EP1301498A1 - Colchinol derivatives as angiogenesis inhibitors - Google Patents

Colchinol derivatives as angiogenesis inhibitors

Info

Publication number
EP1301498A1
EP1301498A1 EP01943701A EP01943701A EP1301498A1 EP 1301498 A1 EP1301498 A1 EP 1301498A1 EP 01943701 A EP01943701 A EP 01943701A EP 01943701 A EP01943701 A EP 01943701A EP 1301498 A1 EP1301498 A1 EP 1301498A1
Authority
EP
European Patent Office
Prior art keywords
alkyl
hydroxy
formula
amino
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01943701A
Other languages
German (de)
English (en)
French (fr)
Inventor
Jean Claude Arnould
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Angiogene Pharmaceuticals Ltd
Original Assignee
Angiogene Pharmaceuticals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Angiogene Pharmaceuticals Ltd filed Critical Angiogene Pharmaceuticals Ltd
Priority to EP01943701A priority Critical patent/EP1301498A1/en
Publication of EP1301498A1 publication Critical patent/EP1301498A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/22Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton having nitrogen atoms of amino groups bound to the carbon skeleton of the acid part, further acylated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D231/00Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
    • C07D231/02Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
    • C07D231/10Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D231/12Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D233/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
    • C07D233/54Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
    • C07D233/56Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, attached to ring carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/04Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms
    • C07D295/08Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms
    • C07D295/084Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms with the ring nitrogen atoms and the oxygen or sulfur atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings
    • C07D295/088Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms with substituted hydrocarbon radicals attached to ring nitrogen atoms substituted by singly bound oxygen or sulfur atoms with the ring nitrogen atoms and the oxygen or sulfur atoms attached to the same carbon chain, which is not interrupted by carbocyclic rings to an acyclic saturated chain
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D295/00Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms
    • C07D295/16Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms
    • C07D295/18Heterocyclic compounds containing polymethylene-imine rings with at least five ring members, 3-azabicyclo [3.2.2] nonane, piperazine, morpholine or thiomorpholine rings, having only hydrogen atoms directly attached to the ring carbon atoms acylated on ring nitrogen atoms by radicals derived from carboxylic acids, or sulfur or nitrogen analogues thereof
    • C07D295/182Radicals derived from carboxylic acids
    • C07D295/185Radicals derived from carboxylic acids from aliphatic carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/091Esters of phosphoric acids with hydroxyalkyl compounds with further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • C07K5/06026Dipeptides with the first amino acid being neutral and aliphatic the side chain containing 0 or 1 carbon atom, i.e. Gly or Ala
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/30Ortho- or ortho- and peri-condensed systems containing three rings containing seven-membered rings
    • C07C2603/32Dibenzocycloheptenes; Hydrogenated dibenzocycloheptenes

Definitions

  • the present invention relates to vascular damaging agents, to the use of compounds of the invention in the manufacture of medicaments for use in the production of antiangiogenic effects in warm-blooded animals such as humans, to processes for the preparation of such compounds, to pharmaceutical compositions containing such compounds as active ingredient, to methods for the treatment of disease states associated with angiogenesis and to the use of such compounds as medicaments.
  • Normal angiogenesis plays an important role in a variety of processes including embryonic development, wound healing and several components of female reproductive function.
  • Undesirable or pathological angiogenesis has been associated with disease states including diabetic retinopathy, psoriasis, cancer, rheumatoid arthritis, atheroma, Kaposi's sarcoma and haemangioma (Fan et al, 1995, Trends Pharmacol. Sci. 16: 57-66; Folkman, 1995, Nature Medicine 1: 27-31). Formation of new vasculature by angiogenesis is a key pathological feature of several diseases (J. Folkman, New England Journal of Medicine 333, 1757-1763 (1995)).
  • Neovascularisation is also a clinical feature of skin lesions in psoriasis, of the invasive pannus in the joints of rheumatoid arthritis patients and of atherosclerotic plaques. Retinal neovascularisation is pathological in macular degeneration and in diabetic retinopathy.
  • the present invention is based on the discovery of tricyclic compounds that surprisingly specifically damage newly formed vasculature without affecting the normal, established vascular endothelium of the host species, a property of value in the treatment of disease states associated with angiogenesis such as cancer, diabetes, psoriasis, rheumatoid arthritis, Kaposi's sarcoma, haemangioma, acute and chronic nephropathies, atheroma, arterial restenosis, autoimmune diseases, acute inflammation, endometriosis, dysfunctional uterine bleeding and ocular diseases with retinal vessel proliferation.
  • angiogenesis such as cancer, diabetes, psoriasis, rheumatoid arthritis, Kaposi's sarcoma, haemangioma, acute and chronic nephropathies, atheroma, arterial restenosis, autoimmune diseases, acute inflammation, endometriosis, dysfunctional uterine bleeding and ocular diseases with retinal vessel proliferation.
  • Colchinol derivatives for example N-acetyl -colchinol are known.
  • Anti -tumour effects have been noted on animal models (see for example - Jnl. Natl. Cancer Inst. 1952, 13, 379-392).
  • the effect studied was that of gross damage (haemo ⁇ hage, softening and necrosis) and there is no suggestion of treatment of inappropriate angiogenesis by destruction of neovasculature.
  • R 1 , R 2 and R 3 are each independently hydroxy, phosphoryloxy (-OPO H 2 ), C ⁇ _ 4 alkoxy or an in vivo hydrolysable ester of hydroxy, with the proviso that at least 2 of R 1 , R 2 and R 3 are
  • A is - CO-, -C(O)O-, -CON(R 8 )-, -SO 2 - or -SO 2 N(R 8 )- (wherein R 8 is hydrogen, C alkyl,
  • B is -O-, -CO-, -N(R 9 )CO-, -CON(R 9 ) -, -C(O)O-, -N(R 9 ) -, - N(R 9 )C(O)O-,
  • R 9 and R 10 are independently selected from hydrogen, C ⁇ _ 4 alkyl, C ⁇ _ alkoxyC ⁇ _ 3 alkyl, aminoC ⁇ . alkyl and hydroxy ⁇ alkyl); b is 0 or an integer from 1 to 4 inclusive, (provided that when b is 0, B is a single direct bond);
  • D is carboxy, sulpho, tetrazolyl, imidazolyl, phosphoryloxy, hydroxy, amino, N-(C ⁇ . 4 alkyl)amino, N,N-di(C ⁇ . 3 alkyl)amino or of the formula -Y'-CCH ⁇ c R 11 or -NHCH(R 12 )COOH; [wherein Y 1 is a direct single bond, -O-, -C(O)-, -N(R 13 )-, -N(R 13 )C(O)- or -C(O)N(R 13 )- (wherein R 13 is hydrogen, C ⁇ . 4 alkyl, C ⁇ . 3 alkoxyC 2 .
  • R 11 is a 5-6-membered saturated heterocyclic group (linked via carbon or nitrogen) containing 1 or 2 ring heteroatoms, selected independently from O, S and N, or a 5-6-membered unsaturated or partially unsaturated heteroaryl group (linked via carbon or nitrogen) containing 1 or 2 ring heteroatoms, selected independently form O, S and N, which heterocyclic group or heteroaryl group may bear 1 or 2 substituents selected from: oxo, hydroxy, halogeno, C ⁇ _ 4 alkyl, C . 4 alkanoyl, carbamoyl, N-(C ⁇ _ 4 alkyl)carbamoyl,
  • R 14 is a 5-6-membered saturated heterocyclic group (linked via carbon or nitrogen) containing 1 or 2 ring heteroatoms, selected independently from O,
  • heterocyclic group is optionally substituted by 1 or 2 substituents selected from: oxo, hydroxy, halogeno, C ⁇ ;. 4 alkyl, hydroxyC ⁇ _ 4 alkyl, C ⁇ _ 4 alkoxy, C ⁇ . 4 alkoxyC ⁇ - 4 alkyl and C ⁇ . alkylsulphonylC ⁇ . alkyl); R 12 is an amino acid side chain; R 5 is C ⁇ _ 4 alkoxy;
  • R 4 and R 6 are each independently selected from: hydrogen, fluoro, nitro, amino, N-C ⁇ _ alkylamino, N,N-di-(C ⁇ _ 4 alkyl)amino, hydroxy, C ⁇ _ 4 alkoxy and C ⁇ . 4 alkyl; R 7 is hydrogen, C]. alkyl, aminoC ⁇ _ 3 alkyl or hydroxyCi _ 3 alkyl; or a pharmaceutically-acceptable salt, solvate or pro-drug thereof.
  • the invention relates to a compound of the formula (I) as hereinabove defined or to a pharmaceutically-acceptable salt thereof.
  • alkyl includes both straight-chain and branched-chain alkyl groups.
  • references to individual alkyl groups such as “propyl” are specific for the straight-chain version only and references to individual branched-chain alkyl groups such as “isopropyl” are specific for the branched-chain version only.
  • An analogous convention applies to other generic terms.
  • R 12 is an amino acid side chain. This includes side chains from natural and non- natural amino acids and includes the possibility of R joining to the NH group so as to form a ring as in the amino acid proline. It includes ⁇ -amino acids ⁇ -amino acids and ⁇ -amino acids.
  • the amino acids may be L-isomers or D-isomers, but preferably L-isomers.
  • Preferred amino acids include glycine, alanine, valine, leucine, isoleucine, methionine, proline, phenylalanine, tryptophan, serine, threonine, cysteine, tyrosine, asparaginine, glutamine, aspartic acid, glutamic acid, lysine, arginine, histidine, ⁇ -alanine and ornithine. More prefened amino acids include glutamic acid, serine, threonine, arginine, glycine, alanine, ⁇ -alanine and lysine.
  • Especially prefened amino acids include glutamic acid, serine, threonine, arginine, alanine and ⁇ -alanine.
  • R 12 include hydrogen, C j. 4 alkyl, C, .4 alkylthioC 1.4 alkyl, hydroxyC 1.4 alkyl, thioC j ⁇ alkyl, phenylC, .4 alkyl (optionally substituted by hydroxy), guanidinoC,_ 4 alkyl, carboxyC,. 4 alkyl, carbamoylC ⁇ alkyl, aminoC j. 4 alkyl and imidazolyl C, .4 alkyl and R 12 forming a py ⁇ olidinyl ring with the NH group.
  • Prefened values for R 12 include hydrogen, C alkyl, C,. 4 alkylthioC,. 4 alkyl, hydroxyC,_ 4 alkyl, thioC 1.4 alkyl, guanidinoC, .4 alkyl, carboxyC ⁇ alkyl, carbamoylC ⁇ alkyl and aminoC ⁇ alkyl.
  • optically active or racemic forms by virtue of one or more asymmetric carbon atoms
  • the invention includes in its definition any such optically active or racemic form which possesses vascular damaging activity.
  • the synthesis of optically active forms may be carried out by standard techniques of organic chemistry well known in the art, for example by synthesis from optically active starting materials or by resolution of a racemic form.
  • the above-mentioned activity may be evaluated using the standard laboratory techniques refe ⁇ ed to hereinafter.
  • Suitable values for the generic radicals referred to above include those set out below.
  • a compound of the formula (I) or a salt thereof may exhibit the phenomenon of tautomerism and that the formulae drawings within this specification can represent only one of the possible tautomeric forms. It is to be understood that the invention encompasses any tautomeric form which has vascular damaging activity and is not to be limited merely to any one tautomeric form utilised within the formulae drawings.
  • the present invention relates to the compounds of formula (I) as hereinbefore defined as well as to the salts thereof.
  • Salts for use in pharmaceutical compositions will be pharmaceutically acceptable salts, but other salts may be useful in the production of the compounds of formula (I) and their pharmaceutically acceptable salts.
  • Pharmaceutically acceptable salts of the invention may, for example, include acid addition salts of the compounds of formula (I) as hereinbefore defined which are sufficiently basic to form such salts.
  • Such acid addition salts include for example salts with inorganic or organic acids affording pharmaceutically acceptable anions such as with hydrogen halides (especially hydrochloric or hydrobromic acid of which hydrochloric acid is particularly preferred) or with sulphuric or phosphoric acid, or with trifluoroacetic, citric or maleic acid.
  • Suitable salts include hydrochlorides, hydrobromides, phosphates, sulphates, hydrogen sulphates, alkylsulphonates, arylsulphonates, acetates, benzoates, citrates, maleates, fumarates, succinates, lactates and tartrates.
  • pharmaceutically acceptable salts may be formed with an inorganic or organic base which affords a pharmaceutically acceptable cation.
  • Such salts with inorganic or organic bases include for example an alkali metal salt, such as a sodium or potassium salt, an alkaline earth metal salt such as a calcium or magnesium salt, an ammonium salt or for example a salt with methylamine, dimethylamine, trimethylamine, piperidine, morpholine or tris-(2-hydroxyethyl)amine.
  • an alkali metal salt such as a sodium or potassium salt
  • an alkaline earth metal salt such as a calcium or magnesium salt
  • an ammonium salt or for example a salt with methylamine, dimethylamine, trimethylamine, piperidine, morpholine or tris-(2-hydroxyethyl)amine.
  • prodrugs are known in the art.
  • Examples of such pro-drugs may be used to form in-vivo-cleavable esters of a compound of the Formula (I).
  • An in-vivo-cleavable ester of a compound of the Formula (I) containing a carboxy group is, for example, a pharmaceutically-acceptable ester which is cleaved in the human or animal body to produce the parent acid.
  • Suitable pharmaceutically- acceptable esters for carboxy include C ⁇ . 6 alkoxymethyl esters, for example methoxymethyl; C ⁇ _ 6 alkanoyloxymethyl esters, for example pivaloyloxymethyl; phthalidyl esters; C 3 . 8 cycloalkoxycarbonyloxy C ⁇ _ 6 alkyl esters, for example
  • Suitable values for R 1 , R 2 , R 3 R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 or R 13 or for various substituents on D or R 14 include: for halogeno fluoro, chloro, bromo and iodo; for C ⁇ . 4 alkyl: methyl, ethyl, propyl, isopropyl and tert-butyl; for N-C ⁇ . alkylamino: methylamino, ethylamino, propylamino, isopropylamino and butylamino; for N,N-di-[C ⁇ . 4 alkyl]amino: dimethylamino, diethylamino, N-ethyl-
  • C ⁇ _ alkoxyC ⁇ . 4 alkyl methoxymethyl, ethoxymethyl, 1-methoxyethyl, 2-methoxyethyl, 2-ethoxyethyl and 3-methoxypropyl as appropriate; for aminoC ⁇ _ 4 alkyl aminomethyl, 2-aminoethyl, 1-aminoethyl and 3-aminopropyl as appropriate;
  • 4 alkylaminoC ⁇ _ 4 alkyl methylaminomethyl, ethylaminomethyl, 1-methylaminoethyl, 2-methylaminoethyl, 2-ethylaminoethyl and 3-methylaminopropyl as appropriate;
  • 4 alkyl carbamoylmethyl, 1 -carbamoylethyl, 2-carbamoylethyl and 3-carbamoylpropyl; for C ⁇ . 4 alkoxyC ⁇ . 4 alkyl methoxymethyl, ethoxyethyl, methoxyethyl, and methoxypropyl.
  • Carbamoyl refers to — CONH 2 .
  • Piperazino refers to piperazin-1-yl.
  • 5- or 6-membered saturated heterocyclic groups include pyrrolidinyl, imidazolidinyl, pyrazolidinyl, piperidyl, piperazinyl and morpholinyl.
  • Examples of 5- or 6-membered unsaturated or partially unsaturated heteroaryl groups include: imidazolyl, imidazolinyl pyridyl pyrrolyl, furanyl, triazolyl, pyrazinyl, pyrazolinyl, pyrimidinyl, pyridazinyl, isoxazolyl, oxazolyl, isothiazolyl, thiazolyl and thienyl.
  • at least 2 of R 1 , R 2 , and R 3 are methoxy.
  • R 1 , R 2 , and R 3 are all C ⁇ _ 4 alkoxy.
  • R 1 , R 2 , and R 3 are all methoxy.
  • R 8 is hydrogen, methyl, ethyl, 2-methoxyethyl, 2-aminoethyl or 2-hydroxyethyl.
  • R 8 is hydrogen, 2-aminoethyl or 2-hydroxyethyl and most preferably R is hydrogen.
  • A is -CO-, -C(O)O- or -CON(R 8 )-. Most preferably A is -C(O)O-.
  • a is 1, 2 or 3 and most preferably a is 2 or 3.
  • R a , and R b are hydrogen.
  • B is -N(R 9 )CO-, -CON(R 9 ), -C(O)O-, -N(R 9 )-, -N(R 9 )C(O)O-, N(R 9 )CON(R 10 )- or a single direct bond. More preferably B is -CO-, -N(R 9 )CO- or a single direct bond.
  • B is -CO- or a single direct bond.
  • B is -CO-.
  • B is a single direct bond.
  • R 9 , and R 10 are independently selected from hydrogen, methyl, ethyl, 2-methoxyethyl, 2-aminoethyl and 2-hydroxyethyl. More preferably R 9 and R 10 are independently selected from hydrogen, 2-aminoethyl and 2-hydroxyethyl.
  • R 9 , and R 10 are hydrogen.
  • b is 0, 1 or 2, more preferably b is 0 or 1 and most preferably b is 0.
  • R 11 is a 5 or 6 membered saturated heterocyclic ring containing 1 or 2 ring heteroatoms selected from N and O.
  • R 1 ' is a 6 membered saturated heterocyclic ring containing 1 or 2 ring heteroatoms selected from N and O.
  • R 11 contains at least 1 ring nitrogen atom.
  • R u is piperazinyl, morpholinyl or piperidinyl, each of which is linked via a ring carbon or nitrogen ring atom and each ring is optionally substituted by 1 or 2 of the substituents mentioned above for R .
  • R 11 is linked via a ring nitrogen atom.
  • R 1 ' is piperazino or morpholino, each ring being optionally substituted by 1 or 2 of the substituents mentioned hereinabove for R 11 .
  • the saturated heterocyclic ring may be substituted on ring carbon or ring nitrogen atoms, providing this does not result in quaternisation.
  • Prefened substituents for the saturated heterocyclic ring in R u include C ⁇ . 4 alkyl, C 2 . 4 alkanoyl, carbamoyl, cyanoC ⁇ _ 3 alkyl, hydroxyCi. 3 alkyl, carboxyC]. 3 alkyl and aminoC]. 3 alkyl.
  • More prefened substituents for the saturated heterocyclic ring in R 1 1 include C ⁇ . alkyl, C 2 . 3 alkanoyl, carbamoyl and hydroxyC 2 - 3 alkyl.
  • substituents for the saturated heterocyclic ring in R 1 ' include methyl, acetyl, carbamoyl and 2-hydroxyethyl.
  • the most prefened substituents for the saturated heterocyclic ring include methyl, acetyl and carbamoyl.
  • the saturated heterocyclic ring in R 11 is unsubstituted or substituted by 1 substituent.
  • the saturated heterocyclic ring in R 11 is morpholino, preferably it is unsubstituted.
  • the saturated heterocyclic ring in R 11 is piperazino, preferably it is unsubstituted or substituted by 1 substituent on a ring nitrogen atom.
  • Y 1 is -CONH - or -NHCO -.
  • c is 0, 1 or 2.
  • R 11 Prefened values for R 11 include morpholino, 4-methylpiperazin-l-yl and 4-acetylpiperazin- 1 -yl.
  • R 14 is morpholino or piperazin-1-yl, each optionally substituted by 1 or 2 substituents selected from C ⁇ . 3 alkyl, hydroxyC 2 . 3 alkyl, C ⁇ _ 3 alkoxy and C ⁇ . 3 alkoxy C ⁇ _ 3 alkyl.
  • R 14 is morpholino, or piperazin-1-yl unsubstituted or substituted by methyl.
  • D is carboxy, phosphoryloxy, hydroxy, amino, N-C ⁇ _ 4 alkylamino, N,N-di(C ⁇ . 4 alkyl)amino or of the formula -Y 1 (CH 2 )cR ⁇ wherein Y 1 , c and R 11 are as hereinabove defined.
  • D is carboxy phosphoryloxy, hydroxy, amino or of the formula -Y ⁇ CH c R 11 wherein Y 1 ,c and R 11 are as hereinabove defined.
  • D is phosphoryloxy, amino or of the formula -Y'-(CH 2 ) c R n wherein Y 1 , c and R 1 ' are as hereinabove defined. Yet more preferably D is phosphoyloxy, amino or of the formula -Y 1 -(CH 2 ) C R 11 wherein Y 1 and c are as hereinabove defined and R 11 is morpholino, imidazolyl, or piperazinyl, which heterocyclic group may bear one or more substituents as defined above.
  • D is phosphoyloxy, amino or of the formula -Y 1 -(CH 2 ) C R 11 wherein Y 1 and c are as hereinabove defined and R 11 is morpholino, imidazolyl, 4-methylpiperazin-l-yl or 4-acetylpiperazin-l-yl.
  • D is phosphoyloxy, amino or of the formula -Y 1 -(CH 2 ) C R 1 ' wherein Y 1 is a direct single bond and c is 0 and R 1 ' is morpholino, imidazol-1-yl, 4-methylpiperazin-l-yl or 4-acetylpiperazin-l-yl.
  • R 5 is methoxy.
  • R 4 and R 6 are independently selected from hydrogen, hydroxy, C 1 . 3 alkoxy, and C ⁇ - 3 alkyl.
  • R 4 and R 6 are hydrogen. Most preferably R 4 and R 6 are both hydrogen.
  • R is hydrogen or methyl. Most preferably R is hydrogen.
  • a prefened class of compound is of the formula (I) wherein: R 1 , R 2 , and R 3 are all C ⁇ . 4 alkoxy;
  • R 4 and R 6 are independently selected from hydrogen, hydroxy, C 1 . 3 alkoxy, and C ⁇ . 3 alkyl;
  • R 5 is methoxy
  • A is -CO-, -C(O)O- or -CONH-; a is 1, 2 or 3;
  • B is -CO-, -NHCO-, -CONH, -C(O)O-, -NH-, -NHC(O)O-, NHCONH- or a single direct bond; b is 0, 1 or 2; D is carboxy, sulpho, phosphoryloxy, hydroxy, amino, N-C1-4 alkylamino, N,N-di(C ⁇ _ 4 alkyl)amino or of the formula -Y 1 (CH 2 ) C R 11 (wherein Y 1 is -NHC(O)- or -C(O)NH-; c is 1 or 2; R 11 is a 5-6-membered saturated heterocyclic group (linked via nitrogen) containing 1 or 2 ring heteroatoms, selected independently from O and N, which heterocyclic group may bear 1 or 2 substituents selected from: C ⁇ .
  • R 7 is hydrogen; or a pharmaceutically-acceptable salt, solvate or pro-drug thereof.
  • Another prefened class of compound is of the formula (I) wherein: R 1 , R 2 , and R 3 are all methoxy;
  • R 4 and R 6 are independently selected from hydrogen, hydroxy, methoxy and methyl; R 5 is methoxy; A is -CO-, -C(O)O- or -CONH-; a is 2 or 3;
  • B is -CO-, -NHCO-, -CONH or a single direct bond; b is 0 or 1;
  • D is carboxy, phosphoryloxy, hydroxy, amino, N-C ⁇ . 4 alkylamino, N,N-di(C ⁇ _ 4 alkyl)amino or of the formula -Y ⁇ CH ⁇ R 1 ' (wherein Y 1 is -NHC(O)- or -C(O)NH-; c is 1 or 2; R 11 is piperazinyl, morpholinyl or piperidinyl, each of which is linked via a ring nitrogen atom and each ring is optionally substituted by 1 or 2 substituents selected from:
  • R 7 is hydrogen; or a pharmaceutically-acceptable salt, solvate or pro-drug thereof.
  • a, b, A, B and D are as hereinabove defined; or a pharmaceutically acceptable salt, solvate or prodrug thereof.
  • Another preferred class of compounds is that of the formula (II) wherein: A is -CO-, -C(O)O- or -CONH-; a is 2 or 3;
  • B is -CO-, -NHCO-, -CONH or a single direct bond; b is 0 or 1;
  • D is carboxy, phosphoryloxy, hydroxy, amino, N-C ⁇ _ 4 alkylamino, N,N-di(C ⁇ _ 4 alkyl)amino or of the formula -Y 1 (CH 2 ) C R 11 (wherein Y 1 is -NHC(O)- or -C(O)NH-; c is 1 or 2; R 11 is piperazinyl, mo ⁇ holinyl or piperidinyl, each of which is linked via a ring nitrogen atom and each ring is optionally substituted by 1 or 2 substituents selected from: C ⁇ _ 4 alkyl, C 2 . 4 alkanoyl, carbamoyl, cyanoC ⁇ . 3 alkyl, hydroxyC]. 3 alkyl, carboxyC ⁇ . 3 alkyl and aminoC]. 3 alkyl); or a pharmaceutically acceptable salt, solvate or prodrug thereof.
  • Another preferred class of compounds is that of the formula (II) wherein: A is -CO-, -C(O)O- or -CONH-; a is 2 or 3;
  • B is -CO-, -NHCO-, -CONH or a single direct bond; b is O or 1;
  • D is phosphoryloxy, carboxy, amino or imidazolyl; or a pharmaceutically acceptable salt, solvate or prodrug thereof.
  • Another prefened class of compounds is that of the formula (II) wherein: A is -CO-, -C(O)O- or -CONH-; a is 2 or 3;
  • B is -CO-, -NHCO- or a single direct bond; b is 0 or 1 ;
  • D is phosphoryloxy amino or imidazolyl; or a pharmaceutically acceptable salt, solvate or prodrug thereof.
  • a further preferred class of compounds of the invention is that of a compound of formula (III)::
  • R 1 , R 2 and R 3 are each independently hydroxy, phosphoryloxy (-OPO 3 H 2 ), C ⁇ _ alkoxy or an in vivo hydrolysable ester of hydroxy, with the proviso that at least 2 of R 1 , R 2 and R 3 are C].
  • 4 alkoxy; A is - CO-, -C(O)O-, -CON(R 8 )-, -SO 2 - or -SO 2 N(R 8 )- (wherein R 8 is hydrogen, C ⁇ . 4 alkyl, C ⁇ . 3 alkoxyC 2 - 3 alkyl, aminoC 2 - 3 alkyl or hydroxyC 2 . 3 alkyl); a is an integer from 1 to 4 inclusive;
  • R a and R b are independently selected from hydrogen, hydroxy and amino;
  • B is -O-, -CO-, -N(R 9 )CO-, -CON(R 9 ) -, -C(O)O-, -N(R 9 ) -, - N(R 9 )C(O)O-, -N(R 9 )CON(R 10 )-, -N(R 9 )SO 2 -, -SO 2 N(R 9 )- or a direct single bond (wherein R 9 and R 10 are independently selected from hydrogen, C ⁇ . 4 alkyl, C ⁇ . 3 alkoxyC2- 3 alkyl, aminoC 2 - 3 alkyl and hydroxyC2- 3 alkyl) ; b is 0 or an integer from 1 to 4 inclusive;
  • D is a 5-6-membered saturated heterocyclic group (linked via carbon or nitrogen) containing 1 or 2 ring heteroatoms, selected independently from O and N, which heterocyclic group may bear 1 or 2 substituents selected from: oxo, hydroxy, halogeno, C ⁇ _ alkyl, C 2 - 4 alkanoyl, carbamoyl, N-(C ⁇ . alkyl)carbamoyl, N,N-di-(C ⁇ _ alkyl)carbamoyl, hydroxyC ⁇ . 4 alkyl, C ⁇ _ 4 alkoxy, cyanoC 1 . 3 alkyl, carbamoylC ⁇ .
  • R , 14 (wherein R ,14 i ⁇ s a 5-6-membered saturated heterocyclic group (linked via carbon or nitrogen) containing 1 or 2 ring heteroatoms, selected independently from O and N, which heterocyclic group is optionally substituted by 1 or 2 substituents selected from: oxo, hydroxy, halogeno, C ⁇ . 4 alkyl, hydroxyCi. 4 alkyl, C ⁇ _ alkoxy, C ⁇ _ alkoxyC ⁇ _ 4 alkyl and C ⁇ . 4 alkylsulphonylC ⁇ _ 4 alkyl); R 5 is C ⁇ . alkoxy;
  • R 4 and R 6 are each independently selected from: hydrogen, halogeno, nitro, amino, N-C ⁇ . alkylamino, N,N-di-(C ⁇ _ 4 alkyl)amino, hydroxy, C ⁇ . 4 alkoxy and C ⁇ . 4 alkyl;
  • R 7 is hydrogen, C ⁇ _ alkyl, C ⁇ _ 3 alkoxyC ⁇ . 3 alkyl, aminoCi. 3 alkyl orhydroxyCi. 3 alkyl; or a pharmaceutically acceptable salt, solvate or pro-drug thereof.
  • Another further prefened class of compound is of the formula (DI) wherein: R 1 , R 2 , and R 3 are all d. 4 alkoxy;
  • R 4 and R 6 are independently selected from hydrogen, hydroxy, C ⁇ _ 3 alkoxy, and C ⁇ . 3 alkyl; R 5 is methoxy;
  • A is -CO-, -C(O)O- or -CONH-; a is 1, 2 or 3;
  • B is -CO-, -NHCO-, -CONH, -C(O)O-, -NH-, -NHC(O)O-, NHCONH- or a single direct bond; b is 0, 1 or 2;
  • D is piperazinyl or mo ⁇ holinyl or piperidinyl, each ring being optionally substituted by 1 or 2 substituents selected from C ⁇ _ 4 alkyl, C 2 - 4 alkanoyl, carbamoyl, cyanoC ⁇ _ 3 alkyl, hydroxyCi. 3 alkyl, carboxyC ⁇ . 3 alkyl and aminoC ⁇ _ alkyl; R 7 is hydrogen; or a pharmaceutically-acceptable salt, solvate or pro-drug thereof.
  • Another further preferred class of compound is of the formula (IH) wherein: R 1 , R 2 , and R 3 are all methoxy;
  • R 4 and R are independently selected from hydrogen, hydroxy, methoxy and methyl;
  • R 5 is methoxy;
  • A is -CO-, -C(O)O- or -CONH-; a is 2 or 3; B is -CO-, -NHCO-, -CONH or a single direct bond; b is O or 1;
  • D is piperazino or mo ⁇ holino, each ring being optionally substituted by 1 or 2 substituents selected from methyl, ethyl, acetyl, propionyl, carbamoyl and 2-hydroxyethyl;
  • R 7 is hydrogen; or a pharmaceutically-acceptable salt, solvate or pro-drug thereof.
  • a, b, A, B and D are as hereinabove defined for formula (IH); or a pharmaceutically-acceptable salt, solvate or pro-drug thereof.
  • Another preferred class of compounds is that of the formula (IV) wherein: A is -CO-, -C(O)O- or -CONH-; a is 2 or 3;
  • B is -CO-, -NHCO-, -CONH or a single direct bond; b is 0 or 1 ;
  • D is piperazino or mo ⁇ holino, each ring being optionally substituted by 1 or 2 substituents selected from methyl, ethyl, acetyl, propionyl, carbamoyl and 2-hydroxyethyl; or a pharmaceutically acceptable salt, solvate or pro-drug thereof.
  • A is -CO-, -C(O)O- or -CONH-; a is 2 or 3; B is -CO-, -NHCO-, -CONH or a single direct bond; b is O or 1;
  • D is mo ⁇ holino, 4-methylpiperazin-l-yl or 4-acetylpiperazin-l-yl; or a pharmaceutically acceptable salt, solvate or pro-drug thereof.
  • Another preferred class of compounds is that of the formula (IV) wherein: A is -CO-, -C(O)O- or -CONH-; a is 2 or 3; B is -CO- or a single direct bond; b is O;
  • D is mo ⁇ holino, 4-methylpiperazin-l-yl or 4-acetylpiperazin-l-yl; or a pharmaceutically acceptable salt, solvate or pro-drug thereof.
  • Particular compounds of the present invention include:
  • Compounds of Formula (I) may be prepared by a number of processes as generally described hereinbelow and more specifically in the Examples hereinafter. Processes for the preparation of novel compounds of formula (I), are provided as a further feature of the invention and are as described hereinafter. Necessary starting materials may be obtained by standard procedures of organic chemistry. The preparation of such starting materials is described within the accompanying non-limiting Examples. Alternatively necessary starting materials are obtainable by analogous procedures to those illustrated which are within the ordinary skill of an organic chemist.
  • a compound of the Formula (I) may be formed by deprotecting a compound of the formula (I) wherein at least 1 functional group is protected.
  • at least 1 functional group For example, amino, hydroxy, carboxy or phosphoryloxy groups may be protected during the reaction sequence used to prepare a compound of the formula (I).
  • Protecting groups may in general be chosen from any of the groups described in the literature or known to the skilled chemist as appropriate for the protection of the group in question, and may be introduced by conventional methods.
  • Protecting groups may be removed by any convenient method as described in the literature or known to the skilled chemist as appropriate for the removal of the protecting group in question, such methods being chosen so as to effect removal of the protecting group with minimum disturbance of groups elsewhere in the molecule.
  • a suitable protecting group for a hydroxy group is, for example, an arylmethyl group (especially benzyl), a triC]. 4 alkysilyl group (especially trimethysilyl or tert-butvldimethylsilyl).
  • an aryldi-C i _ 4 alkylsil yl group (especially dimethylphenylsilyl), a diarylC ⁇ _ 4 alkylsilyl group (especially tert-butyldiphenylsilyl), a C ⁇ _ 4 alkyl group (especially methyl), a C 2 - 4 alkenyl group (especially allyl), a C ⁇ _ alkoxymethyl group (especially methoxymethyl) or a tetrahydropyranyl group (especially tetrahydroyran-2-yl).
  • the deprotection conditions for the above protecting groups will necessary vary with the choice of protecting group.
  • arylmethyl group such as a benzyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-charcoal.
  • a catalyst such as palladium-on-charcoal.
  • a trialkylsilyl or an aryldialkylsilyl group such as tert-butydimethylsilyl or a dimethylphenylsilyl group may be removed, for example, by treatment with a suitable acid such as hydrochloric, sulphuric, phosphoric or trifluoroacetic acid, or with an alkali metal or ammonium fluoride such as sodium fluoride or, preferably tetrabutylammonium fluroide.
  • an alkyl group may be removed, for example, by treatment with an alkali metal C ⁇ _ alkylsulphide such as sodium thioethoxide or, for example, by treatment with an alkali metal diarylphosphide such as lithium diphenylphosphide or, for example, by treatment with a boron or aluminium trihalide such as boron tribromide.
  • an alkali metal C ⁇ _ alkylsulphide such as sodium thioethoxide
  • an alkali metal diarylphosphide such as lithium diphenylphosphide
  • a boron or aluminium trihalide such as boron tribromide.
  • a C ⁇ _ alkoxymethyl group or tetrahydropyranyl group may be removed, for example, by treatment with a suitable acid such as hydrochloric or trifluoroacetic acid.
  • a suitable protecting group for a hydroxy group is, for example, an acyl group, for example a C 2 . 4 alkanoyl group (especially acetyl) or an aroyl group (especially benzoyl).
  • the deprotection conditions for the above protecting groups will necessarily vary with the choice of protecting group.
  • an acyl group such as an alkanoyl or an aroyl group may be removed, for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide.
  • a suitable protecting group for an amino, i ino or alkylamino group is, for example, an acyl group, for example a C 2 - alkanoyl group (especially acetyl), a C ⁇ _ 4 alkoxycarbonyl) group (especially methoxycarbonyl), ethoxycarbonyl or tert-butoxycarbonyl), an arylmethoxycarbonyl group (especially benzyloxycarbonyl) or an aroyl group (especially benzoyl).
  • the deprotection conditions for the above protecting groups necessarily vary with the choice of protecting group.
  • an acyl group such as an alkanoyl, alkoxycarbonyl or aroyl group may be removed for example, by hydrolysis with a suitable base such as alkali metal hydroxide, for example lithium or sodium hydroxide.
  • a suitable base such as alkali metal hydroxide, for example lithium or sodium hydroxide.
  • an acyl group such as a tert-butoxycarbonyl group may be removed, for example, by treatment with a suitable acid such as hydrochloric, sulphuric or phosphoric acid or trifluoroacetic acid, and an arylmethoxycarbonyl group such as a benzyloxycarbonyl group may be removed, for example, by hydrogenation over a catalyst such as palladium-on-charcoal.
  • a suitable protecting group for a carboxy group is, for example, an esterifying group, for example a . 4 alkyl group (especially methyl or ethyl) which may be removed, for example, by hydrolysis with a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide; or for example, a tert-butyl group which may be removed, for example, by treatment with a suitable acid such as hydrochloric, sulphuric or phosphoric acid or trifluoroacetic acid.
  • a suitable base such as an alkali metal hydroxide, for example lithium or sodium hydroxide
  • a tert-butyl group which may be removed, for example, by treatment with a suitable acid such as hydrochloric, sulphuric or phosphoric acid or trifluoroacetic acid.
  • R 1 - R 7 , A, B, D, R a R b , a and b are to be understood to represent those groups described above in relation to formulae (I) and (II) unless otherwise stated.
  • a compound of the formula (I), or a compound of the formula (I) wherein at least 1 functional group is protected may be prepared using one of the following processes: a) reacting a compound of the formula (X)
  • L 1 is usually halogeno, for example chloro or bromo, hydroxy, mesyloxy, tosyloxy or an 'activated' hydroxy group. The precise conditions depending largely upon the nature of A.
  • L 1 when -A- is -CO-, L 1 may be hydroxy and the reaction carried out in the presence of coupling agent such as dicyclohexylcarbodiimide or l-(3-dimethylaminopropyl)- 3-ethylcarbodiimide.
  • a base may be used, for example an organic base such as triethylamine.
  • Suitable solvents are usually aprotic solvents, for example dimethylformamide, or chlorinated solvents, for example trichloromethane or dichloromethane.
  • the temperature is usually in the range of about -30°C to about 60°C, conveniently at or near ambient temperature.
  • L 1 is usually an "activated" hydroxy group. That is a group which acts as a leaving group in the same way as hydroxy, but is more labile. It can be formed in situ.
  • An example of an activated hydroxy group is 4-nitrophenoxy, which can be formed by reacting a hydroxy group (HO-[CH(R a )] a -B-[CH(R b )] b -D) with 4- nitrophenylchloroformate. This reaction is usually carried out in an organic solvent such as dichloromethane, acetonitrile or tetrahydrofuran, in a temperature range of about -20°C to the reflux temperature of the solvent.
  • organic base such as triethylamine or N- methylmo ⁇ holine is normally present.
  • a compound of the formula (X) can be reacted with 4-nitrophenylchloroformate and the resulting intermediate reacted with HO-[CH(R )] a -B-[CH(R )] b -D under similar conditions to those described above for the reaction of a compound of the formula (X) with a compound of the formula L 2 -[CH(R a )] a -B-[CH(R b )] b -D wherein L 2 is 4-nitrophenoxy.
  • L 1 is preferably halogeno, particularly chloro.
  • a compound of the formula (X) can be reacted with an isocyanate of the formula C ⁇ N-[CH(R a )] a -B-[CH(R b )] b -D.
  • a base particularly an organic base, such as triethylamine, pyridine or N- methylmo ⁇ holine
  • a solvent such as an ether solvent, for example tetrahydrofuran, or in a chlorinated solvent, for example dichloromethane
  • a compound of the formula (X) can be reacted with 4-nitrophenylchloroformate and the resulting intermediate reacted with
  • L 1 is preferably halogeno, for example chloro.
  • the reaction is conveniently carried out in the presence of a base such as dimethylaniline, in a chlorinated solvent such as trichloromethane and at a temperature in the range of -20°C to about 60 °C, more preferably in pyridine, at a temperature in the range from -20°C to about 60°C.
  • a compound of formula (I) may be prepared from another compound of formula (I) by chemical modification.
  • chemical modifications include standard alkylation, arylation, heteroaryl ation, acylation, sulphonylation, phosphorylation, aromatic halogenation and coupling reactions. These reactions may be used to add new substituents or to modify existing substituents. Alternatively , existing substituents in compounds of formula (I) may
  • a compound of formula (I) containing an amino group may be acylated on the amino group by treatment with, for example, an acyl halide or anhydride in the presence of a base, for example a tertiary amine base such as triethylamine, in for example, a
  • an amino group in a compound of formula (I) may be sulphonylated by treatment with, for example, an alkyl or aryl sulphonyl chloride or an alkyl or aryl sulphonic anhydride in the presence of a base, for example a tertiary amine base such as triethylamine, in for example a solvent such as a hydrocarbon solvent e.g. dichloromethane, at a temperature in the range for example -30°C to 120°C, conveniently at or near ambient temperature.
  • a base for example a tertiary amine base such as triethylamine
  • a compound of formula (I) containing a hydroxy group can be converted into the co ⁇ esponding dihydrogenphosphate ester by treatment with for example di-tert-butyl diisopropylphosphoramidite or di-tert-butyl diethylphosphoramidite in the presence of a suitable catalyst, for example tetrazole.
  • a suitable catalyst for example tetrazole.
  • a solvent such as an ether solvent, for example tetrahydrofuran can be used.
  • the reaction is usually carried out at a temperature in the range -40°C to 40°C, conveniently at or near ambient temperature, followed by treatment with an oxidising agent for example 3-chloroperoxy benzoic acid at a temperature in the range -78°C to 40°C preferably -40°C to 10°C.
  • the resulting intermediate phosphate triester is treated with an acid, for example trifluoroacetic acid, in a solvent such as a chlorinated solvent e.g. dichloromethane at a temperature in the range -30°C to 40°C, conveniently at or near 0°C, to give the compound of formula (I) containing a dihydrogenphosphate ester.
  • a compound of formula (I) containing an amide can be hydrolysed by treatment with for example an acid such as hydrochloric acid in a solvent such as an alcohol, for example methanol at an elevated temperature conveniently at the reflux temperature.
  • an acid such as hydrochloric acid
  • a solvent such as an alcohol, for example methanol
  • an alkoxy group may be converted to the corresponding alcohol (OH) by reaction with boron tribromide in a solvent such as a chlorinated solvent e.g. dichloromethane at a low temperature e.g. around -78°C.
  • a solvent such as a chlorinated solvent e.g. dichloromethane at a low temperature e.g. around -78°C.
  • a compound of formula (I) may be alkylated by reaction with a suitable alkylating agent such as an alkyl halide, an alkyl toluenesulphonate, an alkyl methanesulphonate or an alkyl triflate.
  • a suitable alkylating agent such as an alkyl halide, an alkyl toluenesulphonate, an alkyl methanesulphonate or an alkyl triflate.
  • the alkylation reaction can be ca ⁇ ied out in the presence of a base, for example an inorganic base such as a carbonate e.g. caesium or potassium carbonate, a hydride such as sodium hydride or an alkoxide such as potassium t- butoxide, in a suitable solvent such as an aprotic solvent e.g.
  • an unsubstituted ring nitrogen in a saturated heterocyclic ring may be acylated using similar reaction conditions to those described above for the acylation of an amino group.
  • a compound of the formula (X) may be known or prepared according to processes described in International Patent Application No. PCT/GB98/01977.
  • a compound of the formula (XI) may be known or prepared by methods known in the art.
  • the compound of the formula (XI) may be formed by reacting a compound of the formula:
  • reaction is usually ca ⁇ ied out in a temperature range of -30°C to 60 °C, most commonly at around ambient temperature.
  • Acid addition salts of the compounds of formula (I) are prepared in a conventional manner by treating a solution or suspension of the free base of a compound of formula (I) with about one equivalent of a pharmaceutically acceptable acid.
  • Salts of compounds of formula (I) derived from inorganic or organic bases are prepared in a conventional manner by treating a solution or suspension of the free acid of a compound of formula (I) with about one equivalent of a pharmaceutically acceptable organic or inorganic base.
  • both acid addition salts and salts derived from bases may be prepared by treatment of the parent compound with the appropriate ion-exchange resin in a standard fashion. Conventional concentration and recrystallistion techniques are employed in isolating the salts.
  • Compounds according to the invention are able to destroy vasculature that has been newly formed such as tumour vasculature while leaving unaffected normal, mature vasculature.
  • the identification of compounds which selectively, and preferably potently, damage newly-formed vasculature is desirable and is the subject of the present invention.
  • the ability of the compounds to act in this way may be assessed, for example, using one or more of the procedures set out below: (a Activity against tumour vasculature measured by radioactive tracer
  • This assay demonstrates the ability of compounds to damage selectively tumour vasculature.
  • Subcutaneous CaNT tumours were initiated by injecting 0.05ml of a crude tumour cell suspension, approximately 10 6 cells, under the skin overlying the rear dorsum of 12-16 week- old mice. The animals were selected for treatment after approximately 3-4 weeks, when their tumours reached a geometric mean diameter of 5.5-6.5 mm. Compounds were dissolved in sterile saline and injected intraperitoneally in a volume of 0.1 ml per lOg body weight. Tumour perfusion was measured 6 hours after intraperitoneal administration in tumour, kidney, liver, skin, muscle, gut and brain by the RbCl extraction technique (Sapirstein, Amer. Jnl. Physiol., 1958, 193, 161-168).
  • Tissue radioactivity measured 1 minute after an intravenous injection of 86 RbCl was used to calculate relative blood flow as a proportion of cardiac output (Hill and Denekamp, Brit. Jnl. Radiol., 1982, 55, 905-913). Five animals were used in control and treated groups. Results were expressed as a percentage of the blood flow in the corresponding tissues in vehicle treated animals.
  • Tumour functional vascular volume in CaNT tumour-bearing mice was measured using the fluorescent dye Hoechst 33342 according to the method of Smith et al (Brit. Jnl. Cancer 1988, 57, 247-253). Five animals were used in control and treated groups. The fluorescent dye was dissolved in saline at 6.25mg/ml and injected intravenously at lOmg/kg 24 hours after intraperitoneal drug treatment. One minute later, animals were killed and tumours excised and frozen; lO ⁇ m sections were cut at 3 different levels and observed under UV illumination using an Olympus microscope equipped with epifluorescence.
  • Blood vessels were identified by their fluorescent outlines and vascular volume was quantified using a point scoring system based on that described by Chalkley, (Jnl. Natl. Cancer Inst., 1943, 4, 47-53). All estimates were based on counting a minimum of 100 fields from sections cut at the 3 different levels.
  • the ability of the compounds to bind to preparations of mammalian tubulin can be evaluated by a number of methods available in the literature, for example by following temperature initiated tubulin polymerisation by turbidity in the absence and presence of the compound (for example O.Boye et al Med. Chem. Res., 1991, 1, 142-150).
  • the activity of N-[3-amino-9,10,l l-trimethoxy-6,7-dihydro-5H- dibenzo[ ,c]cyclohepten-5-yl]acetamide, (V. Fernholz Justus Liebigs Ann., 1950, 568, 63-72), against tumour vasculature was measured by the fluorescent dye method described above.
  • ⁇ UVECs were plated in 0.2% gelatin-coated 12 well tissue culture plates at a concentration of 3xl0 4 cells per well in 1ml TCS medium. After 24 hours, when the cells were at -30% confluency, the cells were dosed with compound for 40 minutes at 37°C, 5% CO 2 . After this incubation the medium containing drug was pipetted off, and the cells were then gently washed in 2mls of ⁇ BSS (Hanks' Balanced Salt Solution purchased from Life Technologies Ltd, Paisley UK; Catalogue # 24020-083) to remove any detached cells.
  • ⁇ BSS Woods' Balanced Salt Solution purchased from Life Technologies Ltd, Paisley UK; Catalogue # 24020-083
  • the washing solution was then removed, and the adherent cells remaining were trypsinised using 300 ⁇ l of lx Trypsin-EDTA solution (Life Technologies Ltd, Paisley, UK; Catalogue # 43500- 019) at ambient temperature for 2 minutes.
  • the trypsinised cells were then made up to 1ml with TCS Biologicals medium, then centrifuged at 2000 ⁇ m for 2 minutes.
  • the cell pellet was then resuspended in a volume of 50 ⁇ l of TCS Biologicals medium. Total cell counts were obtained by counting the cells on a haemocytometer. The amount of cell detachment was calculated by comparing the number of cells remaining attached following treatment with the number in undosed control wells.
  • ⁇ IH 3T3 fibroblasts transfected with Harvey ras, clone 5, (Hras5 cells) were kept in continual passage in Dulbecco's modifed Eagles medium (DMEM) containing 10% foetal bovine serum (FBS) and 1% glutamine, at 37°C in a humidified incubator gassed with 7.5% carbon dioxide and 92.5% oxygen.
  • DMEM Dulbecco's modifed Eagles medium
  • FBS foetal bovine serum
  • glutamine 1% glutamine
  • mice were dosed with compounds, either intravenously or intraperitoneally, once on day of randomisation and culled 24 hours after dosing.
  • Compounds were dissolved in 20% hydroxypropyl beta cyclodextrin in physiological saline at pH 7 and dosed in a volume of 0.1ml per lOg body weight.
  • Tumours were excised, weighed and placed in buffered formalin. Area of necrosis in individual tumours was assessed from a haematoxylin/eosin stained-slide by a pathologist and scored from 0, meaning no significant change, to 10, meaning 91-100% necrosis.
  • the activity of examples 5 and 7 (described hereinafter) against tumour vasculature was measured by the fluorescent dye method described hereinabove.
  • Example 1 scored 6.0 at lOOm/kg and example 4 scored 3.2 at 50m/kg.
  • a pharmaceutical composition which comprises a compound of the formula (I) as defined hereinbefore or a pharmaceutically acceptable salt, solvate or pro-drug thereof, in association with a pharmaceutically acceptable excipient or ca ⁇ ier.
  • the composition may be in a form suitable for oral administration, for example as a tablet or capsule, for nasal administration or administration by inhalation, for example as a powder or solution, for parenteral injection (including intravenous, subcutaneous, intramuscular, intravascular or infusion) for example as a sterile solution, suspension or emulsion, for topical administration for example as an ointment or cream or for rectal administration for example as a suppository.
  • parenteral injection including intravenous, subcutaneous, intramuscular, intravascular or infusion
  • a sterile solution, suspension or emulsion for topical administration for example as an ointment or cream or for rectal administration for example as a suppository.
  • the above compositions may be prepared in a conventional manner using conventional excipients.
  • the compositions of the present invention are advantageously presented in unit dosage form.
  • the compound will normally be administered to a warm-blooded animal at a unit dose within the range 5-5000mg per square metre body area
  • a unit dose form such as a tablet or capsule will usually contain, for example l-250mg of active ingredient.
  • the size of the dose required for the therapeutic or prophylactic treatment of a particular disease state will necessarily be varied depending on the host treated, the route of administration and the severity of the illness being treated.
  • a daily dose in the range of l-50mg/kg is employed.
  • the daily dose will necessarily be varied depending upon the host treated, the particular route of administration, and the severity of the illness being treated. Accordingly the optimum dosage may be determined by the practitioner who is treating any particular patient.
  • a further feature of the present invention is a compound of formula (I), or a pharmaceutically acceptable salt, solvate or pro-drug thereof, for use as a medicament, conveniently a compound of formula (I), or a pharmaceutically acceptable salt, solvate or pro-drug thereof, for use as a medicament for producing a vascular damaging effect in a warm-blooded animal such as a human being.
  • a compound of the formula (I), or a pharmaceutically acceptable salt, solvate or pro-drug thereof in the manufacture of a medicament for use in the production of a vascular damaging effect in a warm-blooded animal such as a human being.
  • a method for producing a vascular damaging effect in a warm-blooded animal, such as a human being, in need of such treatment which comprises administering to said animal an effective amount of a compound of formula (I) or a pharmaceutically acceptable salt, solvate or pro-drug thereof as defined hereinbefore.
  • a compound of formula (I) or pharmaceutically-acceptable salt, solvate or pro-drug thereof preferably in the form of a pharmaceutical composition, when dosed in divided doses (also known as split doses) produces a greater anti-tumour effect than when a single dose is given.
  • Anti-tumour effects of a method of treatment of the present invention include but are not limited to, inhibition of tumour growth, tumour growth delay, regression of tumour, shrinkage of tumour, increased time to re-growth of tumour on cessation of treatment, slowing of disease progression. It is expected that when a method of treatment of the present invention is administered to a warm-blooded animal such as a human, in need of treatment for cancer involving a solid tumour, said method of treatment will produce an effect, as measured by, for example, one or more of: the extent of the anti-tumour effect, the response rate, the time to disease progression and the survival rate.
  • a method for the production of a vascular damaging effect in a warm-blooded animal such as a human, which comprises administering to said animal in divided doses an effective amount of a compound of formula (I) or pharmaceutically-acceptable salt, solvate or pro-drug thereof, preferably in the form of a pharmaceutical composition.
  • a method for the treatment of a cancer involving a solid tumour in a warm-blooded animal which comprises administering to said animal in divided doses an effective amount of a compound of formula (I) or pharmaceutically-acceptable salt, solvate or pro-drug thereof, preferably in the form of a pharmaceutical composition.
  • a medicament comprising two or more fractions of doses of a compound of formula (I) or pharmaceutically- acceptable salt, solvate or pro-drug thereof, preferably in the form of a pharmaceutical composition, which together add up to a total daily dose, for administration in divided doses for use in a method of treatment of a human or animal body by therapy.
  • kits comprising two or more fractions of doses of a compound of formula (I) or pharmaceutically- acceptable salt, solvate or pro-drug thereof, preferably in the form of a pharmaceutical composition, which together add up to a total daily dose, for administration in divided doses.
  • a kit comprising: a) two or more fractions of doses of a compound of formula (I) or pharmaceutically- acceptable salt, solvate or pro-drug thereof, which together add up to a total daily dose, in unit dosage forms for administration in divided doses; and b) container means for containing said dosage forms.
  • kits comprising: a) two or more fractions of doses of a compound of formula (I) or pharmaceutically- acceptable salt, solvate or pro-drug thereof, which together add up to a total daily dose, together with a pharmaceutically acceptable excipient or ca ⁇ ier, in unit dosage forms; and b) container means for containing said dosage forms.
  • a kit comprising: a) two or more fractions of doses of a compound of formula (I) or pharmaceutically- acceptable salt, solvate or pro-drug thereof, which together add up to a total daily dose, together with a pharmaceutically acceptable excipient or ca ⁇ ier, in unit dosage forms; and b) container means for containing said dosage forms.
  • compound of formula (I) or pharmaceutically-acceptable salt, solvate or pro-drug thereof in the manufacture of a medicament for administration in divided doses for use in the production of a vascular damaging effect in a warm-blooded animal such as a human.
  • a compound of formula (I) or pharmaceutically-acceptable salt, solvate or pro-drug thereof in the manufacture of a medicament for administration in divided doses for use in the production of an anti -cancer effect in a warm-blooded animal such as a human.
  • a compound of formula (I) or pharmaceutically-acceptable salt, solvate or pro-drug thereof in the manufacture of a medicament for administration in divided doses for use in the production of an anti-tumour effect in a warm-blooded animal such as a human.
  • Divided doses also called split doses, means that the total dose to be administered to a warm-blooded animal, such as a human, in any one day period (for example one 24 hour period from midnight to midnight) is divided up into two or more fractions of the total dose and these fractions are administered with a time period between each fraction of about greater than 0 hours to about 10 hours, preferably about 1 hour to about 6 hours, more preferably about 2 hours to about 4 hours.
  • the fractions of total dose may be about equal or unequal.
  • the total dose is divided into two parts which may be about equal or unequal.
  • the time intervals between doses may be for example selected from: about 1 hour, about 1.5 hours, about 2 hours, about 2.5 hours, about 3 hours, about 3.5 hours, about 4 hours, about 4.5 hours, about 5 hours, about 5.5 hours and about 6 hours.
  • the time intervals between doses may be any number (including non-integers) of minutes between greater than 0 minutes and 600 minutes, preferably between 45 and 375 minutes inclusive. If more than two doses are administered the time intervals between each dose may be about equal or unequal.
  • two doses are given with a time interval in between them of greater than or equal to 1 hour and less than 6 hours.
  • More preferably two doses are given with a time interval in between them of greater than or equal to two hours and less than 5 hours.
  • two doses are given with a time interval in between them of greater than or equal to two hours and less than or equal to 4 hours.
  • the total dose is divided into two parts which may be about equal or unequal with a time interval between doses of greater than or equal to about two hours and less than or equal to about 4 hours.
  • the total dose is divided into two parts which may be about equal with a time interval between doses of greater than or equal to about two hours and less than or equal to about 4 hours.
  • time periods means the time given plus or minus 15 minutes, thus for example about 1 hour means 45 to 75 minutes, about 1.5 hours means 75 to 105 minutes. Elsewhere the term 'about' has its usual dictionary meaning.
  • the antiangiogenic treatment defined hereinbefore may be applied as a sole therapy or may involve, in addition to a compound of the invention, one or more other substances and or treatments. Such conjoint treatment may be achieved by way of the simultaneous, sequential or separate administration of the individual components of the treatment.
  • the other component(s) of such conjoint treatment in addition to the antiangiogenic treatment defined hereinbefore may be: surgery, radiotherapy or chemotherapy.
  • Such chemotherapy may include the following categories of therapeutic agent: (i) other antiangiogenic agents that work by different mechanisms from those defined hereinbefore (for example linomide, inhibitors of integrin ⁇ v ⁇ 3 function, angiostatin, endostatin, razoxin, thalidomide) and including vascular endothelial growth factor (VEGF) receptor tyrosine kinase inhibitors (RTKIs) (for example those described in International Patent Applications Publication Nos.
  • VEGF vascular endothelial growth factor
  • RTKIs vascular endothelial growth factor receptor tyrosine kinase inhibitors
  • cytostatic agents such as antioestrogens (for example tamoxifen,toremifene, raloxifene, droloxifene, iodoxyfene), progestogens (for example megestrol acetate), aromatase inhibitors (for example anastrozole, letrazole, vorazole, exemestane), antiprogestogens, antiandrogens (for example flutamide, nilutamide, bicalutamide, cyproterone acetate), LHRH agonists and antagonists (for example goserelin acetate, luprolide), inhibitors of testosterone 5 ⁇ - dihydroreductase (for example finasteride), anti-invasion agents (for example metall
  • antiproliferative/antineoplastic drugs and combinations thereof, as used in medical oncology such as antimetabolites (for example antifolates like methotrexate, fluoropyrimidines like 5-fluorouracil, purine and adenosine analogues, cytosine arabinoside); antitumour antibiotics (for example anthracyclines like doxorubicin, daunomycin, epirubicin and idarubicin, mitomycin-C, dactinomycin, mithramycin); platinum derivatives (for example cisplatin, carboplatin); alkylating agents (for example nitrogen mustard, melphalan, chlorambucil, busulphan, cyclophosphamide, ifosfamide, nitrosoureas, thiotepa); antimitotic agents (for example vinca alkaloids like vincristine and taxoids like taxol, taxotere); enzymes (for example aspara
  • the compounds defined in the present invention are of interest for their vascular damaging effects.
  • Such compounds of the invention are expected to be useful in the prophylaxis and treatment of a wide range of disease states where inappropriate angiogenesis occurs including cancer, diabetes, psoriasis, rheumatoid arthritis, Kaposi's sarcoma, haemangioma, acute and chronic nephropathies, atheroma, arterial restenosis, autoimmune diseases, acute inflammation, endometriosis, dysfunctional uterine bleeding and ocular diseases with retinal vessel proliferation.
  • such compounds of the invention are expected to slow advantageously the growth of primary and recu ⁇ ent solid tumours of, for example, the colon, breast, prostate, lungs and skin.
  • the compounds of formula (I) and their pharmaceutically acceptable salts, solvates or pro-drugs are also useful as pharmacological tools in the development and standardisation of in vitro and in vivo test systems for the evaluation of the effects of vascular damaging agents in laboratory animals such as cats, dogs, rabbits, monkeys, rats and mice, as part of the search for new therapeutic agents.
  • ether is used anywhere in this specification it refers to diethyl ether.
  • the starting material was prepared as follows:
  • N-[(5S)-3,9,10,l l-tetramethoxy-6,7-dihydro-5H-dibenzo[a,c]cyclohepten-5-yl]-4-[di-(tert- butoxy)phosphoryloxy]butanamide was prepared using a similar method to that of Example 1 by reacting (5S)-3,9,10,1 l-tetramethoxy-6,7-dihydro-5H-dibenzo[a,c]cyclohepten-5-ylamine with 4-[di(tert-butoxy)phosphoryloxy]butanoic acid. Yield : 89 %
  • the starting material was prepared as follows: o. OBn
  • the starting material was prepared as follows
  • the starting material was prepared as follows :
  • the compound was prepared using a similar method to that of Example 9, but replacing 3-(4- acetylpiperazino)propyl 4-nitrophenyl carbonate by 4-mo ⁇ holino-4-oxobutyl 4- nitrophenylcarbonate. Yield : 55 %.
  • the starting material was prepared using a similar method to that of example 9, starting from
  • the starting material was prepared using a similar method to that of Example 9, from 4-(4- methylpiperazin-l-yl)-4-oxobutanol . Yield : 65 %.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Diabetes (AREA)
  • Rheumatology (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Endocrinology (AREA)
  • Epidemiology (AREA)
  • Reproductive Health (AREA)
  • Emergency Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Dermatology (AREA)
  • Immunology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Ophthalmology & Optometry (AREA)
  • Hematology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Obesity (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
EP01943701A 2000-07-07 2001-07-04 Colchinol derivatives as angiogenesis inhibitors Withdrawn EP1301498A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP01943701A EP1301498A1 (en) 2000-07-07 2001-07-04 Colchinol derivatives as angiogenesis inhibitors

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
EP00401976 2000-07-07
EP00401977 2000-07-07
EP00401977 2000-07-07
EP00401976 2000-07-07
EP01943701A EP1301498A1 (en) 2000-07-07 2001-07-04 Colchinol derivatives as angiogenesis inhibitors
PCT/GB2001/002964 WO2002008213A1 (en) 2000-07-07 2001-07-04 Colchinol derivatives as angiogenesis inhibitors

Publications (1)

Publication Number Publication Date
EP1301498A1 true EP1301498A1 (en) 2003-04-16

Family

ID=26073520

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01943701A Withdrawn EP1301498A1 (en) 2000-07-07 2001-07-04 Colchinol derivatives as angiogenesis inhibitors

Country Status (19)

Country Link
EP (1) EP1301498A1 (es)
JP (1) JP2004504391A (es)
KR (1) KR20030022264A (es)
CN (1) CN1255392C (es)
AU (2) AU2001266232B2 (es)
BR (1) BR0112225A (es)
CA (1) CA2410562A1 (es)
CZ (1) CZ200331A3 (es)
EE (1) EE200300015A (es)
HU (1) HUP0301742A3 (es)
IL (1) IL153325A0 (es)
IS (1) IS6668A (es)
MX (1) MXPA02012903A (es)
NO (1) NO20030055D0 (es)
NZ (1) NZ522661A (es)
PL (1) PL359181A1 (es)
RU (1) RU2003103603A (es)
SK (1) SK52003A3 (es)
WO (1) WO2002008213A1 (es)

Families Citing this family (298)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9900334D0 (en) 1999-01-07 1999-02-24 Angiogene Pharm Ltd Tricylic vascular damaging agents
SE9903544D0 (sv) 1999-10-01 1999-10-01 Astra Pharma Prod Novel compounds
GB2359551A (en) 2000-02-23 2001-08-29 Astrazeneca Uk Ltd Pharmaceutically active pyrimidine derivatives
AR028948A1 (es) 2000-06-20 2003-05-28 Astrazeneca Ab Compuestos novedosos
US6720323B2 (en) 2000-07-07 2004-04-13 Angiogene Pharmaceuticals Limited Colchinol derivatives as angiogenesis inhibitors
SE0003828D0 (sv) 2000-10-20 2000-10-20 Astrazeneca Ab Novel compounds
EP1474420B1 (en) 2002-02-01 2012-03-14 AstraZeneca AB Quinazoline compounds
GB0217431D0 (en) 2002-07-27 2002-09-04 Astrazeneca Ab Novel compounds
DE60318219T2 (de) 2002-08-24 2009-01-15 Astrazeneca Ab PYRIMIDINDERIVATE ALS MODULATOREN DER AKTIVITuT VON CHEMOKINREZEPTOREN
GB0221828D0 (en) 2002-09-20 2002-10-30 Astrazeneca Ab Novel compound
MY136174A (en) 2002-12-24 2008-08-29 Astrazeneca Ab Phosphonooxy quinazoline derivatives and their pharmaceutical use
US8198302B2 (en) 2003-02-28 2012-06-12 Oxigene, Inc. Compositions and methods with enhanced therapeutic activity
SE0301010D0 (sv) 2003-04-07 2003-04-07 Astrazeneca Ab Novel compounds
SE0301569D0 (sv) 2003-05-27 2003-05-27 Astrazeneca Ab Novel compounds
DK1689233T3 (da) 2003-11-19 2012-10-15 Array Biopharma Inc Bicykliske inhibitorer af MEK
GB0328243D0 (en) 2003-12-05 2004-01-07 Astrazeneca Ab Methods
CN100584840C (zh) 2004-01-05 2010-01-27 阿斯利康(瑞典)有限公司 取代杂环化合物及其应用
SE0401657D0 (sv) 2004-06-24 2004-06-24 Astrazeneca Ab Chemical compounds
GB0415320D0 (en) 2004-07-08 2004-08-11 Astrazeneca Ab Novel compounds
JP4795352B2 (ja) 2004-08-28 2011-10-19 アストラゼネカ・アクチエボラーグ ケモカイン受容体モジュレーターとしてのピリミジンスルホンアミド誘導体
WO2006068953A2 (en) 2004-12-21 2006-06-29 Astrazeneca Ab Antibodies directed to angiopoietin-2 and uses thereof
PT2383268E (pt) 2005-02-04 2015-12-21 Astrazeneca Ab Derivados de pirazolilaminopiridina úteis como inibidores de quinase
ES2333182T3 (es) 2005-05-18 2010-02-17 Array Biopharma, Inc. Derivados de 4-(fenilamino)-6-oxo-1,6-dihidropiridazina-3-carboxamida como inhibidores de mek para el tratamiento de enfermedades hiperproliferativas.
ES2397418T3 (es) 2005-07-21 2013-03-06 Astrazeneca Ab Derivados de piperidina
TW200738634A (en) 2005-08-02 2007-10-16 Astrazeneca Ab New salt
TW200738658A (en) 2005-08-09 2007-10-16 Astrazeneca Ab Novel compounds
JPWO2007034882A1 (ja) 2005-09-22 2009-03-26 大日本住友製薬株式会社 新規アデニン化合物
EP1939200A4 (en) 2005-09-22 2010-06-16 Dainippon Sumitomo Pharma Co NEW ADENINE CONNECTION
EP1939198A4 (en) 2005-09-22 2012-02-15 Dainippon Sumitomo Pharma Co NEW ADENINE CONNECTION
JPWO2007034917A1 (ja) 2005-09-22 2009-03-26 大日本住友製薬株式会社 新規なアデニン化合物
US20090118263A1 (en) 2005-09-22 2009-05-07 Dainippon Sumitomo Pharma Co., Ltd. Novel Adenine Compound
EP1937632A1 (en) 2005-10-06 2008-07-02 Astra Zeneca AB Novel compounds
EP1945631B8 (en) 2005-10-28 2013-01-02 AstraZeneca AB 4- (3-aminopyrazole) pyrimidine derivatives for use as tyrosine kinase inhibitors in the treatment of cancer
ES2364901T3 (es) 2005-11-15 2011-09-16 Array Biopharma, Inc. Procesos e intermedios para la preparación de derivados de n4-fenil-quinazolin-4-amina.
TW200730512A (en) 2005-12-12 2007-08-16 Astrazeneca Ab Novel compounds
PT1979001E (pt) 2005-12-13 2012-07-13 Medimmune Ltd Proteínas de ligação específicas para factores de crescimento insulínicos e suas aplicações
JP2009519308A (ja) 2005-12-15 2009-05-14 アストラゼネカ・アクチエボラーグ 呼吸器疾患の処置のための置換ジフェニルエーテル、アミン、スルフィドおよびメタン
TW200813091A (en) 2006-04-10 2008-03-16 Amgen Fremont Inc Targeted binding agents directed to uPAR and uses thereof
JP2009538289A (ja) 2006-05-26 2009-11-05 アストラゼネカ・アクチエボラーグ ビアリールまたはヘテロアリール置換インドール
CL2007002225A1 (es) 2006-08-03 2008-04-18 Astrazeneca Ab Agente de union especifico para un receptor del factor de crecimiento derivado de plaquetas (pdgfr-alfa); molecula de acido nucleico que lo codifica; vector y celula huesped que la comprenden; conjugado que comprende al agente; y uso del agente de un
DE102006037478A1 (de) 2006-08-10 2008-02-14 Merck Patent Gmbh 2-(Heterocyclylbenzyl)-pyridazinonderivate
SI2057156T1 (sl) 2006-08-23 2017-06-30 Kudos Pharmaceuticals Limited Derivati 2-metilmorfolin pirido-, pirazo- in pirimido-pirimidina kot inhibitorji mTOR
TW200825084A (en) 2006-11-14 2008-06-16 Astrazeneca Ab New compounds 521
TW200831528A (en) 2006-11-30 2008-08-01 Astrazeneca Ab Compounds
JP4604129B2 (ja) 2006-12-19 2010-12-22 アストラゼネカ・アクチエボラーグ ムスカリン受容体アンタゴニストとしてのキヌクリジノール誘導体
CL2008000191A1 (es) 2007-01-25 2008-08-22 Astrazeneca Ab Compuestos derivados de 4-amino-cinnotina-3-carboxamida; inhibidores de csf-1r quinasa; su proceso de preparacion; y su uso para tratar el cancer.
AR065784A1 (es) 2007-03-20 2009-07-01 Dainippon Sumitomo Pharma Co Derivados de 8-oxo adenina,medicamentos que los contienen y usos como agentes terapeuticos para enfermedades alergicas, antivirales o antibacterianas.
US8044056B2 (en) 2007-03-20 2011-10-25 Dainippon Sumitomo Pharma Co., Ltd. Adenine compound
UA99459C2 (en) 2007-05-04 2012-08-27 Астразенека Аб 9-(pyrazol-3-yl)- 9h-purine-2-amine and 3-(pyraz0l-3-yl)-3h-imidazo[4,5-b]pyridin-5-amine derivatives and their use for the treatment of cancer
DE102007025717A1 (de) 2007-06-01 2008-12-11 Merck Patent Gmbh Arylether-pyridazinonderivate
DE102007025718A1 (de) 2007-06-01 2008-12-04 Merck Patent Gmbh Pyridazinonderivate
DE102007026341A1 (de) 2007-06-06 2008-12-11 Merck Patent Gmbh Benzoxazolonderivate
UA100983C2 (ru) 2007-07-05 2013-02-25 Астразенека Аб Бифенилоксипропановая кислота как модулятор crth2 и интермедиаты
DE102007032507A1 (de) 2007-07-12 2009-04-02 Merck Patent Gmbh Pyridazinonderivate
DE102007038957A1 (de) 2007-08-17 2009-02-19 Merck Patent Gmbh 6-Thioxo-pyridazinderivate
DE102007041115A1 (de) 2007-08-30 2009-03-05 Merck Patent Gmbh Thiadiazinonderivate
MX2010003698A (es) 2007-10-04 2010-04-21 Astrazeneca Ab Compuestos de [3,2-c]pirazol esteroides con actividad glucocorticoide.
AU2008309383B2 (en) 2007-10-11 2012-04-19 Astrazeneca Ab Pyrrolo [2, 3 -D] pyrimidin derivatives as protein kinase B inhibitors
US8092804B2 (en) 2007-12-21 2012-01-10 Medimmune Limited Binding members for interleukin-4 receptor alpha (IL-4Rα)-173
DE102007061963A1 (de) 2007-12-21 2009-06-25 Merck Patent Gmbh Pyridazinonderivate
EP2604628A3 (en) 2007-12-21 2013-08-21 Medimmune Limited Binding members for interleukin-4 receptor alpha (IL-4R) - 173
PL2242759T3 (pl) 2008-02-06 2013-06-28 Astrazeneca Ab Związki
AU2009219376B2 (en) 2008-02-28 2014-09-25 Merck Patent Gmbh Protein kinase inhibitors and use thereof
DE102008019907A1 (de) 2008-04-21 2009-10-22 Merck Patent Gmbh Pyridazinonderivate
EP2297106B1 (en) 2008-05-27 2014-07-16 AstraZeneca AB Phenoxypyridinylamide derivatives and their use in the treatment of pde4 mediated disease states
DE102008025750A1 (de) 2008-05-29 2009-12-03 Merck Patent Gmbh Dihydropyrazolderivate
DE102008028905A1 (de) 2008-06-18 2009-12-24 Merck Patent Gmbh 3-(3-Pyrimidin-2-yl-benzyl)-[1,2,4]triazolo[4,3-b]pyridazinderivate
DE102008029734A1 (de) 2008-06-23 2009-12-24 Merck Patent Gmbh Thiazolyl-piperidinderivate
UY31952A (es) 2008-07-02 2010-01-29 Astrazeneca Ab 5-metilideno-1,3-tiazolidina-2,4-dionas sustituidas como inhibidores de quinasa pim
DE102008037790A1 (de) 2008-08-14 2010-02-18 Merck Patent Gmbh Bicyclische Triazolderivate
DE102008038221A1 (de) 2008-08-18 2010-02-25 Merck Patent Gmbh 7-Azaindolderivate
CA2735900A1 (en) 2008-09-19 2010-03-25 Medimmune, Llc Antibodies directed to dll4 and uses thereof
DE102008052943A1 (de) 2008-10-23 2010-04-29 Merck Patent Gmbh Azaindolderivate
WO2010067102A1 (en) 2008-12-09 2010-06-17 Astrazeneca Ab Diazaspiro [5.5] undecane derivatives and related compounds as muscarinic-receptor antagonists and beta-adrenoreceptor agonists for the treatment of pulmonary disorders
EP2373326B1 (en) 2008-12-11 2016-03-09 Axcentua Pharmaceutucals AB Crystalline forms of genistein
US7863325B2 (en) 2008-12-11 2011-01-04 Axcentua Pharmaceuticals Ab Crystalline genistein sodium salt dihydrate
US20100152197A1 (en) 2008-12-15 2010-06-17 Astrazeneca Ab (4-tert-butylpiperazin-2-yl)(piperazin-1-yl)methanone-n-carboxamide derivatives
EP2367821B1 (en) 2008-12-17 2015-09-16 Merck Patent GmbH C-ring modified tricyclic benzonaphthiridinone protein kinase inhibitors and use thereof
EP2367822B1 (en) 2008-12-18 2016-10-05 Merck Patent GmbH Tricyclic azaindoles
DE102008063667A1 (de) 2008-12-18 2010-07-01 Merck Patent Gmbh 3-(3-Pyrimidin-2-yl-benzyl)-°[1,2,4]triazolo[4,3-b]pyrimidin-derivate
US20110053923A1 (en) 2008-12-22 2011-03-03 Astrazeneca Chemical compounds 610
JP2012513194A (ja) 2008-12-23 2012-06-14 アストラゼネカ アクチボラグ α5β1に向けられた標的結合剤およびその使用
DE102008062825A1 (de) 2008-12-23 2010-06-24 Merck Patent Gmbh 3-(3-Pyrimidin-2-yl-benzyl)-[1,2,4]triazolo [4,3-b]pyridazin-derivate
DE102008062826A1 (de) 2008-12-23 2010-07-01 Merck Patent Gmbh Pyridazinonderivate
DE102009003975A1 (de) 2009-01-07 2010-07-08 Merck Patent Gmbh Benzothiazolonderivate
DE102009003954A1 (de) 2009-01-07 2010-07-08 Merck Patent Gmbh Pyridazinonderivate
DE102009004061A1 (de) 2009-01-08 2010-07-15 Merck Patent Gmbh Pyridazinonderivate
WO2010089580A1 (en) 2009-02-06 2010-08-12 Astrazeneca Ab Use of a mct1 inhibitor in the treatment of cancers expressing mct1 over mct4
WO2010092371A1 (en) 2009-02-10 2010-08-19 Astrazeneca Ab Triazolo [4,3-b] pyridazine derivatives and their uses for prostate cancer
GB0905127D0 (en) 2009-03-25 2009-05-06 Pharminox Ltd Novel prodrugs
UY32520A (es) 2009-04-03 2010-10-29 Astrazeneca Ab Compuestos que tienen actividad agonista del receptor de glucocorticoesteroides
US8389580B2 (en) 2009-06-02 2013-03-05 Duke University Arylcyclopropylamines and methods of use
US20100317593A1 (en) 2009-06-12 2010-12-16 Astrazeneca Ab 2,3-dihydro-1h-indene compounds
GB0913342D0 (en) 2009-07-31 2009-09-16 Astrazeneca Ab Compounds - 801
DE102009043260A1 (de) 2009-09-28 2011-04-28 Merck Patent Gmbh Pyridinyl-imidazolonderivate
WO2011039528A1 (en) 2009-10-02 2011-04-07 Astrazeneca Ab 2-pyridone compounds used as inhibitors of neutrophil elastase
DE102009049679A1 (de) 2009-10-19 2011-04-21 Merck Patent Gmbh Pyrazolopyrimidinderivate
WO2011048409A1 (en) 2009-10-20 2011-04-28 Astrazeneca Ab Cyclic amine derivatives having beta2 adrenergic receptor agonist and muscarinic receptor antagonist activity
US8399460B2 (en) 2009-10-27 2013-03-19 Astrazeneca Ab Chromenone derivatives
RU2542582C2 (ru) 2009-11-18 2015-02-20 Астразенека Аб Производные бензимидазола, полезные при лечении состояний, ассоциированных с активностью р2х3 или р2х2/3
EP3279215B1 (en) 2009-11-24 2020-02-12 MedImmune Limited Targeted binding agents against b7-h1
JP2013512859A (ja) 2009-12-03 2013-04-18 大日本住友製薬株式会社 トール様受容体(tlr)を介して作用するイミダゾキノリン
DE102009058280A1 (de) 2009-12-14 2011-06-16 Merck Patent Gmbh Thiazolderivate
AU2010333338A1 (en) 2009-12-14 2012-08-02 Merck Patent Gmbh Sphingosine kinase inhibitors
KR20120096076A (ko) 2009-12-17 2012-08-29 메르크 파텐트 게엠베하 스핑고신 키나아제 저해제
AU2011206864B2 (en) 2010-01-15 2013-12-19 Suzhou Neupharma Co., Ltd. Certain chemical entities, compositions, and methods
CA2786520A1 (en) 2010-01-19 2011-07-28 Astrazeneca Ab Pyrazine derivatives
WO2011095807A1 (en) 2010-02-07 2011-08-11 Astrazeneca Ab Combinations of mek and hh inhibitors
WO2011114148A1 (en) 2010-03-17 2011-09-22 Astrazeneca Ab 4h- [1, 2, 4] triazolo [5, 1 -b] pyrimidin-7 -one derivatives as ccr2b receptor antagonists
US20130059916A1 (en) 2010-05-26 2013-03-07 Stephane Rocchi Biguanide compounds and its use for treating cancer
WO2011154677A1 (en) 2010-06-09 2011-12-15 Astrazeneca Ab Substituted n-[1-cyano-2-(phenyl)ethyl] 1-aminocycloalk-1-ylcarboxamide compounds - 760
SA111320519B1 (ar) 2010-06-11 2014-07-02 Astrazeneca Ab مركبات بيريميدينيل للاستخدام كمثبطات atr
GB201009801D0 (en) 2010-06-11 2010-07-21 Astrazeneca Ab Compounds 950
TW201219383A (en) 2010-08-02 2012-05-16 Astrazeneca Ab Chemical compounds
TWI535712B (zh) 2010-08-06 2016-06-01 阿斯特捷利康公司 化合物
DE102010034699A1 (de) 2010-08-18 2012-02-23 Merck Patent Gmbh Pyrimidinderivate
CN102656179B (zh) 2010-08-28 2015-07-29 苏州润新生物科技有限公司 蟾蜍灵衍生物、其药物组合物及用途
GB201016442D0 (en) 2010-09-30 2010-11-17 Pharminox Ltd Novel acridine derivatives
DE102010048800A1 (de) 2010-10-20 2012-05-10 Merck Patent Gmbh Chinoxalinderivate
DE102010049595A1 (de) 2010-10-26 2012-04-26 Merck Patent Gmbh Chinazolinderivate
WO2012066335A1 (en) 2010-11-19 2012-05-24 Astrazeneca Ab Phenol compounds als toll -like receptor 7 agonists
WO2012067269A1 (en) 2010-11-19 2012-05-24 Dainippon Sumitomo Pharma Co., Ltd. Aminoalkoxyphenyl compounds and their use in the treatment of disease
JP2013542916A (ja) 2010-11-19 2013-11-28 大日本住友製薬株式会社 環状アミド化合物および疾患の処置におけるその使用
WO2012066336A1 (en) 2010-11-19 2012-05-24 Astrazeneca Ab Benzylamine compounds as toll -like receptor 7 agonists
CN103370317B (zh) 2010-12-16 2015-10-07 阿斯利康(瑞典)有限公司 可用于治疗的咪唑并[4,5-c]喹啉-1-基衍生物
WO2012080730A1 (en) 2010-12-17 2012-06-21 Astrazeneca Ab Purine derivatives
MX2013007067A (es) 2010-12-20 2013-11-01 Medimmune Ltd Anticuerpos anti-il-18 y sus usos.
US9493503B2 (en) 2011-02-02 2016-11-15 Neupharma, Inc. Certain chemical entities, compositions, and methods
JP5937111B2 (ja) 2011-02-17 2016-06-22 カンサー・セラピューティクス・シーアールシー・プロプライエタリー・リミテッドCancer Therapeutics Crc Pty Limited Fak阻害剤
CA2827172C (en) 2011-02-17 2019-02-26 Cancer Therapeutics Crc Pty Limited Selective fak inhibitors
GB201104267D0 (en) 2011-03-14 2011-04-27 Cancer Rec Tech Ltd Pyrrolopyridineamino derivatives
US8530470B2 (en) 2011-04-13 2013-09-10 Astrazeneca Ab Chromenone derivatives
WO2012175991A1 (en) 2011-06-24 2012-12-27 Pharminox Limited Fused pentacyclic anti - proliferative compounds
WO2013003697A1 (en) 2011-06-30 2013-01-03 Trustees Of Boston University Method for controlling tumor growth, angiogenesis and metastasis using immunoglobulin containing and proline rich receptor-1 (igpr-1)
RS61608B1 (sr) 2011-07-12 2021-04-29 Astrazeneca Ab N- (6 - ((2r, 3s) -3,4-dihidroksibutan-2-iloksi) -2- (4-fluorobenziltio) pirimidin-4-il) -3- metilazetidin-1-sulfonamid kao modulator receptora hemokina
EP3686193B1 (en) 2011-07-27 2022-03-02 Astrazeneca AB 2-(2,4,5-substituted-anilino)pyrimidine compounds
DE102011111400A1 (de) 2011-08-23 2013-02-28 Merck Patent Gmbh Bicyclische heteroaromatische Verbindungen
CN104053442B (zh) 2011-08-26 2017-06-23 润新生物公司 某些化学实体、组合物及方法
WO2013033250A1 (en) 2011-09-01 2013-03-07 Xiangping Qian Certain chemical entities, compositions, and methods
JP6093768B2 (ja) 2011-09-14 2017-03-08 ニューファーマ, インコーポレイテッド 特定の化学的実体、組成物、および方法
WO2013043935A1 (en) 2011-09-21 2013-03-28 Neupharma, Inc. Certain chemical entites, compositions, and methods
EP2760458B1 (en) 2011-09-29 2017-06-14 The University of Liverpool Prevention and/or treatment of cancer and/or cancer metastasis
WO2013049701A1 (en) 2011-09-30 2013-04-04 Neupharma, Inc. Certain chemical entities, compositions, and methods
US20130178520A1 (en) 2011-12-23 2013-07-11 Duke University Methods of treatment using arylcyclopropylamine compounds
WO2013112950A2 (en) 2012-01-25 2013-08-01 Neupharma, Inc. Certain chemical entities, compositions, and methods
SG11201404234YA (en) 2012-01-28 2014-08-28 Merck Patent Gmbh Triazolo[4,5-d]pyrimidine derivatives
SG11201404654SA (en) 2012-02-09 2014-09-26 Merck Patent Gmbh Tetrahydro-quinazolinone derivatives as tank and parp inhibitors
ES2606637T3 (es) 2012-02-09 2017-03-24 Merck Patent Gmbh Derivados de furo [3,2- b]piridina como inhibidores de TBK1 e IKK
WO2013126132A1 (en) 2012-02-21 2013-08-29 Merck Patent Gmbh Cyclic diaminopyrimidine derivatives
ES2674451T3 (es) 2012-02-21 2018-06-29 Merck Patent Gmbh 2-amino-[1,2,4]triazolo[1,5-a] pirazinas 8-sustituidos como inhibidores de la SYK tirosina quinasa e inhibidores de la serina quinasa GCN2
ES2606638T3 (es) 2012-02-21 2017-03-24 Merck Patent Gmbh Derivados de furopiridina
WO2013131609A1 (en) 2012-03-07 2013-09-12 Merck Patent Gmbh Triazolopyrazine derivatives
EP2831077B1 (en) 2012-03-28 2016-04-27 Merck Patent GmbH Bicyclic pyrazinone derivatives
WO2013144532A1 (en) 2012-03-30 2013-10-03 Astrazeneca Ab 3 -cyano- 5 -arylamino-7 -cycloalkylaminopyrrolo [1, 5 -a] pyrimidine derivatives and their use as antitumor agents
AU2013244999A1 (en) 2012-04-05 2014-09-25 F. Hoffmann-La Roche Ag Bispecific antibodies against human TWEAK and human IL17 and uses thereof
US9676813B2 (en) 2012-04-29 2017-06-13 Neupharma, Inc. Certain steroids and methods for using the same in the treatment of cancer
CA2872334C (en) 2012-05-04 2020-06-30 Dieter Dorsch Pyrrolotriazinone derivatives
GB201211021D0 (en) 2012-06-21 2012-08-01 Cancer Rec Tech Ltd Pharmaceutically active compounds
JP6430936B2 (ja) 2012-07-24 2018-11-28 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツングMerck Patent Gesellschaft mit beschraenkter Haftung 関節症の処置のためのヒドロキシスタチン誘導体
EP2882746B1 (en) 2012-08-07 2016-12-07 Merck Patent GmbH Pyridopyrimidine derivatives as protein kinase inhibitors
PL2882714T3 (pl) 2012-08-08 2020-02-28 Merck Patent Gmbh Pochodne (aza-)izochinolinonowe
CA2882158A1 (en) 2012-08-17 2014-02-20 Cancer Therapeutics Crc Pty Limited Vegfr3 inhibitors
WO2014041349A1 (en) 2012-09-12 2014-03-20 Cancer Therapeutics Crc Pty Ltd Tetrahydropyran-4-ylethylamino- or tetrahydropyranyl-4-ethyloxy-pyrimidines or -pyridazines as isoprenylcysteincarboxymethyl transferase inhibitors
WO2014047648A1 (en) 2012-09-24 2014-03-27 Neupharma, Inc. Certain chemical entities, compositions, and methods
SG11201502120XA (en) 2012-09-26 2015-04-29 Merck Patent Gmbh Quinazolinone derivatives as parp inhibitors
JP6348115B2 (ja) 2012-10-26 2018-06-27 ザ ユニバーシティー オブ クイーンズランド がん療法のためのエンドサイトーシス阻害剤および抗体の使用
EP2914750B1 (en) 2012-11-05 2018-04-18 GMDx Co Pty Ltd Methods for determining the cause of somatic mutagenesis
EP2916838B1 (en) 2012-11-12 2019-03-13 Neupharma, Inc. Certain chemical entities, compositions, and methods
MX2015006037A (es) 2012-11-16 2015-08-07 Merck Patent Gmbh Derivados de 3-aminociclopentancarboxamida.
WO2014089177A2 (en) 2012-12-04 2014-06-12 Massachusetts Institute Of Technology Compounds, conjugates and compositions of epipolythiodiketopiperazines and polythiodiketopiperazines
CN105246888B (zh) 2013-01-31 2017-09-05 尼奥迈德研究所 咪唑并吡啶化合物及其用途
CN105189469B (zh) 2013-02-25 2018-09-25 默克专利股份公司 2-氨基-3,4-二氢喹唑啉衍生物及其作为组织蛋白酶d抑制剂的用途
WO2014135245A1 (en) 2013-03-05 2014-09-12 Merck Patent Gmbh 9-(aryl or heteroaryl)-2-(pyrazolyl, pyrrolidinyl or cyclopentyl)aminopurine derivatives as anticancer agents
CA2905509A1 (en) 2013-03-15 2014-09-18 Memorial Sloan-Kettering Cancer Center Hsp90-targeted cardiac imaging and therapy
AR095443A1 (es) 2013-03-15 2015-10-14 Fundación Centro Nac De Investig Oncológicas Carlos Iii Heterociclos condensados con acción sobre atr
CN105142648A (zh) 2013-03-15 2015-12-09 玛格塞蒂克斯公司 用于癌症的镁组合物及其用途
WO2014161570A1 (en) 2013-04-03 2014-10-09 Roche Glycart Ag Antibodies against human il17 and uses thereof
EP3004073A1 (en) 2013-06-07 2016-04-13 Université catholique de Louvain 3-carboxy substituted coumarin derivatives with a potential utility for the treatment of cancer diseases
WO2014205511A1 (en) 2013-06-25 2014-12-31 University Of Canberra Methods and compositions for modulating cancer stem cells
SG11201601138PA (en) 2013-08-23 2016-03-30 Neupharma Inc Certain chemical entities, compositions, and methods
CN105764513A (zh) 2013-09-18 2016-07-13 堪培拉大学 干细胞调控ii
WO2015048852A1 (en) 2013-10-01 2015-04-09 The University Of Queensland Kits and methods for diagnosis, screening, treatment and disease monitoring
US8986691B1 (en) 2014-07-15 2015-03-24 Kymab Limited Method of treating atopic dermatitis or asthma using antibody to IL4RA
US8980273B1 (en) 2014-07-15 2015-03-17 Kymab Limited Method of treating atopic dermatitis or asthma using antibody to IL4RA
GB201403536D0 (en) 2014-02-28 2014-04-16 Cancer Rec Tech Ltd Inhibitor compounds
EP3185858A4 (en) 2014-08-25 2017-12-27 University of Canberra Compositions for modulating cancer stem cells and uses therefor
AU2015349613B2 (en) 2014-11-17 2022-01-13 The Council Of The Queensland Institute Of Medical Research Glycoprotein biomarkers for esophageal adenocarcinoma and barrett's esophagus and uses thereof
MA41179A (fr) 2014-12-19 2017-10-24 Cancer Research Tech Ltd Composés inhibiteurs de parg
GB201501870D0 (en) 2015-02-04 2015-03-18 Cancer Rec Tech Ltd Autotaxin inhibitors
GB201502020D0 (en) 2015-02-06 2015-03-25 Cancer Rec Tech Ltd Autotaxin inhibitory compounds
AU2016220219B2 (en) 2015-02-17 2020-05-14 Neupharma, Inc. Certain chemical entities, compositions, and methods
GB201510019D0 (en) 2015-06-09 2015-07-22 Cancer Therapeutics Crc Pty Ltd Compounds
CA2994023A1 (en) 2015-08-04 2017-02-02 University Of South Australia N-(pyridin-2-yl)-4-(thiazol-5-yl)pyrimidin-2-amine derivatives as therapeutic compounds
US11225690B2 (en) 2015-08-26 2022-01-18 Gmdx Co Pty Ltd Methods of detecting cancer recurrence
SG11201805341RA (en) 2015-12-23 2018-07-30 Univ Queensland Technology Nucleic acid oligomers and uses therefor
WO2017132728A1 (en) 2016-02-01 2017-08-10 University Of Canberra Proteinaceous compounds and uses therefor
CN109073650A (zh) 2016-02-15 2018-12-21 阿斯利康(瑞典)有限公司 包括对西地尼布进行固定的间歇给药的方法
WO2017178845A1 (en) 2016-04-15 2017-10-19 Cancer Research Technology Limited Heterocyclic compounds as ret kinase inhibitors
GB2554333A (en) 2016-04-26 2018-04-04 Big Dna Ltd Combination therapy
US10918627B2 (en) 2016-05-11 2021-02-16 Massachusetts Institute Of Technology Convergent and enantioselective total synthesis of Communesin analogs
JP6985388B2 (ja) 2016-07-29 2021-12-22 ラプト・セラピューティクス・インコーポレイテッド ケモカイン受容体調節剤及びそれの使用
JP7101165B2 (ja) 2016-08-15 2022-07-14 ニューファーマ, インコーポレイテッド 特定の化学的実体、組成物、および方法
EP3515903B1 (en) 2016-09-22 2020-10-21 Cancer Research Technology Limited Preparation and uses of pyrimidinone derivatives
GB201617103D0 (en) 2016-10-07 2016-11-23 Cancer Research Technology Limited Compound
US10786502B2 (en) 2016-12-05 2020-09-29 Apros Therapeutics, Inc. Substituted pyrimidines containing acidic groups as TLR7 modulators
US10287253B2 (en) 2016-12-05 2019-05-14 Apros Therapeutics, Inc. Substituted pyrimidines containing acidic groups as TLR7 modulators
AU2018214431B2 (en) 2017-02-01 2021-07-29 Aucentra Therapeutics Pty Ltd Derivatives of N-cycloalkyl/heterocycloalkyl-4-(imidazo [1,2-a]pyridine)pyrimidin-2-amine as therapeutic agents
WO2018162625A1 (en) 2017-03-09 2018-09-13 Truly Translational Sweden Ab Prodrugs of sulfasalazine, pharmaceutical compositions thereof and their use in the treatment of autoimmune disease
GB201704325D0 (en) 2017-03-17 2017-05-03 Argonaut Therapeutics Ltd Compounds
GB201705971D0 (en) 2017-04-13 2017-05-31 Cancer Res Tech Ltd Inhibitor compounds
US11932650B2 (en) 2017-05-11 2024-03-19 Massachusetts Institute Of Technology Potent agelastatin derivatives as modulators for cancer invasion and metastasis
CN108864079B (zh) 2017-05-15 2021-04-09 深圳福沃药业有限公司 一种三嗪化合物及其药学上可接受的盐
EP3630749B9 (en) 2017-05-26 2024-05-29 Cancer Research Technology Limited 2-quinolone derived inhibitors of bcl6
EP4374858A2 (en) 2017-05-26 2024-05-29 Cancer Research Technology Limited Benzimidazolone derived inhibitors of bcl6
DK3630188T3 (da) 2017-05-31 2021-11-15 Amplio Pharma Ab Farmaceutisk sammensætning omfattende en kombination af methotrexat og novobiocin og anvendelse af sammensætningen til behandling
EP3648797A1 (en) 2017-07-05 2020-05-13 EPOS-Iasis Research and Development, Ltd Multifunctional conjugates
SG11202000823WA (en) 2017-08-01 2020-02-27 Merck Patent Gmbh Thiazolopyridine derivatives as adenosine receptor antagonists
CN111278840B (zh) 2017-08-18 2023-11-17 癌症研究科技有限公司 吡咯并[2,3-b]吡啶化合物及其治疗癌症的用途
TW201920123A (zh) 2017-08-21 2019-06-01 德商馬克專利公司 作為腺苷受體拮抗劑之喹㗁啉衍生物
AU2018320673B2 (en) 2017-08-21 2023-03-30 Merck Patent Gmbh Benzimidazole derivatives as adenosine receptor antagonists
TWI702205B (zh) 2017-10-06 2020-08-21 俄羅斯聯邦商拜奧卡德聯合股份公司 表皮生長因子受體抑制劑
US10640508B2 (en) 2017-10-13 2020-05-05 Massachusetts Institute Of Technology Diazene directed modular synthesis of compounds with quaternary carbon centers
NL2019801B1 (en) 2017-10-25 2019-05-02 Univ Leiden Delivery vectors
AU2018360766A1 (en) 2017-11-06 2020-05-21 Rapt Therapeutics, Inc. Anticancer agents
EP3488868B1 (en) 2017-11-23 2023-09-13 medac Gesellschaft für klinische Spezialpräparate mbH Pharmaceutical composition for oral administration containing sulfasalazine and / or a sulfasalazine organic salt, production process and use
EP3489222A1 (en) 2017-11-23 2019-05-29 medac Gesellschaft für klinische Spezialpräparate mbH Sulfasalazine salts, production processes and uses
AU2019207517A1 (en) 2018-01-15 2020-08-27 Aucentra Therapeutics Pty Ltd 5-(pyrimidin-4-yl)thiazol-2-yl urea derivatives as therapeutic agents
GB201801128D0 (en) 2018-01-24 2018-03-07 Univ Oxford Innovation Ltd Compounds
JP7355758B2 (ja) 2018-01-26 2023-10-03 ラプト・セラピューティクス・インコーポレイテッド ケモカイン受容体調節剤及びその使用
AU2019218893A1 (en) 2018-02-08 2020-09-03 Neupharma, Inc. Certain chemical entities, compositions, and methods
WO2019175093A1 (en) 2018-03-12 2019-09-19 Astrazeneca Ab Method for treating lung cancer
MX2020010805A (es) 2018-04-13 2021-01-29 Cancer Research Tech Ltd Inhibidores de bcl6.
EP3784233B1 (en) 2018-04-27 2024-06-05 Spruce Biosciences, Inc. Methods for treating testicular and ovarian adrenal rest tumors
CN112513031A (zh) 2018-06-04 2021-03-16 阿普罗斯治疗公司 可用于治疗与tlr7调节相关的疾病的含酸性基团的嘧啶化合物
GB201809102D0 (en) 2018-06-04 2018-07-18 Univ Oxford Innovation Ltd Compounds
JP2021527051A (ja) 2018-06-05 2021-10-11 ラプト・セラピューティクス・インコーポレイテッド ピラゾロ−ピリミジン−アミノ−シクロアルキル化合物及びその治療的使用
GB201810092D0 (en) 2018-06-20 2018-08-08 Ctxt Pty Ltd Compounds
GB201810581D0 (en) 2018-06-28 2018-08-15 Ctxt Pty Ltd Compounds
KR20210061329A (ko) 2018-09-18 2021-05-27 수저우 잔롱 파마 리미티드 항종양제로서의 퀴나졸린 유도체
WO2020068600A1 (en) 2018-09-24 2020-04-02 Rapt Therapeutics, Inc. Ubiquitin-specific-processing protease 7 (usp7) modulators and uses thereof
JP2022505872A (ja) 2018-10-25 2022-01-14 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング アデノシン受容体アンタゴニストとしての5-アザインダゾール誘導体
ES2960883T3 (es) 2018-10-25 2024-03-07 Merck Patent Gmbh Derivados de 5-azaindazol como antagonistas de los receptores de adenosina
GB201819126D0 (en) 2018-11-23 2019-01-09 Cancer Research Tech Ltd Inhibitor compounds
CN114729354A (zh) 2018-12-25 2022-07-08 中国医学科学院基础医学研究所 炎性相关疾病防治的小rna药物及其组合
AR117844A1 (es) 2019-01-22 2021-09-01 Merck Patent Gmbh Derivados de tiazolopiridina como antagonistas del receptor de adenosina
JP2022524759A (ja) 2019-03-07 2022-05-10 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Shp2アンタゴニストとしてのカルボキサミド-ピリミジン誘導体
CN111747950B (zh) 2019-03-29 2024-01-23 深圳福沃药业有限公司 用于治疗癌症的嘧啶衍生物
JP2022528562A (ja) 2019-04-05 2022-06-14 ストーム・セラピューティクス・リミテッド Mettl3阻害化合物
WO2020210384A1 (en) 2019-04-08 2020-10-15 Merck Patent Gmbh Pyrimidinone derivatives as shp2 antagonists
GB201905328D0 (en) 2019-04-15 2019-05-29 Azeria Therapeutics Ltd Inhibitor compounds
US11535634B2 (en) 2019-06-05 2022-12-27 Massachusetts Institute Of Technology Compounds, conjugates, and compositions of epipolythiodiketopiperazines and polythiodiketopiperazines and uses thereof
GB201908885D0 (en) 2019-06-20 2019-08-07 Storm Therapeutics Ltd Therapeutic compounds
CA3152674A1 (en) 2019-08-31 2021-03-04 Etern Biopharma (Shanghai) Co., Ltd. Pyrazole derivatives for fgfr inhibitor and preparation method thereof
MX2022003276A (es) 2019-09-20 2022-04-11 Ideaya Biosciences Inc Derivados de indol e indazol sulfonamido sustituidos en la posicion 4 como inhibidores de parg.
GB201913988D0 (en) 2019-09-27 2019-11-13 Celleron Therapeutics Ltd Novel treatment
GB201914860D0 (en) 2019-10-14 2019-11-27 Cancer Research Tech Ltd Inhibitor compounds
GB201915828D0 (en) 2019-10-31 2019-12-18 Cancer Research Tech Ltd Compounds, compositions and therapeutic uses thereof
GB201915829D0 (en) 2019-10-31 2019-12-18 Cancer Research Tech Ltd Compounds, compositions and therapeutic uses thereof
GB201915831D0 (en) 2019-10-31 2019-12-18 Cancer Research Tech Ltd Compounds, compositions and therapeutic uses thereof
CA3162166A1 (en) 2019-12-02 2021-06-10 Storm Therapeutics Limited Polyheterocyclic compounds as mettl3 inhibitors
GB202004960D0 (en) 2020-04-03 2020-05-20 Kinsenus Ltd Inhibitor compounds
GB202008201D0 (en) 2020-06-01 2020-07-15 Neophore Ltd Inhibitor compounds
GB202012482D0 (en) 2020-08-11 2020-09-23 Univ Of Huddersfield Novel compounds and therapeutic uses thereof
GB202012969D0 (en) 2020-08-19 2020-09-30 Univ Of Oxford Inhibitor compounds
WO2022074379A1 (en) 2020-10-06 2022-04-14 Storm Therapeutics Limited Mettl3 inhibitory compounds
US20240101589A1 (en) 2020-10-08 2024-03-28 Strom Therapeutics Limited Inhibitors of mettl3
GB202102895D0 (en) 2021-03-01 2021-04-14 Cambridge Entpr Ltd Novel compounds, compositions and therapeutic uses thereof
US11918582B2 (en) 2021-03-15 2024-03-05 Rapt Therapeutics, Inc. Pyrazole pyrimidine compounds and uses thereof
EP4333900A2 (en) 2021-05-03 2024-03-13 Merck Patent GmbH Her2 targeting fc antigen binding fragment-drug conjugates
TW202306568A (zh) 2021-05-17 2023-02-16 南韓商怡諾安有限公司 苯甲醯胺衍生物、包含其之醫藥組成物、包含其之健康功能食品組成物、包含其之組合製劑、及其用途
CN117999101A (zh) 2021-05-25 2024-05-07 默克专利股份公司 靶向EGFR的Fc抗原结合片段-药物缀合物
GB202107907D0 (en) 2021-06-02 2021-07-14 Storm Therapeutics Ltd Combination therapies
GB202108383D0 (en) 2021-06-11 2021-07-28 Argonaut Therapeutics Ltd Compounds useful in the treatment or prevention of a prmt5-mediated disorder
GB202110373D0 (en) 2021-07-19 2021-09-01 Neophore Ltd Inhibitor compounds
WO2023057389A1 (en) 2021-10-04 2023-04-13 Forx Therapeutics Ag Parg inhibitory compounds
WO2023057394A1 (en) 2021-10-04 2023-04-13 Forx Therapeutics Ag N,n-dimethyl-4-(7-(n-(1-methylcyclopropyl)sulfamoyl)-imidazo[1,5-a]pyridin-5-yl)piperazine-1-carboxamide derivatives and the corresponding pyrazolo[1,5-a]pyridine derivatives as parg inhibitors for the treatment of cancer
GB202117224D0 (en) 2021-11-29 2022-01-12 Neophore Ltd Inhibitor compounds
GB202117225D0 (en) 2021-11-29 2022-01-12 Neophore Ltd Protac compounds
WO2023131690A1 (en) 2022-01-10 2023-07-13 Merck Patent Gmbh Substituted heterocycles as hset inhibitors
GB202202006D0 (en) 2022-02-15 2022-03-30 Chancellor Masters And Scholars Of The Univ Of Oxford Anti-cancer treatment
GB202202199D0 (en) 2022-02-18 2022-04-06 Cancer Research Tech Ltd Compounds
WO2023175185A1 (en) 2022-03-17 2023-09-21 Forx Therapeutics Ag 2,4-dioxo-1,4-dihydroquinazoline derivatives as parg inhibitors for the treatment of cancer
WO2023175184A1 (en) 2022-03-17 2023-09-21 Forx Therapeutics Ag 2,4-dioxo-1,4-dihydroquinazoline derivatives as parg inhibitors for the treatment of cancer
GB202204935D0 (en) 2022-04-04 2022-05-18 Cambridge Entpr Ltd Nanoparticles
US20230322741A1 (en) 2022-04-06 2023-10-12 Rapt Therapeutics, Inc. Chemokine receptor modulators and uses thereof
WO2023218201A1 (en) 2022-05-11 2023-11-16 Cancer Research Technology Limited Ikk inhibitors
GB202209404D0 (en) 2022-06-27 2022-08-10 Univ Of Sussex Compounds
WO2024030825A1 (en) 2022-08-01 2024-02-08 Neupharma, Inc Crystalline salts of crystalline salts of (3s,5r,8r,9s,10s,13r,14s,17r)-14-hydroxy-10,13-dimethyl-17-(2- oxo-2h-pyran-5-yl)hexadecahydro-1h-cyclopenta[a]phenanthren-3-yl piperazine-1-carboxylate
GB202213162D0 (en) 2022-09-08 2022-10-26 Cambridge Entpr Ltd Prodrugs
GB202213164D0 (en) 2022-09-08 2022-10-26 Cambridge Entpr Ltd Novel compounds, compositions and therapeutic uses thereof
GB202213163D0 (en) 2022-09-08 2022-10-26 Cambridge Entpr Ltd Novel compounds, compositions and therapeutic uses thereof
GB202213167D0 (en) 2022-09-08 2022-10-26 Cambridge Entpr Ltd Novel compounds, compositions and therapeutic uses thereof
GB202213166D0 (en) 2022-09-08 2022-10-26 Cambridge Entpr Ltd Novel compounds, compositions and therapeutic uses thereof
WO2024074497A1 (en) 2022-10-03 2024-04-11 Forx Therapeutics Ag Parg inhibitory compound
WO2024094962A1 (en) 2022-11-02 2024-05-10 Cancer Research Technology Limited Pyrido[2,3-d]pyrimidin-2-amine derivatives as egfr inhibitors for the treatment of cancer
WO2024094963A1 (en) 2022-11-02 2024-05-10 Cancer Research Technology Limited 2-amino-pyrido[2,3-d]pyrimidin-7(8h)-one and 7-amino-1-pyrimido[4,5-d]pyrimidin-2(1 h)-one derivatives as egfr inhibitors for the treatment of cancer
WO2024099898A1 (en) 2022-11-07 2024-05-16 Merck Patent Gmbh Substituted bi-and tricyclic hset inhibitors
GB202218672D0 (en) 2022-12-12 2023-01-25 Storm Therapeutics Ltd Inhibitory compounds

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9714249D0 (en) * 1997-07-08 1997-09-10 Angiogene Pharm Ltd Vascular damaging agents

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0208213A1 *

Also Published As

Publication number Publication date
CN1255392C (zh) 2006-05-10
NO20030055L (no) 2003-01-06
HUP0301742A2 (hu) 2003-09-29
JP2004504391A (ja) 2004-02-12
SK52003A3 (en) 2003-07-01
PL359181A1 (en) 2004-08-23
AU2001266232B2 (en) 2005-09-15
AU6623201A (en) 2002-02-05
IS6668A (is) 2003-01-03
WO2002008213A1 (en) 2002-01-31
NO20030055D0 (no) 2003-01-06
EE200300015A (et) 2004-10-15
KR20030022264A (ko) 2003-03-15
CN1440396A (zh) 2003-09-03
CA2410562A1 (en) 2002-01-31
BR0112225A (pt) 2003-05-06
NZ522661A (en) 2004-07-30
CZ200331A3 (cs) 2003-04-16
HUP0301742A3 (en) 2005-08-29
MXPA02012903A (es) 2004-07-30
IL153325A0 (en) 2003-07-06
RU2003103603A (ru) 2004-08-20

Similar Documents

Publication Publication Date Title
AU2001266232B2 (en) Colchinol derivatives as angiogenesis inhibitors
AU2001266232A1 (en) Colchinol derivatives as angiogenesis inhibitors
AU2001266233B2 (en) Colchinol derivatives as vascular damaging agents
AU2001266233A1 (en) Colchinol derivatives as vascular damaging agents
EP1140745B1 (en) Colchinol derivatives as vascular damaging agents
EA029174B1 (ru) C17-алкандиильные и алкендиильные производные олеаноловой кислоты и способы их применения
ES2382806T3 (es) Compuesto ácido ciclohexanocarboxílico
BR122014012788A2 (pt) derivados de pirimidina fundidos, seus usos, e composição farmacêutica para inibição da atividade de tirosina quinase
CA3022482A1 (en) Arginase inhibitors and their therapeutic applications
BRPI0708331A2 (pt) compostos de pirimidinil sulfonamida que inibem a adesão leucocitária mediada por vla-4
US6720323B2 (en) Colchinol derivatives as angiogenesis inhibitors
ZA200004386B (en) Anti-tumour agents.
TW202406554A (zh) 治療神經發炎性病況之方法
WO2021150697A1 (en) N-substituted-3-tricyclyl piperidine derivatives as anticancer and neuroprotective agents
US6346633B1 (en) Anti-tumuor agents
EA023168B1 (ru) Ингибитор катепсина с
CH657608A5 (it) Tiocarnitine e procedimento per la loro preparazione.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030207

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20050209

17Q First examination report despatched

Effective date: 20050209

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1053651

Country of ref document: HK

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100427