EP1654508B1 - Echangeur de chaleur et procede de fabrication dudit echangeur - Google Patents

Echangeur de chaleur et procede de fabrication dudit echangeur Download PDF

Info

Publication number
EP1654508B1
EP1654508B1 EP04763632.9A EP04763632A EP1654508B1 EP 1654508 B1 EP1654508 B1 EP 1654508B1 EP 04763632 A EP04763632 A EP 04763632A EP 1654508 B1 EP1654508 B1 EP 1654508B1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
plates
plate
profile
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04763632.9A
Other languages
German (de)
English (en)
Other versions
EP1654508A1 (fr
EP1654508B2 (fr
Inventor
Peter Geskes
Jens Richter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Mahle Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34111969&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1654508(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mahle Behr GmbH and Co KG filed Critical Mahle Behr GmbH and Co KG
Publication of EP1654508A1 publication Critical patent/EP1654508A1/fr
Publication of EP1654508B1 publication Critical patent/EP1654508B1/fr
Application granted granted Critical
Publication of EP1654508B2 publication Critical patent/EP1654508B2/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/046Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being linear, e.g. corrugations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0049Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for lubricants, e.g. oil coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0089Oil coolers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/355Heat exchange having separate flow passage for two distinct fluids
    • Y10S165/356Plural plates forming a stack providing flow passages therein
    • Y10S165/364Plural plates forming a stack providing flow passages therein with fluid traversing passages formed through the plate
    • Y10S165/372Adjacent heat exchange plates having joined bent edge flanges for forming flow channels therebetween

Definitions

  • the present invention relates to a heat exchanger according to the preamble of claim 1, as it finds particular use in vehicles as oil cooler. Such in the heat exchanger is out DE 19959780 A1 known.
  • Platterf chipsschreiber which are formed from a stack of adjacent plates. Between the plates cavities are formed, which are alternately traversed by a first and a second medium.
  • the first medium cooling water and the second medium to be cooled working fluid - in the case of an oil cooler of an internal combustion engine engine oil - is also a use as an evaporator cooling device such as a vehicle air conditioning conceivable, in which case one of both media is the coolant and the other is the refrigerant.
  • first and second medium are supplied in each case by a corresponding inflow line and led away via a drain line.
  • inflow lines and outflow lines each serve as manifolds in which the fluid flow of all corresponding cavities is supplied or removed.
  • a demoeü such turbulence plates is that in the production of the passage openings easily chip formation occurs, which can lead to contamination of the medium flowing through.
  • dirt accumulates easily in the area of the turbulence plates.
  • the passage of the cavity can be hindered in an undesirable manner.
  • they represent an additional component to be produced, which entails an increase in the cost of the heat exchanger due to increased production costs and material costs.
  • a heat exchanger as used in particular as an oil cooler in the field of motor vehicles, is formed from interconnected plates. Between the plates outwardly closed cavities are formed. The cavities are alternating over each supplied at least one inflow and outflow line with first or second medium and are also traversed by the corresponding medium.
  • the plates are profiled in such a way that contact points occur between the respective profiles of the plates. In the area of these contact points, the plates are connected to each other. In this case, the plates are designed such that the flow forming between the plates of first or second medium does not run in a straight line from the corresponding inflow line to the corresponding outflow line.
  • This measure has the advantage that the medium flowing through is partially diverted several times on its flow path. This improves the distribution of the fluids across the plate width. Depending on the flow behavior (viscosity) of the medium flowing through, turbulent flows may also occur. The ever-changing changes in direction of the fluid in the channel and in the region of the opening wave channel under certain circumstances forming vortices tear the forming boundary layer again and again. This leads to an improved heat transfer.
  • the plates have a repeating wave profile which then extends at least in a direction transverse to the flow direction, which is the straight connection from the point of entry of the medium to the exit point.
  • the wave profile runs zigzag.
  • Such a wave profile forms in a simple manner Strömungsleit Schemee which are suitable to direct the flow of the medium flowing through the corresponding cavity.
  • the flow is advantageously deflected several times in its course, in particular not only in the plane of the plate, but also out of the plane of the plate. In areas where the distance between the plates is designed to be different in size, the flow rate may vary.
  • the medium is distributed over the entire surface of the plates as a whole and as optimized as possible utilization of the entire heat exchange surface takes place.
  • the wave profile between flow regions on rectilinear legs wherein the course of the wave profile is characterized by the leg length of the legs, the leg angle between the legs and the profile depth of the wave profile.
  • the profile of a wave profile is determined in its cross section by the course in the region of the legs and in the curvature region, wherein preferred embodiments can provide a deviation of the cross-sectional shape in these areas.
  • the zigzag-shaped wave profile is characterized in particular by the leg length, the leg angle between adjacent legs and the tread depth.
  • the leg length is in the range of 8 to 15 mm, preferably in the range of 9 to 12 mm.
  • Typical values of the tread depth - which is measured, for example, from the distance between a wave crest and the plate center plane - are in the range of 0.3 to 1.5 mm.
  • a tread depth between 0.5 and 1 mm may be advantageous, with values of about 0.75 mm being preferred.
  • the leg angle between two legs of the wave profile is preferably between 45 ° and 135 °. In particular values around 90 ° represent a good compromise with regard to distribution of the fluid, throughflow rate and flow rate of the heat exchanger.
  • leg length and the leg angle influenced on the one hand the flow guiding function of the wave profile, on the other hand, the arrangement of contact points of adjacent plates together, which are required for the stability of the heat exchanger.
  • the inherent rigidity of Plates against pressurization by the media can not be guaranteed without the mutual support, if the material thickness of the plate is chosen low, as is desirable in many applications for reasons of weight saving and heat exchange.
  • a bonding of the plates in the region of the contact points by brazing for which purpose the plates are coated at least on one side with a soldering agent such as solder.
  • a soldering agent such as solder.
  • the choice of leg length and leg angle is preferably carried out as a function of the medium flowing through and its viscosity. Thigh length and leg angle have a great influence on the flow velocities occurring and the associated heat exchange, so that they are adaptable to the respective intended use.
  • the above values relate in particular to the use of heat exchangers as oil coolers in vehicles, where the heat exchange between engine oil and cooling water takes place. In addition, of course, they are also dependent on the dimensioning of the plates and the gap resulting from the spacing of the plates.
  • the shape of the wave profile is essentially determined by the shape of the cross section perpendicular to the outer edge of the profile in this area and the sequence of the profiles defined by the pitch in the course transverse to the extension direction of a wave profile across the plate.
  • Preferred embodiments provide a constant pitch, that is to say a fixed distance between any two adjacent wave profiles.
  • the shape of the wave profile is particularly advantageous if it has a flat area on the outside of the wave back. In particular, the flat area has a width of 0.1 to 0.4 mm. The flat area allows a good, flat contact with each other adjacent plates together and thus a light and stable production of Support or connection - as by brazing - adjacent plates together.
  • the material of the plates is preferably aluminum.
  • This material has the advantage of having a low density and at the same time to allow the production of the wave profile, for example by embossing in a simple manner. It can be coated over the entire area with soldering aids such as brazing alloy on at least one side to produce the connection between two adjacent plates in the region of the contact points and in the region of the edges. Depending on the choice of soldering agent and the layer thickness of the order of the soldering agent may also be given a double-sided coating with soldering agent.
  • the coating with soldering agent should serve in particular in the region of the edges and the inlet and outlet lines in the block reliable production of a fluid-tight connection of two plates together in a joining process with a joining tool (brazing furnace) without using additional aids or auxiliaries.
  • the plates have bores which serve as inflow and outflow lines in the region of the heat exchanger and whose bore axis runs perpendicular to the plane of the plate.
  • the bores are introduced, in particular, in a region raised in relation to the ground plane of the plates.
  • the raised region is preferably raised in such a way that in every second plate gap there is a tight connection between the raised region and the subsequent further plate, so that only every second plate gap creates a fluidic connection between the holes and the plate gap.
  • the fluid-tight contact between an elevated area and an adjacent plate can be achieved not only by positive engagement but also by other connection technology, such as brazing.
  • the raised region in particular has a preferably planar contact section, which is in contact with a preferably flat abutment edge of the adjacent plate, to which a fluid-tight connection results.
  • the raised area and the holes in the raised area can not only have a circular cross section, but also oval or slot-like designs are possible and advantageous.
  • the longer of the two axes of the slot-like design is preferably to be arranged transversely to the main flow direction of the fluid. This measure also serves to improve the heat exchange between the two media, since then with the same overall extent of the plates a larger heat transfer surface remains.
  • distribution channels are provided in the region of the inflow lines and the bores assigned to the inflow lines, which distribution channels are preferably likewise designed as a wave profile. It is particularly preferred further developments of the invention, when the wave profile of the distribution channels is different from the other wave profiles with respect to the characteristic sizes of the wave profile.
  • the wave profile of the distribution channels has a leg angle which is less than 45 ° and is in particular in the range of approximately 5 ° and approximately 25 °. It can be formed in the other plate areas both a sudden and a continuous transition in the profile design between the distributor profile and the wave profile.
  • the distribution channels assume the task of the most even distribution of the fluid flow over the entire width of the plate away.
  • flow channels surround the raised areas.
  • the flow channels are preferably formed by a wave profile-free section, which is guided in particular like a ring around the raised area. It is thus formed a reduced flow resistance section, in which open several wave profiles, so that also a distribution function for the medium is fulfilled.
  • a heat exchanger may in particular be formed from a stack of such plates designed identically to one another. For it is in this case possible in particular that mutually adjacent plates are rotated by 180 degrees to each other, wherein the axis of rotation extends perpendicular to the plate plane.
  • This type of stack of plates is particularly advantageous if the holes associated with the inflow holes are formed from raised points and these should be assigned to two different different alternating cable guides.
  • the elevations in the region of the inflow lines can be designed in particular as a substantially frusto-conical dome. Alternatively, dom-shaped elevations, which have an elliptical cross-section.
  • the plates can be designed to be identical to each other or similar or different. Identically identical plates have the same characteristics as regards the characteristic properties of the wave profile and the shape of the wave profile on. Corresponding plates are structurally equal to each other, however, it is possible that the plates have, for example, mutually different leg angles. Corresponding plates preferably have a mutually different shape of the wave profile and / or mutually different values of characterizing sizes, but are in terms of the formation of the edge and formation of front and back of the plates corresponding to each other.
  • the alternating use, for example, of two corresponding plates, which differ only by different leg angle in the characteristic sizes, has the advantage that the position and relative position of contact points of the plates together in the profiled area in view of the required stiffness and the required flow in can be easily optimized.
  • connection between the plates is made in particular by brazing.
  • the plates have a bent edge whose height is selected so that at least two mutually adjacent plates abut each other in this edge region and overlap.
  • the number of overlapping in the edge region plates can be up to five. The greater the number of overlapping plates, the stiffer is the wall formed thereby and closing the heat exchanger towards the outside. This simultaneously supports the production of a permanently stable, resistant, fluid-tight closure of the plates to the outside.
  • Preferred further embodiments provide that the wave profile extends into the edge and in particular over its entire width. Care must be taken in the design of the wave profile to ensure that the plates still remain stackable, which is done by the fact that the course of the wave profile in the edge region is matched to the mounting position of two adjacent plates to each other.
  • the wave profile extends into the edge when the wave profile ends in the root region of the bend, so that the profile with its tread depth extends into the edge.
  • the root of the edge is in a wave profile-free area, since then the bending of the edge can be done in a non-stiffened by profile area.
  • Preferred embodiments then provide that the groove forming between edge and wave profile area is as narrow as possible. In particular, it is selected to be so narrow that, during brazing, a solder flow enters, which completely or at least so far adds this channel that only a negligible amount of medium flows through the channel.
  • the channel must be designed so that it does not serve as a bypass channel for the medium and a significant proportion of media flows through the channel rather than in the region of the wave profile.
  • an outer profile-less end plate is arranged on at least one of the end faces of the heat exchanger.
  • the outside profileless end plate has in particular flanges as connection points.
  • the end plates may in particular also have a greater material thickness than the other plates and thus represent a particular stiffening, stabilizing element which forms a the end faces to the outside final housing part.
  • the lateral housing walls, which close off the heat exchanger to the outside, are formed over the edge, which limits the plates and which coincides with the edge overlapping adjacent plates.
  • the edges are fluid-tightly connected to each other, which can be done in particular by brazing.
  • the hydraulic diameter represents a ratio between the flow-through channel cross-section and heat exchange surface.
  • the hydraulic diameter hD is defined as four times the ratio of the area ratio Fv to the area density Fd.
  • the hydraulic diameter should remain as constant as possible over the entire main flow direction of the medium. As a result, a possibly improved and optionally uniform flowability of the plate gap, which forms the channel is achieved.
  • the hydraulic diameter is according to a preferred embodiment of the invention and in particular when using the heat exchanger as an oil cooler between 1.1 mm and 2 mm.
  • Preferred values for the hydraulic diameter are around 1.4 mm.
  • the deviation of the hydraulic diameter over the period of profiling of a pair of plates preferably not more than by 10%, in particular by less than 5%.
  • the selection of the hydraulic diameter also depends on the media flowing in the spaces between the plates.
  • the stated values apply to an oil cooler in which, on the one hand, water and, on the other hand, an oil flows through the heat exchanger.
  • the contact points between two mutually adjacent plates of the heat exchanger are distributed uniformly over the plate surface.
  • the contact points between two mutually adjacent plates have a surface density of 4 to 7 per cm 2 , more preferably from 5 to 6 per cm 2 . In such a configuration, a sufficient strength of the heat exchanger without excessive increase in the pressure loss is possible.
  • Heat exchangers according to the invention can on the one hand serve as oil coolers, but also as evaporators or condensers.
  • the refrigeration cycle of such a device can serve not only for air conditioning a (vehicle) interior, but also for cooling heat sources, such as electrical consumers, energy storage and voltage sources or Ladeiuft a turbocharger.
  • the heat exchanger is a capacitor when, for example, by condensation of the refrigerant of an air conditioner in a coolant-loaded compact heat exchanger takes place and the coolant gives off the heat in a heat exchanger in air as another medium.
  • the evaporation or condensation of another medium in a heat exchanger according to the invention can also take place, for example, in applications in fuel cell systems.
  • FIGS. 1a and 1b show the representation of a front or a back of a plate according to the invention, while the Fig. 2 the representation of a corresponding, from plates according to the FIGS. 1a and 1b formed stack shows.
  • a plate 10 has a base body 11, which is provided on its front and back in each case with a wave profile 12, which has been introduced by embossing in the base body 11.
  • the corrugated profile 12 corresponds to the back according to the Fig. 1b the negative profile of the front as shown in Fig. 1a ,
  • the corrugated profile 12 is formed from a plurality of mutually standing in a leg angle 13 legs 10, each having a fixed leg length 15 and the curvature region 16 adjoin one another.
  • the corrugated profile extends across the plate 10.
  • the plate 10 Over the length of the plate 10 across a plurality of wave profiles 12 is formed one behind the other, wherein the wave profiles follow one another in particular at a close distance and in alignment with each other are aligned.
  • the plate 10 in this case has a circumferential bent edge 17, which limits the plate laterally.
  • the wave profile 12 extends into the edge.
  • the wave profile 12 can be introduced by embossing in the plate 10.
  • the embossing can be carried out so that the two sides have in the plate 10 differing wave profiles, in particular, the wave profile 12 can represent the negative of the wave profile 12 of the other sides on one side, as for example from the embodiment according to the FIGS. 1 a and 1 b can be seen.
  • a plate 10 has the same wave profile 12 on both sides. Both times, the wave profiles on the two sides of a plate 10 may be aligned with each other or offset from each other.
  • the corrugated profile 12 is characterized in cross-section mainly in that it has a wave back, which forms a flat region, which runs parallel to the plate plane.
  • the flat area preferably has a width between 0.1 mm and 0.4 mm.
  • the plate In the area of the corners, the plate has a bore 18, which passes through the plate perpendicular to its level. Two of the holes are introduced in a raised area 19. One of the holes serves for the supply of working medium in the area between two plates, while in particular the diametrically opposite bore serves the outflow of working medium. Another pair of holes serves for the inflow and outflow of cooling medium.
  • Be plates 10 as in the Fig. 2 stacked on top of one another, either the lines associated with the working fluid or the cooling medium are alternately fluidly connected to the intermediate space 20 between two plates 10, since the raised area 19 abuts corresponding bores 18 on the adjacent plate 10.
  • the holes 18 thus form through a stack 21 of plates through the supply lines or drain lines for cooling medium and working medium.
  • the Fig. 2 shows in perspective view of such a stack 21 of plates 10 according to the FIGS. 1 a and 1 b ..
  • Fig. 3 is the sectional view through a stack 21 according to the Fig. 2 shown.
  • Plates 10 abut each other and are stacked on top of each other.
  • the bent edge 17 of adjacent plates abut each other and is formed so that the edge of a plurality of plates overlap each other.
  • these are connected to each other by brazing.
  • two mutually adjacent plates in different areas of their wave profiles 12 to each other. Even in these areas, the plates are connected by brazing.
  • the plates can be coated on one or both sides with a solder.
  • a gap 20 is formed in each case, wherein the intermediate space is flowed through either by working medium or by cooling medium.
  • the stack of plates is designed in particular in which the intermediate spaces 20 are alternately flowed through by working medium and cooling medium, so that each of the plates 10 flows around on the one hand by cooling medium and on the other hand by working medium.
  • a heat exchange between the cooling medium and the working medium on each of the plates 10 away take place.
  • the gap 20 is of different width at a plurality of locations.
  • the constantly changing directional changes of the fluid in the channel and the vortex forming in the region of the opening wave channel tear the forming boundary layer over again and again. This results in a greatly improved heat transfer compared to a smooth channel.
  • the Fig. 4 shows an enlarged view of a plate 10 with a wave profile 12, which is formed by the legs 14 which each have a leg angle 13 of 45 °.
  • the plate 10 is replaced by a bent edge 17 is limited, wherein the wave profile 12 extends into the region of the edge 17 into it.
  • the one between two holes 18, one of which is formed in a dome-shaped raised portion 19 is shown.
  • distribution channels 22 are formed in the area between the two holes 18, which extends in particular in the region between the holes 18 and the adjacent edge 17.
  • the distribution channels 22 are formed by a wave profile 23, which differs from the wave profile 12 in the remaining region of the plate 10 with respect to the leg angle and the leg lengths.
  • the leg angles are in particular in a range below 45 °.
  • the distribution channels 22 lead in particular in the region of the bore, which is not introduced in a raised portion 19, in the corresponding space entering medium transverse to the main extension of the plate 10 and thus ensure a uniform distribution of the fluid flow over the entire width of the plate.
  • the raised region 19, in which the other bore 18 is introduced lies in particular sealingly against the bore region of the plate 10 disposed above it in a stack and may be connected thereto by brazing.
  • a fluid-tight closure to the gap 20 is provided to the overlying plate 10, so that no media flow can take place between this bore 18 and the gap and the medium flowing through this bore 18 only enter behind the overlying plate 10 in the then following gap 20 can.
  • the bores 18 can also be designed as elongated holes for increasing the cross section, the slot axis then preferably extends transversely to the main flow direction H.
  • the annular region 19 has an embossing depth which substantially corresponds to the embossing depth of the wave profile 23.
  • the Fig. 5 shows in a plan view of an end plate 24, which has four connecting flanges 25 which are arranged in alignment with the holes 18 of the plates 10 of a plate stack 21.
  • Such an end plate can be arranged on the one hand or on both sides of the stack 10 and complete it to the outside.
  • the end plate 24 has at least on the outer side no wave profile 12. If a connection plate 24 is arranged on each side of the plate stack, then it is possible that one of the two plates has four connection flanges 25 or that one plate has one, two or three connection flanges 25 and the opposite plate has the remaining number of the 4 connection flanges 25 ,
  • the connecting flanges 25 are each assigned to the connection bores.
  • the connecting flanges 25 are used to connect the external lines for the supply and removal of working fluid and cooling medium.
  • the end plate 24 stiffens the plate stack 21 and forms the frontal housing wall.
  • the end plate 24 may have an edge 17 which is adapted to the edge 17 of the plates 10.
  • the superimposed edges 17 of the plates form in a plate stack 21, as in the Fig. 2 is shown, the lateral housing of the heat exchanger.
  • a plate stack according to the Fig. 2 provided with connecting flanges 25 and a cover plate 24 thus forms - a heat exchanger.
  • Such a heat exchanger can serve in particular as an oil cooler in a vehicle.
  • FIG. 6 shows a plate stack 21, consisting of a base plate 88, plates 10 and a cover plate 89 having three holes 18, 18a.
  • the holes 18 serve to guide a first medium, is performed between the plates so that the plate interspaces 20 are flowed through in parallel.
  • Through the bore 18a enters a second medium into the plate stack, which emerges through the bore 18b in the base plate again from the plate stack.
  • the flow channels for the second medium are divided into at least two flow paths, which are flowed through successively and each consist of one or more flow channels.
  • the flow channels for the first medium are flowed through in parallel.
  • the flow channels for the first medium are also divided into at least two flow paths, which are flowed through successively.
  • the Fig. 7a to 7d show different orientations of the main flow direction H of the plate interspace 20 with respect to the direction of gravity G in the installation position of the heat exchanger, as well as the favorable influence on the distribution of the medium in the plate interspace, in particular when used as a capacitor.
  • the FIGS. 7a and 7c show the application of an evaporator. From the Fig. 7a and 7c It can be seen that the main flow direction H should be transverse or antiparallel to the direction of gravity G, depending on whether the longer L or the narrower side S of the plates is aligned in the direction of gravity G, if it is a liquid medium. By gravity, a transverse distribution of the medium with respect to the main flow direction is supported.
  • the show Fig. 7b and 7d in that a gaseous medium is best distributed between the plates 10 when the gravitational direction G counteracts the distribution of the medium between the plates.
  • FIG. 8 shows the hydraulic diameter over an entire wave profile in the main flow direction H away
  • Fig. 8a the formation of the wave profile 23 is shown with the contact areas of adjacent plates 10 shown as circles 98. It can be seen that over the entire period of the pattern resulting from the wave profiles 23 of the adjacent plates, the wave profile varies in a bandwidth between 1.2 and 1.6 and averages about 1.4.
  • the formation of the wave profiles is preferably selected such that the result is a hydraulic diameter that is as constant as possible in the main flow direction.
  • Fig. 8a the contact points between two mutually adjacent plates of the heat exchanger in a plan view of one of the plate are shown as circles. It can be clearly seen that the contact points are evenly distributed over the plate surface. A preferred areal density of the contact points for sufficient strength is 4 to 7 per cm 2 , more preferably 5 to 6 per cm 2 . This is based on Fig. 8b, 8c clear.
  • Fig. 8b shows the hydraulic diameter hD of a flow channel between two plates over several profile periods, again in the main flow direction H of the medium.
  • a large surface density of the contact points can be expected a course, which by the broken curve in Fig. 8b is shown, since many points of contact in the main flow direction H seen side by side restrict the flow channel cross-section. This is illustrated by the breaks 40 in the hydraulic diameter. Due to the inventive design, in particular the uniform distribution of the contact points, these burglaries are eliminated or reduced, so that there is a solid line shown for the hydraulic diameter. The fewer of these burglaries have a flow channel, the fewer bottlenecks for the flowing medium, the channel, that is, the pressure loss can be reduced for the same area density of the contact points.
  • a uniform distribution is achieved, in particular, in that a curvature region between two, in particular straight legs of a wave profile of a plate does not come to lie exactly over a curvature region of an adjacent plate. Rather, it may be advantageous if the areas of curvature of adjacent plates - seen in the main flow direction - are offset from each other so that each curvature region is flanked transversely to the main flow direction of two contact points of the two plates, which advantageously have a same or similar distance from each other as to other points of contact and thus release between them a flow passage which allows appreciable flow and thus does not contribute undesirably to pressure loss of the flow channel formed between the plates. On the other hand, the distance between two points of contact should not be too large, as otherwise local weak points in the strength of the heat exchanger could possibly form.
  • Fig. 8c A plot of the strength F and pressure loss DV of a heat exchanger versus the density BD of the contact points between two plates is shown.
  • the strength of the heat exchanger increases linearly with the contact point density BD and is reflected in Fig. 8c as a straight 41 down.
  • the pressure loss DV in this plot (42) shows a progression; so that a maximum 43 at a contact point density BD1 results for the ratio F / DV of strength F to pressure loss DV.
  • the pressure loss is lowered according to the invention (44)
  • the mentioned maximum is increased (45) and possibly shifted to a higher contact point density BD2.
  • experimental It has been found that a touch-point density of 4 to 7 per cm 2 , preferably 5 to 6 per cm 2 , leads to good strength with acceptable pressure loss.
  • a section of a plate 30 of a heat exchanger is shown.
  • the connection points between two adjacent plates are given by the crossing points of the respective wave profiles of the two plates.
  • the leg angle 2b of the outer legs 31 differs from the leg angle 2a of the inner legs 32
  • Fig. 10 shows a plate 35 of a heat exchanger in which a wave profile 34 extends to the bent plate edge 36, wherein a remaining channel 37, which may allow an undesirable bypass flow, has a very small cross-section, so that the bypass flow is reducible.
  • a brazed heat exchanger that is, when the plate 35 is solder plated, form between the outermost legs 38 of the wave profile 34 and the bent edge of the plate 36 Lotmenisken that reduce the edge channel 37 or close particularly advantageous.
  • the apertures 38 of the plate and thus the cross sections of the collection channels formed thereby are widened in an oval shape.
  • Fig. 11a shows a cross section of a plate 41 of a heat exchanger 42, which is composed of a plurality of plates 41, as in Fig. 11b displayed.
  • the plates 41 each have a few holes 43 perpendicular to the plate plane as inflow lines and outflow lines, the holes 43 being raised relative to the base plane of the respective plate 41 such that a fluidic connection of one of the two holes exists alternately only to every second plate interspace 44 ,
  • Fig. 11b is in each case a raised bore 43 at a non-raised portion of an adjacent plate 41, so that the height of the raised portion, for example, is as large as the height of a wave profile of the plate 41st
  • Fig. 12a shows a cross section of a plate 51 of a heat exchanger 52, which is composed of a plurality of plates 51, as in Fig. 12b displayed.
  • the plates 51 each have a few bores 53 perpendicular to the plate plane as inflow and outflow lines, the bores 53 being raised in relation to the base plane of the respective plate 51 in such a way that a fluidic connection of one of the two bores exists alternately only to every second plate interspace 54 ,
  • Fig. 12b is in each case a raised bore 53 at a raised bore 53 of an adjacent plate 51, so that the height of the raised portion, for example, only half as large as the height of a wave profile of the plate 41.
  • This construction reduces under certain circumstances a material thinning when producing the raised areas, so that a tensile strength, ie internal pressure resistance of the heat exchanger 52 is favorably influenced, at least in these areas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Claims (28)

  1. Echangeur de chaleur, en particulier refroidisseur d'huile, pour des véhicules automobiles, où l'échangeur de chaleur est formé par des plaques assemblées entre elles, où des espaces creux fermés vers l'extérieur sont configurés entre les plaques, espaces creux qui sont traversés, de façon alternée, par un premier et un deuxième milieu, à chaque fois via au moins une conduite d'amenée et une conduite d'évacuation, où les plaques sont profilées de manière telle, qu'apparaissent, entre les profils respectifs des plaques, des points de contact dans la zone desquels les plaques sont fixées les unes aux autres, caractérisé en ce que les profils des plaques (10) et leurs points de contact sont configurés de manière telle, que l'écoulement du premier et du deuxième milieu, se formant entre les plaques (10) et à partir de la conduite d'amenée correspondante jusqu'à la conduite d'évacuation correspondante, ne se produit pas de façon rectiligne, où les plaques (10) présentent un profil ondulé (12) se répétant, profil ondulé qui s'étend essentiellement de façon transversale par rapport à la direction principale de circulation (H) et est ondulé en forme de zigzags tout autour de la direction d'étendue.
  2. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que le profil ondulé (12) présente, entre des zones de courbure, des branches (14) s'étendant de façon rectiligne, où le profil ondulé (12) est caractérisé par la longueur de branche (15) des branches (14), par l'angle de branche (13) formé entre les branches (14) et par la profondeur de profil du profil ondulé.
  3. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que la forme du profil ondulé est caractérisée par le tracé du profil dans la zone des branches et des zones de courbure, où des profils contigus les uns aux autres se répètent dans une segmentation prédéfinie.
  4. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que le profil ondulé présente une zone plate sur le côté extérieur d'une queue d'ondulation.
  5. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que la zone plate est comprise, en coupe transversale du profil ondulé, entre 0,1 mm et 0,4 mm.
  6. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que l'angle de branche (13), de préférence compris entre 45° et 135°, est de préférence de 90°.
  7. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que la profondeur de profil, comprise entre 0,3 mm et 2 mm, est, dans le cas de milieux liquides, de préférence comprise entre 0,5 mm et 1 mm et, en particulier, comprise entre 0,7 mm et 0,8 mm et, dans le cas de milieux gazeux, est de préférence dans la plage comprise entre 0,6 mm et 2 mm, et en particulier est de 1,5 mm.
  8. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que la longueur de branche (15) est dans la plage comprise entre 8 mm et 15 mm et, en particulier, dans la plage comprise entre 9 mm et 12 mm.
  9. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que le profil ondulé (12) est configuré comme un matriçage en creux dans la plaque (10), où les plaques (10) se composent de préférence d'un matériau métallique, en particulier d'aluminium, où les plaques sont recouvertes, de préférence sur au moins un côté, d'un matériau d'apport auxiliaire de brasage.
  10. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que les plaques (10), en tant que conduites d'amenée et conduites d'évacuation, présentent chacune une paire de perçages (18) perpendiculairement au plan des plaques, où les perçages (18) sont saillants par rapport au plan de base de projection, de manière telle qu'une communication fluidique de l'un des deux perçages se produit de façon alternée seulement avec chaque deuxième espace intermédiaire de plaque (20).
  11. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que la zone saillante d'au moins une partie des perçages est entourée par une zone, de préférence de forme annulaire et exempte de profils ondulés, s'étendant tout autour de ladite zone saillante.
  12. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est prévu, dans la zone des perçages (18) associés aux conduites d'amenée, des canaux de répartition (23) qui sont fournis de préférence par un profil ondulé (12) ayant un angle de branche qui est augmenté par rapport à l'angle de branche du profil ondulé.
  13. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que les perçages associés aux conduites d'amenée sont ovales, elliptiques ou rectangulaires.
  14. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que deux plaques (10) différentes l'une de l'autre par le profil ondulé (12) sont utilisées de façon alternée, où les profils ondulés (12) se différencient au moins par l'une des caractéristiques parmi celles concernant la longueur de branche (15), l'angle de branche (13) et la profondeur de profil.
  15. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que le profil ondulé (12) de l'un des côtés de la plaque (10) se différencie du profil ondulé (12) de l'autre côté de la plaque (10), au moins par l'une des caractéristiques parmi celles concernant la longueur de branche (15), l'angle de branche (13) et la profondeur de profil.
  16. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que le profil ondulé de plaques contiguës est identique l'un par rapport à l'autre.
  17. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que l'échangeur de chaleur est formé par une pile (21) de plaques (10), où les plaques (10) se correspondent l'une l'autre et sont disposées en étant tournées, de façon alternée, de 180° l'une par rapport à l'autre.
  18. Echangeur de chaleur en particulier selon l'une quelconque des revendications précédentes, caractérisé en ce que les plaques (10) présentent un bord coudé (17), où les bords (17) de plaques contiguës (10) sont en appui les uns contre les autres et sont assemblés les uns aux autres de préférence par brasage fort.
  19. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que le bord coudé (17) recouvre plusieurs plaques, en particulier jusqu'à cinq plaques (10).
  20. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que le profil ondulé (12) s'étend jusque dans le bord (17), en particulier au-delà du bord (17).
  21. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que, entre l'extrémité du profil ondulé et le bord, est configurée une partie de pliage, sans profil, dont la largeur est inférieure à 2 mm, et est déterminée de préférence de manière telle, que lors du brasage fort des plaques, de la brasure soit ajoutée à la zone de pliage, dans des parties de crêtes d'ondulations, de manière telle qu'une circulation d'un milieu soit réduite ou pratiquement empêchée dans la partie de pliage.
  22. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une plaque terminale (24), en particulier sans profil au moins extérieurement, est associée à au moins un côté frontal de l'échangeur de chaleur, plaque terminale qui présente de préférence des points de raccordement (25) pour un premier et un deuxième milieu, points de raccordement qui débouchent dans des conduites de raccordement et sont disposés en étant alignés par rapport aux perçages (18).
  23. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que le diamètre hydraulique (hD) présente, dans la direction principale d'étendue (D), une variation au maximum de 25 %, en particulier au maximum de 15 %, en particulier au maximum de 10 % par rapport à une valeur moyenne.
  24. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que le diamètre hydraulique (hD) présente une valeur moyenne comprise entre 1 mm et 4 mm, où ledit diamètre, dans le cas de milieux liquides, est compris de préférence entre 1 mm et 2 mm et de préférence de 1,4 mm et où, dans le cas de milieux gazeux, est de préférence de 3 mm.
  25. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que les points de contact, entre deux plaques contiguës l'une à l'autre, sont répartis de façon uniforme sur la surface des plaques.
  26. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que les points de contact présentent, entre deux plaques contiguës l'une à l'autre, une densité de surface de 4 à 7 par cm2, en particulier de 5 à 6 par cm2.
  27. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une transition de phase d'un milieu se produit dans des espaces intermédiaires de plaques.
  28. Echangeur de chaleur selon l'une quelconque des revendications précédentes, caractérisé en ce que la position de montage de l'échangeur de chaleur est déterminée, par le fait que la distribution transversale du milieu, dans les espaces intermédiaires de plaques, est aidée par la gravitation.
EP04763632.9A 2003-08-01 2004-07-29 Echangeur de chaleur et procede de fabrication dudit echangeur Expired - Lifetime EP1654508B2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10336033 2003-08-01
PCT/EP2004/008542 WO2005012820A1 (fr) 2003-08-01 2004-07-29 Echangeur de chaleur et procede de fabrication dudit echangeur

Publications (3)

Publication Number Publication Date
EP1654508A1 EP1654508A1 (fr) 2006-05-10
EP1654508B1 true EP1654508B1 (fr) 2016-10-19
EP1654508B2 EP1654508B2 (fr) 2020-03-11

Family

ID=34111969

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04763632.9A Expired - Lifetime EP1654508B2 (fr) 2003-08-01 2004-07-29 Echangeur de chaleur et procede de fabrication dudit echangeur

Country Status (7)

Country Link
US (1) US8061416B2 (fr)
EP (1) EP1654508B2 (fr)
JP (1) JP2007500836A (fr)
CN (1) CN1833153B (fr)
BR (1) BRPI0413194B1 (fr)
DE (1) DE102004036951A1 (fr)
WO (1) WO2005012820A1 (fr)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE528879C2 (sv) * 2005-07-04 2007-03-06 Alfa Laval Corp Ab Värmeväxlarplatta, par av två värmeväxlarplattor samt plattpaket för plattvärmeväxlare
DE102005034305A1 (de) 2005-07-22 2007-01-25 Behr Gmbh & Co. Kg Plattenelement für einen Plattenkühler
DE102005054728A1 (de) * 2005-11-17 2007-05-24 Behr Gmbh & Co. Kg Stapelscheibenwärmeübertrager, insbesondere Ölkühler für Kraftfahrzeuge
SE531472C2 (sv) * 2005-12-22 2009-04-14 Alfa Laval Corp Ab Värmeväxlare med värmeöverföringsplatta med jämn lastfördelning på kontaktpunkter vid portområden
JP4740064B2 (ja) * 2006-08-15 2011-08-03 株式会社マーレ フィルターシステムズ オイルクーラ
EP2107328B1 (fr) 2008-04-02 2012-07-11 Behr GmbH & Co. KG Evaporateur
DE102008017113A1 (de) 2008-04-02 2009-10-08 Behr Gmbh & Co. Kg Verdampfer
KR101234500B1 (ko) * 2008-04-04 2013-02-18 알파 라발 코포레이트 에이비 플레이트형 열교환기
BRPI0822417A2 (pt) * 2008-04-04 2019-08-27 Alfa Laval Corp Ab trocador de calor de placas
KR101225357B1 (ko) * 2008-04-04 2013-01-22 알파 라발 코포레이트 에이비 플레이트형 열교환기
FR2931542A1 (fr) 2008-05-22 2009-11-27 Valeo Systemes Thermiques Echangeur de chaleur a plaques, notamment pour vehicules automobiles
SE532524C2 (sv) * 2008-06-13 2010-02-16 Alfa Laval Corp Ab Värmeväxlarplatta samt värmeväxlarmontage innefattandes fyra plattor
US8997846B2 (en) * 2008-10-20 2015-04-07 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Heat dissipation system with boundary layer disruption
ES2525010T3 (es) * 2009-02-04 2014-12-17 Alfa Laval Corporate Ab Un intercambiador de calor de placas
AT508058B1 (de) 2009-03-05 2011-01-15 Mahle Int Gmbh Plattenwärmetauscher
DE102009041524A1 (de) * 2009-09-15 2011-03-24 Mahle International Gmbh Plattenwärmetauscher
JP2011106764A (ja) * 2009-11-19 2011-06-02 Mitsubishi Electric Corp プレート式熱交換器及びヒートポンプ装置
FR2954480B1 (fr) * 2009-12-17 2012-12-07 Valeo Systemes Thermiques Plaque d'echangeur de chaleur, en particulier pour un condenseur de climatisation
JP5733900B2 (ja) * 2010-02-26 2015-06-10 三菱電機株式会社 プレート式熱交換器の製造方法及びプレート式熱交換器
DE102010040321A1 (de) 2010-09-07 2012-04-19 Behr Gmbh & Co. Kg Stapelscheibe für einen Wärmeübertrager
JP5710232B2 (ja) * 2010-12-09 2015-04-30 株式会社日阪製作所 プレート式熱交換器
CN102288054B (zh) * 2011-06-27 2012-09-19 江苏宝得换热设备有限公司 等流量高效板式换热器
JP5538344B2 (ja) * 2011-11-09 2014-07-02 三菱電機株式会社 プレート式熱交換器及びヒートポンプ装置
SI2728293T1 (sl) * 2012-10-30 2017-02-28 Alfa Laval Corporate Ab Plošča toplotnega izmenjevalnika in ploščni toplotni izmenjevalnik, ki vsebuje takšno ploščo toplotnega izmenjevalnika
US20150034285A1 (en) * 2013-08-01 2015-02-05 Hamilton Sundstrand Corporation High-pressure plate heat exchanger
DE102013220313B4 (de) 2013-10-08 2023-02-09 Mahle International Gmbh Stapelscheiben-Wärmetauscher
DE102013223742A1 (de) * 2013-11-20 2015-05-21 MAHLE Behr GmbH & Co. KG Stapelplattenwärmeübertrager mit einer Vielzahl an Stapelplattenelementen
JP6552499B2 (ja) * 2013-12-10 2019-07-31 スウェップ インターナショナル アクティエボラーグ 改良された流れを有する熱交換器
DE102014005149B4 (de) * 2014-04-08 2016-01-21 Modine Manufacturing Company Gelöteter Wärmetauscher
CA2955854A1 (fr) * 2014-07-21 2016-01-28 Dana Canada Corporation Echangeur de chaleur avec dispositifs d'obstruction d'ecoulement pour reduire les zones mortes d'un fluide
DE102015209858A1 (de) 2015-05-28 2016-12-01 Volkswagen Aktiengesellschaft Materialreduzierte Konstruktion eines Plattenwärmetauschers, insbesondere eines Ölkühlers
CN105115343A (zh) * 2015-09-14 2015-12-02 江苏远卓设备制造有限公司 一种换热板以及应用该换热板的换热器
CN106609906A (zh) * 2015-10-24 2017-05-03 河北斯玛特深冷技术有限公司 新型lng车载气瓶
CN105737646A (zh) * 2016-03-11 2016-07-06 江苏远卓设备制造有限公司 一种板式换热器及其制作工艺
SE542057C2 (en) 2016-08-25 2020-02-18 Alfa Laval Corp Ab A heat exchanger plate, and a plate heat exchanger
PL3800422T3 (pl) 2017-03-10 2024-02-05 Alfa Laval Corporate Ab Płyta do urządzenia wymiennika ciepła
TWI826386B (zh) 2017-07-31 2023-12-21 美商康寧公司 改良的處理強化的流動反應器
PL73432Y1 (pl) * 2019-01-04 2024-04-22 Secespol Spolka Z Ograniczona Odpowiedzialnoscia Płyta grzewcza z powierzchnią wymiany ciepła płytowego wymiennika ciepła
CN110514039A (zh) * 2019-01-18 2019-11-29 四川赛特制冷设备有限公司 一种新能源用热交换器
TR201904697A2 (tr) * 2019-03-28 2019-06-21 Bosch Termoteknik Isitma ve Klima Sanayi Ticaret Anonim Sirketi Isi deği̇şti̇ri̇ci̇ plakasi
SE544426C2 (en) * 2019-04-03 2022-05-24 Alfa Laval Corp Ab A heat exchanger plate, and a plate heat exchanger
DE102019210238A1 (de) * 2019-07-10 2021-01-14 Mahle International Gmbh Stapelscheibenwärmetauscher
CN112304131A (zh) * 2019-08-02 2021-02-02 浙江三花智能控制股份有限公司 板式换热器
EP4166880A1 (fr) * 2021-10-12 2023-04-19 Valeo Autosystemy SP. Z.O.O. Plaque pour échangeur de chaleur
DE102022103720A1 (de) 2022-02-17 2023-08-17 Mahle International Gmbh Wärmeübertrager mit optimiertem Druckverlust
DE102022124354A1 (de) 2022-09-22 2024-03-28 Mahle International Gmbh Wärmeübertrager bestehend aus zwei Arten von Platten
DE102022126383A1 (de) 2022-10-11 2024-04-11 Mahle International Gmbh Wärmeübertrager bestehend aus zwei Arten von Platten
DE102023101581A1 (de) 2023-01-23 2024-07-25 Mahle International Gmbh Wärmeübertrager mit zwei Räumen für Medien
CN116336841A (zh) * 2023-03-31 2023-06-27 佛山市顺德区鑫雷节能设备有限公司 一种板式换热器及其制造方法
DE102023110223A1 (de) 2023-04-21 2024-10-24 Mahle International Gmbh Wärmeübertrager mit mindestens zwei verschiedenen Platten

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB699037A (en) 1950-04-17 1953-10-28 Charles Zeuthen Improvements in or relating to plate heat exchangers
US2858112A (en) 1955-05-25 1958-10-28 Gen Motors Corp Heat exchanger
DE1282037B (de) 1959-05-21 1968-11-07 Julius & August Erbsloeh Komma Blaehkanal-Waermetauscher
US3731737A (en) 1968-03-12 1973-05-08 Alfa Laval Ab Plate heat exchanger
DE2944799A1 (de) 1978-11-08 1980-05-22 Reheat Ab Verfahren zum praegen von waermetauscherplatten fuer plattenwaermetauscher und vorrichtung zur durchfuehrung des verfahrens
GB2107845A (en) 1981-10-16 1983-05-05 Schmidt W Gmbh & Co Plate heat exchanger
DE3239004A1 (de) 1981-10-21 1983-05-05 ReHeat AB, Täby Packungsnut in plattenelement fuer plattenwaermetauscher
WO1986005866A1 (fr) 1985-04-01 1986-10-09 Torell Ab Procede de fixation d'un manchon de tuyau d'admission ou de sortie
WO1988001722A1 (fr) 1986-08-29 1988-03-10 Gerhard Fischer Echangeur de chaleur du type a plaques
US4781248A (en) 1986-07-03 1988-11-01 W. Schmidt Gmbh & Co., K.G. Plate heat exchanger
DE4100651A1 (de) 1991-01-11 1992-07-16 Gea Ahlborn Gmbh Waermeaustauscher
US5193612A (en) 1990-11-29 1993-03-16 W. Schmidt-Bretten Gmbh Multiple-plate heat exchanger for pressurized fluids
US5462113A (en) 1994-06-20 1995-10-31 Flatplate, Inc. Three-circuit stacked plate heat exchanger
US5531269A (en) 1992-06-12 1996-07-02 Dahlgren; Arthur Plate heat exchanger for liquids with different flows
DE19540271C1 (de) 1995-10-28 1996-11-07 Gea Ecoflex Gmbh Plattenwärmetauscher
US5988269A (en) 1995-10-23 1999-11-23 Swep International Ab Plate heat exchanger
EP1070928A1 (fr) 1998-02-27 2001-01-24 Daikin Industries, Ltd. Echangeur thermique du type a plaques
DE19948222A1 (de) 1999-10-07 2001-04-19 Xcellsis Gmbh Plattenwärmetauscher
DE19959780A1 (de) 1999-04-12 2001-06-13 Patente Rehberg Lauer Gbr Plattenwärmeübertrager
FR2821926A1 (fr) 2001-03-09 2002-09-13 Ciat Sa Echangeur de chaleur a plaques, plaque appartenant a un tel echangeur et utilisation d'un tel echangeur

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3661203A (en) * 1969-11-21 1972-05-09 Parkson Corp Plates for directing the flow of fluids
US3862661A (en) * 1970-01-16 1975-01-28 Leonid Maximovich Kovalenko Corrugated plate for heat exchanger and heat exchanger with said corrugated plate
US3817324A (en) * 1972-10-24 1974-06-18 Alfa Laval Ab Heat exchanging plate
GB1468514A (en) * 1974-06-07 1977-03-30 Apv Co Ltd Plate heat exchangers
SE412284B (sv) * 1978-07-10 1980-02-25 Alfa Laval Ab Vermevexlare innefattande ett flertal i ett stativ inspenda, i huvudsak rektangulera plattor
SE415928B (sv) * 1979-01-17 1980-11-10 Alfa Laval Ab Plattvermevexlare
JPS5630634A (en) 1979-08-22 1981-03-27 Mitsubishi Heavy Ind Ltd Development device for automatic penetrant flaw detection on inside surface of tube
JPS5923986Y2 (ja) * 1981-03-04 1984-07-16 株式会社日阪製作所 プレ−ト式熱交換器
SE446562B (sv) * 1982-03-04 1986-09-22 Malte Skoog Plattvermevexlare med turbulensalstrande asar innefattande ett forsta slag av plattor der asarna bildar viss vinkel med plattans langsida och ett andra slag med en viss annan vinkel
SE8306795D0 (sv) * 1983-12-08 1983-12-08 Alfa Laval Thermal Ab Vermevexlarplatta
JPH0449776U (fr) * 1990-08-30 1992-04-27
SE505225C2 (sv) * 1993-02-19 1997-07-21 Alfa Laval Thermal Ab Plattvärmeväxlare och platta härför
FR2705445B1 (fr) * 1993-05-18 1995-07-07 Vicarb Sa Echangeur de chaleur à plaques.
JPH0829088A (ja) * 1994-07-11 1996-02-02 Nisshin Steel Co Ltd プレス成形した金属板を積層した多孔体
JP3654669B2 (ja) 1994-09-28 2005-06-02 株式会社日阪製作所 プレート式熱交換器
JPH08159685A (ja) * 1994-12-08 1996-06-21 Toyo Radiator Co Ltd 積層型熱交換器コア
JP3670725B2 (ja) 1995-09-06 2005-07-13 株式会社日阪製作所 プレート式熱交換器
JP3650657B2 (ja) * 1995-09-26 2005-05-25 株式会社日阪製作所 プレート式熱交換器
SE9601438D0 (sv) * 1996-04-16 1996-04-16 Tetra Laval Holdings & Finance Plattvärmeväxlare
SE521377C2 (sv) * 1998-09-01 2003-10-28 Compact Plate Ab Plattvärmeväxlare av korsströmstyp
JP2000266480A (ja) 1999-03-12 2000-09-29 Daikin Ind Ltd 熱交換器及び換気装置
JP3139681B2 (ja) * 1999-05-31 2001-03-05 春男 上原 凝縮器
FR2795167B1 (fr) * 1999-06-21 2001-09-14 Valeo Thermique Moteur Sa Echangeur de chaleur a plaques, notamment pour refroidir une huile d'un vehicule automobile
FR2795165B1 (fr) * 1999-06-21 2001-09-07 Valeo Thermique Moteur Sa Echangeur de chaleur a plaques, en particulier refroidisseur d'huile pour vehicule automobile
SE516178C2 (sv) * 2000-03-07 2001-11-26 Alfa Laval Ab Värmeöverföringsplatta, plattpaket, plattvärmväxlare samt användning av platta respektive plattpaket för framställning av plattvärmeväxlare
DE10035939A1 (de) * 2000-07-21 2002-02-07 Bosch Gmbh Robert Vorrichtung zur Wärmeübertragung
JP2002107084A (ja) * 2000-09-29 2002-04-10 Hisaka Works Ltd プレート式熱交換器
JP2003161590A (ja) * 2001-11-22 2003-06-06 Kawasaki Thermal Engineering Co Ltd 伝熱プレートおよびそれを用いたプレート式熱交換器
JP3731066B2 (ja) * 2002-01-23 2006-01-05 株式会社日立製作所 熱交換器

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB699037A (en) 1950-04-17 1953-10-28 Charles Zeuthen Improvements in or relating to plate heat exchangers
US2858112A (en) 1955-05-25 1958-10-28 Gen Motors Corp Heat exchanger
DE1282037B (de) 1959-05-21 1968-11-07 Julius & August Erbsloeh Komma Blaehkanal-Waermetauscher
US3731737A (en) 1968-03-12 1973-05-08 Alfa Laval Ab Plate heat exchanger
DE2944799A1 (de) 1978-11-08 1980-05-22 Reheat Ab Verfahren zum praegen von waermetauscherplatten fuer plattenwaermetauscher und vorrichtung zur durchfuehrung des verfahrens
GB2107845A (en) 1981-10-16 1983-05-05 Schmidt W Gmbh & Co Plate heat exchanger
DE3239004A1 (de) 1981-10-21 1983-05-05 ReHeat AB, Täby Packungsnut in plattenelement fuer plattenwaermetauscher
WO1986005866A1 (fr) 1985-04-01 1986-10-09 Torell Ab Procede de fixation d'un manchon de tuyau d'admission ou de sortie
US4781248A (en) 1986-07-03 1988-11-01 W. Schmidt Gmbh & Co., K.G. Plate heat exchanger
WO1988001722A1 (fr) 1986-08-29 1988-03-10 Gerhard Fischer Echangeur de chaleur du type a plaques
US5193612A (en) 1990-11-29 1993-03-16 W. Schmidt-Bretten Gmbh Multiple-plate heat exchanger for pressurized fluids
DE4100651A1 (de) 1991-01-11 1992-07-16 Gea Ahlborn Gmbh Waermeaustauscher
US5531269A (en) 1992-06-12 1996-07-02 Dahlgren; Arthur Plate heat exchanger for liquids with different flows
US5462113A (en) 1994-06-20 1995-10-31 Flatplate, Inc. Three-circuit stacked plate heat exchanger
US5988269A (en) 1995-10-23 1999-11-23 Swep International Ab Plate heat exchanger
DE19540271C1 (de) 1995-10-28 1996-11-07 Gea Ecoflex Gmbh Plattenwärmetauscher
EP1070928A1 (fr) 1998-02-27 2001-01-24 Daikin Industries, Ltd. Echangeur thermique du type a plaques
DE19959780A1 (de) 1999-04-12 2001-06-13 Patente Rehberg Lauer Gbr Plattenwärmeübertrager
DE19948222A1 (de) 1999-10-07 2001-04-19 Xcellsis Gmbh Plattenwärmetauscher
FR2821926A1 (fr) 2001-03-09 2002-09-13 Ciat Sa Echangeur de chaleur a plaques, plaque appartenant a un tel echangeur et utilisation d'un tel echangeur

Also Published As

Publication number Publication date
US8061416B2 (en) 2011-11-22
US20070107890A1 (en) 2007-05-17
BRPI0413194B1 (pt) 2019-04-30
EP1654508A1 (fr) 2006-05-10
WO2005012820A1 (fr) 2005-02-10
JP2007500836A (ja) 2007-01-18
DE102004036951A1 (de) 2005-05-25
CN1833153B (zh) 2012-04-04
CN1833153A (zh) 2006-09-13
BRPI0413194A (pt) 2006-10-03
EP1654508B2 (fr) 2020-03-11

Similar Documents

Publication Publication Date Title
EP1654508B1 (fr) Echangeur de chaleur et procede de fabrication dudit echangeur
DE102004003790A1 (de) Wärmetauscher, insbesondere Öl-/Kühlmittel-Kühler
EP1725824B1 (fr) Echangeur thermique a empilement de disques
EP1739378A1 (fr) Element d'échange de chaleur et échangeur de chaleur associé
EP1910764B2 (fr) Element de plaque pour refroidisseur a plaques
EP0845647B1 (fr) Echangeur de chaleur à tubes plats avec extrémité de tubes déformée par torsion
DE60310992T2 (de) Hochdruckwärmetauscher
DE10220532A1 (de) Wärmetauscher
DE69411677T2 (de) Lamellenwärmetauscher, insbesondere Ölkühler für Kraftfahrzeug
EP1842020B1 (fr) Echangeur thermique a empilement de plaques
DE102012109346A1 (de) Interner Wärmetauscher mit externen Sammelrohren
DE202011052186U1 (de) Wärmeaustauscher
EP1792135A1 (fr) Echangeur thermique pour vehicules a moteur
EP3491323B1 (fr) Échangeur de chaleur présentant une structure à micro-canal ou une structure à tube à ailettes
DE202008013351U1 (de) Wärmeaustauschernetz und damit ausgerüsteter Wärmeaustauscher
DE202017102436U1 (de) Wärmetauscher mit Mikrokanal-Struktur oder Flügelrohr-Struktur
DE19719261C2 (de) Zweiflutiger Flachrohrverdampfer einer Kraftfahrzeugklimaanlage
DE202004020294U1 (de) Wärmeaustauschelement und damit hergestellter Wärmeaustauscher
DE19547928C2 (de) Plattenwärmetauscher
EP0268831B1 (fr) Lamelle
EP1557627A1 (fr) Canal d'écoulement
DE102009056274A1 (de) Wärmetauscher
DE102011008118B4 (de) Wärmetauscher sowie Mehrkammerflachrohr dafür
DE202008016603U1 (de) Wellrippe für Wärmeaustauscher
DE102007041357A1 (de) Wärmetauscher, insbesondere für ein Kraftfahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060301

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: RICHTER, JENS

Inventor name: GESKES, PETER

17Q First examination report despatched

Effective date: 20120105

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAHLE BEHR GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160308

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

INTC Intention to grant announced (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: GESKES, PETER

Inventor name: RICHTER, JENS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTG Intention to grant announced

Effective date: 20160906

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 838713

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004015348

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170120

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170220

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502004015348

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

26 Opposition filed

Opponent name: VALEO SYSTEMES THERMIQUES

Effective date: 20170712

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170119

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170729

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170729

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 838713

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20040729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161019

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20200311

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: R102

Ref document number: 502004015348

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230725

Year of fee payment: 20

Ref country code: DE

Payment date: 20230719

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 502004015348

Country of ref document: DE