EP1979136B1 - Systeme chirurgical robotique pour la realisation de procedures medicales peu invasives - Google Patents

Systeme chirurgical robotique pour la realisation de procedures medicales peu invasives Download PDF

Info

Publication number
EP1979136B1
EP1979136B1 EP07704334A EP07704334A EP1979136B1 EP 1979136 B1 EP1979136 B1 EP 1979136B1 EP 07704334 A EP07704334 A EP 07704334A EP 07704334 A EP07704334 A EP 07704334A EP 1979136 B1 EP1979136 B1 EP 1979136B1
Authority
EP
European Patent Office
Prior art keywords
instrument
joint
laparoscopic instrument
manipulator
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07704334A
Other languages
German (de)
English (en)
Other versions
EP1979136A1 (fr
Inventor
Emilio Ruiz Morales
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
European Atomic Energy Community Euratom
Original Assignee
European Atomic Energy Community Euratom
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by European Atomic Energy Community Euratom filed Critical European Atomic Energy Community Euratom
Priority to EP07704334A priority Critical patent/EP1979136B1/fr
Priority to PL07704334T priority patent/PL1979136T3/pl
Publication of EP1979136A1 publication Critical patent/EP1979136A1/fr
Application granted granted Critical
Publication of EP1979136B1 publication Critical patent/EP1979136B1/fr
Priority to CY20111100705T priority patent/CY1111710T1/el
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/041Cylindrical coordinate type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/0046Surgical instruments, devices or methods, e.g. tourniquets with a releasable handle; with handle and operating part separable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00477Coupling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/305Details of wrist mechanisms at distal ends of robotic arms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/35Surgical robots for telesurgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B34/37Master-slave robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/71Manipulators operated by drive cable mechanisms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/76Manipulators having means for providing feel, e.g. force or tactile feedback
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras

Definitions

  • the claimed invention relates to the field of medical equipment and more particularly to a robotic surgical system for performing minimally invasive medical procedures, in particular laparoscopic procedures.
  • Minimally invasive techniques in general and laparoscopy in particular do however put more stringent requirements on the surgeon carrying out the operation.
  • the surgeon operates in an uncomfortable and tiring posture, with a limited field of view, reduced freedom of motion and poor tactile perception.
  • To these problems adds the fact that surgeons often have to carry out several consecutive interventions per day, each intervention lasting e.g. from 30 minutes to several hours.
  • the trend towards minimally invasive procedures is probably going to increase sharply in the coming years due to the ageing population and the pressure of costs in the medical field.
  • tele-operated robotic systems permit to control surgical interventions either directly from the operation theatre or from a remote site, using visual feed-back on a console. In either case, the tiring posture of the surgeon is eliminated.
  • Document US 6,436,107 discloses a robotic surgical system for performing minimally invasive medical procedures comprising a robot manipulator for robotically assisted handling of an endoscopic instrument.
  • the robot manipulator according to this document has a manipulator arm, a manipulator wrist supported by the manipulator arm and an effector unit supported by the manipulator wrist.
  • the manipulator arm provides three degrees-of-freedom by means of three joints having associated actuators for robotically positioning the wrist.
  • the manipulator wrist provides two degrees-of-freedom by means of two passive joints for manually setting the yaw angle and the pitch angle of the effector unit.
  • the effector unit comprises a custom made tool driver for actuating the tool at the tip of an instrument and provides one degree-of-freedom by means of a revolute sixth joint having an associated actuator for robotically setting the roll angle of the tool driver.
  • the instruments for the use with the system of US 6,436,107 also have a special dedicated design allowing coupling and decoupling to and from a quick-type fastener, which allows the instruments to be coupled to the tool driver.
  • one object of the invention claimed herein is to provide a robotic surgical system for performing minimally invasive medical procedures comprising a robot manipulator, which is configured such that it allows the use of available standard laparoscopic instruments that were designed for conventional manual procedures.
  • a robotic surgical system for performing minimally invasive medical procedures comprising a robot manipulator for robotically assisted handling of a laparoscopic instrument, the robot manipulator having a manipulator arm, a manipulator wrist supported by the manipulator arm and an effector unit supported by the manipulator wrist, as disclosed hereinafter is proposed.
  • the manipulator arm provides three degrees-of-freedom by means of a first joint, a second joint and a third joint, each having an associated actuator, for robotically positioning the wrist.
  • the manipulator wrist provides two degrees-of-freedom by means of a fourth joint and a fifth joint, the fourth and fifth joints being revolute joints and having an associated actuator, for robotically setting, with respect to the manipulator arm, the yaw angle and the pitch angle of the effector unit respectively.
  • the effector unit comprises a laparoscopic instrument actuator and provides one degree-of-freedom by means of a revolute sixth joint having an associated actuator for robotically setting the roll angle of the laparoscopic instrument actuator.
  • the actuated sixth revolute joint allows rotating not only the instrument but also the whole instrument actuator part of the effector unit.
  • the laparoscopic instrument actuator comprises a seat, with an associated coupling or locking mechanism for mounting an instrument stem adaptor to the effector unit, and a actuation mechanism cooperating with the instrument stem adaptor for actuating a laparoscopic instrument connected to the adaptor, preferably by linear actuation.
  • the effector unit is configured such that the rotation axis of the revolute sixth joint coincides with the longitudinal axis of a laparoscopic instrument mounted to the effector unit by means of the instrument stem adaptor and the effector unit comprises a sensor assembly including a 6 degree-of-freedom (DOF) force/torque sensor and a 6 DOF accelerometer.
  • DOF degree-of-freedom
  • the sensor assembly is arranged in between the laparoscopic instrument actuator and the drive side of the sixth revolute joint such that it rotates with the laparoscopic instrument actuator.
  • the robot manipulator provides, at the mounted laparoscopic instrument, a level of manoeuvrability comparable to that of a surgeon's hand without requiring any redundant joints.
  • the laparoscopic instrument actuator provides a generic interface for a wide variety of existing standard type laparoscopic instruments designed for manual laparoscopy.
  • the sensor assembly arranged between the connected instrument and the sixth joint of the robot manipulator, enables accurate force feedback at a haptic interface on a surgeon console in order to provide the surgeon with a sensorial perception corresponding to manual handling of the instruments.
  • linear and angular accelerometer is used for compensating gravitational and acceleration influence on the force-torque sensor.
  • These features enable the use of comparatively inexpensive standard type instruments (e.g. graspers, dissectors, scissors, coagulators, clips appliers, needle carriers, electro-bistouries, suction/irrigation tools, etc.) on the robot manipulator disclosed herein.
  • the system provides the required manoeuvrability with a minimum number of joints, i.e. with 6 DOF with only 6 joints. No further redundant joints are provided for motion of the manipulator. In particular, special instruments with articulated instrument distal ends are not required. Furthermore, all joints are actuated that is to say no passive (not actuated) or free-rotating joints are present in the robot manipulator, whereby robotic control is significantly improved. Elimination of redundant passive joints, which are commonly used in known systems e.g. for avoiding trocar stress, is achieved among others by providing the sensor assembly at the interface between the sixth joint and the laparoscopic instrument actuator. This arrangement of the sensor assembly enables force measurement and constraint restriction not only at the instrument tip level but also at the level of the trocar. Another particularity is to be seen in the fact that the wrist and effector unit joints are all rotary, i.e. no prismatic joints are provided on these parts.
  • a robotic surgery system should be modular and have the capability to manage up to four instrument access ports and one endoscope access port.
  • a significant constraint, related to the design of suitable manipulators, is that some access ports can be distant by a few centimetres only and the respective instruments may need to be positioned nearly parallel or one above the other.
  • manipulators do not excessively limit the surgeon's view on the patient body and access ports.
  • the robotic surgical system by virtue of various other features described herein below and considered inventive per se, addresses among others the latter issues.
  • the effector unit is configured such that one sensor axis, e.g. the normal axis, of the 6 DOF force/torque sensor and one sensor axis, e.g. the normal axis, of the 6 DOF accelerometer coincide with the rotation axis of the sixth joint. This measures facilitate force feedback calculations.
  • the laparoscopic instrument actuator comprises a housing with an access surface in which the seat is arranged and an interface flange which attaches the housing to the sensor assembly
  • it furthermore comprises gradual reinforcing ribs connecting the access surface to the interface flange for reinforcing the rigidity of attachment of the housing to the interface flange.
  • the housing is semi-cylindrical by having a substantially semi-cylindrical surface opposite to the preferably substantially flat access surface.
  • the semi-cylindrical surface is preferably in conformity with a cylindrical envelope of 50-135mm, preferably of about 90mm diameter and coaxial to the rotation axis of the sixth joint.
  • the housing, the flange, the reinforcing ribs and the sensor assembly are dimensioned to fit into this cylindrical envelope.
  • the instrument step adapted is preferably designed to fit into the same envelope when mounted to the manipulator.
  • the seat of the laparoscopic instrument actuator comprises an elongated essentially semi-cylindrical recess arranged, essentially coaxial to the axis of rotation of the sixth joint, in an access surface of the laparoscopic instrument actuator, the seat and the coupling or flocking mechanism being configured for mounting and removing an instrument stem adaptor by a pivoting movement about the fulcrum in a plane that is essentially perpendicular to the instrument stem, i.e. in radial direction with respect to the axis of rotation of the sixth joint.
  • the semi-cylindrical recess provides self-centering of the adaptor when the latter is connected.
  • this configuration combined with the ability to manually actuate the revolute sixth joint and, in normal conditions, combined with an automated procedure for moving the instrument near the access port, enables sideways installation and removal of the instrument and thereby eliminates insertion and extraction movements in the penetration direction with respect to the patient. Furthermore, ergonomics are improved for the surgeon assistant and instrument exchange times are reduced compared to known systems.
  • the latter comprises at least one magnetic device, e.g. an electromagnet or permanent magnet or a combination of both, respectively arranged on either side of the semi-cylindrical recess.
  • the magnetic devices preferably provided in and level to the access surface, enable fastening an instrument stem adaptor to the laparoscopic instrument actuator by means of magnetic attraction. This coupling mechanism reduces the risk of damage to a sterile wrap covering the laparoscopic instrument actuator during interventions, since the latter need not be sterilized in this case.
  • the seat comprises a longitudinal groove deepening the semi-cylindrical recess radially for receiving a coupling means arranged laterally on an instrument stem adaptor and wherein the coupling mechanism is configured as latch locking mechanism comprising a slideable catch arranged in the longitudinal groove for engaging the coupling means.
  • the actuation mechanism used for actuated instruments such as grasping or dissecting forceps, scissors, etc., comprises a slider carriage configured for engagingly receiving and for linearly sliding a slider pin of an instrument stem adaptor mounted to the effector unit.
  • the slider carriage is preferably arranged laterally to the seat, i.e. to the side of the seat as opposed to in axial prolongation.
  • the actuation mechanism advantageously comprises a force sensor, which connects the slider carriage to a driving means. Such a force sensor allows measuring forces exerted by or onto the slider carriage.
  • the laparoscopic instrument actuator further comprises a presence detector for detecting whether an instrument stem adaptor is correctly mounted to the effector unit.
  • the laparoscopic instrument actuator comprises a plurality of inductive presence sensors for identifying an instrument mounted to the effector unit by means of an inductively identifiable material pattern provided on the instrument stem adaptor.
  • the robotic surgical system is configured for operating in a manual mode, in which the laparoscopic instrument actuator can be positioned and oriented by the robot manipulator using information read by the 6 DOF force/torque sensor of the sensor assembly, and further comprises switching means arranged on the laparoscopic instrument actuator for switching the system to this manual mode.
  • Another aspect of the claimed invention concerns the aforementioned laparoscopic instrument stem adaptor mounted to robot manipulator in a robot surgical system as described herein for mounting a stem of any available manual laparoscopic instrument.
  • This adaptor comprises an elongated case having a stem connector arranged on a front end and a coupling member or means arranged laterally on the case.
  • the stem connector cooperates with a socket of the stem of a manual laparoscopic instrument and is configured for detachable connection thereto.
  • the coupling means in turn cooperate(s) with the seat of the laparoscopic instrument actuator of the robot manipulator.
  • an adaptor as disclosed herein allows the use of any type of stem portion of such instruments on a robot manipulator as described above.
  • the adaptor has a very simple inexpensive and robust design. Hence, combined with standard comparatively inexpensive instruments, the instrument stem adaptor reduces purchase and maintenance cost of the medical tools to be used in combination the above robotic system.
  • its coupling means comprise(s) a semi-cylindrical surface or, alternatively, the entire case can have an essentially cylindrical shape, possibly, with a rounded end opposite the stem connector.
  • the shape or surface is conformed to the aforementioned semi-cylindrical recess of the seat in the laparoscopic instrument actuator of the robot manipulator. This allows centering the instrument stem adaptor on the rotation axis of the sixth joint.
  • the laparoscopic instrument stem adaptor preferably comprises an internal cylindrical hollow as a guide for a piston of a manual laparoscopic instrument, which can be arranged to slide in the guide. It further preferably comprises a through hole for a slider pin attached transversely to the piston and protruding from the case for operating the piston.
  • the slider pin is configured to engage a slider carriage of the laparoscopic instrument actuator and the piston cooperates with an internal actuating rod of a laparoscopic instrument connected to the adaptor for operating the tool at the tip of the laparoscopic instrument.
  • This configuration of the adaptor and the corresponding laparoscopic instrument actuator provides simple and reliable motion transmission and furthermore eliminates additional manual steps for establishing motion transmission when installing or removing an instrument on the effector unit.
  • instrument exchange time is reduced which contributes to reducing overall intervention time.
  • the coupling means comprises at least one ferromagnetic element arranged on either side of the case, the ferromagnetic elements cooperating respectively with a corresponding magnetic device of the coupling mechanism on the laparoscopic instrument actuator.
  • the instrument stem adaptor preferably further comprises a lever for detaching the adaptor from the laparoscopic instrument actuator.
  • the adaptor may comprise an inductively identifiable pattern provided on the instrument stem. Furthermore, the adaptor may comprise an electrical connector arranged opposite to said coupling means for transmitting electric power to an instrument connected to said stem connector.
  • Fig.1 shows a robotic surgical system for generic surgical laparoscopy, generally identified by reference numeral 10.
  • a patient P covered by a sterile sheet is lying on an operation table 12 around which a plurality of robot manipulators 14 are disposed.
  • the robotic surgical system 10 is set up for an intervention on the pelvic area.
  • a surgeon S operates a surgical master console 15 and a surgeon assistant A stands near the operation table 12 and near a tray 16 with a set of adapted laparoscopic instruments 18.
  • the robot manipulators 14 are designed for positioning and orienting an effector unit which supports and possibly actuates various kinds of laparoscopic instruments 18.
  • the robot manipulators 14 are tele-operated by one or more surgeons S via one or more surgical master consoles 15 which are connected to a control unit (not shown).
  • the robotic surgical system 10 is modular and configurable according to the type of the surgical intervention, generally with up to 5 manipulators and normally a minimum configuration of 2 manipulators.
  • a configuration of a robotic surgical system 10' with 5 manipulators 14 is shown for example in Fig.2 .
  • the system 10 shown in Fig.1 is equipped with laser range scanners 22 located at the base of each robot manipulator 14.
  • the laser range scanners 22 are used for surgical assistant personnel safety in the operation theatre.
  • Fig.3 is a three-dimensional view of a robot manipulator 14 which forms one mechanical unit of the robotic surgery system 10.
  • the robot manipulator 14 is mounted on a base 24, which is attachable to the floor of the operation theatre and mobile when not attached.
  • Three coordinate systems are also shown in Fig.3 , i.e. the Base, Tool Flange (TF) and Laparoscopic Instrument Tip (LIT) coordinate system.
  • the robot manipulator 14 comprises a manipulator arm 26 and a manipulator wrist 28.
  • the arm 26 has an essentially vertical part 27 and an essentially horizontal part 29.
  • the first end of the arm 26 on the vertical part 27 is to be attached to the base 24 whereas the wrist 28 is to be attached to the second end of the arm 26, i.e. the extremity of the horizontal part 29.
  • An effector unit 30 for adapted laparoscopic instruments 18 is to be connected to a tool flange 32 of the wrist 28.
  • the arm 26 has three degrees of freedom (DOF) and the wrist 28 has two DOF.
  • the robot manipulator 14 is basically a 5 DOF robot manipulator.
  • An auxiliary DOF for rotating the laparoscopic instrument 18 mounted to the effector unit 30 about its longitudinal axis is provided by the effector unit 30.
  • the arrangement of the DOF of the robot manipulator 14 and the effector unit 30 will become more apparent from the following description of Fig.5 .
  • first joint J1 which is a prismatic sliding (P) joint (or rectilinear translation joint).
  • the first joint J1 is connected to the base 24 by means of a base link L0 and provides a translational DOF along an essentially vertical axis.
  • the first joint J1 hence allows vertical positioning of the first essentially vertical link L1 and the subsequent components attached to the latter with respect to the base 24 and the link L0.
  • joint J1 defines the height of the vertical part 27.
  • the rotation axis of the revolute joint J2 is essentially vertical.
  • the joint J2 allows to set the relative angle between the link L2 and its initial angular position in a horizontal plane.
  • a third prismatic sliding (P) joint J3 connects link L2 to a third essentially horizontal link L3.
  • the joint (P) J3 provides a translational degree of freedom along an essentially horizontal axis and allows to set the reach or extension of the arm 26, more precisely the horizontal part 29, by horizontal displacement of the link L3 with respect to the link L2.
  • the links L2 and L3 together with the (P) joint J3 form an essentially horizontal extensible jib or boom of the robot manipulator 14.
  • the arm 26 With two (P) joints and one (R) joint arranged as seen in Fig.5 , the arm 26 has one rotational DOF about an essentially vertical axis, and associated thereto two translational DOF along two perpendicular axes. Accordingly, the arm 26 of the robot manipulator 14 has cylindrical configuration, i.e. the kinematic configuration of the manipulator 14 belongs to the class of cylindrical robots of PRP (Prismatic-Revolute-Prismatic) type.
  • PRP Principal-Revolute-Prismatic
  • each joint among the first three J1, J2, J3 respectively corresponds to a cylindrical coordinate ( z , ⁇ , r ): z being the elevation (or height) coordinate, ⁇ being the rotational (or azimuth) coordinate and r being the radial elongation (or radius) coordinate.
  • the wrist 28 comprises two revolute joints J4, J5 and the effector unit 30 includes one revolute joint J6.
  • the revolute joints J2, J4, J5, J6 respectively define the orientation of an adapted laparoscopic instrument 18 attached to the effector unit 30.
  • the revolute joint J4 connects the link L3 to a link L4 and allows to rotate link L4 with the subsequent parts, about an essential vertical axis that is parallel to the rotation axis of joint J2.
  • the revolute joint J4 allows to set the yaw angle of the effector unit 30, in combination with the actual setting of joint J2.
  • the axis of rotation the revolute joint J4 is coplanar with the plane formed by the axis of rotation of the revolute joint J2 and by the axis of translation of the prismatic joint J3.
  • the revolute joint J5 connects link L4 to the tool flange 32 and allows to rotate the tool flange 32 with the subsequent parts along an essentially horizontal axis perpendicular to the rotation axis of joint J4.
  • the revolute joint J5 allows to set the pitch angle of the effector unit 30.
  • the effector unit 30 is connected to the tool flange 32 through a link L5.
  • the rotation axis of the revolute joint J6 is substantially perpendicular to the rotation axis of joint J5 and connects link L5 to a link L6.
  • the rotation axis of revolute joint J6 is aligned with link L6 and defines the relative angle of link L6 with respect to its initial angular position.
  • An adapted laparoscopic instrument 18 is connected to link L6.
  • the instrument 18, represented by link L7, is aligned with link L6.
  • the end point of link L7 represents the instrument tip 17.
  • the cylindrical PRP kinematic configuration of the manipulator 26 has various advantages among which:
  • An advantage resulting from the chosen PRP kinematic configuration of the robot manipulator arm 26 is the simplification of collision detection computation between a plurality of manipulators 14 arranged with intersecting workspaces around the operation table 12 ( Figs.1 and 2 ). Due to the cylindrical configuration, the robot manipulator 14 can be approximated with simple planar geometrical features in a two-dimensional (2-D) horizontal plane. As best seen in Fig.6 , the mechanical links of the arm 26 can be enveloped by a rectangle of variable length and orientation respectively corresponding to (J3 + L2+ L3) and to J2; the width of the rectangle envelop is given by the mechanical link geometry plus a margin depending, for instance, on the space required to brake the robot from maximum speed to stop plus a safety threshold.
  • the margin of each side of the rectangle envelops can be dynamically sized according to the direction and speed of motion, e.g. the higher is the velocity in the direction of an envelop side, the higher is the margin for this envelop side.
  • the wrist 28 is approximated by a rectangle enveloping the body of link L4 and part of link L5 and with a variable planar orientation given by the current angular position of joint J4.
  • tne effector unit 30 can be approximated by a rectangle enveloping its projection on the 2-D horizontal plane where the projection angle corresponds to the current angular position of joint J5.
  • the same principle applies to the stem of the instrument 18 connected to the effector unit 30.
  • the collision detection method consists of checking a collision in the 2-D horizontal projection. Only if any of these 2-D figures collides with a figure from a different robot manipulator 14, an effective risk of real collision is subsequently verified by including the third dimension.
  • 3-D calculations therefore need to be carried out only for the intersecting sides of the concerned parts of the robot manipulators 14.
  • the concerned parts are enveloped, for example, with a triangular-based model.
  • fast intersection-detection algorithms can be easily implemented, e.g. those proposed in " A Fast Triangle-Triangle Intersection Test" by Moller, Journal of Graphics Tools, 2(2), 1997 .
  • collision detection between stems of instruments 18 is relevant especially to protect the endoscope from powered instruments.
  • the position and orientation of all the robot manipulators 14 with respect to a common reference coordinate system is determined through a calibration procedure after the positioning of the manipulators 14 in the operation theatre. From the functional point of view, after the detection of a collision risk, the control system must halt the concerned manipulators 14 and warn the surgeon S through appropriate display information and/or a repulsive force feed-back on the master console 15. The surgeon S can then simply achieve recovery by tele-operating one of the manipulators in a safe direction. In a further improvement, several collision-safety levels are implemented using at least two envelopes with different margins for each of the sets of parts, e.g. arm 26, wrist 28, effector unit 30 and/or instrument 18. After detecting a risk of collision with the more protuberant envelope, motion commanded by the surgeon S in the collision direction is sharply scaled down in function of the penetration in the margin area.
  • Another advantage regarding the configuration of the arm 26 is related to improved controllability of the actuators associated to the joints J1, J2, J3.
  • control of these actuators is improved because J1, J2, J3 and J4 are not subject to varying gravitational loads, and because J1, J3 and J5 do not have varying inertial loads.
  • This enables simplified optimisation of control loops (e.g. PID with feed-forward) and to achieve very low position dynamics tracking errors, e.g. of a few motor encoder counts only.
  • the mechanical design shall consider a stiff but lightweight structure for links L2 and L3 to limit their deflection and oscillations in case joint J1 and/or joint J2 executes abrupt motion.
  • the cylindrical configuration of manipulator 14 has a single radical elongation joint J3 that considerably reduces the space taken to position the wrist 28 above the body of patient P.
  • this feature enables five manipulators 14 and more to be positioned at the operation table 12 providing that the dimensions of the wrist and of the effector unit be sufficiently small, i.e. occupy a sufficiently contained space in the available workspace above the patient body.
  • the base 24 includes a main base plate 40 and is arranged as moveable structure by means of four wheels 42 installed in openings at the corners of the main plate 40. Each wheel 42 is enclosed in a cover 43 with an opening for access to a handle for extracting or retracting the wheels 42. When the wheels 42 are retracted, the base 24 rests stable on the floor of the operation theatre by means of cushion supports (not shown) of the wheels 42. After extracting the wheels 42, the base 24 including the robot manipulator 14 can be moved by hand. In a different design, the base 24 can be mounted on a moveable or fixed linear rail axis or on a cart designed to support several bases 24 and associated manipulators 14.
  • the main base plate 40 is designed such that it can be fixed to the floor if necessary, e.g. by screwing using holes 44, in order to give additional stability to the robot manipulator 14.
  • the robot manipulator 14 is attached to the base 24 through bolts in threaded holes 45.
  • several high precision bores 46 are machined.
  • the bores 46 serve to support optical calibration reflectors which are used to determine the position and orientation of the base 24 by means of an optical measurement system, as described in "Robot calibration" by' R. Bernhardt and S. Albright, ed. Chapman & Hall, 1993. It may be noted that the robot manipulator 14 is calibrated during the factory set-up procedures in order to accurately determine its geometrical model.
  • the base comprises an enclosure 48 for power supply and servo-drives of brushless motors, signal conditioning devices, means for local processing of arm-mounted sensors, and communication channels to a remote system control unit.
  • a 2D laser range scanner 22 is installed on the base 24, more precisely on the enclosure 48, to enable detection of intrusion, e.g. by assistant A, inside a safety perimeter around the links L2 and L3.
  • robot manipulators 14 are used in the robotic surgical system 10. Although the two types of robot manipulators 14 essentially have the same geometry and kinematic PRP configuration of the arm 26, the first type is preferably specifically arranged to handle an endoscope used for visualization whereas the second type is arranged to handle any of various kinds of adapted laparoscopic instruments 18 used for operation per se. For laparoscopy, normally one robot manipulator 14 of the first type is used whereas several robot manipulators 14 of the second type are used. In the robotic surgical system 10, the major differences between these two types of robot manipulators 14 are:
  • the (P) joint J1 for arm elevation comprises a ball screw linear axis 50 (for example a suitable model of the ET series produced by Parker Hannifin, Electromechanical Division, Offenburg, Germany & Poole, UK).
  • the ball screw linear axis 50 is driven by a brushless servo-motor 51 equipped with an incremental motor position encoder and a brake.
  • the linear axis 50 is additionally provided with an additional absolute linear position sensor (not shown) at the output stage, with limit switches and with a mechanical end-of-travel bumper (not shown).
  • a vertical linear guide 52 is operatively associated to the linear axis 50 in order to ensure axis linearity and torsion stiffness.
  • the linear axis 50 is attached to brackets 53 for mounting the arm 26 to the base 24.
  • An external cover 54 encloses the components of the prismatic (P) joint J1 as best seen in Fig.3 .
  • the motor/load reduction ratio is set such as to prevent undesired falling of the horizontal part 29 also when the motor brake is disengaged or when the servo-motor 51 is not powered.
  • an emergency stop button (not shown) is placed on the external cover 54, which serves to stop motion of all robot joints in case of an emergency.
  • the aforementioned components of the manipulator arm 26 constitute its essentially vertical part 27.
  • Fig.9 also shows the (R) joint J2 forming the shoulder joint of arm 26. As best seen in
  • join J2 comprises an assembly of a brushless servo-motor 61 in-line with a gear 62 of the Harmonic Drive® type to drive the load.
  • the brushless motor 61 is equipped with a position encoder and a fail-safe brake.
  • the actuator assembly comprises a further absolute rotary position sensor 65, which is driven by a belt 66 connected to the output stage of the gear 62, and mechanical end-of-travel bumper and limit switches (not shown).
  • a key switch (not shown) is provided on cover 64, which allows to release brakes of the joints J2, J3, J4, J5 and J6 when their respective motors are not powered. This allows to move the arm 26 and the effector unit 30 by hand into a parking position.
  • Signals and power cables from downstream joints J3 to J6 and from the effector unit 30 are routed from J3 to J1 through a flexible cable duct (not shown) which passes inside the cover 64.
  • a flexible cable duct (not shown) which passes inside the cover 64.
  • such cables could be guided for instance through the hollow-shaft of an adapted gear and motor assembly.
  • Fig.9 also shows the design of the horizontal part 29 of the arm 26 including (P) joint J3 for setting the radial extension, i.e. reach of the horizontal part 29.
  • Joint J3 comprises a linear cylinder axis 70, e.g. a ball screw linear axis, as associated linear actuator.
  • linear actuator e.g. an ET model actuator produced by the aforementioned company, driven by a brushless servo-motor 71 equipped with a motor position encoder and a fail-safe brake is used.
  • the rod of the linear cylinder 70 axis moves a beam 72 which is configured as rectangular tube and mounted on trolleys of a linear guide 73. This construction allows reducing linear deflection.
  • the linear cylinder axis 70 is additionally provided with an additional absolute linear position sensor at the output stage, with limit switches and with end-of-run mechanical bumpers (not shown). Signal and power iines are guided in a horizontally placed cable chain.
  • a covering 74 is fixed to the parts forming the second link L2 and encloses the components of the (P) joint J3, in particular the linear actuator 70 and the linear guide 73.
  • the beam 72 which forms part of link L3, is configured for telescoping into respectively out of the covering 74.
  • the arm 26 is thereby provided with a horizontal part 29 narrowing into an extremity which requires only a limited amount of space above patient P.
  • lamps are preferably provided on the rear-top of the covering 74 to visually indicate the power and activation status.
  • the mechanical and actuation design of (R) joint J4 shown in Figs.11-13 comprises a support plate 80 to which a brushless servo-motor 81 is mounted vertically.
  • the servo-motor 81 is provided with a position encoder 82 and a hall sensor on the motor shaft.
  • As servo-motor 81 a suitable model of the EC motor series from MAXON MOTOR A.G., Sachseln, Switzerland is used for example.
  • the (R) joint J4 further comprises a transmission mechanism through a gear 83 coupled to the servo-motor 81 and through a transmission belt 84 and pulley 85 system to drive a load axis pulley 86 which is coupled to a connection flange 87.
  • An additional absolute single-turn sensor 88 is connected to a pulley 89, which is also driven by the transmission belt 84, and attached to the bottom side of the support plate 80.
  • the assembly comprising the load axis pulley 86 and the connection flange 87, has a hollow shaft and a lateral window on the connection flange 87.
  • the support plate 80 is stiffly attached to the beam 72 by means of two mounting plates 90.
  • a cover 92 serves to protect to parts of joint J4. Inside the cover the cables from the effector unit 30, from joints J5 and J4 are provided with connectors to make the wrist 28 detachable for maintenance purpose.
  • An emergency stop button is provided on the cover 92 of joint J4.
  • a fail-safe brake is preferably mounted on the shaft of the servo-motor 81.
  • the motor can also be aligned with the axes of the load axis pulley 86 and the sensor 88.
  • the support plate 80 preferably has a rounded border around the load axis pulley 86.
  • (R) joint J5 is also shown in more detail in Figs.11-13 .
  • An essentially L-shaped support member 100 links the joint J5 to the joint J4, with a horizontal, portion connected to joint J4 and a vertical portion as fixed frame for joint J5.
  • It comprises a brushless servo-motor 101, for example a suitable EC model of MAXON MOTOR A.G., with a position encoder 102 and a hall sensor on the motor shaft.
  • the servo-motor 101 is mounted transversely on the support member 100.
  • the (R) joint J5 further comprises a transmission mechanism through a gear 103 coupled to the motor 101 and a transmission belt 104 and pulley 105 system to drive a load axis pulley 106.
  • An additional absolute single-turn sensor 108 is connected to a pulley 109 which is also driven by the transmission belt 104, and attached to the inner side of the support member 100.
  • a number of features are included. These are two holes 110 and 112 provided in the support member 100, a hollow central passage 114 in the pulley 106 and the tool flange 32, and a cable routing support 116 for the pulley 106.
  • the L-shaped support member 100 has lateral reinforcements to provide a rigid structure for supporting the effector unit 30 through the tool flange 32.
  • the (R) joint J5 preferably includes limit switches and a fail-safe brake (not shown). When provided, the latter are preferably mounted on a pulley driven by transmission belt 104 in order to reduce lateral offset 02, which may constitute a limiting factor in a multi-robot configuration.
  • Fig.14 and 15 show the effector unit 30, designed to be connected to the tool flange 32 of joint J5, with its three main parts: a laparoscopic instrument actuator 120, a sensor assembly 122 including a 6 DOF force/torque sensor and a 6 DOF linear/angular accelerometer, and a cover 124 for joint J6.
  • Joint J6 is connected to the sensor assembly 122.
  • the laparoscopic instrument actuator 120 is provided with a seat 130 for mounting an adapted laparoscopic instrument 18 to the robot manipulator 14.
  • the laparoscopic instrument actuator 120 and the sensor assembly 122 including force, torque and acceleration measurement sensors shall be referred to by the acronym LIA and FTAS respectively.
  • the components of the effector unit 30 are aligned in such a way that joint J6 rotates the adapted laparoscopic instrument 18 about the latter's longitudinal axis of symmetry, and such that this axis coincides with the normal Z axis of the FTAS 122.
  • the position of the effector unit 30 with respect to the rotation axis of (R) joint J5 is selected at the equilibrium point of the effector unit 30 such as to avoid tilting when joint J5 is stopped and not powered.
  • a main support frame 140 of the effector unit 30, which connects to the wrist 28, is configured such that the assembled effector unit 30 is balanced on the rotation axis of (R) joint J5.
  • the motor/load reduction ratio for joint J5 also contributes to the tilting resistance.
  • Fig.15 shows the construction of the joint J6.
  • To the main support frame 140 (to be connected to the tool flange 32) is mounted a brushless motor 141 with an incremental encoder 142 and a gear assembly 143.
  • a motor pulley 145 connected to the motor 141 is coupled to a load pulley 146 by means of a belt 144.
  • the load pulley 146 provides the rotational DOF of joint J6.
  • An additional absolute position sensor 148 is mounted on the axis of the load pulley 146 coinciding with the axis of (R) joint J6.
  • the position encoder 148 has a hollow shaft for passing signal and power lines of the LIA 120 and FTAS 122 to a rotating collector 150 of the "slip-ring" or sliding contact type.
  • the slip-ring 150 enables infinite axis rotation for joint J6.
  • the load pulley 146 is connected to the FTAS 122 through a connection flange 152. Cables for power and signal lines for the LIA 120 and FTAS 122 are guided inside the cover 124 through a hollow passage in the connection flange 152.
  • the robot manipulator 14 as a whole is provided with internal channels to ensure protected guiding of all signal and power lines e.g. of joints J1-J6 and effector unit 30 components such as LIA 120 and FTAS 122.
  • the configuration of joint J6 implements the following two modifications: Firstly, reduction of the offset 03 by locating the motor-gear-pulley assembly 141, 143, 144, 145 at -90 degrees with respect to the orientation shown in Fig. 15 . Secondly, the offset 04 is reduced by configuring the motor-gear assembly 141, 143 to be located closer to the LIA 120.
  • an alternative design could however present an offset O5 due to link L5 e.g. in order to improve manoeuvrability in case two adapted laparoscopic instruments 18 are to be inserted in nearly located trocars (access ports 20).
  • the specific design shown in Figs. 23 and 24 provides a modified manipulator wrist 28' having a negative offset 05 due to link L5.
  • This negative offset 05 allows to place the effector unit 30 of a first robot manipulator 14 above the effector unit 30 of a second robot manipulator 14 without collision between the wrists 28'.
  • This modified configuration requires however an increased reach for joint J3 and higher speed and acceleration capabilities for joints J2, J3 and J4.
  • the configuration of the wrist 28' is advantageous for operating at multiple closely located access ports 20 (trocars 200). It will be understood that a preferred value of the offset O5 between the axis of rotation of J6 and J4 as shown in Fig.23 is approximately the diameter of the LIA 120 at its largest cross-section.
  • the design of the robot manipulator 14 as described above presents two further advantages: Firstly, the joints of the robot manipulator 14 can be actuated manually, except for joint J1 because it presents high static friction and reversed inertia. In other words, when all brakes are disengaged, the effector unit 30 mounted to the wrist 28 at flange 32 can be moved by hand through manual actuation of joints J2, J3, J4, J5 and J6 requiring a pushing force less than 5kg only (in horizontal direction). Secondly, system safety is increased by sensorial redundancy. As described above, each one of the joints J1 to J6 has both a position encoder on the motor shaft and an additional position sensor (e.g. 65, 88, 108, 148) measuring the effective motion output of the respective joint. In practice, this sensorial redundancy is used to detect failures (e.g. of a motor wire, of a belt or of a servo-drive).
  • failures e.g. of a motor wire, of a belt or of a
  • the design avoids end-of-run conditions at each of the joints J1 to J6. End-of-run occurs when a joint runs out of its motion limit and is a critical condition particularly in tele-operated robotic surgery, because it is difficult and cumbersome for the surgeon S to achieve recovery with an instrument 18 inserted in the body of patient P.
  • the prismatic joints J1, J3 of the arm 26 are designed with sufficient travel and the roll joint J6 of the effector unit 30 is designed for unlimited rotation.
  • avoidance of end-of-run conditions requires only certain predetermined initial configuration and set-up conditions to be respected.
  • Fig. 16 schematically shows a trocar 200 and its workspace 202 external to the body of the patient P.
  • a fulcrum reference frame FRF is also shown in Fig.16 , by means of a cartesian coordinate system (x,y,z) with the z axis oriented upwards approximately parallel to the direction of gravity.
  • the trocar 200 is normally introduced through a small incision in the abdomen of patient P, indicated at 204, into the peritoneal cavity.
  • the trocar 200 together with the incision forms one access port 20 as shown in Fig.1 and 2 .
  • the longitudinal axis of the trocar 200 indicated by z' is pivoted in the workspace 202 about the origin of the FRF, named pivot point 206.
  • this origin defines a fulcrum for the trocar 200.
  • the fulcrum is preferably determined in between the abdominal wall and the skin of the patient P, at the minor tilting resistance location, in order to reduce the risk of pulling out the trocar 200.
  • the operational ranges of the force-torque sensor in the FTAS 122 shall take into account these values plus the weight of the LIA 120, the motion dynamics loads and pivoting and penetration resistance exerted onto the trocar 200.
  • the force-torque sensor in the FTAS 122 is used for force/torque reflection, i.e.
  • the linear and radial accelerometer in the FTAS 122 are used for compensating gravity and acceleration influence on the force-torque sensor information.
  • the measurement axes of the accelerometer and force-torque sensor in the FTAS 122 are geometrically coincident.
  • a laparoscopic instrument 18 is inserted through the trocar 200.
  • the surgeon S operates the instrument 18 within the following maximum ranges of angular workspace and speed about the FRF of Fig.16 : Table 1 Fulcrum axis Max Travel Max Speed Yaw Pivot +/-70° 100°/s Pitch Pivot [+10° -80°] 60°/s Penetration [0 200mm] 200mm/s Roll I [-360° +360°] 300°/s
  • the pivot point of the trocar 200 remains fixed after the wrist installation thanks to the mechanical arrangement of the wrist structure that pivots around a fixed point (see for example: "Remote center of motion robot” by Taylor et al. - US patent No. 5667323 - May 1995 ).
  • Other prior art designs implement a mechanical compliance along pivot axes in order to limit forces applied to the trocar (see for example: “Medical robotic system” by Wang et al.- US patent No. 6102850, August 2000 ).
  • the robot manipulator 14 proposed herein is designed neither with mechanical compliance nor with centre of motion, but relies on accurate resolved motion about a pivot point 206 determined by a specific procedure, and on real-time control of forces and torques applied to the effector unit 30 in order to optimise the location of the pivot point 206. Moreover, this feature gives the flexibility to translate the pivot point 206, if required by the surgeon S, in order to improve the intra-abdominal workspace. Another advantage is the capability to adapt to variations of the absolute location of the pivot point 206 due, for instance, to the loss of abdominal pressure.
  • the robot manipulator 14 should have certain motion capabilities in order to provide the effector unit 30 with a dexterity comparable to manual handling of laparoscopic instruments by surgeons.
  • the preferred kinematic capabilities which have been found for the joints J1 to J6 in this specific example are summarized in Table 2.
  • Roll, pitch and yaw angles can be defined relative to an absolute reference system, e.g. on the fulcrum.
  • the static accuracy of the manipulator 14 at the connection to effector unit 30, i.e. at the tool flange 32 shall be better than ⁇ 2mm for position and better than ⁇ 0.1° for orientation at the FRF (see Fig.16 ).
  • an external load of 1.5kg is assumed at the tip of a connected laparoscopic instrument 18 and the FRF is assumed at 280mm from the axis of (R) joint J5.
  • the dynamic accuracy shall be better than ⁇ 4mm for position and ⁇ 0.5° for orientation at the FRF.
  • the aforementioned absolute position sensors (e.g. 65, 88, 108, 148) provided at the output of each joint J1 to J6 provide the following advantages:
  • Another aspect in robotics is the mathematical model used to control the robot manipulator 14. Departing from a theoretical model of the robot manipulator 14, the effective and accurate "concrete" model, including parameters such as offsets to the kinematics arrangement, elasticity of joints J1 to J6, elasticity of links L1 to L7, actuators backlash and other linearity errors is necessarily determined during a calibration process.
  • the identified "concrete" manipulator model is used for three purposes: firstly, to improve accuracy of the robot manipulator 14 using the theoretical model in the motion controller (which simplifies the inverse kinematics calculation) with real joints offsets and links lengths; secondly, to accurately compute, in real time through forwards formulation, the position and orientation of the 6-DOF FTAS 122 and the loads attached, (these values are required for compensating gravitational and acceleration loads); thirdly, to determine, in real time through forwards formulation, the position and orientation of the instrument tip and deduce parameters required for force-reflection (e.g. the penetration of the instrument 18).
  • the LIA 120 forms part of the effector unit 30.
  • the LIA 120 provides a generic actuation interface for using standard laparoscopic instruments such as grasping/dissecting forceps, scissors, suction/irrigation tools, etc. with the robot manipulator 14.
  • the LIA 120 forms the extremity the manipulator 14 and represents its hand part since it reproduces the actions of a surgeon hand.
  • the LIA 120 comprises a housing 154 the rear end of which forms an interface flange 156 for connection to the FTAS 122 whereas its front end forms the extremity of the robot manipulator 14.
  • a LIA could include joint J6. This configuration requires however a more complex mechanical design of the instrument adaptor that shall include a rotation mechanism together with the openclose mechanism and power-transmission. In addition, the sterile field should be maintained even with the rotation mechanism.
  • the LIA 120 shown in Fig.14-15 and Fig.18-22 is adapted for use with any standard laparoscopic instrument that can be divided into a handle on one side, and a stem on the other side.
  • the stem is defined as comparatively thin elongated tube having at its tip, for example, forceps/scissor jaws inserts, suction/irrigation means, basic tools like a knife or an electric cautery/cutting device.
  • the end opposed to the tip comprises a socket which is designed to connect the stem to the handle for the surgeon.
  • Compatibility of the robot manipulator 14 with standard instruments is achieved by the design of the LIA 120 and the design of corresponding instrument stem adaptors, in the following referred to by the acronym ISA, of which an example is shown in partial sectional view in Fig.17 .
  • Fig.17 shows the ISA (instrument stem adaptor) 300 to which an instrument stem 302 can be connected.
  • the ISA 300 is connectable to the LIA 120 by mounting it into the seat 130 shown in Fig.15 .
  • the ISA 300 comprises a case 303 with an essentially cylindrical outer surface.
  • the ISA 300 is designed as a coupling element between the instrument stem 302 of a conventional (laparoscopic) instrument, and the LIA 120.
  • the ISA 300 comprises a stem connector 304 at its front end.
  • the stem connector 304 is designed for connection to a specific type socket 306 of the stem 302, which depends on the actual instrument. Originally, the socket 306 is designed for connection to a laparoscopic instrument handle (not shown).
  • the stem connector 304 reproduces the connector of the original handle for which the stem 302 was designed.
  • the ISA 300 further comprises as coupling means a coupling member 308 for secure connection to the LIA 120.
  • the coupling member 308 is arranged laterally on the case 303 and protrudes radially there from so as to block rotation of the ISA 300 when it is mounted to the LIA 120.
  • a small metallic block 309 is included in the coupling member 308 in order to provide a metallic detection surface for an inductive presence switch (cf. part 404 described below) of the LIA 120.
  • a linearly slideable piston 310 is arranged in a cylindrical guide 312 internal to the ISA 300.
  • a cylindrical slider pin 314 is attached transversely to the piston 310 and protrudes out of the case 303 for operating the piston 310. Sliding operation of the piston 310 actuates a rod inside the instrument stem 302 for operating the tool at the tip of the instrument stem 302.
  • the ISA 300 reproduces the functionality of the handle originally connected to the stem 302 as regard operating the instrument stem 302, while providing together with the LIA 120 a connection interface to the robot manipulator 14.
  • the specific embodiment of the ISA 300 shown in Fig.17 is designed for an instrument requiring mechanical actuation such as an open/close function for the instrument tip, for example, scissors and graspers with or without unipolar or bipolar electric power transmission.
  • an instrument requiring mechanical actuation such as an open/close function for the instrument tip, for example, scissors and graspers with or without unipolar or bipolar electric power transmission.
  • a variety of other types of analogous adaptors are also encompassed by the present disclosure, each adaptor being adapted to a specific type of laparoscopic instrument, i.e. a specific type of stem (e.g. 302), which is to be connected to the LIA 120.
  • the ISA comprises, depending on the requirements of the instrument, a linear slider pin 314 e.g. for actuation of the jaws of the instrument, one or more electrical connectors 318, e.g.
  • ISA 300 for unipolar or bipolar cautery power, etc, and/or one or more conduit connection(s), e.g. for irrigation or suction instruments.
  • conduit connection(s) e.g. for irrigation or suction instruments.
  • the parts of the ISA 300 forming the electrical connectors 18 need not be provided.
  • the constituent material of any type of ISA shall be chosen such that it can be sterilized e.g. through a steam autoclave.
  • the ISA is the only part of the robotic surgical system 10 that needs to be sterilized (besides the instrument stem of course).
  • the housing 154 of the LIA 120 and the other parts of the effector unit 30 are enclosed in a sterile plastic bag.
  • the ISA does not need to have the slider pin 314 and an associated mechanical transmission.
  • the ISA is equipped with two tubes that are remotely commanded through electro-valves electrically actuated by the robot control system.
  • the LIA 120 shown in Fig.18 is designed lightweight (e.g. less than 800g of total weight) and so as to fit into a relatively small cylindrical envelope of about 90mm or preferably 75mm of diameter to increase the available workspace of two adjacent tools with nearby access ports 20.
  • the total length of the LIA 120 (about 130mm in a specific example) is mainly determined by the length of the ISA 300.
  • the length of the LIA 120 is minimised in order to limit the distance between the rotation axis of the joint J5 and the pivot point 206 of the FRF (see Fig.17 ). In fact, this distance offset is determining for the travel range and speed/acceleration capabilities of all manipulator joints J1 to J5. It is however recommended that the length of the LIA 120 be at least 6 cm in order to allow gripping the LIA 120 by hand in manual mode (i.e. using the housing 154 connected to the FTAS 122 as a "joystick").
  • the outer surface of the housing 154 has smoothed edges. It is made of an easily cleanable, lightweight and non-conductive material.
  • the LIA 120 has a partially rotationally symmetric design with respect to the stem 302 of an adapted instrument 18 mounted using an ISA 300. When the ISA 300 is properly connected to the LIA 120, the axis of the stem 302 coincides with the roii axis of joint J6 and with the normal axis of the FTAS 122.
  • the housing 154 of the LIA 120 comprises a linear actuation mechanism 400 for actuating a mounted instrument 18 by means of the ISA 300 as will be detailed below.
  • the seat 130 is formed as a concave elongated semi-cylindrical recess in an access surface 401 of the LIA 120 to facilitate insertion and extraction of the ISA 300.
  • the seat 130 for receiving the ISA 300 is approximately coaxial to the rotation axis of the joint J6 and extends along the central axis of the housing 154.
  • the mounting and removing direction of the ISA 300 with respect to the LIA 120 is radial relative to the rotation axis of the joint J6.
  • the LIA 120 is configured such that the seat 130 is accessible from the entire half plane above the access surface 401.
  • the seat 130 comprises a longitudinal groove 402 which deepens the seat 130 radially into the body of the LIA 120.
  • the additional groove 402 is configured for receiving the coupling member 308 of the ISA 300.
  • the engaging part of a locking mechanism 406 associated to the seat 130 is arranged in the groove 402 and cooperates with the coupling member 308.
  • the seat 130 is formed as a semi-cylindrical recess with a rounded end portion conformed to the outer cylindrical shape of the case 303 of the ISA 300.
  • a presence detector 404 e.g.
  • an inductive presence switch is arranged in the seat 130 for presence detection of the ISA 300 by sensing the metallic block 309 (see Fig.17 ).
  • a dead-man switch button 408 allows switching the control system of the robot manipulator 14 to manual mode.
  • manual mode the LIA 120 (and, if connected, the instrument 18) is positioned and oriented by the robot manipulator 14 using the information produced by the assistant handling the housing 154 of the LIA 120 and read by the FTAS 122.
  • Manual mode is particularly useful for inserting or extracting an instrument through a trocar.
  • the linear actuation mechanism 400 comprises a miniature brushless motor 411 connected via a gearbox 412 and pulleys 414 and 416, which are coupled by a belt 418, to a ball-screw 420.
  • the ball screw 420 cooperates with a nut 422 arranged thereon so as to transform rotation into linear motion as seen in Fig.19 .
  • the nut 422 is guided by a linear guide 424 in order to reduce transversal efforts on the ball-screw 420.
  • Inductive limit switches 426 and 428 are placed at the end-of-travel locations of the nut 422 and connected to a control unit for limiting travel of the actuation mechanism 400.
  • the actuation mechanism 400 communicates linear motion to a slider carriage 430 of the LIA 120, as will be detailed below.
  • the following parameters were chosen for the actuation mechanism 400:
  • Stepper motors are preferably avoided in the LIA 120 because they produce vibrations that would be a considerable source of noise for the FTAS 122. Therefore, a miniature brushless motor 411 equipped with a shaft position encoder is used. Such motors are available e.g. from Faulhaber GmbH, Schoenaich, Germany. Other non-vibrating linear motion mechanisms such as cable-driven transmission are however not excluded.
  • Fig.20 shows a power and control unit 440 for the motor 411 which is embedded in the housing 154 of the LIA 120 and supplied e.g. with 24VDC power.
  • the power and control unit 440 may be placed in an additional housing either between the flange 156 and the FTAS 122, or between the FTAS 122 and a connection flange to the joint J6 (not shown), or inside the cover 124 of the joint J6, e.g. behind the slip-ring collector 80 close to the motor 141.
  • the power and control unit 440 is designed inter alia for actuating the slider carriage 430 with a given speed profile according to received position commands, for limiting motor current on user demand, for managing motion based on signals from limit switches 426, 428, for homing the motor 411 using a limit switch, and for monitoring the presence detector 404 on the housing 154.
  • Other safety functions e.g.
  • emergency-stop functions are also implemented using a servo error of the motor 411, i.e. target position minus effective position, and thermal protection of the motor 411.
  • the linear actuation mechanism 400 is not equipped with an absolute position sensor. Nevertheless, an automated homing procedure is ensured by using limit switches 426 and 428 as home sensors.
  • the absolute position of the slider carriage 430 can be periodically recorded, e.g. in a suitable memory of the robot control system, for fast recovery of the system after a power shutdown or failure.
  • Presence of the ISA 300 i.e. whether it is correctly mounted to the LIA 120, is sensed through the inductive presence switch 404 (see Fig.18 ) arranged in the seat 130. The output of the inductive presence switch 404 is fed to an available input of the control unit 440.
  • the slider carriage 430 of the actuation mechanism 400 is adapted to receive the slider pin 314 of the ISA 300.
  • the slider carriage 430 is repositioned so was to drive the slider pin 314 of a connected ISA 300.
  • the slider pin 314 in turn actuates the piston 310 to operate a working element or tool at the tip of the stem 302 (not shown), e.g. a jaw open/close mechanism.
  • the combination of linear actuation mechanism 400 and ISA 300 simulates action of the handle which has been removed from the stem 302 and replaced by the ISA 300. Insertion of the slider pin 314 into the slider carriage 430 is facilitated by bevelled guiding surfaces 434.
  • Fig.21 and Fig.22 show in more detail the configuration of the locking mechanism 406 of the LIA 120 only partially shown in Fig.18 .
  • the locking mechanism 406 is configured as latch and comprises a slideable catch 450 arranged in the groove 402 (shown in Fig.18 ) of the seat 130. It will be understood that the catch 450 is guided by suitable means in the groove 402- The groove 402, together with the slideable catch 450, are configured for engagingly receiving the coupling member 308 of the ISA 300 shown in Fig.17 .
  • the catch 450 comprises two noses 452 for engaging two protrusions 316 formed by slots in the coupling member 308 (see Fig.17 ).
  • the edges of the coupling member 308 are rounded to ease insertion and removal in/from the groove 402.
  • the design of the catch 450 is best seen in Fig.22 .
  • a spring 454 resiliently urges the catch 450 towards the FTAS 122.
  • a linearly guided knob 456 allows to rotate a pivot 458 which is coupled to the linearly guided catch 450 in order to manually disengage the catch 450 from the coupling member 308 when the ISA 300 is to be removed.
  • the noses 452 of the catch 450 are bevelled so as to allow insertion of the ISA 300 simply by pushing.
  • the engaging portions of the noses 452 and the protrusions 316 are rounded according to a conjugated profile in order to limit damages to a sterile plastic sheet used for covering the LIA 120.
  • fixation mechanism e.g. the locking mechanism 406 and coupling member 308, is designed to ensure that the ISA 300, when mounted to the LIA 120, can resist to the following forces and moments without disconnecting from the UA 120:
  • the LIA 120 and each cooperating ISA are designed for fast and easy manual installation and removal of an adapted laparoscopic instrument 18, i.e. a stem (e.g. 302) assembled with an ISA (e.g. 300), by the surgeon assistant A.
  • the essentially cylindrical outer shape of the ISA 300, its coupling member 308, the seat 130, the groove 402 and the locking mechanism 406 as described above provide guided insertion and a simple connecting procedure of the ISA 300 to the LIA 120.
  • the design ensures the required stiffness when the ISA is inserted and a simple extraction procedure by means of a few manual moves.
  • insertion and extraction of the adapted instrument 18 i.e. stem and ISA
  • an adapted instrument 18 comprising the ISA (e.g. 300) and the stem (e.g. 302) can be done safely in both cases, when the instrument is outside the body of patient P or when the instrument is inserted in the body of patient P. It is also possible to carry out removal while the slider pin 314 is driven.
  • the LIA 120 Before mounting the adapted instrument to the LIA 120, a number of preliminary conditions should be met. Firstly, if the instrument is partially inserted in the trocar (without exceeding the trocar length), the LIA 120 should previously be positioned and oriented by the manipulator 14 into a taught position that aligns the rotation axis of the effector unit 30 (joint J6) with the trocar. Secondly, the slider carriage 430 should be placed into the "insertion reference position" by the robot control system, e.g. a position closest to the interface flange 156. When an ISA (e.g. 300) is removed, the slider carriage 430 should be automatically moved into this "insertion reference position" by the robot control system.
  • ISA e.g. 300
  • the slider pin (e.g. 314) of the ISA should be in an "insertion reference position" corresponding to that of the slider carriage 430.
  • This position of the slider pin 314 is preferably defined such that instrument is in "closed” configuration, for example, the jaws of a forceps/scissor instrument are loosely but sufficiently closed in this position.
  • the insertion procedure of an adapted laparoscopic instrument 18 including an ISA (e.g. 300) and a stem (e.g.
  • ISA e.g. 300
  • the presence detector 404 gives an affirmative output when the coupling member 308 is correctly installed in the groove 402.
  • the slider carriage 430 engages the slider pin 314 without the need for further measures, if the aforementioned conditions have been met.
  • the robot control system controls the instrument 18 to release any tissue. Secondly, it moves the instrument near the trocar port following the instrument axis direction. Thirdly, the tool tip, e.g. the instrument jaws, are brought into a configuration which avoids hooking of the tip at the trocar. Fourthly, it releases the motor of joint J6 such that the surgeon assistant A can freely rotate the LIA 120 to facilitate removal of the instrument from the LIA 120. After these operations, removal of an adapted laparoscopic instrument 18 can be carried out safely in two simple moves and at any time.
  • the first extraction move consists of pushing the knob 456 so as to unlock the locking mechanism 406.
  • the second extraction move consists of pivoting the ISA (e.g. 300) and the stem (e.g. 302) about the tip of the stem by rotation about an axis perpendicular to the stem axis so as to remove both from the seat 130 and subsequently, if still inserted, so as to extract the stem (e.g. 302) from the body of patient P.
  • the design of the LIA 120 and ISA enables instrument insertion or extraction even when the stem (e.g. 302) of an adapted instrument 18 is still partially inserted in the body of patient P through the trocar 200 (see Fig.16 ).
  • the moves required for extraction are not in the penetration direction with respect to the patient P since they consist of a pivoting move perpendicular to the longitudinal axis of the seat 130 and a subsequent extraction move.
  • this direction can be changed by rotating the LIA 120 by hand LIA through joint J6.
  • an ISA e.g. 300
  • stem e.g. 302
  • the LIA 120 As described above, it will be appreciated that a wide variety of existing standard laparoscopic instruments can be used in the robotic system 10 by means of simple instrument stem adaptors (ISA) (e.g. 300).
  • ISA instrument stem adaptors
  • the LIA 120 in combination with a corresponding ISA replaces the handle part of a given laparoscopic instrument without loss of actuation or power supply capability.
  • the LIA 120 is generically designed i.e. independent from the type of instrument that is to be coupled to the robot manipulator 14. Hence, only the ISA (e.g. 300) needs to be designed specifically in accordance with the instrument requirements.
  • the LIA 120 is capable of providing inter alia the following functions:
  • the LIA 120 permits beneficial cost-effectiveness in robotic laparoscopy because of several factors. Firstly, as opposed to prior art devices which require several actuators per manipulator because the instrument and the associated actuator are assembled as single unit in a single enclosure, only one LIA 120 is needed for each manipulator 14. This allows savings inter alia on actuator costs. Secondly, instrument costs are reduced by using the stems (e.g. 302) of standard laparoscopic instruments and a corresponding instrument stem adaptors (e.g. 300) of simple construction. Therefore, the cost of an adapted instrument 18 for use with the LIA 120 is almost identical to the cost of a standard manual laparoscopic instrument (i.e. including the handle). Thirdly, instrument maintenance costs are essentially equal to those for standard laparoscopic instruments because the ISA (e.g. 300) design is robust against sterilization cycles.
  • ISA e.g. 300
  • Fig.25 an alternative embodiment of a LIA 1120 will be described. Since many aspects and advantages of the LIA described herein above also apply to the LIA 1120, only the main features and differences will be detailed hereinafter.
  • the LIA 1120 shown in Fig.25 has a semi-cylindrical housing 1154 that has an upper substantially flat access surface 1401 for facilitating mounting and removing of an ISA to the LIA 1120.
  • the opposite surface 1155 of housing 1154 is semi-cylindrical in conformity with a cylindrical envelope that is coaxial to the rotation axis of J6.
  • the diameter of the semi-cylindrical surface 1155 is chosen ergonomically to allow handling by a human operator, e.g. in the range of 50-135mm, preferably of about 90mm, especially for commanding the robot manipulator 14 in the manual mode mentioned above.
  • the housing 1154 further includes gradual reinforcing ribs 1157.
  • the reinforcing ribs have a gradual i.e. smoothly growing shape starting from access surface 1401 up to the upper edge of the interface flange 156.
  • the reinforcing ribs 1157 are further curved in conformity with the cylindrical envelope of the semi-cylindrical surface 1155. The reinforcing ribs 1157 connect the access surface 1401 to the interface flange 156 and thereby reinforce and increase the rigidity of attachment of the housing 1154 to the interface flange 156.
  • reinforcing ribs 1157 ensure a more accurate transmission of forces and torques from an ISA via the LIA 1120 to the FTAS 122. It may be noted that similar reinforcing ribs are also provided in the LIA 120 of Fig.14 .
  • Fig.25 further shows an alternative coupling mechanism for mounting an instrument stem adaptor to the LIA 1120 and thereby to the effector unit 30.
  • a seat 1130 is formed as a concave elongated semi-cylindrical recess in the access surface 1401 to provide self-centering of an adaptor on the rotation axis of J6.
  • the coupling mechanism comprises a plurality of magnetic devices 1423, two on the side of the slider carriage 1430 and one on the other side of the seat 1130, the latter one being arranged on an elevation 1425 off the access surface 1401.
  • the elevation 1425 provides an additional retaining constraint in axial direction to a mounted adaptor and permits self-adjusted positioning in axial direction of the adaptor by slopes towards the access surface 1401.
  • the magnetic devices 1423 which can be electromagnets, permanent magnets or a combination of both, ensure fastening of a correspondingly designed ISA by means of magnetic attraction. Avoiding a mechanical snap-in attachment eliminates the risk of damage to a sterile plastic cover used to wrap up the manipulator 14 or at least the effector unit 30.
  • Fig.25 illustrates a plurality of inductive presence sensors 1431 for identifying an instrument mounted to the effector unit 30 by means of an inductively identifiable material pattern provided on an ISA.
  • Four inductive presence sensors 1431 are arranged in a row and allow to distinguish and identify 16 instrument types when using a binary code (4 bit word) based on the presence or absence of conductive material in a row of corresponding locations on the ISA facing the inductive presence sensors 1431.
  • the inductive presence sensors 1431 also allow for presence detection if the pattern code (4 bit word) corresponding to an absent instrument is used for this purpose, i.e. when no conductive material faces any inductive sensor 1431.
  • An engagement member 1433 is separately shown in Fig.25 .
  • the engagement member 1433 is part of the actuation mechanism which includes the slider carriage 1430 and has bevelled capture surfaces 1434 leading into a slit for engaging the slider pin 314 of an ISA.
  • the bevelled surfaces 1434 facilitate insertion of the slider pin 314 of an ISA.
  • the engagement member 1433 is detachable from the slider carriage 1430 and made of sterilization compatible material. The engagement member can thereby be installed on the carriage 1430 only after a sterile wrap covers the LIA 1120. Since the motion range of the carriage 1430 is limited, no damage to the sterile wrap can occur.
  • Fig.26 shows an alternative embodiment of an ISA 1300 mounted to the LIA 1120 of Fig.25 .
  • the ISA 1300 is designed to be compatible with the alternative design of LIA 1120 and will be detailed hereinafter.
  • the ISA 1300 is dimensioned such that its base is confined to the access surface 1401.
  • the function of the ISA 1300 is the same as that of the ISA 300 shown in Fig.17 , namely to provide an interface allowing the use of stems 302 of standard manual laparoscopic instruments on the robot manipulator 14 without loss of any functionality available in manual interventions.
  • Fig.26 also shows a switch button 408 provided on the LIA 1120 for switching the system to manual mode.
  • the ISA 1300 is provided with a lever 1301 for easy manual demounting i.e. separating the ISA 1300 from the LIA 1120.
  • the ISA 1300 also has an electrical connector 1308 for connecting powered instruments (e.g. coagulation or cutting instruments) directly to an electrical power source without wire
  • Fig.27 shows an alternative actuation mechanism 1400 for communicating linear motion to the slider carriage 1430, differing in design from the mechanism of Fig.19 . It comprises a miniature brushless motor 1411 connected via gearbox 1412 and a ball screw or worm gear 1420 to a nut member 1422.
  • the carriage 1430 is fixed to the nut member 1422 via the intermediate of a force sensor 1427.
  • the force sensor 1427 allows to measure forces exerted by the carriage 1430 onto the slider pin 314 and vice-versa.
  • the motor 1411 and connected gears can be arranged in parallel to the longitudinal axis of ISA 1300 and stem 302. This allows minimizing the total length of the LIA 1120 whereby the requirements on actuator dynamics for certain joints (e.g. J4) are reduced.
  • this actuation mechanism 1400 is optimized with respect to producing detrimental vibration.
  • Other aspects and advantages of the drive mechanism 1400 are similar to those of the mechanism 400 described herein before.
  • Fig.28 shows the underneath side of the ISA 1300 of Fig.26 when detached from the LIA 1120.
  • the ISA 1300 comprises an elongated case 1303 with a stem connector 1304 at its front end (see Fig.30 ).
  • the stem connector 1304 enables removable connection to a type socket 306 fixed to the stem 302 (only partly shown) of a standard manual laparoscopic instrument as long as any type of detachable connection is provided.
  • connector and socket could respectively be located on stem and ISA.
  • the case 1303 Similar to the case 303, the case 1303 has a semi-cylindrical surface on its underneath side for cooperation with the seat 1130. As seen in Fig.28 , lateral wings 1305 protrude from either side of the case 1303.
  • the lateral wings 1305 have a flat lower surface that is conjugated to the access surface 1401 on the LIA 1120 (e.g. also to the elevation 1425).
  • a cut out space 1307 is provided in one wing 1305 above the slider pin 314 for providing visibility and access, e.g. for manually moving the slider pin 314 when the ISA 1300 is coupled to the LIA 1120.
  • Fig.28 also shows flat ferromagnetic elements 1311 arranged in each wing 1305 on either side of case 1303.
  • the ferromagnetic elements 1311 form coupling means that cooperate respectively with a corresponding magnetic device 1423 on the LIA 1120 as shown in Fig.25 .
  • an inductively identifiable pattern is provided on the ISA 1300 for identifying, by means of the inductive sensors 1431 shown in Fig.25 , the instrument that is used.
  • a full metallic plate corresponds to a given 4 bit word (e.g. 1111 or 0000) whereas
  • voids can be provided, e.g. by drilling holes in one or more of the positions facing the inductive sensors 1431 to give a different bit word for identification.
  • Fig.29 shows the ISA 1300 of Fig.28 in partly dismantled view.
  • the ISA 1300 has an internal hollow serving as a cylindrical guide 1312 for a piston 310 of a certain manual laparoscopic instrument.
  • the piston 310 is typically used in the manual instrument for communicating motion from the instrument handle to the shaft guided in the stem 302. It will be appreciated that the existing piston of a manual instrument can be arranged to slide in the guide 1312.
  • an oblong through hole 1315 is provided in the case 1303 allowing the slider pin 314 attached transversely to the piston 310 to protrude from the case 1303 and to be shifted forward and backward in axial direction of the case 1303 for operating the piston 310.
  • the piston 310 shown in Fig.29 is an original part of a manual bipolar Instrument, used to provide bipolar electric power to the instrument and to lock/unlock the instrument.
  • Fig.30 is to illustrate that the same type of adaptor can be used to accommodate different pistons of different types of commercially available laparoscopic instruments for manual intervention, e.g. the piston 1310 for a monopolar manual instrument as shown in Fig.30 .
  • the adaptors such as the ISA 1300 (or ISA 300) allow using the essential parts of any commercially available relatively inexpensive manual instrument on the robot manipulator 14.
  • Fig.29 also shows one of the two tenons 1317 of the lever 1301 and the shaft 1319 on which it pivots.
  • the tenons 1317 lift the lower surface, and in particular the ferromagnetic elements 1311, of the ISA 1300 away from the access surface 1401 of the LIA 1120 such that the ISA 1300 can be manually removed in a direction perpendicular to the axis of rotation of J6 i.e. the instrument stem axis.
  • the robotic surgical system 10 further presents the following features:

Claims (17)

  1. Système chirurgical robotisé pour la mise en oeuvre de procédures médicales minimalement invasives comprenant un manipulateur robotisé (14) pour une manipulation assistée par robot d'un instrument laparoscopique (18), ledit manipulateur robotisé ayant un bras de manipulateur (26), un poignet de manipulateur (28) supporté par ledit bras de manipulateur et une unité effecteur (30) supportée par ledit poignet de manipulateur, dans lequel
    ledit bras de manipulateur (26) offre trois degrés de liberté au moyen d'une première articulation (J1), d'une deuxième articulation (J2) et d'une troisième articulation (J3), chacune ayant un actionneur (51, 61, 71) associé, pour un positionnement robotisé dudit poignet ;
    ledit poignet de manipulateur (28) offre deux degrés de liberté au moyen d'une quatrième articulation (J4) et d'une cinquième articulation (J5), lesdites quatrième et cinquième articulations étant des articulations rotoïdes et ayant un actionneur (81, 101) associé, pour régler de façon robotisée l'angle de lacet et l'angle de tangage de ladite unité effecteur respectivement ;
    ladite unité effecteur (30) comprend un actionneur (120 ; 1120) d'instrument laparoscopique et offre un degré de liberté au moyen d'une sixième articulation rotoïde (J6) ayant un actionneur (141) associé pour régler de façon robotisée l'angle de roulis dudit actionneur d'instrument laparoscopique ;
    ledit actionneur d'instrument laparoscopique comprend un siège (130 ; 1130) avec un mécanisme de couplage (406 ; 1423) associé pour monter un adaptateur de tige d'instrument (300 ; 1300) sur ladite unité effecteur, et un mécanisme d'actionnement (400 ; 1400) coopérant avec ledit adaptateur de tige d'instrument pour actionner un instrument laparoscopique connecté audit adaptateur ;
    ladite unité effecteur (30) est configurée de telle manière que l'axe de rotation de ladite sixième articulation rotoïde (J6) coïncide avec l'axe longitudinal d'un instrument laparoscopique lorsque celui-ci est monté sur ladite unité effecteur au moyen dudit adaptateur de tige d'instrument ; et
    ladite unité effecteur comprend un ensemble de capteurs (122) incluant un capteur de force/couple à six degrés de liberté et un accéléromètre à six degrés de liberté, ledit ensemble de capteurs (122) connectant ledit actionneur (120 ; 1120) d'instrument laparoscopique à ladite sixième articulation rotoïde (J6)
  2. Système chirurgical robotisé selon la revendication 1, dans lequel ladite unité effecteur (30) est configurée de telle manière qu'un axe de capteur dudit capteur de force/couple (122) à 6 DdL et un axe de capteur dudit accéléromètre (122) à 6 DdL coïncident avec l'axe de rotation de ladite sixième articulation.
  3. Système chirurgical robotisé selon la revendication 1 ou 2, dans lequel ledit actionneur (120 ; 1120) d'instrument laparoscopique comprend un logement (154 ; 1154) avec une surface d'accès (401 ; 1401) dans laquelle ledit siège (130 ; 1130) est agencé, une bride d'interface (156) qui fixe ledit logement audit ensemble de capteurs (122) et des nervures de renfort graduel (1157) connectant ladite surface d'accès à ladite bride d'interface pour renforcer la rigidité de fixation dudit logement à ladite bride d'interface.
  4. Système chirurgical robotisé selon la revendication 3, dans lequel ledit logement (1154) est semi-cylindrique ayant une surface sensiblement semi-cylindrique (1155) opposée à ladite surface d'accès (1401) ladite surface semi-cylindrique étant en conformation avec une enveloppe cylindrique de 50 à 135 mm, préférablement d'environ 90 mm de diamètre et coaxiale avec l'axe de rotation de ladite sixième articulation (J6) et dans lequel ledit logement (1154), ladite bride (156), lesdites nervures de renfort (1157) et ledit ensemble de capteurs (122) sont dimensionnés de manière à être contenus dans ladite enveloppe cylindrique
  5. Système chirurgical robotisé selon l'une quelconque des revendications 1 à 4, dans lequel ledit siège comprend un renfoncement (130 ; 1130) allongé essentiellement semi-cylindrique agencé, de façon essentiellement coaxiale avec l'axe de rotation de ladite sixième articulation (J6), dans une surface d'accès (401 ; 1401) dudit actionneur (120 ; 1120) d'instrument laparoscopique, ledit siège et ledit mécanisme de couplage étant configurés pour monter et enlever un adaptateur de tige d'instrument (300 ; 1300) par un mouvement perpendiculaire à l'axe de rotation de ladite sixième articulation (J6)
  6. Système chirurgical robotisé selon la revendication 5, dans lequel ledit mécanisme de couplage comprend au moins un dispositif magnétique (1423), en particulier des aimants permanents et/ou des électroaimants, respectivement agencés sur l'un ou l'autre côté dudit renfoncement (1130) semi-cylindrique pour fixer un adaptateur (1300) de tige d'instrument audit actionneur d'instrument laparoscopique au moyen d'une attraction magnétique
  7. Système chirurgical robotisé selon l'une quelconque des revendications précédentes, dans lequel ledit mécanisme d'actionnement (400 ; 1400) comprend un chariot de coulisseau (430 ; 1430) configuré pour recevoir en engagement et pour faire coulisser linéairement une broche de coulisseau (314) d'un adaptateur de tige d'instrument (300 ; 1300) monté sur ladite unité effecteur, ledit siège (130 ; 1130) étant préférablement allongé le long de l'axe de rotation de ladite sixième articulation et ledit chariot de coulisseau (430 ; 1430) préférablement agencé latéralement audit siège
  8. Système chirurgical robotisé selon la revendication 7, dans lequel ledit mécanisme d'actionnement (400 ; 1400) comprend un capteur de force (1427), qui connecte ledit chariot de coulisseau (430 ; 1430) à un moyen d'entraînement, pour mesurer des forces exercées par ou sur ledit chariot de coulisseau
  9. Système chirurgical robotisé selon la revendication 7 ou 8, dans lequel ledit chariot de coulisseau (1430) comprend un élément d'engagement (1433) qui est détachable dudit chariot de coulisseau et a des surfaces de capture (1434) biseautées pour un engagement avec ladite broche de coulisseau (314).
  10. Système chirurgical robotisé selon l'une quelconque des revendications précédentes, dans lequel ledit actionneur (120 ; 1120) d'instrument laparoscopique comprend un détecteur de présence (404; 1431) pour détecter si un adaptateur de tige d'instrument (300 ; 1300) est correctement monté sur ladite unité effecteur, en particulier une pluralité de capteurs de présence inductifs (1431) pour identifier un instrument monté sur ladite unité effecteur (30) au moyen d'un motif (1313), identifiable par induction, prévu sur l'adaptateur de tige d'instrument
  11. Système chirurgical robotisé selon l'une quelconque des revendications précédentes, dans lequel ledit système est configuré pour fonctionner en un mode manuel, dans lequel ledit actionneur d'instrument laparoscopique peut être positionné et orienté par ledit manipulateur robotisé en utilisant une information lue par ledit capteur de force/couple à 6 DdL, et comprenant en outre un moyen de commutation (408) agencé sur ledit actionneur (120 ; 1120) d'instrument laparoscopique pour commuter ledit système en mode manuel
  12. Adaptateur de tige d'instrument laparoscopique (300 ; 1300) monté sur un manipulateur robotisé (14) dans un système chirurgical robotisé selon l'une quelconque des revendications 1 à 11, pour utiliser une tige (302) d'un instrument laparoscopique manuel sur ledit manipulateur robotisé, ledit adaptateur comprenant un boîtier allongé (303 ; 1303) ayant un connecteur de tige (304 ; 1304) agencé sur une extrémité avant et un moyen de couplage (308 ; 1311) agencé latéralement sur ledit boîtier, ledit connecteur de tige (304 ; 1304) étant configuré pour une connexion détachable à une tige (302) d'instrument laparoscopique manuel, et ledit moyen de couplage (308 ; 1311) coopérant avec le mécanisme de couplage (406 ; 1423) sur l'actionneur d'instrument laparoscopique dudit manipulateur robotisé
  13. Adaptateur de tige d'instrument laparoscopique selon la revendication 12, dans lequel ledit moyen de couplage (308 ; 1311) comprend une surface semi-cylindrique, ladite surface étant conformée à un renfoncement semi-cylindrique du siège (130 ; 1130) dans l'actionneur (120 ; 1120) d'instrument laparoscopique dudit manipulateur robotisé pour centrer l'adaptateur de tige d'instrument (300 ; 1300) sur l'axe de rotation de ladite sixième articulation
  14. Adaptateur de tige d'instrument laparoscopique selon la revendication 12 ou 13, comprenant un creux cylindrique interne comme un guide (312 ; 1303) pour un piston (310 ; 1310) d'un instrument laparoscopique manuel, qui peut être agencé de façon à coulisser dans ledit guide, et un trou traversant (1315) pour une broche de coulisseau (314) fixée transversalement audit piston et faisant saillie dudit boîtier pour faire fonctionner le piston.
  15. Adaptateur de tige d'instrument laparoscopique selon l'une des revendications 12 à 14, dans lequel ledit moyen de couplage comprend au moins un élément ferromagnétique (1311) agencé sur l'un ou l'autre côté dudit boîtier (1303), lesdits éléments ferromagnétiques coopérant respectivement avec un dispositif magnétique (1423) correspondant du mécanisme de couplage sur ledit actionneur d'instrument laparoscopique pour fixer ledit adaptateur de tige d'instrument audit actionneur d'instrument laparoscopique au moyen d'une attraction magnétique et dans lequel ledit adaptateur de tige d'instrument comprend un levier (1301) pour détacher ledit adaptateur (1300) dudit actionneur d'instrument laparoscopique.
  16. Adaptateur de tige d'instrument laparoscopique selon l'une des revendications 12 à 15, comprenant en outre un motif (1313), identifiable par induction, prévu sur l'adaptateur de tige d'instrument pour identifier un instrument monté sur ledit adaptateur
  17. Adaptateur de tige d'instrument laparoscopique selon l'une des revendications 12 à 16, comprenant en outre un connecteur électrique (308 ; 1308) agencé à l'opposé dudit moyen de couplage pour transmettre une énergie électrique à un instrument connecté audit connecteur de tige
EP07704334A 2006-02-03 2007-02-02 Systeme chirurgical robotique pour la realisation de procedures medicales peu invasives Active EP1979136B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07704334A EP1979136B1 (fr) 2006-02-03 2007-02-02 Systeme chirurgical robotique pour la realisation de procedures medicales peu invasives
PL07704334T PL1979136T3 (pl) 2006-02-03 2007-02-02 Zrobotyzowany system chirurgiczny przeznaczony do przeprowadzania zabiegów medycznych o minimalnej inwazyjności
CY20111100705T CY1111710T1 (el) 2006-02-03 2011-07-20 Ρομποτικο χειρουργικο συστημα για τη διενεργεια ιατρικων πραξεων ελαχιστης επεμβατικοτητας

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP06101251A EP1815950A1 (fr) 2006-02-03 2006-02-03 Dispositif chirurgical robotique pour effectuer des techniques opératoires minimalement invasive
EP07704334A EP1979136B1 (fr) 2006-02-03 2007-02-02 Systeme chirurgical robotique pour la realisation de procedures medicales peu invasives
PCT/EP2007/051047 WO2007088208A1 (fr) 2006-02-03 2007-02-02 Systeme chirurgical robotique pour la realisation de procedures medicales peu invasives

Publications (2)

Publication Number Publication Date
EP1979136A1 EP1979136A1 (fr) 2008-10-15
EP1979136B1 true EP1979136B1 (fr) 2011-05-04

Family

ID=36686008

Family Applications (2)

Application Number Title Priority Date Filing Date
EP06101251A Withdrawn EP1815950A1 (fr) 2006-02-03 2006-02-03 Dispositif chirurgical robotique pour effectuer des techniques opératoires minimalement invasive
EP07704334A Active EP1979136B1 (fr) 2006-02-03 2007-02-02 Systeme chirurgical robotique pour la realisation de procedures medicales peu invasives

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP06101251A Withdrawn EP1815950A1 (fr) 2006-02-03 2006-02-03 Dispositif chirurgical robotique pour effectuer des techniques opératoires minimalement invasive

Country Status (17)

Country Link
US (1) US8506555B2 (fr)
EP (2) EP1815950A1 (fr)
JP (1) JP5130228B2 (fr)
KR (1) KR101375206B1 (fr)
CN (1) CN101443162B (fr)
AT (1) ATE507942T1 (fr)
BR (1) BRPI0707443B8 (fr)
CA (1) CA2635136C (fr)
CY (1) CY1111710T1 (fr)
DE (1) DE602007014322D1 (fr)
DK (1) DK1979136T3 (fr)
ES (1) ES2365359T3 (fr)
MX (1) MX2008010058A (fr)
PL (1) PL1979136T3 (fr)
PT (1) PT1979136E (fr)
RU (1) RU2412800C2 (fr)
WO (1) WO2007088208A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9788903B2 (en) 2013-02-04 2017-10-17 Children's National Medical Center Hybrid control surgical robotic system

Families Citing this family (1069)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8944070B2 (en) 1999-04-07 2015-02-03 Intuitive Surgical Operations, Inc. Non-force reflecting method for providing tool force information to a user of a telesurgical system
WO2002007587A2 (fr) 2000-07-14 2002-01-31 Xillix Technologies Corporation Systeme video compact d'endoscopie en fluorescence
US8439959B2 (en) * 2004-10-29 2013-05-14 Erchonia Corporation Full-body laser scanner and method of mapping and contouring the body
US10835307B2 (en) 2001-06-12 2020-11-17 Ethicon Llc Modular battery powered handheld surgical instrument containing elongated multi-layered shaft
US20060241496A1 (en) 2002-01-15 2006-10-26 Xillix Technologies Corp. Filter for use with imaging endoscopes
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US7960935B2 (en) 2003-07-08 2011-06-14 The Board Of Regents Of The University Of Nebraska Robotic devices with agent delivery components and related methods
US8182501B2 (en) 2004-02-27 2012-05-22 Ethicon Endo-Surgery, Inc. Ultrasonic surgical shears and method for sealing a blood vessel using same
US11896225B2 (en) 2004-07-28 2024-02-13 Cilag Gmbh International Staple cartridge comprising a pan
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US8057467B2 (en) 2004-10-08 2011-11-15 Ethicon Endo-Surgery, Inc. Clamp mechanism for use with an ultrasonic surgical instrument
US8465474B2 (en) 2009-05-19 2013-06-18 Intuitive Surgical Operations, Inc. Cleaning of a surgical instrument force sensor
US8496647B2 (en) 2007-12-18 2013-07-30 Intuitive Surgical Operations, Inc. Ribbed force sensor
US9421019B2 (en) * 2005-04-07 2016-08-23 Omnilife Science, Inc. Robotic guide assembly for use in computer-aided surgery
US9789608B2 (en) 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US20070194082A1 (en) 2005-08-31 2007-08-23 Morgan Jerome R Surgical stapling device with anvil having staple forming pockets of varying depths
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US20070191713A1 (en) 2005-10-14 2007-08-16 Eichmann Stephen E Ultrasonic device for cutting and coagulating
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US8628518B2 (en) 2005-12-30 2014-01-14 Intuitive Surgical Operations, Inc. Wireless force sensor on a distal portion of a surgical instrument and method
US7621930B2 (en) 2006-01-20 2009-11-24 Ethicon Endo-Surgery, Inc. Ultrasound medical instrument having a medical ultrasonic blade
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US20090303317A1 (en) 2006-02-07 2009-12-10 Novadaq Technologies Inc. Near infrared imaging
US8219178B2 (en) 2007-02-16 2012-07-10 Catholic Healthcare West Method and system for performing invasive medical procedures using a surgical robot
US10893912B2 (en) 2006-02-16 2021-01-19 Globus Medical Inc. Surgical tool systems and methods
US10653497B2 (en) 2006-02-16 2020-05-19 Globus Medical, Inc. Surgical tool systems and methods
US10357184B2 (en) 2012-06-21 2019-07-23 Globus Medical, Inc. Surgical tool systems and method
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US20070225562A1 (en) 2006-03-23 2007-09-27 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
US9345387B2 (en) 2006-06-13 2016-05-24 Intuitive Surgical Operations, Inc. Preventing instrument/tissue collisions
EP2040635A1 (fr) 2006-06-14 2009-04-01 MacDonald Dettwiler & Associates Inc. Manipulateur chirurgical avec mécanismes d'entraînement par poulies à angle droit
US8679096B2 (en) 2007-06-21 2014-03-25 Board Of Regents Of The University Of Nebraska Multifunctional operational component for robotic devices
JP5466004B2 (ja) 2006-06-22 2014-04-09 ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ 磁気的連結可能ロボット装置および関連する方法
US9579088B2 (en) 2007-02-20 2017-02-28 Board Of Regents Of The University Of Nebraska Methods, systems, and devices for surgical visualization and device manipulation
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US20090192523A1 (en) 2006-06-29 2009-07-30 Intuitive Surgical, Inc. Synthetic representation of a surgical instrument
US10258425B2 (en) 2008-06-27 2019-04-16 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view of articulatable instruments extending out of a distal end of an entry guide
US10008017B2 (en) 2006-06-29 2018-06-26 Intuitive Surgical Operations, Inc. Rendering tool information as graphic overlays on displayed images of tools
US9718190B2 (en) 2006-06-29 2017-08-01 Intuitive Surgical Operations, Inc. Tool position and identification indicator displayed in a boundary area of a computer display screen
ES2298051B2 (es) * 2006-07-28 2009-03-16 Universidad De Malaga Sistema robotico de asistencia a la cirugia minimamente invasiva capaz de posicionar un instrumento quirurgico en respueta a las ordenes de un cirujano sin fijacion a la mesa de operaciones ni calibracion previa del punto de insercion.
US8220690B2 (en) 2006-09-29 2012-07-17 Ethicon Endo-Surgery, Inc. Connected surgical staples and stapling instruments for deploying the same
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
EP1915963A1 (fr) * 2006-10-25 2008-04-30 The European Atomic Energy Community (EURATOM), represented by the European Commission Estimation de la force pour un systeme d'intervention chirurgicale robotisée à effraction minimale
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US20080169332A1 (en) 2007-01-11 2008-07-17 Shelton Frederick E Surgical stapling device with a curved cutting member
US7673782B2 (en) 2007-03-15 2010-03-09 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a releasable buttress material
US8911460B2 (en) 2007-03-22 2014-12-16 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8226675B2 (en) 2007-03-22 2012-07-24 Ethicon Endo-Surgery, Inc. Surgical instruments
US8057498B2 (en) 2007-11-30 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instrument blades
US8142461B2 (en) 2007-03-22 2012-03-27 Ethicon Endo-Surgery, Inc. Surgical instruments
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US9089256B2 (en) 2008-06-27 2015-07-28 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US9084623B2 (en) 2009-08-15 2015-07-21 Intuitive Surgical Operations, Inc. Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
US9138129B2 (en) 2007-06-13 2015-09-22 Intuitive Surgical Operations, Inc. Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US8620473B2 (en) 2007-06-13 2013-12-31 Intuitive Surgical Operations, Inc. Medical robotic system with coupled control modes
US8903546B2 (en) 2009-08-15 2014-12-02 Intuitive Surgical Operations, Inc. Smooth control of an articulated instrument across areas with different work space conditions
US9469034B2 (en) 2007-06-13 2016-10-18 Intuitive Surgical Operations, Inc. Method and system for switching modes of a robotic system
US9096033B2 (en) 2007-06-13 2015-08-04 Intuitive Surgical Operations, Inc. Surgical system instrument sterile adapter
US8444631B2 (en) 2007-06-14 2013-05-21 Macdonald Dettwiler & Associates Inc Surgical manipulator
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US8308040B2 (en) 2007-06-22 2012-11-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
EP2170564A4 (fr) 2007-07-12 2015-10-07 Univ Nebraska Procédés et systèmes d'actionnement dans des dispositifs robotiques
US8808319B2 (en) 2007-07-27 2014-08-19 Ethicon Endo-Surgery, Inc. Surgical instruments
US8882791B2 (en) 2007-07-27 2014-11-11 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8523889B2 (en) 2007-07-27 2013-09-03 Ethicon Endo-Surgery, Inc. Ultrasonic end effectors with increased active length
US9044261B2 (en) 2007-07-31 2015-06-02 Ethicon Endo-Surgery, Inc. Temperature controlled ultrasonic surgical instruments
US8430898B2 (en) 2007-07-31 2013-04-30 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US8512365B2 (en) 2007-07-31 2013-08-20 Ethicon Endo-Surgery, Inc. Surgical instruments
CA2695619C (fr) 2007-08-15 2015-11-24 Board Of Regents Of The University Of Nebraska Dispositifs medicaux modulaires et cooperatifs et systemes et procedes apparentes
EP2178431A4 (fr) 2007-08-15 2017-01-18 Board of Regents of the University of Nebraska Dispositifs de gonflement, d'attache et de distribution médicaux et procédés apparentés
KR101119489B1 (ko) 2007-09-19 2012-03-07 박근창 수직로봇의 수직운동체 비상 브레이크 장치
WO2009046234A2 (fr) 2007-10-05 2009-04-09 Ethicon Endo-Surgery, Inc Instruments chirurgicaux ergonomiques
GB2454017A (en) * 2007-10-26 2009-04-29 Prosurgics Ltd A control assembly
JP5028219B2 (ja) * 2007-10-30 2012-09-19 オリンパスメディカルシステムズ株式会社 マニピュレータ装置および医療機器システム
US10010339B2 (en) 2007-11-30 2018-07-03 Ethicon Llc Ultrasonic surgical blades
US8561473B2 (en) 2007-12-18 2013-10-22 Intuitive Surgical Operations, Inc. Force sensor temperature compensation
CA2709634C (fr) * 2007-12-21 2017-04-25 Benny Hon Bun Yeung Manipulateur chirurgical
WO2009089614A1 (fr) * 2008-01-14 2009-07-23 The University Of Western Ontario Instrument médical muni de capteurs
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
JP5410110B2 (ja) 2008-02-14 2014-02-05 エシコン・エンド−サージェリィ・インコーポレイテッド Rf電極を有する外科用切断・固定器具
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US20090206131A1 (en) 2008-02-15 2009-08-20 Ethicon Endo-Surgery, Inc. End effector coupling arrangements for a surgical cutting and stapling instrument
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US8317745B2 (en) * 2008-03-27 2012-11-27 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter rotatable device cartridge
US8317744B2 (en) 2008-03-27 2012-11-27 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter manipulator assembly
WO2009120982A2 (fr) 2008-03-27 2009-10-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Système de cathéter robotisé avec réponse dynamique
US9161817B2 (en) 2008-03-27 2015-10-20 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter system
US9241768B2 (en) 2008-03-27 2016-01-26 St. Jude Medical, Atrial Fibrillation Division, Inc. Intelligent input device controller for a robotic catheter system
US8343096B2 (en) * 2008-03-27 2013-01-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter system
US8684962B2 (en) 2008-03-27 2014-04-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter device cartridge
WO2009120992A2 (fr) 2008-03-27 2009-10-01 St. Jude Medical, Arrial Fibrillation Division Inc. Dispositif d'entrée de système de cathéter robotique
DE102008016146B4 (de) * 2008-03-28 2010-01-28 Aktormed Gmbh Operations-Assistenz-System zur Führung eines chirurgischen Hilfsinstrumentes
WO2009137410A1 (fr) 2008-05-06 2009-11-12 Corindus Ltd. Système de cathéter
DE102008001664B4 (de) * 2008-05-08 2015-07-30 Deutsches Zentrum für Luft- und Raumfahrt e.V. Medizinischer Roboter und Verfahren zur Erfüllung der Performanceanforderung eines medizinischen Roboters
EP2309942A4 (fr) 2008-06-18 2017-06-21 Engineering Services Inc. Robot compatible avec un système de résonance magnétique médicale, à fantôme d'étalonnage et fantôme
US8864652B2 (en) 2008-06-27 2014-10-21 Intuitive Surgical Operations, Inc. Medical robotic system providing computer generated auxiliary views of a camera instrument for controlling the positioning and orienting of its tip
US8058771B2 (en) 2008-08-06 2011-11-15 Ethicon Endo-Surgery, Inc. Ultrasonic device for cutting and coagulating with stepped output
US9089360B2 (en) 2008-08-06 2015-07-28 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
EP2320990B2 (fr) * 2008-08-29 2023-05-31 Corindus, Inc. Système de commande de cathéter et interface utilisateur graphique
PL3476312T3 (pl) 2008-09-19 2024-03-11 Ethicon Llc Stapler chirurgiczny z urządzeniem do dopasowania wysokości zszywek
US7857186B2 (en) 2008-09-19 2010-12-28 Ethicon Endo-Surgery, Inc. Surgical stapler having an intermediate closing position
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US9339342B2 (en) 2008-09-30 2016-05-17 Intuitive Surgical Operations, Inc. Instrument interface
US9259274B2 (en) 2008-09-30 2016-02-16 Intuitive Surgical Operations, Inc. Passive preload and capstan drive for surgical instruments
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
US9033958B2 (en) * 2008-11-11 2015-05-19 Perception Raisonnement Action En Medecine Surgical robotic system
CN102292193B (zh) 2008-12-23 2015-07-08 马科外科公司 具有用于改变拉伸力的连接机构的传动装置
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
JP2012517287A (ja) 2009-02-06 2012-08-02 エシコン・エンド−サージェリィ・インコーポレイテッド 被駆動式手術用ステープラの改良
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US8453907B2 (en) 2009-02-06 2013-06-04 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with cutting member reversing mechanism
KR101038417B1 (ko) * 2009-02-11 2011-06-01 주식회사 이턴 수술 로봇 시스템 및 그 제어 방법
US8423182B2 (en) 2009-03-09 2013-04-16 Intuitive Surgical Operations, Inc. Adaptable integrated energy control system for electrosurgical tools in robotic surgical systems
CA2755036A1 (fr) * 2009-03-10 2010-09-16 Mcmaster University Systeme chirurgical robotique mobile
IT1393421B1 (it) * 2009-03-20 2012-04-20 Berchi Group S P A Testa di presa in particolare per impianto di confezionamento e relativo impianto di confezionamento
US9138207B2 (en) 2009-05-19 2015-09-22 Teleflex Medical Incorporated Methods and devices for laparoscopic surgery
US9700339B2 (en) 2009-05-20 2017-07-11 Ethicon Endo-Surgery, Inc. Coupling arrangements and methods for attaching tools to ultrasonic surgical instruments
US8650728B2 (en) 2009-06-24 2014-02-18 Ethicon Endo-Surgery, Inc. Method of assembling a transducer for a surgical instrument
US8663220B2 (en) 2009-07-15 2014-03-04 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments
US9439736B2 (en) 2009-07-22 2016-09-13 St. Jude Medical, Atrial Fibrillation Division, Inc. System and method for controlling a remote medical device guidance system in three-dimensions using gestures
US9330497B2 (en) 2011-08-12 2016-05-03 St. Jude Medical, Atrial Fibrillation Division, Inc. User interface devices for electrophysiology lab diagnostic and therapeutic equipment
US8918211B2 (en) 2010-02-12 2014-12-23 Intuitive Surgical Operations, Inc. Medical robotic system providing sensory feedback indicating a difference between a commanded state and a preferred pose of an articulated instrument
US9492927B2 (en) 2009-08-15 2016-11-15 Intuitive Surgical Operations, Inc. Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
CN102630154B (zh) * 2009-09-23 2015-03-18 伊顿株式会社 无菌适配器、转轮联接结构以及手术用器械的联接结构
US8986302B2 (en) 2009-10-09 2015-03-24 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
US10441345B2 (en) 2009-10-09 2019-10-15 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
USRE47996E1 (en) 2009-10-09 2020-05-19 Ethicon Llc Surgical generator for ultrasonic and electrosurgical devices
US11090104B2 (en) 2009-10-09 2021-08-17 Cilag Gmbh International Surgical generator for ultrasonic and electrosurgical devices
US9168054B2 (en) 2009-10-09 2015-10-27 Ethicon Endo-Surgery, Inc. Surgical generator for ultrasonic and electrosurgical devices
CN101721234B (zh) * 2009-11-03 2011-04-27 昆山市工业技术研究院有限责任公司 一种用于外科手术辅助臂的电动锁紧旋转关节
JP5750116B2 (ja) * 2009-11-16 2015-07-15 コーニンクレッカ フィリップス エヌ ヴェ 内視鏡支援ロボットのための人‐ロボット共用制御
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8608046B2 (en) 2010-01-07 2013-12-17 Ethicon Endo-Surgery, Inc. Test device for a surgical tool
US8721539B2 (en) 2010-01-20 2014-05-13 EON Surgical Ltd. Rapid laparoscopy exchange system and method of use thereof
US10052088B2 (en) 2010-01-20 2018-08-21 EON Surgical Ltd. System and method of deploying an elongate unit in a body cavity
US8525460B2 (en) * 2010-02-02 2013-09-03 GM Global Technology Operations LLC Architecture for robust force and impedance control of series elastic actuators
US20120310118A1 (en) * 2010-02-08 2012-12-06 Sarver Joseph J Shoulder torque and range of motion device
US8961547B2 (en) 2010-02-11 2015-02-24 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with moving cutting implement
US8486096B2 (en) 2010-02-11 2013-07-16 Ethicon Endo-Surgery, Inc. Dual purpose surgical instrument for cutting and coagulating tissue
US8469981B2 (en) 2010-02-11 2013-06-25 Ethicon Endo-Surgery, Inc. Rotatable cutting implement arrangements for ultrasonic surgical instruments
US8579928B2 (en) 2010-02-11 2013-11-12 Ethicon Endo-Surgery, Inc. Outer sheath and blade arrangements for ultrasonic surgical instruments
US8951272B2 (en) 2010-02-11 2015-02-10 Ethicon Endo-Surgery, Inc. Seal arrangements for ultrasonically powered surgical instruments
ITCS20100006A1 (it) * 2010-03-02 2011-09-03 Aulicino Edoardo Nuova strumentazione per utilizzare il navi-robot per il controllo e la movimentazione micrometrica di strumentazione laparoscopica e per la guida alle biopsie sia eco-guidate che sotto fluoroscopia
WO2011115387A2 (fr) * 2010-03-15 2011-09-22 주식회사 이턴 Coupleur de bras de robot pour intervention chirurgicale par trocart unique, et robot chirurgical le comprenant
KR101066196B1 (ko) 2010-03-15 2011-09-20 주식회사 이턴 싱글포트 수술용 로봇 암 커플러 및 이를 구비한 수술용 로봇
JP5537204B2 (ja) * 2010-03-23 2014-07-02 オリンパス株式会社 医療用マニピュレータシステム
EP2542296A4 (fr) 2010-03-31 2014-11-26 St Jude Medical Atrial Fibrill Commande d'interface utilisateur intuitive pour navigation de cathéter à distance, et systèmes de cartographie et de visualisation en 3d
IT1401669B1 (it) 2010-04-07 2013-08-02 Sofar Spa Sistema di chirurgia robotizzata con controllo perfezionato.
ITFI20100076A1 (it) * 2010-04-26 2011-10-27 Scuola Superiore Di Studi Universit Ari E Di Perfe Apparato robotico per interventi di chirurgia minimamente invasiva
IT1399603B1 (it) * 2010-04-26 2013-04-26 Scuola Superiore Di Studi Universitari E Di Perfez Apparato robotico per interventi di chirurgia minimamente invasiva
ITFI20100077A1 (it) * 2010-04-26 2011-10-27 Scuola Superiore Di Studi Universit Ari E Di Perfe Apparato robotico per interventi di chirurgia minimamente invasiva
GB2480498A (en) 2010-05-21 2011-11-23 Ethicon Endo Surgery Inc Medical device comprising RF circuitry
KR101181569B1 (ko) * 2010-05-25 2012-09-10 정창욱 단일 통로 수술 모드와 다통로 수술 모드를 실현할 수 있는 수술용 로봇 시스템 및 그 제어 방법
US8795327B2 (en) 2010-07-22 2014-08-05 Ethicon Endo-Surgery, Inc. Electrosurgical instrument with separate closure and cutting members
US9192431B2 (en) 2010-07-23 2015-11-24 Ethicon Endo-Surgery, Inc. Electrosurgical cutting and sealing instrument
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
EP2600758A1 (fr) * 2010-08-06 2013-06-12 Board of Regents of the University of Nebraska Procédés et systèmes de manipulation ou d'administration de matériaux pour une chirurgie des orifices naturels
CN101919738B (zh) * 2010-08-21 2012-06-27 上海交通大学 多自由度柔性操作臂机构
US8360296B2 (en) 2010-09-09 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
JP5675236B2 (ja) * 2010-09-10 2015-02-25 オリンパス株式会社 マニピュレータシステムの制御装置、マニピュレータシステム、及びマニピュレータシステムの制御方法
US9289212B2 (en) 2010-09-17 2016-03-22 Ethicon Endo-Surgery, Inc. Surgical instruments and batteries for surgical instruments
US8632525B2 (en) 2010-09-17 2014-01-21 Ethicon Endo-Surgery, Inc. Power control arrangements for surgical instruments and batteries
CN103220987B (zh) 2010-09-19 2016-05-18 意昂外科有限公司 微型腹腔镜及其改进
US8733613B2 (en) 2010-09-29 2014-05-27 Ethicon Endo-Surgery, Inc. Staple cartridge
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US9232941B2 (en) 2010-09-30 2016-01-12 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a reservoir
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
EP2621356B1 (fr) 2010-09-30 2018-03-07 Ethicon LLC Système de fermeture comprenant une matrice de retenue et une matrice d'alignement
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9216019B2 (en) 2011-09-23 2015-12-22 Ethicon Endo-Surgery, Inc. Surgical stapler with stationary staple drivers
US9113865B2 (en) 2010-09-30 2015-08-25 Ethicon Endo-Surgery, Inc. Staple cartridge comprising a layer
US9566061B2 (en) 2010-09-30 2017-02-14 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a releasably attached tissue thickness compensator
US10123798B2 (en) 2010-09-30 2018-11-13 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9320523B2 (en) 2012-03-28 2016-04-26 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprising tissue ingrowth features
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US11925354B2 (en) 2010-09-30 2024-03-12 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
WO2012074564A1 (fr) 2010-12-02 2012-06-07 Freehand Endoscopic Devices, Inc. Instrument chirurgical
KR101155885B1 (ko) * 2010-12-17 2012-06-20 인하대학교 산학협력단 Er 유체 또는 mr 유체를 이용한 반능동 선형 햅틱장치
US9119655B2 (en) 2012-08-03 2015-09-01 Stryker Corporation Surgical manipulator capable of controlling a surgical instrument in multiple modes
CN102029614B (zh) * 2011-01-24 2012-05-30 哈尔滨工业大学 三自由度球型空间机器人手腕
US9990856B2 (en) * 2011-02-08 2018-06-05 The Trustees Of The University Of Pennsylvania Systems and methods for providing vibration feedback in robotic systems
DE102011004370A1 (de) * 2011-02-18 2012-08-23 Siemens Aktiengesellschaft Gelenkarm mit Feststellmechanismus
DE102011004371B4 (de) * 2011-02-18 2017-11-23 Siemens Healthcare Gmbh Gelenkarm mit Arretierfunktion
US8858590B2 (en) 2011-03-14 2014-10-14 Ethicon Endo-Surgery, Inc. Tissue manipulation devices
WO2012131660A1 (fr) 2011-04-01 2012-10-04 Ecole Polytechnique Federale De Lausanne (Epfl) Système robotisé et procédé pour chirurgie rachidienne et autre
AU2012250197B2 (en) 2011-04-29 2017-08-10 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
JP5816457B2 (ja) 2011-05-12 2015-11-18 オリンパス株式会社 術具装置
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
ITFI20110114A1 (it) * 2011-05-31 2012-12-01 Scuola Superiore Di Studi Universit Arie Di Perfe Piattaforma robotica per chirurgia mininvasiva
KR102017552B1 (ko) * 2011-05-31 2019-09-03 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 검출된 오작동 상태를 제어하는 수술 기구
EP4275634A3 (fr) 2011-06-10 2024-01-10 Board of Regents of the University of Nebraska Procédés, systèmes et dispositifs relatifs à des effecteurs d'extrémité chirurgicaux
US9220510B2 (en) 2011-06-15 2015-12-29 Perception Raisonnement Action En Medecine System and method for bone preparation for an implant
CA3082073C (fr) 2011-07-11 2023-07-25 Board Of Regents Of The University Of Nebraska Dispositifs chirurgicaux robotiques, systemes et methodes connexes
CN102880175B (zh) * 2011-07-16 2016-02-17 苏州宝时得电动工具有限公司 自动行走设备
US9259265B2 (en) 2011-07-22 2016-02-16 Ethicon Endo-Surgery, Llc Surgical instruments for tensioning tissue
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US9770828B2 (en) * 2011-09-28 2017-09-26 The Johns Hopkins University Teleoperative-cooperative robotic system
CN102499616A (zh) * 2011-09-28 2012-06-20 天津大学 基于加速度传感器的内窥镜探头三维磁场定位系统及定位方法
US9452276B2 (en) 2011-10-14 2016-09-27 Intuitive Surgical Operations, Inc. Catheter with removable vision probe
US20130303944A1 (en) 2012-05-14 2013-11-14 Intuitive Surgical Operations, Inc. Off-axis electromagnetic sensor
US8912746B2 (en) 2011-10-26 2014-12-16 Intuitive Surgical Operations, Inc. Surgical instrument motor pack latch
JP5855423B2 (ja) * 2011-11-01 2016-02-09 オリンパス株式会社 手術支援装置
CN102764156B (zh) * 2011-12-06 2015-08-26 中国科学院深圳先进技术研究院 外科手术机器人
RU2481057C1 (ru) * 2011-12-20 2013-05-10 Юрий Иванович Русанов Устройство горизонтального возвратно-поступательного разворота аппаратов диагностики после подъема многофункциональной диагностико-хирургической робототехнической системы для операционного стола с возможностью информационно-компьютерного управления им. ю.и. русанова
RU2481071C1 (ru) * 2011-12-20 2013-05-10 Юрий Иванович Русанов Устройство горизонтального перемещения аппарата диагностики многофункциональной диагностико-хирургической робототехнической системы для операционного стола с возможностью информационно-компьютерного управления им. ю.и. русанова
RU2483670C1 (ru) * 2011-12-20 2013-06-10 Юрий Иванович Русанов Устройство разворота диагностических и хирургических элементов многофункциональной дагностико-хирургической робототехнической системы операционного стола с возможностью информационно-компьютерного управления им ю.и. русанова
RU2481072C1 (ru) * 2011-12-20 2013-05-10 Юрий Иванович Русанов Устройство осевого возвратно-поступательного разворота исполнительного элемента приема и удержания хирургических элементов в многофункциональной диагностико-хирургической робототехнической системе для операционного стола с возможностью информационно-компьютерного управления им. ю.и. русанова
RU2481067C1 (ru) * 2011-12-20 2013-05-10 Юрий Иванович Русанов Устройство разворота аппарата диагностики многофункциональной диагностико-хирургической робототехнической системы для операционного стола с возможностью информационно-компьютерного управления им. ю.и. русанова
RU2481795C1 (ru) * 2011-12-20 2013-05-20 Юрий Иванович Русанов Устройство индивидуального подъема диагностических и хирургических элементов в многофункциональной диагностико-хирургической робототехнической системе операционного стола с возможностью информационно-компьютерного управления им. ю.и. русанова
RU2481066C1 (ru) * 2011-12-20 2013-05-10 Юрий Иванович Русанов Устройство зажима инструмента многофункциональной диагностико-хирургической робототехнической композиции операционного стола с возможностью информационно-компьютерного управления им. ю.и. русанова
RU2481064C1 (ru) * 2011-12-20 2013-05-10 Юрий Иванович Русанов Устройство для закрытия выдвижных элементов зажима внутри сферического корпуса многофункциональной диагностико-хирургической робототехнической системы с возможностью информационно-компьютерного управления им. ю.и. русанова
RU2481074C1 (ru) * 2011-12-20 2013-05-10 Юрий Иванович Русанов Устройство разворота диагностических и хирургических элементов робототехнической системы операционного стола с возможностью информационно-компьютерного управления им. ю.и. русанова
RU2481069C1 (ru) * 2011-12-20 2013-05-10 Юрий Иванович Русанов Устройство промежуточного разворота операционных элементов многофункциональной диагностико-хирургической робототехнической системы операционного стола с возможностью информационно-компьютерного управления им. ю.и. русанова
RU2481073C1 (ru) * 2011-12-20 2013-05-10 Юрий Иванович Русанов Устройство выдвижных элементов зажима и их позиционное расположение внутри сферического корпуса многофункциональной диагностико-хирургической робототехнической системы с возможностью информационно-компьютерного управления им. ю.и. русанова
KR101876386B1 (ko) 2011-12-29 2018-07-11 삼성전자주식회사 의료용 로봇 시스템 및 그 제어 방법
RU2491161C1 (ru) * 2012-01-10 2013-08-27 Олег Владимирович Галимов Роботическая система для мини-инвазивной хирургии
JP6377530B2 (ja) 2012-01-10 2018-08-22 ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ 外科的挿入装置
WO2013119545A1 (fr) 2012-02-10 2013-08-15 Ethicon-Endo Surgery, Inc. Instrument chirurgical robotisé
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
JP5970880B2 (ja) * 2012-03-15 2016-08-17 オムロン株式会社 動力源の制御装置
RU2639857C2 (ru) 2012-03-28 2017-12-22 Этикон Эндо-Серджери, Инк. Компенсатор толщины ткани, содержащий капсулу для среды с низким давлением
MX353040B (es) 2012-03-28 2017-12-18 Ethicon Endo Surgery Inc Unidad retenedora que incluye un compensador de grosor de tejido.
CN104321024B (zh) 2012-03-28 2017-05-24 伊西康内外科公司 包括多个层的组织厚度补偿件
KR101399588B1 (ko) * 2012-03-29 2014-05-27 주식회사 엔티리서치 의료용 수술 로봇 장치
US9226766B2 (en) 2012-04-09 2016-01-05 Ethicon Endo-Surgery, Inc. Serial communication protocol for medical device
US9237921B2 (en) 2012-04-09 2016-01-19 Ethicon Endo-Surgery, Inc. Devices and techniques for cutting and coagulating tissue
US9241731B2 (en) 2012-04-09 2016-01-26 Ethicon Endo-Surgery, Inc. Rotatable electrical connection for ultrasonic surgical instruments
US9439668B2 (en) 2012-04-09 2016-09-13 Ethicon Endo-Surgery, Llc Switch arrangements for ultrasonic surgical instruments
US9724118B2 (en) 2012-04-09 2017-08-08 Ethicon Endo-Surgery, Llc Techniques for cutting and coagulating tissue for ultrasonic surgical instruments
US10383765B2 (en) 2012-04-24 2019-08-20 Auris Health, Inc. Apparatus and method for a global coordinate system for use in robotic surgery
US8891924B2 (en) * 2012-04-26 2014-11-18 Bio-Medical Engineering (HK) Limited Magnetic-anchored robotic system
EP2881069B1 (fr) * 2012-04-27 2020-03-11 KUKA Deutschland GmbH Système robotisé chirurgical et instrument chirurgical
EP2841000B1 (fr) * 2012-04-27 2019-02-27 KUKA Deutschland GmbH Système de robot chirurgical
DE102012015541A1 (de) * 2012-08-06 2014-02-06 Kuka Laboratories Gmbh Chirurgierobotersystem
KR101800189B1 (ko) 2012-04-30 2017-11-23 삼성전자주식회사 수술 로봇의 힘 제어 장치 및 방법
EP3845190B1 (fr) 2012-05-01 2023-07-12 Board of Regents of the University of Nebraska Dispositif robotique à site unique et systèmes associés
US9857254B2 (en) * 2012-05-18 2018-01-02 Atesteo Gmbh Torque-measuring device or jig
KR102160691B1 (ko) 2012-06-01 2020-09-29 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 수술 기구 매니퓰레이터 양태들
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
WO2013192598A1 (fr) 2012-06-21 2013-12-27 Excelsius Surgical, L.L.C. Plateforme de robot chirurgical
US11317971B2 (en) 2012-06-21 2022-05-03 Globus Medical, Inc. Systems and methods related to robotic guidance in surgery
US11045267B2 (en) 2012-06-21 2021-06-29 Globus Medical, Inc. Surgical robotic automation with tracking markers
US11793570B2 (en) 2012-06-21 2023-10-24 Globus Medical Inc. Surgical robotic automation with tracking markers
US11864839B2 (en) 2012-06-21 2024-01-09 Globus Medical Inc. Methods of adjusting a virtual implant and related surgical navigation systems
US11116576B2 (en) 2012-06-21 2021-09-14 Globus Medical Inc. Dynamic reference arrays and methods of use
US10350013B2 (en) 2012-06-21 2019-07-16 Globus Medical, Inc. Surgical tool systems and methods
US11864745B2 (en) 2012-06-21 2024-01-09 Globus Medical, Inc. Surgical robotic system with retractor
US10231791B2 (en) 2012-06-21 2019-03-19 Globus Medical, Inc. Infrared signal based position recognition system for use with a robot-assisted surgery
US11857266B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. System for a surveillance marker in robotic-assisted surgery
US10136954B2 (en) 2012-06-21 2018-11-27 Globus Medical, Inc. Surgical tool systems and method
US11253327B2 (en) 2012-06-21 2022-02-22 Globus Medical, Inc. Systems and methods for automatically changing an end-effector on a surgical robot
US10758315B2 (en) 2012-06-21 2020-09-01 Globus Medical Inc. Method and system for improving 2D-3D registration convergence
US11298196B2 (en) 2012-06-21 2022-04-12 Globus Medical Inc. Surgical robotic automation with tracking markers and controlled tool advancement
US11395706B2 (en) 2012-06-21 2022-07-26 Globus Medical Inc. Surgical robot platform
US10624710B2 (en) 2012-06-21 2020-04-21 Globus Medical, Inc. System and method for measuring depth of instrumentation
US11857149B2 (en) 2012-06-21 2024-01-02 Globus Medical, Inc. Surgical robotic systems with target trajectory deviation monitoring and related methods
US11399900B2 (en) 2012-06-21 2022-08-02 Globus Medical, Inc. Robotic systems providing co-registration using natural fiducials and related methods
US11607149B2 (en) 2012-06-21 2023-03-21 Globus Medical Inc. Surgical tool systems and method
EP3680071B1 (fr) 2012-06-22 2021-09-01 Board of Regents of the University of Nebraska Dispositifs chirurgicaux robotiques de commande locale
US20140005705A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Surgical instruments with articulating shafts
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US11197671B2 (en) 2012-06-28 2021-12-14 Cilag Gmbh International Stapling assembly comprising a lockout
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
BR112014032776B1 (pt) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc Sistema de instrumento cirúrgico e kit cirúrgico para uso com um sistema de instrumento cirúrgico
US9364230B2 (en) 2012-06-28 2016-06-14 Ethicon Endo-Surgery, Llc Surgical stapling instruments with rotary joint assemblies
CN104487005B (zh) 2012-06-28 2017-09-08 伊西康内外科公司 空夹仓闭锁件
US9283045B2 (en) 2012-06-29 2016-03-15 Ethicon Endo-Surgery, Llc Surgical instruments with fluid management system
US9393037B2 (en) 2012-06-29 2016-07-19 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9198714B2 (en) 2012-06-29 2015-12-01 Ethicon Endo-Surgery, Inc. Haptic feedback devices for surgical robot
US9820768B2 (en) 2012-06-29 2017-11-21 Ethicon Llc Ultrasonic surgical instruments with control mechanisms
US9226767B2 (en) 2012-06-29 2016-01-05 Ethicon Endo-Surgery, Inc. Closed feedback control for electrosurgical device
US9351754B2 (en) 2012-06-29 2016-05-31 Ethicon Endo-Surgery, Llc Ultrasonic surgical instruments with distally positioned jaw assemblies
US20140005702A1 (en) 2012-06-29 2014-01-02 Ethicon Endo-Surgery, Inc. Ultrasonic surgical instruments with distally positioned transducers
US9408622B2 (en) 2012-06-29 2016-08-09 Ethicon Endo-Surgery, Llc Surgical instruments with articulating shafts
US9326788B2 (en) 2012-06-29 2016-05-03 Ethicon Endo-Surgery, Llc Lockout mechanism for use with robotic electrosurgical device
KR101806195B1 (ko) * 2012-07-10 2018-01-11 큐렉소 주식회사 수술로봇 시스템 및 수술로봇 제어방법
RU2492844C1 (ru) * 2012-07-12 2013-09-20 Юрий Иванович Русанов Устройство инструментального операционного стола диагностико-хирургической и реанимационной робототехнической системы с возможностью информационно-компьютерного управления им. ю.и. русанова
RU2492845C1 (ru) * 2012-07-12 2013-09-20 Юрий Иванович Русанов Устройство вертикального наклона операционного стола диагностико-хирургической и реанимационной робототехнической системы с возможностью информационно-компьютерного управления им. ю.и. русанова
US9226796B2 (en) 2012-08-03 2016-01-05 Stryker Corporation Method for detecting a disturbance as an energy applicator of a surgical instrument traverses a cutting path
KR102603224B1 (ko) 2012-08-03 2023-11-16 스트리커 코포레이션 로봇 수술을 위한 시스템 및 방법
US9770305B2 (en) 2012-08-08 2017-09-26 Board Of Regents Of The University Of Nebraska Robotic surgical devices, systems, and related methods
WO2014025399A1 (fr) 2012-08-08 2014-02-13 Board Of Regents Of The University Of Nebraska Systèmes et dispositifs chirurgicaux robotiques, et procédés associés
KR102147826B1 (ko) 2012-08-15 2020-10-14 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 로봇 암의 수동식 운동에 의해 제어되는 이동가능한 수술용 장착 플랫폼
US9700310B2 (en) 2013-08-23 2017-07-11 Ethicon Llc Firing member retraction devices for powered surgical instruments
CN104640514B (zh) 2012-09-17 2019-05-07 直观外科手术操作公司 针对远程操作的手术器械功能分配输入设备的方法和系统
CN104853688B (zh) 2012-09-28 2017-11-28 伊西康内外科公司 多功能双极镊子
US9386985B2 (en) 2012-10-15 2016-07-12 Ethicon Endo-Surgery, Llc Surgical cutting instrument
US9095367B2 (en) 2012-10-22 2015-08-04 Ethicon Endo-Surgery, Inc. Flexible harmonic waveguides/blades for surgical instruments
US10201365B2 (en) * 2012-10-22 2019-02-12 Ethicon Llc Surgeon feedback sensing and display methods
US10864048B2 (en) 2012-11-02 2020-12-15 Intuitive Surgical Operations, Inc. Flux disambiguation for teleoperated surgical systems
US10631939B2 (en) 2012-11-02 2020-04-28 Intuitive Surgical Operations, Inc. Systems and methods for mapping flux supply paths
EP3711701A1 (fr) * 2012-11-02 2020-09-23 Intuitive Surgical Operations, Inc. Raccords et systèmes de transmission de flux, désambiguïsation de flux et systèmes et procédés de mappage de trajets d'alimentation en flux
KR102038632B1 (ko) 2012-11-06 2019-10-30 삼성전자주식회사 수술용 인스트루먼트, 서포터 장치, 및 수술 로봇 시스템
CN104736074B (zh) * 2012-11-14 2018-05-25 直观外科手术操作公司 用于双控制手术器械的系统和方法
US20140135804A1 (en) 2012-11-15 2014-05-15 Ethicon Endo-Surgery, Inc. Ultrasonic and electrosurgical devices
US20140148673A1 (en) 2012-11-28 2014-05-29 Hansen Medical, Inc. Method of anchoring pullwire directly articulatable region in catheter
US9463307B2 (en) * 2012-12-21 2016-10-11 Medtronic Xomed, Inc. Sinus dilation system and method
US10485409B2 (en) 2013-01-17 2019-11-26 Vanderbilt University Real-time pose and magnetic force detection for wireless magnetic capsule
TWI498202B (zh) * 2013-01-29 2015-09-01 Compal Electronics Inc 具有組接結構之機器人
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US10507066B2 (en) 2013-02-15 2019-12-17 Intuitive Surgical Operations, Inc. Providing information of tools by filtering image areas adjacent to or on displayed images of the tools
US9554794B2 (en) 2013-03-01 2017-01-31 Ethicon Endo-Surgery, Llc Multiple processor motor control for modular surgical instruments
JP6382235B2 (ja) 2013-03-01 2018-08-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. 信号通信用の導電路を備えた関節運動可能な外科用器具
RU2669463C2 (ru) 2013-03-01 2018-10-11 Этикон Эндо-Серджери, Инк. Хирургический инструмент с мягким упором
KR102203516B1 (ko) 2013-03-12 2021-01-18 스트리커 코포레이션 힘 및 토크를 측정하기 위한 센서 조립체 및 방법
US20140263552A1 (en) 2013-03-13 2014-09-18 Ethicon Endo-Surgery, Inc. Staple cartridge tissue thickness sensor system
CA2906672C (fr) * 2013-03-14 2022-03-15 Board Of Regents Of The University Of Nebraska Procedes, systemes et dispositifs associes a des systemes chirurgicaux de commande de force
US10226273B2 (en) 2013-03-14 2019-03-12 Ethicon Llc Mechanical fasteners for use with surgical energy devices
US9889568B2 (en) 2013-03-14 2018-02-13 Sri International Compact robotic wrist
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
WO2014160086A2 (fr) 2013-03-14 2014-10-02 Board Of Regents Of The University Of Nebraska Procédés, systèmes et dispositifs associés à des dispositifs chirurgicaux robotiques, des effecteurs finaux et des unités de commande
US9351726B2 (en) 2013-03-14 2016-05-31 Ethicon Endo-Surgery, Llc Articulation control system for articulatable surgical instruments
US10383699B2 (en) 2013-03-15 2019-08-20 Sri International Hyperdexterous surgical system
US9241728B2 (en) 2013-03-15 2016-01-26 Ethicon Endo-Surgery, Inc. Surgical instrument with multiple clamping mechanisms
WO2014144220A1 (fr) 2013-03-15 2014-09-18 Board Of Regents Of The University Of Nebraska Dispositifs chirurgicaux robotiques, systèmes et procédés apparentés
KR102260294B1 (ko) 2013-03-15 2021-06-04 스트리커 코포레이션 수술 로봇 조작기의 엔드 이펙터
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
ITMI20130516A1 (it) * 2013-04-05 2014-10-06 Sofar Spa Sistema chirurgico con teli sterili
US10405857B2 (en) 2013-04-16 2019-09-10 Ethicon Llc Powered linear surgical stapler
BR112015026109B1 (pt) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc Instrumento cirúrgico
CN104139390B (zh) * 2013-05-06 2016-04-27 鸿富锦精密工业(深圳)有限公司 机器人
US10420583B2 (en) 2013-05-22 2019-09-24 Covidien Lp Methods and apparatus for controlling surgical instruments using a port assembly
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
KR102103818B1 (ko) * 2013-05-31 2020-04-27 큐렉소 주식회사 의료용 수술장치
EP2996613B1 (fr) * 2013-06-19 2017-06-07 Titan Medical Inc. Dispositif articulé de positionnement d'outil et système l'utilisant
RU2524013C1 (ru) * 2013-06-26 2014-07-27 Юрий Иванович Русанов Устройство продольного возвратно-поступательного настенного смещения сферической диагностико-хирургической и реанимационной робототехнической системы с возможностью информационно-компьютерного управления ю.и. русанова
RU2524337C1 (ru) * 2013-06-26 2014-07-27 Юрий Иванович Русанов Устройство подъема и разворота сферической диагностико-хирургической и реанимационной робототехнической системы с возможностью информационно-компьютерного управления ю.и. русанова
WO2015001602A1 (fr) * 2013-07-01 2015-01-08 株式会社安川電機 Robot, structure de bras pour robot, et dispositif d'actionnement
JP6479790B2 (ja) 2013-07-17 2019-03-06 ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ ロボット外科的デバイス、システムおよび関連する方法
CN103399584B (zh) * 2013-08-07 2016-03-23 吴开俊 一种用于远程控制医疗器械的控制系统及其控制方法
CN103356295B (zh) * 2013-08-07 2015-09-16 吴开俊 软镜手术辅助机械手系统及其控制方法
CN109247987B (zh) 2013-08-15 2021-07-23 直观外科手术操作公司 预加载外科手术器械接口
CN105636544B (zh) 2013-08-15 2019-01-18 直观外科手术操作公司 通向器械无菌适配器的致动器接口
JP6513670B2 (ja) 2013-08-15 2019-05-15 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 器具減菌アダプタ駆動構成
US10550918B2 (en) 2013-08-15 2020-02-04 Intuitive Surgical Operations, Inc. Lever actuated gimbal plate
US10076348B2 (en) 2013-08-15 2018-09-18 Intuitive Surgical Operations, Inc. Rotary input for lever actuation
US10307213B2 (en) 2013-08-15 2019-06-04 Intuitive Surgical Operations, Inc. Instrument sterile adapter drive interface
JP6719376B2 (ja) 2013-08-15 2020-07-08 インテュイティブ サージカル オペレーションズ, インコーポレイテッド ロボット器具の被駆動要素
KR102312950B1 (ko) * 2013-08-15 2021-10-15 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 가변형 기구 예압 기구 컨트롤러
JP6612754B2 (ja) 2013-08-15 2019-11-27 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 使い捨て先端部と統合的な先端部カバーとを備える最使用可能な外科器具
JP6416260B2 (ja) 2013-08-23 2018-10-31 エシコン エルエルシー 動力付き外科用器具のための発射部材後退装置
US9814514B2 (en) 2013-09-13 2017-11-14 Ethicon Llc Electrosurgical (RF) medical instruments for cutting and coagulating tissue
DE102013016019B3 (de) * 2013-09-25 2015-03-19 Festo Ag & Co. Kg Verfahren zum Betreiben eines mehrgliedrigen Manipulators
US9283048B2 (en) 2013-10-04 2016-03-15 KB Medical SA Apparatus and systems for precise guidance of surgical tools
US9265926B2 (en) 2013-11-08 2016-02-23 Ethicon Endo-Surgery, Llc Electrosurgical devices
GB2521228A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
GB2521229A (en) 2013-12-16 2015-06-17 Ethicon Endo Surgery Inc Medical device
US9681870B2 (en) 2013-12-23 2017-06-20 Ethicon Llc Articulatable surgical instruments with separate and distinct closing and firing systems
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9968354B2 (en) 2013-12-23 2018-05-15 Ethicon Llc Surgical staples and methods for making the same
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9642620B2 (en) 2013-12-23 2017-05-09 Ethicon Endo-Surgery, Llc Surgical cutting and stapling instruments with articulatable end effectors
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
TWI548388B (zh) * 2013-12-30 2016-09-11 國立臺灣大學 骨科手術之手持式機器人以及其控制方法
CN104758053B (zh) * 2014-01-07 2018-01-05 上银科技股份有限公司 微创手术器械的运动中心点的对位模组
US9795436B2 (en) 2014-01-07 2017-10-24 Ethicon Llc Harvesting energy from a surgical generator
WO2015107099A1 (fr) 2014-01-15 2015-07-23 KB Medical SA Appareil entaillé pour guider un instrument pouvant être introduit le long d'un axe pendant une chirurgie rachidienne
EP3104803B1 (fr) 2014-02-11 2021-09-15 KB Medical SA Poignée stérile de commande d'un système chirurgical robotique à partir d'un champ stérile
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
BR112016019387B1 (pt) 2014-02-24 2022-11-29 Ethicon Endo-Surgery, Llc Sistema de instrumento cirúrgico e cartucho de prendedores para uso com um instrumento cirúrgico de fixação
US9884456B2 (en) 2014-02-24 2018-02-06 Ethicon Llc Implantable layers and methods for altering one or more properties of implantable layers for use with fastening instruments
JP6623167B2 (ja) * 2014-03-17 2019-12-18 インテュイティブ サージカル オペレーションズ, インコーポレイテッド ディスクの係合を確認するためのシステム及び方法
JP6585067B2 (ja) 2014-03-17 2019-10-02 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 遠隔操作手術器具のための整列及び係合
US10166061B2 (en) 2014-03-17 2019-01-01 Intuitive Surgical Operations, Inc. Teleoperated surgical system equipment with user interface
EP3119334B1 (fr) * 2014-03-17 2022-01-26 Intuitive Surgical Operations, Inc. Systèmes et procédés d'ajustement structurel pour un système médical télécommandé
EP3753523B1 (fr) 2014-03-17 2024-05-01 Intuitive Surgical Operations, Inc. Chariot à roues avec stabilisation
JP6534680B2 (ja) 2014-03-17 2019-06-26 インテュイティブ サージカル オペレーションズ, インコーポレイテッド モード移行において振動を減衰させる指令形成
US9554854B2 (en) 2014-03-18 2017-01-31 Ethicon Endo-Surgery, Llc Detecting short circuits in electrosurgical medical devices
EP3243476B1 (fr) 2014-03-24 2019-11-06 Auris Health, Inc. Systèmes et dispositifs pour le guidage instinctif d'un cathéter
US9733663B2 (en) 2014-03-26 2017-08-15 Ethicon Llc Power management through segmented circuit and variable voltage protection
US9743929B2 (en) 2014-03-26 2017-08-29 Ethicon Llc Modular powered surgical instrument with detachable shaft assemblies
US20150272557A1 (en) 2014-03-26 2015-10-01 Ethicon Endo-Surgery, Inc. Modular surgical instrument system
BR112016021943B1 (pt) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc Instrumento cirúrgico para uso por um operador em um procedimento cirúrgico
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US10092310B2 (en) 2014-03-27 2018-10-09 Ethicon Llc Electrosurgical devices
US10463421B2 (en) 2014-03-27 2019-11-05 Ethicon Llc Two stage trigger, clamp and cut bipolar vessel sealer
US9737355B2 (en) 2014-03-31 2017-08-22 Ethicon Llc Controlling impedance rise in electrosurgical medical devices
US9913680B2 (en) 2014-04-15 2018-03-13 Ethicon Llc Software algorithms for electrosurgical instruments
JP6612256B2 (ja) 2014-04-16 2019-11-27 エシコン エルエルシー 不均一な締結具を備える締結具カートリッジ
US10299792B2 (en) 2014-04-16 2019-05-28 Ethicon Llc Fastener cartridge comprising non-uniform fasteners
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
BR112016023807B1 (pt) 2014-04-16 2022-07-12 Ethicon Endo-Surgery, Llc Conjunto de cartucho de prendedores para uso com um instrumento cirúrgico
US10206677B2 (en) 2014-09-26 2019-02-19 Ethicon Llc Surgical staple and driver arrangements for staple cartridges
BR112016023698B1 (pt) 2014-04-16 2022-07-26 Ethicon Endo-Surgery, Llc Cartucho de prendedores para uso com um instrumento cirúrgico
WO2015162256A1 (fr) 2014-04-24 2015-10-29 KB Medical SA Support d'instrument chirurgical destiné à être utilisé avec un système chirurgical robotique
KR101633774B1 (ko) * 2014-05-29 2016-06-28 주식회사 고영테크놀러지 척추수술용 보조로봇
CN104000637B (zh) * 2014-05-29 2016-06-15 清华大学 一种体内组织直接修复与成形的医疗系统
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
EP3169252A1 (fr) 2014-07-14 2017-05-24 KB Medical SA Instrument chirurgical anti-dérapage destiné à être utilisé pour préparer des trous dans un tissu osseux
US10285724B2 (en) 2014-07-31 2019-05-14 Ethicon Llc Actuation mechanisms and load adjustment assemblies for surgical instruments
JP6560338B2 (ja) 2014-08-15 2019-08-14 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 可変入口ガイド構成を有する外科用システム
BR112017004361B1 (pt) 2014-09-05 2023-04-11 Ethicon Llc Sistema eletrônico para um instrumento cirúrgico
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US9737301B2 (en) 2014-09-05 2017-08-22 Ethicon Llc Monitoring device degradation based on component evaluation
EP3190945A4 (fr) 2014-09-09 2018-06-27 Vanderbilt University Capsule endoscopique introduite par hydro-jet et méthodes de dépistage d'un cancer de l'estomac faisant appel à des réglages à faibles ressources
EP3868322A1 (fr) 2014-09-12 2021-08-25 Board of Regents of the University of Nebraska Effecteurs à libération rapide et systèmes associés
WO2016043845A1 (fr) * 2014-09-15 2016-03-24 Covidien Lp Ensembles chirurgicaux à commande robotique
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
CN107427300B (zh) 2014-09-26 2020-12-04 伊西康有限责任公司 外科缝合支撑物和辅助材料
CN107427327A (zh) 2014-09-30 2017-12-01 奥瑞斯外科手术机器人公司 具有虚拟轨迹和柔性内窥镜的可配置机器人外科手术系统
US10499999B2 (en) 2014-10-09 2019-12-10 Auris Health, Inc. Systems and methods for aligning an elongate member with an access site
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US10314463B2 (en) 2014-10-24 2019-06-11 Auris Health, Inc. Automated endoscope calibration
CN107072727B (zh) 2014-10-27 2020-01-24 直观外科手术操作公司 具有主动制动器释放控制装置的医疗装置
EP3212105A4 (fr) 2014-10-27 2018-07-11 Intuitive Surgical Operations, Inc. Système et procédé de surveillance de points de commande pendant un mouvement réactif
CN107072864B (zh) * 2014-10-27 2019-06-14 直观外科手术操作公司 用于配准到手术台的系统及方法
WO2016069648A1 (fr) 2014-10-27 2016-05-06 Intuitive Surgical Operations, Inc. Système et procédé pour table opératoire intégrée
US10272569B2 (en) 2014-10-27 2019-04-30 Intuitive Surgical Operations, Inc. System and method for instrument disturbance compensation
WO2016069663A1 (fr) 2014-10-27 2016-05-06 Intuitive Surgical Operations, Inc. Système et procédé de déplacement de table chirurgicale intégré
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
JP6608928B2 (ja) 2014-11-11 2019-11-20 ボード オブ リージェンツ オブ ザ ユニバーシティ オブ ネブラスカ 小型の関節デザインを備えるロボットデバイスおよび関連するシステムおよび方法
US10639092B2 (en) 2014-12-08 2020-05-05 Ethicon Llc Electrode configurations for surgical instruments
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US9968355B2 (en) 2014-12-18 2018-05-15 Ethicon Llc Surgical instruments with articulatable end effectors and improved firing beam support arrangements
RU2703684C2 (ru) 2014-12-18 2019-10-21 ЭТИКОН ЭНДО-СЕРДЖЕРИ, ЭлЭлСи Хирургический инструмент с упором, который выполнен с возможностью избирательного перемещения относительно кассеты со скобами вокруг дискретной неподвижной оси
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
CN105832412B (zh) * 2015-01-12 2018-05-29 上银科技股份有限公司 用于内视镜定位方法及该定位方法所使用的辅助定位装置
GB2534558B (en) 2015-01-21 2020-12-30 Cmr Surgical Ltd Robot tool retraction
KR101622539B1 (ko) 2015-01-21 2016-05-19 삼성전자 주식회사 브레이크 장치 및 이를 포함하는 의료기기
US10013808B2 (en) 2015-02-03 2018-07-03 Globus Medical, Inc. Surgeon head-mounted display apparatuses
FR3032346B1 (fr) * 2015-02-05 2021-10-15 Univ Pierre Et Marie Curie Paris 6 Procede d'assistance a la manipulation d'un instrument
US10245095B2 (en) 2015-02-06 2019-04-02 Ethicon Llc Electrosurgical instrument with rotation and articulation mechanisms
US9974619B2 (en) * 2015-02-11 2018-05-22 Engineering Services Inc. Surgical robot
JP2016152906A (ja) * 2015-02-18 2016-08-25 ソニー株式会社 医療用支持アーム装置及び医療用観察装置
EP3258872B1 (fr) 2015-02-18 2023-04-26 KB Medical SA Systèmes pour pratiquer des micromanipulations chirurgicales à la colonne vertébrale avec un système chirurgical robotique en utilisant une technique percutanée
CN107257670B (zh) * 2015-02-26 2021-03-16 柯惠Lp公司 用软件及导管以机器人方式控制远程运动中心
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US10182816B2 (en) 2015-02-27 2019-01-22 Ethicon Llc Charging system that enables emergency resolutions for charging a battery
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
JP2020121162A (ja) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC 測定の安定性要素、クリープ要素、及び粘弾性要素を決定するためのセンサデータの時間依存性評価
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
AU2016229897B2 (en) 2015-03-10 2020-07-16 Covidien Lp Measuring health of a connector member of a robotic surgical system
US10321950B2 (en) 2015-03-17 2019-06-18 Ethicon Llc Managing tissue treatment
KR20230107709A (ko) * 2015-03-17 2023-07-17 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 수동 조인트 위치 결정 동안 피드백을 제공하는 시스템 및 방법
US10342602B2 (en) 2015-03-17 2019-07-09 Ethicon Llc Managing tissue treatment
US10595929B2 (en) 2015-03-24 2020-03-24 Ethicon Llc Surgical instruments with firing system overload protection mechanisms
US9505132B1 (en) * 2015-03-30 2016-11-29 X Development Llc Methods and systems for calibrating a sensor of a robotic device
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
EP3078935A1 (fr) * 2015-04-10 2016-10-12 The European Atomic Energy Community (EURATOM), represented by the European Commission Procédé et dispositif de cartographie et de localisation en temps réel
EP3851062A1 (fr) 2015-05-11 2021-07-21 Covidien LP Unité de commande d'instrument de couplage et instrument chirurgical robotique
EP4331522A2 (fr) 2015-06-10 2024-03-06 Intuitive Surgical Operations, Inc. Système et procédé de commande d'instrument côté patient
US10166080B2 (en) * 2015-06-12 2019-01-01 The Johns Hopkins University Cooperatively-controlled surgical robotic system with redundant force sensing
US10034684B2 (en) 2015-06-15 2018-07-31 Ethicon Llc Apparatus and method for dissecting and coagulating tissue
US11020140B2 (en) 2015-06-17 2021-06-01 Cilag Gmbh International Ultrasonic surgical blade for use with ultrasonic surgical instruments
US10335149B2 (en) 2015-06-18 2019-07-02 Ethicon Llc Articulatable surgical instruments with composite firing beam structures with center firing support member for articulation support
CN107787207B (zh) * 2015-06-19 2021-05-25 柯惠Lp公司 利用双向耦接控制机器人手术器械
US11197727B2 (en) * 2015-06-23 2021-12-14 Covidien Lp Robotic surgical assemblies
CN104932382A (zh) * 2015-06-24 2015-09-23 哈尔滨工业大学 微创环境下用于触摸诊断的三维微型力传感器
CN104932381A (zh) * 2015-06-24 2015-09-23 哈尔滨工业大学 用于微创手术机器人力反馈的六维微型力和力矩传感器
US10357303B2 (en) 2015-06-30 2019-07-23 Ethicon Llc Translatable outer tube for sealing using shielded lap chole dissector
US10765470B2 (en) 2015-06-30 2020-09-08 Ethicon Llc Surgical system with user adaptable techniques employing simultaneous energy modalities based on tissue parameters
US10034704B2 (en) 2015-06-30 2018-07-31 Ethicon Llc Surgical instrument with user adaptable algorithms
US10898256B2 (en) 2015-06-30 2021-01-26 Ethicon Llc Surgical system with user adaptable techniques based on tissue impedance
US11129669B2 (en) 2015-06-30 2021-09-28 Cilag Gmbh International Surgical system with user adaptable techniques based on tissue type
US11051873B2 (en) 2015-06-30 2021-07-06 Cilag Gmbh International Surgical system with user adaptable techniques employing multiple energy modalities based on tissue parameters
US10154852B2 (en) 2015-07-01 2018-12-18 Ethicon Llc Ultrasonic surgical blade with improved cutting and coagulation features
EP3324874B1 (fr) * 2015-07-17 2021-11-10 DEKA Products Limited Partnership Système de chirurgie robotisée
US10828115B2 (en) 2015-07-23 2020-11-10 Sri International Robotic arm and robotic surgical system
US10058394B2 (en) 2015-07-31 2018-08-28 Globus Medical, Inc. Robot arm and methods of use
US10646298B2 (en) 2015-07-31 2020-05-12 Globus Medical, Inc. Robot arm and methods of use
WO2017024081A1 (fr) 2015-08-03 2017-02-09 Board Of Regents Of The University Of Nebraska Systèmes de dispositifs chirurgicaux robotisés et procédés apparentés
US10080615B2 (en) 2015-08-12 2018-09-25 Globus Medical, Inc. Devices and methods for temporary mounting of parts to bone
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
CN105147393B (zh) * 2015-08-19 2017-06-20 哈尔滨工业大学 一种微创机器人持镜机械臂
CN105129657A (zh) * 2015-08-19 2015-12-09 哈尔滨工业大学 一种竖直平移安全制动装置
MX2018002388A (es) 2015-08-26 2018-08-01 Ethicon Llc Tiras de grapas quirurgicas para permitir propiedades variables de la grapa y facilitar la carga del cartucho.
MX2022009705A (es) 2015-08-26 2022-11-07 Ethicon Llc Metodo para formar una grapa contra un yunque de un instrumento de engrapado quirurgico.
US10517599B2 (en) 2015-08-26 2019-12-31 Ethicon Llc Staple cartridge assembly comprising staple cavities for providing better staple guidance
EP3344179B1 (fr) 2015-08-31 2021-06-30 KB Medical SA Systèmes de chirurgie robotique
US10238390B2 (en) 2015-09-02 2019-03-26 Ethicon Llc Surgical staple cartridges with driver arrangements for establishing herringbone staple patterns
MX2022006189A (es) 2015-09-02 2022-06-16 Ethicon Llc Configuraciones de grapas quirurgicas con superficies de leva situadas entre porciones que soportan grapas quirurgicas.
US10034716B2 (en) 2015-09-14 2018-07-31 Globus Medical, Inc. Surgical robotic systems and methods thereof
US10350766B2 (en) * 2015-09-21 2019-07-16 GM Global Technology Operations LLC Extended-reach assist device for performing assembly tasks
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10736633B2 (en) 2015-09-30 2020-08-11 Ethicon Llc Compressible adjunct with looping members
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10751108B2 (en) 2015-09-30 2020-08-25 Ethicon Llc Protection techniques for generator for digitally generating electrosurgical and ultrasonic electrical signal waveforms
US10478188B2 (en) 2015-09-30 2019-11-19 Ethicon Llc Implantable layer comprising a constricted configuration
US9771092B2 (en) 2015-10-13 2017-09-26 Globus Medical, Inc. Stabilizer wheel assembly and methods of use
US10595930B2 (en) 2015-10-16 2020-03-24 Ethicon Llc Electrode wiping surgical device
US10639108B2 (en) 2015-10-30 2020-05-05 Auris Health, Inc. Process for percutaneous operations
US9949749B2 (en) 2015-10-30 2018-04-24 Auris Surgical Robotics, Inc. Object capture with a basket
US9955986B2 (en) 2015-10-30 2018-05-01 Auris Surgical Robotics, Inc. Basket apparatus
CN105196284B (zh) * 2015-11-02 2017-01-11 哈尔滨工业大学 一种三自由度串联型自重力平衡被动机械臂
US10292779B2 (en) * 2015-11-23 2019-05-21 Sina Robotics And Medical Innovators Co. Adapting manual laparoscopic surgical instruments for robotic telesurgery applications
US10219871B2 (en) * 2015-11-23 2019-03-05 Alireza Mirbagheri Robotic system for tele-surgery
US10143526B2 (en) 2015-11-30 2018-12-04 Auris Health, Inc. Robot-assisted driving systems and methods
GB201521811D0 (en) 2015-12-10 2016-01-27 Cambridge Medical Robotics Ltd Drive assembly interface
CN105380748B (zh) * 2015-12-17 2017-11-17 天津工业大学 一种具有力传感功能的丝传动三自由度手术钻工具
CN105559850B (zh) * 2015-12-17 2017-08-25 天津工业大学 一种用于机器人辅助外科具有力传感功能的手术钻器械
US10562191B2 (en) * 2015-12-29 2020-02-18 Robomotive Laboratories LLC Method of controlling devices with sensation of applied force
CN108463185B (zh) 2015-12-29 2021-12-14 柯惠Lp公司 机器人手术系统和器械驱动组件
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10179022B2 (en) 2015-12-30 2019-01-15 Ethicon Llc Jaw position impedance limiter for electrosurgical instrument
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10575892B2 (en) 2015-12-31 2020-03-03 Ethicon Llc Adapter for electrical surgical instruments
CN108601624B (zh) * 2016-01-12 2022-07-08 直观外科手术操作公司 触觉致动器的均匀缩放
JP6752576B2 (ja) * 2016-01-13 2020-09-09 キヤノン株式会社 駆動機構、ロボット装置、駆動機構の制御方法、ロボット装置の制御方法、物品の製造方法、制御プログラム、記録媒体、及び支持部材
US11129670B2 (en) 2016-01-15 2021-09-28 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on button displacement, intensity, or local tissue characterization
US10828058B2 (en) 2016-01-15 2020-11-10 Ethicon Llc Modular battery powered handheld surgical instrument with motor control limits based on tissue characterization
US10716615B2 (en) 2016-01-15 2020-07-21 Ethicon Llc Modular battery powered handheld surgical instrument with curved end effectors having asymmetric engagement between jaw and blade
US11229471B2 (en) 2016-01-15 2022-01-25 Cilag Gmbh International Modular battery powered handheld surgical instrument with selective application of energy based on tissue characterization
EP3405134A4 (fr) * 2016-01-20 2019-09-18 Intuitive Surgical Operations Inc. Système et procédé d'arrêt rapide et récupération d'écarts de mouvement dans des bras repositionnables de dispositif médical
WO2017136429A1 (fr) * 2016-02-01 2017-08-10 AM Networks LLC Bras robotique de plan de travail muni d'effecteurs d'extrémité interchangeables
US10117632B2 (en) 2016-02-03 2018-11-06 Globus Medical, Inc. Portable medical imaging system with beam scanning collimator
US11058378B2 (en) 2016-02-03 2021-07-13 Globus Medical, Inc. Portable medical imaging system
US10448910B2 (en) 2016-02-03 2019-10-22 Globus Medical, Inc. Portable medical imaging system
US10842453B2 (en) 2016-02-03 2020-11-24 Globus Medical, Inc. Portable medical imaging system
US11883217B2 (en) 2016-02-03 2024-01-30 Globus Medical, Inc. Portable medical imaging system and method
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US10588625B2 (en) 2016-02-09 2020-03-17 Ethicon Llc Articulatable surgical instruments with off-axis firing beam arrangements
BR112018016098B1 (pt) 2016-02-09 2023-02-23 Ethicon Llc Instrumento cirúrgico
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10555769B2 (en) 2016-02-22 2020-02-11 Ethicon Llc Flexible circuits for electrosurgical instrument
US10716635B2 (en) 2016-03-04 2020-07-21 Covidien Lp Vacuum immobilizer for surgical robotic carts
US10866119B2 (en) 2016-03-14 2020-12-15 Globus Medical, Inc. Metal detector for detecting insertion of a surgical device into a hollow tube
CN105686883B (zh) * 2016-03-14 2018-11-30 昆山一邦泰汽车零部件制造有限公司 一种冗余自由度持镜机械臂
WO2017160177A1 (fr) * 2016-03-15 2017-09-21 Елена Николаевна ФАГЕ Manipulateur chirurgical électronique-mécanique multi-axes
US10293122B2 (en) 2016-03-17 2019-05-21 Novadaq Technologies ULC Endoluminal introducer with contamination avoidance
US10603101B2 (en) 2016-03-26 2020-03-31 Paul Joseph Weber Apparatus, systems and methods for minimally invasive dissection of tissues
US10893899B2 (en) 2016-03-26 2021-01-19 Paul Weber Apparatus and systems for minimally invasive dissection of tissues
US11510730B2 (en) 2016-03-26 2022-11-29 Paul Joseph Weber Apparatus and methods for minimally invasive dissection and modification of tissues
CA2928413C (fr) * 2016-03-31 2019-03-05 Novarc Technologies Inc. Systeme de soudage robotique
US10456140B2 (en) 2016-04-01 2019-10-29 Ethicon Llc Surgical stapling system comprising an unclamping lockout
US10413297B2 (en) 2016-04-01 2019-09-17 Ethicon Llc Surgical stapling system configured to apply annular rows of staples having different heights
US10357246B2 (en) 2016-04-01 2019-07-23 Ethicon Llc Rotary powered surgical instrument with manually actuatable bailout system
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10363037B2 (en) 2016-04-18 2019-07-30 Ethicon Llc Surgical instrument system comprising a magnetic lockout
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US10702329B2 (en) 2016-04-29 2020-07-07 Ethicon Llc Jaw structure with distal post for electrosurgical instruments
US10646269B2 (en) 2016-04-29 2020-05-12 Ethicon Llc Non-linear jaw gap for electrosurgical instruments
US10485607B2 (en) 2016-04-29 2019-11-26 Ethicon Llc Jaw structure with distal closure for electrosurgical instruments
US10456193B2 (en) 2016-05-03 2019-10-29 Ethicon Llc Medical device with a bilateral jaw configuration for nerve stimulation
CA3024623A1 (fr) 2016-05-18 2017-11-23 Virtual Incision Corporation Dispositifs chirurgicaux robotiques, systemes et procedes associes
US11547508B2 (en) 2016-05-26 2023-01-10 Covidien Lp Robotic surgical assemblies
US10413371B2 (en) * 2016-06-03 2019-09-17 Rubicon Spine, LLC Dynamic feedback end effector
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
US11000278B2 (en) 2016-06-24 2021-05-11 Ethicon Llc Staple cartridge comprising wire staples and stamped staples
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
JP6957532B2 (ja) 2016-06-24 2021-11-02 エシコン エルエルシーEthicon LLC ワイヤステープル及び打ち抜き加工ステープルを含むステープルカートリッジ
US10245064B2 (en) 2016-07-12 2019-04-02 Ethicon Llc Ultrasonic surgical instrument with piezoelectric central lumen transducer
US10893883B2 (en) 2016-07-13 2021-01-19 Ethicon Llc Ultrasonic assembly for use with ultrasonic surgical instruments
US10219930B2 (en) 2016-07-14 2019-03-05 Verily Life Sciences Llc High amplitude tremor stabilization by a handheld tool
WO2018013314A1 (fr) 2016-07-14 2018-01-18 Intuitive Surgical Operations, Inc. Système de chasse d'instrument
KR102400881B1 (ko) 2016-07-14 2022-05-24 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 다중 케이블 의료 기기
WO2018013298A1 (fr) 2016-07-14 2018-01-18 Intuitive Surgical Operations, Inc. Actionnement à poignée à engrenage pour instruments médicaux
WO2018013303A1 (fr) * 2016-07-14 2018-01-18 Intuitive Surgical Operations, Inc. Mécanisme automatisé de mise en prise/hors prise de précharge d'instrument
WO2018013316A1 (fr) 2016-07-14 2018-01-18 Intuitive Surgical Operations, Inc. Entraînement de rouleaux à engrenages pour instrument médical
US11890070B2 (en) 2016-07-14 2024-02-06 Intuitive Surgical Operations, Inc. Instrument release
US10842522B2 (en) 2016-07-15 2020-11-24 Ethicon Llc Ultrasonic surgical instruments having offset blades
GB2552540B (en) 2016-07-29 2021-11-24 Cmr Surgical Ltd Interface structure
GB2600067B (en) * 2016-07-29 2022-08-10 Cmr Surgical Ltd Motion feedthrough
US11925431B2 (en) 2016-07-29 2024-03-12 Cmr Surgical Limited Motion feedthrough
US10376305B2 (en) 2016-08-05 2019-08-13 Ethicon Llc Methods and systems for advanced harmonic energy
US11065760B2 (en) 2016-08-09 2021-07-20 Inventec Appliances (Pudong) Corporation Multiaxial robot with cover
US10285723B2 (en) 2016-08-09 2019-05-14 Ethicon Llc Ultrasonic surgical blade with improved heel portion
CN106181982A (zh) * 2016-08-09 2016-12-07 英华达(上海)科技有限公司 多轴机器人
USD847990S1 (en) 2016-08-16 2019-05-07 Ethicon Llc Surgical instrument
EP3503829A4 (fr) 2016-08-25 2020-04-15 Board of Regents of the University of Nebraska Raccord d'outil à libération rapide ainsi que systèmes et procédés associés
US11350959B2 (en) 2016-08-25 2022-06-07 Cilag Gmbh International Ultrasonic transducer techniques for ultrasonic surgical instrument
US10952759B2 (en) 2016-08-25 2021-03-23 Ethicon Llc Tissue loading of a surgical instrument
EP3507065A4 (fr) 2016-08-30 2020-04-29 Board of Regents of the University of Nebraska Dispositif robotique ayant une conception d'articulation compacte et un degré de liberté supplémentaire, et systèmes et procédés associés
KR102263570B1 (ko) * 2016-08-31 2021-06-14 베이징 서제리 테크놀로지 씨오., 엘티디. 수술 로봇 운행상태 고장 검출 방법
US11166770B2 (en) * 2016-09-19 2021-11-09 Intuitive Surgical Operations, Inc. Base positioning system for a controllable arm and related methods
US9931025B1 (en) * 2016-09-30 2018-04-03 Auris Surgical Robotics, Inc. Automated calibration of endoscopes with pull wires
EP3559929A1 (fr) * 2016-10-10 2019-10-30 Generic Robotics Limited Simulateur pour tâches manuelles
JP7016874B2 (ja) * 2016-10-10 2022-02-07 レイド-アッシュマン マニュファクチャリング インコーポレイテッド マニピュレータ
CN109788994B (zh) 2016-10-18 2022-07-19 直观外科手术操作公司 计算机辅助的远程操作手术系统和方法
DE102016221222A1 (de) * 2016-10-27 2018-05-03 Siemens Healthcare Gmbh Verfahren zum Betrieb eines Kollisionsschutzsystems für eine medizinische Operationseinrichtung, medizinische Operationseinrichtung, Computerprogramm und Datenträger
US11241290B2 (en) 2016-11-21 2022-02-08 Intuitive Surgical Operations, Inc. Cable length conserving medical instrument
WO2018098319A1 (fr) 2016-11-22 2018-05-31 Board Of Regents Of The University Of Nebraska Dispositif de positionnement grossier amélioré et systèmes et procédés associés
US10603064B2 (en) 2016-11-28 2020-03-31 Ethicon Llc Ultrasonic transducer
CA3042732C (fr) 2016-11-28 2021-12-14 Verb Surgical Inc. Systeme chirurgical robotique pour reduire les vibrations non souhaitees
CN115553922A (zh) 2016-11-29 2023-01-03 虚拟切割有限公司 具有用户存在检测的用户控制器及相关系统和方法
US11266430B2 (en) 2016-11-29 2022-03-08 Cilag Gmbh International End effector control and calibration
WO2018104523A1 (fr) 2016-12-08 2018-06-14 Orthotaxy Système chirurgical permettant de couper une structure anatomique suivant au moins un plan de coupe cible
WO2018104439A1 (fr) 2016-12-08 2018-06-14 Orthotaxy Système chirurgical pour couper une structure anatomique selon au moins un plan cible
US10722319B2 (en) 2016-12-14 2020-07-28 Virtual Incision Corporation Releasable attachment device for coupling to medical devices and related systems and methods
US10893864B2 (en) 2016-12-21 2021-01-19 Ethicon Staple cartridges and arrangements of staples and staple cavities therein
CN110099619B (zh) 2016-12-21 2022-07-15 爱惜康有限责任公司 用于外科端部执行器和可替换工具组件的闭锁装置
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
CN110087565A (zh) 2016-12-21 2019-08-02 爱惜康有限责任公司 外科缝合系统
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
JP7010956B2 (ja) 2016-12-21 2022-01-26 エシコン エルエルシー 組織をステープル留めする方法
US10582928B2 (en) 2016-12-21 2020-03-10 Ethicon Llc Articulation lock arrangements for locking an end effector in an articulated position in response to actuation of a jaw closure system
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
US10667809B2 (en) 2016-12-21 2020-06-02 Ethicon Llc Staple cartridge and staple cartridge channel comprising windows defined therein
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US20180168648A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Durability features for end effectors and firing assemblies of surgical stapling instruments
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US11160551B2 (en) 2016-12-21 2021-11-02 Cilag Gmbh International Articulatable surgical stapling instruments
US10898186B2 (en) 2016-12-21 2021-01-26 Ethicon Llc Staple forming pocket arrangements comprising primary sidewalls and pocket sidewalls
US10675025B2 (en) 2016-12-21 2020-06-09 Ethicon Llc Shaft assembly comprising separately actuatable and retractable systems
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US10813638B2 (en) 2016-12-21 2020-10-27 Ethicon Llc Surgical end effectors with expandable tissue stop arrangements
US10881401B2 (en) 2016-12-21 2021-01-05 Ethicon Llc Staple firing member comprising a missing cartridge and/or spent cartridge lockout
US10537325B2 (en) 2016-12-21 2020-01-21 Ethicon Llc Staple forming pocket arrangement to accommodate different types of staples
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US10244926B2 (en) 2016-12-28 2019-04-02 Auris Health, Inc. Detecting endolumenal buckling of flexible instruments
EP3360502A3 (fr) 2017-01-18 2018-10-31 KB Medical SA Navigation robotique de systèmes chirurgicaux robotiques
GB2552855B (en) * 2017-01-31 2019-02-13 Cmr Surgical Ltd Surgical instrument engagement detection
US10327854B2 (en) * 2017-02-02 2019-06-25 Ethicon Llc Robotic surgical system and methods for articulation calibration
GB2599323B (en) 2017-02-07 2022-08-03 Cmr Surgical Ltd Mounting an endoscope to a surgical robot
CA3051258A1 (fr) 2017-02-09 2018-08-16 Vicarious Surgical Inc. Systeme d'instruments chirurgicaux a realite virtuelle
US10357321B2 (en) 2017-02-24 2019-07-23 Intuitive Surgical Operations, Inc. Splayed cable guide for a medical instrument
US10820951B2 (en) 2017-03-14 2020-11-03 Verb Surgical Inc. Techniques for damping vibration in a robotic surgical system
US11071594B2 (en) 2017-03-16 2021-07-27 KB Medical SA Robotic navigation of robotic surgical systems
US11076926B2 (en) 2017-03-21 2021-08-03 Intuitive Surgical Operations, Inc. Manual release for medical device drive system
US11078945B2 (en) 2017-03-26 2021-08-03 Verb Surgical Inc. Coupler to attach robotic arm to surgical table
KR20240035632A (ko) 2017-05-12 2024-03-15 아우리스 헬스, 인코포레이티드 생검 장치 및 시스템
JP6631974B2 (ja) 2017-05-16 2020-01-15 リバーフィールド株式会社 動力伝達アダプタおよび医療用マニピュレータシステム
US10792119B2 (en) 2017-05-22 2020-10-06 Ethicon Llc Robotic arm cart and uses therefor
EP3629979A4 (fr) * 2017-05-24 2021-02-17 Covidien LP Détection de présence pour outils électrochirurgicaux dans un système robotisé
US10856948B2 (en) 2017-05-31 2020-12-08 Verb Surgical Inc. Cart for robotic arms and method and apparatus for registering cart to surgical table
JP2018202504A (ja) 2017-05-31 2018-12-27 ソニー株式会社 医療用支持アームシステム、医療用支持アームの制御方法、および医療用支持アームの制御装置
US10485623B2 (en) 2017-06-01 2019-11-26 Verb Surgical Inc. Robotic arm cart with fine position adjustment features and uses therefor
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10913145B2 (en) 2017-06-20 2021-02-09 Verb Surgical Inc. Cart for robotic arms and method and apparatus for cartridge or magazine loading of arms
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US10888324B2 (en) * 2017-06-27 2021-01-12 Ethicon Llc Powered surgical instrument with independent selectively applied rotary and linear drivetrains
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US11058424B2 (en) 2017-06-28 2021-07-13 Cilag Gmbh International Surgical instrument comprising an offset articulation joint
EP3644885B1 (fr) 2017-06-28 2023-10-11 Auris Health, Inc. Alignement de générateur de champ électromagnétique
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
EP3645100A4 (fr) 2017-06-28 2021-03-17 Auris Health, Inc. Compensation d'insertion d'instrument
US11020114B2 (en) 2017-06-28 2021-06-01 Cilag Gmbh International Surgical instruments with articulatable end effector with axially shortened articulation joint configurations
EP3420947B1 (fr) 2017-06-28 2022-05-25 Cilag GmbH International Instrument chirurgical comprenant des coupleurs rotatifs actionnables de façon sélective
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
JP7330902B2 (ja) 2017-06-28 2023-08-22 オーリス ヘルス インコーポレイテッド 電磁歪み検出
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US11026758B2 (en) 2017-06-28 2021-06-08 Auris Health, Inc. Medical robotics systems implementing axis constraints during actuation of one or more motorized joints
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10426559B2 (en) 2017-06-30 2019-10-01 Auris Health, Inc. Systems and methods for medical instrument compression compensation
US10820920B2 (en) 2017-07-05 2020-11-03 Ethicon Llc Reusable ultrasonic medical devices and methods of their use
US10675094B2 (en) 2017-07-21 2020-06-09 Globus Medical Inc. Robot surgical platform
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
EP3444078B1 (fr) * 2017-08-17 2023-07-05 Siemens Healthcare GmbH Procédé de suivi d'un robot guidé à la main, robot guidé à la main, programme informatique, et support de stockage lisible électroniquement
CA2977489C (fr) * 2017-08-28 2019-11-26 Synaptive Medical (Barbados) Inc. Bras de positionnement destine a un systeme de navigation chirurgicale
CN117731218A (zh) 2017-09-14 2024-03-22 维卡瑞斯外科手术股份有限公司 虚拟现实外科手术摄像机系统
CN117017492A (zh) 2017-09-27 2023-11-10 虚拟切割有限公司 具有跟踪相机技术的机器人手术设备及相关系统和方法
JP2019063878A (ja) 2017-09-28 2019-04-25 ファナック株式会社 産業機械とその移設機構
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10464209B2 (en) 2017-10-05 2019-11-05 Auris Health, Inc. Robotic system with indication of boundary for robotic arm
US11122965B2 (en) 2017-10-09 2021-09-21 Vanderbilt University Robotic capsule system with magnetic actuation and localization
JP6659649B2 (ja) 2017-10-10 2020-03-04 ファナック株式会社 関節軸構造および水平多関節型ロボット
US10016900B1 (en) 2017-10-10 2018-07-10 Auris Health, Inc. Surgical robotic arm admittance control
US10145747B1 (en) 2017-10-10 2018-12-04 Auris Health, Inc. Detection of undesirable forces on a surgical robotic arm
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
EP3492032B1 (fr) 2017-11-09 2023-01-04 Globus Medical, Inc. Systèmes de robot chirurgical de cintrage de tiges chirurgicales
US11382666B2 (en) 2017-11-09 2022-07-12 Globus Medical Inc. Methods providing bend plans for surgical rods and related controllers and computer program products
US11794338B2 (en) 2017-11-09 2023-10-24 Globus Medical Inc. Robotic rod benders and related mechanical and motor housings
US11134862B2 (en) 2017-11-10 2021-10-05 Globus Medical, Inc. Methods of selecting surgical implants and related devices
CN115574994A (zh) 2017-11-14 2023-01-06 直观外科手术操作公司 分离桥式电路力传感器
US10675107B2 (en) 2017-11-15 2020-06-09 Intuitive Surgical Operations, Inc. Surgical instrument end effector with integral FBG
EP3709927A4 (fr) 2017-11-16 2020-12-23 Intuitive Surgical Operations Inc. Enregistrement et commande de dispositifs maître/esclave pour télémanipulation
CA3083935A1 (fr) 2017-11-30 2019-06-06 Covidien, LP Instrument chirurgical robotique comprenant une rotation d'instrument sur la base d'une position de translation
KR102645922B1 (ko) 2017-12-06 2024-03-13 아우리스 헬스, 인코포레이티드 지시되지 않은 기구 롤을 수정하기 위한 시스템 및 방법
CN108248827B (zh) * 2017-12-08 2023-08-18 贵州华烽电器有限公司 一种单梯度载荷机构装置
KR20200100613A (ko) 2017-12-14 2020-08-26 아우리스 헬스, 인코포레이티드 기구 위치 추정을 위한 시스템 및 방법
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11883019B2 (en) 2017-12-21 2024-01-30 Cilag Gmbh International Stapling instrument comprising a staple feeding system
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
JP6972357B2 (ja) 2018-01-04 2021-11-24 コヴィディエン リミテッド パートナーシップ ロボット手術システムおよび器具駆動アセンブリ
CA3087672A1 (fr) 2018-01-05 2019-07-11 Board Of Regents Of The University Of Nebraska Dispositif robotique ayant un seul bras d'une conception d'articulation compacte et syst?mes et procedes associes
US11497567B2 (en) 2018-02-08 2022-11-15 Intuitive Surgical Operations, Inc. Jointed control platform
US11118661B2 (en) 2018-02-12 2021-09-14 Intuitive Surgical Operations, Inc. Instrument transmission converting roll to linear actuation
JP7301884B2 (ja) 2018-02-13 2023-07-03 オーリス ヘルス インコーポレイテッド 医療用器具を駆動するためのシステム及び方法
US20190254753A1 (en) 2018-02-19 2019-08-22 Globus Medical, Inc. Augmented reality navigation systems for use with robotic surgical systems and methods of their use
CN110269682B (zh) * 2018-03-14 2020-09-01 深圳市精锋医疗科技有限公司 连接组件、操作臂、从操作设备及手术机器人
CN110269689B (zh) * 2018-03-14 2021-01-05 深圳市精锋医疗科技有限公司 连接组件、操作臂、从操作设备及手术机器人
US10573023B2 (en) 2018-04-09 2020-02-25 Globus Medical, Inc. Predictive visualization of medical imaging scanner component movement
CN111970988A (zh) 2018-04-16 2020-11-20 柯惠Lp公司 机器人手术系统及其机器人臂推车
US11524181B2 (en) 2018-04-17 2022-12-13 Best Theratronics Ltd. Intraoperative radiation therapy system
BR112020022690A2 (pt) * 2018-05-10 2021-02-09 Cyberdontics (Usa), Inc. broca dental automatizada
KR102020149B1 (ko) * 2018-05-14 2019-09-09 경남대학교 산학협력단 텔레스코프식 6축 수직 다관절 로봇
CN108681337B (zh) * 2018-05-21 2021-04-16 河北嫦娥智能科技有限公司 一种涵洞或桥梁专用巡查无人机及无人机巡查方法
US11471582B2 (en) 2018-07-06 2022-10-18 Incept, Llc Vacuum transfer tool for extendable catheter
US11497490B2 (en) * 2018-07-09 2022-11-15 Covidien Lp Powered surgical devices including predictive motor control
JP7167522B2 (ja) * 2018-07-27 2022-11-09 セイコーエプソン株式会社 ロボットアーム
WO2020028747A1 (fr) * 2018-08-02 2020-02-06 The Johns Hopkins University Caractéristique de sécurité destinée à être utilisée avec des endoscopes manipulés de manière robotisée et d'autres outils en otolaryngologie et en neurochirurgie
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
AU2019347767A1 (en) 2018-09-28 2021-04-08 Auris Health, Inc. Systems and methods for docking medical instruments
GB2577715B (en) 2018-10-03 2022-10-05 Cmr Surgical Ltd Device interoperation
DE112019004999T5 (de) * 2018-10-04 2021-06-17 Intuitive Surgical Operations, Inc. Systeme und Verfahren zur Bewegungssteuerung von lenkbaren Geräten
JP6469304B1 (ja) * 2018-10-23 2019-02-13 株式会社A−Traction 手術支援装置、その制御方法及びプログラム
EP3873369A1 (fr) * 2018-10-31 2021-09-08 Intuitive Surgical Operations, Inc. Système et procédé d'aide à l'échange d'outils
US11337742B2 (en) 2018-11-05 2022-05-24 Globus Medical Inc Compliant orthopedic driver
US11815412B2 (en) 2018-11-15 2023-11-14 Intuitive Surgical Operations, Inc. Strain sensor with contoured deflection surface
US11278360B2 (en) 2018-11-16 2022-03-22 Globus Medical, Inc. End-effectors for surgical robotic systems having sealed optical components
US11602402B2 (en) 2018-12-04 2023-03-14 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
US11744655B2 (en) 2018-12-04 2023-09-05 Globus Medical, Inc. Drill guide fixtures, cranial insertion fixtures, and related methods and robotic systems
CN109452975A (zh) * 2018-12-07 2019-03-12 杭州法博激光科技有限公司 适用于软镜的手术辅助系统
EP3908171A4 (fr) 2019-01-07 2022-09-14 Virtual Incision Corporation Systèmes chirurgical assisté par robot, et dispositifs et procédés associés
US11918313B2 (en) 2019-03-15 2024-03-05 Globus Medical Inc. Active end effectors for surgical robots
US11382549B2 (en) 2019-03-22 2022-07-12 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11419616B2 (en) 2019-03-22 2022-08-23 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US20200297357A1 (en) 2019-03-22 2020-09-24 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11317978B2 (en) 2019-03-22 2022-05-03 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11806084B2 (en) 2019-03-22 2023-11-07 Globus Medical, Inc. System for neuronavigation registration and robotic trajectory guidance, and related methods and devices
US11571265B2 (en) 2019-03-22 2023-02-07 Globus Medical Inc. System for neuronavigation registration and robotic trajectory guidance, robotic surgery, and related methods and devices
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
IT201900005894A1 (it) * 2019-04-26 2019-07-26 Guido Danieli EasyLap, sistema robotico per laparoscopia mono e multi accesso che utilizza principalmente strumentazione tradizionale già presente negli ospedali
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
JP6562174B1 (ja) * 2019-05-10 2019-08-21 株式会社A−Traction 手術支援装置
US11045179B2 (en) 2019-05-20 2021-06-29 Global Medical Inc Robot-mounted retractor system
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11350938B2 (en) 2019-06-28 2022-06-07 Cilag Gmbh International Surgical instrument comprising an aligned rfid sensor
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
WO2020263949A1 (fr) 2019-06-28 2020-12-30 Auris Health, Inc. Instruments médicaux comprenant des poignets dotés de surfaces de réorientation hybrides
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11628023B2 (en) 2019-07-10 2023-04-18 Globus Medical, Inc. Robotic navigational system for interbody implants
US11553973B2 (en) 2019-07-29 2023-01-17 Verb Surgical Inc. Robotic arm having an extendable prismatic link
US11896330B2 (en) * 2019-08-15 2024-02-13 Auris Health, Inc. Robotic medical system having multiple medical instruments
JP2022544554A (ja) 2019-08-15 2022-10-19 オーリス ヘルス インコーポレイテッド 複数の屈曲部を有する医療デバイス
US11324558B2 (en) 2019-09-03 2022-05-10 Auris Health, Inc. Electromagnetic distortion detection and compensation
US11571171B2 (en) 2019-09-24 2023-02-07 Globus Medical, Inc. Compound curve cable chain
US10959792B1 (en) * 2019-09-26 2021-03-30 Auris Health, Inc. Systems and methods for collision detection and avoidance
US11864857B2 (en) 2019-09-27 2024-01-09 Globus Medical, Inc. Surgical robot with passive end effector
US11890066B2 (en) 2019-09-30 2024-02-06 Globus Medical, Inc Surgical robot with passive end effector
US11426178B2 (en) 2019-09-27 2022-08-30 Globus Medical Inc. Systems and methods for navigating a pin guide driver
US20210100660A1 (en) * 2019-10-04 2021-04-08 Zimmer Biomet Spine, Inc. Implant positioning tools
CN110558929A (zh) * 2019-10-14 2019-12-13 北京仙进机器人有限公司 一种手持式单臂多自由度腹腔镜
US11510684B2 (en) 2019-10-14 2022-11-29 Globus Medical, Inc. Rotary motion passive end effector for surgical robots in orthopedic surgeries
CN110575260B (zh) * 2019-10-21 2022-05-13 重庆师范大学 一种手术机器人操作装置
CN111685895B (zh) * 2019-10-29 2021-07-20 成都博恩思医学机器人有限公司 一种手术机器人的手术器械类型自动识别系统
CN111141968B (zh) * 2019-11-20 2022-06-28 贵州电网有限责任公司 一种应用于电子设备的故障监测及自愈装置及其自启动机构
US11633272B2 (en) 2019-12-18 2023-04-25 Imperative Care, Inc. Manually rotatable thrombus engagement tool
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
CN114423368B (zh) * 2019-12-20 2022-10-21 瑞德医疗机器股份有限公司 医疗用机器人、操作器械以及安装部
US11759251B2 (en) 2019-12-30 2023-09-19 Cilag Gmbh International Control program adaptation based on device status and user input
US11812957B2 (en) 2019-12-30 2023-11-14 Cilag Gmbh International Surgical instrument comprising a signal interference resolution system
US11786291B2 (en) 2019-12-30 2023-10-17 Cilag Gmbh International Deflectable support of RF energy electrode with respect to opposing ultrasonic blade
US20210196357A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instrument with asynchronous energizing electrodes
US20210196361A1 (en) 2019-12-30 2021-07-01 Ethicon Llc Electrosurgical instrument with monopolar and bipolar energy capabilities
US11937863B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Deflectable electrode with variable compression bias along the length of the deflectable electrode
US11911063B2 (en) 2019-12-30 2024-02-27 Cilag Gmbh International Techniques for detecting ultrasonic blade to electrode contact and reducing power to ultrasonic blade
US11950797B2 (en) 2019-12-30 2024-04-09 Cilag Gmbh International Deflectable electrode with higher distal bias relative to proximal bias
US11779329B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Surgical instrument comprising a flex circuit including a sensor system
US11660089B2 (en) 2019-12-30 2023-05-30 Cilag Gmbh International Surgical instrument comprising a sensing system
US11779387B2 (en) 2019-12-30 2023-10-10 Cilag Gmbh International Clamp arm jaw to minimize tissue sticking and improve tissue control
US11944366B2 (en) 2019-12-30 2024-04-02 Cilag Gmbh International Asymmetric segmented ultrasonic support pad for cooperative engagement with a movable RF electrode
US11696776B2 (en) 2019-12-30 2023-07-11 Cilag Gmbh International Articulatable surgical instrument
US11684412B2 (en) 2019-12-30 2023-06-27 Cilag Gmbh International Surgical instrument with rotatable and articulatable surgical end effector
US11452525B2 (en) 2019-12-30 2022-09-27 Cilag Gmbh International Surgical instrument comprising an adjustment system
US11937866B2 (en) 2019-12-30 2024-03-26 Cilag Gmbh International Method for an electrosurgical procedure
CN114901194A (zh) 2019-12-31 2022-08-12 奥瑞斯健康公司 解剖特征识别和瞄准
JP2023508719A (ja) 2019-12-31 2023-03-03 オーリス ヘルス インコーポレイテッド 経皮的アクセスのための位置合わせインターフェース
US11660147B2 (en) 2019-12-31 2023-05-30 Auris Health, Inc. Alignment techniques for percutaneous access
WO2021137071A1 (fr) 2019-12-31 2021-07-08 Auris Health, Inc. Mode d'entraînement de panier avancé
CN111329581B (zh) * 2020-01-23 2022-03-15 诺创智能医疗科技(杭州)有限公司 手术机械臂的力反馈测量方法和手术机械臂
US11382699B2 (en) 2020-02-10 2022-07-12 Globus Medical Inc. Extended reality visualization of optical tool tracking volume for computer assisted navigation in surgery
US11207150B2 (en) 2020-02-19 2021-12-28 Globus Medical, Inc. Displaying a virtual model of a planned instrument attachment to ensure correct selection of physical instrument attachment
CN115315224B (zh) * 2020-03-27 2024-03-08 瑞德医疗机器股份有限公司 手术工具
GB2593734A (en) * 2020-03-31 2021-10-06 Cmr Surgical Ltd Testing unit for testing a surgical robotic system
CN113520596B (zh) * 2020-04-13 2022-07-15 上海微创医疗机器人(集团)股份有限公司 夹持机构、持镜臂及持镜机器人
CN113520611B (zh) * 2020-04-13 2023-08-25 上海微创医疗机器人(集团)股份有限公司 无菌隔离机构、持镜臂及持镜机器人
US11673261B2 (en) * 2020-04-20 2023-06-13 Intelligrated Headquarters, Llc Robotic manipulator
US11253216B2 (en) 2020-04-28 2022-02-22 Globus Medical Inc. Fixtures for fluoroscopic imaging systems and related navigation systems and methods
US11382700B2 (en) 2020-05-08 2022-07-12 Globus Medical Inc. Extended reality headset tool tracking and control
US11153555B1 (en) 2020-05-08 2021-10-19 Globus Medical Inc. Extended reality headset camera system for computer assisted navigation in surgery
US11510750B2 (en) 2020-05-08 2022-11-29 Globus Medical, Inc. Leveraging two-dimensional digital imaging and communication in medicine imagery in three-dimensional extended reality applications
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
US11317973B2 (en) 2020-06-09 2022-05-03 Globus Medical, Inc. Camera tracking bar for computer assisted navigation during surgery
US11382713B2 (en) 2020-06-16 2022-07-12 Globus Medical, Inc. Navigated surgical system with eye to XR headset display calibration
WO2021258113A1 (fr) 2020-06-19 2021-12-23 Remedy Robotics, Inc. Systèmes et procédés de guidage de dispositifs intraluminaux à l'intérieur du système vasculaire
US11877807B2 (en) 2020-07-10 2024-01-23 Globus Medical, Inc Instruments for navigated orthopedic surgeries
US11793588B2 (en) 2020-07-23 2023-10-24 Globus Medical, Inc. Sterile draping of robotic arms
US11883024B2 (en) 2020-07-28 2024-01-30 Cilag Gmbh International Method of operating a surgical instrument
US11737831B2 (en) 2020-09-02 2023-08-29 Globus Medical Inc. Surgical object tracking template generation for computer assisted navigation during surgical procedure
US11523785B2 (en) 2020-09-24 2022-12-13 Globus Medical, Inc. Increased cone beam computed tomography volume length without requiring stitching or longitudinal C-arm movement
EP4228541A2 (fr) * 2020-10-15 2023-08-23 Intuitive Surgical Operations, Inc. Détection et atténuation de collisions prédites d'objets à l'aide d'un système de commande d'utilisateur
CN116367968A (zh) * 2020-10-15 2023-06-30 瑞德医疗机器股份有限公司 作业辅助机器人
CN114376734B (zh) * 2020-10-19 2024-01-16 上海微创医疗机器人(集团)股份有限公司 一种手术机器人系统
US11911112B2 (en) 2020-10-27 2024-02-27 Globus Medical, Inc. Robotic navigational system
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11941814B2 (en) 2020-11-04 2024-03-26 Globus Medical Inc. Auto segmentation using 2-D images taken during 3-D imaging spin
US11717350B2 (en) 2020-11-24 2023-08-08 Globus Medical Inc. Methods for robotic assistance and navigation in spinal surgery and related systems
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
RU2754219C1 (ru) * 2020-12-22 2021-08-30 Акционерное общество "Казанский электротехнический завод" Манипулятор роботизированного хирургического комплекса
CN112674875B (zh) * 2020-12-24 2022-06-07 上海交通大学医学院附属第九人民医院 机械臂力反馈系统、方法、控制方法及控制终端
US20220226058A1 (en) * 2021-01-21 2022-07-21 Ethicon Llc Robotic surgical instruments with drive belt shaft insertion
KR20230146575A (ko) * 2021-02-17 2023-10-19 아우리스 헬스, 인코포레이티드 의료 기구 구동 조립체 및 도킹 시스템
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
WO2022186722A1 (fr) * 2021-03-01 2022-09-09 Общество с ограниченной ответственностью "Импрувити" Manipulateur à deux mains
RU206072U1 (ru) * 2021-03-01 2021-08-18 Общество с ограниченной ответственностью "Импрувити" Манипулятор с двумя руками
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
CN115252147A (zh) * 2021-04-26 2022-11-01 武汉联影智融医疗科技有限公司 用于穿刺手术的力反馈主操作手及穿刺手术机器人系统
US11723662B2 (en) 2021-05-28 2023-08-15 Cilag Gmbh International Stapling instrument comprising an articulation control display
US11707332B2 (en) 2021-07-01 2023-07-25 Remedy Robotics, Inc. Image space control for endovascular tools
WO2023278789A1 (fr) 2021-07-01 2023-01-05 Remedy Robotics, Inc. Détermination de position et d'orientation basée sur la vision pour des outils endovasculaires
US11857273B2 (en) 2021-07-06 2024-01-02 Globus Medical, Inc. Ultrasonic robotic surgical navigation
US11439444B1 (en) 2021-07-22 2022-09-13 Globus Medical, Inc. Screw tower and rod reduction tool
US20230047098A1 (en) * 2021-08-12 2023-02-16 Imperative Care, Inc. Multi catheter method of performing a robotic neurovascular procedure
WO2023063839A1 (fr) * 2021-10-11 2023-04-20 Qatar Foundation For Education, Science And Community Development Adaptateur d'endoscope chirurgical permettant la manœuvre actionnée d'endoscope
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11957337B2 (en) 2021-10-18 2024-04-16 Cilag Gmbh International Surgical stapling assembly with offset ramped drive surfaces
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
WO2023101968A1 (fr) 2021-11-30 2023-06-08 Endoquest Robotics, Inc. Ensembles de surtubes orientables pour les systèmes de chirurgie robotique
US11911115B2 (en) 2021-12-20 2024-02-27 Globus Medical Inc. Flat panel registration fixture and method of using same
EP4265216A1 (fr) * 2022-04-21 2023-10-25 Microsure B.V. Bras de robot destiné à être utilisé en chirurgie, microchirurgie ou super-microchirurgie
US20230372035A1 (en) * 2022-05-20 2023-11-23 Standard Bariatrics Inc. Surgical instruments for robotic-assisted surgery and methods of using the same
KR20230174489A (ko) * 2022-06-21 2023-12-28 큐렉소 주식회사 수술로봇용 수술도구 고정장치
CN117426807B (zh) * 2023-12-18 2024-03-12 中国医学科学院北京协和医院 一种用于腹腔镜手术术中使用的血管红外定位系统
CN117426809B (zh) * 2023-12-21 2024-03-15 苏州康多机器人有限公司 用于手术器械的绳索的张紧方法及张紧工装

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5222271A (en) 1975-08-14 1977-02-19 Toshiba Corp Automatic hand-exchange apparatus for industrial robot
JPS59146786A (ja) * 1983-02-09 1984-08-22 三菱電機株式会社 産業用ロボツトのハンド装置
CA2078295C (fr) 1991-08-05 1995-11-21 John Michael Putman Stabiliseur d'endoscope
US5762458A (en) 1996-02-20 1998-06-09 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US5515478A (en) 1992-08-10 1996-05-07 Computer Motion, Inc. Automated endoscope system for optimal positioning
JPH10505286A (ja) * 1995-06-20 1998-05-26 シン ング、ワン 医療処置のための関節アーム
JPH09141589A (ja) * 1995-11-17 1997-06-03 Yaskawa Electric Corp 多関節ロボットの手首機構
US5855583A (en) 1996-02-20 1999-01-05 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US6436107B1 (en) * 1996-02-20 2002-08-20 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US6132368A (en) * 1996-12-12 2000-10-17 Intuitive Surgical, Inc. Multi-component telepresence system and method
US6331181B1 (en) 1998-12-08 2001-12-18 Intuitive Surgical, Inc. Surgical robotic tools, data architecture, and use
US5795387A (en) * 1997-03-14 1998-08-18 Huerta; Joe A. Wallpaper paste applying apparatus
GB2331614A (en) * 1997-11-19 1999-05-26 Tetrel Ltd Inductive coin validation system
US6659939B2 (en) 1998-11-20 2003-12-09 Intuitive Surgical, Inc. Cooperative minimally invasive telesurgical system
US6394998B1 (en) * 1999-01-22 2002-05-28 Intuitive Surgical, Inc. Surgical tools for use in minimally invasive telesurgical applications
US6645196B1 (en) * 2000-06-16 2003-11-11 Intuitive Surgical, Inc. Guided tool change
US7155316B2 (en) * 2002-08-13 2006-12-26 Microbotics Corporation Microsurgical robot system
WO2005087128A1 (fr) 2004-03-05 2005-09-22 Hansen Medical, Inc. Systeme de catheter robotique
US7114406B2 (en) * 2004-09-16 2006-10-03 The Boeing Company End effector inspection apparatus and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9788903B2 (en) 2013-02-04 2017-10-17 Children's National Medical Center Hybrid control surgical robotic system

Also Published As

Publication number Publication date
RU2412800C2 (ru) 2011-02-27
KR20080100212A (ko) 2008-11-14
CA2635136C (fr) 2014-09-16
ES2365359T3 (es) 2011-09-30
EP1815950A1 (fr) 2007-08-08
RU2008135241A (ru) 2010-03-10
WO2007088208A1 (fr) 2007-08-09
EP1979136A1 (fr) 2008-10-15
US8506555B2 (en) 2013-08-13
BRPI0707443B8 (pt) 2019-08-27
BRPI0707443B1 (pt) 2019-08-06
CN101443162A (zh) 2009-05-27
PL1979136T3 (pl) 2011-10-31
JP2009525098A (ja) 2009-07-09
BRPI0707443A2 (pt) 2011-05-03
DK1979136T3 (da) 2011-06-27
CY1111710T1 (el) 2015-10-07
JP5130228B2 (ja) 2013-01-30
CN101443162B (zh) 2011-09-07
PT1979136E (pt) 2011-07-21
ATE507942T1 (de) 2011-05-15
CA2635136A1 (fr) 2007-08-09
MX2008010058A (es) 2008-11-12
US20090024142A1 (en) 2009-01-22
DE602007014322D1 (de) 2011-06-16
KR101375206B1 (ko) 2014-03-17

Similar Documents

Publication Publication Date Title
EP1979136B1 (fr) Systeme chirurgical robotique pour la realisation de procedures medicales peu invasives
EP1984150B1 (fr) Système médical robotisé comprenant un bras manipulateur de type à coordonées cylindriques
EP2135637B1 (fr) Système de téléprésence multicomposant correspondant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080730

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090213

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: OFFICE ERNEST T. FREYLINGER S.A.

REF Corresponds to:

Ref document number: 602007014322

Country of ref document: DE

Date of ref document: 20110616

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007014322

Country of ref document: DE

Effective date: 20110616

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20110714

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20110401760

Country of ref document: GR

Effective date: 20110829

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2365359

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110904

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110504

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120207

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007014322

Country of ref document: DE

Effective date: 20120207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070202

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20221219

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20230215

Year of fee payment: 17

Ref country code: ES

Payment date: 20230323

Year of fee payment: 17

Ref country code: DK

Payment date: 20230223

Year of fee payment: 17

Ref country code: CH

Payment date: 20230307

Year of fee payment: 17

Ref country code: AT

Payment date: 20230215

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230112

Year of fee payment: 17

Ref country code: SE

Payment date: 20230222

Year of fee payment: 17

Ref country code: PT

Payment date: 20230112

Year of fee payment: 17

Ref country code: PL

Payment date: 20230111

Year of fee payment: 17

Ref country code: IT

Payment date: 20230220

Year of fee payment: 17

Ref country code: GR

Payment date: 20230220

Year of fee payment: 17

Ref country code: GB

Payment date: 20230214

Year of fee payment: 17

Ref country code: DE

Payment date: 20230227

Year of fee payment: 17

Ref country code: CY

Payment date: 20230124

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231205

Year of fee payment: 18

Ref country code: FR

Payment date: 20231206

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231205

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20240221

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20240220

Year of fee payment: 18

Ref country code: ES

Payment date: 20240307

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240220

Year of fee payment: 18