EP3491323B1 - Échangeur de chaleur présentant une structure à micro-canal ou une structure à tube à ailettes - Google Patents

Échangeur de chaleur présentant une structure à micro-canal ou une structure à tube à ailettes Download PDF

Info

Publication number
EP3491323B1
EP3491323B1 EP17749468.9A EP17749468A EP3491323B1 EP 3491323 B1 EP3491323 B1 EP 3491323B1 EP 17749468 A EP17749468 A EP 17749468A EP 3491323 B1 EP3491323 B1 EP 3491323B1
Authority
EP
European Patent Office
Prior art keywords
tube
wing
lamellar structure
region
structures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP17749468.9A
Other languages
German (de)
English (en)
Other versions
EP3491323C0 (fr
EP3491323A1 (fr
Inventor
Jörg Kirchner
Matteo Codecasa
Sascha WIELAND
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Grandholm Production Services Ltd
Original Assignee
Grandholm Production Services Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE202017102436.9U external-priority patent/DE202017102436U1/de
Application filed by Grandholm Production Services Ltd filed Critical Grandholm Production Services Ltd
Publication of EP3491323A1 publication Critical patent/EP3491323A1/fr
Application granted granted Critical
Publication of EP3491323C0 publication Critical patent/EP3491323C0/fr
Publication of EP3491323B1 publication Critical patent/EP3491323B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/022Tubular elements of cross-section which is non-circular with multiple channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/14Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
    • F28F1/16Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means being integral with the element, e.g. formed by extrusion

Definitions

  • the present invention relates to a component composite comprising a microchannel structure or wing tube structure and a fin structure, a heat exchanger with the component composite and the respective manufacturing methods.
  • Microchannel structures for example for heat exchangers, are known in the prior art.
  • An exemplary embodiment of a microchannel structure 1 according to the prior art is shown in the Figures 1 and 2
  • the microchannel structure 1 consists of four microchannels 3 and has an overall rectangular cross-sectional shape with a width B M and a height H M (cf. Fig. 2 ). Therefore, only the outer surface of the microchannel structure is available for heat exchange with a medium flowing around the microchannel structure.
  • lamella structure 10 In order to increase the outer surface of the microchannel structure 1, which is available for heat dissipation, the Figures 3 and 4 shown lamella structure 10 is used.
  • the lamella structure 10 has the shape of an accordion with a width B L and a height H L .
  • the lamella structure 10 in combination with two microchannel structures 1 running parallel to one another results in a component assembly 20, wherein in a heat exchanger the component assembly 20 can also have a plurality of microchannel structures 1 which are connected to one another via corresponding lamella structures 10.
  • the surface area of the microchannel structure 1 which is available for heat dissipation is thus increased accordingly by the lamella structure 10.
  • a heat exchanger with a wing tube structure is in EN 10 2012 005 513 A1
  • the heat exchanger for removing heat from a medium has at least one serpentine-shaped wing tube arranged in a housing, the straight wing sections of which are arranged such that the wings of the wing sections enclose an angle in the range of 10° ⁇ ⁇ ⁇ 30° with a flow direction.
  • WO 2012/142070 A1 describes a component assembly according to the preamble of claim 2 in a heat exchanger with a plurality of tubes which are arranged substantially transversely to a direction of air flow through the heat exchanger and are arranged in a plurality of rows of tubes which extend substantially along the direction of air flow.
  • the heat exchanger further comprises a plurality of webs which are formed substantially integrally with two or more tubes of the plurality of tubes, each web extending between and being connected to adjacent tubes of the plurality of tubes. At least one tube of the plurality of tubes has a cross-section with an aspect ratio of more than 1:1 relative to a substantially horizontal web.
  • a heat exchanger with microchannel structure goes out EP 2 966 391 A1
  • the heat exchanger comprises a gas circuit and a coolant circuit enclosed in a vessel, and turbulators or turbulence generators arranged in the coolant circuit between tubes to generate turbulence of the coolant flow in use, which improves the thermal efficiency of the heat exchanger.
  • the turbulators are integrally formed in a single turbulator plate that extends across a plurality of tubes.
  • WO 2014/103268 A1 a component assembly according to the preamble of claim 1. This is to provide a heat exchange tube with a water drainage function that facilitates the assembly of a heat exchanger, and also a method for producing a heat exchange tube that facilitates the processing of the heat exchange tube.
  • a corrugated fin heat exchanger is provided. This is obtained by arranging a plurality of flat heat exchanger tubes arranged parallel to one another in the horizontal direction and between a pair of opposing distribution tubes and connecting corrugated fins between the heat exchanger tubes in which mountain-valley folds are alternately and repeatedly formed.
  • the heat exchanger tubes are equipped with a flat tube body having a passage for a heating medium, a pair of flanges extending at both ends in the direction of the width of the tube body, and cut and raised parts obtained when the two flanges are cut and raised into an inclined shape and provided in a row at an appropriate distance along the longitudinal direction of the tube body.
  • the two cut and raised parts have the same inclination angle and the inclination directions of the two cut and raised parts are asymmetrical at the two ends in the width direction of the pipe body.
  • the object of the present invention is to provide a component composite consisting of a micro-channel or wing tube structure in combination with a fin structure that is optimized with regard to heat transfer, so that it can also be used in high-performance devices, such as a heat exchanger of a motor vehicle, can be used cost-effectively. Furthermore, it is an object of the present invention to describe a corresponding heat exchanger and the associated manufacturing methods.
  • the above object is achieved by a component composite comprising a microchannel structure and a fin structure according to patent claim 1 and a wing tube structure and a fin structure according to patent claim 2, as well as by a heat exchanger according to dependent patent claims 7 and 8.
  • the object is also achieved by a manufacturing method for a microchannel structure according to independent patent claim 9, a manufacturing method for a fin structure according to independent patent claim 10, a manufacturing method for a component composite according to independent patent claim 11, and a manufacturing method for a heat exchanger according to independent patent claims 12 and 13.
  • the above object is achieved by a condenser according to dependent patent claim 14 and an evaporator according to dependent patent claim 15. Further advantageous embodiments emerge from the following description, the drawings, and the appended patent claims.
  • a microchannel structure for a heat exchanger or the like comprises a plurality of microchannels extending parallel to one another, defining a first region of the microchannel structure, and at least one, preferably two, wings extending laterally outwardly from a surface surrounding the first region and extending parallel to a longitudinal axis of the first region.
  • the first region consists of a plurality of microchannels running parallel to one another, which define a fluid flow direction.
  • Microchannels in the sense of the present invention are channels with a diameter ⁇ 1 mm.
  • the first region is usually produced by extrusion, for example from aluminum.
  • At least one wing is provided which extends laterally outwards from a surface enveloping the first region. Lateral in this context means that the at least one wing extends transversely to the flow direction or the direction of the microchannels. The at least one wing preferably extends continuously over essentially the entire length of the first region.
  • One advantage is therefore that a larger surface area is provided for heat transfer compared to known microchannel structures, so that the efficiency of the microchannel structure according to the invention is also increased compared to known microchannel structures.
  • a disadvantage to be mentioned is the larger installation space that the microchannel structure according to the invention requires due to the at least one wing for the same number of microchannels.
  • the microchannel structure has two wings. It is particularly advantageous if the wings extend laterally outwards from opposite sides of the surface enveloping the first region. In this way, a further increase in the surface area for heat transfer can be achieved.
  • the first region has an approximately rectangular cross-sectional shape, which has a greater width compared to a height
  • the at least one wing extends from the surface enveloping the first region from a side wall that determines the height, preferably in the middle.
  • one wing extends from a side wall, preferably in the middle.
  • the above effect is further improved by rounding the edges of the approximately rectangular cross-sectional shape according to a further embodiment. In this way, in particular, a turbulent flow of the heat transfer medium around the microchannel structure according to the invention and a possible resulting flow separation can be avoided.
  • the lateral extension of the at least one wing outwards corresponds to approximately half the width of the first region.
  • a thickness of the at least one wing is preferably equal to a quarter of the height of the first region.
  • An advantageous lamellar structure for a microchannel structure comprises: at least one first region in a first plane, which provides a first connecting surface for a first microchannel structure, at least one second region in a second plane, which preferably provides a second connection surface for a second microchannel structure, at least one first obliquely running region, which is arranged with a first end on the first region and with an opposite second end on the second region, and at least one second obliquely running region, which is arranged with a first end on the first region or another, preferably adjacent, first region and with an opposite second end on the second region, wherein the at least one first obliquely running region encloses a first angle ⁇ of less than 90° with the first region on a first side and a second angle ⁇ of less than 90° with the second region on a second side opposite the first side.
  • the first angle ⁇ and the second angle ⁇ are therefore alternating angles.
  • the contact area with the first region preferably with the entire microchannel structure, is increased by the first and/or the second region. In this way, the heat from the first area or the microchannel structure can be dissipated better compared to the known lamellar structures.
  • the at least one second obliquely running region forms a third angle ⁇ of less than 90° on a first side with the first region or the further first region, and a fourth angle ⁇ of less than 90° on a second side opposite the first side with the second region. It is also advantageous if the second obliquely running region has a second inclination direction opposite to a first inclination direction of the first obliquely running region in relation to a plane perpendicular to the first and/or second plane. The first and second inclination directions are preferably mirrored on the vertical plane, but this is not a mandatory requirement.
  • An advantage of this embodiment is that there are now at least two obliquely running regions which have different inclination directions and different or identical inclination angles in relation to the vertical plane. In this way, the surface area available for heat dissipation can be further increased when used with a microchannel structure.
  • the lamella structure has a plurality of first and second regions as well as a plurality of first obliquely running regions and a plurality of second obliquely running regions.
  • first obliquely running region is arranged with the first end at the first end of the first region and with the opposite second end at the first end of the second region
  • second obliquely running region is arranged with the first end at the second end of the adjacent first region from the plurality of first regions and with the opposite second end at the second end of the second region.
  • the lamella structure is constructed in such a way that a distance between two first regions is covered by a second region when the arrangement is viewed perpendicular to the first or second plane.
  • the distance between the two first regions is smaller than the length of the second region. This also applies in reverse for a distance between two second regions and the length of a first region.
  • the dimensions of the first and second regions are preferably the same.
  • the dimensions of the first and second oblique regions are preferably the same.
  • the first angle ⁇ and the second angle ⁇ and/or the third angle ⁇ and the fourth angle ⁇ are the same size. This means that the at least one first region and the at least one second region are arranged in planes that run parallel to one another. In this way, a particularly uniform structure is created, which has a beneficial effect on heat transfer.
  • the first, the second, the first slanted and/or the second slanted area are straight, wave-shaped or accordion-shaped or these areas each have any other shape or combinations thereof. Due to these design options, the areas can be specifically adapted to the requirements of the respective applications with regard to heat dissipation.
  • a central depression is provided in the first and/or second region, which is preferably adapted to a microchannel structure, in particular to a first region of a microchannel structure described above, or to a wing tube structure.
  • the lamella structure is adapted in a particularly advantageous manner to the microchannel structure and the wing tube structure, so that contact for heat exchange between the lamella structure and the microchannel/wing tube structure is achieved as far as possible over the entire width of the microchannel/wing tube structure and/or the lamella structure.
  • the heat exchanger is further supported by the fact that the depression is provided as an opening or as a flat shape.
  • the depression is formed in the lamella material without breaking through the lamella surface. This provides a certain size of a contact surface.
  • the contact surface is reduced to the edge of the breakthrough, which is connected to the microchannel structure or the wing tube structure.
  • a component assembly according to the invention consists of at least two microchannel structures, in particular the microchannel structures described above, or at least one wing tube structure and an inventive Lamellar structure, wherein the two microchannel structures or the wing tube structures are at least partially connected to one another via the lamellar structure, and wherein the microchannel structures or wing tube structures preferably run parallel to one another.
  • the component composite produced in this way has the advantages of the above microchannel structure and/or the above lamellar structure. In this regard, reference is made to the corresponding explanations.
  • the component assembly in the two embodiments according to the invention can be summarized as follows:
  • the component assembly consists of a plurality of microchannel structures, each of which has a plurality of microchannels running parallel to one another, which define a first region of the microchannel structure, which has an approximately rectangular cross-sectional shape, which has a greater width compared to a height, and two wings extending laterally outward from a surface enveloping the first region from a side wall determining the height, which wings run parallel to a longitudinal axis of the first region, and a lamellar structure, which comprises the following features: at least one first region in a first plane, which provides a first connecting surface for the first microchannel structure, at least one second region in a second plane, which preferably provides a second connecting surface for the second microchannel structure, wherein a central recess is provided in the first and second regions, which is adapted to the microchannel structure in the first region, at least one first obliquely running region, which is arranged
  • the component assembly consists of a plurality of elongated, straight-line wing tube structures, each of which has a central tube with a round, curvilinear or rectangular line cross-section and two wings arranged opposite one another and extending laterally outward from the central tube, which run parallel to a longitudinal axis of the central tube, and a lamella structure comprising the following features: at least a first region in a first plane that provides a first connection surface for the first wing tube structure, at least one second region in a second plane that provides a second connection surface for the second wing tube structure, wherein a central recess is provided in the first and second regions that is adapted to a shape of the tube of the wing tube structure, at least one first obliquely running region that is arranged with a first end on the first region and with an opposite second end on the second region, and at least one second obliquely running region that is arranged with a first end on the first region or a further, adjacent, first region
  • the component assembly has a plurality of microchannel or wing tube structures, in particular the microchannel structures described above, the first regions of which preferably run parallel to one another, with each microchannel structure being at least partially connected to the respective adjacent microchannel structure via a lamella structure according to the invention.
  • a lamella structure according to the invention.
  • the lamella structure is preferably attached to the microchannel structures or wing tube structures, for example by means of soldering, welding, gluing.
  • the component assembly has the majority of the elongated, straight-line wing tube structures in a meandering course parallel to one another and connected to one another in a fluid-conducting manner, so that a fluid inlet can be connected to an inlet and a fluid outlet to an outlet of the meandering course of the wing tube structures.
  • This preferred meandering arrangement forms the basis for an efficient and fluid-saving household of coolant that is used in the component assembly and later heat exchanger.
  • the central tube of the elongated, straight-line wing tube structures forms a curved end or Connection area without wings the fluid connection to the adjacent elongated straight wing tube structure.
  • the individual curved connection areas require a smaller volume of cooling fluid to supply the wing tube structures than is the case with a first and a second distribution pipe in combination with the microchannel structures.
  • a heat exchanger comprises a first distributor pipe for supplying a fluid and a second distributor pipe for discharging a fluid, as well as a component assembly according to the invention, wherein the microchannels of each microchannel structure are in flow connection with the first distributor pipe at a first end and in flow connection with the second distributor pipe at a second end.
  • a further heat exchanger comprises a supply pipe for supplying a fluid and a discharge pipe for discharging a fluid as well as a component assembly with at least two wing tube structures connected via a preferred lamella structure according to the above description, wherein the central tubes of the wing tube structures are connected one behind the other in the flow direction in order to provide a flow connection between the supply pipe and the discharge pipe.
  • the heat exchanger with vane tube structures uses known design principles of a heat exchanger of this type.
  • the fin structure advantageously extends at least over the entire width of the vane tube, i.e. transversely to the longitudinal axis of the vane tube. This transverse contact between the vane tube structure or microchannel structure and the fin structure extends over the maximum width. This contact area is preferably increased by increasing the opposing contact surfaces of the vane tube/microchannel structure and the fin structure. This applies to contact lines and/or contact surfaces in the area of the vanes and/or the tube or the area of the interconnected microchannels.
  • the central tubes of the vane tube structures are connected to one another one after the other in order to provide the flow connection between the supply tube and the discharge tube for coolant.
  • the majority of the elongated, straight-line vane tube structures are arranged parallel to one another in a meandering course.
  • the multiple vane tube structures span an approximately flat surface.
  • the supply pipe is connected to the inlet and the discharge pipe is connected to the outlet of the meandering course of the wing tube structures.
  • at least two meandering courses of the wing tube structures are arranged parallel to each other and flat next to each other and are in flow connection with each other.
  • the wings of the wing tube structures are preferably approximately perpendicular to the plane/planes spanned by the meandering courses of the wing tube structures.
  • An advantageous manufacturing method for a microchannel structure comprises the step of extruding a microchannel structure consisting of a plurality of microchannels running parallel to one another, which define a first region of the microchannel structure, and at least one, preferably two, wings extending laterally outward from a surface enveloping the first region, which wings run parallel to a longitudinal axis of the first region, preferably made of aluminum.
  • a microchannel structure according to the invention is produced by means of the manufacturing method according to the invention. With regard to the advantages, reference is therefore made to the microchannel structure according to the invention.
  • An advantageous manufacturing method of a lamella structure comprises the steps of: providing at least one first region which provides a first connecting surface for a first microchannel structure or a wing tube structure, and at least one second region which preferably provides a second connecting surface for a second microchannel structure or a second wing tube structure, then arranging a first obliquely running region with a first end on the first region and with an opposite second end on the second region such that the at least one first obliquely running region forms a first angle ⁇ of less than 90° with the first region on a first side and a second angle ⁇ of less than 90° with the second region on a second side opposite the first side, and arranging a second obliquely running region with a first end on the first region or another, preferably adjacent, first region and with an opposite second end on the second region.
  • the lamella structure according to the invention can be manufactured using this manufacturing method. Therefore, with regard to the corresponding advantages, reference is made to the explanations regarding the lamella structure.
  • the step of arranging the second obliquely running region is carried out such that the second obliquely running region encloses a third angle ⁇ of less than 90° with the first region or the further first region on a first side and a fourth angle ⁇ of less than 90° with the second region on a second side opposite the first side.
  • the step of providing comprises providing a plurality of first and second regions and the steps of arranging the first and second obliquely running regions are repeated several times.
  • the arranging of the first obliquely running region is preferably carried out such that the first obliquely running region is arranged with the first end at the first end of the first region and with the opposite second end at the first end of the second region and the arranging of the second obliquely running region is carried out such that the second obliquely running region is arranged with the first end at the second end of the adjacent first region from the plurality of first regions and with the opposite second end at the second end of the second region.
  • the method for producing a lamella structure comprises the further step of providing a central depression in the first and/or second region, which is preferably adapted to a microchannel structure, in particular to a first region of a microchannel structure according to the invention, or a wing tube structure.
  • the first and/or the second region can already have a depression for the microchannel structure, in particular for a first region thereof, when the regions are initially provided. If the lamella structure is assembled from individual parts, the depression can be created, for example, before the arrangement of the first and/or the second obliquely running region. According to a further alternative, corresponding depressions can also be provided later.
  • the steps of the method of manufacturing the lamella structure according to the invention are carried out by bending a sheet metal layer. If the lamella structure is manufactured entirely from a sheet metal layer by bending, the above-mentioned depression is created either before or after bending in the areas that later correspond to the first and/or the second area. It is also conceivable to punch or cut out openings.
  • a manufacturing method of a component composite comprises the steps of: providing at least two microchannel structures or wing tube structures, in particular the microchannel structures described above, and one of the lamella structures described above, then at least partially connecting the two microchannel structures or the wing tube structures by means of the lamella structure, for example by soldering, welding or gluing the lamella structure.
  • the step of providing in the manufacturing process of the component assembly comprises providing a plurality of microchannel/wing tube structures and lamella structures and the step of connecting comprises at least partially connecting each microchannel structure from the plurality of microchannel structures to the respective adjacent microchannel structure or each wing tube structure from the plurality of wing tube structures to the respective adjacent wing tube structure by means of a respective lamella structure (120).
  • a manufacturing method of a heat exchanger comprises the steps of: providing a first distributor pipe, providing a second distributor pipe and providing a component assembly according to the invention and then connecting the microchannels of each microchannel structure at a first end to the first distributor pipe and at a second end to the second distributor pipe.
  • the heat exchanger is made of a wing tube structure, then a supply pipe and a discharge pipe are first provided and connected to the wing tube structures, which have previously been connected one after the other - i.e. in series.
  • a condenser consists of at least two, preferably at least three, subunits, each with a plurality of elongated, straight-line wing tube structures, each of which has a central tube with a round, curvilinear or angular line cross-section and two wings arranged opposite one another and extending laterally outwards from the central tube, which run parallel to a longitudinal axis of the central tube, and a lamella structure which comprises the following features: at least one first region in a first plane which provides a first contact zone for the first wing tube structure, at least one second region in a second plane which provides a second contact zone for the second wing tube structure, wherein a central recess is provided in the first and second regions which is adapted to a shape of the tube of the wing tube structure, at least one first obliquely running region which is arranged with a first end on the first region and with an opposite second end on the second region, and at least one second obliquely running region which is arranged
  • a condenser or condenser is generally a device in which a fluid flowing inside the central tube of the wing tube structure is converted from the gaseous state to the liquid state (condensation).
  • condensers are used to liquefy the exhaust steam or the vaporous refrigerant. This enables a closed cycle process in these systems.
  • An advantage of the condenser according to the invention is the particularly compact design and the particularly efficient removal of heat by means of the wing tube structure in combination with the fin structure and the specific design and dimensioning.
  • the condenser therefore has a maximum of six sub-units.
  • a distance between two wing tube structures of the same subunit is between 10 and 12 mm.
  • the average distance between two consecutive first and/or second regions of the lamella structure is 3 to 9 mm.
  • the distance between central tubes of adjacent subunits is also preferably 25 to 35 mm, preferably measured from tube center to tube center.
  • the width of the condenser perpendicular to the flow direction of the air flowing over the lamella structure of the condenser is 200 to 250 mm
  • the height of the condenser perpendicular to the flow direction of the air flowing over the lamella structure of the condenser is 100 to 150 mm
  • the depth of the condenser in the flow direction of the air flowing over the lamella structure of the condenser is 80 to 150 mm.
  • An evaporator comprises, preferably precisely, two elongated rectilinear wing tube structures, each having a plurality of central tube sections with a round, curvilinear or angular line cross-section and two wings arranged opposite one another and extending laterally outwards from the central tube section, which wings run parallel to a longitudinal axis of the central tube section, wherein the wings of a respective wing tube structure are arranged in the same plane, and the evaporator further comprises a fin structure comprising the following features: at least one first region in a first plane, which provides a first contact zone for the first wing tube structure, at least one second region in a second plane, which provides a second contact zone for the second wing tube structure, wherein a central recess is provided in the first and second regions, which is adapted to a shape of the tube of the wing tube structure, at least one first obliquely running region, which is arranged with a first end on the first region and with an opposite second end on the
  • An evaporator is generally a device in which a fluid flowing inside the central tube of the vane tube structure is converted from the liquid state to the gaseous state.
  • One advantage of the evaporator according to the invention, as with the condenser according to the invention, is its particularly compact design. In an advantageous embodiment, the condenser therefore has exactly two vane tube structures.
  • Each of the two vane tube structures comprises a plurality of tube sections with vanes.
  • the tube sections with vanes of a respective vane tube structure are arranged such that the vanes are arranged in one plane. This distinguishes the evaporator according to the invention from the condenser according to the invention, for example, in which the vanes of a vane tube structure are arranged in parallel planes.
  • the lamella structure preferably comprises a plurality of central depressions, so that a lamella structure connects several tube sections with vanes of the first and second vane tube structures to one another.
  • a distance between the blades of the first and second blade tube structure is approximately 20 mm.
  • the width of the blade tube structure is also preferably ⁇ 30 mm. In this way, a particularly compact design of the evaporator can be achieved.
  • a cavity provided with a means to resist thawing.
  • the effectiveness of the evaporator can be further improved.
  • a microchannel structure according to the invention can be used, for example, in a heat exchanger of a motor vehicle, such as in an air conditioning system of a motor vehicle.
  • the microchannel structure is also used in any high-performance devices that must ensure the most efficient heat transfer possible in the smallest possible space available.
  • a microchannel structure 100 consists of four microchannels 104, which together define a first region 102 with a fluid flow direction.
  • the microchannels 104 preferably have a diameter of at most 1 mm.
  • Four microchannels 104 are arranged next to one another, with the two middle microchannels having a substantially rectangular cross-sectional shape.
  • the first region 102 therefore has an approximately rectangular cross-sectional shape overall.
  • the two microchannels 104 on the outer sides have rounded edges 108.
  • the rounded edges 108 serve to improve the flow through a heat transfer medium in conjunction with the wings 106 explained below, so that, for example, the flow can be as laminar as possible and flow separation in the first region 102 can be avoided.
  • two wings 106 are also provided, which extend laterally outward and run parallel to a longitudinal axis of the first region 102.
  • the wings 106 extend essentially over the entire length of the first region 102. This means that the wings 106 do not extend all the way to the respective end of the first region 102, so that the first region 102 has a connecting region 110 at both axial ends.
  • the connecting region 110 serves for a connection to a distribution pipe of a heat exchanger 150 or another corresponding device.
  • a total width B total of the microchannel structure 100 is made up of twice the width of a wing 106 and once the width B S of the first region 102.
  • the width of the two wings 106 together corresponds approximately to the width Bs of the first region 106.
  • the ratio of the total width B total of the microchannel structure 100 to the width B S of the first region 102 is therefore approximately 2:1.
  • the thickness D of the wings 106 is approximately a quarter of the height H S of the first region 102.
  • the wings 106 are arranged in particular centrally on a side wall of the surface surrounding the first region 102, which defines a height H S of the first region 102.
  • a continuous laminar flow can be ensured to improve heat transfer.
  • a surface enlargement of approximately 40% is possible compared to the Figures 1 and 2 shown structure can be achieved. This also has a correspondingly beneficial effect on heat dissipation.
  • the Figures 9 and 10 show a preferred embodiment of a lamellar structure 120 for a microchannel structure 100.
  • the lamellar structure 120 consists of a straight first region 122 in a first plane and a straight second region 124 in a second plane. The first and second planes are parallel to one another.
  • the first region 122 is connected to the second region 124 via a first straight inclined region 126.
  • the first inclined region 126 encloses a first angle ⁇ ⁇ 90° with the first region 122.
  • the first inclined region 126 encloses a second angle ⁇ ⁇ 90° with the second region 124.
  • the first angle ⁇ and the second angle ⁇ are alternating angles since they are present on opposite sides of the first inclined region 126 and on opposite sides of the first 122 and the second region 124. Due to the parallel arrangement of the first and second planes, the first ⁇ and the second angle ⁇ are equal. Furthermore, the first obliquely extending region 126 has a first inclination direction relative to a plane perpendicular to the first and/or second plane. This perpendicular plane runs transversely to a fluid flow direction, which becomes apparent when using the lamella structure 120 with the microchannel structure 1, 100. The structure resulting from this arrangement increases the size of the fluid flow in comparison to known accordion-shaped or S-shaped structures. Use with a microchannel structure 1, 100 a contact area with the microchannel structure 1, 100, so that in this way the heat dissipation can be further improved.
  • a second straight, slanted region 128 is also provided.
  • the second slanted region 128 forms a third angle ⁇ ⁇ 90° with another, adjacent, first region 122 and a fourth angle ⁇ ⁇ 90° with the second region 124.
  • the third ⁇ and fourth angle ⁇ are again, as already described for the first slanted region 126, alternating angles.
  • the second slanted region 128 has a second inclination direction that is opposite to the first.
  • the second inclination direction is a reflection of the first inclination direction on the vertical plane.
  • the dimensions of the first 122 and second regions 124 as well as the first slanted region 126 and the second slanted region 128 are the same. This also applies to all four angles ⁇ , ⁇ , ⁇ , ⁇ .
  • a plurality of first regions 122 are spaced apart from one another such that the distance between the first regions 122 is smaller than a length of the second regions 124. If the lamella structure 120 is viewed from a direction perpendicular to the first and second planes, then a second region 124 overlaps the distance between two first regions 122 and vice versa.
  • the first 122 and second regions 124 have a recess 130 in the middle for receiving the first region 102 of the microchannel structure 100.
  • the first 126 and second regions 128 also have corresponding recesses in the contact areas with the first and second regions 122, 124. This results in a height H LS in the middle region of the lamella structure 120 at the recess 130, which is correspondingly lower than the total height H LGes of the lamella structure 120.
  • the lamellar structure 120 has a total width B LGes which corresponds approximately to the width B Ges of the microchannel structure 100, the projections 132 are formed at the edge regions of the lamellar structure 120.
  • the resulting advantage becomes apparent when the Figures 11 and 12 be considered. It can be seen that the lamella structure 120 is in contact with the microchannel structure 100 over its entire width. In this way, the area available for heat dissipation can be increased particularly effectively.
  • the recess 130 is provided in such a way that the projections 132 of two lamella structures 120 arranged on the respective sides of the microchannel structure 1 touch each other and thus represent corresponding wings.
  • the width of the recess would be 130 of the lamella structure 120 correspond to the width of the microchannel structure 1 and a width of the respective projections 132 could each correspond to half the width of the microchannel structure 1 or the recess 130.
  • a component assembly 140 is shown according to an embodiment.
  • the component assembly 140 consists of three microchannel structures 100, which are connected to one another via two lamella structures 120.
  • the lamella structure 120 is fastened between the microchannel structures 100. This can be done, for example, by clamping between the microchannel structures 100 or by other types of fastening such as soldering to the respective microchannel structure 100.
  • the known component assembly 20 shown can be combined with the component assembly 140 according to the Figures 11 and 12 A surface increase of approx. 43% can be achieved, which results in a correspondingly improved heat transfer.
  • the Figures 13 to 15 finally show a preferred embodiment of a heat exchanger 150.
  • the heat exchanger 150 has a first distributor pipe 152 with a first connection 156 and a second distributor pipe 154 with a second connection 158.
  • a fluid is supplied via one of the two connections 156, 158, while the fluid is discharged again via the other connection 158, 156.
  • a component assembly 140 is arranged between the two distributor pipes 152 and 154.
  • the number of microchannel structures 100 in the component assembly 140 depends on the height of the distributor pipes 152, 154.
  • Fig. 15 shows that the connection region 110 is used as a wingless region of the microchannel structure 100 for connection to the respective distribution pipe 152, 154.
  • FIG. 16 A further preferred embodiment of a component assembly 140' is shown Figure 16
  • This component assembly 140' consists of a further preferred embodiment of the lamella structure 120' already described above.
  • This lamella structure 120' connects wing tubes 200 arranged opposite one another.
  • Such wing tubes 200 consist of a central tube 210 with a round, curved or angular line cross-section.
  • the central tube 210 has a wing 220 on each of two opposite sides, which extends in the radial direction from the central tube 210.
  • the wings 220 extending radially outward run parallel to the longitudinal axis of the central tube 210 and thus of the entire wing tube structure.
  • At least two wing tube structures 200 arranged parallel to one another are connected to one another via a lamella structure 120' arranged between them.
  • the lamella structure 120' has the same structural properties as have already been explained above in combination with the microchannel structure 1; 100. Accordingly, the first 122' and second regions 124' in the preferred embodiment of the Figure 16 and in the lamellar structures 120' of the Figures 17 and 18 a linear contact with the neighboring wing tube structures 200.
  • the first obliquely running region 126' and the second obliquely running region 128' connect the two first and second straight regions 122' and 124', which run opposite one another in a straight line.
  • the obliquely running regions 126' and 128' connect the two wings 220 arranged opposite one another and the central tube 210.
  • the lamella structure 120' thus establishes a heat-conducting contact with the wing tube structure 200.
  • the lamella structure 120' increases the area of the wing structure 200 available for heat exchange.
  • the lamella structure 120' in Figure 17 has a recess 130' in the first straight contact area 121'.
  • This recess 130' is adapted to the shape of the central tube 210 in order to receive it in the recess 130'.
  • the depression 130' is shown as a cut-out area from the straight area 122' of the lamella structure 120', it is also preferred to provide the depression 130' in a planar manner.
  • the straight first area 122' is not provided as a tapered line-like contact area, but as a straight planar contact area, as shown in Figure 19 is shown schematically.
  • the contact surface 122' shown there is flat and thus preferably rests against the central tube 210 and the wings 220 of the wing tube structure. Accordingly, it is also preferred to provide a flat recess (not shown) for the central tube 210 in the straight areas 122' and 124'.
  • a plurality of wing tube structures 200 consisting of the wings 220 and a central tube 210 are arranged parallel to one another. Neighboring wing tube structures 200 with a central tube 210 and wings 220 are connected to one another via the respective intermediate lamella structure 120' in order to enlarge the heat-exchanging surfaces of the wing tube structure.
  • the central tubes 210 are connected to one another via bent tube sections 230 without wings (see Figures 20 , 21 , 23 ).
  • the component assembly 140' also comprises a supply pipe 156' and a discharge pipe 158' in the same way as was used in the heat exchanger 150 already described above. Accordingly, a cooling medium is introduced into the component assembly through the previously described supply pipe 156', while it is discharged via the discharge pipe 158'.
  • the wing tube structures 200 connected to one another according to the above arrangement form a meandering course.
  • the wing tube structures 200 arranged parallel to one another approximately span a plane.
  • the Wings 220 of the wing tube structures 200 are arranged approximately perpendicular to a plane spanned by the meandering courses of the wing tube structures 200.
  • the component assembly with only one plane or a plurality of planes of meanderingly connected wing tube structures arranged parallel to one another can preferably be used effectively in a heat exchanger.
  • FIG. 24 A preferred embodiment of a heat exchanger 150' using at least one of the component assemblies 140' described above is shown in Figure 24
  • a first and a second component assembly 140' which, for example, in the Figures 21 and 22 shown, in parallel arrangement to each other.
  • These two component assemblies 140' arranged parallel to each other are in fluid communication, so that a fluid supplied through the supply pipe 156' flows through both component assemblies 140' and is then discharged through the drain pipe 158'.
  • the blades 220 are arranged parallel to a flow direction S.
  • a manufacturing method for the microchannel structure 100 comprises the step of: extruding (step A) a microchannel structure 100 consisting of a plurality of microchannels 104 running parallel to one another, which define a first region 102 of the microchannel structure 100, and at least one, preferably two, wings 106 extending laterally outward from a surface enveloping the first region 102, which wings run parallel to a longitudinal axis of the first region 102, preferably made of aluminum.
  • a manufacturing method of a lamella structure 120 comprises, as a first step, the provision (step B) of at least one first region 122, which provides a first connection surface for a first microchannel structure 1; 100, and at least one second region 124, which preferably provides a second connection surface for a second microchannel structure 1; 100.
  • step C the arrangement of a first obliquely running region 126 with a first end on the first region 122 and with an opposite second end on the second region 124 takes place such that the at least one first obliquely running region 126 encloses a first angle ⁇ of less than 90° with the first region 122 on a first side and a second angle ⁇ of less than 90° with the second region 124 on a second side opposite the first side.
  • the manufacturing method comprises, before, after or at the same time as step C, the further step of arranging (step D) a second obliquely running region 128 with a first end on the first Region 122 or a further, preferably adjacent, first region 122 and with an opposite second end at the second region 124.
  • the second obliquely running region 128 is arranged such that the at least one second obliquely running region 128 encloses a third angle ⁇ of less than 90° with the first region 122 on a first side and a fourth angle ⁇ of less than 90° with the second region 124 on a second side opposite the first side.
  • the provision (step B) preferably comprises the provision of a plurality of first 122 and second regions 124, and the steps of arranging (steps C and D) the first 126 and second obliquely running region 128 are repeated several times.
  • the lamellar structure can be particularly advantageously adapted to a length of the microchannel structure.
  • the arrangement (step C) of the first obliquely running region 126 is carried out such that the first obliquely running region 126 is arranged with the first end at the first end of the first region 122 and with the opposite second end at the first end of the second region 124.
  • step D) of the second obliquely running region 128 is carried out such that the second obliquely running region 128 is arranged with the first end at the second end of the adjacent first region 122 from the plurality of first regions 122 and with the opposite second end at the second end of the second region 124.
  • step E a central depression 130 in the first 122 and/or second region 124 is provided.
  • the central depression is preferably adapted to a microchannel structure 1; 100, in particular to a first region 102 of a microchannel structure according to the invention.
  • the step of providing the depression 130 can generally take place before or after the provision of the first and second regions and before or after the arrangement of the first and/or the second obliquely running region.
  • Steps B to E can be implemented by bending a sheet metal layer.
  • a manufacturing process of a component composite 140 according to the Figures 11 and 12 or 16 , 20 , 21, 22 comprises providing (step F) at least two microchannel structures 1; 100 according to the Figures 1 and 2 or 7 and 8 or of at least two wing tube structures 200 and a lamella structure 120 according to the Figures 9 and 10 . This is followed by the step of at least partially connecting (step G) the two microchannel structures 1; 100 or the two wing tube structures 200 by means of the lamella structure 120, for example by soldering, gluing or welding the lamella structure 120.
  • the step of providing (step F) comprises providing a plurality of microchannel structures 1; 100 or wing tube structures and lamella structures 120 and the step of connecting (step G) comprises at least partially connecting each microchannel structure 1; 100 from the plurality of microchannel structures 1; 100 to the respective adjacent microchannel structure 100 by means of a respective lamella structure 120 or each wing tube structure 200 from the plurality of Wing tube structures 200 with the respective adjacent wing tube structure 200 by means of a respective lamella structure 120.
  • a manufacturing method of a heat exchanger 150 comprises the steps: providing (step H) a first distributor pipe 152, providing (step I) a second distributor pipe 154 and providing (step J) a component assembly 140 according to the Figures 11 and 12 .
  • the provision can take place in any order.
  • the connection (step K) of the microchannels 3; 104 of each microchannel structure 1; 100 takes place at a first end to the first distributor pipe 152 and at a second end to the second distributor pipe 154.
  • a manufacturing method of a heat exchanger according to Figure 24 the steps: providing (step H) a supply pipe 156' for supplying a fluid and providing (step I) a discharge pipe 158' for discharging a fluid, providing (step J) a component assembly described above with a plurality of wing tube structures, and then connecting (step K) the central pipes of the wing tube structures 200 one after the other to provide a flow connection between the supply pipe and the discharge pipe and to arrange the plurality of elongated, rectilinear wing tube structures 200 in a meandering course parallel to one another, so that the supply pipe is connected to an inlet and the discharge pipe is connected to an outlet of the meandering course of the wing tube structures 200.
  • a condenser or condenser is generally a device in which a fluid flowing inside the central tube of the wing tube structure is converted from the gaseous state to the liquid state (condensation).
  • condensers are used to liquefy the exhaust steam or the vaporous refrigerant. This enables a closed cycle process in these systems.
  • the condenser 200 consists of four sub-units 202, 204, 206 and 208, each with a plurality of elongated, straight-line vane tube structures 210.
  • Each vane tube structure 210 has a central tube 212 with a round cross-section and two vanes 214 arranged opposite one another and extending laterally outward from the central tube 212.
  • the vanes 214 run parallel to a longitudinal axis of the central tube 212.
  • each subunit 202, 204, 206 and 208 comprises a lamella structure 220.
  • the lamella structure 220 has at least a first region in a first plane that provides a first contact zone for the first wing tube structure 210, and at least a second region in a second plane which provides a second contact zone for the second wing tube structure 210.
  • a central depression is provided in the first and second regions, which is adapted to a shape of the tube 212 of the wing tube structure 210.
  • the lamella structure 220 has at least one first obliquely running region, which is arranged with a first end on the first region and with an opposite second end on the second region, and at least one second obliquely running region, which is arranged with a first end on the first region or a further, adjacent, first region and with an opposite second end on an adjacent second region or on the second region.
  • Two wing tube structures 210 are connected to one another via the slat structure 220 and run parallel to one another, so that the wings of a sub-unit 202, 204, 206 and 208 are arranged in parallel planes.
  • the slat structure 220 has at least a width that corresponds to a width of the wing tube structure 210 and is in contact with the wing tube structure 210, preferably over the entire width of the wing tube structure 210.
  • the four subunits 202, 204, 206 and 208 are arranged next to one another.
  • a flow direction of air flowing over the fin structure 220 of the condenser 200 is aligned approximately at right angles to the fin structure 220.
  • the condenser 200 further comprises a supply pipe 230 for supplying a fluid, which is connected to a first end of the plurality of vane tube structures 210 of each of the subunits 202, 204, 206 and 208, and a discharge pipe 232 for discharging a fluid, which is connected to a second end of the vane tube structures 210 of each of the subunits 202, 204, 206 and 208, opposite the first end.
  • An inner diameter of the central tube 212 of the wing tube structure 210 is at least 3 mm, the outer diameter of the central tube 212 of the wing tube structure 210 is at least 4 mm and a width of the wing tube structure is ⁇ 25 mm.
  • a distance between two wing tube structures of the same subunit is, for example, between 10 and 12 mm and the average distance between two consecutive first and/or second regions of the lamella structure is 3 to 9 mm.
  • the distance between central tubes of adjacent subunits 202, 204, 206 and 208 is preferably 25 to 35 mm.
  • the width of the condenser perpendicular to the flow direction of the air flowing over the condenser's lamella structure is 200 to 250 mm
  • the height of the condenser perpendicular to the flow direction of the air flowing over the condenser's lamella structure is 100 to 150 mm
  • the depth of the condenser in the flow direction of the air flowing over the condenser's lamella structure is 80 to 150 mm.
  • An advantage of the condenser according to the invention is therefore the particularly compact design and the particularly efficient removal of heat by means of the wing tube structure in combination with the fin structure and the specific design and dimensioning.
  • An evaporator 300 is generally a device in which a fluid flowing inside the central tube of the wing tube structure is converted from the liquid state to the gaseous state.
  • An advantage of the evaporator according to the invention, as with the condenser according to the invention, is the particularly compact structure.
  • the evaporator 300 comprises exactly two elongated, straight-line wing tube structures, namely a first 302 and a second wing tube structure 308.
  • Each wing tube structure 302, 308 has a central tube 304, 310 with a round line cross-section and two wings 306, 312 arranged opposite one another and extending laterally outward from the central tube 304, 310.
  • the wings 306, 312 run parallel to a longitudinal axis of the respective central tube 304, 310.
  • the wings 306, 312 of the respective wing tube structure 302, 308 are arranged in the same plane.
  • Each of the two vane tube structures 302, 308 therefore comprises a plurality of tube sections with vanes 306, 312.
  • the tube sections with vanes 306, 312 of a respective vane tube structure 302, 308 are arranged such that the vanes 306, 312 are arranged in one plane.
  • the lamella structure 320 explained further below comprises a plurality of central depressions 322, so that a lamella structure connects several tube sections with vanes of the first and second vane tube structures to one another.
  • the evaporator 300 further comprises the above-mentioned fin structure 320.
  • the fin structure has at least a first region in a first plane, which provides a first contact zone for the first vane tube structure 302, and at least a second region in a second plane, which provides a second contact zone for the second vane tube structure 308.
  • a plurality of central depressions 322 are provided in the first and second regions, which are adapted to a shape of the tube 304, 310 of the vane tube structure 302, 308.
  • the fin structure 320 comprises at least a first obliquely extending region, which is arranged with a first end at the first region and with an opposite second end at the second region, and at least a second obliquely extending region, which is arranged with a first end at the first region or another, adjacent, first region. and having an opposite second end disposed at an adjacent second region or at the second region.
  • the two vane tube structures 302, 308 are connected to one another via the louvre structure 320 and run parallel to one another.
  • the louvre structure 320 has at least one width that corresponds to a width of the vane tube structure 302, 308.
  • the louvre structure 320 is in contact with the vane tube structure 302, 308 and with several tube sections of the respective vane tube structure 302, 308 across the width of the vane tube structure 302, 308.
  • the outer diameter of the central tube 304, 310 of the vane tube structure 302, 308 is 6 to 8 mm, with a wall thickness of 0.5 mm and a width of the vane tube structure 302, 308 being 25 to 30 mm.
  • a distance between the vanes of the first and second vane tube structure is approximately 20 mm.
  • the width of a tube section with vanes is ⁇ 30 mm. In this way, a particularly compact design of the evaporator can be achieved.
  • a cavity can be present at least partially between the vanes of the vane tube structure and the fin structure. This can be provided with a means that resists thawing. In this way, the effectiveness of the evaporator can be further improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Micromachines (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Claims (15)

  1. Assemblage de pièces (140) comprenant :
    a. une pluralité de structures à micro-canaux (1 ; 100), présentant respectivement
    b. une pluralité de micro-canaux (104) s'étendant parallèlement les uns aux autres, lesquels définissent une première région (102) de la structure à micro-canaux (100), laquelle présente une forme de section transversale approximativement rectangulaire présentant une plus grande largeur (Bs) en comparaison avec une hauteur (Hs), et
    c. deux ailettes (106) s'étendant latéralement vers l'extérieur à partir d'une surface d'une paroi latérale déterminant la hauteur (Hs) et entourant la première région (102), et
    d. une structure à lamelles (120), comportant les caractéristiques suivantes :
    e. au moins une première région (122) de la structure à lamelles (120) dans un premier plan, laquelle fournit une première surface d'assemblage pour la première structure à micro-canaux (1 ; 100),
    f. au moins une deuxième région (124) de la structure à lamelles (120) dans un deuxième plan, laquelle fournit une deuxième surface d'assemblage pour la deuxième structure à micro-canaux (1 ; 100),
    g. au moins une première région s'étendant obliquement (126), laquelle est disposée avec une première extrémité au niveau de la première région (122) de la structure à lamelles (120) et avec une deuxième extrémité opposée au niveau d'une deuxième région (124) de la structure à lamelles (120), et
    h. au moins une deuxième région s'étendant obliquement (128), laquelle est disposée avec une première extrémité au niveau de la première région (122) de la structure à lamelles (120) ou d'une autre première région (122) adjacente de la structure à lamelles (120) et avec une deuxième extrémité opposée au niveau d'une deuxième région (124) de la structure à lamelles (120), dans lequel
    i. les deux structures à micro-canaux (1 ; 100) sont assemblées entre elles par la structure à lamelles (120) et s'étendent parallèlement l'une à l'autre, dans lequel la structure à lamelles (120) présente une largeur correspondant au moins à une largeur de la structure à micro-canaux (100) et la structure à lamelles (120) est en contact avec la structure à micro-canaux (100) sur l'ensemble de la largeur de la structure à micro-canaux (100), et
    l'assemblage de pièces (140) est caractérisé en ce que
    j. les ailettes (106) s'étendant vers l'extérieur évoluent parallèlement à un axe longitudinal de la première région (102) et
    k. dans la première (122) et la deuxième région (124) de la structure à lamelles (120), il est prévu une cavité centrale (130) adaptée à la structure à micro-canaux (1 ; 100) dans la première région (102) de la structure à micro-canaux (1 ; 100), dans lequel
    l. l'au moins une première région s'étendant obliquement (126) forme un premier angle α inférieur à 90° avec la première région (122) de la structure à lamelles (120) sur un premier côté et un deuxième angle β inférieur à 90° avec la deuxième région (124) de la structure à lamelles (120) sur un deuxième côté opposé au premier côté, et
    m. l'au moins une deuxième région s'étendant obliquement (126) forme un troisième angle γ inférieur à 90° avec la première région (122) de la structure à lamelles (120) ou l'autre première région (122) de la structure à lamelles (120) sur un premier côté et un quatrième angle δ inférieur à 90° avec la deuxième région (124) de la structure à lamelles (120) sur un deuxième côté opposé au premier côté.
  2. Assemblage de pièces (140') comprenant :
    a. une pluralité de structures de tube à ailettes (200) allongées s'étendant linéairement, présentant respectivement
    a1. un tube central (210) avec une section transversale de conduit ronde, curviligne ou angulaire ainsi que
    a2. deux ailettes (220) disposées l'une à l'opposé de de l'autre et s'étendant latéralement vers l'extérieur à partir du tube central (210), lesquelles évoluent parallèlement à un axe longitudinal du tube central (210), et
    l'assemblage de pièces (140') est caractérisé en ce qu'il présente :
    b. une structure à lamelles (120') comportant les caractéristiques suivantes :
    b1. au moins une première région (122') de la structure à lamelles (120') dans un premier plan, laquelle fournit une première surface d'assemblage pour la première structure de tube à ailettes (200),
    b2. au moins une deuxième région (124') de la structure à lamelles (120') dans un deuxième plan, laquelle fournit une deuxième surface d'assemblage pour la deuxième structure de tube à ailettes (200), dans lequel il est prévu une cavité centrale (130') dans la première (122') et la deuxième région (124') de la structure à lamelles (120'), laquelle est adaptée à une forme du tube de la structure de tube à ailettes (200),
    b3. au moins une première région s'étendant obliquement (126'), laquelle est disposée avec une première extrémité au niveau de la première région (122') de la structure à lamelles (120') et avec une deuxième extrémité opposée au niveau de la deuxième région (124') de la structure à lamelles (120'), et
    b4. au moins une deuxième région s'étendant obliquement (128'), laquelle est disposée avec une première extrémité au niveau de la première région (122') de la structure à lamelles (120') ou d'une autre première région (122') adjacente de la structure à lamelles (120') et avec une deuxième extrémité opposée au niveau d'une deuxième région (124') de la structure à lamelles (120'), dans lequel
    b5. l'au moins une première région s'étendant obliquement (126') forme un premier angle α inférieur à 90° avec la première région (122') de la structure à lamelles (120') sur un premier côté et un deuxième angle β inférieur à 90° avec la deuxième région (124') de la structure à lamelles (120') sur un deuxième côté opposé au premier côté, et
    b6. l'au moins une deuxième région s'étendant obliquement (126') forme un troisième angle γ inférieur à 90° avec la première région (122') de la structure à lamelles (120') ou l'autre première région (122') de la structure à lamelles (120') sur un premier côté et un quatrième angle δ inférieur à 90° avec la deuxième région (124') de la structure à lamelles (120') sur un deuxième côté opposé au premier côté, dans lequel
    c1. les deux structures de tube à ailettes (200) sont assemblées entre elles par la structure à lamelles (120') et s'étendent parallèlement l'une à l'autre et
    c2. la structure à lamelles (120') présente au moins une largeur correspondant à une largeur de la structure de tube à ailettes (200), et
    c3. la structure à lamelles (120') est en contact avec la structure de tube à ailettes (200) sur l'ensemble de la largeur de la structure de tube à ailettes (200).
  3. Assemblage de pièces (140) selon la revendication 1 ou 2, dans lequel la structure à lamelles (120 ; 120') est fixée aux structures à micro-canaux (1 ; 100) ou aux structures de tube à ailettes, par exemple par brasage.
  4. Assemblage de pièces selon l'une des revendications précédentes, dont la structure à micro-canaux ou dont la structure de tube à ailettes (200) est fabriquée d'un seul tenant en aluminium par extrusion.
  5. Assemblage de pièces selon la revendication 1 ou 2, dont la structure à lamelles présente une pluralité de premières (122 ; 122') et de deuxièmes régions (124 ; 124') ainsi qu'une pluralité de premières régions s'étendant obliquement (126 ; 126') et une pluralité de deuxièmes régions s'étendant obliquement (128 ; 128'), dans lequel la première région s'étendant obliquement (126 ; 126') est disposée avec la première extrémité au niveau de la première extrémité de la première région (122 ; 122') et avec la deuxième extrémité opposée au niveau de la première extrémité de la deuxième région (124 ; 124') et dans lequel la deuxième région s'étendant obliquement (128 ; 128') est disposée avec la première extrémité au niveau de la deuxième extrémité de la première région (122 ; 122') adjacente parmi la pluralité de premières régions (122 ; 122') et avec la deuxième extrémité opposée au niveau de la deuxième extrémité de la deuxième région (124 ; 124').
  6. Assemblage de pièces selon la revendication 2, 3 ou 4 à 5 en combinaison avec la revendication 2, dans lequel la pluralité de structures de tube à ailettes (200) allongées s'étendant linéairement sont disposées parallèlement les unes aux autres selon un tracé sinueux et assemblées successivement en communication fluidique entre elles, de sorte qu'une arrivée de liquide peut être raccordée à une entrée et une évacuation de liquide peut être raccordée à une sortie du tracé sinueux des structures de tube à ailettes (200).
  7. Échangeur de chaleur (150) comportant :
    a. un premier tube distributeur (152) pour l'alimentation d'un fluide et un deuxième tube distributeur (154) pour l'évacuation d'un fluide ainsi que
    b. un assemblage de pièces (140) selon l'une des revendications 1, 3 à 5 en combinaison avec la revendication 1, dans lequel
    c. les micro-canaux (104) de chaque structure à micro-canaux (1 ; 100) sont en communication d'écoulement avec le premier tube distributeur (152) à une première extrémité et en communication d'écoulement avec le deuxième tube distributeur (154) à une deuxième extrémité.
  8. Échangeur de chaleur (150') comportant :
    a. un tube d'alimentation (156') pour l'alimentation d'un fluide et un tube d'évacuation (158') pour l'évacuation d'un fluide ainsi que
    b. un assemblage de pièces (140') selon l'une des revendications 2, 3, 5 en combinaison avec la revendication 2, dans lequel
    c. les tubes centraux des structures de tube à ailettes (200) sont assemblés entre eux successivement, pour fournir une communication d'écoulement entre le tube d'alimentation et le tube d'évacuation et dans lequel la pluralité de structures de tube à ailettes (200) allongées s'étendant linéairement sont disposées parallèlement les unes aux autres selon un tracé sinueux, de sorte que le tube d'alimentation est raccordé à une entrée et le tube d'évacuation est raccordé à une sortie du tracé sinueux des structures de tube à ailettes (200).
  9. Procédé de fabrication d'une structure à micro-canaux (100) pour un assemblage de pièces (140) selon la revendication 1, présentant l'étape suivante :
    a. extrusion (A) d'une structure à micro-canaux (100) constituée d'une pluralité de micro-canaux (104) s'étendant parallèlement les uns aux autres, lesquels définissent une première région (102) de la structure à micro-canaux (100), et au moins une ailette (106), de préférence deux, s'étendant latéralement vers l'extérieur à partir d'une surface entourant la première région (102), laquelle évolue parallèlement à un axe longitudinal de la première région (102), de préférence en aluminium.
  10. Procédé de fabrication d'une structure à lamelles (120) pour un assemblage de pièces (140 ; 140') selon l'une des revendications 1 ou 2, comportant l'étape suivante :
    a. mise à disposition (B) d'au moins une première région (122) fournissant une première surface d'assemblage pour une première structure à micro-canaux (1 ; 100) ou une première structure de tube à ailettes, et au moins une deuxième région (124) fournissant de préférence une deuxième surface d'assemblage pour une deuxième structure à micro-canaux (1 ; 100) ou une deuxième structure de tube à ailettes, puis
    b. agencement (C) d'une première région s'étendant obliquement (126) avec une première extrémité au niveau de la première région (122) et avec une deuxième extrémité opposée au niveau de la deuxième région (124), de telle façon que l'au moins une première région s'étendant obliquement (126) forme un premier angle α inférieur à 90° avec la première région (122) sur un premier côté et un deuxième angle β inférieur à 90° avec la deuxième région (124) sur un deuxième côté opposé au premier côté, et
    c. agencement (D) d'une deuxième région s'étendant obliquement (128) avec une première extrémité au niveau de la première région (122) ou d'une autre première région (122) de préférence adjacente et avec une deuxième extrémité opposée au niveau de la deuxième région (124).
  11. Procédé de fabrication d'un assemblage de pièces (140) selon l'une des revendications 1 à 6, comportant :
    a. la mise à disposition (F) d'au moins deux structures à micro-canaux (1 ; 100) ou d'au moins deux structures de tube à ailettes (200) et d'une structure à lamelles (120), puis
    b. l'assemblage au moins partiel (G) des deux structures à micro-canaux (1 ; 100) ou des deux structures de tube à ailettes au moyen de la structure à lamelles (120), par exemple par brasage, collage ou soudage de la structure à lamelles (120).
  12. Procédé de fabrication d'un échangeur de chaleur (150) selon la revendication 7 comportant :
    a. la mise à disposition (H) d'un premier tube distributeur (152),
    b. la mise à disposition (I) d'un deuxième tube distributeur (154),
    c. la mise à disposition (J) d'un assemblage de pièces (140) selon l'une des revendications 1, 3, 4, 5, puis
    d. assemblage (K) des micro-canaux (3 ; 104) de chaque structure à micro-canaux (1 ; 100) avec le premier tube distributeur (152) à une première extrémité et avec le deuxième tube distributeur (154) à une deuxième extrémité.
  13. Procédé de fabrication d'un échangeur de chaleur (150) selon la revendication 8 comportant :
    a. la mise à disposition (H) d'un tube d'alimentation (156') pour l'alimentation d'un fluide et,
    b. la mise à disposition (I) d'un tube d'évacuation (158') pour l'évacuation d'un fluide,
    c. la mise à disposition (J) d'un assemblage de pièces (140) selon l'une des revendications 2, 3, 4-6, puis
    d. l'assemblage (K) des tubes centraux des structures de tube à ailettes (200) successivement entre eux, pour fournir une communication d'écoulement entre le tube d'alimentation et le tube d'évacuation et pour disposer la pluralité des structures de tube à ailettes (200) allongées s'étendant linéairement parallèlement les unes aux autres selon un tracé sinueux, de telle façon que le tube d'alimentation est raccordé à une entrée et le tube d'évacuation est raccordé à une sortie du tracé sinueux des structures de tube à ailettes (200).
  14. Condenseur (200) comprenant
    i. au moins deux assemblages de pièces (140') selon la revendication 2, de préférence au moins trois, en tant que sous-unités (202, 204, 206, 208) présentant respectivement
    a. une pluralité de structures de tube à ailettes (210) allongées s'étendant linéairement et
    b. une structure à lamelles (220), dans lequel deux structures de tube à ailettes (210) sont assemblées entre elles par la structure à lamelles (220) et s'étendent parallèlement l'une à l'autre, de telle façon que les ailettes (214) d'une sous-unité (202, 204, 206, 208) sont disposées dans des plans parallèles, dans lequel
    ii. les sous-unités (202, 204, 206, 208) sont disposées côté à côte et une direction d'écoulement d'un air s'écoulant par la structure à lamelles (220) du condenseur (200) pendant le fonctionnement du condenseur est orientée approximativement perpendiculairement à la structure à lamelles (220), et le condenseur (200) comporte en outre
    iii. un tube d'alimentation (230) pour l'alimentation d'un fluide, lequel est raccordé à une première extrémité de la pluralité de structures de tube à ailettes (210) de l'une au moins des sous-unités (202, 204, 206, 208), ainsi qu'un tube d'évacuation (232) pour l'évacuation d'un fluide, lequel est raccordé à une deuxième extrémité opposée à la première extrémité des structures de tube à ailettes (210) de l'une au moins des sous-unités (202, 204, 206, 208), dans lequel
    iv. le diamètre intérieur du tube central (212) de la structure de tube à ailettes mesure au moins 3 mm, le diamètre extérieur du tube central (212) de la structure de tube à ailettes (210) mesure au moins 4 mm et une largeur de la structure de tube à ailettes (210) est de préférence ≤ 25 mm.
  15. Évaporateur (300) avec un assemblage de pièces (140') selon la revendication 2, lequel présente de préférence exactement deux structures de tube à ailettes (302, 308) allongées s'étendant linéairement, dans lequel les ailettes (306, 312) d'une structure de tube à ailettes (302, 308) respective sont disposées dans le même plan ainsi qu'une structure à lamelles (320), et
    a. la structure à lamelles (320) est en contact avec la structure de tube à ailettes (302, 308) sur la largeur de la structure de tube à ailettes (302, 308) ainsi qu'avec plusieurs sections de tube de la structure de tube à ailettes (302, 308) respective, dans lequel
    b. pendant le fonctionnement de l'évaporateur (300), une direction d'écoulement d'un fluide s'écoulant par la structure à lamelles (320) de l'évaporateur (300) est orientée approximativement perpendiculairement à la structure à lamelles (320), et
    c. le diamètre extérieur du tube central (304, 310) de la structure de tube à ailettes (302, 308) mesure entre 6 et 8 mm, dans lequel une épaisseur de paroi mesure 0,5 mm et une largeur de la structure de tube à ailettes (302, 308) est comprise entre 25 et 30 mm.
EP17749468.9A 2016-08-08 2017-08-08 Échangeur de chaleur présentant une structure à micro-canal ou une structure à tube à ailettes Active EP3491323B1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE202016104349 2016-08-08
DE202017102436.9U DE202017102436U1 (de) 2016-08-08 2017-04-25 Wärmetauscher mit Mikrokanal-Struktur oder Flügelrohr-Struktur
DE202017102483 2017-04-26
PCT/EP2017/070093 WO2018029203A1 (fr) 2016-08-08 2017-08-08 Échangeur de chaleur présentant une structure à micro-canal ou une structure à tube à ailettes

Publications (3)

Publication Number Publication Date
EP3491323A1 EP3491323A1 (fr) 2019-06-05
EP3491323C0 EP3491323C0 (fr) 2024-04-17
EP3491323B1 true EP3491323B1 (fr) 2024-04-17

Family

ID=60480793

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17749468.9A Active EP3491323B1 (fr) 2016-08-08 2017-08-08 Échangeur de chaleur présentant une structure à micro-canal ou une structure à tube à ailettes

Country Status (3)

Country Link
EP (1) EP3491323B1 (fr)
DE (1) DE202017104743U1 (fr)
WO (1) WO2018029203A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202019104073U1 (de) * 2019-07-23 2020-10-26 Bundy Refrigeration Gmbh Extrudierter Flügelrohrabschnitt, Flügelrohr mit extrudiertem Flügelrohrabschnitt und Wärmetauscher mit Flügelrohr
US12078431B2 (en) 2020-10-23 2024-09-03 Carrier Corporation Microchannel heat exchanger for a furnace
BR112023018455A2 (pt) * 2021-03-19 2023-10-10 Brazeway Inc Trocador de calor de microcanais para condensador de aparelho
KR20240121008A (ko) * 2023-02-01 2024-08-08 엘지전자 주식회사 열교환기

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2697589B1 (fr) * 2011-04-14 2020-09-30 Carrier Corporation Échangeur de chaleur
DE102012005513A1 (de) * 2012-03-19 2013-09-19 Bundy Refrigeration Gmbh Wärmetauscher, Verfahren zu seiner Herstellung sowie verschiedene Anlagen mit einem derartigen Wärmetauscher
JP5946217B2 (ja) * 2012-12-26 2016-07-05 日本軽金属株式会社 熱交換器における熱交換チューブ及び熱交換チューブの製造方法
EP2962055B1 (fr) 2013-03-01 2018-05-23 Sapa AS Solution d'ailette associée à un échangeur de chaleur à base de microcanaux
EP2966391B1 (fr) * 2014-07-09 2017-03-08 MAHLE International GmbH Échangeur de chaleur

Also Published As

Publication number Publication date
WO2018029203A1 (fr) 2018-02-15
EP3491323C0 (fr) 2024-04-17
DE202017104743U1 (de) 2017-11-14
EP3491323A1 (fr) 2019-06-05

Similar Documents

Publication Publication Date Title
EP1654508B1 (fr) Echangeur de chaleur et procede de fabrication dudit echangeur
DE60219538T2 (de) Wärmetauscher
EP1348924B1 (fr) Echangeur de chaleur à gaz d'échappement pour véhicule
EP3491323B1 (fr) Échangeur de chaleur présentant une structure à micro-canal ou une structure à tube à ailettes
EP0845647B1 (fr) Echangeur de chaleur à tubes plats avec extrémité de tubes déformée par torsion
EP1739378A1 (fr) Element d'échange de chaleur et échangeur de chaleur associé
EP2828598B1 (fr) Échangeur de chaleur, procédé de production correspondant et divers systèmes avec un tel échangeur de chaleur
EP1701125A2 (fr) Echangeur de chaleur à tubes plats et tube plat pour échangeur de chaleur
DE102007051194A1 (de) Kühlender Wärmeaustauscher
DE60310992T2 (de) Hochdruckwärmetauscher
DE10220532A1 (de) Wärmetauscher
WO2012159958A1 (fr) Echangeur de chaleur à lamelles
DE202017102436U1 (de) Wärmetauscher mit Mikrokanal-Struktur oder Flügelrohr-Struktur
EP1357345B1 (fr) Elément d'échange de chaleur ondulé
EP1640684A1 (fr) echangeur de chaleur à tubes plats et ailettes ondulées
EP2447626B1 (fr) Echangeur thermique, notamment pour l'application dans des meubles réfrigérants
DE202014105709U1 (de) Wärmeaustauscher
EP1788320A1 (fr) Echangeur de chaleur
DE6602685U (de) Waermaustauscher, insbesondere kuehler fuer kraftfahrzeug-verbrennungsmotore, mit zwischen kuehlmittelleitungen desselben angeordneten, als abstandshalter dienenden beitblechen zur fuehrung eines kuehlluftstromes und vorrichtung zur herstellung der
EP0268831B1 (fr) Lamelle
EP3009780B2 (fr) Fluide caloporteur
DE69816260T2 (de) Mit mehreren wärmeleitenden Platten ausgeführter Wärmetauscher
EP1248063B1 (fr) Echangeur de chaleur
EP3850293B1 (fr) Échangeur de chaleur comprenant des éléments de surface ayant des cavités convexes et des épaississements de matériau intégrés
EP2994712B1 (fr) Échangeur de chaleur

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201028

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GRANDHOLM PRODUCTION SERVICES LTD.

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20231122

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017016047

Country of ref document: DE

U01 Request for unitary effect filed

Effective date: 20240517

U07 Unitary effect registered

Designated state(s): AT BE BG DE DK EE FI FR IT LT LU LV MT NL PT SE SI

Effective date: 20240528

P04 Withdrawal of opt-out of the competence of the unified patent court (upc) registered

Effective date: 20240524

U20 Renewal fee paid [unitary effect]

Year of fee payment: 8

Effective date: 20240828

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240718

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240929

Year of fee payment: 8