EP0401752B1 - Verflüssiger für ein Kältemittel einer Fahrzeugklimaanlage - Google Patents

Verflüssiger für ein Kältemittel einer Fahrzeugklimaanlage Download PDF

Info

Publication number
EP0401752B1
EP0401752B1 EP90110618A EP90110618A EP0401752B1 EP 0401752 B1 EP0401752 B1 EP 0401752B1 EP 90110618 A EP90110618 A EP 90110618A EP 90110618 A EP90110618 A EP 90110618A EP 0401752 B1 EP0401752 B1 EP 0401752B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
heat
liquefier
interruptions
liquefier according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90110618A
Other languages
English (en)
French (fr)
Other versions
EP0401752A3 (de
EP0401752A2 (de
Inventor
Roland Dipl.-Ing. Haussmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thermal-Werke Warme- Kalte- Klimatechnik GmbH
Original Assignee
Thermal-Werke Warme- Kalte- Klimatechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19893918455 external-priority patent/DE3918455A1/de
Application filed by Thermal-Werke Warme- Kalte- Klimatechnik GmbH filed Critical Thermal-Werke Warme- Kalte- Klimatechnik GmbH
Publication of EP0401752A2 publication Critical patent/EP0401752A2/de
Publication of EP0401752A3 publication Critical patent/EP0401752A3/de
Application granted granted Critical
Publication of EP0401752B1 publication Critical patent/EP0401752B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/05316Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05325Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0417Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with particular circuits for the same heat exchange medium, e.g. with the heat exchange medium flowing through sections having different heat exchange capacities or for heating/cooling the heat exchange medium at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/0408Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids
    • F28D1/0426Multi-circuit heat exchangers, e.g. integrating different heat exchange sections in the same unit or heat exchangers for more than two fluids with units having particular arrangement relative to the large body of fluid, e.g. with interleaved units or with adjacent heat exchange units in common air flow or with units extending at an angle to each other or with units arranged around a central element
    • F28D1/0435Combination of units extending one behind the other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0477Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
    • F28D1/0478Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag the conduits having a non-circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05375Assemblies of conduits connected to common headers, e.g. core type radiators with particular pattern of flow, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • F28F1/325Fins with openings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/14Arrangements for modifying heat-transfer, e.g. increasing, decreasing by endowing the walls of conduits with zones of different degrees of conduction of heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/02Arrangements of fins common to different heat exchange sections, the fins being in contact with different heat exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2270/00Thermal insulation; Thermal decoupling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators
    • F28F9/262Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators for radiators

Definitions

  • the invention relates generally to a condenser for a refrigerant of a vehicle air conditioning system with finned heat exchange tubes through which the refrigerant is passed in cross-flow to the ambient air flowing to it.
  • the invention relates to such a condenser with the further features of the preamble of claim 1, as e.g. is known from GB-A-2 023 798, which will be discussed in more detail below.
  • the heat exchange tubes are generally arranged in a plurality of rows of tubes arranged one behind the other in the flow direction of the ambient air, the respective heat exchange tubes being connected in cross-counterflow.
  • the ribbing preferably, but not exclusively, consists of foils made of Al, Cu or alloys of these materials with a thickness of less than 0.15 mm.
  • a known condenser (cf. DE-U-1 685 651) for the refrigerant of a refrigeration machine - i.e. not for the application according to the invention in a vehicle air conditioning system - consists of one assembly or several identical assemblies, depending on the performance requirement, which are then in accordance with the features of Preamble of claim 1 arranged and connected in cross-countercurrent. All assemblies each contain only one row of tubes and are physically and therefore also thermally completely separate from each other.
  • JP-A-58 108394 already shows a heat exchanger in which two different assemblies have a common tube fin ribbing and are thermally coupled to one another by the fin bridges between at least one row of slots. You already know overlapping parallel slots, which can also be provided with exhibitors (Fig. 11 and 13). It is also already considered to obtain a partial thermal decoupling by deforming the material of the slats.
  • This known heat exchanger is concerned with the special case of a condenser, in which the internal heat exchange fluid is conducted in the gaseous state in pipes of relatively large diameter and in the already liquefied state in pipes of relatively small diameter.
  • US-A-2 963 277 already shows a heat exchanger in which a plurality of rows of pipes have a common fin ribbing and a certain division into two assemblies is provided by a row of slots between adjacent rows of pipes which reduces the heat flow in the common fin ribbing (FIG. 4 ).
  • heat-decoupling slits are arranged along at least one straight line between adjacent assemblies separately from the other design of the slat, the slats and thus also the adjacent assemblies along this line (s) are significantly sensitive to buckling. In addition, there is a larger dimensioning.
  • the invention has for its object to make the advantages of operating in cross-countercurrent usable for a condenser of a refrigerant intended for use in a vehicle air-conditioning system and thereby to promote the mechanical strength of the entire condenser with little effort and to minimize the dimensions of the entire condenser enable.
  • a largely thermal decoupling can even be carried out by designing the ribbing between the modules. Only by combining the assemblies is it possible to manufacture and handle the small-sized condensers for vehicle air conditioning systems, or at least by summarized parts of the same, practical and possible.
  • the inventive design can be easily achieved because the pipes are offset from one another in the direction of flow of the ambient air and then, as mentioned, the known exhibitor-like recesses for increasing the heat transfer are included in the sequence of the recesses intended for thermal decoupling between adjacent assemblies are.
  • the solution according to the invention is less complex.
  • the material of the ribbing of the heat exchange tubes of adjacent assemblies can also be the same as in the known condensers for motor vehicle air conditioning systems.
  • the heat flow there is significantly reduced by heat conduction. It has been shown that even when the ribbing is formed as foils with a thickness of less than 0.15 mm by the interaction of these foils as a tight package, there is still sufficient mechanical strength of the entire condenser with mechanical assembly of the assemblies, in the limit case without any additional Solidification measure can be achieved.
  • the fin area of each row of tubes assumes the temperature of the refrigerant of the respective row of tubes practically immediately and practically without interaction with other rows of tubes. It has been shown that surprisingly unusually high efficiency improvements can be achieved in comparison with conventional comparable condensers. With the same use of material or the same depth and the same air-side pressure loss, efficiency improvements of around 25% can be achieved, which can be used, for example, in a correspondingly smaller depth with the same cooling capacity.
  • an average temperature can no longer be established in a common ribbing of adjacent heat exchange tubes from different assemblies, but a more or less pronounced temperature jump takes place between the two assemblies.
  • the material of the ribbing can be removed, in particular punched out, in the interruptions in the connection zone between adjacent assemblies.
  • narrow slots are preferably used in order to lose as little ribbing material as possible.
  • Claim 10 preferably provides that the interruptions known per se are formed on blinds, while the other interruptions, which are additionally provided for the thermal separation of the rows of pipes, can be designed as simple thermal interruptions without the formation of blinds.
  • the alternative possibilities in FIG. 3 reference is made in particular to the alternative possibilities in FIG. 3.
  • the direction of flow of the ambient air is illustrated by the arrows A.
  • four rows of pipes are arranged transversely to the direction of flow.
  • the refrigerant is introduced through a connection 2 into a collector 4, to which the four rows of ribbed heat exchange tubes 6 are connected on the input side. All heat exchange tubes 6 have a common, uniform ribbing. On the output side, the four rows of heat exchange tubes 6 are connected to a further collector 8, which is provided with an outlet 10 of the refrigerant. It can be seen that the refrigerant flows in parallel in the four rows from the collector 4 to the collector 8 and crosses the incoming ambient air.
  • Fig. 10 the same configuration of ribbed heat exchange tubes 6 is connected in cross-counterflow with respect to the incoming ambient air.
  • the refrigerant on the one hand crosses the incoming ambient air and, on the other hand, is guided in counterflow to it from the inlet-side collector 4 to the outlet-side collector 8.
  • each counter-turn connects only two adjacent pipes in a row. It is also known to increase the pressure loss in each flow-through branch between the collectors 4 and 8 to increase the number of pipes per row up to the limit case that only a single coil or counter-turn is arranged between the inlet-side connection 2 and the outlet 10 is.
  • foils in particular made of aluminum or an aluminum alloy with a thickness of less than 0.15 mm, usually up to about 0.1 mm, is shown at 12.
  • FIGS. 9 and 10 relate specifically to round tube heat exchangers.
  • the condenser is divided into at least two assemblies, each of which e.g. can contain two rows of pipes without restricting generality.
  • one assembly can be arranged on the inlet side of the refrigerant and the other assembly on the outlet side of the refrigerant, with both assemblies e.g. are switched as the opposite direction.
  • a ribbing common to the assemblies can have foils made of Al, Cu or alloys of these materials with a thickness of less than 0.15 mm up to a minimum of 0.08 mm according to current rolling technology.
  • fin fins with foils are expediently provided, which then expediently have thicknesses between 0.15 and 0.25 mm.
  • the input-side connection 2 to an input-side header 4 and the output-side terminal 10 to an output-side header 8 are also used and the heat exchange tubes are designated by 6.
  • FIG. 2 In the embodiment according to FIG. 2, two assemblies 14 and 16 are shown, while the embodiment according to FIG. 1 shows four assemblies 54, 56, 58 and 60.
  • FIG. 1 shows, in a special connection, a preferred circuit diagram of the individual assemblies 54 to 60, specifically on a four-row condenser with common fin fins.
  • the two assemblies 58 and 60 are formed by only two circuits connected in parallel, so that thereby with a constant internal cross section of the heat exchange tubes 6 in the assemblies 58 and 60 relative to the assemblies 54 and 56 of the Pressure loss is increased significantly.
  • intermediate collectors are also dispensed with, in that the individual circuits of the input-side modules 54 and 56 are transferred in pairs by so-called tripods 26 into the two further circuits of the modules 58 and 60.
  • circuit measures described can also be implemented analogously with different numbers of circuits in the individual assemblies. However, the numbers and configurations shown here are preferred.
  • FIG. 1 assumes that the individual assemblies 54 to 60 are decoupled in terms of heat conduction in the area of the common fin ribs, as will be explained in more detail below with reference to FIGS. 2, 7 and 8, for example.
  • the four rows of pipes shown are all decoupled in terms of thermal conductivity into the individual assemblies 54, 56, 58 and 60.
  • the pressure drop on the refrigerant side is increased by interconnecting parallel circuits 62 to one circuit using a tripod 26.
  • FIG. 1 a common lamellar ribbing with a largely decoupling in terms of thermal conductivity should be added, as is described in detail with reference to the following FIGS. 2 or 7 and 8.
  • FIG. 2 shows a plan view of a single heat exchange lamella for a four-row arrangement of heat exchange tubes 6, not shown here.
  • One heat exchange tube each 6 of a tube bundle heat exchanger is arranged in the usual way in a receiving opening 28 of the lamella 30, which is part of the ribbing 12 (analogous to FIGS. 9 and 10).
  • the openings can be formed in the usual way, for example with connecting sleeves for connection to the respective heat exchange tube.
  • the individual lamellae 30 are held in the usual way at a mutual distance by spacers 32 worked out of the lamella, for example lobes of the lamella material that are exposed.
  • Known exhibitor-like sole strands 34 are initially arranged in the lamella 30 in order to increase the heat transfer, which extend between adjacent receiving openings 28 each along a row of tubes and thus also lie transversely to those connection openings which are adjacent in the row after next. It can be seen in the embodiment according to FIG. 2 that such slots 34 are not able to decouple neighboring pipes from neighboring rows of pipes from one another in a heat-conducting manner.
  • additional interruptions 36 are provided which, in the embodiment according to FIG. 2, describe a polygon course together with the slots 34 or are arranged at 45 ° to extend the rows of receiving openings 28.
  • the thermally conductive decoupling can be further increased in that the slots 34 and the interruptions 36 are arranged to overlap one another.
  • a good effect can also be achieved without this overlap, although the overlap is preferred because of the increase in the thermal conductivity.
  • the sequence of slots 34 and interruptions 36 describes the direction of extension of a connecting zone 38 between the two assemblies 14 and 16 and the regions 40 and 42 of the lamella 30 respectively assigned to them.
  • interruptions 36 can be designed as simple slots 44 in the manner of variant d) of FIG. 3.
  • variants a), b) and c) according to FIG. 3 represent preferred configurations of the exhibitor-like additional interruptions 36 shown in FIG. 2, which, however, are also known per se for the slots 34.
  • the material exhibitors are webs 46 which are bent out of the lamella 30 on one side and are preferably arranged together in the shape of a blind.
  • variants b) and c) the material exhibitors are cut out of the ribbing on both sides via interfaces 48, so that highlighted roof-like parts 50 are formed, which are each only integrally connected to the lamella 30 on the end side.
  • the variant b) describes a flat roof and the variant c) a gable roof, various forms being possible and also common in connection with the interruptions 34. Accordingly, the interruptions 34 can also have all the shapes selected in FIG. 3, variants a) to c). In the borderline case, one could also provide simple slots according to variant d) deviating from the usual at these points, so that both the interruptions 34 and the interruptions 36 then serve only for thermally conductive decoupling.
  • the arrangement can also be transferred to three-row slats or those with a different number of rows.
  • the interruptions 36 and the slots 34 known per se are each separated from one another along the connecting zone 38 by relatively narrow connecting webs 52, so that the heat flow takes place solely through these narrow connecting webs and thereby the average thermal conductivity along the connecting zone 38 in accordance with the ratio between interruption and connecting web is reduced.
  • the temperature profile is that of the condenser flowing ambient air and the refrigerant led to the ambient air in cross-counterflow with three counter-turns.
  • the refrigerant is guided in the tubes within a module in cross flow to the air and from module to module in opposite directions, ie in counter flow to the air.
  • the refrigerant can also be conducted in cross-counterflow with one or two counter-turns if the assembly consists of more than one row of pipes.
  • the different temperature is averaged by the lamella, so that the temperature difference, which is increased in contrast to the pure cross flow of the pipes, is not effective in the case of cross counterflow.
  • FIG. 4 therefore shows the solution optimized for the effective temperature difference, in which each row of tubes one to four according to FIG. 2 is each assigned to an assembly 54, 56, 58, 60.
  • the ribbing temperature is considerably lower on average, since the heat in the fin from the heat exchange tubes at the higher temperature at the condenser inlet to the Heat exchange pipes of lower temperature flows at the condenser outlet.
  • the effective temperature difference can be clearly illustrated by the area between the ribbing and the air temperature curve.
  • FIG. 4 shows the increase in the effective temperature difference of a condenser connected according to claim 1 a condenser according to the prior art, also connected in cross-countercurrent, shown as a hatched area (A1).
  • the pressure drop on the refrigerant side must be selected in each individual assembly so that the outlet temperature of the liquefied refrigerant t KA is in the range from its minimum t KA1 to the minimum of the saturation temperature t KE1 of the refrigerant entering the condenser.
  • the internal heat transfer coefficient ⁇ which is plotted qualitatively in FIG. 5 over the pressure drop on the refrigerant side, is minimal.
  • the minimum effective pressure loss ⁇ PK on the refrigerant side results in a maximum effective temperature difference, designated ⁇ t log in FIG. 5, between the refrigerant on the one hand and the ambient air on the other hand, since the saturation temperature does not decrease in the course of the refrigerant's flow path.
  • the heat transfer coefficient (denoted by K in FIG. 5) is small due to the minimum internal heat transfer coefficient.
  • the minimum condensing temperature at the inlet (denoted by t KE in Fig. 6a) is not reached in a given refrigerant circuit of a vehicle air conditioning system, because due to the smaller heat transfer coefficient K under otherwise constant conditions (such as outer surface, ambient temperature etc. )
  • the saturation temperature of the refrigerant t KE and the saturation pressure p KE must be higher than with a design with a higher heat transfer coefficient. Due to the low pressure drop on the refrigerant side, a lowering of the refrigerant outlet temperature (which is denoted by tKA in FIG. 6a) for the interior cooling of the motor vehicle is additionally prevented.
  • the refrigerant cycle process which is used in a condenser with small refrigerant-side pressure drops, e.g. of 0.05 bar, is shown in the refrigerant state diagram in FIG. 6b.
  • the minimum refrigerant inlet pressure P KE which is synonymous with the minimally saturated refrigerant inlet temperature t KE1 in point C '
  • the pressure loss ⁇ p K des represented by the gradient to the left Condenser with the consequence that the outlet pressure p KA and the refrigerant outlet temperature are lower, whereby the enthalpy difference h o 'available to the evaporator is greater than that of a condenser with a pressure loss of 0.05 bar on the refrigerant side.
  • a further reduction in the condenser outlet temperature tKA can be achieved by a further increase in the pressure drop on the refrigerant side from t KE1 to t KE2 .
  • each of which is assigned to a single row of tubes. Only one fin of the fin package forming the ribs of the corresponding heat exchange tubes is shown.
  • Each lamella has 30 receiving openings 28, into each of which a heat exchange tube is fitted mechanically firmly and in a heat-conducting manner. It can be seen in FIG. 8 that the corresponding receiving openings 28 protrude from the lamellar plane in the form of a sleeve.
  • the heat exchange tubes are regularly offset from one another in the flow direction A of the ambient air.
  • interruptions 36 In the sequence of interruptions 36 provided between the individual assemblies, known interruptions 34 are included, which are each arranged transversely between pairs of heat exchange tubes (or receiving openings 28), which belong to different rows of tubes of separate assemblies 14, 15 and 16.
  • the slots 34 and interruptions 36 thus form a series of interruptions in the lamella 30 along the respective connection zone 38 between the modules 14 and 15 or 15 and 16, between which connecting webs 52 remain and which are each arranged between pairs of heat exchange tubes or receiving openings 28 are the directly adjacent rows of pipes belonging to the adjacent assemblies, here rows of pipes.
  • the interruptions 36 are designed here in accordance with the uppermost variant a) of FIG. 3 as elongated slots with a one-sided exhibitor.
  • the slots 34 known per se are designed as blinds, the special shape of which is clear from FIG. 8. These are two middle full webs and two outer half webs, which are exhibited parallel to each other and have an angle of attack of preferably 15 to 30 ° to the air.
  • the slits 34 which are designed as blinds, run in the offset pipe arrangement in each case in the same row of pipes with longitudinal extension between adjacent pipes of the same row of pipes or, in other words, with transverse extension, that is to say separating, between adjacent pipes of pipe pairs lying one behind the other in the flow direction A, each with an intermediate pipe row staggered pipes are separated from each other.
  • Spacers 64 can also be seen, which are shown at a greater height from the lamella plane on the same side as the sleeves of the receiving openings 28 in order to distance the individual lamellae in the compressed lamella package. Possible shapes and dimensions of such exhibitors are known per se. Figures 7 and 8 show two different preferred possible shapes, which differ in the one or two-sided web display. 8 are expediently tapered so as not to fit into the opposite opening of the next spacer of the adjacent lamella.
  • the slats 30 are also expediently foils made of Al, Cu or alloys of these materials with a thickness of less than 0.15 mm.
  • condensers with three or four rows of pipes are preferably formed with the construction, but condensers with only two rows of pipes are also possible in the sense of the preceding description.
  • the lamella 30 is common to the individual rows of pipes; the cohesion takes place via the connecting webs 52 which remain between the interruptions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

  • Die Erfindung bezieht sich allgemein auf einen Verflüssiger für ein Kältemittel einer Fahrzeugklimaanlage mit verrippten Wärmetauschrohren, durch die das Kältemittel im Kreuzstrom zu anströmender Umgebungsluft geführt ist.
  • Speziell bezieht sich die Erfindung auf einen solchen Verflüssiger mit den weiteren Merkmalen des Oberbegriffs von Anspruch 1, wie er z.B. aus der GB-A-2 023 798 bekannt ist, auf die weiter unten noch näher eingegangen ist.
  • Bei einem Verflüssiger mit den genannten allgemeinen Merkmalen werden im allgemeinen die Wärmetauschrohre in mehreren in Anströmrichtung der Umgebungsluft hintereinander angeordneten Rohrreihen angeordnet, deren jeweilige Wärmetauschrohre im Kreuzgegenstrom verschaltet sind. Dabei besteht vorzugsweise, jedoch nicht ausschließlich, die Verrippung aus Folien aus Al, Cu oder Legierungen dieser Materialien mit einer Stärke von weniger als 0,15 mm.
  • Derartige Verflüssiger für Fahrzeugklimaanlagen sind handelsüblich. Bisher hat man dabei alle Wärmetauschrohre mit einer gemeinsamen Verrippung mit Lamellen versehen, die gegebenenfalls auch schon zum Zwecke der Verbesserung des Wärmeübergangs mit ausstellerartigen Unterbrechungen versehen war. Derartige z.B. jalousieartige Schlitze waren dabei jeweils so orientiert, daß ein optimaler Wärmefluß vom Rohr in die Schlitze erfolgte. Derartige jalousieförmige Schlitze verliefen dementsprechend längs der Verbindungslinie von Rohren derselben Rohrreihe oder längs der Verbindungslinie von direkt benachbarten Rohren benachbarter Rohrreihen. Dabei ist jedoch der Wärmefluß zwischen benachbarten Rohren derselben Rohrreihe oder direkt benachbarter Rohrreihen nicht gemindert. Darüber hinaus ist das Muster derartiger den Wirkungsgrad der Wärmeübertragung vergrößernder ausstellerartiger Schlitze gleichmäßig über die ganze Verrippung verteilt.
  • Bei diesen bekannten Verflüssigern stellt sich in den Verrippungen zwischen benachbarten gegenläufig durchströmten Rohrreihen wegen deren gut wärmeleitender Verbindung ein mittleres Temperaturniveau ein, welches leistungsmindernd wirkt. Diese Leistungsminderung ist so ausgeprägt, daß ein Kreuzgegenstrom, welcher theoretisch erheblich höhere wirksame Temperaturdifferenz erzeugen kann, praktisch gegenüber einem einfachen Kreuzstrom kaum Leistungsverbesserung bringt. Dieser Effekt wird bei Verflüssigern für ein Kältemittel einer Fahrzeugklimaanlage noch dadurch verstärkt, daß die Rohre benachbarter Rohrreihen (jeweils in Strömungsrichtung der Umgebungsluft gerechnet) sehr klein sind und dadurch der über die Verrippung übertragene Wärmefluß zwischen den Rohren benachbarter Rohrreihen besonders groß ist. Im vorliegenden Zusammenhang werden ausschließlich die besonders gravierenden Wärmeverluste über Wärmeleitung betrachtet, während die um eine Größenordnung etwa kleineren Wärmeverluste über Strahlung außer Betrachtung bleiben sollen.
  • Ein bekannter Verflüssiger (vgl. DE-U-1 685 651) für das Kältemittel einer Kältemaschine - also nicht für den Einsatzzweck nach der Erfindung bei einer Fahrzeugklimaanlage - besteht je nach Leistungsanforderung aus einer Baugruppe oder mehreren gleichen Baugruppen, die dann gemäß den Merkmalen des Oberbegriffs von Anspruch 1 angeordnet und im Kreuzgegenstrom verschaltet sind. Alle Baugruppen enthalten jeweils nur eine Rohrreihe und sind körperlich und somit auch wärmeleitmäßig völlig voneinander getrennt.
  • Aus der JP-A-58 138986 ist ferner ein Wärmetauscher bekannt, bei dem zwei gesonderte Baugruppen zur Kühlung einerseits gesättigten Gases und andererseits gesättigten Gases, im letzteren Fall einreihig, wärmemäßig voneinander isoliert sind.
  • Die JP-A-58 108394 zeigt bereits einen Wärmetauscher, bei dem zwei unterschiedliche Baugruppen eine gemeinsame Rohrlamellenverrippung haben und durch die Lamellenbrücken zwischen mindestens einer Schlitzreihe wärmemäßig miteinander gekoppelt sind. Dabei kennt man schon sich überlappende parallele Schlitze, die auch mit Ausstellern versehen sein können (Abb. 11 und 13). Auch ist schon in Betracht gezogen, eine teilweise wärmemäßige Entkopplung durch Materialverformung der Lamellen zu gewinnen. Dieser bekannte Wärmetauscher befaßt sich mit dem Sonderfall eines Verflüssigers, bei dem das innere Wärmetauschfluid in gasförmigem Zustand in Rohren relativ großen Durchmessers und in bereits verflüssigtem Zustand in Rohren relativ geringen Durchmessers geführt ist.
  • Auch die US-A-2 963 277 zeigt schon einen Wärmetauscher, bei dem mehrere Rohrreihen eine gemeinsame Lamellenverrippung haben und eine gewisse Unterteilung in zwei Baugruppen durch einen den Wärmefluß in der gemeinsamen Lamellenverrippung reduzierende Reihe von Schlitzen zwischen benachbarten Rohrreihen vorgesehen ist (Fig. 4).
  • Wenn, wie in den beiden letztgenannten bekannten Fällen, gesondert von der sonstigen Ausbildung der Lamelle wärmemäßig entkoppelnde Schlitze längs mindestens einer Geraden zwischen benachbarten Baugruppen angeordnet sind, ergibt sich eine erhebliche Knickempfindlichkeit der Lamellen und damit auch der benachbarten Baugruppen längs dieser Linie(n). Außerdem ergibt sich eine größere Dimensionierung.
  • Bei vollständiger mechanischer und damit automatisch auch wärmeleitmäßiger Entkopplung benachbarter Baugruppen ergeben sich Probleme mechanischer Festigkeit des ganzen Verflüssigers sowie erheblich höhere Herstellungskosten, da praktisch mindestens zwei gesonderte Verflüssiger hergestellt und strömungsmäßig auf möglichst gleichbleibendem kleinen Raum verbunden werden müssen. Diese Probleme verschärfen sich erheblich bei Verflüssigern für ein Kältemittel einer Fahrzeugklimaanlage aufgrund der an nur geringes Raumangebot in Kraftfahrzeugen angepaßten kleinen Dimensionierungen.
  • Aus der schon eingangs erwähnten GB-A-2 023 798 ist es zwar schon bekannt, bei einem Verflüssiger für ein Kältemittel einer Fahrzeugklimaanlage quer zur Strömungsrichtung von als äußerem Wärmetauschfluid dienender Luft einzelne Rohrreihen durch Öffnungen wärmeleitmäßig zu entkoppeln, um den Wirkungsgrad des ganzen Verflüssigers zu erhöhen. Zusätzlich sind aus derselben Vorveröffentlichung auch Öffnungen bildende Aussteller aus der Lamellenebene bekannt, die ebenfalls zur Erhöhung des Wirkungsgrades turbulenzerzeugend wirken. In diesen beiden Fällen ist jedoch keine Wirkung der ausgestellten Lappen als zusätzliche Trennung auf der Seite der anströmenden Luft vorgesehen, um den Wärmetauscher funktionell quer zur Strömungsrichtung der anströmenden Luft in Teilwärmetauscher zu unterteilen.
  • Der Erfindung liegt die Aufgabe zugrunde, die Vorteile eines Betriebs im Kreuzgegenstrom auch für einen zum Einsatz in einer Fahrzeugklimaanlage bestimmten Verflüssiger eines Kältemittels nutzbar zu machen und dabei die mechanische Festigkeit des ganzen Verflüssigers unter geringem Aufwand zu fördern und eine möglichst kleine Dimensionierung des ganzen Verflüssigers zu ermöglichen.
  • Diese Aufgabe wird bei einem Verflüssiger mit den Merkmalen des Oberbegriffs von Anspruch 1 durch dessen kennzeichnende Merkmale gelöst.
  • Auch bei dem erfindungsgemäßen Verflüssiger erfolgt also eine körperliche Vereinigung mehrerer Baugruppen, vorzugsweise aller, über eine gemeinsame Verrippung. Geringer Aufwand der wärmemäßigen Entkopplung benachbarter Baugruppen ergibt sich aus der Einbeziehung der schon vorhandenen turbulenzerzeugenden Schlitze in die wärmeisolierende Verbindungszone, ohne für deren Schaffung zusätzlichen Raumbedarf zu benötigen (kleine Dimensionierung). Eine größere Festigkeit ergibt sich durch die Anordnung der im ganzen wärmeisolierenden Schlitze als Wellen oder Polygonzug (in einfachster Form nach Anspruch 11). Dadurch kann gerade bei den kleinen Dimensionierungen von Verflüssigern für Fahrzeugklimaanlagen die mechanische Festigkeit des ganzen Verflüssigers erhöht werden, der sogar einstückig hergestellt werden kann, mindestens jedoch unter Zusammenfassung mehrerer Baugruppen bzw. mehrerer Rohrreihen. Eine wärmeleitmäßige weitgehende Entkopplung kann dabei sogar allein durch entsprechende Gestaltung der Verrippung zwischen den Baugruppen vorgenommen werden. Erst durch die Zusammenfassung der Baugruppen wird überhaupt eine Herstellung und Handhabung der kleindimensionierten Verflüssiger für Fahrzeugklimaanlagen, oder wenigstens von zusammengefaßten Teilen derselben, praktisch sinnvoll und möglich.
  • Es hat sich somit gezeigt, daß man nicht alle Unterbrechungen innerhalb der Verbindungszone zwischen benachbarten Baugruppen neu schaffen muß, sondern daß man die früher erwähnten bekannten ausstellerartigen Unterbrechungen, die bisher nur zur Förderung des Wärmeübergangs vorgesehen waren, in die wärmeleitmäßige Entkopplung der beiden benachbarten Baugruppen mit einbeziehen kann.
  • Die Erfindungsgemäße Ausbindung läßt sich deshalb leicht erreichen, weil die Rohre in Strömungsrichtung der Umgebungsluft gegeneinander versetzt sind und dann, wie erwähnt, die an sich bekannten ausstellerartigen Ausnehmungen für die Erhöhung des Wärmeübergangs in die zur wärmeleitmäßigen Entkopplung zwischen benachbarten Baugruppen vorgesehene Folge der Ausnehmungen mit einbezogen sind.
  • Gegenüber den auch denkbaren Möglichkeiten einer wärmeleitmäßigen Entkopplung benachbarter Baugruppen an einer durchlaufenden Verrippung, z.B. dem Einbau von Isolationsmaterial, einer Querschnittsschwächung, einer Widerstandsänderung durch Dotierung o.dgl., ist die erfindungsgemäße Lösung weniger aufwendig.
  • Bei der erfindungsgemäßen Lösung kann auch das Material der Verrippung der Wärmetauschrohre benachbarter Baugruppen wie bei den bekannten Verflüssigern für Kraftfahrzeugklimaanlagen gleich sein. Durch geeignete Anordnung von Unterbrechungen längs der Verbindungszone zwischen benachbarten Baugruppen wird jedoch dort der Wärmefluß durch Wärmeleitung signifikant herabgesetzt. Es hat sich gezeigt, daß selbst bei Ausbildung der Verrippung als Folien mit einer Stärke von weniger als 0,15 mm durch das Zusammenwirken dieser Folien als dichtes Paket noch eine hinreichende mechanische Festigkeit des ganzen Verflüssigers unter mechanischer Zusammenfassung der Baugruppen, im Grenzfall ohne jede zusätzliche Verfestigungsmaßnahme, erreicht werden kann. Darüber hinaus behält man den Vorteil, die Wärmetauschrohre verschiedener Baugruppen wie bei einem konventionellen Verflüssiger in einem Arbeitsgang verrippen zu können und so die Herstellungsvorteile der bekannten Verflüssiger beizubehalten. Bevorzugt werden dabei Bemessungen gemäß Anspruch 4, wobei z.B. nach Anspruch 5 aber auch noch wärmeleitmäßige Entkopplungen, die geringer sind als die Werte gemäß Anspruch 4, noch eine deutliche Erhöhung der Temperaturdifferenz zwischen Kältemittel und Umgebungsluft ergeben können.
  • Bei der praktisch bevorzugten Weiterbildung der Erfindung gemäß Anspruch 3 nimmt der Lamellenbereich jeder Rohrreihe praktisch unmittelbar und praktisch ohne Wechselwirkung mit anderen Rohrreihen die Temperatur des Kältemittels der betreffenden Rohrreihe an. Es hat sich gezeigt, daß dabei überraschend ungewöhnlich hohe Wirkungsgradverbesserungen im Vergleich mit konventionellen vergleichbaren Verflüssigern erreicht werden können. Bei gleichem Materialeinsatz oder gleicher Bautiefe und gleichem luftseitigen Druckverlust lassen sich Wirkungsgradverbesserungen in der Größenordnung von 25 % erreichen, die beispielsweise in einer entsprechend geringeren Bautiefe bei gleicher Kühlleistung nutzbar gemacht werden können.
  • Bei allen Verflüssigern von gemäß der Erfindung für Fahrzeugklimaanlagen wird bewußt von einer wärmeleitmäßig gleichen Auslegung der Verrippung aller Wärmetauschrohre abgegangen und stattdessen eine wärmeleitmäßige Entkopplung von mindestens zwei Baugruppen gewählt, welche im Betrieb des Kreuzgegenstroms jeweils in einer Gegensinnwende durchströmt werden. Dabei kann es im einzelnen offen bleiben, wie die Wärmetauschrohre in jeder einzelnen Baugruppe verschaltet sind, z.B. in jeder Baugruppe im Kreuzstrom oder auch für sich im Kreuzgegenstrom. Man kann auch in jeder Baugruppe bekannte derartige Verschaltungselemente kombinieren. Im Grenzfall könnte man sogar gemäß Anspruch 3 jeder Rohrreihe eine Baugruppe zuordnen und jede Rohrreihe in einer Gegensinnwende durchströmen. Es hat sich jedoch gezeigt, daß man für praktische Anwendungen meist mit nur zwei wärmeleitmäßig entkoppelten Baugruppen auskommen kann, selbst wenn diese Baugruppen einzeln oder beide mehr als eine Rohrreihe enthalten. Bevorzugt sind dabei drei oder vier Rohrreihen, wobei im erstgenannten Fall eine Rohrreihe in einer Baugruppe und die beiden anderen Rohrreihen in einer zweiten Baugruppe angeordnet sind, während im zweitgenannten Fall in jeder der beiden Baugruppen zwei Rohrreihen angeordnet werden.
  • Bei einem erfindungsgemäßen Verflüssiger für Fahrzeugklimaanlagen kann sich nicht mehr eine mittlere Temperatur in einer gemeinsamen Verrippung benachbarter Wärmetauschrohre aus verschiedenen Baugruppen einstellen, sondern es erfolgt zwischen den beiden Baugruppen ein mehr oder minder ausgeprägter Temperatursprung.
  • Die wirksame Temperaturdifferenz zwischen dem Kältemittel einerseits und der Umgebungsluft andererseits läßt sich bei Auslegung des Verflüssigers gemäß Anspruch 13 noch einmal signifikant erhöhen. Dabei werden für die beiden angesprochenen Baugruppen vorzugsweise Bemessungen gemäß den Ansprüchen 14 und 15 verwendet. Die Bedeutung dieser Maßnahmen wird später anhand von Funktionsdiagrammen der wesentlichen Parameter (Fig. 4 bis 6b) noch mehr im einzelnen erläutert. Aus der DE-AS 1 072 257 ist es an sich bekannt, längs des Strömungswegs des Kältemittels die Anzahl parallel durchströmter Rohre so zu ändern, daß der Druckgradient über den gesamten Strömungsweg im wesentlichen konstant ist.
  • Gemäß den Ansprüchen 5 bzw. 6 kann bei den Unterbrechungen in der Verbindungszone zwischen benachbarten Baugruppen das Material der Verrippung entfernt, insbesondere ausgestanzt, sein. In diesem Fall wird man vorzugsweise schmale Schlitze verwenden, um möglichst wenig Verrippungsmaterial einzubüßen. Man kann aber auch gemäß den Ansprüchen 7 bis 9 das Material der Verrippung im Bereich der Unterbrechungen mit zu Ausstellern nutzen, die zusätzlich den Wärmeübergang zwischen Kältemittel und Umgebungsluft fördern.
  • Anspruch 10 sieht vorzugsweise vor, daß die an sich bekannten Unterbrechungen an Jalousien ausgebildet sind, während die übrigen Unterbrechungen, die zur wärmeleitmäßigen Separierung der Rohrreihen zusätzlich vorgesehen sind, als einfache Wärmeleitunterbrechungen ohne Jalousieausbildung ausgebildet sein können. Hierzu wird insbesondere auf die alternativen Möglichkeiten von Fig. 3 hingewiesen.
  • Die Erfindung wird im folgenden anhand schematischer Zeichnungen an mehreren Ausführungsbeispielen noch näher erläutert. Es zeigen:
    • Fig. 1 eine schematische Darstellung der Verschaltung der Wärmetauschrohre eines vierreihigen Verflüssigers mit vier Baugruppen; eine gemeinsame Lamellenverrippung mit wärmeleitmäßiger Entkopplung im Sinne der Erfindung ist dabei ergänzt zu denken;
    • Fig. 2 in Draufsicht auf eine gemeinsame Lamelle eine Anordnung von Unterbrechungen in der Verbindungszone zwischen benachbarten Baugruppen unter Einbeziehung von an sich bekannten ausstellerartigen Unterbrechungen für die Erhöhung des Wärmeübergangs;
    • Fig. 3 mögliche Bauformen solcher Unterbrechungen, welche im Rahmen der Erfindung zusätzlich zur wärmeleitmäßigen Entkopplung vorgesehen sind, in drei Varianten a), b) und c) als ausstellerartige Unterbrechungen, wie sie insbesondere in der Fig. 2 dargestellt sind, oder in der Variante d) als einfacher Schlitz; Ausbildungen mit schlitzförmigen Unterbrechungen wären bei der Ausführungsform nach Fig. 2 jedoch ebenfalls möglich;
    • die Fig. 4 bis 6b Funktionsdiagramme;
      dabei
    • Fig. 6b ein Kältemittelzustandsdiagramm, in welchem Kältemittelkreisläufe eingetragen sind, welche den anhand der Fig. 5 und 6a diskutierten verschiedenen Auslegungen des Verflüssigers in bezug auf den kältemittelseitigen Druckverlust entsprechen;
    • Fig. 7 in Anlehnung an Fig. 2 eine Draufsicht auf eine Lamelle eines erfindungsgemäßen Verflüssigers;
    • Fig. 8 einen Schnitt nach der Linie B-B in Fig. 7; und
    • die Fig. 9 und 10 schematisierte Verschaltungen der Kältemittel führenden Rohre von Verflüssigern des Standes der Technik, und zwar nach Fig. 9 im Kreuzstrom und nach Fig. 10 im Kreuzgegenstrom.
  • In den zur Veranschaulichung bekannter Verflüssiger vorgesehenen Fig. 9 und 10 ist die Anströmrichtung der Umgebungsluft durch die Pfeile A veranschaulicht. In beiden Ausführungsbeispielen sind vier Rohrreihen quer zur Anströmrichtung angeordnet.
  • Im Kreuzstrombetrieb gemäß Fig. 9 wird das Kältemittel durch einen Anschluß 2 in einen Sammler 4 eingeleitet, an den die vier Reihen von verrippten Wärmetauschrohren 6 eingangsseitig angeschlossen sind. Alle Wärmetauschrohre 6 haben dabei eine gemeinsame gleichmäßig ausgebildete Verrippung. Ausgangsseitig sind die vier Reihen von Wärmetauschrohren 6 an einen weiteren Sammler 8 angeschlossen, der mit einem Auslaß 10 des Kältemittels versehen ist. Man erkennt, daß das Kältemittel in den vier Reihen parallel vom Sammler 4 zum Sammler 8 strömt und dabei die anströmende Umgebungsluft kreuzt.
  • In Fig. 10 ist dieselbe Konfiguration von verrippten Wärmetauschrohren 6 im Kreuzgegenstrom in bezug auf die anströmende Umgebungsluft verschaltet. Dabei sind zwischen den beiden eingangs- und ausgangsseitigen Sammlern 4 und 8 vier Gegensinnwenden dargestellt, in denen das Kältemittel einerseits die anströmende Umgebungsluft kreuzt und andererseits im Gegenstrom zu diesem vom eingangsseitigen Sammler 4 zum ausgangsseitigen Sammler 8 geführt ist.
  • In der dargestellten Ausführungsform verbindet jede Gegensinnwende jeweils nur zwei benachbarte Rohre einer Reihe. Es ist ebenso bekannt, zur Erhöhung des Druckverlustes in jedem durchströmten Zweig zwischen den Sammlern 4 und 8 die Anzahl der Rohre pro Reihe zu erhöhen bis zu dem Grenzfall, daß zwischen dem eingangsseitigen Anschluß 2 und dem Auslaß 10 nur eine einzige Rohrschlange bzw. Gegensinnwende angeordnet ist.
  • Die gemeinsame Verrippung aller Wärmetauschrohre durch Folien insbesondere aus Aluminium oder einer Aluminiumlegierung mit einer Stärke von weniger als 0,15 mm, üblicherweise bis etwa 0,1 mm, ist mit 12 dargestellt.
  • Die bekannten Ausführungsformen der Fig. 9 und 10 beziehen sich speziell auf Rundrohrwärmetauscher.
  • Nachfolgend werden nun Ausführungsbeispiele von Verflüssigern nach der Erfindung veranschaulicht, die ebenfalls Rundrohrwärmetauscher sein können.
  • Der Verflüssiger ist jeweils in mindestens zwei Baugruppen aufgeteilt, von denen jede z.B. ohne Beschränkung der Allgemeinheit jeweils zwei Rohrreihen enthalten kann. Speziell kann eine Baugruppe an der Eintrittsseite des Kältemittels und die andere Baugruppe an der Austrittsseite des Kältemittels angeordnet sein, wobei beide Baugruppen z.B. als Gegensinnwende geschaltet sind.
  • Eine den Baugruppen gemeinsame Verrippung kann Folien aus Al, Cu oder Legierungen dieser Materialien mit einer Stärke von weniger als 0,15 mm bis nach derzeitiger Walztechnik minimal 0,08 mm aufweisen.
  • Bei Ausbildung als Flachrohrwärmetauscher werden zweckmäßig Lamellenverrippungen mit Folien vorgesehen, die dann zweckmäßig Stärken zwischen 0,15 und 0,25 mm besitzen.
  • Wie bei der Beschreibung des Standes der Technik nach den Figuren 9 und 10 ist die Strömungsrichtung des Kältemittels durch Pfeile B gekennzeichnet, während die Pfeile A die Anströmrichtung der Umgebungsluft zeigen.
  • Auch werden weiterhin der eingangsseitige Anschluß 2 an einen eingangsseitigen Sammler 4 und der ausgangsseitige Anschluß 10 an einen ausgangsseitigen Sammler 8 verwendet und die Wärmetauschrohre mit 6 bezeichnet.
  • Bei der Ausführungsform nach Fig. 2 sind zwei Baugruppen 14 und 16 dargestellt, während die Ausführungsform nach Fig. 1 vier Baugruppen 54,56,58 und 60 zeigt.
  • Fig. 1 zeigt in einer speziellen Verschaltung ein bevorzugtes Schaltungsbild der einzelnen Baugruppen 54 bis 60, und zwar an einem vierreihigen Verflüssiger mit gemeinsamer Lamellenverrippung.
  • Eingangsseitig sind in den Baugruppen 54 und 56 vier Kältekreisläufe parallelgeschaltet, wie dies in Fig. 9 bei dem bekannten Verflüssiger für diesen ingesamt dargestellt ist.
  • Die beiden Baugruppen 58 und 60 sind von nur zwei parallelgeschalteten Kreisläufen gebildet, so daß dadurch bei gleichbleibendem Innenquerschnitt der Wärmetauschrohre 6 in den Baugruppen 58 und 60 relativ zu den Baugruppen 54 und 56 der Druckverlust wesentlich erhöht wird.
  • In nicht dargestellter Weise könnte man Parallelschaltungen nach Art der Baugruppen 54 und 56 auch im Eingangsbereich des Verflüssigers fortsetzen oder aber Schaltungsmaßnahmen der bei den Baugruppen 58 und 60 dargestellten Art schon in den Baugruppen 54 und 56 beginnen.
  • In Fig. 1 ist ferner auf Zwischensammler verzichtet, indem die einzelnen Kreisläufe der eingangsseitigen Baugruppen 54 und 56 paarweise durch sogenannte Dreifüße 26 in die zwei weiterführenden Kreisläufe der Baugruppen 58 und 60 strömungsmäßig überführt werden.
  • Es versteht sich, daß die geschilderten Schaltungsmaßnahmen auch bei anderen Anzahlen der Kreisläufe in den einzelnen Baugruppen analog realisiert werden können. Die hier dargestellten Anzahlen und Konfigurationen sind jedoch bevorzugt.
  • Die Ausführungsform nach Fig. 1 setzt voraus, daß die einzelnen Baugruppen 54 bis 60 erfindungsgemäß im Bereich der gemeinsamen Lamellenverrippung wärmeleitmäßig entkoppelt sind, wie dies beispielsweise nachfolgend noch mehr im einzelnen anhand der Figuren 2, 7 und 8 erläutert ist.
  • Die dargestellten vier Rohrreihen sind dabei alle wärmeleitmäßig in die einzelnen Baugruppen 54, 56, 58 und 60 entkoppelt.
  • Zusätzlich wird beim Übergang von den Baugruppen 54, 56 auf 58, 60 der kältemittelseitige Druckverlust durch Zusammenschaltung von jeweils parallelen Kreisläufen 62 auf einen Kreislauf mittels Dreifuß 26 erhöht.
  • Bei einem derart verschalteten Verflüssiger ist der Kurzschlußwärmestrom zwischen den Wärmetauschrohren in der Lamelle minimal.
  • Bei der Ausführungsform der Fig. 1 ist also eine gemeinsame Lamellenverrippung mit wärmeleitmäßig weitgehender Entkopplung hinzuzudenken, wie sie anhand der nachfolgenden Fig. 2 oder 7 und 8 im einzelnen beschrieben ist.
  • In Fig. 2 ist eine Draufsicht auf eine einzelne Wärmetauschlamelle für eine vierreihige Anordnung von hier nicht dargestellten Wärmetauschrohren 6 dargestellt. Jeweils ein Wärmetauschrohr 6 eines Rohrbündelwärmetauschers wird in üblicher Weise in einer Aufnahmeöffnung 28 der Lamelle 30 angeordnet, welche Teil der Verrippung 12 (analog zu Fig. 9 und 10) ist. Die Öffnungen können in üblicher Weise beispielsweise mit Verbindungshülsen zum Anschluß an das jeweilige Wärmetauschrohr ausgebildet sein. Man kann sich die einzelnen Aufnahmeöffnungen 28 dabei stellvertretend für die Anordnung der Sammeltauschrohre vorstellen.
  • Die einzelnen Lamellen 30 werden in üblicher Weise durch aus der Lamelle herausgearbeitete Distanzhalter 32, beispielsweise herausgestellte Lappen des Lamellenmaterials, in gegenseitigem Abstand gehalten.
  • Aus der Anordnung der Aufnahmeöffnungen 28 erkennt man zunächst die Zuordnung zu solchen Verflüssigern, bei denen in Strömungsrichtung der Umgebungsluft die Wärmetauschrohre 6 jeweils hälftig auf Lücke versetzt sind.
  • In der Lamelle 30 sind zunächst an sich zur Erhöhung des Wärmeübergangs bekannte ausstellerartige Sohlitze 34 angeordnet, die sich zwischen benachbarten Aufnahmeöffnungen 28 jeweils längs einer Rohrreihe erstrecken und damit auch quer zu solchen Anschlußöffnungen liegen, welche in der jeweils übernächsten Rohrreihe benachbart sind. Man erkennt dabei in der Ausführungsform nach Fig. 2, daß derartige Schlitze 34 nicht in der Lage sind, benachbarte Rohre aus benachbarten Rohrreihen voneinander wärmeleitmäßig zu entkoppeln.
  • Für den Zweck dieser wärmeleitmäßigen Entkopplung sind zusätzliche Unterbrechungen 36 vorgesehen, welche bei der Ausführungsform nach Fig. 2 zusammen mit den Schlitzen 34 einen Polygonzug beschreiben bzw. unter 45° zur Erstreckung der Reihen von Aufnahmeöffnungen 28 angeordnet sind.
  • Bedarfsweise kann die wärmeleitmäßige Entkopplung noch zusätzlich dadurch vergrößert werden, daß die Schlitze 34 und die Unterbrechungen 36 einander überlappend angeordnet sind. Man kann jedoch eine guten Effekt auch noch ohne diese Überlappung erreichen, wenn auch die Überlappung wegen der Erhöhung des Wärmeleitwiderstandes bevorzugt ist.
  • Die Folge der Schlitze 34 und Unterbrechungen 36 beschreibt dabei die Erstreckungsrichtung einer Verbindungszone 38 zwischen den beiden Baugruppen 14 und 16 und den diesen jeweils zugeordneten Bereichen 40 und 42 der Lamelle 30.
  • Ohne Beschränkung der Allgemeinheit können die Unterbrechungen 36 als einfache Schlitze 44 nach Art der Variante d) von Fig. 3 ausgebildet sein.
  • Die Varianten a), b) und c) nach Fig. 3 stellen aber bevorzugte Ausbildungen der in Fig. 2 eingezeichneten ausstellerartigen zusätzlichen Unterbrechungen 36 dar, die im übrigen aber auch bei den Schlitzen 34 an sich bekannt sind.
  • Bei der Variante a) sind die Materialaussteller einseitig aus der Lamelle 30 ausgebogene, vorzugsweise gemeinsam jalousieförmig angeordnete, Stege 46.
  • Bei den Varianten b) und c) sind hingegen die Materialaussteller beidseitig über Schnittstellen 48 aus der Verrippung ausgeschnitten, so daß hervorgehobene dachartige Teile 50 entstehen, die jeweils nur stirnseitig mit der Lamelle 30 einstückig verbunden sind. Die Variante b) beschreibt hier ein Flachdach und die Variante c) ein Giebeldach, wobei vielfältige Formen möglich und auch im Zusammenhang mit den Unterbrechungen 34 üblich sind. Dementsprechend können auch die Unterbrechungen 34 alle in Fig. 3, Varianten a) bis c), gewählten Formen haben. Im Grenzfall könnte man an diesen Stellen auch einfache Schlitze gemäß der Variante d) abweichend von der Üblichkeit vorsehen, so daß dann sowohl die Unterbrechungen 34 als auch die Unterbrechungen 36 lediglich zur wärmeleitmäßigen Entkopplung dienen.
  • Analog läßt sich die Anordnung auch auf dreireihige Lamellen oder solche mit anderer Reihenanzahl übertragen.
  • Die Unterbrechungen 36 und die an sich bekannte Schlitze 34 sind längs der Verbindungszone 38 jeweils durch relativ schmale Verbindungsstege 52 voneinander getrennt, so daß der Wärmefluß allein durch diese schmalen Verbindungsstege erfolgt und dadurch die mittlere Wärmeleitfähigkeit längs der Verbindungszone 38 entsprechend dem Verhältnis zwischen Unterbrechung und Verbindungssteg reduziert ist.
  • In Fig. 4 ist der Temperaturverlauf der durch den Verflüssiger strömenden Umgebungsluft und des zur Umgebungsluft im Kreuzgegenstrom mit drei Gegensinnwenden geführten Kältemittels dargestellt. Dabei ist das Kältemittel in den Rohren innerhalb einer Baugruppe im Kreuzstrom zur Luft und von Baugruppe zu Baugruppe in Gegensinnwenden, d.h. im Gegenstrom zur Luft, geführt. Innerhalb einer Baugruppe kann das Kältemittel auch im Kreuzgegenstrom mit einer oder zwei Gegensinnwenden geführt werden, wenn die Baugruppe aus mehr als einer Rohrreihe besteht. Jedoch wird durch den geringen Abstand der benachbarten Rohre verschiedener Rohrreihen die unterschiedliche Temperatur durch die Lamelle gemittelt, so daß die im Gegensatz zur reinen Kreuzstromführung der Rohre erhöhte Temperaturdifferenz bei Kreuzgegenstrom nicht wirksam wird.
  • In Fig. 4 ist daher die für die wirksame Temperaturdifferenz optimierte Lösung dargestellt, bei der jede Rohrreihe eins bis vier gemäß Fig. 2 jeweils einer Baugruppe 54, 56, 58, 60 zugeordnet ist.
  • Bei einer derartigen Aufteilung eines z.B. vierreihigen Verflüssigers in ebenfalls vier Baugruppen 54, 56, 58 und 60 kann sich die in Durchströmungsrichtung des Kältemittels gemäß Fig. 4 abnehmende Kältemitteltemperatur nicht durch Kurzschlußwärmeströme in der Verrippung ausgleichen, sondern es stellt sich der in Fig. 4 durchgezogene Kurvenzug als Verrippungstemperatur ein, der unterhalb dem ebenfalls dargestellten Kältemitteltemperaturverlauf liegt.
  • Bei einem im Kreuzgegenstrom verschalteten Verflüssiger nach dem Stand der Technik gemäß Fig. 10 ist, unter Voraussetzung, daß dieselbe Austrittstemperatur erreicht werden soll, die Verrippungstemperatur im Mittel erheblich niedriger, da die Wärme in der Lamelle von den Wärmetauschrohren mit höherer Temperatur am Verflüssigereintritt zu den Wärmetauschrohren niedrigerer Temperatur am Verflüssigeraustritt strömt.
  • Die wirksame Temperaturdifferenz kann anschaulich durch die Fläche zwischen dem Verrippungs- und dem Luftemperaturverlauf dargestellt werden.
  • In Fig. 4 ist der Zuwachs der wirksamen Temperaturdifferenz eines gemäß Anspruch 1 verschalteten Verflüssigers gegenüber einem ebenfalls in Kreuzgegenstrom verschalteten Verflüssiger nach dem Stand der Technik als schraffierte Fläche (A1) dargestellt.
  • Im Gegensatz zur wirksamen Temperaturdifferenz eines gemäß dem Stand der Technik verschalteten Verflüssigers, die durch die schraffiert dargestellte Fläche (A2) dargestellt wird, wird durch den erfindungsgemäßen Verflüssiger mehr als eine Verdopplung der wirksamen Temperaturdifferenz erreicht. Da der dargestellte Temperaturverlauf einem mittleren Betriebszustand einer Fahrzeugklimaanlage entspricht, ist bei kleineren Luftgeschwindigkeiten, d.h. einer stärkeren Lufterwärmung, ein noch größerer Zuwachs an wirksamer Temperaturdifferenz durch den erfindungsgemäßen Verflüssiger möglich.
  • In den Fig. 5 und 6 sind Optimierungskriterien für den kältemittelseitigen Druckverlust dargestellt. Der sich bei unterschiedlichen kältemittelseitigen Druckverlusten einstellende Temperaturverlauf im Kältemittelkreislauf ist im Kältemittelzustandsdiagramm in Fig. 6b gezeigt.
  • Der kältemittelseitige Druckverlust muß in jeder einzelnen Baugruppe so gewählt werden, daß die Austrittstemperatur des verflüssigten Kältemitels tKA im Bereich von deren Minimum tKA1 bis zum Minimum der Sättigungstemperatur tKE1 des in den Verflüssiger eintretenden Kältemittels liegt.
  • Die Fig. 5, 6a und 6b werden nachfolgend anhand von Beispielen erläutert.
  • Wählt man eine Auslegung mit sehr kleinem kältemittelseitigen Druckverlust, z.B. 0,05 bar, so ist der innere Wärmeübergangskoeffizient α, der in Fig. 5 über dem kältemittelseitigen Druckverlust qualitativ aufgetragen ist, minimal.
  • Aus dem minimalen kältemittelseitigen Druckverlust ΔPK resultiert eine maximal wirksame mit Δtlog in Fig. 5 bezeichnete Temperaturdifferenz zwischen dem Kältemittel einerseits und der Umgebungsluft andererseits, da die Sättigungstemperatur im Verlauf des Strömungsweges des Kältemittels nicht abnimmt. Andererseits ist die Wärmedurchgangszahl (in Fig. 5 mit K bezeichnet) durch den minimalen inneren Wärmeübergangskoeffizienten klein.
  • Das für die Verflüssigerleistung entscheidende Produkt von Wärmedurchgangszahl mit der wirksamen Temperaturdifferenz (in Fig. 5 mit K·Δtlog bezeichnet) erreicht daher bei 0,05 bar kältemittelseitigem Druckverlust nicht den maximalen Wert.
  • Aus diesem Grund wird in einem vorgegebenen Kältemittelkreislauf einer Fahrzeugklimaanlage bei konstanten Betriebsbedingungen auch nicht die minimale Verflüssigungstemperatur am Eintritt (in Fig. 6a mit tKE bezeichnet) erreicht, da aufgrund der kleineren Wärmedurchgangszahl K bei sonst konstanten Bedingungen (wie äußere Fläche, Umgebungstemperatur etc.) die Sättigungstemperatur des Kältemittels tKE und der Sättigungsdruck pKE höher sein müssen als bei einer Auslegung mit höherer Wärmedurchgangszahl. Durch den geringen kältemittelseitigen Druckverlust wird zusätzlich eine für die Innenraumabkühlung des Kraftfahrzeugs erwünschte Absenkung der Kältemittelaustrittstemperatur (die in Fig. 6a mit tKA bezeichnet ist) verhindert.
  • Der Kältemittelkreisprozeß, der sich bei einem Verflüssiger mit kleinen kältemittelseitigen Druckverlusten, z.B. von 0,05 bar, einstellt, ist im Kältemittelzustandsdiagramm in Fig. 6b dargestellt.
  • Fig. 6b zeigt die Grenzkurve für den flüssigen Zustand und die Grenzkurve für den gasförmigen Zustand, die im kritischen Punkt aufeinandertreffen und auch mit "Sattigungslinien" bezeichnet werden können.
  • Der Zustand des Kältemittels wird in erster Linie durch den Kältemitteldruck P und die Enthalpie h beschrieben, die in Fig. 6b als Ordinate bzw. Abszisse aufgetragen sind. Es stellen dar:
    • Punkt A: Eintritt in den Verdampfer;
    • Punkt B: Austritt aus dem Verdampfer bzw. Eintritt in den Verdichter;
    • Punkt C: Austritt aus dem Verdichter bzw. Eintritt in den Verflüssiger;
    • Punkt D: Austritt aus dem Verflüssiger bzw. Eintritt in das Drosselorgan des Kältemittelkreislaufes.
  • Der bei Verflüssigern mit 0,05 bar kältemittelseitigem Druckverlust sich einstellende Kreisprozeß ist in Fig. 6b mit A, B, C und D bezeichnet, wobei die Richtung des Kältemittelkreislaufes mit einem Pfeil gekennzeichnet ist. Von den drei dargestellten Kältekreisläufen wird ein mittlerer Eintrittsdruck pKE bei Punkt C erreicht, während der Austrittsdruck PKA und damit auch die durch die Dampfdruckkurve zugeordnete Sättigungstemperatur im Punkt D weitaus am höchsten ist. Da die Unterkühlung des flüssigen Kältemittels auf Werte unterhalb der dem Druck entsprechenden Sättigungstemperatur bei allen Verflüssigerkonstruktionen, deren flüssiges Kältemittel ungehindert aus dem Verflüssiger abfließen kann, vergleichbare Werte einnimmt, ist auch die thermometrisch am Austritt des Verflüssigers gemessene Kältemittelaustrittstemperatur vergleichsweise hoch. Da die Enthalpie h mit der Temperatur des flüssigen Kältemittels ansteigt, ist die Eintrittsenthalpie des Kältemittels in den Verdampfer in Punkt A ebenfalls am höchsten.
  • Aus diesem Grunde steht im Verdampfer bei konstanter Überhitzung des aus dem Verdampfer austretenden Kältemittels (Punkt B) eine vergleichsweise geringe Enthalpiedifferenz Δho zur Wärmeaufnahme zur Verfügung, so daß pro kg vom Verdichter umgewälzten Kältemittels weniger Wärme aufgenommen werden kann als bei den beiden anderen mit ' bzw. "bezeichneten Kältemittelkreisprozessen. Dies führt wiederum bei sonst konstanten Bedingungen zu einem vergleichsweise hohen Verdampfungsdruck (Punkte A und B) mit daraus resultierender höherer Luftaustrittstemperatur aus dem Verdampfer und schließlich vergleichsweise hoher Innenraumtemperatur.
  • Erhöht man den kältemittelseitigen Druckverlust auf den für den Verflüssiger optimalen und in den Fig. 5 und 6a mit tKE1 bezeichneten Wert von ca. 0,7 bar, so fällt die wirksame Temperaturdifferenz in Fig. 5 zwar ab, andererseits nimmt der innere Wärmeübergangskoeffizient α₁ und damit auch die Wärmedurchgangszahl K jedoch zu. Da gemäß Fig. 5 von 0,05 bar kältemittelseitigem Druckverlust bis zum Druckverlust 0,7 bar die Zunahme der Wärmedurchgangszahl größer als die Abnahme der wirksamen Temperaturdifferenz ist, erreicht das für die Verflüssigerleistung entscheidende Produkt von wirksamer Temperaturdifferenz mit der Wärmedurchgangszahl K·Δtlog beim kältemittelseitigen Druckverlust tKE1 gemäß Fig. 5 sein Maximum, welches wie schon erläutert gleichbedeutend ist mit dem Minimum der Sättigungstemperatur am Eintritt des Verflüssigers tKE gemäß Fig. 6a. Durch den bei tKE1 um 0,65 bar höheren kältemittelseitigen Druckverlust kommt es zu einer weiteren Absenkung der Sättigungstemperatur am Verflüssigeraustritt tKA.
  • Betrachtet man den zuletzt beschriebenen Kältemittelverflüssiger im gesamten Kältekreislauf gemäß Fig. 6b, so erkennt man den minimalen Kältemitteleintrittsdruck PKE, der gleichbedeutend ist mit der minimal gesättigten Kältemitteleintrittstemperatur tKE1 in Punkt C', und den durch das Gefälle nach links dargestellten Druckverlust ΔpK des Verflüssigers mit der Folge, daß der Austrittsdruck pKA und die Kältemittelaustrittstemperatur niedriger sind, wodurch die dem Verdampfer zur Verfügung stehende Enthalpiedifferenz ho' größer als bei einem Verflüssiger mit 0,05 bar kältemittelseitigem Druckverlust ist.
  • Wie schon erläutert, resultiert daraus eine vergleichsweise niedrigere Verdampfungs-, Luftaustritts- sowie Fahrzeuginnenraumtemperatur.
  • Eine darüber hinausgehende Absenkung der Verflüssigeraustrittstemperatur tKA läßt sich durch eine weitere Erhöhung des kältemittelseitigen Druckverlustes von tKE1 auf tKE2 erreichen.
  • Bei dieser Dimensionierung ist jedoch die von K·Δtlog bestimmte Verflüssigerleistung nicht mehr maximal, da die wirksame Temperaturdifferenz stärker abnimmt als die Wärmedurchgangszahl zunimmt, so daß auch die Sättigungstemperatur am Verflüssigereintritt ansteigt (siehe Punkt C'' in Fig. 6b).
  • Werden jedoch Verdichter mit "steiler Kennlinie", d.h. nahezu förderdruckunabhängigem Fördervolumenstrom, eingesetzt, so reduziert der gemäß der Dampfdruckkurve mit der Sättigungstemperatur tKE ansteigende Kältemitteleintrittsdruck pKE nicht den Kältemittelmassenstrom, so daß die aus der Kältemittelaustrittstemperatur aus dem Verflüssiger (Punkt D'' in Fig. 6b) resultierende maximale Enthalpiedifferenz Δho ,, des Kältemittels im Verdampfer zu einer weiteren Absenkung des Verdampfungsdrucks in Punkt A'' und B'' und damit zu der minimal möglichen Luftaustrittstemperatur aus dem Verdampfer sowie maximal möglichen Innenraumabkühlung führt.
  • Bei dem in den Fig. 7 und 8 angesprochenen Verflüssiger sind ohne Beschränkung der Allgemeinheit drei Baugruppen 14, 15 und 16 vorgesehen, die jeweils einer einzigen Rohrreihe zugeordnet sind. Gezeigt ist nur eine Lamelle des die Verrippung der entsprechenden Wärmetauschrohre bildenden Lamellenpaketes. Dabei weist jede Lamelle 30 Aufnahmeöffnungen 28 auf, in welche jeweils ein Wärmetauschrohr mechanisch fest und wärmeleitend eingepaßt wird. Man erkennt in Fig. 8, daß die entsprechenden Aufnahmeöffnungen 28 hülsenförmig aus der Lamellenebene hervorstehen.
  • Aus der Verteilung der Aufnahmeöffnungen 28 ergibt sich auch, daß die Wärmetauschrohre in Strömungsrichtung A der Umgebungsluft gegeneinander regelmäßig auf Lücke versetzt angeordnet sind.
  • In die Folge von zwischen den einzelnen Baugruppen vorgesehenen Unterbrechungen 36 sind an sich bekannte Unterbrechungen 34 mit einbezogen, die jeweils quer zwischen Paaren von Wärmetauschrohren (bzw. Aufnahmeöffnungen 28) angeordnet sind, welche unterschiedlichen Rohrreihen voneinander getrennter Baugruppen 14, 15 und 16 angehören.
  • Die Schlitze 34 und Unterbrechungen 36 bilden somit in der Lamelle 30 längs der jeweiligen Verbindungszone 38 zwischen den Baugruppen 14 und 15 bzw. 15 und 16 eine Folge von Unterbrechungen, zwischen denen Verbindungsstege 52 verbleiben und die jeweils zwischen Paaren von Wärmetauschrohren bzw. Aufnahmeöffnungen 28 angeordnet sind, die direkt benachbarten Rohrreihen der jeweils benachbarten Baugruppen, hier Rohrreihen, angehören.
  • Die Unterbrechungen 36 sind hier speziell gemäß der obersten Variante a) von Fig. 3 als langgestreckte Schlitze mit einseitigem Aussteller ausgebildet. Die an sich bekannten Schlitze 34 sind demgegenüber als Jalousien ausgebildet, deren spezielle Form aus Fig. 8 deutlich wird. Es handelt sich um zwei mittlere Vollstege und zwei äußere Halbstege, die parallel zueinander ausgestellt sind und zur Luft einen Anstellwinkel von vorzugsweise 15 bis 30° haben.
  • Die als Jalousien ausgebildeten Schlitze 34 verlaufen bei der versetzten Rohranordnung jeweils in derselben Rohrreihe mit Längserstreckung zwischen benachbarten Rohren derselben Rohrreihe oder, anders ausgedrückt, mit Quererstreckung, also trennend, zwischen benachbarten Rohren von in Anströmrichtung A hintereinanderliegenden Rohrpaaren, die jeweils durch eine zwischenliegende Rohrreihe mit versetzten Rohren voneinander getrennt sind.
  • Zu erkennen sind ferner noch Abstandhalter 64, die aus der Lamellenebene auf der gleichen Seite wie die Hülsen der Aufnahmeöffnungen 28 mit größerer Höhe ausgestellt sind, um die einzelnen Lamellen im zusammengepreßten Lamellenpaket zu distanzieren. Mögliche Formgebungen und Bemessungen derartiger Aussteller sind an sich bekannt. In den Abbildungen 7 und 8 sind zwei unterschiedliche bevorzugte mögliche Formgebungen dargestellt, die sich durch ein- oder doppelseitige Stegausstellung unterscheiden. Zweckmäßig sind dabei die ausgestellten Stege nach Fig. 8 konisch verlaufend, um sich nicht in die gegenüberliegende Ausstellöffnung des nächsten Abstandhalters der benachbarten Lamelle einzufügen.
  • Auch die Lamellen 30 sind zweckmäßig Folien aus Al, Cu oder Legierungen dieser Materialien mit einer Stärke von weniger als 0,15 mm.
  • Bevorzugt werden mit der Bauweise im Sinne von Fig. 7 oder 8 Verflüssiger mit drei oder vier Rohrreihen gebildet, wobei aber auch im Sinne vorhergehender Beschreibung Verflüssiger mit nur zwei Rohrreihen in Frage kommen.
  • Den einzelnen Rohrreihen ist jeweile die Lamelle 30 gemeinsam; der Zusammenhalt erfolgt über die Verbindungsstege 52, die zwischen den Unterbrechungen verbleiben.

Claims (16)

  1. Verflüssiger für ein Kältemittel einer Fahrzeugklimaanlage mit verrippten Wärmetauschrohren (6), durch die das Kältemittel im Kreuzstrom zu anströmender Umgebungsluft geführt ist, wobei die Wärmetauschrohre in mehreren in Anströmrichtung der Umgebungsluft hintereinander angeordneten Rohrreihen mit gemeinsamer Verrippung angeordnet sind und die Rohre (6) von in Strömungsrichtung der Umgebungsluft aufeinanderfolgenden Rohrreihen gegeneinander versetzt sind,
    und wobei zwischen benachbarten Rohren (6) einer Rohrreihe in Erstreckungsrichtung der Rohrreihe verlaufende, den Wärmeübergang verbessernde Schlitze (34) in der Verrippung ausgebildet sind,
    dadurch gekennzeichnet, daß die Rohrreihen mehrere in Anströmrichtung der Umgebungsluft hintereinander angeordnete Baugruppen (14,16) bilden, die kältemittelseitig in Reihe im Gegenstrom zur Anströmrichtung verschaltet und über ihre Verrippung (12) mechanisch verbunden sind, und daß zwischen benachbarten Baugruppen (14,16) den Wärmefluß zwischen den Baugruppen herabsetzende Unterbrechungen (36) angeordnet sind, die zusammen mit den Schlitzen (34) eine Verbindungszone (38) benachbarter Baugruppen bilden, die in Form eines Polygon- oder Wellenzuges verläuft und in der die mittlere Wärmeleitfähigkeit λm unter 20% der Wärmeleitfähigkeit λ des Materials der Verrippung (12) liegt.
  2. Verflüssiger nach Anspruch 1, dadurch gekennzeichnet, daß in der Verbindungszone (38) die mittlere Wärmeleitfähigkeit λm unter 10% der Wärmeleitfähigkeit λ des Materials der Verrippung (12) der beiden benachbarten Baugruppen (14,16) liegt.
  3. Verflüssiger nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß jede Rohrreihe von Wärmetauschrohren eine Baugruppe (14,15,16) bildet.
  4. Verflüssiger nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß, in Erstreckungsrichtung der Verbindungszone (38) gemessen, die mittlere Länge der Verbindungsstege (52) weniger als 50%, vorzugsweise weniger als 20%, höchstvorzugsweise weniger als 10%, der mittleren Länge der Unterbrechungen (36) beträgt.
  5. Verflüssiger nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß Unterbrechungen (36) als Materiallücken (44), vorzugsweise Ausstanzungen, ausgebildet sind.
  6. Verflüssiger nach Anspruch 5, dadurch gekennzeichnet, daß die Materiallücken sich längs der Verbindungszone erstrekkende Schlitze (44) sind.
  7. Verflüssiger nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß Unterbrechungen (36) als Materialaussteller (46;50) ausgebildet sind.
  8. Verflüssiger nach Anspruch 7, dadurch gekennzeichnet, daß Materialaussteller einseitig aus der Verrippung (12) ausgebogene, vorzugsweise gemeinsam jalousieförmig angeordnete, Stege (46) sind.
  9. Verflüssiger nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß Materialaussteller (50) beidseitig der Verrippung (12) ausgestellt sind.
  10. Verflüssiger nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die Schlitze (34) als Jalousien ausgebildet sind.
  11. Verflüssiger nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, daß die Schlitze (34) und die Unterbrechungen (36) einen Polygonzug beschreiben.
  12. Verflüssiger nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß nur zwei Baugruppen (14,16) vorgesehen sind.
  13. Verflüssiger nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß eine vom Kältemittel zuerst durchströmte (erste) Baugruppe (54,56) mit relativ geringem kälteseitigen Druckverlust und eine vom Kältemittel nachfolgend durchströmte (zweite) Baugruppe (58,60) mit relativ hohem kälteseitigen Druckverlust ausgelegt ist.
  14. Verflüssiger nach Anspruch 13, dadurch gekennzeichnet, daß der Druckverlust der ersten Baugruppe (54,56) so bemessen ist, daß das Produkt einerseits aus wirksamer Temperaturdifferenz (Δtlog) zwischen Umgebungsluft und Kältemittel und andererseits aus dem Wärmedurchgangskoeffizienten k maximal ist.
  15. Verflüssiger nach Anspruch 13 oder 14, dadurch gekennzeichnet, daß der Druckverlust der zweiten Baugruppe (58,60) so groß bemessen ist, daß die Austrittstemperatur (tKA) des verflüssigten Kältemittels im Bereich von deren Minimum bis zum Minimum der Sättigungstemperatur (tKE) des in den Verflüssiger entretenden Kältemittels liegt.
  16. Verflüssiger nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, daß die Verrippung aus Folien (30) aus Al, Cu oder Legierungen dieser Materialien mit einer Stärke von weniger als 0,15 mm besteht.
EP90110618A 1989-06-06 1990-06-05 Verflüssiger für ein Kältemittel einer Fahrzeugklimaanlage Expired - Lifetime EP0401752B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE3918455 1989-06-06
DE19893918455 DE3918455A1 (de) 1989-06-06 1989-06-06 Verfluessiger fuer ein kaeltemittel einer fahrzeugklimaanlage
DE3938842A DE3938842A1 (de) 1989-06-06 1989-11-23 Verfluessiger fuer ein kaeltemittel einer fahrzeugklimaanlage
DE3938842 1989-11-23

Publications (3)

Publication Number Publication Date
EP0401752A2 EP0401752A2 (de) 1990-12-12
EP0401752A3 EP0401752A3 (de) 1991-03-06
EP0401752B1 true EP0401752B1 (de) 1993-12-08

Family

ID=25881641

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90110618A Expired - Lifetime EP0401752B1 (de) 1989-06-06 1990-06-05 Verflüssiger für ein Kältemittel einer Fahrzeugklimaanlage

Country Status (4)

Country Link
US (1) US5076353A (de)
EP (1) EP0401752B1 (de)
DE (2) DE3938842A1 (de)
ES (1) ES2047200T3 (de)

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5529116A (en) * 1989-08-23 1996-06-25 Showa Aluminum Corporation Duplex heat exchanger
JP3030036B2 (ja) * 1989-08-23 2000-04-10 昭和アルミニウム株式会社 複式熱交換器
US5219023A (en) * 1992-03-09 1993-06-15 General Motors Corporation Three row condenser with high efficiency flow path
DE4220823C2 (de) * 1992-06-25 1996-08-29 Thermal Waerme Kaelte Klima Heizungswärmetauscher für Personenkraftwagen mit mindestens zwei Teilwärmetauschern
ES2087702T3 (es) * 1993-07-06 1996-07-16 Magneti Marelli Climat Srl Condensador de sistemas de acondicionamiento de aire, en particular para vehiculos de motor.
US5555931A (en) * 1993-09-03 1996-09-17 Goldstar Co., Ltd. Heat exchanger for separable air conditioner
US5660050A (en) * 1995-07-10 1997-08-26 Russell Coil Company Refrigeration condenser, receiver subcooler system
JPH09133488A (ja) * 1995-11-09 1997-05-20 Matsushita Electric Ind Co Ltd フィン付き熱交換器
KR0182541B1 (ko) * 1995-12-05 1999-05-01 김광호 공기조화기의 열교환기
CN1125309C (zh) * 1996-10-02 2003-10-22 松下电器产业株式会社 翅片式热交换器
JPH10132480A (ja) * 1996-10-31 1998-05-22 Daikin Ind Ltd 空気調和機用熱交換器
EP0845649A3 (de) * 1996-11-28 1999-04-14 Kimura Kohki Co., Ltd. Wärmetauscher-Rohrschlange
KR100225628B1 (ko) * 1997-01-20 1999-10-15 윤종용 멀티형 공기 조화기의 냉매 분배 구조
US5975200A (en) * 1997-04-23 1999-11-02 Denso Corporation Plate-fin type heat exchanger
KR19980086240A (ko) * 1997-05-31 1998-12-05 윤종용 공기조화기용 열교환기
KR100261476B1 (ko) * 1998-03-06 2000-07-01 윤종용 분리형 공기 조화기의 증발기
DE19915389A1 (de) 1999-04-06 2000-10-12 Behr Gmbh & Co Mehrblock-Wärmeübertrager
JP4482991B2 (ja) * 1999-12-14 2010-06-16 株式会社デンソー 複式熱交換器
EP1167909A3 (de) * 2000-02-08 2005-10-12 Calsonic Kansei Corporation Struktur eines kombinierten Wärmetauscherkerns
US20030102113A1 (en) * 2001-11-30 2003-06-05 Stephen Memory Heat exchanger for providing supercritical cooling of a working fluid in a transcritical cooling cycle
US20030106677A1 (en) * 2001-12-12 2003-06-12 Stephen Memory Split fin for a heat exchanger
DE10227930A1 (de) * 2002-06-21 2004-01-08 Behr Gmbh & Co. Wärmeübertrager, insbesondere für ein Kraftfahrzeug
SE0203185L (sv) * 2002-10-30 2003-09-09 Flaekt Woods Ab Vätskekopplad värmeväxlare med luftnings- respektive avtappningsanordningar
DE10352337A1 (de) * 2002-11-07 2004-05-27 Behr Gmbh & Co. Kg Vorrichtung zum Austausch von Wärme
WO2004048874A1 (de) * 2002-11-25 2004-06-10 Behr Gmbh & Co. Kg Värmeübertragereinheit, insbesondere für ein kraftfahrzeug, und verfahren zur herstellung
CN1327173C (zh) * 2003-03-27 2007-07-18 海尔集团公司 空调器室外机的冷凝器
DE102004001786A1 (de) * 2004-01-12 2005-08-04 Behr Gmbh & Co. Kg Wärmeübertrager, insbesondere für überkritischen Kältekreislauf
SG136021A1 (en) * 2006-03-20 2007-10-29 Ishikawajima Harima Heavy Ind Heat exchanger
JP4610626B2 (ja) * 2008-02-20 2011-01-12 三菱電機株式会社 天井埋め込み型空気調和機に配置される熱交換器及び天井埋め込み型空気調和機
KR101345541B1 (ko) * 2009-06-19 2013-12-26 다이킨 고교 가부시키가이샤 천장 설치형 공기 조화 장치
FR2952172A1 (fr) * 2009-11-03 2011-05-06 Peugeot Citroen Automobiles Sa Condenseur de circuit de refrigeration a encombrement vertical reduit
FR2952173B1 (fr) * 2009-11-03 2012-08-17 Peugeot Citroen Automobiles Sa Condenseur de circuit de refrigeration a encombrement vertical reduit par subdivision en unites alignees suivant une direction longitudinale
KR20110055840A (ko) * 2009-11-20 2011-05-26 삼성전자주식회사 공기조화기와 그 실외기
US20120080173A1 (en) * 2010-10-04 2012-04-05 Ford Global Technologies, Llc Heat exchanger assembly having multiple heat exchangers
DE102010051471A1 (de) 2010-11-15 2012-05-16 Audi Ag Fahrzeug mit einer Klimaanlage
DE102011090182A1 (de) * 2011-12-30 2013-07-04 Behr Gmbh & Co. Kg Baukasten für Wärmeübertrager, einen Wärmeübertragerkern und einen Wärmeübertrager
US20130255309A1 (en) * 2012-04-02 2013-10-03 Whirlpool Corporation Energy efficiency of room air conditioner or unitary air conditioning system by using dual suction compressor
US9631880B2 (en) * 2012-04-10 2017-04-25 Lenovo Enterprise Solutions (Singapore) Pte. Ltd. Process for optimizing a heat exchanger configuration
US20130312451A1 (en) * 2012-05-24 2013-11-28 Michael D. Max Multiple Panel Heat Exchanger
US10495361B2 (en) 2012-05-24 2019-12-03 Maxsystems, Llc Multiple panel heat exchanger
US20130319636A1 (en) * 2012-06-04 2013-12-05 Aaf-Mcquay Inc. Outdoor heat exchanger coil
US20140202669A1 (en) * 2013-01-21 2014-07-24 Denso International America, Inc. Dual radiator engine cooling module - single coolant loop
US10006662B2 (en) * 2013-01-21 2018-06-26 Carrier Corporation Condensing heat exchanger fins with enhanced airflow
US10247481B2 (en) 2013-01-28 2019-04-02 Carrier Corporation Multiple tube bank heat exchange unit with manifold assembly
KR20140116625A (ko) * 2013-03-25 2014-10-06 엘지전자 주식회사 열교환기
SE538362C2 (sv) * 2013-04-03 2016-05-31 Scania Cv Ab Kylararrangemang i ett motorfordon
JP5644889B2 (ja) * 2013-04-30 2014-12-24 ダイキン工業株式会社 空気調和機の室内ユニット
JP6180845B2 (ja) * 2013-08-09 2017-08-16 日立アプライアンス株式会社 熱交換器およびそれを用いたヒートポンプ式給湯機
CN103471439B (zh) * 2013-09-18 2015-12-23 无锡马山永红换热器有限公司 组合式冷却器
KR102168630B1 (ko) * 2013-11-05 2020-10-21 엘지전자 주식회사 냉장고의 냉각 사이클
US10837720B2 (en) * 2013-11-06 2020-11-17 Trane International Inc. Heat exchanger with aluminum tubes rolled into an aluminum tube support
CN105765333B (zh) 2013-11-25 2019-01-04 开利公司 双功能微通道热交换器
CN104697257A (zh) * 2013-12-09 2015-06-10 博西华电器(江苏)有限公司 冷凝器、冷凝器制作方法以及具有该冷凝器的制冷器具
WO2015111220A1 (ja) * 2014-01-27 2015-07-30 三菱電機株式会社 熱交換器、及び、空気調和装置
JP6180338B2 (ja) * 2014-01-29 2017-08-16 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機
WO2015148657A1 (en) 2014-03-28 2015-10-01 Modine Manufacturing Company Heat exchanger and method of making the same
FR3019637A1 (fr) * 2014-04-02 2015-10-09 Bosch Gmbh Robert Evaporateur air/fluide compose d'un echangeur de chaleur a ailettes
DE102014108209A1 (de) * 2014-06-11 2015-12-17 GEA Luftkühler GmbH Wärmetauscher
CN104251576B (zh) * 2014-08-22 2016-08-24 珠海格力电器股份有限公司 一种换热器及包含换热器的空调器
JP6351494B2 (ja) * 2014-12-12 2018-07-04 日立ジョンソンコントロールズ空調株式会社 空気調和機
WO2016121103A1 (ja) * 2015-01-30 2016-08-04 三菱電機株式会社 冷凍サイクル装置
JP6573484B2 (ja) * 2015-05-29 2019-09-11 日立ジョンソンコントロールズ空調株式会社 熱交換器
FR3038977B1 (fr) * 2015-07-17 2019-08-30 Valeo Systemes Thermiques Echangeur de chaleur a ailettes comprenant des persiennes ameliorees
JP6671380B2 (ja) * 2015-09-10 2020-03-25 日立ジョンソンコントロールズ空調株式会社 熱交換器
US10578377B2 (en) * 2016-03-31 2020-03-03 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus
WO2018180934A1 (ja) 2017-03-27 2018-10-04 ダイキン工業株式会社 熱交換器及び冷凍装置
JP6766723B2 (ja) * 2017-03-27 2020-10-14 ダイキン工業株式会社 熱交換器又は冷凍装置
EP3719408A4 (de) * 2017-11-29 2020-12-23 Mitsubishi Electric Corporation Klimaanlage
US11892206B2 (en) * 2019-03-26 2024-02-06 Mitsubishi Electric Corporation Heat exchanger and refrigeration cycle apparatus

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1072257B (de) * 1959-12-03
US1854278A (en) * 1929-11-27 1932-04-19 Carrier Construction Company I Heat exchange device
US1870457A (en) * 1930-12-19 1932-08-09 Grigsby Grunow Co Refrigerating apparatus
US2963277A (en) * 1957-11-15 1960-12-06 Licencia Talalmanyokat Finned construction for heat exchangers
JPS5926237B2 (ja) * 1978-06-21 1984-06-25 株式会社日立製作所 熱交換器
JPS58108394A (ja) * 1981-12-21 1983-06-28 Hitachi Ltd 熱交換器
JPS58138986A (ja) * 1982-02-15 1983-08-18 Fuji Heavy Ind Ltd 熱交換器
DE3406682A1 (de) * 1984-02-24 1985-09-05 GEA GmbH, 4630 Bochum Waermeaustauscher
KR890002903B1 (ko) * 1984-09-04 1989-08-08 마쯔시다덴기산교 가부시기가이샤 열교환기
DE3544921A1 (de) * 1985-12-19 1987-07-02 Sueddeutsche Kuehler Behr Scheibenkuehler, insbesondere oelkuehler
JPH0612220B2 (ja) * 1986-04-25 1994-02-16 株式会社日立製作所 伝熱フイン

Also Published As

Publication number Publication date
US5076353A (en) 1991-12-31
DE3938842A1 (de) 1991-05-29
ES2047200T3 (es) 1994-02-16
EP0401752A3 (de) 1991-03-06
DE59003758D1 (de) 1994-01-20
EP0401752A2 (de) 1990-12-12

Similar Documents

Publication Publication Date Title
EP0401752B1 (de) Verflüssiger für ein Kältemittel einer Fahrzeugklimaanlage
DE60011616T2 (de) Wärmetauscher mit mehrkanalrohren
DE19719252C2 (de) Zweiflutiger und in Luftrichtung einreihiger hartverlöteter Flachrohrverdampfer für eine Kraftfahrzeugklimaanlage
EP1036296B1 (de) Flachrohr mit querversatz-umkehrbogenabschnitt und damit aufgebauter wärmeübertrager
EP0521298B1 (de) Wärmetauscher-Vorrichtung für Kältetrockner an Druckluftanlagen
EP0845647B1 (de) Flachrohr-Wärmeübertrager mit tordiertem Flachrohrendabschnitt
DE10314782A1 (de) Wärmetauscher für den Wärmeaustausch zwischen einem inneren und einem äußeren Fluid und Verfahren zur Herstellung desselben
DE19933913C2 (de) Verdampfer einer Kraftfahrzeugklimaanlage
DE10257767A1 (de) Wärmeübertrager
EP1203922A2 (de) Kondensator und Rohr dafür
DE4220823C2 (de) Heizungswärmetauscher für Personenkraftwagen mit mindestens zwei Teilwärmetauschern
DE2252732C2 (de) Kältemittelverdampfer
DE3918455A1 (de) Verfluessiger fuer ein kaeltemittel einer fahrzeugklimaanlage
EP2447626B1 (de) Wärmetauscher, insbesondere zur Anwendung bei Kühlmöbeln
DE4033636A1 (de) Waermetauscher, insbesondere verfluessiger und verdampfer fuer fahrzeuge - klimaanlagen
DE202007017501U1 (de) Wärmeaustauschelement und damit hergestellter Wärmeaustauscher
DE102004001786A1 (de) Wärmeübertrager, insbesondere für überkritischen Kältekreislauf
EP0268831B1 (de) Lamelle
DE3300929A1 (de) Waermetauscher fuer ein kondensierendes oder verdampfendes medium und ein medium ohne phasenuebergang
EP1248063B1 (de) Wärmeübertrager
DE19719263C2 (de) Flachrohrverdampfer mit vertikaler Längserstreckungsrichtung der Flachrohre bei Kraftfahrzeugen
EP1647341B1 (de) Verfahren zum Herstellen einer Wellrippe und Wärmeübertragerblock mit nach dem Verfahren hergestellten Wellrippen
DE4118289A1 (de) Waermetauscher-vorrichtung fuer kaeltetrockner an druckluftanlagen
DE3011011A1 (de) Plattenwaermetauscher
DE102020103714A1 (de) Wärmetauscher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES GB

17P Request for examination filed

Effective date: 19910328

17Q First examination report despatched

Effective date: 19920110

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931214

REF Corresponds to:

Ref document number: 59003758

Country of ref document: DE

Date of ref document: 19940120

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2047200

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 19940301

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000530

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20000620

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010606

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010605

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20030203

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080613

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100101