EP1925033A1 - Elektronische schaltung und verfahren zur herstellung einer solchen - Google Patents
Elektronische schaltung und verfahren zur herstellung einer solchenInfo
- Publication number
- EP1925033A1 EP1925033A1 EP06792048A EP06792048A EP1925033A1 EP 1925033 A1 EP1925033 A1 EP 1925033A1 EP 06792048 A EP06792048 A EP 06792048A EP 06792048 A EP06792048 A EP 06792048A EP 1925033 A1 EP1925033 A1 EP 1925033A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- substrate
- strip
- shaped
- electronic circuit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 239000010410 layer Substances 0.000 claims abstract description 184
- 239000002346 layers by function Substances 0.000 claims abstract description 140
- 239000000758 substrate Substances 0.000 claims abstract description 139
- 239000000463 material Substances 0.000 claims abstract description 50
- 238000007639 printing Methods 0.000 claims description 27
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- 230000005669 field effect Effects 0.000 claims description 10
- 238000010924 continuous production Methods 0.000 claims description 7
- 239000007788 liquid Substances 0.000 claims description 7
- 239000003990 capacitor Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 2
- 238000004049 embossing Methods 0.000 claims description 2
- 238000000227 grinding Methods 0.000 claims description 2
- 238000006748 scratching Methods 0.000 claims description 2
- 230000002393 scratching effect Effects 0.000 claims description 2
- 238000007650 screen-printing Methods 0.000 claims description 2
- 238000004544 sputter deposition Methods 0.000 claims description 2
- 238000007740 vapor deposition Methods 0.000 claims description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 7
- 229910052737 gold Inorganic materials 0.000 description 7
- 239000010931 gold Substances 0.000 description 7
- 238000013532 laser treatment Methods 0.000 description 5
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 229920000123 polythiophene Polymers 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 229920001665 Poly-4-vinylphenol Polymers 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007646 gravure printing Methods 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/10—Deposition of organic active material
- H10K71/12—Deposition of organic active material using liquid deposition, e.g. spin coating
- H10K71/13—Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K19/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
- H10K19/10—Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00 comprising field-effect transistors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
- H10K10/464—Lateral top-gate IGFETs comprising only a single gate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/60—Forming conductive regions or layers, e.g. electrodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K77/00—Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
- H10K77/10—Substrates, e.g. flexible substrates
- H10K77/111—Flexible substrates
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/10—Organic polymers or oligomers
- H10K85/111—Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
- H10K85/113—Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
- H10K85/1135—Polyethylene dioxythiophene [PEDOT]; Derivatives thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49117—Conductor or circuit manufacturing
- Y10T29/49124—On flat or curved insulated base, e.g., printed circuit, etc.
- Y10T29/4913—Assembling to base an electrical component, e.g., capacitor, etc.
Definitions
- the invention relates to an electronic circuit comprising at least two electronic components on a common flexible substrate, wherein the at least two electronic components each have at least one electrical functional layer of identical functional layer material.
- the invention further relates to a method for producing an electronic circuit comprising at least two electronic components on a common flexible substrate, wherein the at least two electronic components are each formed with at least one electrical functional layer of identical functional layer material.
- WO 2004/032257 A2 discloses a method for producing a film, wherein the film comprises at least one component in organic semiconductor technology, in particular one or more field-effect transistors.
- the structuring of one or more layers of the device takes place by thermal replication or UV replication.
- a layer applied over a large area, to be replicated is partially completely severed by the replication and a pattern-shaped electrical functional layer is formed.
- a large-area layer application of the layer to be replicated is not necessary for reasons of space always possible and continues to lead to increased material consumption.
- a speed of the substrate in the printing direction during printing of at least 0.5 m / min, preferably in the range of 5 to 200 m / min, is selected.
- the individual electrical functional layers from which the electronic component is constructed must be formed one after the other and positioned one above the other in the correct position and arrangement according to a predetermined layout.
- Characteristics and short response times of a device required to minimize the layer thicknesses of electrical functional layers.
- the use of increasingly low-viscosity printing media is required.
- the object is achieved for the electronic circuit comprising at least two electronic components on a common flexible substrate, wherein the at least two electronic components each have at least one electrical functional layer of identical functional layer material, achieved in that the electrical functional layers of identical functional layer material are formed from layer regions of a strip-shaped layer formed on the substrate.
- the object is for the method for producing an electronic circuit comprising at least two electronic components on a common flexible substrate, wherein the at least two electronic components are each formed with at least one electrical functional layer of identical functional layer material, achieved in that at least one strip-shaped layer on the Substrate is formed and that the electrical functional layers are formed of identical functional layer material of layer regions of a single strip-shaped layer.
- a stripe-shaped application of functional layer material on a substrate enables a space-saving and uniformly thick layer application with clean contours.
- Such a prepared substrate which is provided with at least one strip-shaped layer of functional layer material, is versatile and individually adaptable to the respective desired electronic circuit.
- the layer formed in strip form on the substrate is formed in a predetermined application direction in a continuous process on the substrate.
- the layer formed on the substrate in the form of a strip is preferably a printed layer or a layer formed by application of a liquid medium to the substrate.
- a printing process is used as the continuous process, in particular a printing process from the group of gravure, high-pressure, screen printing or as another process of coating (for example, knife coating, spin coating, spraying or ink jet printing) which applies a liquid medium to the substrate to form the at least one strip-shaped layer.
- a printing tool is used which is unrolled on the substrate at least in regions.
- printing tools for example, pressure rollers or flexible rubber tools such as tampons are suitable.
- a pressure medium or liquid medium having a dynamic viscosity of less than 200 mPas, in particular less than 50 mPas, considered at a temperature of 20 ° C. is preferred.
- Such low-viscosity media allow the formation of extremely thin electrical functional layers while improving the performance of the electronic device produced therewith.
- a first electronic component of the at least two electronic components has a first electrical functional layer and a second electronic component of the at least two electronic components has a second electrical functional layer, wherein the first and the second electrical functional layer are formed of identical functional layer material, wherein the first and the second electrical functional layer are arranged on the substrate such that they are arranged one after the other in the application direction or next to one another.
- the layer formed in strip form on the substrate is a semiconductive or an electrically insulating layer, in particular an organic semiconductive or an organic electrically insulating layer. But also an electrically conductive, optionally organic electrically conductive, strip-shaped layer can be used.
- organic semiconductor material for example, polythiophene is suitable.
- organic insulating material among other things, polyvinylphenol has been proven.
- Inorganic semiconductor or insulating material can be vapor-deposited, sputtered or pastes containing semiconducting or electrically insulating inorganic particles, in particular nanoparticles, can be used.
- the substrate It is particularly advantageous to form the substrate with a plurality of strip-shaped layers arranged parallel next to one another and formed from different functional layer materials.
- the components required for the formation of the electronic circuit can be built therefrom.
- the layer formed on the substrate may be discontinuous and / or subdivided into mutually independent layer regions, at least one through opening being visible over the cross section of the strip formed in strip form on the substrate is formed strip-shaped layer formed on the substrate. It has proven useful if the strip-shaped layer formed on the substrate is subdivided in the application direction and / or perpendicular to the application direction.
- suitable methods for structuring the at least one strip-shaped layer the use of laser beam, embossing, cutting, grinding or scratching have proven successful.
- the at least one opening in the strip-shaped layer formed on the substrate is formed as a via, via which an electrical contact between electrical functional layers is formed, which is perpendicular to the substrate plane (xy plane) seen above and below the strip formed on the substrate layer are.
- a connection in the third dimension (z-plane) between functional layers is made possible.
- an opening has a width in the range of 1 ⁇ m to 10 mm, preferably of 50 ⁇ m to 2 mm.
- Such dimensions can be realized, for example, in low or high pressure using the method according to the invention with high accuracy.
- Such widths ensure sufficient electrical separation of layer areas of a strip-shaped layer and furthermore a sufficient material absorption capacity (for example for receiving printing paste) in the formation of plated-through holes via such an opening.
- At least one electronic component is designed as a transistor, in particular as a field-effect transistor.
- the at least two electronic Components are each formed as field effect transistors, wherein the field effect transistors each having a semiconducting electrical functional layer of identical functional layer material, which are formed from layer regions of a strip-shaped on the substrate formed semiconductive layer and wherein the field effect transistors each have an electrically insulating electrical functional layer of identical
- Functional layer material which are formed from layer regions of a strip-shaped on the substrate formed electrically insulating layer.
- At least one electronic component is designed as a diode.
- the at least two electronic components are each formed as diodes, wherein the diodes each have a semiconductive electrical functional layer of identical functional layer material, which are formed from layer regions of a strip-shaped on the substrate formed semiconducting layer.
- At least one electronic component is designed as an ohmic resistance.
- the at least two electronic components are each designed as ohmic resistors, wherein the resistors each have a functional layer of identical functional layer material, which are formed from layer regions of a strip-shaped layer formed on the substrate.
- At least one electronic component is designed as a capacitor.
- the at least two electronic components are each formed as capacitors, the capacitors each having an electrically insulating functional layer of identical functional layer material, which are formed from layer regions of a strip-shaped formed on the substrate electrically insulating layer.
- the flexible substrate is formed band-shaped. At least in the formation of the at least one strip-shaped layer, the substrate can be easily transported from roll to roll.
- the uncoated flexible substrate is wound onto a roll, the substrate is removed from the roll and guided, for example, through a printing press, thereby printed and finally wound up as a printed substrate onto a further roll. This allows the processing of long substrate tapes, wherein the positioning opposite the printing machine must be done only once at the beginning of a new substrate roll.
- the at least one strip-shaped layer formed on the substrate is arranged parallel to a longitudinal side of the band-shaped substrate, that is, the application direction is arranged parallel to a longitudinal side of the band-shaped substrate.
- a strip-shaped layer can be continuously formed on the substrate from the beginning of the roll to the end of the roll, thereby increasing the uniformity of the layer (in terms of layer thickness, width and surface roughness).
- the flexible substrate may be multi-layered. It is particularly preferred if an elongated plastic film, which is optionally multi-layered, is used as the flexible substrate. Suitable are here For example, plastic films made of polyester, polyethylene, polyethylene terephthalate or polyimide. It is useful if a thickness of the flexible substrate in the range of 6 .mu.m to 200 .mu.m, preferably in the range of 12 .mu.m to 50 .mu.m, is selected.
- Strip-shaped layer preferably 50 microns to 2000 microns.
- the preferred distance between two adjacent and mutually parallel strip-like layers is 2000 microns to 50,000 microns.
- the layers formed on the substrate in the form of strips at least in the substrate cross-section are arranged on the substrate in one plane and / or in different planes. As a result, three-dimensional circuits can be generated in a simple manner.
- each one of the at least two electrical functional layers of the at least two components is formed by a structuring of a, thus shared by the at least two electronic components, strip-shaped layer.
- a first electronic component of the at least two electronic components has a first electrical functional layer and wherein a second electronic component of the at least two electronic components has a second electrical functional layer, wherein the first and the second electrical functional layer are formed of identical functional layer material in which the first and the second electrical functional layer are arranged on the substrate in such a way that they are arranged successively or next to one another as seen in the application direction.
- the layer formed on the substrate in the form of a strip is formed with a layer thickness in the range from ln to 300 ⁇ m, in particular in the range from lnm to 300 nm.
- the at least two electronic components usually furthermore have electrically conductive, in particular organic or metallic, functional layers. These can be formed by means of printing, vapor deposition or sputtering (before or after the formation of strip-like layers) on the uncoated substrate or on an already coated substrate.
- electrically conductive materials in particular conductive polymers or metals or metal alloys, for example, of vapor-deposited or sputtered gold or silicon, or conductive pastes with gold, silver or conductive inorganic nanoparticles in question.
- conductive "organic” materials here all types of organic, organometallic and inorganic plastics are considered, which are referred to in English as "plastics".
- a restriction in the dogmatic sense to organic Material as carbon-containing material is therefore not provided, but it is also intended to the use of, for example, silicones.
- the term should not be subject to any restriction with regard to the molecular size, in particular to polymeric and / or oligomeric materials, but the use of "small molecules” is also possible.As the electrically conductive organic materials, polyaniline or polypyrrole have proven to be useful.
- the electronic circuit is an organic circuit.
- the electronic circuit has components which have only organic electrical functional layers and / or components which have organic and inorganic electrical functional layers.
- FIGS. 1a to 7b are intended to illustrate the invention by way of example. So shows:
- FIG. 1a shows a band-shaped substrate with four strip-shaped layers
- FIG. 1 b shows a cross section through the substrate from FIG. 1 a
- FIG. 2a shows a strip-shaped substrate with a strip-shaped layer
- FIG. 2b shows the substrate from FIG. 2a after a laser treatment
- FIG. 3 a shows a strip-shaped substrate with a strip-shaped layer
- FIG. 3b shows the substrate from FIG. 3a after a laser treatment
- 4a shows a belt-shaped substrate with a strip-shaped layer and other electrical
- FIG. 4b shows a cross section through the substrate from FIG. 4a
- FIG. 5a shows a band-shaped substrate with a subdivided, strip-shaped layer and further strip-shaped electrical functional layers
- FIG. 5b shows a longitudinal section through the substrate from FIG. 5a.
- FIG. 6a shows a band-shaped substrate with a subdivided, strip-shaped layer and a further strip-shaped layer
- FIG. 6b shows a cross section through the substrate from FIG. 6a
- Figure 7a shows a detail of an electronic circuit in plan view
- Figure 7b shows a cross section through the circuit of Figure 7a.
- FIG. 1a shows a flexible band-shaped substrate 1 made of PET with four strip-shaped layers 2a, 2b, 2c, 2d, which are arranged longitudinally on the band-shaped substrate 1 and parallel to one another.
- the four strip-shaped layers 2a, 2b, 2c, 2d are printed on the substrate 1 in the gravure printing method, the arrow indicating the direction of printing on the left in FIG. 1a.
- the four stripe-shaped layers 2a, 2b, 2c, 2d are applied parallel to the printing direction over the entire length of the substrate 1.
- the strip-shaped layer 2a is organic and electrically conductive
- the strip-shaped layer 2b is organic and semiconducting
- the strip-shaped layer 2c is again organic and electrically conductive
- the strip-shaped layer 2d is formed organic and electrically insulating.
- the strip-shaped layers 2a, 2b, 2c, 2d are now used either in unchanged form or in a structured form as electrical functional layers for constructing electronic components.
- the strip-shaped application of the functional layer material by means of a printing medium results in a particularly uniform layer thickness and contour of the later functional layers of the electronic components.
- FIG. 1 b shows the cross-section A - A 'through the substrate 1 and the four strip-shaped layers 2 a, 2 b, 2 c, 2 d from FIG. 1 a.
- FIG. 2 a shows a flexible band-shaped substrate 1 with a strip-shaped layer 2 b of organic semiconductive functional layer material, here polythiophene.
- the strip-shaped layer 2 b is printed longitudinally on the substrate 1, wherein the arrow on the left in the image
- Layer regions 3a of the strip-shaped layer 2b oriented in the longitudinal direction of the substrate 1 are characterized in which, after formation of the strip-shaped layer 2b, a cut is to take place by means of a laser in order to provide the strip-shaped layer 2b with openings 4a (see FIG. 2b).
- FIG. 2b now shows the substrate 1 and the strip-shaped layer 2b from FIG. 2a after the laser treatment, wherein the strip-shaped layer 2b has been divided into three strips which are parallel and separated from one another in the longitudinal direction of the substrate 1.
- the three strip-shaped layers 2b are now used, if appropriate after further structuring, as electrical functional layers for constructing electronic components.
- the strip-shaped application of the functional layer material by means of a printing medium results in a particularly uniform layer thickness and contour of the later functional layers of the electronic components.
- FIG. 3a likewise shows a flexible strip-shaped substrate 1 with a strip-shaped layer 2b made of organic semiconductive functional layer material, here polythiophene.
- the strip-shaped layer 2 b is printed longitudinally on the substrate 1, wherein the arrow on the left in the image Order direction designated.
- Layer regions 3b oriented in the transverse direction of the substrate 1 are marked in the strip-shaped layer 2b, in which, after formation of the strip-shaped layer 2b, a cut should be made by means of a laser in order to provide the strip-shaped layer 2b with openings 4b (see FIG. 3b).
- FIG. 3b now shows the substrate 1 and the strip-shaped layer 2b from FIG. 3a after the laser treatment, the strip-shaped layer 2b being divided into three strips which are parallel and separated from one another in the transverse direction of the substrate 1.
- the three strip-shaped layers 2b are now used, if appropriate after further structuring, as electrical functional layers for constructing electronic components.
- the strip-shaped application of the functional layer material by means of a printing medium results in a particularly uniform layer thickness and contour of the later functional layers of the electronic components.
- FIG. 4 a shows a flexible strip-shaped substrate 1 made of PET with a printed, organic semiconducting and strip-shaped layer 2 b, here of polythiophene, and further, electrically conductive functional layers 5 a, 5 b of sputtered gold.
- the functional layer 5b of gold was formed directly on the substrate 1, the strip-shaped layer 2b printed longitudinally on the strip-shaped substrate 1 and finally the functional layer 5a formed from gold.
- a unit of electrically conductive functional layers 5a, 5b and arranged therebetween Organic semiconducting layer 2b each forms a diode.
- a strip-shaped electrically insulating layer could optionally be arranged between the organic semiconductive layer 2 b and the electrically conductive functional layer 5 a
- Region between the organic semiconductive layer 2b and the electrically conductive functional layer 5b has a via or an opening. Direct contact between the organic semiconductive layer 2b and the electrically conductive functional layer 5a is possible via the via.
- FIG. 4b shows the cross section B - B 'through the substrate 1 and the layers 5a, 2b, 5b arranged thereon from FIG. 4a in the region of a diode. It can be seen that the electrically conductive functional layers 5a, 5b of gold, which form electrodes here, overlap in the region of the strip-shaped layer 2b. Thus, through each unit consisting of a functional layer 5b, the stripe-shaped layer 2b is placed over the functional layer 5b and over it
- FIG. 4a two diode units can be seen.
- the electrodes 5a, 5b still have to be contacted in accordance with conductor tracks in order to realize an interconnection of the components with one another.
- FIG. 5a shows a flexible strip-shaped substrate 1 with a strip-shaped layer 2d made of electrically insulating functional layer material, here polyvinylphenol.
- a strip-shaped layer 2 a of electrically conductive functional layer material is formed in regions in the longitudinal direction, here by printing.
- the strip-shaped layer 2 a of electrically conductive functional layer material is further overprinted with a strip-shaped layer 2 d of electrically insulating functional layer material, which is formed over the entire length of the substrate 1.
- an opening 4 b is formed perpendicular to the longitudinal direction of the substrate 1.
- the two strip-shaped layers 2c are simultaneously formed by printing, which are likewise formed from electrically conductive functional layer material.
- an electrically conductive connection is formed between the strip-shaped layer 2a and the strip layer 2c arranged on the left (see also FIG. 5b). Accordingly, the opening 4b functions as a so-called via, which enables a three-dimensional interconnection of electrical functional layers.
- FIG. 5b shows the longitudinal section C - C through the substrate 1 from FIG. 5a in order to illustrate the formation of the electrically conductive connection in the region of the via.
- FIG. 6 a shows a flexible strip-shaped substrate 1 made of PET with a strip-shaped layer 5 a, which is subdivided several times by laser, made of electrically conductive functional layer material, here polyaniline or gold.
- electrically conductive functional layer material here polyaniline or gold.
- rectilinearly extending openings 4b and meandering openings 4c were formed and two further strip-shaped layers, once a non-illustrated semiconducting layer 2b and further a layer 2d of electrically insulating functional layer material, here polyvinylphenol, formed above.
- the Layer regions of the strip-shaped layer 5a before and after a meander-shaped opening 4c, and the strip-shaped layers 2b, 2d arranged above the meander form a separate unit which forms a resistance.
- the leakage current of the semiconductor causes the resistance.
- two resistance units can be seen in FIG. 6a.
- FIG. 6b shows the cross section D - D 'through the substrate 1 from FIG. 6a, the semiconducting layer 2b being visible between the strip-shaped layer 5a and the electrically insulating layer 2d.
- FIG. 7a shows a detail of an electrical circuit, in this case a ring oscillator circuit, in plan view.
- electrically conductive functional layers 2 a On a substrate 1 there are electrically conductive functional layers 2 a, which are covered by a thin, fully applied organic semiconductive functional layer 2 b.
- organic, semiconductive functional layer 2b On the organic, semiconductive functional layer 2b there is an electrically insulating functional layer 2d applied over the entire area and in strips, which has an opening 4b in the region in which the section E-E 'is laid, which was subsequently formed with a laser.
- electrically insulating layer 2d On the electrically insulating layer 2d is another electrically conductive layer 2c, which is strip-shaped.
- the electrically conductive layer 2c In the region of the opening in the electrically insulating layer 2d is the electrically conductive layer 2c in each case in contact with the electrically conductive functional layer 2a, after the semiconductive layer 2b is made so thin that an electrical contact or a short circuit between the conductive layers 2a and 2c is formed in the region of this opening.
- the electrically conductive layer 2 a, the semiconducting layer 2 b, the electrically insulating layer 2 d and the electrically conductive layer 2 c are arranged one above the other and also in the region of the comb structures within the electrically conductive layer 2 a, one is in each case organic Field effect transistor formed.
- FIGS 1 a to 7 b are merely illustrative of the inventive concept. On this basis, the person skilled in the art will readily be able to find further electronic circuits and application examples for which layers applied in strips to a substrate can be used without departing from the invention. So should the figures Ia to 7b no
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Thin Film Transistor (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Manufacturing Of Printed Wiring (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005044306A DE102005044306A1 (de) | 2005-09-16 | 2005-09-16 | Elektronische Schaltung und Verfahren zur Herstellung einer solchen |
PCT/EP2006/008930 WO2007031303A1 (de) | 2005-09-16 | 2006-09-13 | Elektronische schaltung und verfahren zur herstellung einer solchen |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1925033A1 true EP1925033A1 (de) | 2008-05-28 |
Family
ID=37433937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06792048A Withdrawn EP1925033A1 (de) | 2005-09-16 | 2006-09-13 | Elektronische schaltung und verfahren zur herstellung einer solchen |
Country Status (6)
Country | Link |
---|---|
US (1) | US8315061B2 (de) |
EP (1) | EP1925033A1 (de) |
KR (1) | KR20080045247A (de) |
CN (1) | CN101263602B (de) |
DE (1) | DE102005044306A1 (de) |
WO (1) | WO2007031303A1 (de) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11665830B2 (en) | 2017-06-28 | 2023-05-30 | Honda Motor Co., Ltd. | Method of making smart functional leather |
US10953793B2 (en) | 2017-06-28 | 2021-03-23 | Honda Motor Co., Ltd. | Haptic function leather component and method of making the same |
US10682952B2 (en) | 2017-06-28 | 2020-06-16 | Honda Motor Co., Ltd. | Embossed smart functional premium natural leather |
US11225191B2 (en) | 2017-06-28 | 2022-01-18 | Honda Motor Co., Ltd. | Smart leather with wireless power |
US10742061B2 (en) | 2017-06-28 | 2020-08-11 | Honda Motor Co., Ltd. | Smart functional leather for recharging a portable electronic device |
US10272836B2 (en) | 2017-06-28 | 2019-04-30 | Honda Motor Co., Ltd. | Smart functional leather for steering wheel and dash board |
US11751337B2 (en) | 2019-04-26 | 2023-09-05 | Honda Motor Co., Ltd. | Wireless power of in-mold electronics and the application within a vehicle |
Family Cites Families (261)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB723598A (en) | 1951-09-07 | 1955-02-09 | Philips Nv | Improvements in or relating to methods of producing electrically conductive mouldings from plastics |
US3512052A (en) * | 1968-01-11 | 1970-05-12 | Gen Motors Corp | Metal-insulator-semiconductor voltage variable capacitor with controlled resistivity dielectric |
DE2102735B2 (de) | 1971-01-21 | 1979-05-10 | Transformatoren Union Ag, 7000 Stuttgart | Einrichtung zur Regelung des Mengendurchsatzes von Mühlen und Brechern |
US3769096A (en) | 1971-03-12 | 1973-10-30 | Bell Telephone Labor Inc | Pyroelectric devices |
AU488652B2 (en) | 1973-09-26 | 1976-04-01 | Commonwealth Scientific And Industrial Research Organisation | Improvements in or relating to security tokens |
JPS543594B2 (de) * | 1973-10-12 | 1979-02-24 | ||
DE2407110C3 (de) | 1974-02-14 | 1981-04-23 | Siemens AG, 1000 Berlin und 8000 München | Sensor zum Nachweis einer in einem Gas oder einer Flüssigkeit einthaltenen Substanz |
JPS54101176A (en) | 1978-01-26 | 1979-08-09 | Shinetsu Polymer Co | Contact member for push switch |
US4442019A (en) * | 1978-05-26 | 1984-04-10 | Marks Alvin M | Electroordered dipole suspension |
US4246298A (en) * | 1979-03-14 | 1981-01-20 | American Can Company | Rapid curing of epoxy resin coating compositions by combination of photoinitiation and controlled heat application |
JPS5641938U (de) | 1979-09-10 | 1981-04-17 | ||
US4340057A (en) * | 1980-12-24 | 1982-07-20 | S. C. Johnson & Son, Inc. | Radiation induced graft polymerization |
US4472627A (en) | 1982-09-30 | 1984-09-18 | The United States Of America As Represented By The Secretary Of The Treasury | Authenticating and anti-counterfeiting device for currency |
JPS59145576A (ja) | 1982-11-09 | 1984-08-21 | ザイトレツクス・コ−ポレ−シヨン | プログラム可能なmosトランジスタ |
DE3321071A1 (de) | 1983-06-10 | 1984-12-13 | Basf Ag | Druckschalter |
US4587719A (en) * | 1983-08-01 | 1986-05-13 | The Board Of Trustees Of The Leland Stanford Junior University | Method of fabrication of long arrays using a short substrate |
DE3338597A1 (de) | 1983-10-24 | 1985-05-02 | GAO Gesellschaft für Automation und Organisation mbH, 8000 München | Datentraeger mit integriertem schaltkreis und verfahren zur herstellung desselben |
US4554229A (en) | 1984-04-06 | 1985-11-19 | At&T Technologies, Inc. | Multilayer hybrid integrated circuit |
JPS6265472A (ja) | 1985-09-18 | 1987-03-24 | Toshiba Corp | Mis型半導体素子 |
US4726659A (en) | 1986-02-24 | 1988-02-23 | Rca Corporation | Display device having different alignment layers |
US4926052A (en) * | 1986-03-03 | 1990-05-15 | Kabushiki Kaisha Toshiba | Radiation detecting device |
EP0268370B1 (de) | 1986-10-13 | 1995-06-28 | Canon Kabushiki Kaisha | Schaltungselement |
GB2215307B (en) | 1988-03-04 | 1991-10-09 | Unisys Corp | Electronic component transportation container |
DE68912426T2 (de) | 1988-06-21 | 1994-05-11 | Gec Avery Ltd | Herstellung von tragbaren elektronischen Karten. |
US5364735A (en) | 1988-07-01 | 1994-11-15 | Sony Corporation | Multiple layer optical record medium with protective layers and method for producing same |
US4937119A (en) * | 1988-12-15 | 1990-06-26 | Hoechst Celanese Corp. | Textured organic optical data storage media and methods of preparation |
US5892244A (en) * | 1989-01-10 | 1999-04-06 | Mitsubishi Denki Kabushiki Kaisha | Field effect transistor including πconjugate polymer and liquid crystal display including the field effect transistor |
FR2644920B1 (fr) | 1989-03-21 | 1993-09-24 | France Etat | Dispositif d'affichage polychrome a memoire du type photoconducteur-electroluminescent |
US6331356B1 (en) * | 1989-05-26 | 2001-12-18 | International Business Machines Corporation | Patterns of electrically conducting polymers and their application as electrodes or electrical contacts |
DE69018348T2 (de) | 1989-07-25 | 1995-08-03 | Matsushita Electric Ind Co Ltd | Speicherbauelement aus organischem Halbleiter mit einer MISFET-Struktur und sein Kontrollverfahren. |
FI84862C (fi) | 1989-08-11 | 1992-01-27 | Vaisala Oy | Kapacitiv fuktighetsgivarkonstruktion och foerfarande foer framstaellning daerav. |
DE3942663A1 (de) | 1989-12-22 | 1991-06-27 | Gao Ges Automation Org | Datentraeger mit einem fluessigkristall-sicherheitselement |
US5206525A (en) * | 1989-12-27 | 1993-04-27 | Nippon Petrochemicals Co., Ltd. | Electric element capable of controlling the electric conductivity of π-conjugated macromolecular materials |
FI91573C (sv) | 1990-01-04 | 1994-07-11 | Neste Oy | Sätt att framställa elektroniska och elektro-optiska komponenter och kretsar |
JP2969184B2 (ja) | 1990-04-09 | 1999-11-02 | カシオ計算機株式会社 | 薄膜トランジスタメモリ |
FR2664430B1 (fr) | 1990-07-04 | 1992-09-18 | Centre Nat Rech Scient | Transistor a effet de champ en couche mince de structure mis, dont l'isolant et le semiconducteur sont realises en materiaux organiques. |
US5202677A (en) * | 1991-01-31 | 1993-04-13 | Crystal Images, Inc. | Display apparatus using thermochromic material |
DE4103675C2 (de) | 1991-02-07 | 1993-10-21 | Telefunken Microelectron | Schaltung zur Spannungsüberhöhung von Wechselspannungs-Eingangssignalen |
FR2673041A1 (fr) | 1991-02-19 | 1992-08-21 | Gemplus Card Int | Procede de fabrication de micromodules de circuit integre et micromodule correspondant. |
EP0501456A3 (de) | 1991-02-26 | 1992-09-09 | Sony Corporation | Mit eine optischen Plattenantrieb ausgerüsteter Videospielcomputer |
US5408109A (en) * | 1991-02-27 | 1995-04-18 | The Regents Of The University Of California | Visible light emitting diodes fabricated from soluble semiconducting polymers |
EP0511807A1 (de) | 1991-04-27 | 1992-11-04 | Gec Avery Limited | Apparat und Sensoreinheit zur Anzeige von zeitabhängigen Änderungen in einer physikalischen Grösse |
JP3224829B2 (ja) | 1991-08-15 | 2001-11-05 | 株式会社東芝 | 有機電界効果型素子 |
JPH0580530A (ja) | 1991-09-24 | 1993-04-02 | Hitachi Ltd | 薄膜パターン製造方法 |
US5173835A (en) | 1991-10-15 | 1992-12-22 | Motorola, Inc. | Voltage variable capacitor |
JPH0770470B2 (ja) * | 1991-10-30 | 1995-07-31 | フラウンホファー・ゲゼルシャフト・ツール・フォルデルング・デル・アンゲバンテン・フォルシュング・アインゲトラーゲネル・フェライン | 照射装置 |
JP2709223B2 (ja) * | 1992-01-30 | 1998-02-04 | 三菱電機株式会社 | 非接触形携帯記憶装置 |
FR2696043B1 (fr) | 1992-09-18 | 1994-10-14 | Commissariat Energie Atomique | Support à réseau d'éléments résistifs en polymère conducteur et son procédé de fabrication. |
EP0603939B1 (de) | 1992-12-21 | 1999-06-16 | Koninklijke Philips Electronics N.V. | Leitfähiges N-Typ-Polymer und Methode zur Herstellung desselben |
DE4243832A1 (de) | 1992-12-23 | 1994-06-30 | Daimler Benz Ag | Tastsensoranordnung |
JP3457348B2 (ja) * | 1993-01-15 | 2003-10-14 | 株式会社東芝 | 半導体装置の製造方法 |
FR2701117B1 (fr) * | 1993-02-04 | 1995-03-10 | Asulab Sa | Système de mesures électrochimiques à capteur multizones, et son application au dosage du glucose. |
EP0615256B1 (de) | 1993-03-09 | 1998-09-23 | Koninklijke Philips Electronics N.V. | Herstellungsverfahren eines Musters von einem elektrisch leitfähigen Polymer auf einer Substratoberfläche und Metallisierung eines solchen Musters |
US5567550A (en) | 1993-03-25 | 1996-10-22 | Texas Instruments Incorporated | Method of making a mask for making integrated circuits |
DE4312766C2 (de) | 1993-04-20 | 1997-02-27 | Telefunken Microelectron | Schaltung zur Spannungsüberhöhung |
JPH0722669A (ja) * | 1993-07-01 | 1995-01-24 | Mitsubishi Electric Corp | 可塑性機能素子 |
CA2170402C (en) | 1993-08-24 | 2000-07-18 | Michael P. Allen | Novel disposable electronic assay device |
JP3460863B2 (ja) | 1993-09-17 | 2003-10-27 | 三菱電機株式会社 | 半導体装置の製造方法 |
FR2710413B1 (fr) * | 1993-09-21 | 1995-11-03 | Asulab Sa | Dispositif de mesure pour capteurs amovibles. |
US5556706A (en) | 1993-10-06 | 1996-09-17 | Matsushita Electric Industrial Co., Ltd. | Conductive layered product and method of manufacturing the same |
IL111151A (en) | 1994-10-03 | 1998-09-24 | News Datacom Ltd | Secure access systems |
US6028649A (en) * | 1994-04-21 | 2000-02-22 | Reveo, Inc. | Image display systems having direct and projection viewing modes |
KR100350817B1 (ko) * | 1994-05-16 | 2003-01-24 | 코닌클리케 필립스 일렉트로닉스 엔.브이. | 유기반도체물질로형성된반도체장치 |
IL110318A (en) | 1994-05-23 | 1998-12-27 | Al Coat Ltd | Solutions containing polyaniline for making transparent electrodes for liquid crystal devices |
US5684884A (en) | 1994-05-31 | 1997-11-04 | Hitachi Metals, Ltd. | Piezoelectric loudspeaker and a method for manufacturing the same |
JP3246189B2 (ja) | 1994-06-28 | 2002-01-15 | 株式会社日立製作所 | 半導体表示装置 |
US5528222A (en) * | 1994-09-09 | 1996-06-18 | International Business Machines Corporation | Radio frequency circuit and memory in thin flexible package |
US5574291A (en) | 1994-12-09 | 1996-11-12 | Lucent Technologies Inc. | Article comprising a thin film transistor with low conductivity organic layer |
US5630986A (en) * | 1995-01-13 | 1997-05-20 | Bayer Corporation | Dispensing instrument for fluid monitoring sensors |
DE19506907A1 (de) | 1995-02-28 | 1996-09-05 | Telefunken Microelectron | Schaltungsanordnung zur Variation eines Eingangssignals mit bestimmter Eingangsspannung und bestimmtem Eingangsstrom |
JP3068430B2 (ja) * | 1995-04-25 | 2000-07-24 | 富山日本電気株式会社 | 固体電解コンデンサ及びその製造方法 |
JPH08328031A (ja) * | 1995-06-02 | 1996-12-13 | Sharp Corp | フルカラー液晶表示装置およびその製造方法 |
US5622652A (en) * | 1995-06-07 | 1997-04-22 | Img Group Limited | Electrically-conductive liquid for directly printing an electrical circuit component onto a substrate, and a method for making such a liquid |
JPH0933645A (ja) | 1995-07-21 | 1997-02-07 | Oki Electric Ind Co Ltd | トランスポンダの電源回路 |
US5652645A (en) * | 1995-07-24 | 1997-07-29 | Anvik Corporation | High-throughput, high-resolution, projection patterning system for large, flexible, roll-fed, electronic-module substrates |
US5707894A (en) * | 1995-10-27 | 1998-01-13 | United Microelectronics Corporation | Bonding pad structure and method thereof |
US5625199A (en) | 1996-01-16 | 1997-04-29 | Lucent Technologies Inc. | Article comprising complementary circuit with inorganic n-channel and organic p-channel thin film transistors |
US6469683B1 (en) | 1996-01-17 | 2002-10-22 | Nippon Telegraph And Telephone Corporation | Liquid crystal optical device |
US6326640B1 (en) | 1996-01-29 | 2001-12-04 | Motorola, Inc. | Organic thin film transistor with enhanced carrier mobility |
GB2310493B (en) * | 1996-02-26 | 2000-08-02 | Unilever Plc | Determination of the characteristics of fluid |
JP3080579B2 (ja) | 1996-03-06 | 2000-08-28 | 富士機工電子株式会社 | エアリア・グリッド・アレイ・パッケージの製造方法 |
DE19610284A1 (de) | 1996-03-15 | 1997-08-07 | Siemens Ag | Antennenspule |
JP2000512428A (ja) * | 1996-06-12 | 2000-09-19 | ザ トラスティーズ オブ プリンストン ユニバーシテイ | 有機多色表示器製造のための薄膜パターン化 |
DE19629656A1 (de) * | 1996-07-23 | 1998-01-29 | Boehringer Mannheim Gmbh | Diagnostischer Testträger mit mehrschichtigem Testfeld und Verfahren zur Bestimmung von Analyt mit dessen Hilfe |
US5693956A (en) | 1996-07-29 | 1997-12-02 | Motorola | Inverted oleds on hard plastic substrate |
EP0824301A3 (de) * | 1996-08-09 | 1999-08-11 | Hitachi, Ltd. | Gedruckte Schaltungsplatte, Chipkarte, und Verfahren zu deren Herstellung |
DE19648937A1 (de) | 1996-11-26 | 1997-05-15 | Meonic Sys Eng Gmbh | Elektronisches Etikett |
US6259506B1 (en) * | 1997-02-18 | 2001-07-10 | Spectra Science Corporation | Field activated security articles including polymer dispersed liquid crystals, and including micro-encapsulated field affected materials |
US5946551A (en) | 1997-03-25 | 1999-08-31 | Dimitrakopoulos; Christos Dimitrios | Fabrication of thin film effect transistor comprising an organic semiconductor and chemical solution deposited metal oxide gate dielectric |
US6344662B1 (en) * | 1997-03-25 | 2002-02-05 | International Business Machines Corporation | Thin-film field-effect transistor with organic-inorganic hybrid semiconductor requiring low operating voltages |
US5841325A (en) | 1997-05-12 | 1998-11-24 | Hewlett-Packard Company | Fully-integrated high-speed interleaved voltage-controlled ring oscillator |
KR100248392B1 (ko) | 1997-05-15 | 2000-09-01 | 정선종 | 유기물전계효과트랜지스터와결합된유기물능동구동전기발광소자및그소자의제작방법 |
WO1999010939A2 (en) | 1997-08-22 | 1999-03-04 | Koninklijke Philips Electronics N.V. | A method of manufacturing a field-effect transistor substantially consisting of organic materials |
DE02079791T1 (de) | 1997-09-11 | 2004-04-15 | Precision Dynamics Corp., San Fernando | RF-ID Etikett mit einem integriertem Schaltkreis aus organischen Materialen |
EP1296280A1 (de) | 1997-09-11 | 2003-03-26 | Precision Dynamics Corporation | RF-ID Etikett mit einem integriertem Schaltkreis aus organischen Materialen |
US6251513B1 (en) | 1997-11-08 | 2001-06-26 | Littlefuse, Inc. | Polymer composites for overvoltage protection |
JPH11142810A (ja) | 1997-11-12 | 1999-05-28 | Nintendo Co Ltd | 携帯型情報処理装置 |
WO1999030432A1 (en) | 1997-12-05 | 1999-06-17 | Koninklijke Philips Electronics N.V. | Identification transponder |
US5997817A (en) | 1997-12-05 | 1999-12-07 | Roche Diagnostics Corporation | Electrochemical biosensor test strip |
US5998805A (en) | 1997-12-11 | 1999-12-07 | Motorola, Inc. | Active matrix OED array with improved OED cathode |
US6083104A (en) * | 1998-01-16 | 2000-07-04 | Silverlit Toys (U.S.A.), Inc. | Programmable toy with an independent game cartridge |
JP4272353B2 (ja) * | 1998-01-28 | 2009-06-03 | シン フィルム エレクトロニクス エイエスエイ | 3次元の導電構造体および/または半導電構造体を生成する方法、同構造体を消去する方法および生成する同方法と共に用いられる電界発生器/変調器 |
US6087196A (en) * | 1998-01-30 | 2000-07-11 | The Trustees Of Princeton University | Fabrication of organic semiconductor devices using ink jet printing |
US6045977A (en) * | 1998-02-19 | 2000-04-04 | Lucent Technologies Inc. | Process for patterning conductive polyaniline films |
JPH11249494A (ja) | 1998-03-03 | 1999-09-17 | Canon Inc | ドラムフランジ、円筒部材、プロセスカートリッジ、電子写真画像形成装置 |
DE19816860A1 (de) | 1998-03-06 | 1999-11-18 | Deutsche Telekom Ag | Chipkarte, insbesondere Guthabenkarte |
US6033202A (en) | 1998-03-27 | 2000-03-07 | Lucent Technologies Inc. | Mold for non - photolithographic fabrication of microstructures |
US6369793B1 (en) * | 1998-03-30 | 2002-04-09 | David C. Zimman | Printed display and battery |
WO1999053371A1 (en) * | 1998-04-10 | 1999-10-21 | E-Ink Corporation | Electronic displays using organic-based field effect transistors |
GB9808061D0 (en) | 1998-04-16 | 1998-06-17 | Cambridge Display Tech Ltd | Polymer devices |
NL1008929C2 (nl) * | 1998-04-20 | 1999-10-21 | Vhp Ugchelen Bv | Uit papier vervaardigd substraat voorzien van een geïntegreerde schakeling. |
GB9808806D0 (en) | 1998-04-24 | 1998-06-24 | Cambridge Display Tech Ltd | Selective deposition of polymer films |
TW410478B (en) | 1998-05-29 | 2000-11-01 | Lucent Technologies Inc | Thin-film transistor monolithically integrated with an organic light-emitting diode |
US6107920A (en) | 1998-06-09 | 2000-08-22 | Motorola, Inc. | Radio frequency identification tag having an article integrated antenna |
US5967048A (en) | 1998-06-12 | 1999-10-19 | Howard A. Fromson | Method and apparatus for the multiple imaging of a continuous web |
KR100282393B1 (ko) | 1998-06-17 | 2001-02-15 | 구자홍 | 유기이엘(el)디스플레이소자제조방법 |
CA2334862C (en) * | 1998-06-19 | 2006-06-13 | Thomas Jackson | An integrated inorganic/organic complementary thin-film transistor circuit and a method for its production |
DE19836174C2 (de) | 1998-08-10 | 2000-10-12 | Illig Maschinenbau Adolf | Heizung zum Erwärmen von thermoplastischen Kunststoffplatten und Verfahren zum Einstellen der Temperatur dieser Heizung |
US6215130B1 (en) | 1998-08-20 | 2001-04-10 | Lucent Technologies Inc. | Thin film transistors |
PT1108207E (pt) | 1998-08-26 | 2008-08-06 | Sensors For Med & Science Inc | Dispositivos de sensores ópticos |
JP4493741B2 (ja) | 1998-09-04 | 2010-06-30 | 株式会社半導体エネルギー研究所 | 半導体装置の作製方法 |
DE69831243T2 (de) | 1998-10-13 | 2006-08-10 | Sony Deutschland Gmbh | Herstellungsverfahren einer Licht emittierenden Anzeigevorrichtung mit aktiver Matrix |
US6566153B1 (en) * | 1998-10-14 | 2003-05-20 | The Regents Of The University Of California | Process for fabricating organic semiconductor devices using ink-jet printing technology and device and system employing same |
DE19851703A1 (de) | 1998-10-30 | 2000-05-04 | Inst Halbleiterphysik Gmbh | Verfahren zur Herstellung von elektronischen Strukturen |
US6384804B1 (en) * | 1998-11-25 | 2002-05-07 | Lucent Techonologies Inc. | Display comprising organic smart pixels |
US6021050A (en) * | 1998-12-02 | 2000-02-01 | Bourns, Inc. | Printed circuit boards with integrated passive components and method for making same |
US6506438B2 (en) * | 1998-12-15 | 2003-01-14 | E Ink Corporation | Method for printing of transistor arrays on plastic substrates |
US6321571B1 (en) | 1998-12-21 | 2001-11-27 | Corning Incorporated | Method of making glass structures for flat panel displays |
US6114088A (en) * | 1999-01-15 | 2000-09-05 | 3M Innovative Properties Company | Thermal transfer element for forming multilayer devices |
EP1144197B1 (de) | 1999-01-15 | 2003-06-11 | 3M Innovative Properties Company | Thermisches Übertragungsverfahren. |
GB2347013A (en) * | 1999-02-16 | 2000-08-23 | Sharp Kk | Charge-transport structures |
AU744962B2 (en) * | 1999-02-22 | 2002-03-07 | Nippon Steel & Sumitomo Metal Corporation | High strength galvanized steel plate excellent in adhesion of plated metal and formability in press working and high strength alloy galvanized steel plate and method for production thereof |
AU5646800A (en) | 1999-03-02 | 2000-09-21 | Helix Biopharma Corporation | Card-based biosensor device |
US6180956B1 (en) | 1999-03-03 | 2001-01-30 | International Business Machine Corp. | Thin film transistors with organic-inorganic hybrid materials as semiconducting channels |
US6207472B1 (en) * | 1999-03-09 | 2001-03-27 | International Business Machines Corporation | Low temperature thin film transistor fabrication |
EP1083775B1 (de) | 1999-03-29 | 2010-10-13 | Seiko Epson Corporation | Zusammensetzung mit einem organischen elektrolumineszierenden Material |
US6514801B1 (en) | 1999-03-30 | 2003-02-04 | Seiko Epson Corporation | Method for manufacturing thin-film transistor |
US6498114B1 (en) | 1999-04-09 | 2002-12-24 | E Ink Corporation | Method for forming a patterned semiconductor film |
US6072716A (en) * | 1999-04-14 | 2000-06-06 | Massachusetts Institute Of Technology | Memory structures and methods of making same |
US6387736B1 (en) * | 1999-04-26 | 2002-05-14 | Agilent Technologies, Inc. | Method and structure for bonding layers in a semiconductor device |
FR2793089B3 (fr) | 1999-04-28 | 2001-06-08 | Rene Liger | Transpondeur a antenne integree |
DE19920593B4 (de) * | 1999-05-05 | 2006-07-13 | Assa Abloy Identification Technology Group Ab | Chipträger für ein Chipmodul und Verfahren zur Herstellung des Chipmoduls |
US6736985B1 (en) * | 1999-05-05 | 2004-05-18 | Agere Systems Inc. | High-resolution method for patterning a substrate with micro-printing |
DE19921024C2 (de) | 1999-05-06 | 2001-03-08 | Wolfgang Eichelmann | Videospielanlage |
US6383664B2 (en) * | 1999-05-11 | 2002-05-07 | The Dow Chemical Company | Electroluminescent or photocell device having protective packaging |
JP4136185B2 (ja) * | 1999-05-12 | 2008-08-20 | パイオニア株式会社 | 有機エレクトロルミネッセンス多色ディスプレイ及びその製造方法 |
EP1052594A1 (de) | 1999-05-14 | 2000-11-15 | Sokymat S.A. | Transponder und Spritzgussteil sowie Verfahren zu ihrer Herstellung |
DE69913745T2 (de) | 1999-05-17 | 2004-10-07 | Goodyear Tire & Rubber | Rf transponder und verfahren zur steuerung der rf signalmodulation in einem passiven transponder |
TW556357B (en) * | 1999-06-28 | 2003-10-01 | Semiconductor Energy Lab | Method of manufacturing an electro-optical device |
DE50013674D1 (de) | 1999-07-06 | 2006-12-14 | Elmos Semiconductor Ag | CMOS kompatibler SOI-Prozess |
US6366017B1 (en) * | 1999-07-14 | 2002-04-02 | Agilent Technologies, Inc/ | Organic light emitting diodes with distributed bragg reflector |
JP2001085272A (ja) | 1999-07-14 | 2001-03-30 | Matsushita Electric Ind Co Ltd | 可変容量コンデンサ |
DE19933757A1 (de) | 1999-07-19 | 2001-01-25 | Giesecke & Devrient Gmbh | Chipkarte mit integrierter Batterie |
DE19935527A1 (de) | 1999-07-28 | 2001-02-08 | Giesecke & Devrient Gmbh | Aktive Folie für Chipkarten mit Display |
DE19937262A1 (de) | 1999-08-06 | 2001-03-01 | Siemens Ag | Anordnung mit Transistor-Funktion |
US6593690B1 (en) * | 1999-09-03 | 2003-07-15 | 3M Innovative Properties Company | Large area organic electronic devices having conducting polymer buffer layers and methods of making same |
JP4595143B2 (ja) * | 1999-09-06 | 2010-12-08 | 双葉電子工業株式会社 | 有機elデバイスとその製造方法 |
EP1085320A1 (de) * | 1999-09-13 | 2001-03-21 | Interuniversitair Micro-Elektronica Centrum Vzw | Vorrichtung auf Basis von organischem Material zur Erfassung eines Probenanalyts |
US6517995B1 (en) | 1999-09-14 | 2003-02-11 | Massachusetts Institute Of Technology | Fabrication of finely featured devices by liquid embossing |
CN1376100A (zh) | 1999-09-28 | 2002-10-23 | 住友重机械工业株式会社 | 激光钻孔的加工方法及其加工装置 |
US6340822B1 (en) * | 1999-10-05 | 2002-01-22 | Agere Systems Guardian Corp. | Article comprising vertically nano-interconnected circuit devices and method for making the same |
WO2001027998A1 (en) * | 1999-10-11 | 2001-04-19 | Koninklijke Philips Electronics N.V. | Integrated circuit |
US6335539B1 (en) * | 1999-11-05 | 2002-01-01 | International Business Machines Corporation | Method for improving performance of organic semiconductors in bottom electrode structure |
GB9926670D0 (en) * | 1999-11-12 | 2000-01-12 | Univ Liverpool | Field effect transistor (FET) and FET circuitry |
US6284562B1 (en) | 1999-11-17 | 2001-09-04 | Agere Systems Guardian Corp. | Thin film transistors |
JP2001147659A (ja) | 1999-11-18 | 2001-05-29 | Sony Corp | 表示装置 |
EP1103916A1 (de) | 1999-11-24 | 2001-05-30 | Infineon Technologies AG | Chipkarte |
US6621098B1 (en) | 1999-11-29 | 2003-09-16 | The Penn State Research Foundation | Thin-film transistor and methods of manufacturing and incorporating a semiconducting organic material |
US6136702A (en) | 1999-11-29 | 2000-10-24 | Lucent Technologies Inc. | Thin film transistors |
US6197663B1 (en) * | 1999-12-07 | 2001-03-06 | Lucent Technologies Inc. | Process for fabricating integrated circuit devices having thin film transistors |
KR100940110B1 (ko) * | 1999-12-21 | 2010-02-02 | 플라스틱 로직 리미티드 | 잉크젯으로 제조되는 집적회로 및 전자 디바이스 제조 방법 |
JP5073141B2 (ja) * | 1999-12-21 | 2012-11-14 | プラスティック ロジック リミテッド | 内部接続の形成方法 |
US7002451B2 (en) | 2000-01-11 | 2006-02-21 | Freeman Jeffrey R | Package location system |
JP2002162652A (ja) | 2000-01-31 | 2002-06-07 | Fujitsu Ltd | シート状表示装置、樹脂球状体、及びマイクロカプセル |
US6706159B2 (en) | 2000-03-02 | 2004-03-16 | Diabetes Diagnostics | Combined lancet and electrochemical analyte-testing apparatus |
TW497120B (en) * | 2000-03-06 | 2002-08-01 | Toshiba Corp | Transistor, semiconductor device and manufacturing method of semiconductor device |
JP3614747B2 (ja) | 2000-03-07 | 2005-01-26 | Necエレクトロニクス株式会社 | 昇圧回路、それを搭載したicカード及びそれを搭載した電子機器 |
DE10012204A1 (de) | 2000-03-13 | 2001-09-20 | Siemens Ag | Einrichtung zum Kennzeichnen von Stückgut |
EP1134694A1 (de) | 2000-03-16 | 2001-09-19 | Infineon Technologies AG | Dokument mit integrierter elektronischer Schaltung |
JP2001267578A (ja) | 2000-03-17 | 2001-09-28 | Sony Corp | 薄膜半導体装置及びその製造方法 |
DK1311702T3 (da) | 2000-03-28 | 2006-03-27 | Diabetes Diagnostics Inc | Kontinuerlig fremgangsmåde til fremstilling af et engangs elektrokemisk föleelement |
AU2001264879A1 (en) | 2000-05-24 | 2001-12-03 | Schott Donnelly Llc | Electrochromic devices |
US6535057B2 (en) | 2000-05-29 | 2003-03-18 | Stmicroelectronics Ltd. | Programmable glitch filter |
US6329226B1 (en) | 2000-06-01 | 2001-12-11 | Agere Systems Guardian Corp. | Method for fabricating a thin-film transistor |
EP1210643A2 (de) * | 2000-06-06 | 2002-06-05 | Koninklijke Philips Electronics N.V. | Flüssigkristallanzeige und verfahren zu deren herstellung |
DE10032260B4 (de) | 2000-07-03 | 2004-04-29 | Texas Instruments Deutschland Gmbh | Schaltungsanordnung zur Verdoppelung der Spannung einer Batterie |
DE10033112C2 (de) * | 2000-07-07 | 2002-11-14 | Siemens Ag | Verfahren zur Herstellung und Strukturierung organischer Feldeffekt-Transistoren (OFET), hiernach gefertigter OFET und seine Verwendung |
US6483473B1 (en) | 2000-07-18 | 2002-11-19 | Marconi Communications Inc. | Wireless communication device and method |
DE10120687A1 (de) | 2001-04-27 | 2002-10-31 | Siemens Ag | Verkapseltes organisch-elektronisches Bauteil, Verfahren zu seiner Herstellung und seine Verwendung |
JP2004506985A (ja) * | 2000-08-18 | 2004-03-04 | シーメンス アクチエンゲゼルシヤフト | 封入された有機電子構成素子、その製造方法および使用 |
JP2004507096A (ja) * | 2000-08-18 | 2004-03-04 | シーメンス アクチエンゲゼルシヤフト | 有機電界効果トランジスタ(ofet),該有機電界効果トランジスタの製造方法、前記有機電界効果トランジスタから形成される集積回路、及び該集積回路の使用 |
JP2002068324A (ja) | 2000-08-30 | 2002-03-08 | Nippon Sanso Corp | 断熱容器 |
DE10043204A1 (de) | 2000-09-01 | 2002-04-04 | Siemens Ag | Organischer Feld-Effekt-Transistor, Verfahren zur Strukturierung eines OFETs und integrierte Schaltung |
US6699728B2 (en) * | 2000-09-06 | 2004-03-02 | Osram Opto Semiconductors Gmbh | Patterning of electrodes in oled devices |
DE10044842A1 (de) | 2000-09-11 | 2002-04-04 | Siemens Ag | Organischer Gleichrichter, Schaltung, RFID-Tag und Verwendung eines organischen Gleichrichters |
DE10045192A1 (de) * | 2000-09-13 | 2002-04-04 | Siemens Ag | Organischer Datenspeicher, RFID-Tag mit organischem Datenspeicher, Verwendung eines organischen Datenspeichers |
TW514557B (en) * | 2000-09-15 | 2002-12-21 | Shipley Co Llc | Continuous feed coater |
DE10047171A1 (de) | 2000-09-22 | 2002-04-18 | Siemens Ag | Elektrode und/oder Leiterbahn für organische Bauelemente und Herstellungverfahren dazu |
GB0024294D0 (en) * | 2000-10-04 | 2000-11-15 | Univ Cambridge Tech | Solid state embossing of polymer devices |
KR20020036916A (ko) * | 2000-11-11 | 2002-05-17 | 주승기 | 실리콘 박막의 결정화 방법 및 이에 의해 제조된 반도체소자 |
DE10058559A1 (de) | 2000-11-24 | 2002-05-29 | Interactiva Biotechnologie Gmb | System zur Abwicklung eines Warentransfers und Warenvorrats-Behälter |
US6859093B1 (en) * | 2000-11-28 | 2005-02-22 | Precision Dynamics Corporation | Rectifying charge storage device with bi-stable states |
KR100390522B1 (ko) * | 2000-12-01 | 2003-07-07 | 피티플러스(주) | 결정질 실리콘 활성층을 포함하는 박막트랜지스터 제조 방법 |
DE10061297C2 (de) * | 2000-12-08 | 2003-05-28 | Siemens Ag | Verfahren zur Sturkturierung eines OFETs |
DE10162037A1 (de) * | 2000-12-18 | 2002-09-12 | Cubit Electronics Gmbh | Anordnung zur Aufnahme elektrischer Bausteine und kontaktloser Transponder |
GB2371910A (en) * | 2001-01-31 | 2002-08-07 | Seiko Epson Corp | Display devices |
DE10105914C1 (de) * | 2001-02-09 | 2002-10-10 | Siemens Ag | Organischer Feldeffekt-Transistor mit fotostrukturiertem Gate-Dielektrikum und ein Verfahren zu dessen Erzeugung |
ATE540437T1 (de) | 2001-03-02 | 2012-01-15 | Fujifilm Corp | Herstellungsverfahren einer organischen dünnschicht-vorrichtung |
JP2002289355A (ja) | 2001-03-26 | 2002-10-04 | Pioneer Electronic Corp | 有機半導体ダイオード及び有機エレクトロルミネセンス素子表示装置 |
DE10117663B4 (de) | 2001-04-09 | 2004-09-02 | Samsung SDI Co., Ltd., Suwon | Verfahren zur Herstellung von Matrixanordnungen auf Basis verschiedenartiger organischer leitfähiger Materialien |
DE10120686A1 (de) | 2001-04-27 | 2002-11-07 | Siemens Ag | Verfahren zur Erzeugung dünner homogener Schichten mit Hilfe der Siebdrucktechnik, Vorrichtung zur Durchführung des Verfahren und ihre Verwendung |
WO2002091495A2 (en) | 2001-05-07 | 2002-11-14 | Coatue Corporation | Molecular memory device |
US20020170897A1 (en) | 2001-05-21 | 2002-11-21 | Hall Frank L. | Methods for preparing ball grid array substrates via use of a laser |
CN1292496C (zh) * | 2001-05-23 | 2006-12-27 | 造型逻辑有限公司 | 器件的图案形成 |
DE10126860C2 (de) | 2001-06-01 | 2003-05-28 | Siemens Ag | Organischer Feldeffekt-Transistor, Verfahren zu seiner Herstellung und Verwendung zum Aufbau integrierter Schaltungen |
DE10126859A1 (de) | 2001-06-01 | 2002-12-12 | Siemens Ag | Verfahren zur Erzeugung von leitfähigen Strukturen mittels Drucktechnik sowie daraus hergestellte aktive Bauelemente für integrierte Schaltungen |
US6870180B2 (en) | 2001-06-08 | 2005-03-22 | Lucent Technologies Inc. | Organic polarizable gate transistor apparatus and method |
JP2003017248A (ja) * | 2001-06-27 | 2003-01-17 | Sony Corp | 電界発光素子 |
DE20111825U1 (de) | 2001-07-20 | 2002-01-17 | Lammering, Thomas, Dipl.-Ing., 33335 Gütersloh | Printmedium |
DE10141440A1 (de) | 2001-08-23 | 2003-03-13 | Daimler Chrysler Ag | Tripodegelenk |
JP2003089259A (ja) | 2001-09-18 | 2003-03-25 | Hitachi Ltd | パターン形成方法およびパターン形成装置 |
US7351660B2 (en) * | 2001-09-28 | 2008-04-01 | Hrl Laboratories, Llc | Process for producing high performance interconnects |
US6679036B2 (en) * | 2001-10-15 | 2004-01-20 | Shunchi Crankshaft Co., Ltd. | Drive gear shaft structure of a self-moving type mower |
DE10151036A1 (de) | 2001-10-16 | 2003-05-08 | Siemens Ag | Isolator für ein organisches Elektronikbauteil |
DE10151440C1 (de) | 2001-10-18 | 2003-02-06 | Siemens Ag | Organisches Elektronikbauteil, Verfahren zu seiner Herstellung und seine Verwendung |
DE10153656A1 (de) | 2001-10-31 | 2003-05-22 | Infineon Technologies Ag | Verfahren zur Verringerung des Kontaktwiderstandes in organischen Feldeffekttransistoren durch Aufbringen einer reaktiven, die organische Halbleiterschicht im Kontaktbereich regio-selektiv dotierenden Zwischenschicht |
DE10160732A1 (de) * | 2001-12-11 | 2003-06-26 | Siemens Ag | Organischer Feld-Effekt-Transistor mit verschobener Schwellwertspannung und Verwendung dazu |
DE10163267A1 (de) | 2001-12-21 | 2003-07-03 | Giesecke & Devrient Gmbh | Blattgut mit einem elektrischen Schaltkreis sowie Vorrichtung und Verfahren zur Bearbeitung des Blattguts |
DE10209400A1 (de) | 2002-03-04 | 2003-10-02 | Infineon Technologies Ag | Transponderschaltung mit einer Gleichrichterschaltung sowie Verfahren zur Herstellung einer Transponderschaltung mit einer Gleichrichterschaltung |
US6596569B1 (en) * | 2002-03-15 | 2003-07-22 | Lucent Technologies Inc. | Thin film transistors |
US7204425B2 (en) | 2002-03-18 | 2007-04-17 | Precision Dynamics Corporation | Enhanced identification appliance |
DE10212640B4 (de) * | 2002-03-21 | 2004-02-05 | Siemens Ag | Logische Bauteile aus organischen Feldeffekttransistoren |
DE10219905B4 (de) | 2002-05-03 | 2011-06-22 | OSRAM Opto Semiconductors GmbH, 93055 | Optoelektronisches Bauelement mit organischen funktionellen Schichten und zwei Trägern sowie Verfahren zur Herstellung eines solchen optoelektronischen Bauelements |
US6812509B2 (en) * | 2002-06-28 | 2004-11-02 | Palo Alto Research Center Inc. | Organic ferroelectric memory cells |
DE10229168A1 (de) | 2002-06-28 | 2004-01-29 | Infineon Technologies Ag | Laminat mit einer als Antennenstruktur ausgebildeten elektrisch leitfähigen Schicht |
EP1383179A2 (de) | 2002-07-17 | 2004-01-21 | Pioneer Corporation | Organische Halbleiteranordnung |
JP2004146400A (ja) * | 2002-10-21 | 2004-05-20 | Hosiden Corp | プリント基板とフレキシブル基板との接続構造 |
US6870183B2 (en) | 2002-11-04 | 2005-03-22 | Advanced Micro Devices, Inc. | Stacked organic memory devices and methods of operating and fabricating |
WO2004047144A2 (de) * | 2002-11-19 | 2004-06-03 | Polyic Gmbh & Co.Kg | Organisches elektronisches bauelement mit stukturierter halbleitender funktionsschicht und herstellungsverfahren dazu |
US7088145B2 (en) * | 2002-12-23 | 2006-08-08 | 3M Innovative Properties Company | AC powered logic circuitry |
EP1434281A3 (de) * | 2002-12-26 | 2007-10-24 | Konica Minolta Holdings, Inc. | Herstellungsmethode eines Dünnfilmtransistors, Substrat und elektrische Schaltung |
US6905908B2 (en) * | 2002-12-26 | 2005-06-14 | Motorola, Inc. | Method of fabricating organic field effect transistors |
TW556452B (en) * | 2003-01-30 | 2003-10-01 | Phoenix Prec Technology Corp | Integrated storage plate with embedded passive components and method for fabricating electronic device with the plate |
US8665247B2 (en) | 2003-05-30 | 2014-03-04 | Global Oled Technology Llc | Flexible display |
US6950157B2 (en) | 2003-06-05 | 2005-09-27 | Eastman Kodak Company | Reflective cholesteric liquid crystal display with complementary light-absorbing layer |
DE10330063A1 (de) * | 2003-07-03 | 2005-02-03 | Siemens Ag | Verfahren zur Strukturierung und Integration organischer Schichten unter Schutz |
DE10330064B3 (de) | 2003-07-03 | 2004-12-09 | Siemens Ag | Logikgatter mit potentialfreier Gate-Elektrode für organische integrierte Schaltungen |
DE10335336B4 (de) | 2003-08-01 | 2011-06-16 | Polyic Gmbh & Co. Kg | Feldeffektbauelemente und Kondensatoren mit Elektrodenanordnung in einer Schichtebene |
DE10338277A1 (de) | 2003-08-20 | 2005-03-17 | Siemens Ag | Organischer Kondensator mit spannungsgesteuerter Kapazität |
DE10340641A1 (de) * | 2003-09-03 | 2005-04-07 | Siemens Ag | Strukturierung von Gate-Dielektrika in organischen Feldeffekt-Transistoren |
JP4400327B2 (ja) * | 2003-09-11 | 2010-01-20 | セイコーエプソン株式会社 | タイル状素子用配線形成方法 |
GB0321383D0 (en) * | 2003-09-12 | 2003-10-15 | Plastic Logic Ltd | Polymer circuits |
US7122828B2 (en) * | 2003-09-24 | 2006-10-17 | Lucent Technologies, Inc. | Semiconductor devices having regions of induced high and low conductivity, and methods of making the same |
US7358530B2 (en) * | 2003-12-12 | 2008-04-15 | Palo Alto Research Center Incorporated | Thin-film transistor array with ring geometry |
US7321496B2 (en) * | 2004-03-19 | 2008-01-22 | Matsushita Electric Industrial Co., Ltd. | Flexible substrate, multilayer flexible substrate and process for producing the same |
US7259106B2 (en) * | 2004-09-10 | 2007-08-21 | Versatilis Llc | Method of making a microelectronic and/or optoelectronic circuitry sheet |
US6964884B1 (en) * | 2004-11-19 | 2005-11-15 | Endicott Interconnect Technologies, Inc. | Circuitized substrates utilizing three smooth-sided conductive layers as part thereof, method of making same, and electrical assemblies and information handling systems utilizing same |
KR101137862B1 (ko) * | 2005-06-17 | 2012-04-20 | 엘지디스플레이 주식회사 | 평판표시소자의 제조방법 |
DE102005035590A1 (de) * | 2005-07-29 | 2007-02-01 | Polyic Gmbh & Co. Kg | Elektronisches Bauelement |
DE102005035589A1 (de) * | 2005-07-29 | 2007-02-01 | Polyic Gmbh & Co. Kg | Verfahren zur Herstellung eines elektronischen Bauelements |
DE102006047388A1 (de) * | 2006-10-06 | 2008-04-17 | Polyic Gmbh & Co. Kg | Feldeffekttransistor sowie elektrische Schaltung |
-
2005
- 2005-09-16 DE DE102005044306A patent/DE102005044306A1/de not_active Ceased
-
2006
- 2006-09-13 WO PCT/EP2006/008930 patent/WO2007031303A1/de active Application Filing
- 2006-09-13 EP EP06792048A patent/EP1925033A1/de not_active Withdrawn
- 2006-09-13 CN CN2006800338187A patent/CN101263602B/zh not_active Expired - Fee Related
- 2006-09-13 KR KR1020087007438A patent/KR20080045247A/ko active Search and Examination
- 2006-09-13 US US11/991,887 patent/US8315061B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO2007031303A1 * |
Also Published As
Publication number | Publication date |
---|---|
CN101263602A (zh) | 2008-09-10 |
WO2007031303A1 (de) | 2007-03-22 |
KR20080045247A (ko) | 2008-05-22 |
US20100214748A1 (en) | 2010-08-26 |
CN101263602B (zh) | 2011-06-22 |
DE102005044306A1 (de) | 2007-03-22 |
US20120057311A9 (en) | 2012-03-08 |
US8315061B2 (en) | 2012-11-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2087519B1 (de) | Feldeffekttransistor sowie elektrische schaltung | |
WO2007031303A1 (de) | Elektronische schaltung und verfahren zur herstellung einer solchen | |
EP1825516A2 (de) | Gatter aus organischen feldeffekttransistoren | |
EP2261979A1 (de) | Folie mit organischen Halbleitern | |
WO2012019713A1 (de) | Folienelement | |
EP1911108B1 (de) | Verfahren zur herstellung eines elektronischen bauelements | |
WO2007009639A1 (de) | Verfahren zur herstellung einer dreidimensionalen schaltung | |
EP1911089B1 (de) | Elektronisches bauelement | |
DE102006033887B4 (de) | Verfahren zur Herstellung eines Mehrschichtkörpers mit leitfähiger Polymerschicht | |
EP1704606B1 (de) | Verfahren zur Herstellung eines organischen Transistors mit selbstjustierender Gate-Elektrode | |
DE102005022000B4 (de) | Verfahren zur Herstellung von elektronischen Einheiten aus zwei mehrlagigen Ausgangsstrukturen und deren Verwendung | |
DE102005013125B4 (de) | Verfahren zur Herstellung von elektronischen Einheiten in einer mehrlagigen Ausgangsstruktur sowie Verwendung dieser Ausgangstruktur im Verfahren | |
DE102007062944B4 (de) | Elektronische Schaltung | |
EP1658648B1 (de) | Herstellungsverfahren für ein organisches elektronisches bauteil mit hochaufgelöster strukturierung | |
DE102019201792A1 (de) | Halbleiter-Schaltungsanordnung und Verfahren zu deren Herstellung | |
WO2005006462A1 (de) | Verfahren und vorrichtung zur strukturierung von organischen schichten | |
EP2027615A1 (de) | Bauelement mit einer strukturierten schicht auf einem trägersubstrat | |
DE102005033756A1 (de) | Verfahren zur Herstellung von elektronischen Bauteilen aus zwei mehrlagigen Ausgangsstrukturen | |
DE10356675A1 (de) | Elektrodenanordnung | |
EP3170210A2 (de) | Verfahren zur herstellung eines organischen halbleiterbauteils und organisches halbleiterbauteil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080313 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: KNOBLOCH, ALEXANDER Inventor name: ULLMANN, ANDREAS Inventor name: WELKER, MERLIN Inventor name: FIX, WALTER |
|
17Q | First examination report despatched |
Effective date: 20080717 |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20150313 |