EP1213556B1 - Flachrohr-Wärmeübertrager mit umgeformtem Flachrohrendabschnitt - Google Patents

Flachrohr-Wärmeübertrager mit umgeformtem Flachrohrendabschnitt Download PDF

Info

Publication number
EP1213556B1
EP1213556B1 EP01130598A EP01130598A EP1213556B1 EP 1213556 B1 EP1213556 B1 EP 1213556B1 EP 01130598 A EP01130598 A EP 01130598A EP 01130598 A EP01130598 A EP 01130598A EP 1213556 B1 EP1213556 B1 EP 1213556B1
Authority
EP
European Patent Office
Prior art keywords
flat
heat exchanger
tube
flat tubes
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01130598A
Other languages
English (en)
French (fr)
Other versions
EP1213556A1 (de
Inventor
Ulrich Salzer
Karl-Heinz Staffa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Publication of EP1213556A1 publication Critical patent/EP1213556A1/de
Application granted granted Critical
Publication of EP1213556B1 publication Critical patent/EP1213556B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/025Tubular elements of cross-section which is non-circular with variable shape, e.g. with modified tube ends, with different geometrical features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins

Definitions

  • the invention relates to a heat exchanger constructed from flat tubes, in which the flat tubes on at least one, in a connection space forming Component, e.g. a distributor and / or manifold, opening end portion are transformed.
  • Component e.g. a distributor and / or manifold, opening end portion
  • connection space-forming component With larger flat tube width is thus a larger inner diameter for this Required component, so that its realization a greater wall thickness is required if the bursting strength is to remain the same size.
  • Using of pipes as connecting space forming components also occurs the Difficulty that with increasing flat tube width and thus growing Diameter of the connecting space forming tubes whose dead volume increases.
  • the width of the connection space-forming component is at these conventional heat exchangers to choose larger than that of the flat tubes.
  • Patent EP 0 565 813 B1 describes a heat exchanger which composed of a plurality of tubes with preferably oval cross-section is the end in triangular openings of a bottom plate of a Used collecting tank and for this purpose at its Rohrendabêt in a triangle shape are transformed. After inserting the triangular pipe end sections in the triangular openings of the bottom plate are the Tube ends widened to the tubes at the respective bottom plate of two Set collecting tanks arranged on both sides.
  • a heat exchanger is disclosed, the of several, spaced superimposed, U-shaped bent Flat tubes is constructed.
  • the two legs of the U-shaped Flat tubes with respect to their connection area twisted by 90 °, so they both lie in a common transverse plane.
  • One free end of the flat tubes is to a distribution channel and the other free end to one Collector channel connected, with distribution and collection channel on the same Heat exchanger side are arranged and introduced via the distribution channel Heat transfer medium U-shaped parallel through the individual flat tubes flows to the collecting channel.
  • US Pat. No. 3,416,600 discloses a serpentine type heat exchanger discloses in which a stack of serpentine curved flat tubes is provided is, which are twisted in their end sections by 90 °. With these twisted End sections are the flat tubes inserted into associated manifolds, the this with circumferentially introduced, extending in the tube longitudinal direction and are provided spaced apart longitudinal slots. In addition, you can the flat tubes are twisted in a central area by 180 °.
  • FR 2 712 966 A1 is a flat tube heat exchanger described, the flat tubes in their in a connection space-forming component opening end portion on one opposite its subsequent section smaller transverse extent bent or unequal by an angle ⁇ 90 ° twisted.
  • the invention is the technical problem of providing a flat tube heat exchanger based on the type mentioned, a comparatively has low dead volume in the connection space, given a wall thickness the connection space forming component high bursting security has, given a flat tube width with a comparatively small overall depth manufacture and, if necessary, in particular as a condenser for an air conditioner is usable.
  • the invention solves this problem by providing a flat tube heat exchanger with the features of claim 1.
  • this heat exchanger are the flat tubes in their in the connection space forming component opening end portion on one opposite her subsequent section lower transverse extent twisted and / or bent. You can do that Passage cross-section also in the formed end portion substantially constant hold.
  • the smaller transverse extent of the twisted or bent Flachrohrendabitess compared to the subsequent flat pipe section makes it possible to make the terminal space forming member, e.g. a collection or Distributor tube to realize with a depth that is only slightly larger than the reduced transverse extension of the flat tube end section needs to be and This may be smaller than the depth of the flat tubes or at least not it needs to be bigger than the same.
  • Both end sections can each Flat tube to be formed in the manner described, while the flat tubes in the intermediate section e.g. straight with their opposite the end sections larger transverse extent can extend, which then the depth the flat tubes and thus possibly also determines the entire heat exchanger.
  • the achievable low installation depth of the connecting space-forming components for a given flat tube width has the further advantage that selbige to Achieving a given bursting pressure with relatively low wall thickness manufacture and have only a relatively small dead volume.
  • the flow-through heat exchanger volume at a given Heat transfer performance comparatively low, which at Requires a reduction in the volume of the heat transfer fluid flowing through allowed compared to conventional flat tube heat exchangers.
  • the Tord ist occurs during Heat exchanger according to claim 1 especially at an angle not equal to 90 °, so that the flat tube mouths are correspondingly oblique to this direction and thereby claim less installation length in this direction.
  • the Torsion angle can be adjusted to the particular application. As the torsional angle increases, the depth decreases, i. Width, of the Inserting the flat tube ends required area of the connecting space forming Component, while at the same time each Flachrohrendabites with a larger axial extent opens into the component.
  • a or a plurality of partitions provided in the connection space-forming component the divide the terminal compartment into several subspaces.
  • This measure can be used to the guided through the flat tubes refrigerant under redirection in a respective side terminal space forming member sequentially through successive sections of the flat tube stack.
  • suitable for oblique Tordtechnik the Flachrohrendabête is also the respective Partition wall with the corresponding skew angle in the connecting space forming Component arranged.
  • the flat tubes about its longitudinal central axis or about a longitudinal axis parallel thereto twisted.
  • the twisted Flat tube end sections with alternating lateral displacement in the connecting space forming Open part so that the distance between the flat tubes in the non-twisted middle region even at a torsion angle of 90 ° less can be selected as the flat tube width, without the need for the flat tubes must be arranged laterally offset in their central areas, what would counteract a small depth.
  • the present invention further includes a flat tube heat exchanger with flat tubes, at least at one, in a connection space forming Component forming end portion are formed, wherein the Flat tubes in their opening into the connecting space-forming component end portion on a relation to their subsequent section lower transverse extent bent or twisted by an angle ⁇ not equal to 90 °, wherein one or more partitions in the connection space-forming component in one the angle ⁇ corresponding angle are arranged to the longitudinal axis, which divide the terminal space into several subspaces, in each of which a associated group of successive flat tubes opens.
  • the flat tubes can in her opening into the terminal compartment forming member end portion centered around its longitudinal center axis or offset parallel to it Longitudinal axis be twisted off-center.
  • the Width is greater than the flat tube width.
  • the flat tubes can be made of extruded, before bending or twisting preferably solder- and flux-plated Be formed pipes.
  • the respective partition may be a recess have and axially from a front end forth in the connection space forming Be used component, wherein the in the connection space forming component protruding flat tube ends engage in the partition wall recess.
  • Fig. 1 in a fragmentary, schematic side view Heat exchanger, for example, as a condenser in a vehicle air conditioning usable. It conventionally includes a tube / rib block, in the usual way from a stack of spaced apart Flat tubes 1 and one in the spaces between the flat tubes. 1 introduced corrugated rib structure 2 consists. The tube / rib block is located between two laterally closing side plates 6, of which in the Sectional view of Fig. 1 is shown one.
  • the flat tubes 1 are also in conventionally in its interior with one or more flow channels provided through which the refrigerant passed through an air conditioner can be.
  • the flat tubes 1 open into one of each lateral manifold or manifold 3 formed terminal space, of which one acts as a distribution channel and the other as a collecting channel.
  • the above an inlet led into the manifold tube flow medium is from there fed in parallel in the flat tubes 1 and traverses them to the opposite Collection tube 3, which, for example, that in Fig. 1 to be recognized Can be round tube.
  • the heat exchanger can be another, through the provided with the corrugated fin structure 2 spaces between the flat tubes 1 passed through flow medium in heat transfer connection with the flowing through the flat tubes 1 flow medium to be brought.
  • connection pipes 3 Partitions 16 provided to the formed by the entire connecting pipe 3 Connection space in several, in the direction of the pipe axis 4 consecutive Subdivisions 17a, 17b to divide, as shown in Fig. 2.
  • the partition wall 16 is under a diagonal angle ⁇ of the twisted flat tube ends 1c corresponding angle oblique to the pipe axis 4 in the space arranged between two adjacent pipe ends 1c.
  • Such Division of the respective connection space in a plurality of subspaces 17a, 17b particularly favorable for condensers, to remove the refrigerant from a subspace, e.g.
  • the subspace 17a to feed into the flat tubes opening into it, in the opposite connection pipe into the one with the other compartment 17b deflected connected flat tubes and through the latter into this other Subspace 17b to conduct. If necessary, using multiple Partitions this flow deflection in the connecting pipes as often as desired to be repeated. In this way, the refrigerant can meander through the tube / rib block.
  • the one or more pieces and with curved or even, the flat tube ends be made receiving bottom can.
  • the required pipe openings can be milled, punched, laser-cut or introduced by hydroforming and with or without Translations be realized.
  • the flat tubes, which are specially slices of a Heat exchangers may be disc-type, for example, in one piece by extruding or by welding several pipe parts together or by forming and then welding a blank produced.
  • the flat tubes in their area between the twisted and / or bent end sections also have a curved course.
  • the flat tubes only at one of its two end sections can be twisted and / or bent and with the other End portion then not transformed into a smaller transverse extent in a associated connection space-forming component open.
  • the twisting Bending the Flachrohrendabitese can each be made so that the Passage cross section of the flat tubes also in this area substantially keep constant, which is preferred for most applications.
  • the longitudinal center Tordtechnik can Flachrohrendabête also off-center, i. one to its longitudinal central axis parallel offset axis, be twisted. Especially with right-angled twisting can then if necessary, the manifold and the manifold opposite be laterally offset from the intermediate tube / rib block, if the flat tubes are arranged successively such that their eccentrically twisted end portions all on one side of the median longitudinal plane lie the tube / rib block. This may be for specific installation situations be beneficial.
  • the flat tube ends may be arranged that their end sections alternately on one or the other Side of this longitudinal median plane of the tube / rib block. Suitable for that Are then in the manifold or the manifold two parallel rows
  • the longitudinal slots of a number with lateral offset between the longitudinal slots of the other row lie. Since, due to the lateral displacement, the longitudinal slots of one row extend axially beyond the height of adjacent longitudinal slots of the other row can, the flat tubes can be even at right-angled end-side Place the twisting at a small distance in the tube / rib block. In the special case of right-angled twisting, this distance is downwards limited by half the width of the flat tubes, making it smaller in particular than the flat tube width can be. Accordingly, a small Choose height for the corrugated fins, what their heat transfer efficiency improved. This is especially true for applications in which the width the flat tubes is less than that of the corrugated fins.
  • FIG. 3 shows a detail of a longitudinal sectional view through a tube / rib block, as usable for the heat exchangers described above is.
  • Characteristic of this tube / rib block that the width W of Corrugated ribs 40 is greater than the width Q of the multi-chamber tubes realized Flat tubes 41. This provides a fin overhang, the the efficiency of the corrugated fins 40 in terms of their heat transfer capability increased and the flat tubes 41 against damage from the outside protects.
  • the ratio Q / W may be, for example, 2/3.
  • the flat tubes can advantageously be made as extruded pipes. It can also be beneficial be the tubes before their end-end twisting or bending with a Lotund To provide flux plating. This facilitates a sealed insertion the flat tube ends in the connecting pipes by means of sealing soldering.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

Die Erfindung bezieht sich auf einen aus Flachrohren aufgebauten Wärmeübertrager, bei dem die Flachrohre an wenigstens einem, in ein anschlussraumbildendes Bauteil, z.B. ein Verteiler- und/oder ein Sammelrohr, mündenden Endabschnitt umgeformt sind.
Aus Flachrohren aufgebaute Wärmeübertrager, bei denen die Flachrohre mit nicht umgeformtem Endabschnitt parallel in ein anschlussraumbildendes Bauteil, wie ein Sammel- und/oder ein Verteilerrohr, münden, werden beispielsweise als Kondensatoren und Verdampfer in Fahrzeugklimaanlagen verwendet. Unter der Bezeichnung Flachrohr-Wärmeübertrager sollen vorliegend auch Wärmeübertrager in Scheibenbauweise verstanden werden, bei denen rechteckförmige, langgestreckte, hohle Scheiben als "Flachrohre" verwendet werden, durch deren Inneres das Kältemittel der Klimaanlage hindurchgeführt wird. Bei diesen herkömmlichen Wärmeübertragern mit über ihre gesamte Länge geradlinig verlaufenden Flachrohren ist der Innendurchmesser des den Anschlussraum bildenden Bauteils durch die Breite der Flachrohre bestimmt. Mit größerer Flachrohrbreite ist somit ein größerer Innendurchmesser für dieses Bauteil erforderlich, so dass zu dessen Realisierung eine größere Wandstärke benötigt wird, wenn die Berstdruckfestigkeit gleich groß bleiben soll. Bei Verwendung von Rohren als anschlussraumbildende Bauteile tritt zudem die Schwierigkeit auf, dass mit wachsender Flachrohrbreite und damit wachsendem Durchmesser der anschlussraumbildenden Rohre deren Totvolumen ansteigt. In jedem Fall ist die Breite des anschlussraumbildenden Bauteils bei diesen herkömmlichen Wärmeübertragern größer zu wählen als diejenige der Flachrohre.
In der Patentschrift EP 0 565 813 B1 ist ein Wärmeübertrager beschrieben, der aus einer Mehrzahl von Rohren mit vorzugsweise ovalem Querschnitt aufgebaut ist, die endseitig in dreieckförmige Öffnungen einer Bodenplatte eines Sammelkastens eingesetzt und zu diesem Zweck an ihrem Rohrendabschnitt in eine Dreieckform umgeformt sind. Nach Einsetzen der dreieckförmigen Rohrendabschnitte in die dreieckförmigen Öffnungen der Bodenplatte werden die Rohrenden aufgeweitet, um die Rohre an der jeweiligen Bodenplatte zweier beidseitig angeordneter Sammelkästen festzulegen.
In der Offenlegungsschrift EP 0 659 500 A1 ist ein Wärmeübertrager offenbart, der aus mehreren, beabstandet übereinanderliegenden, U-förmig umgebogenen Flachrohren aufgebaut ist. Dabei sind die beiden Schenkel der U-förmigen Flachrohre gegenüber deren Verbindungsbereich um 90° tordiert, so dass sie beide in einer gemeinsamen Querebene liegen. Je ein freies Ende der Flachrohre ist an einen Verteilerkanal und das jeweils andere freie Ende an einen Sammelkanal angeschlossen, wobei Verteiler- und Sammelkanal auf derselben Wärmeübertragerseite angeordnet sind und das über den Verteilerkanal eingeleitete Wärmeübertragermedium U-förmig parallel durch die einzelnen Flachrohre zum Sammelkanal strömt.
In der Patentschrift US 3 416 600 ist ein Wärmeübertrager vom Serpentinentyp offenbart, bei dem ein Stapel serpentinenförmig gebogener Flachrohre vorgesehen ist, die in ihren Endabschnitten um 90° tordiert sind. Mit diesen tordierten Endabschnitten sind die Flachrohre in zugehörige Sammelrohre eingefügt, die hierzu mit umfangsseitig eingebrachten, in Rohrlängsrichtung verlaufenden und voneinander beabstandeten Längsschlitzen versehen sind. Zusätzlich können die Flachrohre in einem mittleren Bereich um 180° tordiert sein.
In der Offenlegungsschrift FR 2 712 966 A1 ist ein Flachrohr-Wärmeübertrager beschrieben, dessen Flachrohre in ihrem in ein anschlußraumbildendes Bauteil einmündenden Endabschnitt auf eine gegenüber ihrem anschließenden Abschnitt geringere Quererstreckung umgebogen oder um einen Winkel α ungleich 90° tordiert sind.
Der Erfindung liegt als technisches Problem die Bereitstellung eines Flachrohr-Wärmeübertragers der eingangs genannten Art zugrunde, der ein vergleichsweise geringes Totvolumen im Anschlussraum besitzt, bei gegebener Wandstärke des anschlussraumbildenden Bauteils eine hohe Berstdrucksicherheit aufweist, sich bei gegebener Flachrohrbreite mit vergleichsweise geringer Bautiefe fertigen lässt und bei Bedarf insbesondere als Kondensator für eine Klimaanlage verwendbar ist.
Die Erfindung löst dieses Problem durch die Bereitstellung eines Flachrohr-Wärmeübertragers mit den Merkmalen des Anspruchs 1. Bei diesem Wärmeübertrager sind die Flachrohre in ihrem in den anschlussraumbildende Bauteil mündenden Endabschnitt auf eine gegenüber ihrem anschließenden Abschnitt geringere Quererstreckung tordiert und/oder umgebogen. Dabei lässt sich ihr Durchtrittsquerschnitt auch im umgeformten Endabschnitt im wesentlichen konstant halten. Die geringere Quererstreckung des tordierten oder umgebogenen Flachrohrendabschnitts gegenüber dem anschließenden Flachrohrabschnitt macht es möglich, das anschlussraumbildende Bauteil, z.B. ein Sammel- bzw. Verteilerrohr, mit einer Bautiefe zu realisieren, die nur wenig größer als die verringerte Quererstreckung des Flachrohrendabschnitts zu sein braucht und dadurch kleiner als die Bautiefe der Flachrohre sein kann oder jedenfalls nicht größer als selbige zu sein braucht. Dabei können beide Endabschnitte jedes Flachrohrs in der beschriebenen Weise umgeformt sein, während die Flachrohre im zwischenliegenden Abschnitt z.B. geradlinig mit ihrer gegenüber den Endabschnitten größeren Quererstreckung verlaufen können, die dann die Bautiefe der Flachrohre und damit eventuell auch des gesamten Wärmeübertragers bestimmt. Die erzielbare geringe Bautiefe der anschlussraumbildenden Bauteile bei gegebener Flachrohrbreite hat den weiteren Vorteil, dass sich selbige zur Erzielung einer vorgegebenen Berstdrucksicherheit mit relativ geringer Wandstärke fertigen lassen und nur ein verhältnismäßig geringes Totvolumen besitzen. Außerdem lässt sich das durchströmte Wärmeübertragervolumen bei gegebener Wärmeübertragungsleistung vergleichsweise gering halten, was bei Bedarf eine Mengenreduzierung des durchströmenden Wärmeübertragungsfluides gegenüber konventionellen Flachrohr-Wärmeübertragern erlaubt.
Zur Erzielung einer kompakten Bauweise auch in der Richtung, in welcher die Flachrohre nebeneinanderliegend angeordnet sind, erfolgt die Tordierung beim Wärmeübertrager nach Anspruch 1 speziell um einen Winkel ungleich 90°, so dass die Flachrohrmündungen entsprechend schräg zu dieser Richtung verlaufen und dadurch in dieser Richtung weniger Einbaulänge beanspruchen. Der Torsionswinkel kann auf den jeweiligen Anwendungsfall abgestimmt werden. Mit zunehmendem Torsionswinkel verringert sich die Tiefe, d.h. Breite, des zum Einstecken der Flachrohrenden benötigten Bereiches des anschlussraumbildenden Bauteils, während gleichzeitig jeder Flachrohrendabschnitt mit einer größeren axialen Erstreckung in das Bauteil einmündet.
Beim Flachrohr-Wärmeübertrager nach Anspruch 1 sind erfindungsgemäß eine oder mehrere Trennwände im anschlußraumbildenden Bauteil vorgesehen, die den Anschlußraum in mehrere Teilräume unterteilen. Diese Maßnahme kann dazu benutzt werden, das durch die Flachrohre geführte Kältemittel unter Umlenkung in einem jeweiligen seitlichen anschlussraumbildenden Bauteil sequentiell durch aufeinanderfolgende Abschnitte des Flachrohrstapels zu leiten. Passend zur schrägen Tordierung der Flachrohrendabschnitte ist auch die jeweilige Trennwand mit dem entsprechenden Schrägwinkel im anschlussraumbildenden Bauteil angeordnet.
Bei einem nach Anspruch 3 weitergebildeten Wärmeübertrager sind die Flachrohre um ihre Längsmittelachse oder um eine zu dieser parallelen Längsachse tordiert. In letzterem Fall einer exzentrischen Tordierung können die tordierten Flachrohrendabschnitte mit alternierender lateraler Versetzung in das anschlussraumbildende Bauteil einmünden, so dass der Abstand der Flachrohre im nicht tordierten Mittenbereich selbst bei einem Torsionswinkel von 90° geringer gewählt werden kann als die Flachrohrbreite, ohne dass dazu die Flachrohre in ihren Mittenbereichen lateral versetzt angeordnet werden müssen, was einer geringen Bautiefe entgegenwirken würde.
Bei einem nach Anspruch 4 weitergebildeten Wärmeübertrager mit zwischen den Flachrohren eingebrachten Wellrippen ist vorgesehen, die Breite der Wellrippen größer zu wählen als diejenige der Flachrohre. Der dadurch entstehende Rippenüberstand erhöht den Wirkungsgrad der wärmeübertragenden Wellrippen und schützt die Flachrohre gegen Beschädigungen von außen.
Bei einem nach Anspruch 5 weitergebildeten Wärmeübertrager sind die Flachrohre in fertigungstechnisch vorteilhafter Weise als extrudierte Rohre gefertigt.
Die vorliegende Erfindung umfasst des weiteren einen Flachrohr-Wärmeübertrager mit Flachrohren, die wenigstens an einem, in ein anschlussraumbildendes Bauteil mündenden Endabschnitt umgeformt sind, wobei die Flachrohre in ihrem in das anschlussraumbildende Bauteil mündenden Endabschnitt auf eine gegenüber ihrem anschließenden Abschnitt geringere Quererstreckung umgebogen oder um einen Winkel α ungleich 90° tordiert sind, wobei eine oder mehrere Trennwände im anschlussraumbildenden Bauteil in einem dem Winkel α entsprechenden Winkel zu dessen Längsachse angeordnet sind, die den Anschlussraum in mehrere Teilräume unterteilen, in die eine jeweils zugehörige Gruppe aufeinanderfolgender Flachrohre mündet.
Für die obige Realisierungen der Erfindung sind insbesondere folgende weitere Ausgestaltungen je für sich oder in Kombination möglich. Die Flachrohre können in ihrem in das anschlussraumbildende Bauteil mündenden Endabschnitt um ihre Längsmittelachse mittig oder um eine zu dieser parallel versetzte Längsachse außermittig tordiert sein.
Zwischen benachbarten Flachrohren können Wellrippen eingebracht sein, deren Breite größer als die Flachrohrbreite ist. Die Flachrohre können von extrudierten, vor dem Umbiegen bzw. Tordieren vorzugsweise lot- und flussmittelplattierten Rohren gebildet sein. Die jeweilige Trennwand kann eine Ausnehmung aufweisen und axial von einem Stirnende her in das anschlussraumbildende Bauteil eingesetzt sein, wobei die in das anschlussraumbildende Bauteil hineinragenden Flachrohrenden in die Trennwandausnehmung eingreifen.
Bevorzugte Ausführungsformen der Erfindung sind in den Zeichnungen dargestellt und werden nachfolgend beschrieben. Hierbei zeigen:
Fig. 1
eine schematische Seitenansicht eines Teils eines Flachrohr-Wärmeübertragers mit schrägwinklig tordierten Flachrohrendabschnitten,
Fig. 2
eine schematische Schnittansicht längs der Linie II-II von Fig. 1,
Fig. 3
eine ausschnittweise Schnittansicht eines für einen der gezeigten Flachrohr-Wärmeübertrager verwendbaren Rohr-/Rippenblocks.
Der in Fig. 1 in einer ausschnittweisen, schematischen Seitenansicht gezeigte Wärmeübertrager ist beispielsweise als Kondensator in einer Fahrzeugklimaanlage verwendbar. Er beinhaltet in herkömmlicher Weise einen Rohr-/Rippenblock, der in üblicher Weise aus einem Stapel voneinander beabstandeter Flachrohre 1 und einer in die Zwischenräume zwischen den Flachrohren 1 eingebrachte Wellrippenstruktur 2 besteht. Der Rohr-/Rippenblock befindet sich dabei zwischen zwei seitlich abschließenden Seitenplatten 6, von denen in der Ausschnittansicht von Fig. 1 eine dargestellt ist. Die Flachrohre 1 sind in ebenfalls herkömmlicher Weise in ihrem Inneren mit einem oder mehreren Strömungskanälen versehen, durch die das Kältemittel einer Klimaanlage durchgeleitet werden kann. Endseitig münden die Flachrohre 1 in je einen von einem seitlichen Verteiler- bzw. Sammelrohr 3 gebildeten Anschlussraum, von denen der eine als Verteilerkanal und der andere als Sammelkanal fungiert. Das über einen Einlass in das Verteilerrohr geleitete Strömungsmedium wird von dort parallel in die Flachrohre 1 eingespeist und durchquert diese zum gegenüberliegenden Sammelrohr 3, welches beispielsweise das in Fig. 1 zu erkennende Rundrohr sein kann. Mittels des Wärmeübertragers kann ein weiteres, durch die mit der Wellrippenstruktur 2 versehenen Zwischenräume zwischen den Flachrohren 1 hindurchgeleitetes Strömungsmedium in Wärmeübertragungsverbindung mit dem durch die Flachrohre 1 hindurchgeleiteten Strömungsmedium gebracht werden.
Charakteristisch für den gezeigte Wärmeübertrager ist, dass die Flachrohre 1 in ihren beiden Endabschnitten 1a gegenüber ihrem zwischenliegenden Mittenabschnitt 1b um einen Winkel α von ca. 60° um ihre Längsmittelachse tordiert sind, wie in Fig. 2 genauer zu erkennen. Wie aus dieser Schnittansicht weiter ersichtlich, verlaufen die in das jeweilige Verteiler- bzw. Sammelrohr 3 eingesteckten Rohrenden 1c somit schräg sowohl zur Längsachse 4 des Verteiler- bzw. Sammelrohrs 3 als auch zur Flachrohrquerachse 5. Dadurch besitzen die Flachrohrenden 1c eine abgesehen von der Höhe, d.h. Weite, der Flachrohre 1 um den Faktor cosα geringere Quererstreckung als der wärmeübertragungsaktive, mittlere Flachrohrabschnitt 1b. Dies bedeutet, dass die Flachrohre 1 auch nur einen Einbaubereich mit entsprechend verringerter Querabmessung, d.h. verringerter Bautiefe, des Verteiler- bzw. Sammelrohrs 3 benötigen. Da das Verteiler- bzw. Sammelrohr 3 nur einen demgegenüber geringfügig größeren Innendurchmesser besitzen muss, ergibt sich dadurch der Vorteil, dass das Verteiler- und das Sammelrohr 3 mit einem verhältnismäßig geringen Außendurchmesser R gefertigt sein können, der insbesondere kleiner sein kann als die Quererstreckung Q des mittleren Flachrohrabschnitts 1b, der dadurch insgesamt die Bautiefe des Wärmeübertragers bestimmt, wie sich aus der Ansicht von Fig. 2 ergibt. Es versteht sich, dass das Verteiler- und das Sammelrohr 3 mit korrespondierenden, schrägen Langlöchern zum passgenauen Einsetzen und Dichtlöten der tordierten Rohrenden 1c versehen sind.
Durch den bei gegebener Flachrohrbreite Q gegenüber herkömmlichen Wärmeübertragern dieser Art geringeren erforderlichen Innendurchmesser für das Verteiler- bzw. Sammelrohr 3 werden des weiteren die Vorteile erreicht, dass selbige vergleichsweise geringe Totvolumina besitzen und bei gegebener Wandstärke eine hohe Berstdrucksicherheit aufweisen, da deren Berstdruckfestigkeit mit größer werdendem Innendurchmesser abnimmt. Umgekehrt kann bei gegebener, geforderter Berstdrucksicherheit die Wandstärke der Verteilerund Sammelrohre 3 gegenüber herkömmlichen Wärmeübertragern mit nicht umgeformt einmündenden Flachrohrenden verringert werden.
Erfindungsgemäß sind in einem oder beiden Anschlussrohren 3 eine oder mehrere Trennwände 16 vorgesehen, um den vom gesamten Anschlussrohr 3 gebildeten Anschlussraum in mehrere, in Richtung der Rohrlängsachse 4 aufeinanderfolgende Teilräume 17a, 17b zu unterteilen, wie dies in Fig. 2 gezeigt ist. Die Trennwand 16 ist unter einem dem Schrägwinkel α der tordierten Flachrohrenden 1c entsprechenden Winkel schräg zur Rohrlängsachse 4 im Zwischenraum zwischen zwei benachbarten Rohrenden 1c angeordnet. Eine solche Aufteilung des jeweiligen Anschlussraums in mehrere Teilräume 17a, 17b ist insbesondere für Kondensatoren günstig, um das Kältemittel von einem Teilraum, z.B. dem Teilraum 17a, in die darin mündenden Flachrohre einzuspeisen, im gegenüberliegenden Anschlussrohr in die mit dem anderen Teilraum 17b verbundenen Flachrohre umzulenken und durch letztere hindurch in diesen anderen Teilraum 17b zu leiten. Bei Bedarf kann unter Verwendung mehrerer Trennwände diese Strömungsumlenkung in den Anschlussrohren so oft wie gewünscht wiederholt werden. Auf diese Weise lässt sich das Kältemittel mäanderförmig durch den Rohr-/Rippenblock führen.
Es versteht sich, dass neben dem gezeigten Beispiel mit einem Torsionswinkel von ca. 60° alternativ jeder andere Torsionswinkel ungleich 90° für die Verdrehung der Flachrohrendabschnitte gegenüber ihrem anschließenden Flachrohrabschnitt realisierbar ist.
Es versteht sich, dass anstelle der gezeigten Rundrohre auch Verteiler- bzw. Sammelkästen mit beliebigem andersartigem Querschnitt als anschlussraumbildende Bauteile verwendbar sind, die ein- oder mehrstückig und mit gewölbtem oder ebenem, die Flachrohrenden aufnehmendem Boden gefertigt sein können. Die erforderlichen Rohrdurchbrüche können gefräst, gestanzt, lasergeschnitten oder durch Innenhochdruckumformen eingebracht und mit oder ohne Durchzüge realisiert sein. Die Flachrohre, die speziell auch Scheiben eines Wärmeübertragers in Scheibenbauweise sein können, sind beispielsweise einstückig durch Extrudieren oder mittels Zusammenschweißen mehrerer Rohrteile oder durch Umformen und anschließendes Verschweißen eines Rohlings herstellbar.
Neben dem gezeigten geradlinigen Verlauf können die Flachrohre in ihrem Bereich zwischen den tordierten und/oder umgebogenen Endabschnitten auch einen geschwungenen Verlauf besitzen. Analog können die Trennwände einer verwendeten Doppelwellrippenstruktur alternativ zum gezeigten Verlauf senkrecht zur Längsachse des anschlussraumbildenden Bauteils auch in einem spitzen Winkel schräg zu derselben angeordnet sein. Des weiteren versteht sich, dass je nach Bedarf die Flachrohre auch nur an einem ihrer beiden Endabschnitte tordiert und/oder umgebogen sein können und mit dem anderen Endabschnitt dann nicht zu einer geringeren Quererstreckung umgeformt in ein zugehöriges anschlussraumbildendes Bauteil münden. Das Tordieren bzw. Umbiegen der Flachrohrendabschnitte kann jeweils so erfolgen, dass sich der Durchtrittsquerschnitt der Flachrohre auch in diesem Bereich im wesentlichen konstant halten lässt, was für die meisten Anwendungsfälle bevorzugt ist.
Anstelle der in den Fig. 1 bis 2 gezeigten, längsmittigen Tordierung können die Flachrohrendabschnitte auch außermittig, d.h. um eine zu ihrer Längsmittelachse parallel versetzte Achse, tordiert sein. Insbesondere bei rechtwinkliger Tordierung können dann bei Bedarf das Verteiler- und das Sammelrohr gegenüber dem zwischenliegenden Rohr-/Rippenblock lateral versetzt angeordnet sein, wenn die Flachrohre dergestalt aufeinanderfolgend angeordnet sind, dass ihre exzentrisch tordierten Endabschnitte sämtlich auf einer Seite der Längsmittelebene des Rohr-/Rippenblocks liegen. Dies kann für bestimmte Einbausituationen vorteilhaft sein.
In einer weiteren Alternative können die Flachrohrenden so angeordnet sein, dass sich ihre Endabschnitte abwechselnd auf der einen bzw. der anderen Seite dieser Längsmittelebene des Rohr-/Rippenblocks befinden. Dazu passend sind dann in dem Verteiler- bzw. dem Sammelrohr zwei parallele Reihen von Längsschlitzen einzubringen, wobei die Längsschlitze der einen Reihe mit seitlicher Versetzung zwischen den Längsschlitzen der anderen Reihe liegen. Da sich aufgrund der seitlichen Versetzung die Längsschlitze der einen Reihe axial über die Höhe benachbarter Längsschlitze der anderen Reihe hinaus erstrecken können, lassen sich die Flachrohre selbst bei rechtwinkliger endseitiger Tordierung mit geringem Abstand im Rohr-/Rippenblock aneinanderlegen. Im speziellen Fall rechtwinkliger Tordierung ist dieser Abstand nach unten durch die halbe Breite der Flachrohre begrenzt, so dass er insbesondere kleiner als die Flachrohrbreite sein kann. Dementsprechend lässt sich eine geringe Höhe für die Wellrippen wählen, was deren Wärmeübertragungs-Wirkungsgrad verbessert. Dies trifft gerade auch für Anwendungsfälle zu, bei denen die Breite der Flachrohre geringer als diejenige der Wellrippen ist.
Fig. 3 zeigt ausschnittweise eine Längsschnittansicht durch einen Rohr-/Rippenblock, wie er für die oben beschriebenen Wärmeübertrager verwendbar ist. Charakteristisch ist bei diesem Rohr-/Rippenblock, dass die Breite W der Wellrippen 40 größer gewählt ist als die Breite Q der als Mehrkammerrohre realisierten Flachrohre 41. Dadurch wird ein Rippenüberstand bereitgestellt, der den Wirkungsgrad der Wellrippen 40 hinsichtlich ihrer Wärmeübertragungsfähigkeit erhöht und die Flachrohre 41 gegen Beschädigungen von außen schützt. Das Verhältnis Q/W kann beispielsweise 2/3 betragen.
In allen oben beschriebenen Beispielen können die Flachrohre vorteilhafterweise als extrudierte Rohre gefertigt sein. Dabei kann es außerdem von Vorteil sein, die Rohre vor ihrem endseitigen Tordieren bzw. Umbiegen mit einer Lotund Flussmittelplattierung zu versehen. Dies erleichtert ein abgedichtetes Einfügen der Flachrohrenden in die Anschlussrohre mittels Dichtlöten.

Claims (5)

  1. Flachrohr-Wärmeübertrager mit
    Flachrohren (1), die wenigstens an einem, in ein anschlussraumbildendes Bauteil (3) mündenden Endabschnitt (1a) auf eine gegenüber ihrem anschließenden Abschnitt (1b) geringere Quererstreckung umgebogen oder um einen Winkel α ungleich 90° tordiert sind,
    dadurch gekennzeichnet,dass
    eine oder mehrere Trennwände (16) im anschlussraumbildenden Bauteil (3) vorgesehen sind, die den Anschlussraum in mehrere Teilräume 17a, 17b) unterteilen, wobei die Trennwände (16) unter einem dem Winkel α der tordierten Flachrohrendabschnitte (1a) entsprechenden Winkel schräg zur Längsachse des anschlussraumbildenden Bauteils (3) im Zwischenraum zwischen zwei benachbarten Rohrenden (1c) angeordnet sind.
  2. Flachrohr-Wärmeübertrager nach Anspruch 1, dadurch gekennzeichnet, dass in einen der Teilräume (17a, 17b) jeweils eine zugehörige Gruppe aufeinanderfolgender Flachrohre mündet.
  3. Flachrohr-Wärmeübertrager nach Anspruch 1 oder 2, weiter dadurch gekennzeichnet, dass die Flachrohre in ihrem in das anschlussraumbildende Bauteil mündenden Endabschnitt um ihre Längsmittelachse mittig oder um eine zu dieser parallel versetzte Längsachse außermittig tordiert sind.
  4. Flachrohr-Wärmeübertrager nach einem der Ansprüche 1 bis 3, weiter dadurch gekennzeichnet, dass zwischen benachbarten Flachrohren (41) Wellrippen (40) eingebracht sind, deren Breite (W) größer als die Flachrohrbreite (Q) ist.
  5. Flachrohr-Wärmeübertrager nach einem der Ansprüche 1 bis 4, weiter dadurch gekennzeichnet, dass die Flachrohre von extrudierten, vor dem Umbiegen bzw. Tordieren vorzugsweise lot- und flussmittelplattierten Rohren gebildet sind.
EP01130598A 1996-11-27 1997-11-26 Flachrohr-Wärmeübertrager mit umgeformtem Flachrohrendabschnitt Expired - Lifetime EP1213556B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19649129A DE19649129A1 (de) 1996-11-27 1996-11-27 Flachrohr-Wärmeübertrager mit umgeformtem Flachrohrendabschnitt
DE19649129 1996-11-27
EP97120669A EP0845647B1 (de) 1996-11-27 1997-11-26 Flachrohr-Wärmeübertrager mit tordiertem Flachrohrendabschnitt

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP97120669A Division EP0845647B1 (de) 1996-11-27 1997-11-26 Flachrohr-Wärmeübertrager mit tordiertem Flachrohrendabschnitt

Publications (2)

Publication Number Publication Date
EP1213556A1 EP1213556A1 (de) 2002-06-12
EP1213556B1 true EP1213556B1 (de) 2004-02-11

Family

ID=7812923

Family Applications (2)

Application Number Title Priority Date Filing Date
EP97120669A Expired - Lifetime EP0845647B1 (de) 1996-11-27 1997-11-26 Flachrohr-Wärmeübertrager mit tordiertem Flachrohrendabschnitt
EP01130598A Expired - Lifetime EP1213556B1 (de) 1996-11-27 1997-11-26 Flachrohr-Wärmeübertrager mit umgeformtem Flachrohrendabschnitt

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP97120669A Expired - Lifetime EP0845647B1 (de) 1996-11-27 1997-11-26 Flachrohr-Wärmeübertrager mit tordiertem Flachrohrendabschnitt

Country Status (2)

Country Link
EP (2) EP0845647B1 (de)
DE (4) DE19649129A1 (de)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19729239A1 (de) * 1997-07-09 1999-01-14 Behr Gmbh & Co Rohr-/Rippenblock für einen Wärmeübertrager und Herstellungsverfahren hierfür
DE19833845A1 (de) * 1998-07-28 2000-02-03 Behr Gmbh & Co Wärmeübertrager-Rohrblock und dafür verwendbares Mehrkammer-Flachrohr
DE19846267A1 (de) * 1998-10-08 2000-04-13 Behr Gmbh & Co Sammelrohreinheit für einen Wärmeübertrager
DE19911334A1 (de) 1999-03-15 2000-09-21 Behr Gmbh & Co Sammelrohr für einen Wärmeübertrager und Herstellungsverfahren hierfür
DE19916475A1 (de) * 1999-04-13 2000-10-19 Behr Gmbh & Co Wärmeübertragungseinheit für ein Kraftfahrzeug
FR2793013B1 (fr) * 1999-04-28 2001-07-27 Valeo Thermique Moteur Sa Echangeur de chaleur brase, en particulier pour vehicule automobile
DE10146824A1 (de) * 2001-09-18 2003-04-24 Behr Gmbh & Co Wärmeübertrager-Flachrohrblock mit umgeformten Flachrohrenden
DE10147521A1 (de) 2001-09-26 2003-04-10 Behr Gmbh & Co Wärmeübertrager, insbesondere Gaskühler CO2 - Klimaanlagen
EP1300644A3 (de) * 2001-10-02 2003-05-14 Behr GmbH & Co. KG Wärmeübertrager und Verfahren zu seiner Herstellung
EP1321734A1 (de) * 2001-10-02 2003-06-25 Behr GmbH & Co. KG Flachrohr-Wärmeübertrager sowie Herstellungsverfahren hierfür
DE10249724B4 (de) * 2002-10-25 2005-03-17 Bayer Industry Services Gmbh & Co. Ohg Hochleistungs-Temperierkanäle
DE10326381B4 (de) 2003-06-12 2005-09-22 Jähn, Peter Turbulenzerzeuger
DE10336625A1 (de) * 2003-08-05 2005-03-10 Behr Gmbh & Co Kg Vorrichtung zum Austausch von Wärme und Verfahren zu deren Herstellung
DE102004042692A1 (de) 2004-09-01 2006-03-02 Behr Gmbh & Co. Kg Wärmeübertrager, insbesondere für Klimaanlagen
FR2887972B1 (fr) * 2005-06-30 2007-08-24 Valeo Systemes Thermiques Echangeur de chaleur a tubes plats tordus en extremite
DE102006025727A1 (de) * 2005-08-04 2007-02-08 Visteon Global Technologies, Inc., Van Buren Township Wärmeübertrager für Fahrzeuge und Verfahren zu seiner Herstellung
WO2007048888A1 (fr) * 2005-10-28 2007-05-03 Valeo Systemes Thermiques Echangeur de chaleur à tubes plats déformés par torsion
US20080289808A1 (en) * 2007-05-21 2008-11-27 Liebert Corporation Heat exchanger core tube for increased core thickness
DE202010000951U1 (de) 2010-01-22 2010-04-22 Behr Gmbh & Co. Kg Wärmeübertrager, insbesondere Gaskühler für Klimaanlagen in Kraftfahrzeugen
ES2742887T3 (es) * 2014-04-29 2020-02-17 Carrier Corp Intercambiador de calor mejorado
CN107504836A (zh) * 2017-09-20 2017-12-22 杭州三花家电热管理系统有限公司 换热器、换热系统及室内采暖系统
CN109990627A (zh) * 2017-12-29 2019-07-09 浙江盾安机械有限公司 一种多层蛇形扁管换热器及其加工工艺
CN110207528A (zh) * 2019-06-25 2019-09-06 珠海格力电器股份有限公司 一种扁管及微通道换热器
DE102019210366A1 (de) * 2019-07-12 2021-01-14 Mahle International Gmbh Wärmeübertrager
CN114483316B (zh) * 2021-12-31 2023-06-06 北京动力机械研究所 一种具有变形协调功能的大温差换热器

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2733899A (en) * 1956-02-07 Lehmann
US2184657A (en) * 1936-04-10 1939-12-26 Fred M Young Heat exchanger
DE729699C (de) * 1939-10-24 1942-12-21 Ernst Heinkel Flugzeugwerke G Kuehler, insbesondere fuer Kuehlanlagen von Brennkraftmaschinen
US3416600A (en) 1967-01-23 1968-12-17 Whirlpool Co Heat exchanger having twisted multiple passage tubes
NO141963L (de) * 1975-03-19
DE3803885A1 (de) * 1988-02-09 1989-08-17 Thomae Rudolf Wasserkasten fuer einen roehrenwaermetauscher zur motorkuehlung oder fahrgastraumheizung von kraftfahrzeugen, die mit verbrennungsmotoren ausgeruestet sind und verfahren zur abdichtung der waermetauscherrohre im bodenteil des wasserkastens
DE3813339C2 (de) * 1988-04-21 1997-07-24 Gea Happel Klimatechnik Wärmetauscher für Kraftfahrzeuge und Verfahren zu seiner Herstellung
JPH02287094A (ja) * 1989-04-26 1990-11-27 Zexel Corp 熱交換器
IT1234289B (it) * 1989-06-14 1992-05-14 Piemontese Radiatori Perfezionamenti apportati ad uno scambiatore di calore a tubi appiattiti
US5099576A (en) * 1989-08-29 1992-03-31 Sanden Corporation Heat exchanger and method for manufacturing the heat exchanger
DE4212717A1 (de) * 1992-04-16 1993-10-21 Laengerer & Reich Gmbh & Co Wärmeaustauscher
FR2711236B1 (fr) * 1993-10-12 1995-11-24 Valeo Thermique Habitacle Echangeur de chaleur à deux rangées de tubes, en particulier pour véhicule automobile.
FR2712966B1 (fr) * 1993-11-24 1996-01-19 Valeo Thermique Moteur Sa Echangeur de chaleur à tubes plats, en particulier pour véhicule automobile.
IT1272091B (it) * 1993-12-20 1997-06-11 Borletti Climatizzazione Procedimento per la piegatura di un tubo a sezione trasversale oblunga e scambiatore di calore con tubi a sezione oblunga piegati a u
FR2715217B1 (fr) * 1994-01-20 1996-03-01 Valeo Thermique Moteur Sa Tube d'échangeur de chaleur, en particulier pour véhicule automobile, procédé pour sa conformation et échangeur de chaleur comprenant de tels tubes.
FR2715216B1 (fr) * 1994-01-20 1996-02-16 Valeo Thermique Moteur Sa Tube d'échangeur de chaleur, procédé pour sa conformation et échangeur de chaleur comprenant de tels tubes.

Also Published As

Publication number Publication date
EP0845647A1 (de) 1998-06-03
DE59707641D1 (de) 2002-08-08
DE59706228D1 (de) 2002-03-14
DE19649129A1 (de) 1998-05-28
EP0845647B1 (de) 2002-07-03
DE59711309D1 (de) 2004-03-18
EP1213556A1 (de) 2002-06-12

Similar Documents

Publication Publication Date Title
EP1213556B1 (de) Flachrohr-Wärmeübertrager mit umgeformtem Flachrohrendabschnitt
EP1042641B1 (de) Wärmeübertragender rohrblock und dafür verwendbares mehrkammer-flachrohr
EP2026028B1 (de) Wärmeübertrager, insbesondere für ein Kraftfahrzeug
EP1654508B1 (de) Wärmeübertrager sowie verfahren zu dessen herstellung
EP1544564A1 (de) Wärmeübertrager mit flachen Rohren und flaches Wärmeübertragerrohr
DE102005010493A1 (de) Wärmeübertrager mit flachen Rohren und flaches Wärmeübertragerrohr
DE19543234C2 (de) Lamellen-Wärmetauscher
EP1460363B1 (de) Verdampfer
EP0912869B1 (de) Mehr als zweiflutiger flachrohrwärmetauscher für kraftfahrzeuge mit umlenkboden sowie herstellungsverfahren
WO2014131756A1 (de) Wärmeübertrager
DE19719259A1 (de) Flachrohrwärmetauscher für Kraftfahrzeuge mit an Krägen eines Rohrbodens gehaltenen Flachrohren
DE102004002252B4 (de) Wärmeübertrager für Fahrzeuge
EP1411310B1 (de) Wärmeübertrager in Serpentinenbauweise
DE19543149A1 (de) Wärmetauscher, insbesondere Kältemittelverdampfer
EP1881288A1 (de) Rohr-Rippen-Block-Wärmetauscher mit Verbindungs- bzw. Anschlussblöcken
DE10257767A1 (de) Wärmeübertrager
DE10054158A1 (de) Mehrkammerrohr mit kreisförmigen Strömungskanälen
DE3502619C2 (de)
EP1643202B1 (de) Wärmetauscher
EP2438384A2 (de) Sammelrohr für einen kondensator
EP0845648B1 (de) Flachrohr-Wärmeübertrager, insbesondere Kondensator vom Serpentinentyp
DE202007017501U1 (de) Wärmeaustauschelement und damit hergestellter Wärmeaustauscher
DE102004003789A1 (de) Wärmetauscher
EP2994712B1 (de) Wärmeübertrager
EP0910778B1 (de) Flachrohrverdampfer mit vertikaler längserstreckungsrichtung der flachrohre bei kraftfahrzeugen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 845647

Country of ref document: EP

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR SE

17P Request for examination filed

Effective date: 20020823

17Q First examination report despatched

Effective date: 20021118

AKX Designation fees paid

Designated state(s): DE FR SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 0845647

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR SE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REF Corresponds to:

Ref document number: 59711309

Country of ref document: DE

Date of ref document: 20040318

Kind code of ref document: P

ET Fr: translation filed
RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BEHR GMBH & CO. KG

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041112

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20071121

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071116

Year of fee payment: 11

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081127

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101201

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59711309

Country of ref document: DE

Effective date: 20120601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120601