EP1557627A1 - Strömungskanal - Google Patents
Strömungskanal Download PDFInfo
- Publication number
- EP1557627A1 EP1557627A1 EP04028245A EP04028245A EP1557627A1 EP 1557627 A1 EP1557627 A1 EP 1557627A1 EP 04028245 A EP04028245 A EP 04028245A EP 04028245 A EP04028245 A EP 04028245A EP 1557627 A1 EP1557627 A1 EP 1557627A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- flow
- flow channel
- heat exchanger
- fluid
- heat
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/126—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28B—STEAM OR VAPOUR CONDENSERS
- F28B1/00—Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
- F28B1/06—Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/053—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
- F28D1/0535—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/18—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
- F28F13/185—Heat-exchange surfaces provided with microstructures or with porous coatings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F2215/00—Fins
- F28F2215/10—Secondary fins, e.g. projections or recesses on main fins
Definitions
- the present invention relates to a flow channel, a heat exchanger and an air condenser according to the preambles of independent claims 1, 14 and 17.
- Heat exchangers usually have at least one flow channel through which a first fluid, here referred to as primary fluid, is performed. Heat is mixed in between via the duct wall of the flow channel exchanged the primary fluid and the environment.
- the environment can for example a directly adjacent component or a second fluid, here for better distinction as a secondary fluid referred to as.
- the primary fluid is usually hot water or water vapor and is to avoid mass losses on the primary side, also referred to as steam side the inside, the heat exchanger out.
- the secondary fluid is mostly air that surrounds or flows around the heat exchanger on its outside, the air or secondary side. The wall of the flow channel is then used in addition to the leadership of the primary fluid and the Heat exchange between primary and secondary fluid.
- Heat exchangers with generic flow channels are often in the range of power plants Used to a primary fluid, which has undergone a thermal power process, remaining To withdraw energy. So are heat exchangers in air condensers, for example, for recovery the boiler water from the exhaust steam used by turbines. This condenses the steam, after passing the turbine, in the heat exchanger of the air condenser to water, which again is fed to the boiler. Thus, the circulation of the boiler water is closed.
- the ability of a wall surface to transfer heat is described by the heat transfer coefficient.
- the heat transfer coefficient alpha ( ⁇ ) indicates what amount of heat, measured in energy unit Ws, is transferred in one second between one square meter of the surface of a component and the adjacent air when the temperature difference between the surface of the component and the air is one Kelvin.
- Alpha is not a pure material value (such as the thermal conductivity, density or viscosity), it depends on the material properties of the fluid, the roughness of the wall, the temperature field and the flow conditions near the wall.
- the heat transfer coefficient is on the primary side of a steam condenser with flowing steam at about 3000 W / (m 2 K), while ⁇ on its secondary side to the air out about 50 to 100 times smaller.
- the known channel arrangements for power plant heat exchangers generally have channel walls with smooth surfaces on the inside, to the primary fluid flowing through it as possible to oppose little resistance. So, the energy required to make the primary fluid to be kept in the flowing state, kept low.
- On her the secondary fluid facing Outside such heat exchanger tubes usually have ribs to increase the Heat transfer surface on. These ribs are often a few inches high and just a few millimeters thin strips of aluminum sheet, which on the outside of, also called Base tube designated, heat exchanger channels are soldered.
- the basic pipe then consists of one at least externally coated with an aluminum layer pressure-resistant steel tube.
- the flows of the primary fluid or of the secondary fluid in or around the flow channel can be laminar or turbulent, wherein the respective flow state depending on Among other things, the average flow velocity, the channel cross-section and the kinematic Viscosity of the fluid in question forms.
- One Much of the heat capacity of the passing fluid can therefore not or only inefficiently used become.
- the thickness of this boundary layer is particularly large.
- Turbulators are strong turbulence generating Structures, such as holes, cutouts of the ribs or flags produced with the Turbulences ensure better mixing of individual flow components. hereby can significantly improve the utilization of the heat capacity of the wall that flows past the wall Fluids are achieved. Nevertheless, this leads to the fluidic resistance considerably is increased. It is therefore a much greater effort to drive to the primary or secondary fluid to put in the flowing state or to keep in this state.
- the optimal performance of a heat exchanger depends, among other things, on the heat transfer coefficient and from the flow resistance of the heat exchanger channel. This leads to conflicting Requirements for the flow conditions in the heat exchanger. For one thing, one largely laminar flow with as few deflections in the flow channel desired be to obtain only a low flow resistance. On the other hand, but also a turbulent Flow are desirable because they have a large heat transfer coefficient, so improved Heat exchange, allows.
- Heat exchangers due to their essentially laminar flow or flow around a small Have pressure loss, usually allow only a small heat exchange, so that a Most of the heat energy of the flowing primary or secondary fluid is not or only very slowly is delivered.
- heat exchanger with installed in the pipe fittings or with externally arranged turbulators essentially a good heat exchange, but require a supply of the fluid under high pressure to those through the internals or To balance turbulators resulting pressure loss. In general, it is then necessary to additional Provide means for pressure increase such as compressors, pumps or the like.
- the present invention is therefore based on the object to provide a generic flow channel for a heat exchanger, which allows for low pressure losses a further improved heat exchange between the primary fluid flowing in the channel and the outside of the channel along flowing secondary fluid.
- a flow channel with a channel wall for guiding proposed a flowing primary fluid, wherein between the primary fluid and the channel wall Heat is exchangeable.
- the good heat-conducting channel wall has according to the invention at the Secondary fluid facing outside ribs with an additionally textured surface on.
- the heat exchange between the primary fluid and the channel wall is smoother Inner wall. This leads to low compared to the known flow channels and heat exchangers Pressure losses in the flow of the primary fluid.
- the associated initially relatively low Heat exchange between the primary fluid and secondary fluid is now according to the invention with a through Turbulence in the secondary fluid enhances heat exchange on the outside of the flow channels balanced and even exceeded in a positive way. So it becomes the heat exchange between primary fluid and secondary fluid increased in that the flow of the secondary fluid between the Ribs with turbulence-generating structures specifically mixed more.
- the structures preferably have relatively soft rounded shapes with only little sharp edges on. This results in a laminar flow around the flow channel in the secondary fluid only local and limited microturbulences in the area of the wall surface.
- the global Flow of the secondary fluid thus continues to be laminar, while by the microturbulence a significant reduction in the thickness of the boundary layer on the channel outer wall is achieved.
- This solution has the advantage that even on the secondary side only an extremely small increase in the flow resistance takes place while there the heat transfer coefficient is greatly increased.
- the secondary flow In other words, it is not disturbed so much that large turbulence fields or one entirely Set turbulent flow in the secondary fluid.
- microturbulence-generating surface structures can be wholly or partially be arranged on the flow-around surfaces of the ribs of the flow channel. Also is one Overlay two different surface structures advantageous.
- the structured surface has a macrostructure and a microstructure. This will be First, the microstructure of the plate of the ribs is applied to form the macrostructure and finally the ribs are applied to the base tube.
- microstructure In the microstructure are formations such as round or angular dents or Bumps, either as elevations or depressions on the outside of the flow channel extend.
- this special shaping has the advantage of relatively low flow resistance but nevertheless a good reduction of the boundary layer thickness in the secondary fluid cause.
- the height or depth of the formations is of the undeformed Surface of the fin sheets measured about 0.05 mm to 0.15 mm.
- the macrostructure is preferably a flow direction elongated shape, which consists in cross section of gentle waves or ripples.
- the height or Depth of the waves is measured from the undeformed surface of the ribbed plates about 0.3 mm to 1.0 mm.
- the structured surface may be on the surface of the rib itself, for example be formed by a coating.
- the rib may have an embossment that the forms a textured surface on both sides of the rib.
- the channel wall, the rib or the coating thus has a sufficiently high coefficient of friction to the secondary fluid to the required To achieve microturbulence.
- the structured surface can be achieved that the thickness of the boundary layer through particularly small and limited microturbulences in the flow of secondary fluid in the region of Channel wall is reduced, which allows increased heat transfer.
- the special position and shape of this turbulence are kept so low that - By the pressure drop in the flow of the secondary fluid is not significantly increased.
- the properties and the nature of the structured surface are advantageous for the flow through intended fluid tuned to achieve the best possible effect. So can For example, in the case of a highly viscous fluid, a very fine surface structure may be provided, while a coarse surface structure may be provided with a low viscosity fluid. Farther is also the flow rate of the fluid to be considered, which affects the may have a textured surface.
- the structured surface may be only partially provided on the fluid-facing side be. It is also advantageous if they are doing over the entire channel length and / or over the extends the entire circumference of the flow channel. Advantageously, it is arranged at the locations where it depends on the heat transfer. So the flow channel in an area, which is intended only for the promotion of the fluid, have a smooth surface, whereas in a surface of the invention is provided in a region of the intended heat exchange.
- the structured Surface formations so surveys has. These forms are advantageous in the Channel wall formed and protrude into the flow of the secondary fluid. This results in more advantageous Also increase the surface of the canal wall.
- the size, the number and The arrangement of the formations to each other is chosen so that the influence on the pressure drop is largely negligible in the flow of the secondary fluid.
- the formations effect Turbulence of the fluid flows in the region of the channel wall between the ribs.
- the textured surface also has indentations having.
- the wells as well as with the uplifting in the flow formations achieved an increase in the microturbulence of the secondary fluid flow in the region of the channel wall become. This also results in a further enlargement of the surface on the outside - The channel wall whereby the heat exchange with the secondary fluid is further enhanced.
- a channel wall with external wells very inexpensive to produce.
- the formations and / or depressions uniform Forming patterns.
- the formations and / or depressions can be offset be arranged to each other in the flow direction.
- the shape of the molding and / or depression can be adjusted to achieve optimal heat transfer performance. So the shape formed for example by a ball portion, cone portion, a pyramid or the like be.
- the deviation of the Forming and / or the recess of a center line of the fluid-facing surface of the Channel wall is a few tenths of a millimeter.
- the deviation of the molding and / or recess from the centerline of the fluid facing surface is a few hundredths of a millimeter. An increase in the pressure drop can be further reduced. There may also be different deviations from the median line and forms of formations or depressions combined with each other be.
- the flow channels has a heat-conducting, aligned in the longitudinal direction of the flow channel, Wegströmbare meander structure is arranged, at least partially at its meandering side Turning points with an adjacent cover plate in thermal connection is.
- meander structure here is a uniform as possible wavy and preferably on the By the entire width and length of the flow channel is meant extending metal strip.
- Troughs of the metal strip contact lines at which the band with the base tube of the flow channel soldered or glued.
- the tips of the waves form contact lines with the overlying cover plates.
- the meander structure also be provided with a textured surface, thereby further increasing the heat transfer performance can be achieved.
- the thermal connection can be achieved by soldering, Welding, gluing or the like may be formed.
- the invention further provides a heat exchanger with fluid passages through flow channels proposed, which are in thermal operative connection to each other, wherein at least an inventive flow channel is provided.
- the heat transfer performance of the heat exchanger according to the invention can be increased without having to increase its design and / or a higher pressure drop is recorded in the flow of the primary fluid. So can advantageously also in one existing system a heat exchanger according to the invention subsequently with a higher heat transfer capacity be retrofitted without requiring a larger space would be required. In addition, a smaller design of the heat exchanger can be achieved with the same heat output, for example, to gain space in an existing facility.
- the flow channels at least partially a plate-shaped Form channel arrangement.
- the heat exchanger has a plurality of stacked plate-shaped channel arrangements, wherein adjacent plate-shaped channel arrangements alternately through each of a different fluid can be flowed through. So can with the good adaptability by stacking at the same time a high heat transfer performance of one Fluid to a second fluid, which flow through different channel arrangements achieved become.
- the invention further provides an air condenser for condensing water vapor, in particular Turbine steam of a power plant, proposed to be condensed vapor over a steam supply line and distributions can be supplied to the heat exchangers, and wherein lines - Are provided for condensate removal and inert gas, wherein the heat exchanger is an inventive Heat exchanger with the advantages described above. Due to the correspondingly increased Heat transfer capacity, the air condenser therefore have a smaller size and be made cheaper.
- Fig. 1 shows a part of a heat exchanger 1 according to the invention with an inventive Flow channel 2 for guiding a primary fluid.
- the flow channel 2 has a channel wall 3 with a broad, flat base profile, which consists of two parallel spaced flat plates. 4 and 5, which are laterally connected to semicircular tube profiles 6 and 7.
- the canal wall 3 of the flow channel 2 here consists of a pressure-resistant, corrosion-resistant and outside with aluminum coated steel.
- the thermal connection is as an adhesive bond made with a high temperature resistant and thermally conductive adhesive.
- the Connection can also be designed as a soldered or welded connection.
- the ribbed ribbons 8, 9 exist here as well as the cover plates 11, 12 made of aluminum, with other good heat-conducting Materials can be used.
- the flow channel 2 flows in the cross flow of primary fluid and secondary fluid.
- the flow channel 2 is thus traversed in the interior of water vapor as the primary fluid, while the Outside flow passages 14 can be traversed by air as the secondary fluid.
- the Flow channel 2 with its flowed through by the primary fluid channel wall 3 and the flow paths 14th are arranged so separated from each other that the two fluids can not mix.
- the channel wall 3 of the flow channel 2 shown in FIG. 2 has a rib on its outer side 8 with a textured surface 17 on.
- the structured surface 17 consists here of a greatly enlarged represented microstructure with in its base square and triangular shaped Structures, wherein in the flow direction of the primary fluid alternately formations 18 and depressions 19 form a uniform pattern.
- the formations 18 and depressions 19 spaced and offset from each other.
- the structured surfaces 17 with microstructure shown greatly enlarged in FIG. 3 extend only on the lateral edges of the rib sheets 8 or 9.
- the one another with a large distance exhibit.
- the height of the bumps 18 is from the surface of the fin plate 8 measured about 0.07 mm.
- this can also be made from a macrostructure with roundish Forms 18 and recesses 19 in the ribbed plate 8 exist. These forms can through spherical embossing tools are pressed into the fin sheet 8 before it is compressed into a wave form and is fixed on the channel wall 3. The height or depth of the formations 18 in the ribbed sheet 8 is measured from the surface of the undeformed sheet from about 0.3 mm.
- FIG. 5 the designated A section of the cross-sectional view of FIG. 4 is strong shown enlarged.
- the rib is a microstructure 21 of pyramidal knobs on the undulating macrostructure 22 arranged. It is therefore an overlapping arrangement of micro and macrostructure, but also an embodiment in which the microstructure next to the macrostructure is arranged, is advantageous.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Geometry (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
- Fig. 1
- eine perspektivische Ansicht eines Teils eines erfindungsgemäßen Wärmetauschers;
- Fig. 2
- eine erste Ausführungsform einer erfindungsgemäßen Rippe mit einer strukturierten Oberfläche mit Mikrostruktur;
- Fig. 3
- eine zweite Ausführungsform einer erfindungsgemäßen Rippe mit einer strukturierten Oberfläche mit Mikrostruktur;
- Fig. 4
- den in Fig. 2 angedeuteten Schnitt IV-IV einer dritten Ausführungsform einer erfindungsgemäßen Rippe mit einer strukturierten Oberfläche mit Makrostruktur; und
- Fig. 5
- den vergrößerten Ausschnitt der in Fig. 4 angedeuteten Schnittdarstellung, der eine vierte Ausführungsform der erfindungsgemäß strukturierten Oberfläche mit Makro- und Mikrostruktur zeigt.
Claims (18)
- Strömungskanal (2) zum Führen eines strömenden Primärfluids mit einer wärmeleitenden Kanalwand (3) mit außenliegenden Rippen (8, 9), deren Außenseite von einem Sekundärfluid zumindest teilweises umströmbar ist,
dadurch gekennzeichnet, dass die Rippen (8, 9) zumindest teilweise eine strukturierte Oberfläche (17) aufweisen. - Strömungskanal gemäß Anspruch 1,
dadurch gekennzeichnet, dass die Rippen (8, 9) eine vollständig strukturierte Oberfläche (17) aufweisen. - Strömungskanal gemäß Anspruch 1 oder 2,
dadurch gekennzeichnet, dass die strukturierte Oberfläche (17) Ausformungen (18) aufweist. - Strömungskanal gemäß einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die strukturierte Oberfläche (17) Vertiefungen (19) aufweist. - Strömungskanal gemäß einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die strukturierte Oberfläche (17) an einer Strömungsrichtung des Sekundärfluids so ausgerichtet ist, dass in der Strömungsrichtung abwechselnd Ausformungen (18) und Vertiefungen (19) angeordnet sind. - Strömungskanal gemäß einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Ausformungen (18) und/oder Vertiefungen (19) ein gleichmäßiges Muster bilden. - Strömungskanal gemäß einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die strukturierte Oberfläche (17) eine Mikrostruktur (21) und/oder eine Makrostruktur (22) aufweist. - Strömungskanal gemäß einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Größe der Ausformung (18) und/oder der Vertiefung (19) der Makrostruktur (22) in Richtung der Strömung des Sekundärfluids wenige Zehntel Millimeter, insbesondere 0,30 mm bis 1,00 mm beträgt. - Strömungskanal gemäß einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass die Größe der Ausformung (18) und/oder der Vertiefung (19) der Mikrostruktur (21) in Richtung der Strömung des Sekundärfluids wenige Hundertstel Millimeter, insbesondere 0,05 mm bis 0,15 mm, beträgt. - Strömungskanal gemäß einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass mehrere Rippen durch ein gewelltes Rippenband (8, 9) gebildet werden. - Strömungskanal gemäß einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass sich das gewellte Rippenband (8, 9) in Längsrichtung des Strömungskanals (2) erstreckt. - Strömungskanal gemäß einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass das gewellte Rippenband (8, 9) an seiner der Kanalwand (3) abgewandten Seite mit einer Platte (11, 12) abgedeckt ist und eine vom Sekundärfluid durchströmbare Mäanderstruktur (15,16) bildet. - Strömungskanal gemäß einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass das gewellte Rippenband (8, 9) an seinen Umkehrpunkten (10, 13) mit der Kanalwand (3) und der Platte (11,12) wärmeleitend verlötet und/oder verklebt ist. - Wärmetauscher (1) mit wenigstens einem Strömungskanal (2) gemäß einem der Ansprüche 1 bis 13.
- Wärmetauscher gemäß Anspruch 14,
dadurch gekennzeichnet, dass er einen Strömungskanal (2) mit durchströmbarer Mäanderstruktur (15, 16) mit außenliegenden Abdeckplatten (11,12) aufweist, die eine stapelbare Kanalanordnung bilden. - Wärmetauscher gemäß einem der Ansprüche 14 oder 15,
dadurch gekennzeichnet, dass er mehrere gestapelte plattenförmige Kanalanordnungen aufweist, wobei benachbarte plattenförmige Kanalanordnungen wechselnd jeweils von unterschiedlichen Fluiden durchströmbar sind. - Luftkondensator zur Kondensation von Wasserdampf, insbesondere Turbinenabdampf eines Kraftwerks, wobei zu kondensierender Dampf über eine Dampfzufuhrleitung und Verteilungen Wärmetauschern (1) zuführbar ist, und wobei Leitungen zur Kondensatabfuhr und Inertgasableitung vorgesehen sind,
dadurch gekennzeichnet, dass wenigstens ein Wärmetauscher (1) ein Wärmetauscher gemäß einem der vorhergehenden Ansprüche 14 bis 16 ist. - Luftkondensator gemäß Anspruch 17,
dadurch gekennzeichnet, dass der Luftkondensator ein Naturzug-Kondensator ist.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP04028245A EP1557627A1 (de) | 2003-12-01 | 2004-11-29 | Strömungskanal |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP03027584A EP1538415A1 (de) | 2003-12-01 | 2003-12-01 | Strömungskanal |
EP03027584 | 2003-12-01 | ||
EP04028245A EP1557627A1 (de) | 2003-12-01 | 2004-11-29 | Strömungskanal |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1557627A1 true EP1557627A1 (de) | 2005-07-27 |
Family
ID=34635338
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04028245A Withdrawn EP1557627A1 (de) | 2003-12-01 | 2004-11-29 | Strömungskanal |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP1557627A1 (de) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006047211A1 (en) * | 2004-10-21 | 2006-05-04 | Gea Power Cooling Systems, Inc. | Fin tube assembly for air-cooled condensing system and method of making same |
EP1939574A1 (de) * | 2006-12-27 | 2008-07-02 | LG Electronics Inc. | Belüftungsvorrichtung, Wärmetauschvorrichtung und Wärmetauschelement sowie Rippe dafür |
EP2053334A1 (de) | 2007-10-26 | 2009-04-29 | General Electric Company | System für erhöhte Wärmeübertragung und Verfahren zur Herstellung einer Wärmeübertragungsvorrichtung |
DE102008032431A1 (de) * | 2008-07-10 | 2010-01-14 | Behr Gmbh & Co. Kg | Kondensator, Verfahren zum Herstellen eines Kondensators sowie Verfahren zum Vorbereiten eines Betriebs eines Kondensators |
DE102010049637A1 (de) * | 2010-10-28 | 2012-05-03 | Benteler Automobiltechnik Gmbh | Wärmetauscher mit Wärmetauscherrohr |
US8356658B2 (en) | 2006-07-27 | 2013-01-22 | General Electric Company | Heat transfer enhancing system and method for fabricating heat transfer device |
DE102011120255A1 (de) * | 2011-12-02 | 2013-06-06 | Wickeder Westfalenstahl Gmbh | Wärmetauscher |
WO2013153157A1 (de) * | 2012-04-11 | 2013-10-17 | Behr Gmbh & Co. Kg | Wellrippe und verfahren zu deren herstellung |
EP3394407A1 (de) * | 2015-12-25 | 2018-10-31 | Kale Oto Radyator Sanayi Ve Ticaret Anonim Sirketi | Turbulator mit dreieckigen schaufeln zur steigerung der leistung von motorladeluftkühlern |
FR3075341A1 (fr) * | 2017-12-19 | 2019-06-21 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Echangeur de chaleur avec elements intercalaires a texturation de surface |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1952840U (de) * | 1963-03-30 | 1967-01-05 | Siemens Ag | Waermetauscher, insbesondere fuer luftkondensationsanlagen von dampfkraftmaschinen. |
FR1479551A (fr) * | 1966-03-25 | 1967-05-05 | Const Mecaniques Et Aeronautiq | Elément échangeur, dispositif pour sa fabrication en continu et échangeur en résultant |
US5377746A (en) * | 1993-04-26 | 1995-01-03 | Fintube Limited Partnership | Texturized fin |
EP1202018A2 (de) * | 2000-10-27 | 2002-05-02 | Alcoa Inc. | Mikrotexturierte Wärmetauschoberfläche |
CA2330084A1 (en) * | 2001-01-03 | 2002-07-03 | Midwest Research Institute | Heat exchanger with transpired, highly porous fins |
-
2004
- 2004-11-29 EP EP04028245A patent/EP1557627A1/de not_active Withdrawn
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1952840U (de) * | 1963-03-30 | 1967-01-05 | Siemens Ag | Waermetauscher, insbesondere fuer luftkondensationsanlagen von dampfkraftmaschinen. |
FR1479551A (fr) * | 1966-03-25 | 1967-05-05 | Const Mecaniques Et Aeronautiq | Elément échangeur, dispositif pour sa fabrication en continu et échangeur en résultant |
US5377746A (en) * | 1993-04-26 | 1995-01-03 | Fintube Limited Partnership | Texturized fin |
EP1202018A2 (de) * | 2000-10-27 | 2002-05-02 | Alcoa Inc. | Mikrotexturierte Wärmetauschoberfläche |
CA2330084A1 (en) * | 2001-01-03 | 2002-07-03 | Midwest Research Institute | Heat exchanger with transpired, highly porous fins |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7243712B2 (en) | 2004-10-21 | 2007-07-17 | Fay H Peter | Fin tube assembly for air-cooled condensing system and method of making same |
WO2006047211A1 (en) * | 2004-10-21 | 2006-05-04 | Gea Power Cooling Systems, Inc. | Fin tube assembly for air-cooled condensing system and method of making same |
US8356658B2 (en) | 2006-07-27 | 2013-01-22 | General Electric Company | Heat transfer enhancing system and method for fabricating heat transfer device |
EP1939574A1 (de) * | 2006-12-27 | 2008-07-02 | LG Electronics Inc. | Belüftungsvorrichtung, Wärmetauschvorrichtung und Wärmetauschelement sowie Rippe dafür |
EP2053334A1 (de) | 2007-10-26 | 2009-04-29 | General Electric Company | System für erhöhte Wärmeübertragung und Verfahren zur Herstellung einer Wärmeübertragungsvorrichtung |
DE102008032431A1 (de) * | 2008-07-10 | 2010-01-14 | Behr Gmbh & Co. Kg | Kondensator, Verfahren zum Herstellen eines Kondensators sowie Verfahren zum Vorbereiten eines Betriebs eines Kondensators |
DE102010049637A1 (de) * | 2010-10-28 | 2012-05-03 | Benteler Automobiltechnik Gmbh | Wärmetauscher mit Wärmetauscherrohr |
DE102011120255A1 (de) * | 2011-12-02 | 2013-06-06 | Wickeder Westfalenstahl Gmbh | Wärmetauscher |
WO2013153157A1 (de) * | 2012-04-11 | 2013-10-17 | Behr Gmbh & Co. Kg | Wellrippe und verfahren zu deren herstellung |
CN104520664A (zh) * | 2012-04-11 | 2015-04-15 | 贝洱两合公司 | 波状散热片及其制造方法 |
US10126073B2 (en) | 2012-04-11 | 2018-11-13 | Mahle International Gmbh | Corrugated fin and method for producing it |
EP3394407A1 (de) * | 2015-12-25 | 2018-10-31 | Kale Oto Radyator Sanayi Ve Ticaret Anonim Sirketi | Turbulator mit dreieckigen schaufeln zur steigerung der leistung von motorladeluftkühlern |
FR3075341A1 (fr) * | 2017-12-19 | 2019-06-21 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Echangeur de chaleur avec elements intercalaires a texturation de surface |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2267393B1 (de) | Strömungskanal für einen wärmeübertrager | |
EP1654508B1 (de) | Wärmeübertrager sowie verfahren zu dessen herstellung | |
DE2442420C3 (de) | Desublimator für die Gewinnung von Sublimationsprodukten, insbesondere von Phthalsäureanhydrid, aus Reaktionsgasen | |
EP1739378A1 (de) | Wärmeaustauschelement und damit hergestellter Wärmeaustauscher | |
EP0839308B1 (de) | Plattenwärmetauscher | |
DE102009015849A1 (de) | Wärmetauscher | |
DE2343007B2 (de) | Plattenwaermetauscher | |
DE102012013755B4 (de) | Wärmetauscherplatteneinheit, Wärmetauscher und Verfahren zur Herstellung eines Wärmetauschers | |
DE10235772A1 (de) | Wärmetauscher | |
EP0201665B1 (de) | Wärmeübertrager mit mehreren parallelen Rohren und auf diesen angebrachten Rippen | |
DE3134465C2 (de) | Röhrenplattenwärmetauscher | |
WO2006032258A1 (de) | Wärmetauscher | |
EP3491323B1 (de) | Wärmetauscher mit mikrokanal-struktur oder flügelrohr-struktur | |
EP1557627A1 (de) | Strömungskanal | |
EP0268831B1 (de) | Lamelle | |
EP3800418B1 (de) | Wärmeübertrager, kälte- oder wärmeanlage mit einem solchen wärmeübertrager | |
WO2010017853A1 (de) | Rohrbündelwärmetauscher mit veränderlich gewähltem rohrabastand | |
DE202008016603U1 (de) | Wellrippe für Wärmeaustauscher | |
EP1538415A1 (de) | Strömungskanal | |
EP3850293A1 (de) | Wärmeübertrager mit oberflächenelementen mit konvexen aussparungen und integrierten materialaufdickungen | |
DE8628175U1 (de) | Lamelle | |
DE10213136A1 (de) | Rippe, Rohr und Wärmtauscher | |
DE102020213172A1 (de) | Stapelscheibe für einen Stapelscheibenwärmeübertrager und zugehöriger Stapelscheibenwärmeübertrager | |
DE20100210U1 (de) | Wärmetauscher mit transpirierenden, hochporösen Rippen | |
CH532236A (de) | Wärmeaustauscher |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL HR LT LV MK YU |
|
17P | Request for examination filed |
Effective date: 20050901 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR |
|
APBK | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNE |
|
APBN | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2E |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SPX COOLING TECHNOLOGIES GMBH |
|
APBR | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3E |
|
APAF | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNE |
|
19A | Proceedings stayed before grant |
Effective date: 20120301 |
|
APBT | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9E |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20140603 |