofil (12) der anderen Seite der Platte (10) wenigstens hinsichtlich eines der Merkmale aus Schenkellänge (15), Schenkelwinkel (13) und Profiltiefe unterscheidet.
  16. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Wellenprofil benachbarter Platten zueinander identisch ist.
  17. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Wärmeübertrager aus einem Stapel (21) von Platten (10) gebildet wird, wobei die Platten (10) einander entsprechen und alternierend um 180° zueinander verdreht angeordnet sind.
  18. Wärmeübertrager insbesondere nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Platten (10) einen abgekröpften Rand (17) aufweisen, wobei die Ränder (17) benachbarter Platten (10) aneinander anliegen und vorzugsweise durch Hartlöten miteinander verbunden sind.
  19. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass sich der abgekröpfte Rand (17) mehrerer, insbesondere von bis zu fünf Platten (10) überlappt.
  20. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Wellenprofil (12) sich in den Rand (17) hinein, insbesondere über den Rand (17) hinweg erstreckt.
  21. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen dem Ende des Wellenprofils und dem Rand ein profilfreier Biegeabschnitt ausgebildet ist, dessen Breite geringer als 2 mm ist und vorzugsweise derart bestimmt ist, dass beim Hartlöten der Platten der Biegebereich in Wellenkammabschnitten mit Lot derart zugesetzt wird, dass ein Durchfluss von Medium im Biegeabschnitt reduziert oder im Wesentlichen verhindert wird.
  22. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens einer Stirnseite des Wärmeübertragers eine insbesondere zumindest außenseitig profillose Abschlussplatte (24) zugeordnet ist, welche vorzugsweise Anschlussstellen (25) für ein erstes und zweites Medium aufweisen, welche in Anschlussleitungen münden und fluchtend zu den Bohrungen (18) angeordnet sind.
  23. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der hydraulische Durchmesser (hD) in Haupterstreckungsrichtung (D) eine Schwankung von höchstens 25%, insbesondere, höchstens 15%, insbesondere höchstens 10%, um einen Mittelwert aufweist.
  24. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der hydraulische Durchmesser (hD) einen Mittelwert zwischen 1 mm und 4 mm aufweist, wobei er bei flüssigen Medien vorzugsweise 1 mm und 2 mm und vorzugsweise um 1,4 mm liegt und wobei er bei gasförmigen Medien vorzugsweise um 3 mm liegt.
  25. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Berührungsstellen zwischen zwei zueinander benachbarten Platten gleichmäßig über die Plattenfläche verteilt sind.
  26. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Berührungsstellen zwischen zwei zueinander benachbarten Platten eine Flächendichte von 4 bis 7 pro cm2, insbesondere von 5 bis 6 pro cm2 aufweisen.
  27. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in Plattenzwischenräumen ein Phasenübergang eines Mediums erfolgt.
  28. Wärmeübertrager nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Einbaulage des Wärmeübertragers so bestimmt ist, dass die Querverteilung des Mediums in den Plattenzwischenräumen durch Gravitation unterstützt wird.
EP04763632.9A 2003-08-01 2004-07-29 Wärmeübertrager sowie verfahren zu dessen herstellung Active EP1654508B2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10336033 2003-08-01
PCT/EP2004/008542 WO2005012820A1 (de) 2003-08-01 2004-07-29 Wärmeübertrager sowie verfahren zu dessen herstellung

Publications (3)

Publication Number Publication Date
EP1654508A1 EP1654508A1 (de) 2006-05-10
EP1654508B1 true EP1654508B1 (de) 2016-10-19
EP1654508B2 EP1654508B2 (de) 2020-03-11

Family

ID=34111969

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04763632.9A Active EP1654508B2 (de) 2003-08-01 2004-07-29 Wärmeübertrager sowie verfahren zu dessen herstellung

Country Status (7)

Country Link
US (1) US8061416B2 (de)
EP (1) EP1654508B2 (de)
JP (1) JP2007500836A (de)
CN (1) CN1833153B (de)
BR (1) BRPI0413194B1 (de)
DE (1) DE102004036951A1 (de)
WO (1) WO2005012820A1 (de)

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE528879C2 (sv) * 2005-07-04 2007-03-06 Alfa Laval Corp Ab Värmeväxlarplatta, par av två värmeväxlarplattor samt plattpaket för plattvärmeväxlare
DE102005034305A1 (de) 2005-07-22 2007-01-25 Behr Gmbh & Co. Kg Plattenelement für einen Plattenkühler
DE102005054728A1 (de) * 2005-11-17 2007-05-24 Behr Gmbh & Co. Kg Stapelscheibenwärmeübertrager, insbesondere Ölkühler für Kraftfahrzeuge
SE531472C2 (sv) * 2005-12-22 2009-04-14 Alfa Laval Corp Ab Värmeväxlare med värmeöverföringsplatta med jämn lastfördelning på kontaktpunkter vid portområden
JP4740064B2 (ja) * 2006-08-15 2011-08-03 株式会社マーレ フィルターシステムズ オイルクーラ
EP2107328B1 (de) 2008-04-02 2012-07-11 Behr GmbH & Co. KG Verdampfer
DE102008017113A1 (de) 2008-04-02 2009-10-08 Behr Gmbh & Co. Kg Verdampfer
EP2257759B1 (de) * 2008-04-04 2014-12-17 Alfa Laval Corporate AB Plattenwärmetauscher
SI2257758T1 (sl) * 2008-04-04 2014-10-30 Alfa Laval Corporate Ab Ploĺ äśati toplotni izmenjevalec
CA2719328C (en) * 2008-04-04 2013-06-11 Alfa Laval Corporate Ab A plate heat exchanger
FR2931542A1 (fr) 2008-05-22 2009-11-27 Valeo Systemes Thermiques Echangeur de chaleur a plaques, notamment pour vehicules automobiles
SE532524C2 (sv) * 2008-06-13 2010-02-16 Alfa Laval Corp Ab Värmeväxlarplatta samt värmeväxlarmontage innefattandes fyra plattor
US8997846B2 (en) * 2008-10-20 2015-04-07 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Heat dissipation system with boundary layer disruption
ES2525010T3 (es) * 2009-02-04 2014-12-17 Alfa Laval Corporate Ab Un intercambiador de calor de placas
AT508058B1 (de) 2009-03-05 2011-01-15 Mahle Int Gmbh Plattenwärmetauscher
DE102009041524A1 (de) * 2009-09-15 2011-03-24 Mahle International Gmbh Plattenwärmetauscher
JP2011106764A (ja) * 2009-11-19 2011-06-02 Mitsubishi Electric Corp プレート式熱交換器及びヒートポンプ装置
FR2954480B1 (fr) * 2009-12-17 2012-12-07 Valeo Systemes Thermiques Plaque d'echangeur de chaleur, en particulier pour un condenseur de climatisation
JP5733900B2 (ja) * 2010-02-26 2015-06-10 三菱電機株式会社 プレート式熱交換器の製造方法及びプレート式熱交換器
DE102010040321A1 (de) 2010-09-07 2012-04-19 Behr Gmbh & Co. Kg Stapelscheibe für einen Wärmeübertrager
JP5710232B2 (ja) * 2010-12-09 2015-04-30 株式会社日阪製作所 プレート式熱交換器
CN102288054B (zh) * 2011-06-27 2012-09-19 江苏宝得换热设备有限公司 等流量高效板式换热器
JP5538344B2 (ja) * 2011-11-09 2014-07-02 三菱電機株式会社 プレート式熱交換器及びヒートポンプ装置
EP2728293B1 (de) * 2012-10-30 2016-11-23 Alfa Laval Corporate AB Wärmeaustauscherplatte und Plattenwärmetauscher mit der Wärmeaustauscherplatte
US20150034285A1 (en) * 2013-08-01 2015-02-05 Hamilton Sundstrand Corporation High-pressure plate heat exchanger
DE102013220313B4 (de) 2013-10-08 2023-02-09 Mahle International Gmbh Stapelscheiben-Wärmetauscher
DE102013223742A1 (de) * 2013-11-20 2015-05-21 MAHLE Behr GmbH & Co. KG Stapelplattenwärmeübertrager mit einer Vielzahl an Stapelplattenelementen
US10837717B2 (en) * 2013-12-10 2020-11-17 Swep International Ab Heat exchanger with improved flow
DE102014005149B4 (de) * 2014-04-08 2016-01-21 Modine Manufacturing Company Gelöteter Wärmetauscher
WO2016011550A1 (en) * 2014-07-21 2016-01-28 Dana Canada Corporation Heat exchanger with flow obstructions to reduce fluid dead zones
DE102015209858A1 (de) 2015-05-28 2016-12-01 Volkswagen Aktiengesellschaft Materialreduzierte Konstruktion eines Plattenwärmetauschers, insbesondere eines Ölkühlers
CN105115343A (zh) * 2015-09-14 2015-12-02 江苏远卓设备制造有限公司 一种换热板以及应用该换热板的换热器
CN106609906A (zh) * 2015-10-24 2017-05-03 河北斯玛特深冷技术有限公司 新型lng车载气瓶
CN105737646A (zh) * 2016-03-11 2016-07-06 江苏远卓设备制造有限公司 一种板式换热器及其制作工艺
SE542057C2 (en) 2016-08-25 2020-02-18 Alfa Laval Corp Ab A heat exchanger plate, and a plate heat exchanger
EP3372941B1 (de) 2017-03-10 2020-11-18 Alfa Laval Corporate AB Plattenpaket, platte und wärmetauschervorrichtung
KR102588588B1 (ko) 2017-07-31 2023-10-12 코닝 인코포레이티드 개선된 처리 강화 유동 반응기
PL73432Y1 (pl) * 2019-01-04 2024-04-22 Secespol Spolka Z Ograniczona Odpowiedzialnoscia Płyta grzewcza z powierzchnią wymiany ciepła płytowego wymiennika ciepła
CN110514039A (zh) * 2019-01-18 2019-11-29 四川赛特制冷设备有限公司 一种新能源用热交换器
TR201904697A2 (tr) * 2019-03-28 2019-06-21 Bosch Termoteknik Isitma ve Klima Sanayi Ticaret Anonim Sirketi Isi deği̇şti̇ri̇ci̇ plakasi
SE544426C2 (en) * 2019-04-03 2022-05-24 Alfa Laval Corp Ab A heat exchanger plate, and a plate heat exchanger
DE102019210238A1 (de) * 2019-07-10 2021-01-14 Mahle International Gmbh Stapelscheibenwärmetauscher
CN112304131A (zh) * 2019-08-02 2021-02-02 浙江三花智能控制股份有限公司 板式换热器
EP4166880A1 (de) * 2021-10-12 2023-04-19 Valeo Autosystemy SP. Z.O.O. Platte für einen wärmetauscher
DE102022103720A1 (de) 2022-02-17 2023-08-17 Mahle International Gmbh Wärmeübertrager mit optimiertem Druckverlust
DE102022124354A1 (de) 2022-09-22 2024-03-28 Mahle International Gmbh Wärmeübertrager bestehend aus zwei Arten von Platten
DE102022126383A1 (de) 2022-10-11 2024-04-11 Mahle International Gmbh Wärmeübertrager bestehend aus zwei Arten von Platten
CN116336841A (zh) * 2023-03-31 2023-06-27 佛山市顺德区鑫雷节能设备有限公司 一种板式换热器及其制造方法

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB699037A (en) 1950-04-17 1953-10-28 Charles Zeuthen Improvements in or relating to plate heat exchangers
US2858112A (en) 1955-05-25 1958-10-28 Gen Motors Corp Heat exchanger
DE1282037B (de) 1959-05-21 1968-11-07 Julius & August Erbsloeh Komma Blaehkanal-Waermetauscher
US3731737A (en) 1968-03-12 1973-05-08 Alfa Laval Ab Plate heat exchanger
DE2944799A1 (de) 1978-11-08 1980-05-22 Reheat Ab Verfahren zum praegen von waermetauscherplatten fuer plattenwaermetauscher und vorrichtung zur durchfuehrung des verfahrens
GB2107845A (en) 1981-10-16 1983-05-05 Schmidt W Gmbh & Co Plate heat exchanger
DE3239004A1 (de) 1981-10-21 1983-05-05 ReHeat AB, Täby Packungsnut in plattenelement fuer plattenwaermetauscher
WO1986005866A1 (en) 1985-04-01 1986-10-09 Torell Ab Method for achieving a fixing of an in- or outlet socket
WO1988001722A1 (en) 1986-08-29 1988-03-10 Gerhard Fischer Plate-type heat exchanger
US4781248A (en) 1986-07-03 1988-11-01 W. Schmidt Gmbh & Co., K.G. Plate heat exchanger
DE4100651A1 (de) 1991-01-11 1992-07-16 Gea Ahlborn Gmbh Waermeaustauscher
US5193612A (en) 1990-11-29 1993-03-16 W. Schmidt-Bretten Gmbh Multiple-plate heat exchanger for pressurized fluids
US5462113A (en) 1994-06-20 1995-10-31 Flatplate, Inc. Three-circuit stacked plate heat exchanger
US5531269A (en) 1992-06-12 1996-07-02 Dahlgren; Arthur Plate heat exchanger for liquids with different flows
DE19540271C1 (de) 1995-10-28 1996-11-07 Gea Ecoflex Gmbh Plattenwärmetauscher
US5988269A (en) 1995-10-23 1999-11-23 Swep International Ab Plate heat exchanger
EP1070928A1 (de) 1998-02-27 2001-01-24 Daikin Industries, Ltd. Plattenwärmetauscher
DE19948222A1 (de) 1999-10-07 2001-04-19 Xcellsis Gmbh Plattenwärmetauscher
DE19959780A1 (de) 1999-04-12 2001-06-13 Patente Rehberg Lauer Gbr Plattenwärmeübertrager
FR2821926A1 (fr) 2001-03-09 2002-09-13 Ciat Sa Echangeur de chaleur a plaques, plaque appartenant a un tel echangeur et utilisation d'un tel echangeur

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3661203A (en) * 1969-11-21 1972-05-09 Parkson Corp Plates for directing the flow of fluids
US3862661A (en) * 1970-01-16 1975-01-28 Leonid Maximovich Kovalenko Corrugated plate for heat exchanger and heat exchanger with said corrugated plate
US3817324A (en) * 1972-10-24 1974-06-18 Alfa Laval Ab Heat exchanging plate
GB1468514A (en) * 1974-06-07 1977-03-30 Apv Co Ltd Plate heat exchangers
SE412284B (sv) * 1978-07-10 1980-02-25 Alfa Laval Ab Vermevexlare innefattande ett flertal i ett stativ inspenda, i huvudsak rektangulera plattor
SE415928B (sv) * 1979-01-17 1980-11-10 Alfa Laval Ab Plattvermevexlare
JPS5630634A (en) 1979-08-22 1981-03-27 Mitsubishi Heavy Ind Ltd Development device for automatic penetrant flaw detection on inside surface of tube
JPS5923986Y2 (ja) * 1981-03-04 1984-07-16 株式会社日阪製作所 プレ−ト式熱交換器
SE446562B (sv) * 1982-03-04 1986-09-22 Malte Skoog Plattvermevexlare med turbulensalstrande asar innefattande ett forsta slag av plattor der asarna bildar viss vinkel med plattans langsida och ett andra slag med en viss annan vinkel
SE8306795D0 (sv) 1983-12-08 1983-12-08 Alfa Laval Thermal Ab Vermevexlarplatta
JPH0449776U (de) 1990-08-30 1992-04-27
SE505225C2 (sv) * 1993-02-19 1997-07-21 Alfa Laval Thermal Ab Plattvärmeväxlare och platta härför
FR2705445B1 (fr) * 1993-05-18 1995-07-07 Vicarb Sa Echangeur de chaleur à plaques.
JPH0829088A (ja) * 1994-07-11 1996-02-02 Nisshin Steel Co Ltd プレス成形した金属板を積層した多孔体
JP3654669B2 (ja) 1994-09-28 2005-06-02 株式会社日阪製作所 プレート式熱交換器
JPH08159685A (ja) 1994-12-08 1996-06-21 Toyo Radiator Co Ltd 積層型熱交換器コア
JP3670725B2 (ja) 1995-09-06 2005-07-13 株式会社日阪製作所 プレート式熱交換器
JP3650657B2 (ja) * 1995-09-26 2005-05-25 株式会社日阪製作所 プレート式熱交換器
SE9601438D0 (sv) * 1996-04-16 1996-04-16 Tetra Laval Holdings & Finance Plattvärmeväxlare
SE521377C2 (sv) * 1998-09-01 2003-10-28 Compact Plate Ab Plattvärmeväxlare av korsströmstyp
JP2000266480A (ja) 1999-03-12 2000-09-29 Daikin Ind Ltd 熱交換器及び換気装置
JP3139681B2 (ja) * 1999-05-31 2001-03-05 春男 上原 凝縮器
FR2795167B1 (fr) * 1999-06-21 2001-09-14 Valeo Thermique Moteur Sa Echangeur de chaleur a plaques, notamment pour refroidir une huile d'un vehicule automobile
FR2795165B1 (fr) * 1999-06-21 2001-09-07 Valeo Thermique Moteur Sa Echangeur de chaleur a plaques, en particulier refroidisseur d'huile pour vehicule automobile
SE516178C2 (sv) * 2000-03-07 2001-11-26 Alfa Laval Ab Värmeöverföringsplatta, plattpaket, plattvärmväxlare samt användning av platta respektive plattpaket för framställning av plattvärmeväxlare
DE10035939A1 (de) * 2000-07-21 2002-02-07 Bosch Gmbh Robert Vorrichtung zur Wärmeübertragung
JP2002107084A (ja) 2000-09-29 2002-04-10 Hisaka Works Ltd プレート式熱交換器
JP2003161590A (ja) * 2001-11-22 2003-06-06 Kawasaki Thermal Engineering Co Ltd 伝熱プレートおよびそれを用いたプレート式熱交換器
JP3731066B2 (ja) 2002-01-23 2006-01-05 株式会社日立製作所 熱交換器

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB699037A (en) 1950-04-17 1953-10-28 Charles Zeuthen Improvements in or relating to plate heat exchangers
US2858112A (en) 1955-05-25 1958-10-28 Gen Motors Corp Heat exchanger
DE1282037B (de) 1959-05-21 1968-11-07 Julius & August Erbsloeh Komma Blaehkanal-Waermetauscher
US3731737A (en) 1968-03-12 1973-05-08 Alfa Laval Ab Plate heat exchanger
DE2944799A1 (de) 1978-11-08 1980-05-22 Reheat Ab Verfahren zum praegen von waermetauscherplatten fuer plattenwaermetauscher und vorrichtung zur durchfuehrung des verfahrens
GB2107845A (en) 1981-10-16 1983-05-05 Schmidt W Gmbh & Co Plate heat exchanger
DE3239004A1 (de) 1981-10-21 1983-05-05 ReHeat AB, Täby Packungsnut in plattenelement fuer plattenwaermetauscher
WO1986005866A1 (en) 1985-04-01 1986-10-09 Torell Ab Method for achieving a fixing of an in- or outlet socket
US4781248A (en) 1986-07-03 1988-11-01 W. Schmidt Gmbh & Co., K.G. Plate heat exchanger
WO1988001722A1 (en) 1986-08-29 1988-03-10 Gerhard Fischer Plate-type heat exchanger
US5193612A (en) 1990-11-29 1993-03-16 W. Schmidt-Bretten Gmbh Multiple-plate heat exchanger for pressurized fluids
DE4100651A1 (de) 1991-01-11 1992-07-16 Gea Ahlborn Gmbh Waermeaustauscher
US5531269A (en) 1992-06-12 1996-07-02 Dahlgren; Arthur Plate heat exchanger for liquids with different flows
US5462113A (en) 1994-06-20 1995-10-31 Flatplate, Inc. Three-circuit stacked plate heat exchanger
US5988269A (en) 1995-10-23 1999-11-23 Swep International Ab Plate heat exchanger
DE19540271C1 (de) 1995-10-28 1996-11-07 Gea Ecoflex Gmbh Plattenwärmetauscher
EP1070928A1 (de) 1998-02-27 2001-01-24 Daikin Industries, Ltd. Plattenwärmetauscher
DE19959780A1 (de) 1999-04-12 2001-06-13 Patente Rehberg Lauer Gbr Plattenwärmeübertrager
DE19948222A1 (de) 1999-10-07 2001-04-19 Xcellsis Gmbh Plattenwärmetauscher
FR2821926A1 (fr) 2001-03-09 2002-09-13 Ciat Sa Echangeur de chaleur a plaques, plaque appartenant a un tel echangeur et utilisation d'un tel echangeur

Also Published As

Publication number Publication date
CN1833153A (zh) 2006-09-13
US20070107890A1 (en) 2007-05-17
JP2007500836A (ja) 2007-01-18
BRPI0413194B1 (pt) 2019-04-30
CN1833153B (zh) 2012-04-04
EP1654508A1 (de) 2006-05-10
US8061416B2 (en) 2011-11-22
DE102004036951A1 (de) 2005-05-25
WO2005012820A1 (de) 2005-02-10
BRPI0413194A (pt) 2006-10-03
EP1654508B2 (de) 2020-03-11

Similar Documents

Publication Publication Date Title
EP1654508B1 (de) Wärmeübertrager sowie verfahren zu dessen herstellung
DE102004003790A1 (de) Wärmetauscher, insbesondere Öl-/Kühlmittel-Kühler
EP1725824B1 (de) Stapelscheiben-wärmetauscher
EP1739378A1 (de) Wärmeaustauschelement und damit hergestellter Wärmeaustauscher
EP1910764B2 (de) Plattenelement für einen plattenkühler
EP0845647B1 (de) Flachrohr-Wärmeübertrager mit tordiertem Flachrohrendabschnitt
DE60310992T2 (de) Hochdruckwärmetauscher
DE10220532A1 (de) Wärmetauscher
EP1842020B1 (de) Stapelscheiben-wärmetauscher
DE102012109346A1 (de) Interner Wärmetauscher mit externen Sammelrohren
DE202011052186U1 (de) Wärmeaustauscher
WO2006029720A1 (de) Wärmetauscher für kraftfahrzeuge
DE102004002252B4 (de) Wärmeübertrager für Fahrzeuge
DE202008013351U1 (de) Wärmeaustauschernetz und damit ausgerüsteter Wärmeaustauscher
DE19719261C2 (de) Zweiflutiger Flachrohrverdampfer einer Kraftfahrzeugklimaanlage
DE202017102436U1 (de) Wärmetauscher mit Mikrokanal-Struktur oder Flügelrohr-Struktur
DE19547928C2 (de) Plattenwärmetauscher
EP0268831B1 (de) Lamelle
DE202004020294U1 (de) Wärmeaustauschelement und damit hergestellter Wärmeaustauscher
EP1557627A1 (de) Strömungskanal
DE202017104743U1 (de) Wärmetauscher mit Mikrokanal-Struktur oder Flügelrohr-Struktur
DE102009056274A1 (de) Wärmetauscher
EP2994712B1 (de) Wärmeübertrager
DE102011008118B4 (de) Wärmetauscher sowie Mehrkammerflachrohr dafür
DE202008016603U1 (de) Wellrippe für Wärmeaustauscher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060301

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: RICHTER, JENS

Inventor name: GESKES, PETER

17Q First examination report despatched

Effective date: 20120105

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAHLE BEHR GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160308

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

INTC Intention to grant announced (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: GESKES, PETER

Inventor name: RICHTER, JENS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTG Intention to grant announced

Effective date: 20160906

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 838713

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004015348

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170120

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170220

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502004015348

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

26 Opposition filed

Opponent name: VALEO SYSTEMES THERMIQUES

Effective date: 20170712

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170119

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170729

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170729

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 838713

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20040729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161019

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20200311

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502004015348

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 20

Ref country code: DE

Payment date: 20230719

Year of fee payment: 20