EA015915B1 - Регулирование и оценивание режима давления при обработке пластов битуминозных песков - Google Patents
Регулирование и оценивание режима давления при обработке пластов битуминозных песков Download PDFInfo
- Publication number
- EA015915B1 EA015915B1 EA200901431A EA200901431A EA015915B1 EA 015915 B1 EA015915 B1 EA 015915B1 EA 200901431 A EA200901431 A EA 200901431A EA 200901431 A EA200901431 A EA 200901431A EA 015915 B1 EA015915 B1 EA 015915B1
- Authority
- EA
- Eurasian Patent Office
- Prior art keywords
- formation
- pressure
- reservoir
- fluids
- temperature
- Prior art date
Links
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 255
- 238000005755 formation reaction Methods 0.000 title description 212
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 160
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 158
- 238000000034 method Methods 0.000 claims abstract description 69
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 57
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 7
- 238000012546 transfer Methods 0.000 claims abstract description 7
- 239000012530 fluid Substances 0.000 claims description 191
- 238000004519 manufacturing process Methods 0.000 claims description 64
- 150000001875 compounds Chemical class 0.000 claims description 32
- 239000007789 gas Substances 0.000 claims description 31
- 230000007423 decrease Effects 0.000 claims description 22
- 229920006395 saturated elastomer Polymers 0.000 claims description 20
- 230000008859 change Effects 0.000 claims description 12
- 238000004939 coking Methods 0.000 claims description 8
- 230000001105 regulatory effect Effects 0.000 claims description 4
- 230000009467 reduction Effects 0.000 claims description 2
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims 2
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 claims 2
- 239000001282 iso-butane Substances 0.000 claims 1
- 239000001294 propane Substances 0.000 claims 1
- 238000000197 pyrolysis Methods 0.000 description 49
- 238000010438 heat treatment Methods 0.000 description 42
- 239000010426 asphalt Substances 0.000 description 36
- 238000006243 chemical reaction Methods 0.000 description 33
- 239000003921 oil Substances 0.000 description 33
- 230000008569 process Effects 0.000 description 29
- 238000005336 cracking Methods 0.000 description 26
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- 229910001868 water Inorganic materials 0.000 description 19
- 238000010926 purge Methods 0.000 description 18
- 238000000605 extraction Methods 0.000 description 16
- 229910052739 hydrogen Inorganic materials 0.000 description 16
- 239000001257 hydrogen Substances 0.000 description 16
- 239000000571 coke Substances 0.000 description 13
- 239000000203 mixture Substances 0.000 description 13
- 238000003786 synthesis reaction Methods 0.000 description 12
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 11
- 239000011269 tar Substances 0.000 description 11
- 229910002092 carbon dioxide Inorganic materials 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 230000005484 gravity Effects 0.000 description 9
- 239000011435 rock Substances 0.000 description 9
- 230000004888 barrier function Effects 0.000 description 8
- 125000004432 carbon atom Chemical group C* 0.000 description 8
- 239000001569 carbon dioxide Substances 0.000 description 8
- 238000002485 combustion reaction Methods 0.000 description 8
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 7
- 230000035699 permeability Effects 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 238000006073 displacement reaction Methods 0.000 description 6
- 239000000446 fuel Substances 0.000 description 6
- 238000002347 injection Methods 0.000 description 6
- 239000007924 injection Substances 0.000 description 6
- 239000004576 sand Substances 0.000 description 6
- 150000002431 hydrogen Chemical class 0.000 description 5
- 239000011148 porous material Substances 0.000 description 5
- 239000012808 vapor phase Substances 0.000 description 5
- 238000007664 blowing Methods 0.000 description 4
- 239000003085 diluting agent Substances 0.000 description 4
- 239000012184 mineral wax Substances 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 3
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- 238000010793 Steam injection (oil industry) Methods 0.000 description 3
- 239000004020 conductor Substances 0.000 description 3
- -1 crude oil Chemical class 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000000295 fuel oil Substances 0.000 description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910052500 inorganic mineral Inorganic materials 0.000 description 3
- 239000011707 mineral Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 239000011275 tar sand Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 239000010459 dolomite Substances 0.000 description 2
- 229910000514 dolomite Inorganic materials 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000005764 inhibitory process Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 238000007669 thermal treatment Methods 0.000 description 2
- 210000003462 vein Anatomy 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 229910001748 carbonate mineral Inorganic materials 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000004821 distillation Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 150000002605 large molecules Chemical class 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- NIFIFKQPDTWWGU-UHFFFAOYSA-N pyrite Chemical compound [Fe+2].[S-][S-] NIFIFKQPDTWWGU-UHFFFAOYSA-N 0.000 description 1
- 229910052683 pyrite Inorganic materials 0.000 description 1
- 239000011028 pyrite Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 230000002277 temperature effect Effects 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/84—Compositions based on water or polar solvents
- C09K8/845—Compositions based on water or polar solvents containing inorganic compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K8/00—Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
- C09K8/60—Compositions for stimulating production by acting on the underground formation
- C09K8/84—Compositions based on water or polar solvents
- C09K8/86—Compositions based on water or polar solvents containing organic compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/008—Controlling or regulating of liquefaction processes
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/02—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by distillation
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/04—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by extraction
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G1/00—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
- C10G1/04—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by extraction
- C10G1/042—Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by extraction by the use of hydrogen-donor solvents
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B36/00—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones
- E21B36/04—Heating, cooling or insulating arrangements for boreholes or wells, e.g. for use in permafrost zones using electrical heaters
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
- E21B43/2401—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
- E21B43/24—Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
- E21B43/243—Combustion in situ
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/02—Determining slope or direction
- E21B47/022—Determining slope or direction of the borehole, e.g. using geomagnetism
- E21B47/0228—Determining slope or direction of the borehole, e.g. using geomagnetism using electromagnetic energy or detectors therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49082—Resistor making
- Y10T29/49083—Heater type
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Geology (AREA)
- Mining & Mineral Resources (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Geochemistry & Mineralogy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Electromagnetism (AREA)
- Geophysics (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
- Resistance Heating (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- General Induction Heating (AREA)
- Treatment Of Sludge (AREA)
- Working-Up Tar And Pitch (AREA)
- Pipe Accessories (AREA)
- Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)
- Extraction Or Liquid Replacement (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Способ обработки пласта битуминозных песков включает подачу тепла по меньшей мере в часть углеводородного слоя в пласте битуминозных песков от множества нагревателей, расположенных в пласте. Обеспечивается передача тепла от нагревателей по меньшей мере в часть пласта. Давление в указанной части пласта регулируют таким образом, чтобы поддерживать давление ниже давления гидроразрыва покрывающего пласта при обеспечении нагрева указанной части пласта до заданной средней температуры по меньшей мере приблизительно 280°C и самое большее приблизительно 300°C. Давление в указанной части пласта снижают до заданного давления после того, как в указанной части пласта будет достигнута заданная средняя температура.
Description
Настоящее изобретение обобщенно относится к способам и системам для добычи углеводородов, водорода и/или других продуктов из различных подземных пластов, таких как пласты, содержащие углеводороды (например, пласты битуминозных песков).
Описание уровня техники
Углеводороды, которые получают из подземных пластов, часто используют в качестве энергетических ресурсов, в качестве исходного сырья и продуктов потребления. Озабоченность в связи с истощением доступных углеводородных ресурсов и проблемы общего снижения качества полученных углеводородов привели к разработке способов более эффективного извлечения, переработки и/или использования доступных углеводородных ресурсов. Для удаления углеводородсодержащих материалов из подземных пластов можно использовать процессы обработки внутри пласта (ίη Фи). Для того чтобы обеспечить более легкое извлечение углеводородного материала из пластов, может возникнуть необходимость изменения химических и/или физических свойств углеводородного материала внутри пластов. Эти химические и физические изменения могут включать реакции ίη Фи, в которых образуются извлекаемые флюиды, изменения состава, изменения растворимости, изменения плотности, изменения фазового состояния и/или изменения вязкости углеводородного материала внутри пласта. Флюид может представлять собой (но не ограничивается указанным) газ, жидкость, эмульсию, суспензию и/или поток твердых частиц, для которого характеристики течения подобны потоку жидкости.
Большие месторождения тяжелых углеводородов (тяжелая нефть и/или природный битум), содержащиеся в относительно проницаемых пластах (например, в битуминозных песках), находятся в Северной Америке, Южной Америке, Африке и Азии. Битум можно добывать открытым способом и перерабатывать с улучшением качества в более легкие углеводороды, такие как неочищенная нефть, нафта, керосин и/или газойль. Используя процессы измельчения на поверхности, можно дополнительно отделить битум от песка. Выделенный битум может быть превращен в легкие углеводороды с использованием традиционных способов нефтепереработки. Разработка месторождения и улучшение качества битуминозного песка обычно требует существенно больших затрат, чем добыча более легких углеводородов из традиционных нефтяных коллекторов.
Добыча углеводородов из битуминозного песка ίη Фи может быть осуществлена путем нагревания и/или закачивания газа в пласт. В патентах США №№ 5211230 (авторы О81ароуюй и др.) и 5339897 (ЬеаФе) описана горизонтальная добывающая скважина, расположенная в нефтеносном коллекторе. Для закачивания окисляющего газа в коллектор с целью осуществления подземного сгорания может быть использован вертикальный трубопровод.
В патенте США № 2780450 (Ьщпдйгот) описано нагревание битуминозных геологических пластов ίη 811и с целью превращения или крекирования жидкого смолоподобного вещества в масла и газы.
В патенте США № 4597441 (^ате и др.) описано одновременное контактирование нефти и водорода под действием тепла в коллекторе. Гидрирование может усиливать извлечение нефти из коллектора.
В патентах США №№ 5046559 (ΌΙαηάΙ) и 5060726 (СЕшФ и др.) описано предварительное нагревание части пласта битуминозного песка между нагнетательной скважиной и добывающей скважиной. Водяной пар может быть инжектирован из нагнетательной скважины внутрь пласта с целью добычи углеводородов из добывающей скважины.
Из приведенного выше ясно, что были предприняты значительные усилия с целью разработки способов и систем для экономически целесообразной добычи углеводородов, водорода и/или других продуктов из пластов, содержащих углеводороды, таких как пласты битуминозных песков. Однако в настоящее время все же имеется много пластов битуминозных песков, из которых углеводороды, водород и/или другие продукты невозможно добывать регулируемым и/или экономически целесообразным способом. Таким образом, еще существует потребность в усовершенствованных способах и системах для добычи углеводородов, водорода и/или других продуктов из различных пластов, содержащих углеводороды, а также способы оценки процесса нагревания и добычи.
Раскрытие изобретения
Описанные варианты осуществления изобретения, в общем, относятся к системам, способам и нагревателям для обработки пластов. Кроме того, описанные варианты осуществления изобретения, в общем, относятся к нагревателям, в которых имеются новые компоненты. Такие нагреватели могут быть выполнены с использованием систем и способов согласно изобретению.
В некоторых вариантах осуществления изобретение обеспечивает одну или несколько систем, способов и/или нагревателей. В некоторых вариантах эти системы, способы и/или нагреватели используются для обработки пластов.
В некоторых вариантах осуществления изобретение обеспечивает способ обработки пластов битуминозных песков, который включает обеспечение тепла по меньшей мере для части углеводородного слоя в пласте битуминозных песков от множества нагревателей, расположенных в пласте; обеспечение передачи тепла от нагревателей по меньшей мере в часть пласта; регулирование давления в указанной части пласта таким образом, чтобы поддерживать давление ниже давления гидравлического разрыва покрывающего слоя пласта при обеспечении нагрева указанной части пласта до заданной средней темпера
- 1 015915 туры по меньшей мере приблизительно 280°С и самое большее приблизительно 300°С и снижение давления в указанной части пласта до заданного давления, после того как в указанной части пласта будет достигнута заданная средняя температура.
В других вариантах воплощения признаки конкретных воплощений могут сочетаться с признаками других вариантов. Например, признаки одного воплощения могут сочетаться с признаками любых других вариантов изобретения.
В вариантах воплощения обработка пластов осуществляется с использованием любых способов, систем или нагревателей согласно изобретению.
В вариантах воплощения могут быть добавлены дополнительные признаки к специальным вариантам осуществления настоящего изобретения.
Краткое описание чертежей
Преимущества настоящего изобретения могут стать очевидными для специалистов в этой области техники с помощью следующего подробного описания со ссылкой на прилагаемые чертежи, на которых на фиг. 1 представлена иллюстрация стадий нагревания пласта, содержащего углеводороды;
фиг. 2 иллюстрирует принципиальную схему варианта воплощения части системы термообработки ίη Ши для обработки пласта, содержащего углеводороды;
на фиг. 3 приведена зависимость массовой доли в процентах (мас.%) (левая ось) исходного битума (ИБ) и объемной доли в процентах (об.%) ИБ (правая ось) от температуры (°С);
на фиг. 4 приведена зависимость доли превращенного битума (мас.% ИБ) (левая ось) от температуры (°С) и зависимость массовой доли нефти, газа и кокса (мас.% ИБ) (правая ось) от температуры (°С);
на фиг. 5 приведена зависимость удельного веса в градусах ΑΡΙ (°) для полученных флюидов (левая ось), полученных путем продувки, от температуры (°С) и зависимость оставшейся нефти, наряду с изменением давления (фунт/кв. дюйм) (правая ось) от температуры (°С);
на фиг. 6Α-0 показана зависимость отношения газа к нефти (ОГН) в тысячах кубических футов на баррель (1 Мек/ЬЫ=178 л/м3) (у-ось) от температуры (°С) (х-ось) для газов различных типов при низкой температуре продувки (приблизительно 277°С) и высокой температуре продувки (приблизительно 290°С);
на фиг. 7 приведена зависимость выхода кокса (мас.%) (у-ось) от температуры (°С) (х-ось);
на фиг. 8Α-0 показаны оцененные изменения процентного содержания изомерных углеводородов во флюидах, подученных из экспериментальных ячеек, в зависимости от температуры и степени превращения битума;
на фиг. 9 приведена зависимость массовой доли (мас.%) (у-ось) насыщенных соединений в полученных флюидах, по данным анализа насыщенных ароматических смол и асфальтенов (8ΑΚ.Α). от температуры (°С) (х-ось);
на фиг. 10 приведена зависимость массовой доли (мас.%) (у-ось) н-С7 в полученных флюидах от температуры (°С) (х-ось).
Хотя это изобретение может иметь различные модификации и альтернативные формы, с помощью примеров на чертежах показаны конкретные варианты его воплощения, и они могут быть подробно описаны. Чертежи могут быть не в масштабе. Однако следует понимать, что эти чертежи и подробное описание изобретения не предназначаются для ограничения изобретения описанными конкретными формами, скорее наоборот, они предназначены для защиты всех модификаций, эквивалентов и альтернативных форм, подпадающих под замысел и объем настоящего изобретения, которые определены в прилагаемой формуле изобретения.
Подробное описание
Следующее ниже описание главным образом относится к системам и способам для обработки углеводородов в пластах. Такие пласты могут быть обработаны с целью получения углеводородных продуктов, водорода и других продуктов.
Термин удельный вес в градусах ΑΡΙ относится к удельному весу в градусах ΑΡΙ при 15,5°С (60°Р). Удельный вес в градусах ΑΡΙ определяется методом по Α8ΤΜΩ6822 или Α8ΤΜΩ1298.
Давление флюида представляет собой давление, создаваемое флюидом в пласте. Термин литостатическое давление (иногда называется литостатическое напряжение) означает давление в пласте, равное весу вышележащей горной породы на единицу площади. Гидростатическое давление представляет собой давление в пласте, создаваемое столбом воды.
Пласт включает один или более слоев, содержащих углеводороды, один или более неуглеводородных слоев, покрывающую породу и/или подстилающую породу. Углеводородные слои - это слои в пласте, которые содержат углеводороды. Углеводородные слои могут содержать неуглеводородный материал и углеводородный материал. Покрывающая порода и/или подстилающая порода содержат один или несколько типов непроницаемых материалов. Например, покрывающая и/или подстилающая порода могут включать скальную породу, сланец, аргиллит или влажный/плотный карбонат. В некоторых вариантах способов термообработки ίη δίΐιι покрывающие и/или подстилающие породы могут включать углеводородсодержащий слой или углеводородсодержащие слои, которые относительно непрони
- 2 015915 цаемы и не подвергаются температурному воздействию в ходе процесса термообработки ίη δίΐιι. который приводил бы к значительным характеристичным изменениям углеводородсодержащих слоев покрывающих и/или подстилающих пород. Например. подстилающая порода может содержать глинистый сланец или аргиллит. однако не допускается нагрев подстилающей породы до температуры пиролиза в ходе процесса термообработки ίη δίΐιι. В некоторых случаях покрывающая порода и/или подстилающая порода могут обладать в некоторой степени проницаемостью.
Термин пластовые флюиды относится к флюидам. находящимся в пласте. и может включать пиролизные флюиды. синтез-газ. подвижные углеводороды и воду (пар). Пластовые флюиды могут включать углеводородные флюиды. а также неуглеводородные флюиды. Термин подвижный флюид относится к флюидам в углеводородсодержащем пласте. которые способны течь в результате термической обработки пласта. Термин добытые флюиды относится к флюидам. извлеченным из пласта.
Термин источник тепла представляет собой любую систему для обеспечения тепла по меньшей мере для части пласта в основном за счет теплопередачи путем проводимости и/или излучения. Например. источник тепла может включать электрические нагреватели. такие как изолированный проводник. вытянутый элемент. и/или проводник. расположенный в трубопроводе. Кроме того. источник тепла может включать в себя системы. которые генерируют тепло за счет сжигания топлива снаружи или внутри пласта. Эти системы могут представлять собой поверхностные горелки. скважинные газовые горелки. рассредоточенные беспламенные камеры сгорания и естественные рассредоточенные камеры сгорания. В некоторых вариантах осуществления тепло. обеспечиваемое или генерируемое в одном или нескольких источниках тепла. может подаваться из других источников энергии. Эти другие источники энергии могут непосредственно нагревать пласт. или энергия может подаваться в передающую среду. которая прямо или косвенно нагревает пласт. Следует понимать. что в одном или нескольких источниках тепла. которые подают тепло в пласт. могут быть использованы различные источники энергии. Так. например. для заданного пласта некоторые источники тепла могут подавать тепло из электрических резистивных нагревателей. некоторые источники тепла могут предоставлять тепло за счет сгорания и некоторые источники тепла могут обеспечивать тепло из одного или более других источников энергии (например. химические реакции. солнечная энергия. ветровая энергия. биомасса. или другие источники возобновляемой энергии). Химические реакции могут включать экзотермические реакции (например. реакции окисления). Кроме того. источник тепла может включать в себя нагреватель. который передает тепло в ближайшую зону и/или зону. окружающую место нагрева. такую как нагревательная скважина.
Термин нагреватель означает любую систему или источник тепла для выработки тепла в скважине или в области. вблизи ствола скважины. Нагреватели могут быть (но не ограничиваются указанным) электрическими нагревателями. горелками. камерами сгорания. которые взаимодействуют с материалом внутри пласта или образуются из пласта. и/или их сочетания.
Термин тяжелые углеводороды означает вязкие углеводородные флюиды. Тяжелые углеводороды могут включать в себя высоковязкие углеводородные флюиды. такие как тяжелая нефть. сланцевая смола и/или нефтяной битум. Тяжелые углеводороды могут включать углерод и водород. а также небольшие концентрации серы. кислорода и азота. Кроме того. в тяжелых углеводородах могут присутствовать дополнительные элементы в следовых количествах. Тяжелые углеводороды можно классифицировать по удельному весу в градусах ΑΡΙ. Обычно тяжелые углеводороды имеют удельный вес в градусах ΑΡΙ приблизительно ниже 20° (0.934). Например. тяжелая нефть обычно имеет удельный вес в градусах ΑΡΙ приблизительно 10-20° (1.000-0.934). в то время как смола обычно имеет удельный вес в градусах ΑΡΙ приблизительно ниже 10° (выше 1.00). Вязкость тяжелых углеводородов обычно больше чем приблизительно 100 сП при 15°С. Тяжелые углеводороды могут включать ароматические или другие сложные циклические углеводороды.
Тяжелые углеводороды могут находиться в относительно проницаемом пласте. Относительно проницаемый пласт может включать тяжелые углеводороды. увлечённые. например. песком или карбонатом. Термин относительно проницаемый определяется. в связи с пластами или его частями как средняя проницаемость. равная 10 мД или более (например. 10 или 100 мД). Относительно низкая проницаемость определяется. в связи с пластами или его частями как средняя проницаемость меньше чем приблизительно 10 мД. Один Дарси приблизительно равен 0.99 мкм. Непроницаемый слой обычно имеет проницаемость меньше чем приблизительно 0.1 мД.
Определенные типы пластов. которые включают в себя тяжелые углеводороды. также могут содержать (без ограничения перечисленными) природные минеральные воски. или природные асфальтиты. Типичные природные минеральные воски находятся. по существу. в трубчатых жилах. которые могут иметь несколько метров в ширину. несколько километров в длину и сотни метров в глубину. Природные асфальтиты включают в себя твердые углеводороды ароматической композиции и обычно находятся в крупных жилах. Извлечение углеводородов из пластов ίη δίΐιι. таких как природные минеральные воски и природные асфальтиты. может включать расплавление с образованием жидких углеводородов и/или добычу углеводородов из пластов путем растворения.
Термин углеводороды обычно означает молекулы. состоящие главным образом из атомов углеро
- 3 015915 да и водорода. Углеводороды также могут содержать другие элементы, такие как галогены, металлические элементы, азот, кислород и/или серу (но не ограничиваются указанным). Углеводороды могут представлять собой кероген, битум, пиробитум, масла, природные минеральные воски и асфальтиты (но не ограничиваются указанным). Углеводороды могут быть расположены внутри (или вблизи) минеральной материнской породы в земле. Материнские породы могут включать в себя (но не ограничиваются указанным) осадочные породы, пески, силицилиты, карбонаты, диатомиты и другие пористые среды. Углеводородные флюиды представляют собой флюиды, которые включают углеводороды. Углеводородные флюиды могут включать, захватывать или захватываться в неуглеводородные флюиды, такие как водород, азот, монооксид углерода, диоксид углерода, сероводород, воду и аммиак.
Термин процесс переработки ίη δίΐιι относится к процессу нагревания углеводородсодержащего пласта с помощью источников тепла с целью повышения температуры по меньшей мере части пласта выше температуры пиролиза, так чтобы внутри пласта образовались пиролизованные флюиды.
Термин процесс термической обработки ίη δίΐιι относится к способу нагревания углеводородсодержащего пласта с помощью источников тепла с целью повышения температуры по меньшей мере в части пласта выше температуры, которая приводит к образованию подвижных флюидов, легкому крекингу и/или пиролизу углеводородсодержащего материала, так чтобы внутри пласта образовались подвижные флюиды, флюиды с пониженной вязкостью или пиролизованные флюиды.
Пиролиз представляет собой разрыв химических связей под действием тепла. Например, пиролиз может включать превращение соединения в одно или несколько других веществ только под действием тепла. Для того чтобы вызвать протекание пиролиза, к части пласта может быть подведено тепло.
Термины флюиды пиролиза или продукты пиролиза относятся к текучим средам, полученным главным образом во время пиролиза углеводородов. Флюиды, полученные в процессе пиролиза, могут смешиваться с другими флюидами в пласте. Эти смеси можно рассматривать как флюиды пиролиза или продукты пиролиза. Используемый здесь термин зона пиролиза относится к объему пласта (например, относительно проницаемый пласт, такой как пласт битуминозного песка), в котором протекает взаимодействие с образованием флюида пиролиза.
Термин суперпозиция тепла относится к передаче тепла от двух или более источников тепла в выбранный участок пласта таким образом, что источники тепла влияют на температуру пласта по меньшей мере в одном месте между этими источниками тепла.
Битум представляет собой вязкий углеводород, который обычно имеет вязкость больше чем приблизительно 10000 сП при 15°С. Обычно удельный вес битума превышает 1,000. Битум может иметь удельный вес в градусах ΑΡΙ меньше чем 10° (1,000).
Пласт битуминозных песков означает пласт, в котором углеводороды в основном находятся в виде тяжелых углеводородов и/или битума, захватываемых в минеральную зернистую структуру или другую литологическую матрицу (например, песка или карбоната). Примеры пластов битуминозных песков включают такие пласты, как пласт АЮаЬакса, пласт Отокшоп! и пласт Реасе Ктует - все три из канадской провинции А1Ьейа; и пласт Еа)а в зоне Ойпосо, Венесуэла.
Термин толщина пласта относится к толщине поперечного сечения пласта, направленного по нормали к поверхности пласта.
Термин обогащение относится к повышению качества углеводородов. Например, улучшение качества тяжелых углеводородов может привести к увеличению плотности тяжелых углеводородов в градусах ΑΡΙ.
Термин легкий крекинг относится к распутыванию молекул во флюиде в ходе термической обработки и/или к разрушению больших молекул на меньшие молекулы в ходе термической обработки, что приводит к снижению вязкости флюида.
Вязкость означает кинематическую вязкость при 40°С, если не оговорено другое. Вязкость определяют по методу А8ТМ Ό445.
Термин ствол скважины относится к отверстию в пласте, полученному путем бурения или внедрения трубопровода в пласт. Ствол скважины может иметь практически круглое поперечное сечение или другую форму поперечного сечения. Используемые здесь термины скважина и отверстие, при рассмотрении отверстия в пласте, могут быть использованы попеременно с термином ствол скважины.
Углеводороды в пласте могут быть обработаны различными способами с целью получения множества разнообразных продуктов. В некоторых вариантах изобретения углеводороды в пластах обрабатывают постадийно. На фиг. 1 представлены этапы нагревания углеводородсодержащего пласта. Кроме того, на фиг. 1 показана в качестве примера зависимость выхода (Υ) в баррелях (1 баррель = 159 л) нефтяного эквивалента на 1 тонну (ось у) пластовых флюидов от температуры (Т) нагретого пласта в градусах Цельсия (по абсциссе х).
В ходе первого этапа нагревания происходит десорбция метана и испарение воды. Нагревание пласта в ходе первого этапа может быть проведено, по возможности, быстро. Например, при первоначальном нагревании углеводородсодержащего пласта из углеводородов пласта десорбируется поглощенный метан. Этот десорбированный метан можно добывать из пласта. При дальнейшем нагревании углеводо
- 4 015915 родсодержащего пласта происходит испарение воды из пласта. В некоторых углеводородсодержащих пластах вода может занимать от 10 до 50% объема пор в пласте. В других пластах вода занимает большую или меньшую часть объема пор. Обычно вода испаряется из пласта при температуре от 160 до 285°С, при абсолютном давлении от 600 до 7000 кПа. В некоторых вариантах испарившаяся вода приводит к изменениям смачиваемости в пласте и/или к повышению давления в пласте. Изменение смачиваемости и/или повышенное давление могут повлиять на процессы пиролиза или другие процессы в пласте. В определенных вариантах воплощения испарившаяся вода выводится из пласта. В других вариантах испарившаяся вода используется для паровой экстракции и/или дистилляции внутри пласта или вне пласта. Удаление воды из пласта и увеличение объема пор в пласте дает увеличение пространства для хранения углеводородов в объеме пор.
В определенных вариантах воплощения после первого этапа нагревания часть пласта нагревается дополнительно для того, чтобы температура в этой части пласта достигла (по меньшей мере) начальной температуры пиролиза (такой как температура на нижнем краю диапазона температур, показанного как этап 2). Углеводороды в пласте могут подвергаться пиролизу на всем этапе 2. Диапазон температур пиролиза изменяется в зависимости от состава углеводородов в пласте. Диапазон температур пиролиза может включать температуры от 250 до 900°С. Диапазон температур пиролиза с целью производства желаемых продуктов может составлять только часть от общего диапазона температуры пиролиза. В некоторых вариантах изобретения диапазон температуры пиролиза для производства желаемых продуктов может включать температуры от 250 до 400°С или температуры от 270 до 350°С. Если температура углеводородов в пласте медленно повышается во всем температурном диапазоне от 250 до 400°С, то образование продуктов пиролиза может практически завершиться при достижении температуры 400°С. Скорость подъема средней температуры углеводородов может составлять меньше чем 5°С в сутки, меньше чем 2°С в сутки, меньше чем 1°С в сутки или меньше чем 0,5°С в сутки в диапазоне температуры пиролиза для получения желательных продуктов. При нагревании углеводородсодержащего пласта с помощью множества тепловых источников могут установиться термические градиенты вокруг тепловых источников, что приведет к медленному повышению температуры углеводородов в пласте во всем диапазоне температур пиролиза.
Скорость повышения температуры во всем диапазоне температур пиролиза для получения желательных продуктов может повлиять на количество и качество пластовых флюидов, добываемых из углеводородсодержащего пласта. Медленное повышение температуры пласта во всем диапазоне температур пиролиза для образования желательных продуктов может обеспечить получение из пласта высококачественных углеводородов с высокой плотностью в градусах ΑΡΙ. Медленное повышение температуры пласта во всем диапазоне температур пиролиза для получения желательных продуктов может обеспечить извлечение большого количества углеводородов, находящихся в пласте в виде углеводородного продукта.
В некоторых вариантах осуществления термообработки ίη зйи часть пласта нагревается до желательной температуры вместо медленного повышения температуры в некотором температурном диапазоне. В некоторых вариантах исполнения желательная температура составляет 300, 325 или 350°С. В качестве желательной температуры могут быть выбраны другие температуры. Суперпозиция тепла от нагревателей обеспечивает относительно быстрое и эффективное установление желательной температуры в пласте. Ввод энергии в пласт от тепловых источников можно отрегулировать таким образом, чтобы поддерживать в пласте желательную температуру. В нагретой части пласта поддерживается практически желательная температура, пока интенсивность пиролиза не уменьшится настолько, что производство желательных пластовых флюидов станет неэкономичным. Части пласта, которые подвергаются пиролизу, могут включать в себя области, нагретые до температурного диапазона пиролиза за счет теплопередачи только из одного источника тепла.
В определенных вариантах воплощения пластовые флюиды, в том числе флюиды пиролиза, добываются из пласта. По мере повышения температуры пласта количество конденсирующихся углеводородов в образовавшемся пластовом флюиде может снижаться. При высоких температурах в пласте могут образоваться главным образом метан и/или водород. Если углеводородсодержащий пласт нагревается во всем температурном диапазоне пиролиза, в пласте могут образоваться только небольшие количества водорода по сравнению с тем, что образуется при предельной температуре пиролиза. После исчерпания большей части доступного водорода обычно в пласте будет получаться минимальное количество флюидных продуктов.
После пиролиза углеводородов в пласте еще может присутствовать большое количество углерода и некоторое количество водорода. Значительную часть углерода, оставшуюся в пласте, можно извлечь из пласта в виде синтез-газа. Образование синтез-газа может иметь место в ходе 3-го этапа нагревания, изображенного на фиг. 1. Этап 3 может включать в себя нагревание пласта, содержащего углеводороды, до температуры, которая достаточна для обеспечения образования синтез-газа. Например, синтез-газ может образоваться в температурном диапазоне приблизительно от 400 до 1200°С, приблизительно от 500 до 1100°С или приблизительно от 550 до 1000°С. Когда в пласт вводится флюид, образующий синтез-газ,
- 5 015915 температура нагретой части пласта определяет состав синтез-газа, образовавшегося в пласте. Образовавшийся синтез-газ можно выводить из пласта через добывающую скважину или добывающие скважины.
Общее содержание энергии во флюидах, добытых из углеводородсодержащего пласта, может оставаться относительно постоянным в ходе пиролиза и генерации синтез-газа. Во время пиролиза при относительно низких температурах пласта значительная часть добытого флюида может представлять собой конденсирующиеся углеводороды, которые имеют высокое энергосодержание. Однако при повышенной температуре пиролиза пластовый флюид может содержать меньшее количество конденсирующихся углеводородов. Из пласта можно добывать больше неконденсирующихся пластовых флюидов. Энергосодержание на единицу объема добытых флюидов может немного снижаться во время генерирования преимущественно неконденсирующихся флюидов пласта. В ходе генерирования синтез-газа энергосодержание на единицу объема добытого синтез-газа существенно снижается по сравнению с энергосодержанием пиролизованного флюида. Однако во многих случаях объем образовавшегося синтез-газа будет существенно возрастать, что компенсирует снижение энергосодержания.
На фиг. 2 изображен схематический вид варианта исполнения части системы термообработки ίη δίΐιι для обработки углеводородсодержащего пласта. Система термообработки ίη δίΐιι может включать барьерные скважины 200. Барьерные скважины применяются для создания барьера вокруг обрабатываемой области. Барьер предотвращает поток флюида в область обработки и/или из нее. Барьерные скважины включают (но не ограничиваются указанным) водопонижающие скважины, вакуумные скважины, перехватывающие скважины, нагнетательные скважины, цементированные скважины, замораживающие скважины или их сочетания. В некоторых вариантах исполнения барьерные скважины 200 представляют собой водопонижающие скважины. Водопонижающие скважины могут удалять жидкую воду и/или предотвращать поступление жидкой воды в часть пласта, которая будет нагреваться, или в нагретый пласт. В варианте, изображенном на фиг. 2, показаны барьерные скважины 200, проходящие только с одной стороны источников 202 тепла, однако обычно барьерные скважины окружают все используемые источники 202 тепла, или источники, которые будут использованы для нагревания обрабатываемой области пласта.
Источники 202 тепла расположены по меньшей мере в части пласта. Источники 202 тепла могут включать в себя нагреватели, такие как изолированные проводники, нагреватели типа проводник в трубопроводе, поверхностные горелки, беспламенные рассредоточенные камеры сгорания и/или природные рассредоточенные камеры сгорания. Кроме того, источники 202 тепла могут включать другие типы нагревателей. Источники 202 тепла обеспечивают тепло по меньшей мере для части пласта для того, чтобы нагреть углеводороды в пласте. Энергию к источникам 202 тепла можно подводить с помощью линий питания 204. Линии питания 204 могут отличаться по конструкции в зависимости от типа источника тепла или источников тепла, используемых для нагревания пласта. Линии питания 204 для нагревателей могут передавать электричество для электрических нагревателей, могут транспортировать топливо для камер сгорания или могут транспортировать теплообменный флюид, который циркулирует в пласте. В некоторых вариантах осуществления электричество для процесса термообработки ίη δίΐιι может подаваться от ядерной энергетической установки или ядерных энергетических установок. Использование ядерной энергетической установки может обеспечить снижение или исключение выбросов диоксида углерода в процессе термообработки ίη Щи.
Добывающие скважины 206 используются для извлечения пластового флюида из пласта. В некоторых вариантах изобретения добывающая скважина 206 включает источник тепла. Источник тепла в добывающей скважине может нагревать одну или несколько частей пласта в добывающей скважине или вблизи этой скважины. В некоторых вариантах осуществления способа термообработки ίη δίΐιι количество тепла, поданное в пласт из добывающей скважины на метр добывающей скважины, меньше, чем количество тепла, поданное в пласт из источника тепла, который нагревает пласт, на метр источника тепла.
В некоторых вариантах осуществления источник тепла в добывающей скважине 206 обеспечивает удаление паровой фазы пластовых флюидов из пласта. В условиях подачи тепла в добывающую скважину (или через нее) можно: (1) тормозить конденсацию и/или отекание обратно добываемого флюида, когда такой добываемый флюид перемещается в добывающей скважине вблизи покрывающей породы, (2) повысить поступление тепла в пласт, (3) увеличить интенсивность добычи из добывающей скважины по сравнению с добывающей без источника тепла, (4) подавить конденсацию соединений с большим числом атомов углерода (С6 и выше) в добывающей скважине и/или (5) повысить проницаемость пласта в добывающей скважине или вблизи этой скважины.
Подземное давление в пласте может соответствовать давлению флюида, образованного в пласте. Когда возрастает температура в нагретой части пласта, давление в нагретой части может увеличиваться в результате термического расширения флюидов, повышенного образования флюидов и испарения воды. Отслеживаемый темп отвода флюидов из пласта может обеспечить регулирование давления в пласте. Давление в пласте можно определять во множестве различных мест, таких как внутри или вблизи добывающих скважин, внутри или вблизи источников тепла или в контрольных скважинах.
В некоторых углеводородсодержащих пластах добыча углеводородов из пласта тормозится до тех
- 6 015915 пор, пока не пиролизуется по меньшей мере часть углеводородов в пласте. Пластовые флюиды можно добывать из пласта, когда пластовый флюид имеет заданное качество. В некоторых вариантах осуществления это заданное качество означает плотность в градусах ΑΡΙ по меньшей мере приблизительно 20° (0,934), 30° (0,8762) или 40° (0,8251). Торможение добычи до тех пор, пока не пиролизуется по меньшей мере часть углеводородов может повысить превращение тяжелых углеводородов в легкие углеводороды. Торможение начальной добычи может минимизировать добычу тяжелых углеводородов из пласта. При добыче значительных количеств тяжелых углеводородов может потребоваться дорогостоящее оборудование и/или это приведет к сокращению срока службы производственного оборудования.
После достижения температуры пиролиза и возможности добычи из пласта давление в пласте можно варьировать с целью изменения и/или регулирования состава добываемого пластового флюида, регулирования доли конденсирующихся флюидов по сравнению с неконденсирующимися флюидами в пластовом флюиде и/или для регулирования плотности в градусах ΑΡΙ добываемого пластового флюида. Например, снижение давления может привести к повышению добычи конденсирующихся компонентов флюида. Эти конденсирующиеся компоненты флюида могут содержать повышенный процент олефинов.
В некоторых вариантах осуществления процесса термической обработки ίη δίΐιι давление в пласте можно поддерживать на достаточно высоком уровне, чтобы способствовать добыче пластового флюида с плотностью больше чем 20° ΑΡΙ (0,934). Поддержание повышенного давления в пласте может предотвращать оседание породы пласты в ходе термической обработки ίη δίΐιι. Поддержание повышенного давления может облегчать добычу из пласта паровой фазы флюидов. Добыча паровой фазы может обеспечить уменьшение размера коллекторных трубопроводов, используемых для транспорта флюидов, добытых из пласта. Поддержание повышенного давления может снизить или исключить потребностть в сжатии пластовых флюидов на поверхности для транспортировки флюидов по коллекторным трубопроводам к установкам для переработки.
Поддержание повышенного давления в нагретой части пласта неожиданно может обеспечить добычу большого количества углеводородов, имеющих повышенное качество и относительно небольшую молекулярную массу. Давление можно поддерживать таким образом, чтобы добытый пластовый флюид содержал минимальное количество соединений с числом атомов углерода выше заданного. Заданное число атомов углерода может составлять самое большее 25, самое большее 20, самое большее 12 или самое большее 8. Некоторые соединения с большим числом атомов углерода могут захватываться в паровую фазу в пласте и могут быть удалены из пласта с парами. Поддержание повышенного давления в пласте может тормозить увлечение соединений с большим числом атомов углерода и/или многокольцевые углеводородные соединения с паровой фазой. Соединения с большим числом атомов углерода и/или многокольцевые углеводородные соединения могут оставаться в жидкой фазе в пласте в течение длительного периода времени. Этот длительный период времени может быть достаточным для пиролиза указанных соединений с образованием соединений с меньшим числом атомов углерода.
Пластовые флюиды, добытые из добывающих скважин 206, могут транспортироваться по коллекторным трубопроводам 208 к установкам для переработки 210. Пластовые флюиды также можно добывать из источников 202 тепла. Например, пластовые флюиды можно добывать из источников 202 тепла для того, чтобы регулировать давление в пласте рядом с источниками тепла. Флюиды, добытые из источников 202 тепла, можно транспортировать по системе трубопроводов или трубной обвязке в коллекторный трубопровод 208 или добытые флюиды можно транспортировать по трубопроводу или системе трубопроводов непосредственно в установку для переработки 210. Установки для переработки 210 могут включать блоки разделения, реакционные блоки, блоки улучшения качества, топливные элементы, турбины, контейнеры для хранения и/или другие системы и узлы для переработки полученных пластовых флюидов. В установках для переработки можно получать моторное топливо по меньшей мере из части углеводородов, добытых из пласта. В некоторых вариантах осуществления это моторное топливо может быть реактивным топливом, таким как 1Ρ-8.
В некоторых вариантах осуществления термическая обработка ίη δίΐιι относительно проницаемого пласта, содержащего углеводороды (например, пласта битуминозных песков), включает нагревание пласта до температуры легкого крекинга. Например, пласт может быть нагрет до температуры приблизительно от 100 до 260°С, приблизительно от 150 до 250°С, приблизительно от 200 до 240°С, приблизительно от 205 до 230°С, приблизительно от 210 до 225°С. В одном варианте осуществления пласт нагревают до температуры около 220°С. В одном варианте осуществления пласт нагревают до температуры около 230°С. При температуре легкого крекинга флюиды в пласте обладают пониженной вязкостью (относительно их исходной вязкости при начальной температуре пласта), что обеспечивает текучесть флюидов в пласте. Пониженная вязкость при температуре легкого крекинга может представлять собой постоянное снижение вязкости, когда углеводороды превращаются на стадии изменения вязкости при температуре легкого крекинга (по сравнению с нагреванием до температуры восстановления подвижности, при которой происходит только временное снижение вязкости). После легкого крекинга флюиды могут иметь относительно низкую плотность в градусах ΑΡΙ (например, самое большее около 10° (1,000), приблизительно 12° (0,9861), около 15° (0,9659) или приблизительно 19°ΑΡΙ (0,9402), однако плотность в
- 7 015915 градусах ΑΡΙ выше плотности в градусах ΑΡΙ пластового флюида без легкого крекинга. Для пластового флюида, не подвергнутого легкому крекингу, плотность в градусах ΑΡΙ может быть 7° (1,0217) или ниже.
В некоторых вариантах осуществления нагреватели в пласте эксплуатируются на полную мощность для нагрева пласта до температуры легкого крекинга или выше этой температуры. Эксплуатация на полную мощность может привести к быстрому росту давления в пласте. В некоторых вариантах осуществления флюиды добываются из пласта с целью поддержания давления в пласте ниже заданного давления, по мере повышения температуры в пласте. В некоторых вариантах осуществления заданное давление означает давление гидроразрыва пласта. В некоторых вариантах осуществления приблизительно от 1000 до 15000 кПа, приблизительно от 2000 до 10000 кПа или приблизительно от 2500 до 5000 кПа. В одном варианте осуществления выбранное давление около 10000 кПа. Поддержание давления по возможности ближе к давлению гидроразрыва пласта позволяет минимизировать количество добывающих скважин, которые необходимы для добычи флюидов из пласты.
В некоторых вариантах осуществления обработка пласта включает поддержание температуры, равной или близкой к температуре легкого крекинга (как описано выше) в течение всей фазы добычи, при поддержании давления ниже давления гидроразрыва пласта. Количество тепла, подведенного к пласту, может быть снижено или исключено для того, чтобы поддерживать температуру равной или близкой к температуре легкого крекинга. Нагревание до температуры легкого крекинга, но поддержание температуры ниже пиролизной температуры или вблизи температуры пиролиза (например, приблизительно ниже 230°С) тормозит образование кокса и/или более высокий уровень превращения. Нагревание до температуры легкого крекинга при повышенном давлении (например, при давлении близком, но меньшем чем давление гидроразрыва пласта) сохраняет образовавшиеся газы в жидкой нефти (в углеводородах) пласта и интенсифицирует водородное восстановление в пласте при более высоком парциальном давлении водорода. Кроме того, для нагревания пласта лишь до температуры легкого крекинга можно подводить меньше энергии, чем для нагревания пласта до температуры пиролиза.
Добытые из пласта флюиды могут включать флюиды легкого крекинга, подвижные флюиды и/или пиролизованные флюиды. В некоторых вариантах осуществления полученная смесь, которая содержит эти флюиды, добывается из пласта. Полученная смесь может иметь оцениваемые характеристики (например, измеряемые параметры). Характеристики полученной смеси определяются эксплуатационными условиями в обрабатываемом пласте (например, температура и/или давление в пласте). В некоторых вариантах осуществления эксплуатационные условия могут выбираться, изменяться и/или поддерживаться с целью получения желательных характеристик углеводородов в полученной смеси. Например, полученная смесь может включать углеводороды, которые имеют свойства, обеспечивающие легкую транспортировку смеси (например, закачивание в трубопровод без добавления разбавителя или смешивание смеси и/или добытых углеводородов с другим флюидом).
В некоторых вариантах осуществления после достижения в пласте температуры легкого крекинга давление в пласте снижают. В некоторых вариантах осуществления давление в пласте снижают при температурах выше температуры легкого крекинга. Снижение давления при повышенной температуре обеспечивает увеличение степени превращения углеводородов в пласте в углеводороды более высокого качества за счет легкого крекинга и/или пиролиза. Однако обеспечение нагрева пласта до более высокой температуры, прежде чем снизится давление, может увеличить количество диоксида углерода и/или количество кокса, образовавшегося в пласте. Например, в некоторых пластах коксование битума (под давлением выше 700 кПа) начинается вблизи 280°С, причем максимальная скорость достигается приблизительно при 340°С. При давлении приблизительно ниже 700 кПа скорость коксования в пласте является минимальной. Обеспечение нагрева пласта до более высокой температуры, прежде чем снизится давление, может уменьшить количество углеводородов, добытых из пласта.
В некоторых вариантах осуществления выбор температуры в пласте (например, средняя температура пласта), когда снижается давление в пласте, проводят с целью сбалансирования одного или нескольких факторов. Рассматриваемые факторы могут включать качество добываемых углеводородов, количество добываемых углеводородов, количество образовавшегося диоксида углерода, количество образовавшегося сероводорода, степень коксования в пласте и/или количество образовавшейся воды. Могут быть использованы экспериментальные оценки с использованием образцов пласта и/или моделирующие оценки на основе свойств пласта с целью определения результатов обработки пласта с использованием процесса термической обработки ίη δίΐιι. Эти результаты могут быть использованы для того, чтобы определить заданную температуру или диапазон температуры, в котором необходимо снижать давление в пласте. Кроме того, на значение заданной температуры или диапазон температуры могут повлиять такие факторы, как условия рынка для углеводородов или нефти, а также другие экономические факторы. В некоторых вариантах осуществления заданная температура находится в диапазоне приблизительно от 275 до 305°С, приблизительно от 280 до 300°С или приблизительно от 285 до 295°С.
В некоторых вариантах осуществления среднюю температуру в пласте оценивают по данным анализа флюидов, добытых из пласта. Например, среднюю температуру в пласте можно оценить по данным анализа флюидов, которые получены с целью поддержания давления в пласте ниже давления гидрораз
- 8 015915 рыва пласта.
В некоторых вариантах осуществления для определения средней температуры в пласте используют величины конверсии углеводородных изомеров во флюидах (например, газах), добытых из пласта. Могут быть использованы данные экспериментального анализа и/или моделирования для оценки одной или нескольких конверсий углеводородных изомеров и корреляции показателей конверсии углеводородных изомеров со средней температурой в пласте. Затем найденная корреляция между конверсией углеводородных изомеров и средней температурой может быть использована в этой области для оценки средней температуры в пласте посредством мониторинга одного или нескольких процессов конверсии углеводородных изомеров во флюидах, добытых из пласта. В некоторых вариантах осуществления давление в пласте понижается, когда контролируемая конверсия углеводородных изомеров достигает заданного значения. Это заданное значение показателя конверсии углеводородных изомеров может быть выбрано на основе выбранной температуры или диапазона температуры в пласте для снижения давления в пласте и найденной корреляции между конверсией углеводородных изомеров и средней температурой. Примеры конверсии углеводородных изомеров, которую можно оценить, включают (без ограничений перечисленными): зависимость доли н-бутана-513С4 от доли пропана-513С3; зависимость доли н-пентана-513С5 от доли пропана-513С3; зависимость доли н-пентана-513С5 от доли н-бутана-513С4 и зависимость доли изопентана-513С5 от доли изобутана-513С4. В некоторых вариантах осуществления конверсию изомерных углеводородов в полученных флюидах используют для оценки степени превращения (например, степени пиролиза), которое имеет место в пласте.
В некоторых вариантах осуществления массовый процент насыщенных соединений во флюидах, добытых из пласта, используется для определения средней температуры пласта. Для оценки массового процента насыщенных соединений в зависимости от средней температуры в пласте могут быть использованы данные экспериментального анализа и/или моделирования. Например, анализ 8ЛКЛ (Насыщенные соединения, Ароматические соединения, Смолы и Асфальтеновые соединения), иногда называемый анализом Асфальтен/Воск/Гидратного отложения, может быть использован для оценки массового процента насыщенных соединений в образцах флюидов из пласта. В некоторых пластах массовый процент насыщенных соединений имеет линейную зависимость от средней температуры пласта. Затем зависимость между массовым процентом насыщенных соединений и средней температурой может быть использована в этой области для оценки средней температуры в пласте с помощью анализа массового процента насыщенных соединений во флюидах, добытых из пласта. В некоторых вариантах осуществления давление в пласте снижается, когда контролируемый массовый процент насыщенных соединений достигает заданного значения. Это заданное значение массового процента насыщенных соединений может быть выбрано на основе заданной температуры или диапазона температур в пласте для снижения давления в пласте и зависимости между массовым процентом насыщенных соединений и средней температурой. В некоторых вариантах осуществления заданное значение массового процента насыщенных соединений находится приблизительно от 20 до 40%, приблизительно от 25 до 35% или приблизительно от 28 до 32%. Например, заданное значение может составлять приблизительно 30 мас.% насыщенных соединений.
В некоторых вариантах осуществления массовый процент соединений н-С7 во флюидах, добытых из пласта, используется для определения средней температуры в пласте. Для оценки массового процента соединений н-С7 в зависимости от средней температуры в пласте могут быть использованы данные экспериментального анализа и/или моделирования. В некоторых пластах массовый процент н-С7 линейно зависит от средней температуры в пласте. Затем эта зависимость между массовым процентом н-С7 и средней температурой может быть использована в этой области для оценки средней температуры в пласте с помощью анализа массового процента соединений н-С7 во флюидах, добытых из пласта. В некоторых вариантах осуществления давление в пласте снижается, когда контролируемый массовый процент нС7 достигает заданного значения. Заданное значение массового процента н-С7 может быть выбрано на основе заданной температуры или диапазона температур в пласте для снижения давления в пласте и зависимости между массовым процентом н-С7 и средней температурой. В некоторых вариантах осуществления заданное значение массового процента н-С7 находится приблизительно от 50 до 70%, приблизительно от 55 до 65% или приблизительно от 58 до 62%. Например, это заданное значение может составлять приблизительно 60 мас.% н-С7.
Давление в пласте может быть снижено за счет добычи флюидов (например, флюиды легкого крекинга и/или подвижные флюиды) из пласта. В некоторых вариантах осуществления давление уменьшается ниже давления, при котором флюиды коксуются в пласте, с целью подавления коксования при температурах пиролиза. Например, давление снижается до давления приблизительно ниже 1000 кПа, приблизительно ниже 800 кПа или приблизительно ниже 700 кПа (например, около 690 кПа). В некоторых вариантах осуществления выбранное давление составляет по меньшей мере приблизительно 100 кПа, по меньшей мере около 200 кПа или по меньшей мере приблизительно 300 кПа. Давление может быть снижено с целью подавления коксования асфальтенов или других высокомолекулярных углеводородов в пласте. В некоторых вариантах осуществления давление может поддерживаться ниже давления, при ко
- 9 015915 тором вода переходит в жидкую фазу при температуре в скважине (пласте) для того, чтобы предотвратить взаимодействие жидкой воды и доломита. После снижения давления в пласте температуру можно повышать до температуры пиролиза для того, чтобы начать процесс пиролиза и/или улучшение качества флюидов в пласте. Пиролизованные флюиды и/или флюид улучшенного качества можно добывать из пласта.
В некоторых вариантах осуществления количество флюидов, добытых при температурах ниже температуры легкого крекинга, количество флюидов, добытых при температуре легкого крекинга, количество флюидов, добытых до снижения давления в пласте, и/или количество добытых флюидов улучшенного качества или пиролизованных флюидов, может изменяться с целью регулирования качества и количества флюидов, добытых из пласта, и суммарного извлечения углеводородов из пласта. Например, повышенная добыча флюидов в ходе ранней стадии обработки (например, добыча флюидов до снижения давления в пласте) может увеличить суммарную добычу углеводородов из пласта при снижении качества в целом (снижение в целом плотности в градусах ΑΡΙ) флюидов, добытых из пласта. Качество в целом снижается по причине того, что добываются более тяжелые углеводороды за счет добычи большего количества флюидов при пониженной температуре. Добыча меньшего количества флюидов при пониженной температуре может повысить общее качество флюидов, добытых из пласта, однако может снизить полную добычу углеводородов из пласта. Общая добыча может снизиться, поскольку в большей степени протекает коксование в пласте, когда при пониженной температуре добывается меньше флюидов.
В некоторых вариантах осуществления добыча флюидов продолжается после уменьшения и/или отключения нагревания пласта. Пласт можно нагревать в течение заданного времени. Пласт можно нагревать до достижения заданной средней температуры. Спустя некоторое время добыча из пласта может продолжаться. При продолжении добычи можно получить больше флюидов из пласта, когда флюиды просачиваются в направлении дна пласта и/или когда флюиды имеют улучшенное качество за счет продвижения через горячие пятна в пласте. В некоторых вариантах осуществления горизонтальная добывающая скважина расположена на дне пласта или вблизи него (или в зоне пласта), чтобы добывать флюиды после уменьшения и/или выключения нагревания.
В некоторых вариантах изобретения первоначально полученные флюиды (например, флюиды, добытые ниже температуры легкого крекинга), флюиды, добытые при температуре легкого крекинга, и/или другие вязкие флюиды, добытые из пласта, смешиваются с разбавителем для того, чтобы получить флюиды с пониженной вязкостью. В некоторых вариантах разбавитель представляет собой флюид улучшенного качества или пиролизованный флюид, добытый из пласта. В некоторых вариантах изобретения разбавитель представляет собой флюид улучшенного качества или пиролизованный флюид, добытый из другой части пласта или другого пласта. В некоторых вариантах осуществления количество флюидов, добытых при температурах ниже температуры легкого крекинга, и/или флюидов, добытых при температуре легкого крекинга, которые смешиваются с флюидами пласта улучшенного качества, регулируют таким образом, чтобы получить флюид, подходящий для транспорта и/или для использования в нефтепереработке. Количество смеси можно регулировать таким образом, чтобы флюид обладал химической и физической стабильностью. Поддержание химической и физической стабильности флюида может обеспечить транспортирование флюида, сократить процессы предварительной обработки на нефтеперерабатывающем заводе и/или сократить или исключить потребность в регулировании процесса нефтепереработки с целью компенсации недостатка флюида.
В некоторых вариантах осуществления условия пласта (например, давление и температура) и/или добычу флюида регулируют таким образом, чтобы получить флюиды с заданными характеристиками. Например, условия в пласте и/или добыча флюида могут регулироваться с целью получения флюидов с заданной плотностью в градусах ΑΡΙ и/или с заданной вязкостью. Заданная плотность в градусах ΑΡΙ и/или заданная вязкость могут быть получены путем сочетания флюидов, добытых при различных условиях в пласте (например, объединение флюидов, добытых при различных температурах в ходе обработки, как описано выше). В качестве примера условия в пласте и/или добычу флюида можно регулировать таким образом, чтобы получать флюиды с плотностью в градусах ΑΡΙ приблизительно 19° (0,9402) и вязкостью приблизительно 0,35 Па-с (350 сП) при 5°С.
В некоторых вариантах осуществления используется процесс с вытеснением (например, процесс с инжекцией пара, такой как циклическая инжекция пара, процесс гравитационного дренажа, стимулированный паром (ГДСП), процесс с инжекцией растворителя, процесс инжекции паров растворителя или диоксида углерода и процесс ГДСП), для обработки пласта битуминозных песков в дополнение к процессу термической обработки ίη δίΐιι. В некоторых вариантах используются нагреватели с целью создания в пласте зон высокой проницаемости (или зон инжекции) для процесса с вытеснением. Нагреватели могут быть использованы для создания конфигурации перемещения или добывающей сети в пласте, обеспечивающей течение флюидов через пласт в ходе процесса вытеснения. Например, нагреватели могут быть использованы для создания каналов дренажа между нагревателями и добывающими скважинами для процесса добычи с вытеснением. В некоторых вариантах осуществления нагреватели используются для предоставления тепла в ходе процесса добычи с вытеснением. Количество тепла, подведенное нагре
- 10 015915 вателями, может быть небольшим по сравнению с поступлением тепла от процесса вытеснения (например, поступление тепла от инжекции пара). Ниже приведены не ограничивающие примеры.
Пример битуминозных песков.
Для моделирования процесса термической обработки ίη 8Йи пласта битуминозных песков использован программный пакет 8ΤΑΚ8 в сочетании с экспериментальным анализом. Условия нагрева для экспериментального анализа определялись исходя из моделирования коллектора. Экспериментальный анализ включает нагревание ячейки битуминозного песка из пласта до заданной температуры и последующее снижение давления ячейки (продувка) до 0,7 МПа (100 фунт/кв. дюйм). Процедуру повторяют для нескольких различных значений температуры. При нагревании ячейки контролировали характеристики пласта и флюида в ячейке, при добыче флюидов с целью поддержания давления ниже оптимального значения 12 МПа до продувки и при добыче флюидов после продувки (хотя в некоторых случаях давление может достигать более высоких значений, давление быстро регулируется и не влияет на результаты экспериментов). На фиг. 3-10 приведены результаты моделирования и экспериментов.
На фиг. 3 приведена массовая доля битума в процентах от исходного битума (ИБ) (левая ось) и объемная доля битума в процентах от ИБ (правая ось) в зависимости от температуры (°С). В этих экспериментах термин ИБ относится к количеству битума, которое было в лабораторном сосуде, причем 100% представляет собой исходное количество битума в лабораторном сосуде. Кривая 212 отражает степень превращения битума (связана с массовым процентом ИБ). Из кривой 212 видно, что превращение битума становится значительным приблизительно при 270°С и заканчивается около 340°С. Зависимость превращения битума является довольно линейной во всем диапазоне.
Кривая 214 отображает баррели (1 баррель = 158 л) нефтяного эквивалента из добытых флюидов, полученных путем продувки (связана с объемным процентом ИБ). Кривая 216 отображает баррели нефтяного эквивалента из добытых флюидов (связана с объемным процентом ИБ). Кривая 218 отображает получение нефти из добытых флюидов (связана с объемным процентом ИБ). Кривая 220 отображает баррели нефтяного эквивалента из добычи при продувке (связана с объемным процентом ИБ). Кривая 222 отображает добычу нефти при продувке (связана с объемным процентом ИБ). Как видно из фиг. 3, объем добычи начинает существенно возрастать, когда начинается превращение битума приблизительно при 270°С, при этом значительная часть нефти и баррелей нефтяного эквивалента (объем добычи) обеспечивается добываемыми флюидами и лишь небольшая часть обеспечивается продувкой.
На фиг. 4 приведена степень превращения в процентах битума (массовый процент ИБ) (левая ось) и массовая доля в процентах нефти, газа и кокса (как массовый процент ИБ) (правая ось) в зависимости от температуры (°С). Кривая 224 показывает превращение битума (связана с массовым процентом ИБ). Кривая 226 отображает получение нефти из добытых флюидов, связана с массовым процентом ИБ (правая ось). Кривая 228 показывает получение кокса (связана с массовым процентом ИБ, правая ось). Кривая 230 отображает получение газа из добытых флюидов, связана с массовым процентом ИБ (правая ось). Кривая 232 показывает добычу нефти путем продувки, связана с массовым процентом ИБ (правая ось). Кривая 234 показывает добычу газа путем продувки, связана с массовым процентом ИБ (правая ось). Из фиг. 4 видно, что образование кокса начинает увеличиваться приблизительно при 280°С и достигает максимума около 340°С. Кроме того, из фиг. 4 видно, что большую часть нефти и газа получают из добытых флюидов и лишь небольшая часть обеспечивается путем продувки.
На фиг. 5 приведена плотность в градусах ΑΡΙ (левая ось) для добытых флюидов, полученных путем продувки и нефти, оставшейся в пласте, а также давлении (фунт/кв. дюйм) (правая ось) в зависимости от температуры (°С). Кривой 236 показывает зависимость плотности в градусах ΑΡΙ добытых флюидов от температуры. Кривая 238 показывает плотность в градусах ΑΡΙ флюидов, добытых при продувке, в зависимости от температуры. Кривая 240 дает зависимость давления от температуры. Кривая 242 показана зависимость плотности в градусах ΑΡΙ нефти (битума) в пласте от температуры. Из фиг. 5 видно, что плотность в градусах ΑΡΙ нефти в пласте остается относительно постоянной, приблизительно на уровне 10° ΑΡΙ (1,000), и плотность в градусах ΑΡΙ полученных флюидов и флюидов, добытых путем продувки, незначительно возрастает при продувке.
На фиг. 6Α-Ό показана зависимость отношения газа к нефти (ОГН) в тысячах кубических футов на баррель (1 МсГ/ЬЬ1=178 л/м3) (у-ось) от температуры (°С) (х-ось) для газов различных типов при низкой температуре продувки (приблизительно 277°С) и высокой температуре продувки (приблизительно 290°С). На фиг. 6Α приведена зависимость ОГН от температуры для диоксида углерода (СО2). Кривая 244 показывает ОГН для продувки при низкой температуре. Кривая 246 показывает ОГН для продувки при высокой температуре. На фиг. 6В приведена зависимость ОГН от температуры для углеводородов. На фиг. 6С приведена зависимость ОГН для сероводорода (Н2§). На фиг. 6Ό приведена зависимость ОГН для водорода (Н2). Как видно из фиг. 6В-Э, значения ОГН приблизительно одинаковые как при низкой, так и при высокой температуре продувки. Значения ОГН для СО2 (показано на фиг. 6) для высокой температуры продувки отличались от таковых для низкой температуры продувки. Причина такого отличия ОГН для диоксида углерода может быть в том, что получение СО2 начинается в начале (при низких температурах) за счет гидролизного разложения доломита и других карбонатных минералов и глин. При
- 11 015915 таких низких температурах какая-либо добыча нефти затруднена, поэтому значение ОГН является весьма высоким, так как знаменатель этого отношения практически равен нулю. Другие газы (углеводороды, Н28, и Н2) добываются вместе с нефтью или по той причине, что они все генерируются в результате улучшения качества битума (например, углеводороды, Н2 и нефть) или потому, что они образуются в результате разложения минералов (таких как пирит) в том же самом температурном диапазоне, в котором улучшается качество битума. Таким образом, при расчете ОГН величина знаменателя (нефть) отличается от нуля для углеводородов, Н28 и Н2.
На фиг. 7 показан выход кокса (массовый процент, у-ось) в зависимости от температуры (°С, х-ось). Кривая 248 дает выход битумного и керогенового кокса как массовый процент от исходной массы в пласте. Кривая 250 изображает выход битумного кокса как массовый процент от исходного битума (ИБ) в пласте. Из фиг. 7 видно, что керогеновый кокс уже присутствует при температуре около 260°С (самая низкая температура в эксперименте с ячейкой), в то время как битумный кокс начинает образовываться приблизительно при 280°С и достигает максимума около 340°С.
На фиг. 8Ά-Ό показаны оцененные изменения содержания изомерных углеводородов во флюидах, полученных из экспериментальных ячеек, в зависимости от температуры и степени превращения битума. Степень превращения битума и температура увеличиваются слева направо на кривых фиг. 8Ά-Ό, причем минимальное превращение битума составляет 10%, максимальное превращение битума составляет 100%, минимальная температура равна 277°С и максимальная температура равна 350°С. Стрелки на фиг. 8Ά-Ό показывают направление повышения превращения битума и температуры.
На фиг. 8А показано изменение процентного содержания изомерных углеводородов в сопоставлении процентного содержания н-бутана-513С4 (у-ось) с процентным содержанием пропана-513С3 (х-ось). На фиг. 8В показано изменение процентного содержания изомерных углеводородов в сопоставлении процентного содержания н-пентана-513С5 (у-ось) с процентным содержанием пропана-513С3 (х-ось). На фиг. 8С показано изменение процентного содержания изомерных углеводородов в сопоставлении процентного содержания н-пентана-513С5 (у-ось) с процентным содержанием н-бутана-513С4 (х-ось). На фиг. 8Ό показано изменение процентного содержания изомерных углеводородов в сопоставлении процентного содержания изопентана-513С5 (у-ось) с процентным содержанием изобутана-513С4 (х-ось). Из фиг. 8АΌ видно, что имеется довольно линейная корреляция между изменением содержания изомерных углеводородов и температурой, а также превращением битума. Эта довольно линейная корреляция может быть использована для оценки температуры пласта и/или превращения битума путем анализа изменения содержания изомерных углеводородов во флюидах, добытых из пласта.
На фиг. 9 приведена массовая доля (мас.%) (у-ось) насыщенных соединений в полученных флюидах, по данным анализа 8АКА, в зависимости от температуры (°С) (х-ось). Логарифмическая зависимость между массовым процентом насыщенных соединений и температурой может быть использована для оценки температуры пласта с помощью анализа массового процента насыщенных соединений во флюидах, добытых из пласта.
На фиг. 10 приведена массовая доля (мас.%) (у-ось) н-С7 в полученных флюидах в зависимости от температуры (°С) (х-ось). Линейная зависимость между массовым процентом н-С7 и температурой может быть использована для оценки температуры пласта с помощью анализа массового процента н-С7 во флюидах, добытых из пласта.
Дальнейшие модификации и альтернативные варианты исполнения различных аспектов изобретения могут быть очевидными для специалистов в этой области техники с учетом настоящего описания. Соответственно настоящее описание следует рассматривать только как иллюстративное, которое приведено с целью раскрытия общего способа осуществления изобретения для специалистов в этой области техники. Следует понимать, что показанные и раскрытые в описании формы изобретения считаются в настоящее время предпочтительными вариантами исполнения. Проиллюстрированные и описанные здесь элементы и материалы могут быть заменены, участки и процессы могут быть изменены на обратное направление, и определенные признаки изобретения могут быть использованы независимо, - все это очевидно для специалистов в этой области техники после ознакомления с преимуществами настоящего изобретения. Изменения в описанных здесь элементах могут быть выполнены без выхода за рамки сущности и объема изобретения, как оно раскрыто в следующей ниже формуле изобретения. Кроме того, следует понимать, что в определенных вариантах изобретения описанные здесь независимые признаки могут сочетаться.
Claims (20)
1. Способ обработки пласта битуминозных песков, включающий обеспечение тепла от множества нагревателей, расположенных в пласте, по меньшей мере для части углеводородного слоя в пласте битуминозных песков;
обеспечение передачи тепла от нагревателей по меньшей мере к части пласта;
регулирование давления в указанной части пласта таким образом, чтобы поддерживать давление ниже давления гидроразрыва покрывающего пласта при обеспечении нагрева указанной части пласта до заданной средней температуры по меньшей мере приблизительно 280°С и самое большее приблизитель
- 12 015915 но 300°С; и снижение давления в указанной части пласта до заданного давления в диапазоне от 100 до 1000 кПа, после того как в указанной части пласта будет достигнута указанная заданная средняя температура.
2. Способ по п.1, в котором давление гидроразрыва пласта составляет от 1000 до 15000 кПа.
3. Способ по любому из пп.1 или 2, в котором указанное заданное давление является давлением, ниже которого происходит усиленное коксование углеводородов в пласте, когда указанная средняя температура в пласте составляет самое большее 300°С.
4. Способ по п.1, в котором указанное заданное давление составляет от 200 до 800 кПа.
5. Способ по любому из пп.1, 2 или 4, который дополнительно включает добычу флюидов из пласта.
6. Способ по п.1, который дополнительно включает добычу флюидов из пласта с целью регулирования давления, чтобы оно оставалось ниже давления гидроразрыва пласта.
7. Способ по п.6, который дополнительно включает оценивание средней температуры в указанной части пласта путем анализа, по меньшей мере, некоторых добытых флюидов.
8. Способ по п.6, который дополнительно включает анализ газов в добытых флюидах для оценивания указанной средней температуры в указанной части пласта.
9. Способ по п.6, который дополнительно включает оценивание средней температуры в указанной части пласта на основе, по меньшей мере частично, изменения содержания изомерных углеводородов в добытых флюидах, массового процентного содержания насыщенных соединений в добытых флюидах и/или массового процентного содержания н-С7 в добытых флюидах.
10. Способ по п.6, который дополнительно включает оценивание изменения содержания изомерных углеводородов по меньшей мере части флюида, добытого из пласта; и снижение давления в пласте до указанного заданного давления, когда оцененное изменение содержания изомерных углеводородов достигнет заданного значения.
11. Способ по п.10, в котором изменение содержания изомерных углеводородов включает процентное содержание н-бутана-513С4 в сопоставлении с процентным содержанием пропана-513С3, процентное содержание н-пентана-513С5 в сопоставлении с процентным содержанием пропана-513С3, процентное содержание н-пентана-513С5 (у-ось) в сопоставлении с процентным содержанием н-бутана-513С4 или процентное содержание изопентана-513С5 (у-ось) в сопоставлении с процентным содержанием изобутана513С4.
12. Способ по п.6, который дополнительно включает оценивание массового процентного содержания насыщенных соединений по меньшей мере в части флюида, добытого из пласта; и снижение давления в пласте до заданного давления, когда оцененное массовое процентное содержание насыщенных соединений достигает заданного значения.
13. Способ по п.12, в котором указанное заданное значение массового процентного содержания насыщенных соединений составляет от 25 до 35%, например заданное значение равно 30%.
14. Способ по п.6, который дополнительно включает оценивание массового процентного содержания н-С7 по меньшей мере в части флюида, добытого из пласта; и снижение давления в пласте до заданного давления, когда оценка н-С7 достигает заданного значения.
15. Способ по п.14, в котором указанное заданное значение массового процентного содержания нС7 составляет от 50 до 70%, например заданное значение равно 60%.
16. Способ по любому из пп.1, 2, 4 или 6, в котором указанное заданное давление является давлением, ниже которого происходит усиленное коксование углеводородов в пласте, когда средняя температура в пласте составляет меньше чем 300°С.
17. Способ по любому из пп.1, 2, 4 или 6, в котором указанная заданная средняя температура составляет приблизительно от 285 до 295°С.
18. Способ по любому из пп.1, 2, 4 или 6, который дополнительно включает подачу в пласт вытесняющего флюида.
19. Способ по любому из пп.1, 2, 4 или 6, который дополнительно включает подачу пара в пласт.
20. Способ по любому из пп.1, 2, 4 или 6, который дополнительно включает добычу флюидов из пласта;
уменьшение выходной тепловой мощности двух или более нагревателей спустя заданное время и продолжение добычи флюидов из пласта после уменьшения выходной тепловой мощности двух или более нагревателей.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US92568507P | 2007-04-20 | 2007-04-20 | |
US99983907P | 2007-10-19 | 2007-10-19 | |
PCT/US2008/060757 WO2008131182A1 (en) | 2007-04-20 | 2008-04-18 | Controlling and assessing pressure conditions during treatment of tar sands formations |
Publications (2)
Publication Number | Publication Date |
---|---|
EA200901431A1 EA200901431A1 (ru) | 2010-04-30 |
EA015915B1 true EA015915B1 (ru) | 2011-12-30 |
Family
ID=39875911
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EA200901431A EA015915B1 (ru) | 2007-04-20 | 2008-04-18 | Регулирование и оценивание режима давления при обработке пластов битуминозных песков |
EA200901429A EA017711B1 (ru) | 2007-04-20 | 2008-04-18 | Добыча in situ из нагретых остаточным теплом участков в пласте, содержащем углеводороды |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EA200901429A EA017711B1 (ru) | 2007-04-20 | 2008-04-18 | Добыча in situ из нагретых остаточным теплом участков в пласте, содержащем углеводороды |
Country Status (13)
Country | Link |
---|---|
US (16) | US8327681B2 (ru) |
EP (2) | EP2137375A4 (ru) |
JP (1) | JP5149959B2 (ru) |
KR (1) | KR20100015733A (ru) |
CN (4) | CN101680286A (ru) |
AU (9) | AU2008242799B2 (ru) |
BR (4) | BRPI0810052A2 (ru) |
CA (10) | CA2684422A1 (ru) |
EA (2) | EA015915B1 (ru) |
GB (4) | GB2460980B (ru) |
MX (3) | MX2009011117A (ru) |
NZ (1) | NZ581359A (ru) |
WO (10) | WO2008131171A1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11618849B2 (en) | 2016-06-24 | 2023-04-04 | Cleansorb Limited | Shale treatment |
Families Citing this family (262)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6742593B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation |
US7004247B2 (en) | 2001-04-24 | 2006-02-28 | Shell Oil Company | Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation |
NZ532091A (en) | 2001-10-24 | 2005-12-23 | Shell Int Research | In situ recovery from a hydrocarbon containing formation using barriers |
US7575043B2 (en) * | 2002-04-29 | 2009-08-18 | Kauppila Richard W | Cooling arrangement for conveyors and other applications |
DE10245103A1 (de) * | 2002-09-27 | 2004-04-08 | General Electric Co. | Schaltschrank für eine Windenergieanlage und Verfahren zum Betreiben einer Windenergieanlage |
US7121342B2 (en) | 2003-04-24 | 2006-10-17 | Shell Oil Company | Thermal processes for subsurface formations |
DE10323774A1 (de) * | 2003-05-26 | 2004-12-16 | Khd Humboldt Wedag Ag | Verfahren und Anlage zur thermischen Trocknung eines nass vermahlenen Zementrohmehls |
US8296968B2 (en) * | 2003-06-13 | 2012-10-30 | Charles Hensley | Surface drying apparatus and method |
CA2579496A1 (en) | 2004-04-23 | 2005-11-03 | Shell Internationale Research Maatschappij B.V. | Subsurface electrical heaters using nitride insulation |
US7685737B2 (en) * | 2004-07-19 | 2010-03-30 | Earthrenew, Inc. | Process and system for drying and heat treating materials |
EA011905B1 (ru) | 2005-04-22 | 2009-06-30 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Способ конверсии in situ с использованием нагревающей системы с замкнутым контуром |
AU2006239988B2 (en) | 2005-04-22 | 2010-07-01 | Shell Internationale Research Maatschappij B.V. | Reduction of heat loads applied to frozen barriers and freeze wells in subsurface formations |
AU2006306471B2 (en) * | 2005-10-24 | 2010-11-25 | Shell Internationale Research Maatschapij B.V. | Cogeneration systems and processes for treating hydrocarbon containing formations |
AU2007240367B2 (en) | 2006-04-21 | 2011-04-07 | Shell Internationale Research Maatschappij B.V. | High strength alloys |
ATE532615T1 (de) * | 2006-09-20 | 2011-11-15 | Econ Maschb Und Steuerungstechnik Gmbh | Vorrichtung zum entwässern und trocknen von feststoffen, insbesondere von unterwassergranulierten kunststoffen |
JP5330999B2 (ja) | 2006-10-20 | 2013-10-30 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | 流体によるタールサンド地層の複数部分中での炭化水素の移動 |
DE102007008292B4 (de) * | 2007-02-16 | 2009-08-13 | Siemens Ag | Vorrichtung und Verfahren zur In-Situ-Gewinnung einer kohlenwasserstoffhaltigen Substanz unter Herabsetzung deren Viskosität aus einer unterirdischen Lagerstätte |
WO2008131171A1 (en) | 2007-04-20 | 2008-10-30 | Shell Oil Company | Parallel heater system for subsurface formations |
CA2686830C (en) | 2007-05-25 | 2015-09-08 | Exxonmobil Upstream Research Company | A process for producing hydrocarbon fluids combining in situ heating, a power plant and a gas plant |
US7919645B2 (en) * | 2007-06-27 | 2011-04-05 | H R D Corporation | High shear system and process for the production of acetic anhydride |
CA2700732A1 (en) | 2007-10-19 | 2009-04-23 | Shell Internationale Research Maatschappij B.V. | Cryogenic treatment of gas |
WO2009075946A1 (en) | 2007-12-13 | 2009-06-18 | Exxonmobil Upstream Research Company | Iterative reservior surveillance |
US8176982B2 (en) * | 2008-02-06 | 2012-05-15 | Osum Oil Sands Corp. | Method of controlling a recovery and upgrading operation in a reservoir |
RU2498055C2 (ru) * | 2008-02-27 | 2013-11-10 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Система и способ добычи нефти и/или газа |
US20090260809A1 (en) * | 2008-04-18 | 2009-10-22 | Scott Lee Wellington | Method for treating a hydrocarbon containing formation |
US7841407B2 (en) * | 2008-04-18 | 2010-11-30 | Shell Oil Company | Method for treating a hydrocarbon containing formation |
US8151907B2 (en) | 2008-04-18 | 2012-04-10 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
AU2009238481B2 (en) | 2008-04-22 | 2014-01-30 | Exxonmobil Upstream Research Company | Functional-based knowledge analysis in a 2D and 3D visual environment |
CA2734419A1 (en) * | 2008-08-19 | 2010-02-25 | Daniel Farb | Turbine relationships in pipes |
WO2010045097A1 (en) | 2008-10-13 | 2010-04-22 | Shell Oil Company | Circulated heated transfer fluid heating of subsurface hydrocarbon formations |
BRPI0914492A2 (pt) * | 2008-10-30 | 2015-10-27 | Power Generation Technologies Dev Fund L P | "dispositivo, toroide de combustão, câmara de combustão, método, câmara de combustão toroidal, lúmen, primeira superfície, segunda superfície, etapa de separação, etapa de moldagem, etapa de liberação, moldagem e catálise" |
US8247747B2 (en) * | 2008-10-30 | 2012-08-21 | Xaloy, Inc. | Plasticating barrel with integrated exterior heater layer |
US9052116B2 (en) | 2008-10-30 | 2015-06-09 | Power Generation Technologies Development Fund, L.P. | Toroidal heat exchanger |
US8016050B2 (en) * | 2008-11-03 | 2011-09-13 | Baker Hughes Incorporated | Methods and apparatuses for estimating drill bit cutting effectiveness |
CA2747045C (en) * | 2008-11-03 | 2013-02-12 | Laricina Energy Ltd. | Passive heating assisted recovery methods |
US9512938B2 (en) * | 2008-12-23 | 2016-12-06 | Pipeline Technique Limited | Method of forming a collar on a tubular component through depositing of weld metal and machining this deposit into a collar |
US8028764B2 (en) * | 2009-02-24 | 2011-10-04 | Baker Hughes Incorporated | Methods and apparatuses for estimating drill bit condition |
JP4636346B2 (ja) * | 2009-03-31 | 2011-02-23 | アイシン精機株式会社 | 車載カメラの校正装置、方法、及びプログラム |
US8262866B2 (en) * | 2009-04-09 | 2012-09-11 | General Synfuels International, Inc. | Apparatus for the recovery of hydrocarbonaceous and additional products from oil shale and sands via multi-stage condensation |
US20100258291A1 (en) | 2009-04-10 | 2010-10-14 | Everett De St Remey Edward | Heated liners for treating subsurface hydrocarbon containing formations |
DE102009029816B4 (de) | 2009-06-18 | 2012-10-25 | Walter Hanke Mechanische Werkstätten GmbH & Co. KG | Münzspeicher |
US8267197B2 (en) * | 2009-08-25 | 2012-09-18 | Baker Hughes Incorporated | Apparatus and methods for controlling bottomhole assembly temperature during a pause in drilling boreholes |
DE102009038762B4 (de) * | 2009-08-27 | 2011-09-01 | Wiwa Wilhelm Wagner Gmbh & Co Kg | Wärmeübertrager |
US8356935B2 (en) | 2009-10-09 | 2013-01-22 | Shell Oil Company | Methods for assessing a temperature in a subsurface formation |
US8816203B2 (en) | 2009-10-09 | 2014-08-26 | Shell Oil Company | Compacted coupling joint for coupling insulated conductors |
US9466896B2 (en) | 2009-10-09 | 2016-10-11 | Shell Oil Company | Parallelogram coupling joint for coupling insulated conductors |
NO334200B1 (no) * | 2009-10-19 | 2014-01-13 | Badger Explorer Asa | System for å kommunisere over en energikabel i en petroleumsbrønn |
CA2686744C (en) * | 2009-12-02 | 2012-11-06 | Bj Services Company Canada | Method of hydraulically fracturing a formation |
US8863839B2 (en) | 2009-12-17 | 2014-10-21 | Exxonmobil Upstream Research Company | Enhanced convection for in situ pyrolysis of organic-rich rock formations |
WO2011096964A1 (en) | 2010-02-03 | 2011-08-11 | Exxonmobil Upstream Research Company | Method for using dynamic target region for well path/drill center optimization |
US9267184B2 (en) | 2010-02-05 | 2016-02-23 | Ati Properties, Inc. | Systems and methods for processing alloy ingots |
US8230899B2 (en) | 2010-02-05 | 2012-07-31 | Ati Properties, Inc. | Systems and methods for forming and processing alloy ingots |
DE102010008779B4 (de) * | 2010-02-22 | 2012-10-04 | Siemens Aktiengesellschaft | Vorrichtung und Verfahren zur Gewinnung, insbesondere In-Situ-Gewinnung, einer kohlenstoffhaltigen Substanz aus einer unterirdischen Lagerstätte |
US20110203765A1 (en) * | 2010-02-23 | 2011-08-25 | Robert Jensen | Multipipe conduit for geothermal heating and cooling systems |
US9909783B2 (en) | 2010-02-23 | 2018-03-06 | Robert Jensen | Twisted conduit for geothermal heat exchange |
US9109813B2 (en) * | 2010-02-23 | 2015-08-18 | Robert Jensen | Twisted conduit for geothermal heating and cooling systems |
US8640765B2 (en) | 2010-02-23 | 2014-02-04 | Robert Jensen | Twisted conduit for geothermal heating and cooling systems |
US8439106B2 (en) * | 2010-03-10 | 2013-05-14 | Schlumberger Technology Corporation | Logging system and methodology |
WO2011112221A1 (en) * | 2010-03-12 | 2011-09-15 | Exxonmobil Upstream Research Company | Dynamic grouping of domain objects via smart groups |
US8739874B2 (en) | 2010-04-09 | 2014-06-03 | Shell Oil Company | Methods for heating with slots in hydrocarbon formations |
US8939207B2 (en) | 2010-04-09 | 2015-01-27 | Shell Oil Company | Insulated conductor heaters with semiconductor layers |
US9127523B2 (en) | 2010-04-09 | 2015-09-08 | Shell Oil Company | Barrier methods for use in subsurface hydrocarbon formations |
US8631866B2 (en) | 2010-04-09 | 2014-01-21 | Shell Oil Company | Leak detection in circulated fluid systems for heating subsurface formations |
US8875788B2 (en) | 2010-04-09 | 2014-11-04 | Shell Oil Company | Low temperature inductive heating of subsurface formations |
US8502120B2 (en) | 2010-04-09 | 2013-08-06 | Shell Oil Company | Insulating blocks and methods for installation in insulated conductor heaters |
AU2011237624B2 (en) * | 2010-04-09 | 2015-01-22 | Shell Internationale Research Maatschappij B.V. | Leak detection in circulated fluid systems for heating subsurface formations |
EP2556721A4 (en) * | 2010-04-09 | 2014-07-02 | Shell Oil Co | INSULATION BLOCKS AND METHOD FOR INSTALLING THEM IN INSULATED LADDER HEATERS |
PL2558673T3 (pl) | 2010-04-12 | 2020-07-27 | Shell Internationale Research Maatschappij B.V. | Sposoby i układy do wiercenia |
AU2016200648B2 (en) * | 2010-04-27 | 2017-02-02 | American Shale Oil, Llc | System for providing uniform heating to subterranean formation for recovery of mineral deposits |
US8464792B2 (en) * | 2010-04-27 | 2013-06-18 | American Shale Oil, Llc | Conduction convection reflux retorting process |
CN102985882B (zh) | 2010-05-05 | 2016-10-05 | 格林斯里弗斯有限公司 | 用于确定加热与制冷系统中多个热源热沉的最佳使用方法 |
US8955591B1 (en) | 2010-05-13 | 2015-02-17 | Future Energy, Llc | Methods and systems for delivery of thermal energy |
US20110277992A1 (en) * | 2010-05-14 | 2011-11-17 | Paul Grimes | Systems and methods for enhanced recovery of hydrocarbonaceous fluids |
US8393828B1 (en) | 2010-05-20 | 2013-03-12 | American Augers, Inc. | Boring machine steering system with force multiplier |
US8210774B1 (en) * | 2010-05-20 | 2012-07-03 | Astec Industries, Inc. | Guided boring machine and method |
US10207312B2 (en) | 2010-06-14 | 2019-02-19 | Ati Properties Llc | Lubrication processes for enhanced forgeability |
WO2012006288A2 (en) | 2010-07-05 | 2012-01-12 | Glasspoint Solar, Inc. | Subsurface thermal energy storage of heat generated by concentrating solar power |
US20120028201A1 (en) * | 2010-07-30 | 2012-02-02 | General Electric Company | Subsurface heater |
CN101923591B (zh) * | 2010-08-09 | 2012-04-04 | 西安理工大学 | 用于mcz单晶炉的非对称勾形磁场的三维优化设计方法 |
CA2808416C (en) | 2010-08-18 | 2016-06-07 | Future Energy Llc | Methods and systems for enhanced delivery of thermal energy for horizontal wellbores |
WO2012027020A1 (en) | 2010-08-24 | 2012-03-01 | Exxonmobil Upstream Research Company | System and method for planning a well path |
WO2012037334A2 (en) * | 2010-09-15 | 2012-03-22 | Conocophillips Company | Cyclic steam stimulation using rf |
US8857051B2 (en) | 2010-10-08 | 2014-10-14 | Shell Oil Company | System and method for coupling lead-in conductor to insulated conductor |
US8732946B2 (en) | 2010-10-08 | 2014-05-27 | Shell Oil Company | Mechanical compaction of insulator for insulated conductor splices |
AU2011311934B2 (en) * | 2010-10-08 | 2014-07-17 | Shell Internationale Research Maatschappij B.V. | Compaction of electrical insulation for joining insulated conductors |
US8943686B2 (en) | 2010-10-08 | 2015-02-03 | Shell Oil Company | Compaction of electrical insulation for joining insulated conductors |
US20120103604A1 (en) * | 2010-10-29 | 2012-05-03 | General Electric Company | Subsurface heating device |
EP2636280B1 (en) * | 2010-11-04 | 2020-01-22 | Plastic Omnium Advanced Innovation and Research | Method for manufacturing a flexible heater |
US8776518B1 (en) | 2010-12-11 | 2014-07-15 | Underground Recovery, LLC | Method for the elimination of the atmospheric release of carbon dioxide and capture of nitrogen from the production of electricity by in situ combustion of fossil fuels |
US8733443B2 (en) | 2010-12-21 | 2014-05-27 | Saudi Arabian Oil Company | Inducing flowback of damaging mud-induced materials and debris to improve acid stimulation of long horizontal injection wells in tight carbonate formations |
US9033033B2 (en) | 2010-12-21 | 2015-05-19 | Chevron U.S.A. Inc. | Electrokinetic enhanced hydrocarbon recovery from oil shale |
WO2012088476A2 (en) | 2010-12-22 | 2012-06-28 | Chevron U.S.A. Inc. | In-situ kerogen conversion and recovery |
US8789254B2 (en) | 2011-01-17 | 2014-07-29 | Ati Properties, Inc. | Modifying hot workability of metal alloys via surface coating |
CA2823017A1 (en) | 2011-01-26 | 2012-08-02 | Exxonmobil Upstream Research Company | Method of reservoir compartment analysis using topological structure in 3d earth model |
AU2011360212B2 (en) | 2011-02-21 | 2017-02-02 | Exxonmobil Upstream Research Company | Reservoir connectivity analysis in a 3D earth model |
US9016370B2 (en) | 2011-04-08 | 2015-04-28 | Shell Oil Company | Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment |
RU2587459C2 (ru) * | 2011-04-08 | 2016-06-20 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Системы для соединения изолированных проводников |
US9216396B2 (en) * | 2011-04-14 | 2015-12-22 | Gas Technology Institute | Non-catalytic recuperative reformer |
US9297240B2 (en) * | 2011-05-31 | 2016-03-29 | Conocophillips Company | Cyclic radio frequency stimulation |
US9051828B2 (en) | 2011-06-17 | 2015-06-09 | Athabasca Oil Sands Corp. | Thermally assisted gravity drainage (TAGD) |
US9279316B2 (en) | 2011-06-17 | 2016-03-08 | Athabasca Oil Corporation | Thermally assisted gravity drainage (TAGD) |
CA2744749C (en) * | 2011-06-30 | 2019-09-24 | Imperial Oil Resources Limited | Basal planer gravity drainage |
US9223594B2 (en) | 2011-07-01 | 2015-12-29 | Exxonmobil Upstream Research Company | Plug-in installer framework |
US10590742B2 (en) * | 2011-07-15 | 2020-03-17 | Exxonmobil Upstream Research Company | Protecting a fluid stream from fouling using a phase change material |
US8997864B2 (en) | 2011-08-23 | 2015-04-07 | Harris Corporation | Method for hydrocarbon resource recovery including actuator operated positioning of an RF applicator and related apparatus |
US8967248B2 (en) | 2011-08-23 | 2015-03-03 | Harris Corporation | Method for hydrocarbon resource recovery including actuator operated positioning of an RF sensor and related apparatus |
US10180061B2 (en) | 2011-09-26 | 2019-01-15 | Saudi Arabian Oil Company | Methods of evaluating rock properties while drilling using downhole acoustic sensors and a downhole broadband transmitting system |
US9074467B2 (en) | 2011-09-26 | 2015-07-07 | Saudi Arabian Oil Company | Methods for evaluating rock properties while drilling using drilling rig-mounted acoustic sensors |
US9447681B2 (en) | 2011-09-26 | 2016-09-20 | Saudi Arabian Oil Company | Apparatus, program product, and methods of evaluating rock properties while drilling using downhole acoustic sensors and a downhole broadband transmitting system |
US9234974B2 (en) | 2011-09-26 | 2016-01-12 | Saudi Arabian Oil Company | Apparatus for evaluating rock properties while drilling using drilling rig-mounted acoustic sensors |
US10551516B2 (en) | 2011-09-26 | 2020-02-04 | Saudi Arabian Oil Company | Apparatus and methods of evaluating rock properties while drilling using acoustic sensors installed in the drilling fluid circulation system of a drilling rig |
US9624768B2 (en) | 2011-09-26 | 2017-04-18 | Saudi Arabian Oil Company | Methods of evaluating rock properties while drilling using downhole acoustic sensors and telemetry system |
US9903974B2 (en) | 2011-09-26 | 2018-02-27 | Saudi Arabian Oil Company | Apparatus, computer readable medium, and program code for evaluating rock properties while drilling using downhole acoustic sensors and telemetry system |
CA2850741A1 (en) | 2011-10-07 | 2013-04-11 | Manuel Alberto GONZALEZ | Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations |
JO3141B1 (ar) | 2011-10-07 | 2017-09-20 | Shell Int Research | الوصلات المتكاملة للموصلات المعزولة |
CN104011327B (zh) * | 2011-10-07 | 2016-12-14 | 国际壳牌研究有限公司 | 利用地下地层中的绝缘导线的介电性能来确定绝缘导线的性能 |
CA2791725A1 (en) * | 2011-10-07 | 2013-04-07 | Shell Internationale Research Maatschappij B.V. | Treating hydrocarbon formations using hybrid in situ heat treatment and steam methods |
JO3139B1 (ar) * | 2011-10-07 | 2017-09-20 | Shell Int Research | تشكيل موصلات معزولة باستخدام خطوة اختزال أخيرة بعد المعالجة الحرارية. |
WO2013075010A1 (en) * | 2011-11-16 | 2013-05-23 | Underground Energy, Inc. | In-situ upgrading of bitumen or heavy oil |
US9181467B2 (en) | 2011-12-22 | 2015-11-10 | Uchicago Argonne, Llc | Preparation and use of nano-catalysts for in-situ reaction with kerogen |
US8701788B2 (en) | 2011-12-22 | 2014-04-22 | Chevron U.S.A. Inc. | Preconditioning a subsurface shale formation by removing extractible organics |
US8851177B2 (en) | 2011-12-22 | 2014-10-07 | Chevron U.S.A. Inc. | In-situ kerogen conversion and oxidant regeneration |
US8960272B2 (en) | 2012-01-13 | 2015-02-24 | Harris Corporation | RF applicator having a bendable tubular dielectric coupler and related methods |
CA2898956A1 (en) | 2012-01-23 | 2013-08-01 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
US10047594B2 (en) | 2012-01-23 | 2018-08-14 | Genie Ip B.V. | Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation |
RU2491417C1 (ru) * | 2012-03-19 | 2013-08-27 | Константин Леонидович Федин | Отражатель ударной волны при термогазобарическом воздействии на пласт в скважине |
CA2811666C (en) | 2012-04-05 | 2021-06-29 | Shell Internationale Research Maatschappij B.V. | Compaction of electrical insulation for joining insulated conductors |
EP2660547A1 (de) * | 2012-05-03 | 2013-11-06 | Siemens Aktiengesellschaft | Metallurgische Anlage |
WO2013165711A1 (en) | 2012-05-04 | 2013-11-07 | Exxonmobil Upstream Research Company | Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material |
WO2013169429A1 (en) | 2012-05-08 | 2013-11-14 | Exxonmobile Upstream Research Company | Canvas control for 3d data volume processing |
US10477622B2 (en) * | 2012-05-25 | 2019-11-12 | Watlow Electric Manufacturing Company | Variable pitch resistance coil heater |
US9113501B2 (en) * | 2012-05-25 | 2015-08-18 | Watlow Electric Manufacturing Company | Variable pitch resistance coil heater |
US8992771B2 (en) | 2012-05-25 | 2015-03-31 | Chevron U.S.A. Inc. | Isolating lubricating oils from subsurface shale formations |
US8967274B2 (en) * | 2012-06-28 | 2015-03-03 | Jasim Saleh Al-Azzawi | Self-priming pump |
CN102720465B (zh) * | 2012-06-29 | 2015-06-24 | 中煤第五建设有限公司 | 冻结孔强制解冻方法 |
US9388676B2 (en) * | 2012-11-02 | 2016-07-12 | Husky Oil Operations Limited | SAGD oil recovery method utilizing multi-lateral production wells and/or common flow direction |
US9140099B2 (en) | 2012-11-13 | 2015-09-22 | Harris Corporation | Hydrocarbon resource heating device including superconductive material RF antenna and related methods |
US9115576B2 (en) | 2012-11-14 | 2015-08-25 | Harris Corporation | Method for producing hydrocarbon resources with RF and conductive heating and related apparatuses |
EP2920506A4 (en) | 2012-11-17 | 2016-10-26 | Fred Pereira | LUMINOUS LIQUID SCULPTURES |
US11199301B2 (en) | 2012-11-17 | 2021-12-14 | Fred Metsch Pereira | Luminous fluid sculptures |
DK2925952T3 (en) * | 2012-11-29 | 2020-04-06 | Mi Llc | Vapor displacement method for hydrocarbon removal and recovery from drill cuttings |
US9200799B2 (en) | 2013-01-07 | 2015-12-01 | Glasspoint Solar, Inc. | Systems and methods for selectively producing steam from solar collectors and heaters for processes including enhanced oil recovery |
EP2952551B1 (en) * | 2013-02-01 | 2020-11-11 | Qinghai Enesoon New Materials Limited | Quartz sand composite molten salt heat transfer and heat storage medium |
US9157305B2 (en) * | 2013-02-01 | 2015-10-13 | Harris Corporation | Apparatus for heating a hydrocarbon resource in a subterranean formation including a fluid balun and related methods |
US9194221B2 (en) | 2013-02-13 | 2015-11-24 | Harris Corporation | Apparatus for heating hydrocarbons with RF antenna assembly having segmented dipole elements and related methods |
US9309757B2 (en) * | 2013-02-21 | 2016-04-12 | Harris Corporation | Radio frequency antenna assembly for hydrocarbon resource recovery including adjustable shorting plug and related methods |
EP2965019A4 (en) * | 2013-03-04 | 2017-01-11 | Greensleeves LLC | Energy management systems and methods of use |
US9539636B2 (en) | 2013-03-15 | 2017-01-10 | Ati Properties Llc | Articles, systems, and methods for forging alloys |
US9027374B2 (en) * | 2013-03-15 | 2015-05-12 | Ati Properties, Inc. | Methods to improve hot workability of metal alloys |
US10316644B2 (en) | 2013-04-04 | 2019-06-11 | Shell Oil Company | Temperature assessment using dielectric properties of an insulated conductor heater with selected electrical insulation |
RU2590916C1 (ru) * | 2013-04-22 | 2016-07-10 | Сумбат Набиевич Закиров | Способ разработки месторождений природных углеводородов в низкопроницаемых пластах |
WO2014200685A2 (en) | 2013-06-10 | 2014-12-18 | Exxonmobil Upstream Research Company | Interactively planning a well site |
US9382785B2 (en) | 2013-06-17 | 2016-07-05 | Baker Hughes Incorporated | Shaped memory devices and method for using same in wellbores |
US20150013993A1 (en) * | 2013-07-15 | 2015-01-15 | Chevron U.S.A. Inc. | Downhole construction of vacuum insulated tubing |
US9644464B2 (en) * | 2013-07-18 | 2017-05-09 | Saudi Arabian Oil Company | Electromagnetic assisted ceramic materials for heavy oil recovery and in-situ steam generation |
US20150065766A1 (en) * | 2013-08-09 | 2015-03-05 | Soumaine Dehkissia | Heavy Oils Having Reduced Total Acid Number and Olefin Content |
EP3042129A4 (en) | 2013-09-05 | 2017-06-21 | Greensleeves LLC | System for optimization of building heating and cooling systems |
US9777562B2 (en) | 2013-09-05 | 2017-10-03 | Saudi Arabian Oil Company | Method of using concentrated solar power (CSP) for thermal gas well deliquification |
US9864098B2 (en) | 2013-09-30 | 2018-01-09 | Exxonmobil Upstream Research Company | Method and system of interactive drill center and well planning evaluation and optimization |
WO2015060919A1 (en) | 2013-10-22 | 2015-04-30 | Exxonmobil Upstream Research Company | Systems and methods for regulating an in situ pyrolysis process |
US9394772B2 (en) | 2013-11-07 | 2016-07-19 | Exxonmobil Upstream Research Company | Systems and methods for in situ resistive heating of organic matter in a subterranean formation |
CN105658899B (zh) * | 2013-11-12 | 2017-09-01 | 哈利伯顿能源服务公司 | 使用仪表式切割元件的接近检测 |
US20150136398A1 (en) * | 2013-11-19 | 2015-05-21 | Smith International, Inc. | Retrieval tool and methods of use |
CA2929610C (en) * | 2013-11-20 | 2021-07-06 | Shell Internationale Research Maatschappij B.V. | Steam-injecting mineral insulated heater design |
CA2854614C (en) * | 2013-12-02 | 2015-11-17 | Sidco Energy Llc | Heavy oil modification and productivity restorers |
US20190249532A1 (en) * | 2013-12-12 | 2019-08-15 | Rustem Latipovich ZLAVDINOV | System for locking interior door latches |
US9435183B2 (en) | 2014-01-13 | 2016-09-06 | Bernard Compton Chung | Steam environmentally generated drainage system and method |
CA3176275A1 (en) | 2014-02-18 | 2015-08-18 | Athabasca Oil Corporation | Cable-based well heater |
GB2523567B (en) | 2014-02-27 | 2017-12-06 | Statoil Petroleum As | Producing hydrocarbons from a subsurface formation |
US9791595B2 (en) * | 2014-03-10 | 2017-10-17 | Halliburton Energy Services Inc. | Identification of heat capacity properties of formation fluid |
JP2017512930A (ja) | 2014-04-04 | 2017-05-25 | シエル・インターナシヨナル・リサーチ・マートスハツペイ・ベー・ヴエー | 熱処理後の最終圧延ステップを使用して形成された絶縁導体 |
WO2015181579A1 (en) * | 2014-05-25 | 2015-12-03 | Genie Ip B.V. | Subsurface molten salt heater assembly having a catenary trajectory |
EP2975317A1 (en) * | 2014-07-15 | 2016-01-20 | Siemens Aktiengesellschaft | Method for controlling heating and communication in a pipeline system |
GB201412767D0 (en) | 2014-07-18 | 2014-09-03 | Tullow Group Services Ltd | A hydrocarbon production and/or transportation heating system |
US10233727B2 (en) * | 2014-07-30 | 2019-03-19 | International Business Machines Corporation | Induced control excitation for enhanced reservoir flow characterization |
US9451792B1 (en) * | 2014-09-05 | 2016-09-27 | Atmos Nation, LLC | Systems and methods for vaporizing assembly |
WO2016054059A1 (en) * | 2014-10-01 | 2016-04-07 | Applied Technologies Associates, Inc | Well completion with single wire guidance system |
AU2015335752A1 (en) | 2014-10-23 | 2017-05-04 | Glasspoint Solar, Inc. | Heat storage devices for solar steam generation, and associated systems and methods |
CA2967325C (en) | 2014-11-21 | 2019-06-18 | Exxonmobil Upstream Research Company | Method of recovering hydrocarbons within a subsurface formation |
WO2016085869A1 (en) | 2014-11-25 | 2016-06-02 | Shell Oil Company | Pyrolysis to pressurise oil formations |
JP2018501474A (ja) * | 2014-12-02 | 2018-01-18 | スリーエム イノベイティブ プロパティズ カンパニー | 電気伝送線の磁気ベースの温度感知 |
US9856724B2 (en) * | 2014-12-05 | 2018-01-02 | Harris Corporation | Apparatus for hydrocarbon resource recovery including a double-wall structure and related methods |
DE112015006457T5 (de) | 2015-06-15 | 2018-01-18 | Halliburton Energy Services, Inc. | Zünden von unterirdischen Energiequellen mit Treibladungsbrenner |
AU2016279806A1 (en) | 2015-06-15 | 2017-11-16 | Halliburton Energy Services, Inc. | Igniting underground energy sources |
EP3337950A4 (en) * | 2015-08-19 | 2019-03-27 | Halliburton Energy Services, Inc. | EXCITATION SOURCE POSITIONING OPTIMIZATION FOR REMOTE SENSING AND DOWNHOLE TELEMETRY OPERATIONS |
US9598942B2 (en) * | 2015-08-19 | 2017-03-21 | G&H Diversified Manufacturing Lp | Igniter assembly for a setting tool |
US11008836B2 (en) * | 2015-08-19 | 2021-05-18 | Halliburton Energy Services, Inc. | Optimization of excitation source placement for downhole telemetry operations |
US9725652B2 (en) | 2015-08-24 | 2017-08-08 | Saudi Arabian Oil Company | Delayed coking plant combined heating and power generation |
US9803506B2 (en) | 2015-08-24 | 2017-10-31 | Saudi Arabian Oil Company | Power generation from waste heat in integrated crude oil hydrocracking and aromatics facilities |
US9816759B2 (en) | 2015-08-24 | 2017-11-14 | Saudi Arabian Oil Company | Power generation using independent triple organic rankine cycles from waste heat in integrated crude oil refining and aromatics facilities |
US10113448B2 (en) | 2015-08-24 | 2018-10-30 | Saudi Arabian Oil Company | Organic Rankine cycle based conversion of gas processing plant waste heat into power |
US9803505B2 (en) | 2015-08-24 | 2017-10-31 | Saudi Arabian Oil Company | Power generation from waste heat in integrated aromatics and naphtha block facilities |
US9803508B2 (en) | 2015-08-24 | 2017-10-31 | Saudi Arabian Oil Company | Power generation from waste heat in integrated crude oil diesel hydrotreating and aromatics facilities |
US9803507B2 (en) | 2015-08-24 | 2017-10-31 | Saudi Arabian Oil Company | Power generation using independent dual organic Rankine cycles from waste heat systems in diesel hydrotreating-hydrocracking and continuous-catalytic-cracking-aromatics facilities |
US9745871B2 (en) | 2015-08-24 | 2017-08-29 | Saudi Arabian Oil Company | Kalina cycle based conversion of gas processing plant waste heat into power |
US9803513B2 (en) | 2015-08-24 | 2017-10-31 | Saudi Arabian Oil Company | Power generation from waste heat in integrated aromatics, crude distillation, and naphtha block facilities |
US9803511B2 (en) | 2015-08-24 | 2017-10-31 | Saudi Arabian Oil Company | Power generation using independent dual organic rankine cycles from waste heat systems in diesel hydrotreating-hydrocracking and atmospheric distillation-naphtha hydrotreating-aromatics facilities |
US9556719B1 (en) | 2015-09-10 | 2017-01-31 | Don P. Griffin | Methods for recovering hydrocarbons from shale using thermally-induced microfractures |
US20180120474A1 (en) * | 2017-12-18 | 2018-05-03 | Philip Teague | Methods and means for azimuthal neutron porosity imaging of formation and cement volumes surrounding a borehole |
WO2017083598A2 (en) * | 2015-11-13 | 2017-05-18 | Glasspoint Solar, Inc. | Phase change and/or reactive materials for energy storage/release, including in solar enhanced material recovery, and associated systems and methods |
BR112018007370A2 (pt) * | 2015-11-19 | 2018-10-16 | Halliburton Energy Services Inc | método de estimativa em tempo real de composições e propriedades de fluidos |
US10835578B2 (en) * | 2016-01-08 | 2020-11-17 | Ascendis Pharma Growth Disorders A/S | CNP prodrugs with large carrier moieties |
US11022421B2 (en) | 2016-01-20 | 2021-06-01 | Lucent Medical Systems, Inc. | Low-frequency electromagnetic tracking |
US10934837B2 (en) * | 2016-01-27 | 2021-03-02 | Schlumberger Technology Corporation | Fiber optic coiled tubing telemetry assembly |
EP3390906A1 (en) | 2016-02-01 | 2018-10-24 | Glasspoint Solar, Inc. | Separators and mixers for delivering controlled-quality solar-generated steam over long distances for enhanced oil recovery, and associated systems and methods |
US11530603B2 (en) * | 2016-02-08 | 2022-12-20 | Proton Technologies Inc. | In-situ process to produce hydrogen from underground hydrocarbon reservoirs |
US10920152B2 (en) | 2016-02-23 | 2021-02-16 | Pyrophase, Inc. | Reactor and method for upgrading heavy hydrocarbons with supercritical fluids |
WO2017172563A1 (en) | 2016-03-31 | 2017-10-05 | Schlumberger Technology Corporation | Equipment string communication and steering |
US10125588B2 (en) * | 2016-06-30 | 2018-11-13 | Must Holding Llc | Systems and methods for recovering bitumen from subterranean formations |
IT201600074309A1 (it) * | 2016-07-15 | 2018-01-15 | Eni Spa | Sistema per la trasmissione dati bidirezionale cableless in un pozzo per l’estrazione di fluidi di formazione. |
WO2018031294A1 (en) * | 2016-08-08 | 2018-02-15 | Shell Oil Company | Multi-layered, high power, medium voltage, coaxial type mineral insulated cable |
EP3312525B1 (en) * | 2016-10-20 | 2020-10-21 | LG Electronics Inc. | Air conditioner |
CA2984052A1 (en) | 2016-10-27 | 2018-04-27 | Fccl Partnership | Process and system to separate diluent |
US20180172266A1 (en) * | 2016-12-21 | 2018-06-21 | Electric Horsepower Inc. | Electric resistance heater system and light tower |
WO2018125138A1 (en) * | 2016-12-29 | 2018-07-05 | Halliburton Energy Services, Inc. | Sensors for in-situ formation fluid analysis |
KR20180104512A (ko) * | 2017-03-13 | 2018-09-21 | 엘지전자 주식회사 | 공기 조화기 |
KR20180104513A (ko) * | 2017-03-13 | 2018-09-21 | 엘지전자 주식회사 | 공기 조화기 |
CA3075856A1 (en) * | 2017-09-13 | 2019-03-21 | Chevron Phillips Chemical Company Lp | Pvdf pipe and methods of making and using same |
WO2019079673A1 (en) * | 2017-10-20 | 2019-04-25 | Nike Innovate, C.V. | ARCHITECTURE OF AUTOMATED SHOE DECK PLATING |
US10883664B2 (en) * | 2018-01-25 | 2021-01-05 | Air Products And Chemicals, Inc. | Fuel gas distribution method |
TWI650574B (zh) | 2018-02-27 | 2019-02-11 | 國立中央大學 | 時域反射式監測沉陷變化裝置及其方法 |
CN108776194B (zh) * | 2018-04-03 | 2021-08-06 | 力合科技(湖南)股份有限公司 | 分析装置及气体分析仪 |
CN108487888B (zh) * | 2018-05-24 | 2023-04-07 | 吉林大学 | 用于提高油页岩原位开采油气采收率辅助加热装置及方法 |
CN109026128A (zh) * | 2018-06-22 | 2018-12-18 | 中国矿业大学 | 多级燃烧冲击波致裂煤体与注热交变强化瓦斯抽采方法 |
US11196072B2 (en) * | 2018-06-26 | 2021-12-07 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Composite proton-conducting membrane |
CN109138947A (zh) * | 2018-07-16 | 2019-01-04 | 西南石油大学 | 一种平板填砂模型渗流实验系统及方法 |
US10932754B2 (en) * | 2018-08-28 | 2021-03-02 | General Electric Company | Systems for a water collection assembly for an imaging cable |
US10968524B2 (en) | 2018-09-21 | 2021-04-06 | Baker Hughes Holdings Llc | Organic blend additive useful for inhibiting localized corrosion of equipment used in oil and gas production |
US10895136B2 (en) | 2018-09-26 | 2021-01-19 | Saudi Arabian Oil Company | Methods for reducing condensation |
US11053775B2 (en) * | 2018-11-16 | 2021-07-06 | Leonid Kovalev | Downhole induction heater |
US11762117B2 (en) * | 2018-11-19 | 2023-09-19 | ExxonMobil Technology and Engineering Company | Downhole tools and methods for detecting a downhole obstruction within a wellbore |
CN109736773A (zh) * | 2018-11-23 | 2019-05-10 | 中国石油天然气股份有限公司 | 一种河道砂体水平井轨迹跟踪方法 |
HUE065237T2 (hu) | 2018-11-26 | 2024-05-28 | Sage Geosystems Inc | Rendszer, módszer és kompozíció a törésnövekedés szabályozására |
US10723634B1 (en) | 2019-02-26 | 2020-07-28 | Mina Sagar | Systems and methods for gas transport desalination |
CN110045604B (zh) * | 2019-02-27 | 2022-03-01 | 沈阳工业大学 | 音圈电机驱动洛伦兹力型fts重复滑模复合控制方法 |
CN110030033B (zh) * | 2019-04-08 | 2024-09-20 | 贵州盘江精煤股份有限公司 | 一种钻孔中瓦斯抽放管长度测量装置 |
KR101993859B1 (ko) * | 2019-05-14 | 2019-06-27 | 성진이앤티 주식회사 | 오일샌드 채취 및 제어용 컨테이너 모듈 |
KR101994675B1 (ko) * | 2019-05-20 | 2019-09-30 | 성진이앤티 주식회사 | 오일샌드 유화제 주입장치가 내장된 컨테이너 모듈 |
WO2021003577A1 (en) * | 2019-07-11 | 2021-01-14 | Elsahwi Essam Samir | System and method for determining the impedance properties of a load using load analysis signals |
US11008519B2 (en) * | 2019-08-19 | 2021-05-18 | Kerogen Systems, Incorporated | Renewable energy use in oil shale retorting |
RU2726693C1 (ru) * | 2019-08-27 | 2020-07-15 | Анатолий Александрович Чернов | Способ повышения эффективности добычи углеводородов из нефтекерогеносодержащих пластов и технологический комплекс для его осуществления |
CA3152358A1 (en) * | 2019-09-25 | 2021-04-01 | Air Products And Chemicals, Inc. | Carbon dioxide separation system and method |
RU2726703C1 (ru) * | 2019-09-26 | 2020-07-15 | Анатолий Александрович Чернов | Способ повышения эффективности добычи высокотехнологичной нефти из нефтекерогеносодержащих пластов и технологический комплекс для его осуществления |
CA3158347A1 (en) * | 2019-11-01 | 2021-05-06 | 102062448 Saskatchewan Ltd | Processes and configurations for subterranean resource extraction |
WO2021116374A1 (en) * | 2019-12-11 | 2021-06-17 | Aker Solutions As | Skin-effect heating cable |
EP4076707A4 (en) * | 2019-12-16 | 2024-01-17 | Services Pétroliers Schlumberger | MEMBRANE MODULE |
CN111508675B (zh) * | 2020-04-26 | 2021-11-02 | 国网内蒙古东部电力有限公司检修分公司 | 一种电阻型偏磁治理装置内部电阻器及其设计方法 |
EP4168649A4 (en) * | 2020-06-17 | 2024-07-03 | Sage Geosystems Inc | SYSTEM, METHOD AND COMPOSITION FOR GEOTHERMAL HEAT EXTRACTION |
WO2022020933A1 (en) * | 2020-07-31 | 2022-02-03 | Trindade Reservoir Services Inc. | System and process for producing clean energy from hydrocarbon reservoirs |
CN112360448B (zh) * | 2020-11-23 | 2021-06-18 | 西南石油大学 | 一种利用水力裂缝蠕变扩展确定压后焖井时间的方法 |
CN112324409B (zh) * | 2020-12-31 | 2021-07-06 | 西南石油大学 | 一种在油层中原位产生溶剂开采稠油的方法 |
CN112817730B (zh) * | 2021-02-24 | 2022-08-16 | 上海交通大学 | 深度神经网络服务批处理调度方法、系统及gpu |
GB202109034D0 (en) * | 2021-06-23 | 2021-08-04 | Aubin Ltd | Method of insulating an object |
US11708755B2 (en) | 2021-10-28 | 2023-07-25 | Halliburton Energy Services, Inc. | Force measurements about secondary contacting structures |
US11746648B2 (en) | 2021-11-05 | 2023-09-05 | Saudi Arabian Oil Company | On demand annular pressure tool |
CN113901595B (zh) * | 2021-12-10 | 2022-02-25 | 中国飞机强度研究所 | 实验室内飞机apu排气系统设计方法 |
CN114687382B (zh) * | 2022-03-22 | 2024-05-03 | 地洲智云信息科技(上海)有限公司 | 一种智慧井盖结构 |
WO2023224728A1 (en) * | 2022-05-19 | 2023-11-23 | Lake Stoney | Electric braking resistor-based heat generator for process fluids and emulsions |
CN115050529B (zh) * | 2022-08-15 | 2022-10-21 | 中国工程物理研究院流体物理研究所 | 一种高安全性新型水电阻 |
CN115492558B (zh) * | 2022-09-14 | 2023-04-14 | 中国石油大学(华东) | 一种海域天然气水合物降压开采井筒中水合物二次生成防治装置及防治方法 |
CN116044389B (zh) * | 2023-01-29 | 2024-04-30 | 西南石油大学 | 一种致密页岩油藏早期衰竭开采合理生产压差的确定方法 |
CN117888862B (zh) * | 2024-03-18 | 2024-05-17 | 贵州大学 | 原位大面积钻空建炉煤炭气化及煤油和/或煤层气同采方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6605566B2 (en) * | 2000-08-23 | 2003-08-12 | Institut Francais Du Petrole | Supported bimetallic catalyst with a strong interaction between a group VIII metal and tin, and its use in a catalytic reforming process |
US20030201098A1 (en) * | 2001-10-24 | 2003-10-30 | Karanikas John Michael | In situ recovery from a hydrocarbon containing formation using one or more simulations |
Family Cites Families (1065)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US94813A (en) | 1869-09-14 | Improvement in torpedoes for oil-wells | ||
US1457690A (en) * | 1923-06-05 | Percival iv brine | ||
US48994A (en) * | 1865-07-25 | Improvement in devices for oil-wells | ||
US2183646A (en) * | 1939-12-19 | Belaying apparatus | ||
SE123136C1 (ru) | 1948-01-01 | |||
CA899987A (en) | 1972-05-09 | Chisso Corporation | Method for controlling heat generation locally in a heat-generating pipe utilizing skin effect current | |
US326439A (en) * | 1885-09-15 | Protecting wells | ||
SE126674C1 (ru) | 1949-01-01 | |||
US2732195A (en) * | 1956-01-24 | Ljungstrom | ||
US2734579A (en) | 1956-02-14 | Production from bituminous sands | ||
SE123138C1 (ru) | 1948-01-01 | |||
US345586A (en) | 1886-07-13 | Oil from wells | ||
US650987A (en) * | 1899-06-27 | 1900-06-05 | Oscar Patric Ostergren | Electric conductor. |
US760304A (en) * | 1903-10-24 | 1904-05-17 | Frank S Gilbert | Heater for oil-wells. |
US1342741A (en) | 1918-01-17 | 1920-06-08 | David T Day | Process for extracting oils and hydrocarbon material from shale and similar bituminous rocks |
US1269747A (en) | 1918-04-06 | 1918-06-18 | Lebbeus H Rogers | Method of and apparatus for treating oil-shale. |
GB156396A (en) | 1919-12-10 | 1921-01-13 | Wilson Woods Hoover | An improved method of treating shale and recovering oil therefrom |
US1477802A (en) * | 1921-02-28 | 1923-12-18 | Cutler Hammer Mfg Co | Oil-well heater |
US1510655A (en) * | 1922-11-21 | 1924-10-07 | Clark Cornelius | Process of subterranean distillation of volatile mineral substances |
US1634236A (en) * | 1925-03-10 | 1927-06-28 | Standard Dev Co | Method of and apparatus for recovering oil |
US1646599A (en) | 1925-04-30 | 1927-10-25 | George A Schaefer | Apparatus for removing fluid from wells |
US1811560A (en) * | 1926-04-08 | 1931-06-23 | Standard Oil Dev Co | Method of and apparatus for recovering oil |
US1666488A (en) * | 1927-02-05 | 1928-04-17 | Crawshaw Richard | Apparatus for extracting oil from shale |
US1681523A (en) * | 1927-03-26 | 1928-08-21 | Patrick V Downey | Apparatus for heating oil wells |
US2011710A (en) | 1928-08-18 | 1935-08-20 | Nat Aniline & Chem Co Inc | Apparatus for measuring temperature |
US1959804A (en) * | 1929-07-27 | 1934-05-22 | Sperry Gyroscope Co Inc | Noncontacting follow-up system |
US1913395A (en) * | 1929-11-14 | 1933-06-13 | Lewis C Karrick | Underground gasification of carbonaceous material-bearing substances |
US2013838A (en) * | 1932-12-27 | 1935-09-10 | Rowland O Pickin | Roller core drilling bit |
US2082649A (en) * | 1933-09-18 | 1937-06-01 | Siemens Ag | Method of and means for exerting an artificial pressure on the insulation of electric cables |
US2037846A (en) * | 1933-09-20 | 1936-04-21 | American Telephone & Telegraph | Reduction of disturbing voltages in electric circuits |
US2078051A (en) | 1935-04-11 | 1937-04-20 | Electroline Corp | Connecter for stranded cable |
US2145092A (en) * | 1935-09-24 | 1939-01-24 | Phelps Dodge Copper Prod | High tension electric cable |
US2144144A (en) | 1935-10-05 | 1939-01-17 | Meria Tool Company | Means for elevating liquids from wells |
US2288857A (en) * | 1937-10-18 | 1942-07-07 | Union Oil Co | Process for the removal of bitumen from bituminous deposits |
US2173717A (en) * | 1938-06-21 | 1939-09-19 | Gen Electric | Electrical system of power transmission |
US2168177A (en) * | 1938-11-08 | 1939-08-01 | Gen Electric | System of distribution |
US2244255A (en) | 1939-01-18 | 1941-06-03 | Electrical Treating Company | Well clearing system |
US2308274A (en) * | 1939-08-08 | 1943-01-12 | Nat Electric Prod Corp | Armored cable |
US2244256A (en) * | 1939-12-16 | 1941-06-03 | Electrical Treating Company | Apparatus for clearing wells |
US2249926A (en) * | 1940-05-13 | 1941-07-22 | John A Zublin | Nontracking roller bit |
US2341954A (en) * | 1940-06-06 | 1944-02-15 | Gen Electric | Current transformer |
US2319702A (en) | 1941-04-04 | 1943-05-18 | Socony Vacuum Oil Co Inc | Method and apparatus for producing oil wells |
US2365591A (en) | 1942-08-15 | 1944-12-19 | Ranney Leo | Method for producing oil from viscous deposits |
US2423674A (en) * | 1942-08-24 | 1947-07-08 | Johnson & Co A | Process of catalytic cracking of petroleum hydrocarbons |
US2381256A (en) | 1942-10-06 | 1945-08-07 | Texas Co | Process for treating hydrocarbon fractions |
US2390770A (en) | 1942-10-10 | 1945-12-11 | Sun Oil Co | Method of producing petroleum |
US2446387A (en) * | 1943-05-19 | 1948-08-03 | Thomas F Peterson | Shielded cable |
US2484866A (en) * | 1944-01-25 | 1949-10-18 | Ohio Crankshaft Co | Polyphase transformer arrangement |
US2440309A (en) * | 1944-01-25 | 1948-04-27 | Ohio Crankshaft Co | Capacitor translating system |
US2484063A (en) * | 1944-08-19 | 1949-10-11 | Thermactor Corp | Electric heater for subsurface materials |
US2472445A (en) * | 1945-02-02 | 1949-06-07 | Thermactor Company | Apparatus for treating oil and gas bearing strata |
US2481051A (en) | 1945-12-15 | 1949-09-06 | Texaco Development Corp | Process and apparatus for the recovery of volatilizable constituents from underground carbonaceous formations |
US2444755A (en) | 1946-01-04 | 1948-07-06 | Ralph M Steffen | Apparatus for oil sand heating |
US2634961A (en) * | 1946-01-07 | 1953-04-14 | Svensk Skifferolje Aktiebolage | Method of electrothermal production of shale oil |
US2466945A (en) * | 1946-02-21 | 1949-04-12 | In Situ Gases Inc | Generation of synthesis gas |
US2497868A (en) * | 1946-10-10 | 1950-02-21 | Dalin David | Underground exploitation of fuel deposits |
US2939689A (en) | 1947-06-24 | 1960-06-07 | Svenska Skifferolje Ab | Electrical heater for treating oilshale and the like |
US2786660A (en) | 1948-01-05 | 1957-03-26 | Phillips Petroleum Co | Apparatus for gasifying coal |
US2548360A (en) * | 1948-03-29 | 1951-04-10 | Stanley A Germain | Electric oil well heater |
US2685930A (en) | 1948-08-12 | 1954-08-10 | Union Oil Co | Oil well production process |
US2594594A (en) * | 1948-09-15 | 1952-04-29 | Frank E Smith | Alternating current rectifier |
US2630307A (en) * | 1948-12-09 | 1953-03-03 | Carbonic Products Inc | Method of recovering oil from oil shale |
US2595979A (en) * | 1949-01-25 | 1952-05-06 | Texas Co | Underground liquefaction of coal |
US2642943A (en) | 1949-05-20 | 1953-06-23 | Sinclair Oil & Gas Co | Oil recovery process |
US2593477A (en) * | 1949-06-10 | 1952-04-22 | Us Interior | Process of underground gasification of coal |
GB674082A (en) | 1949-06-15 | 1952-06-18 | Nat Res Dev | Improvements in or relating to the underground gasification of coal |
US2670802A (en) * | 1949-12-16 | 1954-03-02 | Thermactor Company | Reviving or increasing the production of clogged or congested oil wells |
GB687088A (en) * | 1950-11-14 | 1953-02-04 | Glover & Co Ltd W T | Improvements in the manufacture of insulated electric conductors |
US2662558A (en) * | 1950-11-24 | 1953-12-15 | Alexander Smith Inc | Pile fabric |
US2714930A (en) | 1950-12-08 | 1955-08-09 | Union Oil Co | Apparatus for preventing paraffin deposition |
US2695163A (en) * | 1950-12-09 | 1954-11-23 | Stanolind Oil & Gas Co | Method for gasification of subterranean carbonaceous deposits |
GB697189A (en) | 1951-04-09 | 1953-09-16 | Nat Res Dev | Improvements relating to the underground gasification of coal |
US2647306A (en) * | 1951-04-14 | 1953-08-04 | John C Hockery | Can opener |
US2630306A (en) * | 1952-01-03 | 1953-03-03 | Socony Vacuum Oil Co Inc | Subterranean retorting of shales |
US2757739A (en) | 1952-01-07 | 1956-08-07 | Parelex Corp | Heating apparatus |
US2780450A (en) * | 1952-03-07 | 1957-02-05 | Svenska Skifferolje Ab | Method of recovering oil and gases from non-consolidated bituminous geological formations by a heating treatment in situ |
US2777679A (en) * | 1952-03-07 | 1957-01-15 | Svenska Skifferolje Ab | Recovering sub-surface bituminous deposits by creating a frozen barrier and heating in situ |
US2789805A (en) | 1952-05-27 | 1957-04-23 | Svenska Skifferolje Ab | Device for recovering fuel from subterraneous fuel-carrying deposits by heating in their natural location using a chain heat transfer member |
US2761663A (en) | 1952-09-05 | 1956-09-04 | Louis F Gerdetz | Process of underground gasification of coal |
US2780449A (en) * | 1952-12-26 | 1957-02-05 | Sinclair Oil & Gas Co | Thermal process for in-situ decomposition of oil shale |
US2825408A (en) | 1953-03-09 | 1958-03-04 | Sinclair Oil & Gas Company | Oil recovery by subsurface thermal processing |
US2771954A (en) | 1953-04-29 | 1956-11-27 | Exxon Research Engineering Co | Treatment of petroleum production wells |
US2703621A (en) * | 1953-05-04 | 1955-03-08 | George W Ford | Oil well bottom hole flow increasing unit |
US2743906A (en) | 1953-05-08 | 1956-05-01 | William E Coyle | Hydraulic underreamer |
US2803305A (en) | 1953-05-14 | 1957-08-20 | Pan American Petroleum Corp | Oil recovery by underground combustion |
US2914309A (en) | 1953-05-25 | 1959-11-24 | Svenska Skifferolje Ab | Oil and gas recovery from tar sands |
US2847306A (en) | 1953-07-01 | 1958-08-12 | Exxon Research Engineering Co | Process for recovery of oil from shale |
US2902270A (en) | 1953-07-17 | 1959-09-01 | Svenska Skifferolje Ab | Method of and means in heating of subsurface fuel-containing deposits "in situ" |
US2890754A (en) * | 1953-10-30 | 1959-06-16 | Svenska Skifferolje Ab | Apparatus for recovering combustible substances from subterraneous deposits in situ |
US2890755A (en) | 1953-12-19 | 1959-06-16 | Svenska Skifferolje Ab | Apparatus for recovering combustible substances from subterraneous deposits in situ |
US2841375A (en) * | 1954-03-03 | 1958-07-01 | Svenska Skifferolje Ab | Method for in-situ utilization of fuels by combustion |
US2794504A (en) | 1954-05-10 | 1957-06-04 | Union Oil Co | Well heater |
US2793696A (en) * | 1954-07-22 | 1957-05-28 | Pan American Petroleum Corp | Oil recovery by underground combustion |
US2781851A (en) | 1954-10-11 | 1957-02-19 | Shell Dev | Well tubing heater system |
US2923535A (en) * | 1955-02-11 | 1960-02-02 | Svenska Skifferolje Ab | Situ recovery from carbonaceous deposits |
US2799341A (en) | 1955-03-04 | 1957-07-16 | Union Oil Co | Selective plugging in oil wells |
US2801089A (en) | 1955-03-14 | 1957-07-30 | California Research Corp | Underground shale retorting process |
US2862558A (en) | 1955-12-28 | 1958-12-02 | Phillips Petroleum Co | Recovering oils from formations |
US2819761A (en) | 1956-01-19 | 1958-01-14 | Continental Oil Co | Process of removing viscous oil from a well bore |
US2857002A (en) | 1956-03-19 | 1958-10-21 | Texas Co | Recovery of viscous crude oil |
US2906340A (en) * | 1956-04-05 | 1959-09-29 | Texaco Inc | Method of treating a petroleum producing formation |
US2991046A (en) | 1956-04-16 | 1961-07-04 | Parsons Lional Ashley | Combined winch and bollard device |
US2889882A (en) | 1956-06-06 | 1959-06-09 | Phillips Petroleum Co | Oil recovery by in situ combustion |
US3120264A (en) | 1956-07-09 | 1964-02-04 | Texaco Development Corp | Recovery of oil by in situ combustion |
US3016053A (en) * | 1956-08-02 | 1962-01-09 | George J Medovick | Underwater breathing apparatus |
US2997105A (en) | 1956-10-08 | 1961-08-22 | Pan American Petroleum Corp | Burner apparatus |
US2932352A (en) * | 1956-10-25 | 1960-04-12 | Union Oil Co | Liquid filled well heater |
US2804149A (en) * | 1956-12-12 | 1957-08-27 | John R Donaldson | Oil well heater and reviver |
US2952449A (en) | 1957-02-01 | 1960-09-13 | Fmc Corp | Method of forming underground communication between boreholes |
US3127936A (en) | 1957-07-26 | 1964-04-07 | Svenska Skifferolje Ab | Method of in situ heating of subsurface preferably fuel containing deposits |
US2942223A (en) | 1957-08-09 | 1960-06-21 | Gen Electric | Electrical resistance heater |
US2906337A (en) * | 1957-08-16 | 1959-09-29 | Pure Oil Co | Method of recovering bitumen |
US3007521A (en) | 1957-10-28 | 1961-11-07 | Phillips Petroleum Co | Recovery of oil by in situ combustion |
US3010516A (en) | 1957-11-18 | 1961-11-28 | Phillips Petroleum Co | Burner and process for in situ combustion |
US2954826A (en) * | 1957-12-02 | 1960-10-04 | William E Sievers | Heated well production string |
US2994376A (en) * | 1957-12-27 | 1961-08-01 | Phillips Petroleum Co | In situ combustion process |
US3061009A (en) | 1958-01-17 | 1962-10-30 | Svenska Skifferolje Ab | Method of recovery from fossil fuel bearing strata |
US3062282A (en) * | 1958-01-24 | 1962-11-06 | Phillips Petroleum Co | Initiation of in situ combustion in a carbonaceous stratum |
US3051235A (en) | 1958-02-24 | 1962-08-28 | Jersey Prod Res Co | Recovery of petroleum crude oil, by in situ combustion and in situ hydrogenation |
US3004603A (en) | 1958-03-07 | 1961-10-17 | Phillips Petroleum Co | Heater |
US3032102A (en) | 1958-03-17 | 1962-05-01 | Phillips Petroleum Co | In situ combustion method |
US3004601A (en) | 1958-05-09 | 1961-10-17 | Albert G Bodine | Method and apparatus for augmenting oil recovery from wells by refrigeration |
US3048221A (en) | 1958-05-12 | 1962-08-07 | Phillips Petroleum Co | Hydrocarbon recovery by thermal drive |
US3026940A (en) | 1958-05-19 | 1962-03-27 | Electronic Oil Well Heater Inc | Oil well temperature indicator and control |
US3010513A (en) * | 1958-06-12 | 1961-11-28 | Phillips Petroleum Co | Initiation of in situ combustion in carbonaceous stratum |
US2958519A (en) | 1958-06-23 | 1960-11-01 | Phillips Petroleum Co | In situ combustion process |
US3044545A (en) * | 1958-10-02 | 1962-07-17 | Phillips Petroleum Co | In situ combustion process |
US3050123A (en) | 1958-10-07 | 1962-08-21 | Cities Service Res & Dev Co | Gas fired oil-well burner |
US2950240A (en) * | 1958-10-10 | 1960-08-23 | Socony Mobil Oil Co Inc | Selective cracking of aliphatic hydrocarbons |
US2974937A (en) * | 1958-11-03 | 1961-03-14 | Jersey Prod Res Co | Petroleum recovery from carbonaceous formations |
US2998457A (en) * | 1958-11-19 | 1961-08-29 | Ashland Oil Inc | Production of phenols |
US2970826A (en) | 1958-11-21 | 1961-02-07 | Texaco Inc | Recovery of oil from oil shale |
US3097690A (en) | 1958-12-24 | 1963-07-16 | Gulf Research Development Co | Process for heating a subsurface formation |
US3036632A (en) | 1958-12-24 | 1962-05-29 | Socony Mobil Oil Co Inc | Recovery of hydrocarbon materials from earth formations by application of heat |
US2937228A (en) | 1958-12-29 | 1960-05-17 | Robinson Machine Works Inc | Coaxial cable splice |
US2969226A (en) | 1959-01-19 | 1961-01-24 | Pyrochem Corp | Pendant parting petro pyrolysis process |
US3017168A (en) | 1959-01-26 | 1962-01-16 | Phillips Petroleum Co | In situ retorting of oil shale |
US3110345A (en) | 1959-02-26 | 1963-11-12 | Gulf Research Development Co | Low temperature reverse combustion process |
US3113619A (en) * | 1959-03-30 | 1963-12-10 | Phillips Petroleum Co | Line drive counterflow in situ combustion process |
US3113620A (en) | 1959-07-06 | 1963-12-10 | Exxon Research Engineering Co | Process for producing viscous oil |
US3181613A (en) | 1959-07-20 | 1965-05-04 | Union Oil Co | Method and apparatus for subterranean heating |
US3113623A (en) | 1959-07-20 | 1963-12-10 | Union Oil Co | Apparatus for underground retorting |
US3116792A (en) * | 1959-07-27 | 1964-01-07 | Phillips Petroleum Co | In situ combustion process |
US3132692A (en) * | 1959-07-27 | 1964-05-12 | Phillips Petroleum Co | Use of formation heat from in situ combustion |
US3150715A (en) | 1959-09-30 | 1964-09-29 | Shell Oil Co | Oil recovery by in situ combustion with water injection |
US3095031A (en) | 1959-12-09 | 1963-06-25 | Eurenius Malte Oscar | Burners for use in bore holes in the ground |
US3006142A (en) | 1959-12-21 | 1961-10-31 | Phillips Petroleum Co | Jet engine combustion processes |
US3131763A (en) | 1959-12-30 | 1964-05-05 | Texaco Inc | Electrical borehole heater |
US3163745A (en) * | 1960-02-29 | 1964-12-29 | Socony Mobil Oil Co Inc | Heating of an earth formation penetrated by a well borehole |
US3127935A (en) * | 1960-04-08 | 1964-04-07 | Marathon Oil Co | In situ combustion for oil recovery in tar sands, oil shales and conventional petroleum reservoirs |
US3137347A (en) | 1960-05-09 | 1964-06-16 | Phillips Petroleum Co | In situ electrolinking of oil shale |
US3139928A (en) * | 1960-05-24 | 1964-07-07 | Shell Oil Co | Thermal process for in situ decomposition of oil shale |
US3058730A (en) | 1960-06-03 | 1962-10-16 | Fmc Corp | Method of forming underground communication between boreholes |
US3225283A (en) * | 1960-06-09 | 1965-12-21 | Kokusai Denshin Denwa Co Ltd | Regulable-output rectifying apparatus |
US3106244A (en) | 1960-06-20 | 1963-10-08 | Phillips Petroleum Co | Process for producing oil shale in situ by electrocarbonization |
US3142336A (en) * | 1960-07-18 | 1964-07-28 | Shell Oil Co | Method and apparatus for injecting steam into subsurface formations |
US3105545A (en) * | 1960-11-21 | 1963-10-01 | Shell Oil Co | Method of heating underground formations |
US3164207A (en) | 1961-01-17 | 1965-01-05 | Wayne H Thessen | Method for recovering oil |
US3138203A (en) * | 1961-03-06 | 1964-06-23 | Jersey Prod Res Co | Method of underground burning |
US3191679A (en) * | 1961-04-13 | 1965-06-29 | Wendell S Miller | Melting process for recovering bitumens from the earth |
US3207220A (en) | 1961-06-26 | 1965-09-21 | Chester I Williams | Electric well heater |
US3114417A (en) * | 1961-08-14 | 1963-12-17 | Ernest T Saftig | Electric oil well heater apparatus |
US3246695A (en) | 1961-08-21 | 1966-04-19 | Charles L Robinson | Method for heating minerals in situ with radioactive materials |
US3057404A (en) * | 1961-09-29 | 1962-10-09 | Socony Mobil Oil Co Inc | Method and system for producing oil tenaciously held in porous formations |
US3183675A (en) * | 1961-11-02 | 1965-05-18 | Conch Int Methane Ltd | Method of freezing an earth formation |
US3170842A (en) | 1961-11-06 | 1965-02-23 | Phillips Petroleum Co | Subcritical borehole nuclear reactor and process |
US3233460A (en) * | 1961-12-11 | 1966-02-08 | Malaker Lab Inc | Method and means for measuring low temperature |
US3209825A (en) | 1962-02-14 | 1965-10-05 | Continental Oil Co | Low temperature in-situ combustion |
US3205946A (en) | 1962-03-12 | 1965-09-14 | Shell Oil Co | Consolidation by silica coalescence |
US3165154A (en) | 1962-03-23 | 1965-01-12 | Phillips Petroleum Co | Oil recovery by in situ combustion |
US3149670A (en) * | 1962-03-27 | 1964-09-22 | Smclair Res Inc | In-situ heating process |
US3293497A (en) * | 1962-04-03 | 1966-12-20 | Abraham B Brandler | Ground fault detector |
US3149672A (en) * | 1962-05-04 | 1964-09-22 | Jersey Prod Res Co | Method and apparatus for electrical heating of oil-bearing formations |
US3208531A (en) | 1962-08-21 | 1965-09-28 | Otis Eng Co | Inserting tool for locating and anchoring a device in tubing |
US3182721A (en) | 1962-11-02 | 1965-05-11 | Sun Oil Co | Method of petroleum production by forward in situ combustion |
US3288648A (en) | 1963-02-04 | 1966-11-29 | Pan American Petroleum Corp | Process for producing electrical energy from geological liquid hydrocarbon formation |
US3258069A (en) | 1963-02-07 | 1966-06-28 | Shell Oil Co | Method for producing a source of energy from an overpressured formation |
US3205942A (en) | 1963-02-07 | 1965-09-14 | Socony Mobil Oil Co Inc | Method for recovery of hydrocarbons by in situ heating of oil shale |
US3221811A (en) | 1963-03-11 | 1965-12-07 | Shell Oil Co | Mobile in-situ heating of formations |
US3250327A (en) | 1963-04-02 | 1966-05-10 | Socony Mobil Oil Co Inc | Recovering nonflowing hydrocarbons |
US3241611A (en) | 1963-04-10 | 1966-03-22 | Equity Oil Company | Recovery of petroleum products from oil shale |
GB959945A (en) | 1963-04-18 | 1964-06-03 | Conch Int Methane Ltd | Constructing a frozen wall within the ground |
US3237689A (en) | 1963-04-29 | 1966-03-01 | Clarence I Justheim | Distillation of underground deposits of solid carbonaceous materials in situ |
US3205944A (en) * | 1963-06-14 | 1965-09-14 | Socony Mobil Oil Co Inc | Recovery of hydrocarbons from a subterranean reservoir by heating |
US3353594A (en) * | 1963-10-14 | 1967-11-21 | Hydril Co | Underwater control system |
US3233668A (en) * | 1963-11-15 | 1966-02-08 | Exxon Production Research Co | Recovery of shale oil |
US3285335A (en) | 1963-12-11 | 1966-11-15 | Exxon Research Engineering Co | In situ pyrolysis of oil shale formations |
US3272261A (en) | 1963-12-13 | 1966-09-13 | Gulf Research Development Co | Process for recovery of oil |
US3273640A (en) | 1963-12-13 | 1966-09-20 | Pyrochem Corp | Pressure pulsing perpendicular permeability process for winning stabilized primary volatiles from oil shale in situ |
US3303883A (en) | 1964-01-06 | 1967-02-14 | Mobil Oil Corp | Thermal notching technique |
US3275076A (en) | 1964-01-13 | 1966-09-27 | Mobil Oil Corp | Recovery of asphaltic-type petroleum from a subterranean reservoir |
US3342258A (en) | 1964-03-06 | 1967-09-19 | Shell Oil Co | Underground oil recovery from solid oil-bearing deposits |
US3273261A (en) * | 1964-04-03 | 1966-09-20 | Ideal School Supply Company | Anatomical device |
US3294167A (en) | 1964-04-13 | 1966-12-27 | Shell Oil Co | Thermal oil recovery |
US3284281A (en) | 1964-08-31 | 1966-11-08 | Phillips Petroleum Co | Production of oil from oil shale through fractures |
US3302707A (en) | 1964-09-30 | 1967-02-07 | Mobil Oil Corp | Method for improving fluid recoveries from earthen formations |
US3316020A (en) | 1964-11-23 | 1967-04-25 | Mobil Oil Corp | In situ retorting method employed in oil shale |
US3380913A (en) | 1964-12-28 | 1968-04-30 | Phillips Petroleum Co | Refining of effluent from in situ combustion operation |
US3332480A (en) | 1965-03-04 | 1967-07-25 | Pan American Petroleum Corp | Recovery of hydrocarbons by thermal methods |
US3338306A (en) | 1965-03-09 | 1967-08-29 | Mobil Oil Corp | Recovery of heavy oil from oil sands |
US3358756A (en) | 1965-03-12 | 1967-12-19 | Shell Oil Co | Method for in situ recovery of solid or semi-solid petroleum deposits |
US3262741A (en) | 1965-04-01 | 1966-07-26 | Pittsburgh Plate Glass Co | Solution mining of potassium chloride |
US3299202A (en) * | 1965-04-02 | 1967-01-17 | Okonite Co | Oil well cable |
DE1242535B (de) | 1965-04-13 | 1967-06-22 | Deutsche Erdoel Ag | Verfahren zur Restausfoerderung von Erdoellagerstaetten |
US3316344A (en) | 1965-04-26 | 1967-04-25 | Central Electr Generat Board | Prevention of icing of electrical conductors |
US3342267A (en) | 1965-04-29 | 1967-09-19 | Gerald S Cotter | Turbo-generator heater for oil and gas wells and pipe lines |
US3278234A (en) | 1965-05-17 | 1966-10-11 | Pittsburgh Plate Glass Co | Solution mining of potassium chloride |
US3352355A (en) | 1965-06-23 | 1967-11-14 | Dow Chemical Co | Method of recovery of hydrocarbons from solid hydrocarbonaceous formations |
US3384704A (en) | 1965-07-26 | 1968-05-21 | Amp Inc | Connector for composite cables |
US3346044A (en) | 1965-09-08 | 1967-10-10 | Mobil Oil Corp | Method and structure for retorting oil shale in situ by cycling fluid flows |
US3349845A (en) | 1965-10-22 | 1967-10-31 | Sinclair Oil & Gas Company | Method of establishing communication between wells |
US3379248A (en) | 1965-12-10 | 1968-04-23 | Mobil Oil Corp | In situ combustion process utilizing waste heat |
US3386508A (en) | 1966-02-21 | 1968-06-04 | Exxon Production Research Co | Process and system for the recovery of viscous oil |
US3362751A (en) | 1966-02-28 | 1968-01-09 | Tinlin William | Method and system for recovering shale oil and gas |
US3595082A (en) | 1966-03-04 | 1971-07-27 | Gulf Oil Corp | Temperature measuring apparatus |
US3410977A (en) | 1966-03-28 | 1968-11-12 | Ando Masao | Method of and apparatus for heating the surface part of various construction materials |
DE1615192B1 (de) | 1966-04-01 | 1970-08-20 | Chisso Corp | Induktiv beheiztes Heizrohr |
US3410796A (en) * | 1966-04-04 | 1968-11-12 | Gas Processors Inc | Process for treatment of saline waters |
US3513913A (en) | 1966-04-19 | 1970-05-26 | Shell Oil Co | Oil recovery from oil shales by transverse combustion |
US3372754A (en) | 1966-05-31 | 1968-03-12 | Mobil Oil Corp | Well assembly for heating a subterranean formation |
US3399623A (en) | 1966-07-14 | 1968-09-03 | James R. Creed | Apparatus for and method of producing viscid oil |
US3412011A (en) | 1966-09-02 | 1968-11-19 | Phillips Petroleum Co | Catalytic cracking and in situ combustion process for producing hydrocarbons |
US3633191A (en) * | 1966-09-20 | 1972-01-04 | Anaconda Wire & Cable Co | Temperature monitored cable system with telemetry readout |
NL153755C (nl) | 1966-10-20 | 1977-11-15 | Stichting Reactor Centrum | Werkwijze voor het vervaardigen van een elektrisch verwarmingselement, alsmede verwarmingselement vervaardigd met toepassing van deze werkwijze. |
US3475678A (en) * | 1966-12-09 | 1969-10-28 | Us Army | Three-phase a.c. regulator employing d.c. controlled magnetic amplifiers |
US3465819A (en) | 1967-02-13 | 1969-09-09 | American Oil Shale Corp | Use of nuclear detonations in producing hydrocarbons from an underground formation |
US3389975A (en) | 1967-03-10 | 1968-06-25 | Sinclair Research Inc | Process for the recovery of aluminum values from retorted shale and conversion of sodium aluminate to sodium aluminum carbonate hydroxide |
NL6803827A (ru) | 1967-03-22 | 1968-09-23 | ||
US3515213A (en) | 1967-04-19 | 1970-06-02 | Shell Oil Co | Shale oil recovery process using heated oil-miscible fluids |
US3474863A (en) | 1967-07-28 | 1969-10-28 | Shell Oil Co | Shale oil extraction process |
US3528501A (en) | 1967-08-04 | 1970-09-15 | Phillips Petroleum Co | Recovery of oil from oil shale |
US3480082A (en) | 1967-09-25 | 1969-11-25 | Continental Oil Co | In situ retorting of oil shale using co2 as heat carrier |
US3434541A (en) | 1967-10-11 | 1969-03-25 | Mobil Oil Corp | In situ combustion process |
US3443020A (en) * | 1967-11-22 | 1969-05-06 | Uniroyal Inc | Faired cable |
US3456721A (en) | 1967-12-19 | 1969-07-22 | Phillips Petroleum Co | Downhole-burner apparatus |
US3485300A (en) | 1967-12-20 | 1969-12-23 | Phillips Petroleum Co | Method and apparatus for defoaming crude oil down hole |
US3477058A (en) | 1968-02-01 | 1969-11-04 | Gen Electric | Magnesia insulated heating elements and methods of production |
US3580987A (en) | 1968-03-26 | 1971-05-25 | Pirelli | Electric cable |
US3487753A (en) | 1968-04-10 | 1970-01-06 | Dresser Ind | Well swab cup |
US3455383A (en) | 1968-04-24 | 1969-07-15 | Shell Oil Co | Method of producing fluidized material from a subterranean formation |
US3578080A (en) | 1968-06-10 | 1971-05-11 | Shell Oil Co | Method of producing shale oil from an oil shale formation |
US3529682A (en) | 1968-10-03 | 1970-09-22 | Bell Telephone Labor Inc | Location detection and guidance systems for burrowing device |
US3537528A (en) | 1968-10-14 | 1970-11-03 | Shell Oil Co | Method for producing shale oil from an exfoliated oil shale formation |
US3593789A (en) | 1968-10-18 | 1971-07-20 | Shell Oil Co | Method for producing shale oil from an oil shale formation |
US3502372A (en) | 1968-10-23 | 1970-03-24 | Shell Oil Co | Process of recovering oil and dawsonite from oil shale |
US3565171A (en) * | 1968-10-23 | 1971-02-23 | Shell Oil Co | Method for producing shale oil from a subterranean oil shale formation |
US3554285A (en) | 1968-10-24 | 1971-01-12 | Phillips Petroleum Co | Production and upgrading of heavy viscous oils |
US3629551A (en) | 1968-10-29 | 1971-12-21 | Chisso Corp | Controlling heat generation locally in a heat-generating pipe utilizing skin-effect current |
US3501201A (en) | 1968-10-30 | 1970-03-17 | Shell Oil Co | Method of producing shale oil from a subterranean oil shale formation |
US3562401A (en) | 1969-03-03 | 1971-02-09 | Union Carbide Corp | Low temperature electric transmission systems |
US3614986A (en) | 1969-03-03 | 1971-10-26 | Electrothermic Co | Method for injecting heated fluids into mineral bearing formations |
US3542131A (en) | 1969-04-01 | 1970-11-24 | Mobil Oil Corp | Method of recovering hydrocarbons from oil shale |
US3547192A (en) | 1969-04-04 | 1970-12-15 | Shell Oil Co | Method of metal coating and electrically heating a subterranean earth formation |
US3618663A (en) | 1969-05-01 | 1971-11-09 | Phillips Petroleum Co | Shale oil production |
US3605890A (en) | 1969-06-04 | 1971-09-20 | Chevron Res | Hydrogen production from a kerogen-depleted shale formation |
US3572838A (en) | 1969-07-07 | 1971-03-30 | Shell Oil Co | Recovery of aluminum compounds and oil from oil shale formations |
US3526095A (en) | 1969-07-24 | 1970-09-01 | Ralph E Peck | Liquid gas storage system |
DE1939402B2 (de) | 1969-08-02 | 1970-12-03 | Felten & Guilleaume Kabelwerk | Verfahren und Vorrichtung zum Wellen von Rohrwandungen |
US3599714A (en) | 1969-09-08 | 1971-08-17 | Roger L Messman | Method of recovering hydrocarbons by in situ combustion |
US3614387A (en) | 1969-09-22 | 1971-10-19 | Watlow Electric Mfg Co | Electrical heater with an internal thermocouple |
US3547193A (en) | 1969-10-08 | 1970-12-15 | Electrothermic Co | Method and apparatus for recovery of minerals from sub-surface formations using electricity |
US3702886A (en) | 1969-10-10 | 1972-11-14 | Mobil Oil Corp | Crystalline zeolite zsm-5 and method of preparing the same |
US3679264A (en) | 1969-10-22 | 1972-07-25 | Allen T Van Huisen | Geothermal in situ mining and retorting system |
US3715546A (en) * | 1969-11-26 | 1973-02-06 | Fifth Dimension Inc | Position insensitive mercury switch having a magnetically actuated slug floating in mercury |
US3610875A (en) * | 1970-02-11 | 1971-10-05 | Unitec Corp | Apparatus for conducting gas and electrical current |
US3661423A (en) | 1970-02-12 | 1972-05-09 | Occidental Petroleum Corp | In situ process for recovery of carbonaceous materials from subterranean deposits |
US3798349A (en) | 1970-02-19 | 1974-03-19 | G Gillemot | Molded plastic splice casing with combination cable anchorage and cable shielding grounding facility |
US3943160A (en) | 1970-03-09 | 1976-03-09 | Shell Oil Company | Heat-stable calcium-compatible waterflood surfactant |
US3676078A (en) | 1970-03-19 | 1972-07-11 | Int Salt Co | Salt solution mining and geothermal heat utilization system |
US3858397A (en) | 1970-03-19 | 1975-01-07 | Int Salt Co | Carrying out heat-promotable chemical reactions in sodium chloride formation cavern |
US3685148A (en) | 1970-03-20 | 1972-08-22 | Jack Garfinkel | Method for making a wire splice |
US3709979A (en) | 1970-04-23 | 1973-01-09 | Mobil Oil Corp | Crystalline zeolite zsm-11 |
US3647358A (en) | 1970-07-23 | 1972-03-07 | Anti Pollution Systems | Method of catalytically inducing oxidation of carbonaceous materials by the use of molten salts |
US3657520A (en) | 1970-08-20 | 1972-04-18 | Michel A Ragault | Heating cable with cold outlets |
US3759574A (en) | 1970-09-24 | 1973-09-18 | Shell Oil Co | Method of producing hydrocarbons from an oil shale formation |
US3661424A (en) | 1970-10-20 | 1972-05-09 | Int Salt Co | Geothermal energy recovery from deep caverns in salt deposits by means of air flow |
US4305463A (en) | 1979-10-31 | 1981-12-15 | Oil Trieval Corporation | Oil recovery method and apparatus |
US3679812A (en) | 1970-11-13 | 1972-07-25 | Schlumberger Technology Corp | Electrical suspension cable for well tools |
US3765477A (en) | 1970-12-21 | 1973-10-16 | Huisen A Van | Geothermal-nuclear energy release and recovery system |
US3680633A (en) | 1970-12-28 | 1972-08-01 | Sun Oil Co Delaware | Situ combustion initiation process |
US3675715A (en) | 1970-12-30 | 1972-07-11 | Forrester A Clark | Processes for secondarily recovering oil |
US3770614A (en) | 1971-01-15 | 1973-11-06 | Mobil Oil Corp | Split feed reforming and n-paraffin elimination from low boiling reformate |
US3832449A (en) | 1971-03-18 | 1974-08-27 | Mobil Oil Corp | Crystalline zeolite zsm{14 12 |
US3700280A (en) | 1971-04-28 | 1972-10-24 | Shell Oil Co | Method of producing oil from an oil shale formation containing nahcolite and dawsonite |
US3770398A (en) | 1971-09-17 | 1973-11-06 | Cities Service Oil Co | In situ coal gasification process |
US3743854A (en) * | 1971-09-29 | 1973-07-03 | Gen Electric | System and apparatus for dual transmission of petrochemical fluids and unidirectional electric current |
US3812913A (en) | 1971-10-18 | 1974-05-28 | Sun Oil Co | Method of formation consolidation |
US3893918A (en) | 1971-11-22 | 1975-07-08 | Engineering Specialties Inc | Method for separating material leaving a well |
US3844352A (en) | 1971-12-17 | 1974-10-29 | Brown Oil Tools | Method for modifying a well to provide gas lift production |
US3766982A (en) | 1971-12-27 | 1973-10-23 | Justheim Petrol Co | Method for the in-situ treatment of hydrocarbonaceous materials |
US3732463A (en) * | 1972-01-03 | 1973-05-08 | Gte Laboratories Inc | Ground fault detection and interruption apparatus |
US3759328A (en) | 1972-05-11 | 1973-09-18 | Shell Oil Co | Laterally expanding oil shale permeabilization |
US3794116A (en) | 1972-05-30 | 1974-02-26 | Atomic Energy Commission | Situ coal bed gasification |
US3779602A (en) | 1972-08-07 | 1973-12-18 | Shell Oil Co | Process for solution mining nahcolite |
US3757860A (en) | 1972-08-07 | 1973-09-11 | Atlantic Richfield Co | Well heating |
US3761599A (en) | 1972-09-05 | 1973-09-25 | Gen Electric | Means for reducing eddy current heating of a tank in electric apparatus |
US3809159A (en) | 1972-10-02 | 1974-05-07 | Continental Oil Co | Process for simultaneously increasing recovery and upgrading oil in a reservoir |
US3804172A (en) | 1972-10-11 | 1974-04-16 | Shell Oil Co | Method for the recovery of oil from oil shale |
US3794113A (en) | 1972-11-13 | 1974-02-26 | Mobil Oil Corp | Combination in situ combustion displacement and steam stimulation of producing wells |
US3804169A (en) | 1973-02-07 | 1974-04-16 | Shell Oil Co | Spreading-fluid recovery of subterranean oil |
US3896260A (en) | 1973-04-03 | 1975-07-22 | Walter A Plummer | Powder filled cable splice assembly |
US3895180A (en) | 1973-04-03 | 1975-07-15 | Walter A Plummer | Grease filled cable splice assembly |
US3794752A (en) * | 1973-05-30 | 1974-02-26 | Anaconda Co | High voltage cable system free from metallic shielding |
US3947683A (en) | 1973-06-05 | 1976-03-30 | Texaco Inc. | Combination of epithermal and inelastic neutron scattering methods to locate coal and oil shale zones |
US3859503A (en) * | 1973-06-12 | 1975-01-07 | Richard D Palone | Electric heated sucker rod |
US4076761A (en) | 1973-08-09 | 1978-02-28 | Mobil Oil Corporation | Process for the manufacture of gasoline |
US4016245A (en) | 1973-09-04 | 1977-04-05 | Mobil Oil Corporation | Crystalline zeolite and method of preparing same |
US3881551A (en) | 1973-10-12 | 1975-05-06 | Ruel C Terry | Method of extracting immobile hydrocarbons |
US3907045A (en) | 1973-11-30 | 1975-09-23 | Continental Oil Co | Guidance system for a horizontal drilling apparatus |
US3853185A (en) | 1973-11-30 | 1974-12-10 | Continental Oil Co | Guidance system for a horizontal drilling apparatus |
US3882941A (en) | 1973-12-17 | 1975-05-13 | Cities Service Res & Dev Co | In situ production of bitumen from oil shale |
US3946812A (en) | 1974-01-02 | 1976-03-30 | Exxon Production Research Company | Use of materials as waterflood additives |
US3893961A (en) | 1974-01-07 | 1975-07-08 | Basil Vivian Edwin Walton | Telephone cable splice closure filling composition |
US4199025A (en) | 1974-04-19 | 1980-04-22 | Electroflood Company | Method and apparatus for tertiary recovery of oil |
US4037655A (en) | 1974-04-19 | 1977-07-26 | Electroflood Company | Method for secondary recovery of oil |
US3994163A (en) * | 1974-04-29 | 1976-11-30 | W. R. Grace & Co. | Stuck well pipe apparatus |
US3942373A (en) * | 1974-04-29 | 1976-03-09 | Homco International, Inc. | Well tool apparatus and method |
US3922148A (en) | 1974-05-16 | 1975-11-25 | Texaco Development Corp | Production of methane-rich gas |
ZA753184B (en) | 1974-05-31 | 1976-04-28 | Standard Oil Co | Process for recovering upgraded hydrocarbon products |
US3948755A (en) | 1974-05-31 | 1976-04-06 | Standard Oil Company | Process for recovering and upgrading hydrocarbons from oil shale and tar sands |
US3894769A (en) | 1974-06-06 | 1975-07-15 | Shell Oil Co | Recovering oil from a subterranean carbonaceous formation |
US3948758A (en) | 1974-06-17 | 1976-04-06 | Mobil Oil Corporation | Production of alkyl aromatic hydrocarbons |
GB1507675A (en) | 1974-06-21 | 1978-04-19 | Pyrotenax Of Ca Ltd | Heating cables and manufacture thereof |
US4006778A (en) | 1974-06-21 | 1977-02-08 | Texaco Exploration Canada Ltd. | Thermal recovery of hydrocarbon from tar sands |
US4026357A (en) | 1974-06-26 | 1977-05-31 | Texaco Exploration Canada Ltd. | In situ gasification of solid hydrocarbon materials in a subterranean formation |
US3935911A (en) | 1974-06-28 | 1976-02-03 | Dresser Industries, Inc. | Earth boring bit with means for conducting heat from the bit's bearings |
US4029360A (en) | 1974-07-26 | 1977-06-14 | Occidental Oil Shale, Inc. | Method of recovering oil and water from in situ oil shale retort flue gas |
US4005752A (en) | 1974-07-26 | 1977-02-01 | Occidental Petroleum Corporation | Method of igniting in situ oil shale retort with fuel rich flue gas |
US3941421A (en) | 1974-08-13 | 1976-03-02 | Occidental Petroleum Corporation | Apparatus for obtaining uniform gas flow through an in situ oil shale retort |
GB1454324A (en) | 1974-08-14 | 1976-11-03 | Iniex | Recovering combustible gases from underground deposits of coal or bituminous shale |
US3948319A (en) | 1974-10-16 | 1976-04-06 | Atlantic Richfield Company | Method and apparatus for producing fluid by varying current flow through subterranean source formation |
AR205595A1 (es) | 1974-11-06 | 1976-05-14 | Haldor Topsoe As | Procedimiento para preparar gases rico en metano |
US3933447A (en) | 1974-11-08 | 1976-01-20 | The United States Of America As Represented By The United States Energy Research And Development Administration | Underground gasification of coal |
US4138442A (en) | 1974-12-05 | 1979-02-06 | Mobil Oil Corporation | Process for the manufacture of gasoline |
US3952802A (en) | 1974-12-11 | 1976-04-27 | In Situ Technology, Inc. | Method and apparatus for in situ gasification of coal and the commercial products derived therefrom |
US3982591A (en) | 1974-12-20 | 1976-09-28 | World Energy Systems | Downhole recovery system |
US3986556A (en) | 1975-01-06 | 1976-10-19 | Haynes Charles A | Hydrocarbon recovery from earth strata |
US3958636A (en) | 1975-01-23 | 1976-05-25 | Atlantic Richfield Company | Production of bitumen from a tar sand formation |
US4042026A (en) | 1975-02-08 | 1977-08-16 | Deutsche Texaco Aktiengesellschaft | Method for initiating an in-situ recovery process by the introduction of oxygen |
US4096163A (en) | 1975-04-08 | 1978-06-20 | Mobil Oil Corporation | Conversion of synthesis gas to hydrocarbon mixtures |
US3924680A (en) | 1975-04-23 | 1975-12-09 | In Situ Technology Inc | Method of pyrolysis of coal in situ |
US3973628A (en) | 1975-04-30 | 1976-08-10 | New Mexico Tech Research Foundation | In situ solution mining of coal |
US4016239A (en) | 1975-05-22 | 1977-04-05 | Union Oil Company Of California | Recarbonation of spent oil shale |
US3987851A (en) | 1975-06-02 | 1976-10-26 | Shell Oil Company | Serially burning and pyrolyzing to produce shale oil from a subterranean oil shale |
US3986557A (en) | 1975-06-06 | 1976-10-19 | Atlantic Richfield Company | Production of bitumen from tar sands |
CA1064890A (en) | 1975-06-10 | 1979-10-23 | Mae K. Rubin | Crystalline zeolite, synthesis and use thereof |
US3950029A (en) | 1975-06-12 | 1976-04-13 | Mobil Oil Corporation | In situ retorting of oil shale |
US3993132A (en) | 1975-06-18 | 1976-11-23 | Texaco Exploration Canada Ltd. | Thermal recovery of hydrocarbons from tar sands |
US4069868A (en) | 1975-07-14 | 1978-01-24 | In Situ Technology, Inc. | Methods of fluidized production of coal in situ |
US4199024A (en) | 1975-08-07 | 1980-04-22 | World Energy Systems | Multistage gas generator |
US3954140A (en) | 1975-08-13 | 1976-05-04 | Hendrick Robert P | Recovery of hydrocarbons by in situ thermal extraction |
US3986349A (en) | 1975-09-15 | 1976-10-19 | Chevron Research Company | Method of power generation via coal gasification and liquid hydrocarbon synthesis |
US4037658A (en) | 1975-10-30 | 1977-07-26 | Chevron Research Company | Method of recovering viscous petroleum from an underground formation |
US3994340A (en) | 1975-10-30 | 1976-11-30 | Chevron Research Company | Method of recovering viscous petroleum from tar sand |
US3994341A (en) | 1975-10-30 | 1976-11-30 | Chevron Research Company | Recovering viscous petroleum from thick tar sand |
US4087130A (en) | 1975-11-03 | 1978-05-02 | Occidental Petroleum Corporation | Process for the gasification of coal in situ |
US4018279A (en) | 1975-11-12 | 1977-04-19 | Reynolds Merrill J | In situ coal combustion heat recovery method |
US4078608A (en) | 1975-11-26 | 1978-03-14 | Texaco Inc. | Thermal oil recovery method |
US4018280A (en) | 1975-12-10 | 1977-04-19 | Mobil Oil Corporation | Process for in situ retorting of oil shale |
US3992474A (en) | 1975-12-15 | 1976-11-16 | Uop Inc. | Motor fuel production with fluid catalytic cracking of high-boiling alkylate |
US4019575A (en) | 1975-12-22 | 1977-04-26 | Chevron Research Company | System for recovering viscous petroleum from thick tar sand |
US4017319A (en) | 1976-01-06 | 1977-04-12 | General Electric Company | Si3 N4 formed by nitridation of sintered silicon compact containing boron |
US3999607A (en) | 1976-01-22 | 1976-12-28 | Exxon Research And Engineering Company | Recovery of hydrocarbons from coal |
US4031956A (en) | 1976-02-12 | 1977-06-28 | In Situ Technology, Inc. | Method of recovering energy from subsurface petroleum reservoirs |
US4008762A (en) | 1976-02-26 | 1977-02-22 | Fisher Sidney T | Extraction of hydrocarbons in situ from underground hydrocarbon deposits |
US4010800A (en) | 1976-03-08 | 1977-03-08 | In Situ Technology, Inc. | Producing thin seams of coal in situ |
US4048637A (en) | 1976-03-23 | 1977-09-13 | Westinghouse Electric Corporation | Radar system for detecting slowly moving targets |
DE2615874B2 (de) | 1976-04-10 | 1978-10-19 | Deutsche Texaco Ag, 2000 Hamburg | Anwendung eines Verfahrens zum Gewinnen von Erdöl und Bitumen aus unterirdischen Lagerstätten mittels einer Verbrennungfront bei Lagerstätten beliebigen Gehalts an intermediären Kohlenwasserstoffen im Rohöl bzw. Bitumen |
US4022280A (en) | 1976-05-17 | 1977-05-10 | Stoddard Xerxes T | Thermal recovery of hydrocarbons by washing an underground sand |
GB1544245A (en) | 1976-05-21 | 1979-04-19 | British Gas Corp | Production of substitute natural gas |
US4049053A (en) | 1976-06-10 | 1977-09-20 | Fisher Sidney T | Recovery of hydrocarbons from partially exhausted oil wells by mechanical wave heating |
US4487257A (en) | 1976-06-17 | 1984-12-11 | Raytheon Company | Apparatus and method for production of organic products from kerogen |
US4193451A (en) | 1976-06-17 | 1980-03-18 | The Badger Company, Inc. | Method for production of organic products from kerogen |
US4067390A (en) | 1976-07-06 | 1978-01-10 | Technology Application Services Corporation | Apparatus and method for the recovery of fuel products from subterranean deposits of carbonaceous matter using a plasma arc |
US4057293A (en) | 1976-07-12 | 1977-11-08 | Garrett Donald E | Process for in situ conversion of coal or the like into oil and gas |
US4043393A (en) | 1976-07-29 | 1977-08-23 | Fisher Sidney T | Extraction from underground coal deposits |
US4091869A (en) | 1976-09-07 | 1978-05-30 | Exxon Production Research Company | In situ process for recovery of carbonaceous materials from subterranean deposits |
US4110550A (en) | 1976-11-01 | 1978-08-29 | Amerace Corporation | Electrical connector with adaptor for paper-insulated, lead-jacketed electrical cables and method |
US4140184A (en) | 1976-11-15 | 1979-02-20 | Bechtold Ira C | Method for producing hydrocarbons from igneous sources |
US4083604A (en) | 1976-11-15 | 1978-04-11 | Trw Inc. | Thermomechanical fracture for recovery system in oil shale deposits |
US4059308A (en) | 1976-11-15 | 1977-11-22 | Trw Inc. | Pressure swing recovery system for oil shale deposits |
US4077471A (en) | 1976-12-01 | 1978-03-07 | Texaco Inc. | Surfactant oil recovery process usable in high temperature, high salinity formations |
US4064943A (en) | 1976-12-06 | 1977-12-27 | Shell Oil Co | Plugging permeable earth formation with wax |
US4089374A (en) | 1976-12-16 | 1978-05-16 | In Situ Technology, Inc. | Producing methane from coal in situ |
US4084637A (en) | 1976-12-16 | 1978-04-18 | Petro Canada Exploration Inc. | Method of producing viscous materials from subterranean formations |
US4093026A (en) | 1977-01-17 | 1978-06-06 | Occidental Oil Shale, Inc. | Removal of sulfur dioxide from process gas using treated oil shale and water |
US4102418A (en) | 1977-01-24 | 1978-07-25 | Bakerdrill Inc. | Borehole drilling apparatus |
US4277416A (en) | 1977-02-17 | 1981-07-07 | Aminoil, Usa, Inc. | Process for producing methanol |
US4085803A (en) | 1977-03-14 | 1978-04-25 | Exxon Production Research Company | Method for oil recovery using a horizontal well with indirect heating |
US4137720A (en) | 1977-03-17 | 1979-02-06 | Rex Robert W | Use of calcium halide-water as a heat extraction medium for energy recovery from hot rock systems |
US4099567A (en) | 1977-05-27 | 1978-07-11 | In Situ Technology, Inc. | Generating medium BTU gas from coal in situ |
US4169506A (en) | 1977-07-15 | 1979-10-02 | Standard Oil Company (Indiana) | In situ retorting of oil shale and energy recovery |
US4144935A (en) | 1977-08-29 | 1979-03-20 | Iit Research Institute | Apparatus and method for in situ heat processing of hydrocarbonaceous formations |
US4140180A (en) | 1977-08-29 | 1979-02-20 | Iit Research Institute | Method for in situ heat processing of hydrocarbonaceous formations |
NL181941C (nl) | 1977-09-16 | 1987-12-01 | Ir Arnold Willem Josephus Grup | Werkwijze voor het ondergronds vergassen van steenkool of bruinkool. |
US4125159A (en) | 1977-10-17 | 1978-11-14 | Vann Roy Randell | Method and apparatus for isolating and treating subsurface stratas |
SU915451A1 (ru) | 1977-10-21 | 1988-08-23 | Vnii Ispolzovania | Способ подземной газификации топлива |
US4119349A (en) | 1977-10-25 | 1978-10-10 | Gulf Oil Corporation | Method and apparatus for recovery of fluids produced in in-situ retorting of oil shale |
US4114688A (en) | 1977-12-05 | 1978-09-19 | In Situ Technology Inc. | Minimizing environmental effects in production and use of coal |
US4158467A (en) | 1977-12-30 | 1979-06-19 | Gulf Oil Corporation | Process for recovering shale oil |
US4196914A (en) | 1978-01-13 | 1980-04-08 | Dresser Industries, Inc. | Chuck for an earth boring machine |
US4148359A (en) | 1978-01-30 | 1979-04-10 | Shell Oil Company | Pressure-balanced oil recovery process for water productive oil shale |
US4354053A (en) | 1978-02-01 | 1982-10-12 | Gold Marvin H | Spliced high voltage cable |
DE2812490A1 (de) | 1978-03-22 | 1979-09-27 | Texaco Ag | Verfahren zur ermittlung der raeumlichen ausdehnung von untertaegigen reaktionen |
US4197911A (en) | 1978-05-09 | 1980-04-15 | Ramcor, Inc. | Process for in situ coal gasification |
US4228853A (en) | 1978-06-21 | 1980-10-21 | Harvey A Herbert | Petroleum production method |
US4234755A (en) | 1978-06-29 | 1980-11-18 | Amerace Corporation | Adaptor for paper-insulated, lead-jacketed electrical cables |
US4186801A (en) | 1978-12-18 | 1980-02-05 | Gulf Research And Development Company | In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations |
US4365947A (en) | 1978-07-14 | 1982-12-28 | Gk Technologies, Incorporated, General Cable Company Division | Apparatus for molding stress control cones insitu on the terminations of insulated high voltage power cables |
US4185692A (en) | 1978-07-14 | 1980-01-29 | In Situ Technology, Inc. | Underground linkage of wells for production of coal in situ |
US4184548A (en) | 1978-07-17 | 1980-01-22 | Standard Oil Company (Indiana) | Method for determining the position and inclination of a flame front during in situ combustion of an oil shale retort |
US4257650A (en) | 1978-09-07 | 1981-03-24 | Barber Heavy Oil Process, Inc. | Method for recovering subsurface earth substances |
US4183405A (en) | 1978-10-02 | 1980-01-15 | Magnie Robert L | Enhanced recoveries of petroleum and hydrogen from underground reservoirs |
US4446917A (en) | 1978-10-04 | 1984-05-08 | Todd John C | Method and apparatus for producing viscous or waxy crude oils |
GB2034958B (en) * | 1978-11-21 | 1982-12-01 | Standard Telephones Cables Ltd | Multi-core power cable |
US4311340A (en) | 1978-11-27 | 1982-01-19 | Lyons William C | Uranium leeching process and insitu mining |
NL7811732A (nl) | 1978-11-30 | 1980-06-03 | Stamicarbon | Werkwijze voor de omzetting van dimethylether. |
JPS5576586A (en) | 1978-12-01 | 1980-06-09 | Tokyo Shibaura Electric Co | Heater |
US4299086A (en) | 1978-12-07 | 1981-11-10 | Gulf Research & Development Company | Utilization of energy obtained by substoichiometric combustion of low heating value gases |
US4457365A (en) | 1978-12-07 | 1984-07-03 | Raytheon Company | In situ radio frequency selective heating system |
US4265307A (en) | 1978-12-20 | 1981-05-05 | Standard Oil Company | Shale oil recovery |
US4194562A (en) | 1978-12-21 | 1980-03-25 | Texaco Inc. | Method for preconditioning a subterranean oil-bearing formation prior to in-situ combustion |
US4258955A (en) | 1978-12-26 | 1981-03-31 | Mobil Oil Corporation | Process for in-situ leaching of uranium |
US4274487A (en) | 1979-01-11 | 1981-06-23 | Standard Oil Company (Indiana) | Indirect thermal stimulation of production wells |
US4215410A (en) * | 1979-02-09 | 1980-07-29 | Jerome H. Weslow | Solar tracker |
US4232902A (en) | 1979-02-09 | 1980-11-11 | Ppg Industries, Inc. | Solution mining water soluble salts at high temperatures |
US4324292A (en) | 1979-02-21 | 1982-04-13 | University Of Utah | Process for recovering products from oil shale |
US4289354A (en) | 1979-02-23 | 1981-09-15 | Edwin G. Higgins, Jr. | Borehole mining of solid mineral resources |
US4248306A (en) | 1979-04-02 | 1981-02-03 | Huisen Allan T Van | Geothermal petroleum refining |
US4241953A (en) | 1979-04-23 | 1980-12-30 | Freeport Minerals Company | Sulfur mine bleedwater reuse system |
US4282587A (en) | 1979-05-21 | 1981-08-04 | Daniel Silverman | Method for monitoring the recovery of minerals from shallow geological formations |
NL7905279A (nl) * | 1979-07-06 | 1981-01-08 | Philips Nv | Verbindingskabel in digitale systemen. |
US4216079A (en) | 1979-07-09 | 1980-08-05 | Cities Service Company | Emulsion breaking with surfactant recovery |
US4290650A (en) | 1979-08-03 | 1981-09-22 | Ppg Industries Canada Ltd. | Subterranean cavity chimney development for connecting solution mined cavities |
US4228854A (en) | 1979-08-13 | 1980-10-21 | Alberta Research Council | Enhanced oil recovery using electrical means |
US4701587A (en) | 1979-08-31 | 1987-10-20 | Metcal, Inc. | Shielded heating element having intrinsic temperature control |
US4256945A (en) | 1979-08-31 | 1981-03-17 | Iris Associates | Alternating current electrically resistive heating element having intrinsic temperature control |
US4327805A (en) | 1979-09-18 | 1982-05-04 | Carmel Energy, Inc. | Method for producing viscous hydrocarbons |
US4549396A (en) | 1979-10-01 | 1985-10-29 | Mobil Oil Corporation | Conversion of coal to electricity |
US4370518A (en) | 1979-12-03 | 1983-01-25 | Hughes Tool Company | Splice for lead-coated and insulated conductors |
US4368114A (en) | 1979-12-05 | 1983-01-11 | Mobil Oil Corporation | Octane and total yield improvement in catalytic cracking |
US4250230A (en) | 1979-12-10 | 1981-02-10 | In Situ Technology, Inc. | Generating electricity from coal in situ |
US4250962A (en) | 1979-12-14 | 1981-02-17 | Gulf Research & Development Company | In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations |
US4317003A (en) | 1980-01-17 | 1982-02-23 | Gray Stanley J | High tensile multiple sheath cable |
US4359687A (en) | 1980-01-25 | 1982-11-16 | Shell Oil Company | Method and apparatus for determining shaliness and oil saturations in earth formations using induced polarization in the frequency domain |
US4398151A (en) | 1980-01-25 | 1983-08-09 | Shell Oil Company | Method for correcting an electrical log for the presence of shale in a formation |
USRE30738E (en) | 1980-02-06 | 1981-09-08 | Iit Research Institute | Apparatus and method for in situ heat processing of hydrocarbonaceous formations |
US4303126A (en) | 1980-02-27 | 1981-12-01 | Chevron Research Company | Arrangement of wells for producing subsurface viscous petroleum |
US4319635A (en) | 1980-02-29 | 1982-03-16 | P. H. Jones Hydrogeology, Inc. | Method for enhanced oil recovery by geopressured waterflood |
US4477376A (en) | 1980-03-10 | 1984-10-16 | Gold Marvin H | Castable mixture for insulating spliced high voltage cable |
US4445574A (en) | 1980-03-24 | 1984-05-01 | Geo Vann, Inc. | Continuous borehole formed horizontally through a hydrocarbon producing formation |
US4417782A (en) | 1980-03-31 | 1983-11-29 | Raychem Corporation | Fiber optic temperature sensing |
CA1168283A (en) | 1980-04-14 | 1984-05-29 | Hiroshi Teratani | Electrode device for electrically heating underground deposits of hydrocarbons |
US4273188A (en) | 1980-04-30 | 1981-06-16 | Gulf Research & Development Company | In situ combustion process for the recovery of liquid carbonaceous fuels from subterranean formations |
US4306621A (en) | 1980-05-23 | 1981-12-22 | Boyd R Michael | Method for in situ coal gasification operations |
US4317485A (en) | 1980-05-23 | 1982-03-02 | Baker International Corporation | Pump catcher apparatus |
US4409090A (en) | 1980-06-02 | 1983-10-11 | University Of Utah | Process for recovering products from tar sand |
CA1165361A (en) | 1980-06-03 | 1984-04-10 | Toshiyuki Kobayashi | Electrode unit for electrically heating underground hydrocarbon deposits |
US4381641A (en) | 1980-06-23 | 1983-05-03 | Gulf Research & Development Company | Substoichiometric combustion of low heating value gases |
US4310440A (en) | 1980-07-07 | 1982-01-12 | Union Carbide Corporation | Crystalline metallophosphate compositions |
US4401099A (en) | 1980-07-11 | 1983-08-30 | W.B. Combustion, Inc. | Single-ended recuperative radiant tube assembly and method |
US4299285A (en) | 1980-07-21 | 1981-11-10 | Gulf Research & Development Company | Underground gasification of bituminous coal |
DE3030110C2 (de) | 1980-08-08 | 1983-04-21 | Vsesojuznyj neftegazovyj naučno-issledovatel'skij institut, Moskva | Verfahren zur Gewinnung von Erdöl durch Grubenbaue und durch Wärmezufuhr |
US4396062A (en) | 1980-10-06 | 1983-08-02 | University Of Utah Research Foundation | Apparatus and method for time-domain tracking of high-speed chemical reactions |
US4353418A (en) | 1980-10-20 | 1982-10-12 | Standard Oil Company (Indiana) | In situ retorting of oil shale |
US4384613A (en) | 1980-10-24 | 1983-05-24 | Terra Tek, Inc. | Method of in-situ retorting of carbonaceous material for recovery of organic liquids and gases |
DE3041657A1 (de) | 1980-11-05 | 1982-06-03 | HEW-Kabel Heinz Eilentropp KG, 5272 Wipperfürth | Verfahren und vorrichtung zur herstellung zugfester und druckdichter, insbesondere temperaturbestaendiger, verbindungen fuer elektrische kabel und leitungen |
US4366864A (en) | 1980-11-24 | 1983-01-04 | Exxon Research And Engineering Co. | Method for recovery of hydrocarbons from oil-bearing limestone or dolomite |
US4401163A (en) | 1980-12-29 | 1983-08-30 | The Standard Oil Company | Modified in situ retorting of oil shale |
US4354657A (en) * | 1980-12-29 | 1982-10-19 | Karlberg John E | Supports for coaxial conduits |
US4385661A (en) | 1981-01-07 | 1983-05-31 | The United States Of America As Represented By The United States Department Of Energy | Downhole steam generator with improved preheating, combustion and protection features |
US4423311A (en) | 1981-01-19 | 1983-12-27 | Varney Sr Paul | Electric heating apparatus for de-icing pipes |
US4366668A (en) | 1981-02-25 | 1983-01-04 | Gulf Research & Development Company | Substoichiometric combustion of low heating value gases |
US4382469A (en) | 1981-03-10 | 1983-05-10 | Electro-Petroleum, Inc. | Method of in situ gasification |
US4363361A (en) | 1981-03-19 | 1982-12-14 | Gulf Research & Development Company | Substoichiometric combustion of low heating value gases |
US4390067A (en) | 1981-04-06 | 1983-06-28 | Exxon Production Research Co. | Method of treating reservoirs containing very viscous crude oil or bitumen |
US4399866A (en) | 1981-04-10 | 1983-08-23 | Atlantic Richfield Company | Method for controlling the flow of subterranean water into a selected zone in a permeable subterranean carbonaceous deposit |
US4444255A (en) | 1981-04-20 | 1984-04-24 | Lloyd Geoffrey | Apparatus and process for the recovery of oil |
US4380930A (en) | 1981-05-01 | 1983-04-26 | Mobil Oil Corporation | System for transmitting ultrasonic energy through core samples |
US4429745A (en) | 1981-05-08 | 1984-02-07 | Mobil Oil Corporation | Oil recovery method |
US4378048A (en) | 1981-05-08 | 1983-03-29 | Gulf Research & Development Company | Substoichiometric combustion of low heating value gases using different platinum catalysts |
US4384614A (en) | 1981-05-11 | 1983-05-24 | Justheim Pertroleum Company | Method of retorting oil shale by velocity flow of super-heated air |
US4403110A (en) | 1981-05-15 | 1983-09-06 | Walter Kidde And Company, Inc. | Electrical cable splice |
US4437519A (en) | 1981-06-03 | 1984-03-20 | Occidental Oil Shale, Inc. | Reduction of shale oil pour point |
US4368452A (en) | 1981-06-22 | 1983-01-11 | Kerr Jr Robert L | Thermal protection of aluminum conductor junctions |
US4428700A (en) | 1981-08-03 | 1984-01-31 | E. R. Johnson Associates, Inc. | Method for disposing of waste materials |
US4456065A (en) | 1981-08-20 | 1984-06-26 | Elektra Energie A.G. | Heavy oil recovering |
US4344483A (en) | 1981-09-08 | 1982-08-17 | Fisher Charles B | Multiple-site underground magnetic heating of hydrocarbons |
US4452491A (en) | 1981-09-25 | 1984-06-05 | Intercontinental Econergy Associates, Inc. | Recovery of hydrocarbons from deep underground deposits of tar sands |
US4425967A (en) | 1981-10-07 | 1984-01-17 | Standard Oil Company (Indiana) | Ignition procedure and process for in situ retorting of oil shale |
US4401162A (en) | 1981-10-13 | 1983-08-30 | Synfuel (An Indiana Limited Partnership) | In situ oil shale process |
US4605680A (en) | 1981-10-13 | 1986-08-12 | Chevron Research Company | Conversion of synthesis gas to diesel fuel and gasoline |
US4410042A (en) | 1981-11-02 | 1983-10-18 | Mobil Oil Corporation | In-situ combustion method for recovery of heavy oil utilizing oxygen and carbon dioxide as initial oxidant |
US4549073A (en) | 1981-11-06 | 1985-10-22 | Oximetrix, Inc. | Current controller for resistive heating element |
US4444258A (en) | 1981-11-10 | 1984-04-24 | Nicholas Kalmar | In situ recovery of oil from oil shale |
US4407366A (en) | 1981-12-07 | 1983-10-04 | Union Oil Company Of California | Method for gas capping of idle geothermal steam wells |
US4418752A (en) | 1982-01-07 | 1983-12-06 | Conoco Inc. | Thermal oil recovery with solvent recirculation |
FR2519688A1 (fr) | 1982-01-08 | 1983-07-18 | Elf Aquitaine | Systeme d'etancheite pour puits de forage dans lequel circule un fluide chaud |
US4397732A (en) | 1982-02-11 | 1983-08-09 | International Coal Refining Company | Process for coal liquefaction employing selective coal feed |
US4551226A (en) | 1982-02-26 | 1985-11-05 | Chevron Research Company | Heat exchanger antifoulant |
GB2117030B (en) | 1982-03-17 | 1985-09-11 | Cameron Iron Works Inc | Method and apparatus for remote installations of dual tubing strings in a subsea well |
US4530401A (en) | 1982-04-05 | 1985-07-23 | Mobil Oil Corporation | Method for maximum in-situ visbreaking of heavy oil |
CA1196594A (en) | 1982-04-08 | 1985-11-12 | Guy Savard | Recovery of oil from tar sands |
US4537252A (en) | 1982-04-23 | 1985-08-27 | Standard Oil Company (Indiana) | Method of underground conversion of coal |
US4491179A (en) | 1982-04-26 | 1985-01-01 | Pirson Sylvain J | Method for oil recovery by in situ exfoliation drive |
US4455215A (en) | 1982-04-29 | 1984-06-19 | Jarrott David M | Process for the geoconversion of coal into oil |
US4412585A (en) | 1982-05-03 | 1983-11-01 | Cities Service Company | Electrothermal process for recovering hydrocarbons |
US4524826A (en) | 1982-06-14 | 1985-06-25 | Texaco Inc. | Method of heating an oil shale formation |
US4457374A (en) | 1982-06-29 | 1984-07-03 | Standard Oil Company | Transient response process for detecting in situ retorting conditions |
JPS5918893A (ja) * | 1982-07-19 | 1984-01-31 | 三菱電機株式会社 | 炭化水素系地下資源の電気加熱装置 |
US4442896A (en) | 1982-07-21 | 1984-04-17 | Reale Lucio V | Treatment of underground beds |
US4440871A (en) | 1982-07-26 | 1984-04-03 | Union Carbide Corporation | Crystalline silicoaluminophosphates |
US4407973A (en) | 1982-07-28 | 1983-10-04 | The M. W. Kellogg Company | Methanol from coal and natural gas |
US4479541A (en) | 1982-08-23 | 1984-10-30 | Wang Fun Den | Method and apparatus for recovery of oil, gas and mineral deposits by panel opening |
US4460044A (en) | 1982-08-31 | 1984-07-17 | Chevron Research Company | Advancing heated annulus steam drive |
US4458767A (en) | 1982-09-28 | 1984-07-10 | Mobil Oil Corporation | Method for directionally drilling a first well to intersect a second well |
US4485868A (en) | 1982-09-29 | 1984-12-04 | Iit Research Institute | Method for recovery of viscous hydrocarbons by electromagnetic heating in situ |
US4695713A (en) | 1982-09-30 | 1987-09-22 | Metcal, Inc. | Autoregulating, electrically shielded heater |
CA1214815A (en) | 1982-09-30 | 1986-12-02 | John F. Krumme | Autoregulating electrically shielded heater |
US4927857A (en) | 1982-09-30 | 1990-05-22 | Engelhard Corporation | Method of methanol production |
US4498531A (en) | 1982-10-01 | 1985-02-12 | Rockwell International Corporation | Emission controller for indirect fired downhole steam generators |
US4485869A (en) | 1982-10-22 | 1984-12-04 | Iit Research Institute | Recovery of liquid hydrocarbons from oil shale by electromagnetic heating in situ |
GB2130860A (en) * | 1982-11-12 | 1984-06-06 | Atomic Energy Authority Uk | Induced current heating probe |
EP0110449B1 (en) | 1982-11-22 | 1986-08-13 | Shell Internationale Researchmaatschappij B.V. | Process for the preparation of a fischer-tropsch catalyst, a catalyst so prepared and use of this catalyst in the preparation of hydrocarbons |
US4474238A (en) | 1982-11-30 | 1984-10-02 | Phillips Petroleum Company | Method and apparatus for treatment of subsurface formations |
US4498535A (en) | 1982-11-30 | 1985-02-12 | Iit Research Institute | Apparatus and method for in situ controlled heat processing of hydrocarbonaceous formations with a controlled parameter line |
US4752673A (en) | 1982-12-01 | 1988-06-21 | Metcal, Inc. | Autoregulating heater |
US4520229A (en) | 1983-01-03 | 1985-05-28 | Amerace Corporation | Splice connector housing and assembly of cables employing same |
US4501326A (en) | 1983-01-17 | 1985-02-26 | Gulf Canada Limited | In-situ recovery of viscous hydrocarbonaceous crude oil |
US4609041A (en) | 1983-02-10 | 1986-09-02 | Magda Richard M | Well hot oil system |
US4886118A (en) | 1983-03-21 | 1989-12-12 | Shell Oil Company | Conductively heating a subterranean oil shale to create permeability and subsequently produce oil |
US4640352A (en) | 1983-03-21 | 1987-02-03 | Shell Oil Company | In-situ steam drive oil recovery process |
US4500651A (en) | 1983-03-31 | 1985-02-19 | Union Carbide Corporation | Titanium-containing molecular sieves |
US4458757A (en) | 1983-04-25 | 1984-07-10 | Exxon Research And Engineering Co. | In situ shale-oil recovery process |
US4524827A (en) | 1983-04-29 | 1985-06-25 | Iit Research Institute | Single well stimulation for the recovery of liquid hydrocarbons from subsurface formations |
US4545435A (en) | 1983-04-29 | 1985-10-08 | Iit Research Institute | Conduction heating of hydrocarbonaceous formations |
US4518548A (en) | 1983-05-02 | 1985-05-21 | Sulcon, Inc. | Method of overlaying sulphur concrete on horizontal and vertical surfaces |
US4470459A (en) | 1983-05-09 | 1984-09-11 | Halliburton Company | Apparatus and method for controlled temperature heating of volumes of hydrocarbonaceous materials in earth formations |
EP0130671A3 (en) | 1983-05-26 | 1986-12-17 | Metcal Inc. | Multiple temperature autoregulating heater |
US4794226A (en) | 1983-05-26 | 1988-12-27 | Metcal, Inc. | Self-regulating porous heater device |
US5073625A (en) | 1983-05-26 | 1991-12-17 | Metcal, Inc. | Self-regulating porous heating device |
DE3319732A1 (de) | 1983-05-31 | 1984-12-06 | Kraftwerk Union AG, 4330 Mülheim | Mittellastkraftwerk mit integrierter kohlevergasungsanlage zur erzeugung von strom und methanol |
US4583046A (en) | 1983-06-20 | 1986-04-15 | Shell Oil Company | Apparatus for focused electrode induced polarization logging |
US4658215A (en) | 1983-06-20 | 1987-04-14 | Shell Oil Company | Method for induced polarization logging |
US4717814A (en) | 1983-06-27 | 1988-01-05 | Metcal, Inc. | Slotted autoregulating heater |
US4985313A (en) | 1985-01-14 | 1991-01-15 | Raychem Limited | Wire and cable |
US5209987A (en) | 1983-07-08 | 1993-05-11 | Raychem Limited | Wire and cable |
US4598392A (en) | 1983-07-26 | 1986-07-01 | Mobil Oil Corporation | Vibratory signal sweep seismic prospecting method and apparatus |
US4501445A (en) | 1983-08-01 | 1985-02-26 | Cities Service Company | Method of in-situ hydrogenation of carbonaceous material |
US4538682A (en) | 1983-09-08 | 1985-09-03 | Mcmanus James W | Method and apparatus for removing oil well paraffin |
US4573530A (en) | 1983-11-07 | 1986-03-04 | Mobil Oil Corporation | In-situ gasification of tar sands utilizing a combustible gas |
US4698149A (en) | 1983-11-07 | 1987-10-06 | Mobil Oil Corporation | Enhanced recovery of hydrocarbonaceous fluids oil shale |
US4489782A (en) | 1983-12-12 | 1984-12-25 | Atlantic Richfield Company | Viscous oil production using electrical current heating and lateral drain holes |
US4598772A (en) | 1983-12-28 | 1986-07-08 | Mobil Oil Corporation | Method for operating a production well in an oxygen driven in-situ combustion oil recovery process |
US4613754A (en) | 1983-12-29 | 1986-09-23 | Shell Oil Company | Tomographic calibration apparatus |
US4542648A (en) | 1983-12-29 | 1985-09-24 | Shell Oil Company | Method of correlating a core sample with its original position in a borehole |
US4583242A (en) | 1983-12-29 | 1986-04-15 | Shell Oil Company | Apparatus for positioning a sample in a computerized axial tomographic scanner |
US4571491A (en) | 1983-12-29 | 1986-02-18 | Shell Oil Company | Method of imaging the atomic number of a sample |
US4540882A (en) | 1983-12-29 | 1985-09-10 | Shell Oil Company | Method of determining drilling fluid invasion |
US4635197A (en) | 1983-12-29 | 1987-01-06 | Shell Oil Company | High resolution tomographic imaging method |
US4662439A (en) | 1984-01-20 | 1987-05-05 | Amoco Corporation | Method of underground conversion of coal |
US4572229A (en) | 1984-02-02 | 1986-02-25 | Thomas D. Mueller | Variable proportioner |
US4837409A (en) | 1984-03-02 | 1989-06-06 | Homac Mfg. Company | Submerisible insulated splice assemblies |
US4623401A (en) | 1984-03-06 | 1986-11-18 | Metcal, Inc. | Heat treatment with an autoregulating heater |
US4644283A (en) | 1984-03-19 | 1987-02-17 | Shell Oil Company | In-situ method for determining pore size distribution, capillary pressure and permeability |
US4552214A (en) | 1984-03-22 | 1985-11-12 | Standard Oil Company (Indiana) | Pulsed in situ retorting in an array of oil shale retorts |
US4637464A (en) | 1984-03-22 | 1987-01-20 | Amoco Corporation | In situ retorting of oil shale with pulsed water purge |
US4570715A (en) | 1984-04-06 | 1986-02-18 | Shell Oil Company | Formation-tailored method and apparatus for uniformly heating long subterranean intervals at high temperature |
US4577690A (en) | 1984-04-18 | 1986-03-25 | Mobil Oil Corporation | Method of using seismic data to monitor firefloods |
US4592423A (en) | 1984-05-14 | 1986-06-03 | Texaco Inc. | Hydrocarbon stratum retorting means and method |
US4496795A (en) | 1984-05-16 | 1985-01-29 | Harvey Hubbell Incorporated | Electrical cable splicing system |
US4597441A (en) | 1984-05-25 | 1986-07-01 | World Energy Systems, Inc. | Recovery of oil by in situ hydrogenation |
US4663711A (en) | 1984-06-22 | 1987-05-05 | Shell Oil Company | Method of analyzing fluid saturation using computerized axial tomography |
US4577503A (en) | 1984-09-04 | 1986-03-25 | International Business Machines Corporation | Method and device for detecting a specific acoustic spectral feature |
US4577691A (en) | 1984-09-10 | 1986-03-25 | Texaco Inc. | Method and apparatus for producing viscous hydrocarbons from a subterranean formation |
US4576231A (en) | 1984-09-13 | 1986-03-18 | Texaco Inc. | Method and apparatus for combating encroachment by in situ treated formations |
US4597444A (en) | 1984-09-21 | 1986-07-01 | Atlantic Richfield Company | Method for excavating a large diameter shaft into the earth and at least partially through an oil-bearing formation |
US4691771A (en) | 1984-09-25 | 1987-09-08 | Worldenergy Systems, Inc. | Recovery of oil by in-situ combustion followed by in-situ hydrogenation |
US4616705A (en) | 1984-10-05 | 1986-10-14 | Shell Oil Company | Mini-well temperature profiling process |
US4598770A (en) | 1984-10-25 | 1986-07-08 | Mobil Oil Corporation | Thermal recovery method for viscous oil |
JPS61104582A (ja) | 1984-10-25 | 1986-05-22 | 株式会社デンソー | シ−ズヒ−タ |
US4572299A (en) | 1984-10-30 | 1986-02-25 | Shell Oil Company | Heater cable installation |
US4669542A (en) | 1984-11-21 | 1987-06-02 | Mobil Oil Corporation | Simultaneous recovery of crude from multiple zones in a reservoir |
US4585066A (en) | 1984-11-30 | 1986-04-29 | Shell Oil Company | Well treating process for installing a cable bundle containing strands of changing diameter |
US4704514A (en) | 1985-01-11 | 1987-11-03 | Egmond Cor F Van | Heating rate variant elongated electrical resistance heater |
US4614392A (en) | 1985-01-15 | 1986-09-30 | Moore Boyd B | Well bore electric pump power cable connector for multiple individual, insulated conductors of a pump power cable |
US4645906A (en) | 1985-03-04 | 1987-02-24 | Thermon Manufacturing Company | Reduced resistance skin effect heat generating system |
US4643256A (en) | 1985-03-18 | 1987-02-17 | Shell Oil Company | Steam-foaming surfactant mixtures which are tolerant of divalent ions |
US4785163A (en) | 1985-03-26 | 1988-11-15 | Raychem Corporation | Method for monitoring a heater |
US4698583A (en) | 1985-03-26 | 1987-10-06 | Raychem Corporation | Method of monitoring a heater for faults |
FI861646A (fi) | 1985-04-19 | 1986-10-20 | Raychem Gmbh | Vaermningsanordning. |
US4671102A (en) | 1985-06-18 | 1987-06-09 | Shell Oil Company | Method and apparatus for determining distribution of fluids |
US4626665A (en) | 1985-06-24 | 1986-12-02 | Shell Oil Company | Metal oversheathed electrical resistance heater |
US4605489A (en) | 1985-06-27 | 1986-08-12 | Occidental Oil Shale, Inc. | Upgrading shale oil by a combination process |
US4623444A (en) | 1985-06-27 | 1986-11-18 | Occidental Oil Shale, Inc. | Upgrading shale oil by a combination process |
US4662438A (en) | 1985-07-19 | 1987-05-05 | Uentech Corporation | Method and apparatus for enhancing liquid hydrocarbon production from a single borehole in a slowly producing formation by non-uniform heating through optimized electrode arrays surrounding the borehole |
US4728892A (en) | 1985-08-13 | 1988-03-01 | Shell Oil Company | NMR imaging of materials |
US4719423A (en) | 1985-08-13 | 1988-01-12 | Shell Oil Company | NMR imaging of materials for transport properties |
GB8526377D0 (en) | 1985-10-25 | 1985-11-27 | Raychem Gmbh | Cable connection |
US4662437A (en) | 1985-11-14 | 1987-05-05 | Atlantic Richfield Company | Electrically stimulated well production system with flexible tubing conductor |
CA1253555A (en) | 1985-11-21 | 1989-05-02 | Cornelis F.H. Van Egmond | Heating rate variant elongated electrical resistance heater |
US4662443A (en) | 1985-12-05 | 1987-05-05 | Amoco Corporation | Combination air-blown and oxygen-blown underground coal gasification process |
US4686029A (en) | 1985-12-06 | 1987-08-11 | Union Carbide Corporation | Dewaxing catalysts and processes employing titanoaluminosilicate molecular sieves |
US4849611A (en) | 1985-12-16 | 1989-07-18 | Raychem Corporation | Self-regulating heater employing reactive components |
US4730162A (en) | 1985-12-31 | 1988-03-08 | Shell Oil Company | Time-domain induced polarization logging method and apparatus with gated amplification level |
US4706751A (en) | 1986-01-31 | 1987-11-17 | S-Cal Research Corp. | Heavy oil recovery process |
US4694907A (en) | 1986-02-21 | 1987-09-22 | Carbotek, Inc. | Thermally-enhanced oil recovery method and apparatus |
US4640353A (en) | 1986-03-21 | 1987-02-03 | Atlantic Richfield Company | Electrode well and method of completion |
US4734115A (en) | 1986-03-24 | 1988-03-29 | Air Products And Chemicals, Inc. | Low pressure process for C3+ liquids recovery from process product gas |
US4651825A (en) | 1986-05-09 | 1987-03-24 | Atlantic Richfield Company | Enhanced well production |
US4814587A (en) | 1986-06-10 | 1989-03-21 | Metcal, Inc. | High power self-regulating heater |
US4682652A (en) | 1986-06-30 | 1987-07-28 | Texaco Inc. | Producing hydrocarbons through successively perforated intervals of a horizontal well between two vertical wells |
US4769602A (en) | 1986-07-02 | 1988-09-06 | Shell Oil Company | Determining multiphase saturations by NMR imaging of multiple nuclides |
US4893504A (en) | 1986-07-02 | 1990-01-16 | Shell Oil Company | Method for determining capillary pressure and relative permeability by imaging |
US4716960A (en) | 1986-07-14 | 1988-01-05 | Production Technologies International, Inc. | Method and system for introducing electric current into a well |
US4818370A (en) | 1986-07-23 | 1989-04-04 | Cities Service Oil And Gas Corporation | Process for converting heavy crudes, tars, and bitumens to lighter products in the presence of brine at supercritical conditions |
US4772634A (en) | 1986-07-31 | 1988-09-20 | Energy Research Corporation | Apparatus and method for methanol production using a fuel cell to regulate the gas composition entering the methanol synthesizer |
US4744245A (en) | 1986-08-12 | 1988-05-17 | Atlantic Richfield Company | Acoustic measurements in rock formations for determining fracture orientation |
US4696345A (en) | 1986-08-21 | 1987-09-29 | Chevron Research Company | Hasdrive with multiple offset producers |
US4769606A (en) | 1986-09-30 | 1988-09-06 | Shell Oil Company | Induced polarization method and apparatus for distinguishing dispersed and laminated clay in earth formations |
US5316664A (en) | 1986-11-24 | 1994-05-31 | Canadian Occidental Petroleum, Ltd. | Process for recovery of hydrocarbons and rejection of sand |
US5340467A (en) | 1986-11-24 | 1994-08-23 | Canadian Occidental Petroleum Ltd. | Process for recovery of hydrocarbons and rejection of sand |
US4983319A (en) | 1986-11-24 | 1991-01-08 | Canadian Occidental Petroleum Ltd. | Preparation of low-viscosity improved stable crude oil transport emulsions |
CA1288043C (en) | 1986-12-15 | 1991-08-27 | Peter Van Meurs | Conductively heating a subterranean oil shale to create permeabilityand subsequently produce oil |
US4845493A (en) * | 1987-01-08 | 1989-07-04 | Hughes Tool Company | Well bore data transmission system with battery preserving switch |
US4884071A (en) * | 1987-01-08 | 1989-11-28 | Hughes Tool Company | Wellbore tool with hall effect coupling |
US4788544A (en) * | 1987-01-08 | 1988-11-29 | Hughes Tool Company - Usa | Well bore data transmission system |
US4766958A (en) * | 1987-01-12 | 1988-08-30 | Mobil Oil Corporation | Method of recovering viscous oil from reservoirs with multiple horizontal zones |
US4756367A (en) | 1987-04-28 | 1988-07-12 | Amoco Corporation | Method for producing natural gas from a coal seam |
US4817711A (en) | 1987-05-27 | 1989-04-04 | Jeambey Calhoun G | System for recovery of petroleum from petroleum impregnated media |
US4893077A (en) * | 1987-05-28 | 1990-01-09 | Auchterlonie Richard C | Absolute position sensor having multi-layer windings of different pitches providing respective indications of phase proportional to displacement |
US4818371A (en) | 1987-06-05 | 1989-04-04 | Resource Technology Associates | Viscosity reduction by direct oxidative heating |
US4787452A (en) | 1987-06-08 | 1988-11-29 | Mobil Oil Corporation | Disposal of produced formation fines during oil recovery |
US4821798A (en) | 1987-06-09 | 1989-04-18 | Ors Development Corporation | Heating system for rathole oil well |
US4793409A (en) | 1987-06-18 | 1988-12-27 | Ors Development Corporation | Method and apparatus for forming an insulated oil well casing |
US4856341A (en) | 1987-06-25 | 1989-08-15 | Shell Oil Company | Apparatus for analysis of failure of material |
US4884455A (en) | 1987-06-25 | 1989-12-05 | Shell Oil Company | Method for analysis of failure of material employing imaging |
US4827761A (en) | 1987-06-25 | 1989-05-09 | Shell Oil Company | Sample holder |
US4776638A (en) | 1987-07-13 | 1988-10-11 | University Of Kentucky Research Foundation | Method and apparatus for conversion of coal in situ |
US4848924A (en) | 1987-08-19 | 1989-07-18 | The Babcock & Wilcox Company | Acoustic pyrometer |
US4828031A (en) | 1987-10-13 | 1989-05-09 | Chevron Research Company | In situ chemical stimulation of diatomite formations |
US4762425A (en) | 1987-10-15 | 1988-08-09 | Parthasarathy Shakkottai | System for temperature profile measurement in large furnances and kilns and method therefor |
US5306640A (en) | 1987-10-28 | 1994-04-26 | Shell Oil Company | Method for determining preselected properties of a crude oil |
US4987368A (en) | 1987-11-05 | 1991-01-22 | Shell Oil Company | Nuclear magnetism logging tool using high-temperature superconducting squid detectors |
US4842448A (en) | 1987-11-12 | 1989-06-27 | Drexel University | Method of removing contaminants from contaminated soil in situ |
US4808925A (en) | 1987-11-19 | 1989-02-28 | Halliburton Company | Three magnet casing collar locator |
US4852648A (en) | 1987-12-04 | 1989-08-01 | Ava International Corporation | Well installation in which electrical current is supplied for a source at the wellhead to an electrically responsive device located a substantial distance below the wellhead |
GB8729303D0 (en) | 1987-12-16 | 1988-01-27 | Crompton G | Materials for & manufacture of fire & heat resistant components |
US4823890A (en) | 1988-02-23 | 1989-04-25 | Longyear Company | Reverse circulation bit apparatus |
US4866983A (en) | 1988-04-14 | 1989-09-19 | Shell Oil Company | Analytical methods and apparatus for measuring the oil content of sponge core |
US4914433A (en) * | 1988-04-19 | 1990-04-03 | Hughes Tool Company | Conductor system for well bore data transmission |
US4885080A (en) | 1988-05-25 | 1989-12-05 | Phillips Petroleum Company | Process for demetallizing and desulfurizing heavy crude oil |
US5046560A (en) * | 1988-06-10 | 1991-09-10 | Exxon Production Research Company | Oil recovery process using arkyl aryl polyalkoxyol sulfonate surfactants as mobility control agents |
US4884635A (en) | 1988-08-24 | 1989-12-05 | Texaco Canada Resources | Enhanced oil recovery with a mixture of water and aromatic hydrocarbons |
US4840720A (en) | 1988-09-02 | 1989-06-20 | Betz Laboratories, Inc. | Process for minimizing fouling of processing equipment |
US4928765A (en) | 1988-09-27 | 1990-05-29 | Ramex Syn-Fuels International | Method and apparatus for shale gas recovery |
US4856587A (en) | 1988-10-27 | 1989-08-15 | Nielson Jay P | Recovery of oil from oil-bearing formation by continually flowing pressurized heated gas through channel alongside matrix |
US5064006A (en) | 1988-10-28 | 1991-11-12 | Magrange, Inc | Downhole combination tool |
US4848460A (en) | 1988-11-04 | 1989-07-18 | Western Research Institute | Contained recovery of oily waste |
US5065501A (en) | 1988-11-29 | 1991-11-19 | Amp Incorporated | Generating electromagnetic fields in a self regulating temperature heater by positioning of a current return bus |
US4859200A (en) | 1988-12-05 | 1989-08-22 | Baker Hughes Incorporated | Downhole electrical connector for submersible pump |
US4974425A (en) | 1988-12-08 | 1990-12-04 | Concept Rkk, Limited | Closed cryogenic barrier for containment of hazardous material migration in the earth |
US4860544A (en) | 1988-12-08 | 1989-08-29 | Concept R.K.K. Limited | Closed cryogenic barrier for containment of hazardous material migration in the earth |
US4940095A (en) | 1989-01-27 | 1990-07-10 | Dowell Schlumberger Incorporated | Deployment/retrieval method and apparatus for well tools used with coiled tubing |
US5103920A (en) | 1989-03-01 | 1992-04-14 | Patton Consulting Inc. | Surveying system and method for locating target subterranean bodies |
CA2015318C (en) | 1990-04-24 | 1994-02-08 | Jack E. Bridges | Power sources for downhole electrical heating |
US4895206A (en) | 1989-03-16 | 1990-01-23 | Price Ernest H | Pulsed in situ exothermic shock wave and retorting process for hydrocarbon recovery and detoxification of selected wastes |
US4913065A (en) | 1989-03-27 | 1990-04-03 | Indugas, Inc. | In situ thermal waste disposal system |
NL8901138A (nl) | 1989-05-03 | 1990-12-03 | Nkf Kabel Bv | Insteekverbinding voor hoogspanningskunststofkabels. |
US5150118A (en) | 1989-05-08 | 1992-09-22 | Hewlett-Packard Company | Interchangeable coded key pad assemblies alternately attachable to a user definable keyboard to enable programmable keyboard functions |
DE3918265A1 (de) | 1989-06-05 | 1991-01-03 | Henkel Kgaa | Verfahren zur herstellung von tensidgemischen auf ethersulfonatbasis und ihre verwendung |
US5059303A (en) | 1989-06-16 | 1991-10-22 | Amoco Corporation | Oil stabilization |
DE3922612C2 (de) | 1989-07-10 | 1998-07-02 | Krupp Koppers Gmbh | Verfahren zur Erzeugung von Methanol-Synthesegas |
US4982786A (en) | 1989-07-14 | 1991-01-08 | Mobil Oil Corporation | Use of CO2 /steam to enhance floods in horizontal wellbores |
US5050386A (en) | 1989-08-16 | 1991-09-24 | Rkk, Limited | Method and apparatus for containment of hazardous material migration in the earth |
US5097903A (en) | 1989-09-22 | 1992-03-24 | Jack C. Sloan | Method for recovering intractable petroleum from subterranean formations |
US5305239A (en) | 1989-10-04 | 1994-04-19 | The Texas A&M University System | Ultrasonic non-destructive evaluation of thin specimens |
US4926941A (en) | 1989-10-10 | 1990-05-22 | Shell Oil Company | Method of producing tar sand deposits containing conductive layers |
US5656239A (en) | 1989-10-27 | 1997-08-12 | Shell Oil Company | Method for recovering contaminants from soil utilizing electrical heating |
US4984594A (en) | 1989-10-27 | 1991-01-15 | Shell Oil Company | Vacuum method for removing soil contamination utilizing surface electrical heating |
US4986375A (en) | 1989-12-04 | 1991-01-22 | Maher Thomas P | Device for facilitating drill bit retrieval |
US5082055A (en) | 1990-01-24 | 1992-01-21 | Indugas, Inc. | Gas fired radiant tube heater |
US5020596A (en) | 1990-01-24 | 1991-06-04 | Indugas, Inc. | Enhanced oil recovery system with a radiant tube heater |
US5011329A (en) | 1990-02-05 | 1991-04-30 | Hrubetz Exploration Company | In situ soil decontamination method and apparatus |
CA2009782A1 (en) | 1990-02-12 | 1991-08-12 | Anoosh I. Kiamanesh | In-situ tuned microwave oil extraction process |
TW215446B (ru) | 1990-02-23 | 1993-11-01 | Furukawa Electric Co Ltd | |
US5152341A (en) * | 1990-03-09 | 1992-10-06 | Raymond S. Kasevich | Electromagnetic method and apparatus for the decontamination of hazardous material-containing volumes |
US5027896A (en) | 1990-03-21 | 1991-07-02 | Anderson Leonard M | Method for in-situ recovery of energy raw material by the introduction of a water/oxygen slurry |
GB9007147D0 (en) | 1990-03-30 | 1990-05-30 | Framo Dev Ltd | Thermal mineral extraction system |
US5179489A (en) * | 1990-04-04 | 1993-01-12 | Oliver Bernard M | Method and means for suppressing geomagnetically induced currents |
CA2015460C (en) | 1990-04-26 | 1993-12-14 | Kenneth Edwin Kisman | Process for confining steam injected into a heavy oil reservoir |
US5126037A (en) | 1990-05-04 | 1992-06-30 | Union Oil Company Of California | Geopreater heating method and apparatus |
US5040601A (en) | 1990-06-21 | 1991-08-20 | Baker Hughes Incorporated | Horizontal well bore system |
US5032042A (en) | 1990-06-26 | 1991-07-16 | New Jersey Institute Of Technology | Method and apparatus for eliminating non-naturally occurring subsurface, liquid toxic contaminants from soil |
US5201219A (en) | 1990-06-29 | 1993-04-13 | Amoco Corporation | Method and apparatus for measuring free hydrocarbons and hydrocarbons potential from whole core |
US5244409A (en) * | 1990-07-12 | 1993-09-14 | Woodhead Industries, Inc. | Molded connector with embedded indicators |
US5054551A (en) | 1990-08-03 | 1991-10-08 | Chevron Research And Technology Company | In-situ heated annulus refining process |
US5060726A (en) | 1990-08-23 | 1991-10-29 | Shell Oil Company | Method and apparatus for producing tar sand deposits containing conductive layers having little or no vertical communication |
US5042579A (en) | 1990-08-23 | 1991-08-27 | Shell Oil Company | Method and apparatus for producing tar sand deposits containing conductive layers |
US5046559A (en) | 1990-08-23 | 1991-09-10 | Shell Oil Company | Method and apparatus for producing hydrocarbon bearing deposits in formations having shale layers |
WO1992003865A1 (en) | 1990-08-24 | 1992-03-05 | Electric Power Research Institute | High-voltage, high-current power cable termination with single condenser grading stack |
BR9004240A (pt) | 1990-08-28 | 1992-03-24 | Petroleo Brasileiro Sa | Processo de aquecimento eletrico de tubulacoes |
US5085276A (en) | 1990-08-29 | 1992-02-04 | Chevron Research And Technology Company | Production of oil from low permeability formations by sequential steam fracturing |
US5066852A (en) | 1990-09-17 | 1991-11-19 | Teledyne Ind. Inc. | Thermoplastic end seal for electric heating elements |
US5207273A (en) | 1990-09-17 | 1993-05-04 | Production Technologies International Inc. | Method and apparatus for pumping wells |
JPH04272680A (ja) | 1990-09-20 | 1992-09-29 | Thermon Mfg Co | スイッチ制御形ゾーン式加熱ケーブル及びその組み立て方法 |
US5182427A (en) | 1990-09-20 | 1993-01-26 | Metcal, Inc. | Self-regulating heater utilizing ferrite-type body |
US5400430A (en) | 1990-10-01 | 1995-03-21 | Nenniger; John E. | Method for injection well stimulation |
US5517593A (en) | 1990-10-01 | 1996-05-14 | John Nenniger | Control system for well stimulation apparatus with response time temperature rise used in determining heater control temperature setpoint |
US5070533A (en) * | 1990-11-07 | 1991-12-03 | Uentech Corporation | Robust electrical heating systems for mineral wells |
FR2669077B2 (fr) | 1990-11-09 | 1995-02-03 | Institut Francais Petrole | Methode et dispositif pour effectuer des interventions dans des puits ou regnent des temperatures elevees. |
AU8914291A (en) * | 1990-11-23 | 1992-06-25 | Plant Genetic Systems N.V. | Process for transforming monocotyledonous plants |
US5060287A (en) | 1990-12-04 | 1991-10-22 | Shell Oil Company | Heater utilizing copper-nickel alloy core |
US5217076A (en) | 1990-12-04 | 1993-06-08 | Masek John A | Method and apparatus for improved recovery of oil from porous, subsurface deposits (targevcir oricess) |
US5065818A (en) | 1991-01-07 | 1991-11-19 | Shell Oil Company | Subterranean heaters |
US5190405A (en) | 1990-12-14 | 1993-03-02 | Shell Oil Company | Vacuum method for removing soil contaminants utilizing thermal conduction heating |
GB9027638D0 (en) | 1990-12-20 | 1991-02-13 | Raychem Ltd | Cable-sealing mastic material |
SU1836876A3 (ru) | 1990-12-29 | 1994-12-30 | Смешанное научно-техническое товарищество по разработке техники и технологии для подземной электроэнергетики | Способ отработки угольных пластов и комплекс оборудования для его осуществления |
US5289882A (en) | 1991-02-06 | 1994-03-01 | Boyd B. Moore | Sealed electrical conductor method and arrangement for use with a well bore in hazardous areas |
US5667008A (en) | 1991-02-06 | 1997-09-16 | Quick Connectors, Inc. | Seal electrical conductor arrangement for use with a well bore in hazardous areas |
US5626190A (en) | 1991-02-06 | 1997-05-06 | Moore; Boyd B. | Apparatus for protecting electrical connection from moisture in a hazardous area adjacent a wellhead barrier for an underground well |
US5103909A (en) | 1991-02-19 | 1992-04-14 | Shell Oil Company | Profile control in enhanced oil recovery |
US5261490A (en) | 1991-03-18 | 1993-11-16 | Nkk Corporation | Method for dumping and disposing of carbon dioxide gas and apparatus therefor |
US5102551A (en) | 1991-04-29 | 1992-04-07 | Texaco Inc. | Membrane process for treating a mixture containing dewaxed oil and dewaxing solvent |
US5204270A (en) | 1991-04-29 | 1993-04-20 | Lacount Robert B | Multiple sample characterization of coals and other substances by controlled-atmosphere programmed temperature oxidation |
US5093002A (en) | 1991-04-29 | 1992-03-03 | Texaco Inc. | Membrane process for treating a mixture containing dewaxed oil and dewaxing solvent |
US5246273A (en) | 1991-05-13 | 1993-09-21 | Rosar Edward C | Method and apparatus for solution mining |
US5117912A (en) | 1991-05-24 | 1992-06-02 | Marathon Oil Company | Method of positioning tubing within a horizontal well |
DK0519573T3 (da) | 1991-06-21 | 1995-07-03 | Shell Int Research | Hydrogenerings-katalysator og fremgangsmåde |
IT1248535B (it) | 1991-06-24 | 1995-01-19 | Cise Spa | Sistema per misurare il tempo di trasferimento di un'onda sonora |
US5133406A (en) | 1991-07-05 | 1992-07-28 | Amoco Corporation | Generating oxygen-depleted air useful for increasing methane production |
US5215954A (en) | 1991-07-30 | 1993-06-01 | Cri International, Inc. | Method of presulfurizing a hydrotreating, hydrocracking or tail gas treating catalyst |
US5189283A (en) | 1991-08-28 | 1993-02-23 | Shell Oil Company | Current to power crossover heater control |
US5168927A (en) | 1991-09-10 | 1992-12-08 | Shell Oil Company | Method utilizing spot tracer injection and production induced transport for measurement of residual oil saturation |
US5193618A (en) * | 1991-09-12 | 1993-03-16 | Chevron Research And Technology Company | Multivalent ion tolerant steam-foaming surfactant composition for use in enhanced oil recovery operations |
US5173213A (en) | 1991-11-08 | 1992-12-22 | Baker Hughes Incorporated | Corrosion and anti-foulant composition and method of use |
US5347070A (en) | 1991-11-13 | 1994-09-13 | Battelle Pacific Northwest Labs | Treating of solid earthen material and a method for measuring moisture content and resistivity of solid earthen material |
US5349859A (en) | 1991-11-15 | 1994-09-27 | Scientific Engineering Instruments, Inc. | Method and apparatus for measuring acoustic wave velocity using impulse response |
US5199490A (en) | 1991-11-18 | 1993-04-06 | Texaco Inc. | Formation treating |
DE69209466T2 (de) | 1991-12-16 | 1996-08-14 | Inst Francais Du Petrol | Aktive oder passive Überwachungsanordnung für unterirdische Lagerstätte mittels fester Stationen |
CA2058255C (en) | 1991-12-20 | 1997-02-11 | Roland P. Leaute | Recovery and upgrading of hydrocarbons utilizing in situ combustion and horizontal wells |
US5246071A (en) | 1992-01-31 | 1993-09-21 | Texaco Inc. | Steamflooding with alternating injection and production cycles |
US5420402A (en) | 1992-02-05 | 1995-05-30 | Iit Research Institute | Methods and apparatus to confine earth currents for recovery of subsurface volatiles and semi-volatiles |
US5211230A (en) | 1992-02-21 | 1993-05-18 | Mobil Oil Corporation | Method for enhanced oil recovery through a horizontal production well in a subsurface formation by in-situ combustion |
FI92441C (fi) | 1992-04-01 | 1994-11-10 | Vaisala Oy | Sähköinen impedanssianturi fysikaalisten suureiden, etenkin lämpötilan mittaamiseksi ja menetelmä kyseisen anturin valmistamiseksi |
GB9207174D0 (en) | 1992-04-01 | 1992-05-13 | Raychem Sa Nv | Method of forming an electrical connection |
US5255740A (en) | 1992-04-13 | 1993-10-26 | Rrkt Company | Secondary recovery process |
US5332036A (en) | 1992-05-15 | 1994-07-26 | The Boc Group, Inc. | Method of recovery of natural gases from underground coal formations |
US5278353A (en) | 1992-06-05 | 1994-01-11 | Powertech Labs Inc. | Automatic splice |
US5366012A (en) | 1992-06-09 | 1994-11-22 | Shell Oil Company | Method of completing an uncased section of a borehole |
US5297626A (en) | 1992-06-12 | 1994-03-29 | Shell Oil Company | Oil recovery process |
US5255742A (en) | 1992-06-12 | 1993-10-26 | Shell Oil Company | Heat injection process |
US5226961A (en) | 1992-06-12 | 1993-07-13 | Shell Oil Company | High temperature wellbore cement slurry |
US5392854A (en) | 1992-06-12 | 1995-02-28 | Shell Oil Company | Oil recovery process |
US5236039A (en) | 1992-06-17 | 1993-08-17 | General Electric Company | Balanced-line RF electrode system for use in RF ground heating to recover oil from oil shale |
US5295763A (en) * | 1992-06-30 | 1994-03-22 | Chambers Development Co., Inc. | Method for controlling gas migration from a landfill |
US5275726A (en) | 1992-07-29 | 1994-01-04 | Exxon Research & Engineering Co. | Spiral wound element for separation |
US5282957A (en) | 1992-08-19 | 1994-02-01 | Betz Laboratories, Inc. | Methods for inhibiting polymerization of hydrocarbons utilizing a hydroxyalkylhydroxylamine |
US5315065A (en) | 1992-08-21 | 1994-05-24 | Donovan James P O | Versatile electrically insulating waterproof connectors |
US5305829A (en) | 1992-09-25 | 1994-04-26 | Chevron Research And Technology Company | Oil production from diatomite formations by fracture steamdrive |
US5229583A (en) | 1992-09-28 | 1993-07-20 | Shell Oil Company | Surface heating blanket for soil remediation |
US5339904A (en) | 1992-12-10 | 1994-08-23 | Mobil Oil Corporation | Oil recovery optimization using a well having both horizontal and vertical sections |
US5358045A (en) | 1993-02-12 | 1994-10-25 | Chevron Research And Technology Company, A Division Of Chevron U.S.A. Inc. | Enhanced oil recovery method employing a high temperature brine tolerant foam-forming composition |
CA2096034C (en) | 1993-05-07 | 1996-07-02 | Kenneth Edwin Kisman | Horizontal well gravity drainage combustion process for oil recovery |
US5360067A (en) | 1993-05-17 | 1994-11-01 | Meo Iii Dominic | Vapor-extraction system for removing hydrocarbons from soil |
US5384430A (en) | 1993-05-18 | 1995-01-24 | Baker Hughes Incorporated | Double armor cable with auxiliary line |
SE503278C2 (sv) | 1993-06-07 | 1996-05-13 | Kabeldon Ab | Förfarande vid skarvning av två kabelparter, samt skarvkropp och monteringsverktyg för användning vid förfarandet |
DE4323768C1 (de) | 1993-07-15 | 1994-08-18 | Priesemuth W | Anlage zur Erzeugung von Energie |
WO1995006093A1 (en) | 1993-08-20 | 1995-03-02 | Technological Resources Pty. Ltd. | Enhanced hydrocarbon recovery method |
US5377756A (en) | 1993-10-28 | 1995-01-03 | Mobil Oil Corporation | Method for producing low permeability reservoirs using a single well |
US5566755A (en) | 1993-11-03 | 1996-10-22 | Amoco Corporation | Method for recovering methane from a solid carbonaceous subterranean formation |
US5388641A (en) | 1993-11-03 | 1995-02-14 | Amoco Corporation | Method for reducing the inert gas fraction in methane-containing gaseous mixtures obtained from underground formations |
US5388645A (en) | 1993-11-03 | 1995-02-14 | Amoco Corporation | Method for producing methane-containing gaseous mixtures |
US5388643A (en) | 1993-11-03 | 1995-02-14 | Amoco Corporation | Coalbed methane recovery using pressure swing adsorption separation |
US5388640A (en) | 1993-11-03 | 1995-02-14 | Amoco Corporation | Method for producing methane-containing gaseous mixtures |
US5388642A (en) | 1993-11-03 | 1995-02-14 | Amoco Corporation | Coalbed methane recovery using membrane separation of oxygen from air |
US5411086A (en) | 1993-12-09 | 1995-05-02 | Mobil Oil Corporation | Oil recovery by enhanced imbitition in low permeability reservoirs |
US5435666A (en) | 1993-12-14 | 1995-07-25 | Environmental Resources Management, Inc. | Methods for isolating a water table and for soil remediation |
US5411089A (en) | 1993-12-20 | 1995-05-02 | Shell Oil Company | Heat injection process |
US5433271A (en) | 1993-12-20 | 1995-07-18 | Shell Oil Company | Heat injection process |
US5404952A (en) | 1993-12-20 | 1995-04-11 | Shell Oil Company | Heat injection process and apparatus |
US5634984A (en) | 1993-12-22 | 1997-06-03 | Union Oil Company Of California | Method for cleaning an oil-coated substrate |
US5541517A (en) | 1994-01-13 | 1996-07-30 | Shell Oil Company | Method for drilling a borehole from one cased borehole to another cased borehole |
US5453599A (en) | 1994-02-14 | 1995-09-26 | Hoskins Manufacturing Company | Tubular heating element with insulating core |
US5411104A (en) | 1994-02-16 | 1995-05-02 | Conoco Inc. | Coalbed methane drilling |
CA2144597C (en) | 1994-03-18 | 1999-08-10 | Paul J. Latimer | Improved emat probe and technique for weld inspection |
US5415231A (en) | 1994-03-21 | 1995-05-16 | Mobil Oil Corporation | Method for producing low permeability reservoirs using steam |
US5439054A (en) | 1994-04-01 | 1995-08-08 | Amoco Corporation | Method for treating a mixture of gaseous fluids within a solid carbonaceous subterranean formation |
US5553478A (en) | 1994-04-08 | 1996-09-10 | Burndy Corporation | Hand-held compression tool |
US5587864A (en) * | 1994-04-11 | 1996-12-24 | Ford Motor Company | Short circuit and ground fault protection for an electrical system |
US5431224A (en) | 1994-04-19 | 1995-07-11 | Mobil Oil Corporation | Method of thermal stimulation for recovery of hydrocarbons |
US5429194A (en) | 1994-04-29 | 1995-07-04 | Western Atlas International, Inc. | Method for inserting a wireline inside coiled tubing |
US5409071A (en) | 1994-05-23 | 1995-04-25 | Shell Oil Company | Method to cement a wellbore |
ZA954204B (en) | 1994-06-01 | 1996-01-22 | Ashland Chemical Inc | A process for improving the effectiveness of a process catalyst |
GB2304355A (en) | 1994-06-28 | 1997-03-19 | Amoco Corp | Oil recovery |
AU2241695A (en) | 1994-07-18 | 1996-02-16 | Babcock & Wilcox Co., The | Sensor transport system for flash butt welder |
US5458774A (en) | 1994-07-25 | 1995-10-17 | Mannapperuma; Jatal D. | Corrugated spiral membrane module |
US5632336A (en) | 1994-07-28 | 1997-05-27 | Texaco Inc. | Method for improving injectivity of fluids in oil reservoirs |
US5525322A (en) | 1994-10-12 | 1996-06-11 | The Regents Of The University Of California | Method for simultaneous recovery of hydrogen from water and from hydrocarbons |
US5553189A (en) | 1994-10-18 | 1996-09-03 | Shell Oil Company | Radiant plate heater for treatment of contaminated surfaces |
US5497087A (en) | 1994-10-20 | 1996-03-05 | Shell Oil Company | NMR logging of natural gas reservoirs |
US5498960A (en) | 1994-10-20 | 1996-03-12 | Shell Oil Company | NMR logging of natural gas in reservoirs |
US5624188A (en) | 1994-10-20 | 1997-04-29 | West; David A. | Acoustic thermometer |
US5559263A (en) | 1994-11-16 | 1996-09-24 | Tiorco, Inc. | Aluminum citrate preparations and methods |
US5554453A (en) | 1995-01-04 | 1996-09-10 | Energy Research Corporation | Carbonate fuel cell system with thermally integrated gasification |
US6088294A (en) | 1995-01-12 | 2000-07-11 | Baker Hughes Incorporated | Drilling system with an acoustic measurement-while-driving system for determining parameters of interest and controlling the drilling direction |
CA2209947C (en) | 1995-01-12 | 1999-06-01 | Baker Hughes Incorporated | A measurement-while-drilling acoustic system employing multiple, segmented transmitters and receivers |
US5666891A (en) * | 1995-02-02 | 1997-09-16 | Battelle Memorial Institute | ARC plasma-melter electro conversion system for waste treatment and resource recovery |
DE19505517A1 (de) | 1995-02-10 | 1996-08-14 | Siegfried Schwert | Verfahren zum Herausziehen eines im Erdreich verlegten Rohres |
EP0729087A3 (en) * | 1995-02-22 | 1998-03-18 | General Instrument Corporation | Adaptive power direct current pre-regulator |
US5594211A (en) | 1995-02-22 | 1997-01-14 | Burndy Corporation | Electrical solder splice connector |
CA2152521C (en) | 1995-03-01 | 2000-06-20 | Jack E. Bridges | Low flux leakage cables and cable terminations for a.c. electrical heating of oil deposits |
US5621844A (en) | 1995-03-01 | 1997-04-15 | Uentech Corporation | Electrical heating of mineral well deposits using downhole impedance transformation networks |
US5935421A (en) | 1995-05-02 | 1999-08-10 | Exxon Research And Engineering Company | Continuous in-situ combination process for upgrading heavy oil |
US5911898A (en) | 1995-05-25 | 1999-06-15 | Electric Power Research Institute | Method and apparatus for providing multiple autoregulated temperatures |
US5571403A (en) | 1995-06-06 | 1996-11-05 | Texaco Inc. | Process for extracting hydrocarbons from diatomite |
AU3721295A (en) | 1995-06-20 | 1997-01-22 | Elan Energy | Insulated and/or concentric coiled tubing |
AUPN469395A0 (en) * | 1995-08-08 | 1995-08-31 | Gearhart United Pty Ltd | Borehole drill bit stabiliser |
US5801332A (en) | 1995-08-31 | 1998-09-01 | Minnesota Mining And Manufacturing Company | Elastically recoverable silicone splice cover |
US5899958A (en) | 1995-09-11 | 1999-05-04 | Halliburton Energy Services, Inc. | Logging while drilling borehole imaging and dipmeter device |
US5656924A (en) * | 1995-09-27 | 1997-08-12 | Schott Power Systems Inc. | System and method for providing harmonic currents to a harmonic generating load connected to a power system |
US5759022A (en) | 1995-10-16 | 1998-06-02 | Gas Research Institute | Method and system for reducing NOx and fuel emissions in a furnace |
US5890840A (en) | 1995-12-08 | 1999-04-06 | Carter, Jr.; Ernest E. | In situ construction of containment vault under a radioactive or hazardous waste site |
US5619611A (en) | 1995-12-12 | 1997-04-08 | Tub Tauch-Und Baggertechnik Gmbh | Device for removing downhole deposits utilizing tubular housing and passing electric current through fluid heating medium contained therein |
GB9526120D0 (en) | 1995-12-21 | 1996-02-21 | Raychem Sa Nv | Electrical connector |
JP3747066B2 (ja) | 1995-12-27 | 2006-02-22 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | 無炎燃焼器 |
US5685362A (en) | 1996-01-22 | 1997-11-11 | The Regents Of The University Of California | Storage capacity in hot dry rock reservoirs |
US5751895A (en) | 1996-02-13 | 1998-05-12 | Eor International, Inc. | Selective excitation of heating electrodes for oil wells |
US5784530A (en) | 1996-02-13 | 1998-07-21 | Eor International, Inc. | Iterated electrodes for oil wells |
US5826655A (en) | 1996-04-25 | 1998-10-27 | Texaco Inc | Method for enhanced recovery of viscous oil deposits |
US5652389A (en) | 1996-05-22 | 1997-07-29 | The United States Of America As Represented By The Secretary Of Commerce | Non-contact method and apparatus for inspection of inertia welds |
US6022834A (en) | 1996-05-24 | 2000-02-08 | Oil Chem Technologies, Inc. | Alkaline surfactant polymer flooding composition and process |
CA2177726C (en) | 1996-05-29 | 2000-06-27 | Theodore Wildi | Low-voltage and low flux density heating system |
US5769569A (en) | 1996-06-18 | 1998-06-23 | Southern California Gas Company | In-situ thermal desorption of heavy hydrocarbons in vadose zone |
US5828797A (en) | 1996-06-19 | 1998-10-27 | Meggitt Avionics, Inc. | Fiber optic linked flame sensor |
EP0909258A1 (en) | 1996-06-21 | 1999-04-21 | Syntroleum Corporation | Synthesis gas production system and method |
US5788376A (en) | 1996-07-01 | 1998-08-04 | General Motors Corporation | Temperature sensor |
PE17599A1 (es) | 1996-07-09 | 1999-02-22 | Syntroleum Corp | Procedimiento para convertir gases a liquidos |
US5683273A (en) | 1996-07-24 | 1997-11-04 | The Whitaker Corporation | Mechanical splice connector for cable |
US5826653A (en) | 1996-08-02 | 1998-10-27 | Scientific Applications & Research Associates, Inc. | Phased array approach to retrieve gases, liquids, or solids from subaqueous geologic or man-made formations |
US6116357A (en) | 1996-09-09 | 2000-09-12 | Smith International, Inc. | Rock drill bit with back-reaming protection |
US5782301A (en) | 1996-10-09 | 1998-07-21 | Baker Hughes Incorporated | Oil well heater cable |
US5875283A (en) | 1996-10-11 | 1999-02-23 | Lufran Incorporated | Purged grounded immersion heater |
US6079499A (en) | 1996-10-15 | 2000-06-27 | Shell Oil Company | Heater well method and apparatus |
US6056057A (en) | 1996-10-15 | 2000-05-02 | Shell Oil Company | Heater well method and apparatus |
US5861137A (en) | 1996-10-30 | 1999-01-19 | Edlund; David J. | Steam reformer with internal hydrogen purification |
US7426961B2 (en) | 2002-09-03 | 2008-09-23 | Bj Services Company | Method of treating subterranean formations with porous particulate materials |
US5816325A (en) | 1996-11-27 | 1998-10-06 | Future Energy, Llc | Methods and apparatus for enhanced recovery of viscous deposits by thermal stimulation |
US5862858A (en) | 1996-12-26 | 1999-01-26 | Shell Oil Company | Flameless combustor |
US6427124B1 (en) | 1997-01-24 | 2002-07-30 | Baker Hughes Incorporated | Semblance processing for an acoustic measurement-while-drilling system for imaging of formation boundaries |
US5821414A (en) | 1997-02-07 | 1998-10-13 | Noy; Koen | Survey apparatus and methods for directional wellbore wireline surveying |
US6039121A (en) | 1997-02-20 | 2000-03-21 | Rangewest Technologies Ltd. | Enhanced lift method and apparatus for the production of hydrocarbons |
GB9704181D0 (en) | 1997-02-28 | 1997-04-16 | Thompson James | Apparatus and method for installation of ducts |
US5744025A (en) | 1997-02-28 | 1998-04-28 | Shell Oil Company | Process for hydrotreating metal-contaminated hydrocarbonaceous feedstock |
US5862030A (en) * | 1997-04-07 | 1999-01-19 | Bpw, Inc. | Electrical safety device with conductive polymer sensor |
FR2761830B1 (fr) | 1997-04-07 | 2000-01-28 | Pirelli Cables Sa | Support de jonction a extraction autonome commandee |
US5926437A (en) | 1997-04-08 | 1999-07-20 | Halliburton Energy Services, Inc. | Method and apparatus for seismic exploration |
US5984578A (en) | 1997-04-11 | 1999-11-16 | New Jersey Institute Of Technology | Apparatus and method for in situ removal of contaminants using sonic energy |
US5802870A (en) | 1997-05-02 | 1998-09-08 | Uop Llc | Sorption cooling process and system |
EP1357403A3 (en) | 1997-05-02 | 2004-01-02 | Sensor Highway Limited | A method of generating electric power in a wellbore |
WO1998050179A1 (en) | 1997-05-07 | 1998-11-12 | Shell Internationale Research Maatschappij B.V. | Remediation method |
US6023554A (en) | 1997-05-20 | 2000-02-08 | Shell Oil Company | Electrical heater |
AU720947B2 (en) | 1997-06-05 | 2000-06-15 | Shell Internationale Research Maatschappij B.V. | Remediation method |
US6102122A (en) | 1997-06-11 | 2000-08-15 | Shell Oil Company | Control of heat injection based on temperature and in-situ stress measurement |
US6112808A (en) | 1997-09-19 | 2000-09-05 | Isted; Robert Edward | Method and apparatus for subterranean thermal conditioning |
US5984010A (en) | 1997-06-23 | 1999-11-16 | Elias; Ramon | Hydrocarbon recovery systems and methods |
CA2208767A1 (en) | 1997-06-26 | 1998-12-26 | Reginald D. Humphreys | Tar sands extraction process |
AU3710697A (en) | 1997-07-01 | 1999-01-25 | Alexandr Petrovich Linetsky | Method for exploiting gas and oil fields and for increasing gas and crude oil output |
US5992522A (en) | 1997-08-12 | 1999-11-30 | Steelhead Reclamation Ltd. | Process and seal for minimizing interzonal migration in boreholes |
US6321862B1 (en) * | 1997-09-08 | 2001-11-27 | Baker Hughes Incorporated | Rotary drill bits for directional drilling employing tandem gage pad arrangement with cutting elements and up-drill capability |
US5868202A (en) | 1997-09-22 | 1999-02-09 | Tarim Associates For Scientific Mineral And Oil Exploration Ag | Hydrologic cells for recovery of hydrocarbons or thermal energy from coal, oil-shale, tar-sands and oil-bearing formations |
US6149344A (en) | 1997-10-04 | 2000-11-21 | Master Corporation | Acid gas disposal |
US6354373B1 (en) | 1997-11-26 | 2002-03-12 | Schlumberger Technology Corporation | Expandable tubing for a well bore hole and method of expanding |
EP1060326B1 (en) | 1997-12-11 | 2003-04-02 | Alberta Research Council, Inc. | Oilfield in situ hydrocarbon upgrading process |
US6152987A (en) | 1997-12-15 | 2000-11-28 | Worcester Polytechnic Institute | Hydrogen gas-extraction module and method of fabrication |
US6094048A (en) | 1997-12-18 | 2000-07-25 | Shell Oil Company | NMR logging of natural gas reservoirs |
NO305720B1 (no) | 1997-12-22 | 1999-07-12 | Eureka Oil Asa | FremgangsmÕte for Õ °ke oljeproduksjonen fra et oljereservoar |
US6026914A (en) | 1998-01-28 | 2000-02-22 | Alberta Oil Sands Technology And Research Authority | Wellbore profiling system |
MA24902A1 (fr) | 1998-03-06 | 2000-04-01 | Shell Int Research | Rechauffeur electrique |
US6540018B1 (en) | 1998-03-06 | 2003-04-01 | Shell Oil Company | Method and apparatus for heating a wellbore |
CA2327744C (en) | 1998-04-06 | 2004-07-13 | Da Qing Petroleum Administration Bureau | A foam drive method |
US6035701A (en) | 1998-04-15 | 2000-03-14 | Lowry; William E. | Method and system to locate leaks in subsurface containment structures using tracer gases |
AU3978399A (en) | 1998-05-12 | 1999-11-29 | Lockheed Martin Corporation | System and process for secondary hydrocarbon recovery |
US6016868A (en) | 1998-06-24 | 2000-01-25 | World Energy Systems, Incorporated | Production of synthetic crude oil from heavy hydrocarbons recovered by in situ hydrovisbreaking |
US6016867A (en) | 1998-06-24 | 2000-01-25 | World Energy Systems, Incorporated | Upgrading and recovery of heavy crude oils and natural bitumens by in situ hydrovisbreaking |
US6130398A (en) | 1998-07-09 | 2000-10-10 | Illinois Tool Works Inc. | Plasma cutter for auxiliary power output of a power source |
NO984235L (no) | 1998-09-14 | 2000-03-15 | Cit Alcatel | Oppvarmingssystem for metallrør for rõoljetransport |
US6388947B1 (en) | 1998-09-14 | 2002-05-14 | Tomoseis, Inc. | Multi-crosswell profile 3D imaging and method |
DE69930290T2 (de) | 1998-09-25 | 2006-12-14 | Tesco Corp., Calgary | System, vorrichtung und verfahren zur installierung von steuerleitungen in einer erdbohrung |
US6591916B1 (en) | 1998-10-14 | 2003-07-15 | Coupler Developments Limited | Drilling method |
US6192748B1 (en) | 1998-10-30 | 2001-02-27 | Computalog Limited | Dynamic orienting reference system for directional drilling |
US5968349A (en) | 1998-11-16 | 1999-10-19 | Bhp Minerals International Inc. | Extraction of bitumen from bitumen froth and biotreatment of bitumen froth tailings generated from tar sands |
US20040035582A1 (en) | 2002-08-22 | 2004-02-26 | Zupanick Joseph A. | System and method for subterranean access |
CN1306145C (zh) | 1998-12-22 | 2007-03-21 | 切夫里昂奥罗尼特有限责任公司 | 从含烃的地下岩层中采收原油的方法和强化采油的表面活性剂 |
US6609761B1 (en) | 1999-01-08 | 2003-08-26 | American Soda, Llp | Sodium carbonate and sodium bicarbonate production from nahcolitic oil shale |
US6078868A (en) | 1999-01-21 | 2000-06-20 | Baker Hughes Incorporated | Reference signal encoding for seismic while drilling measurement |
US6318469B1 (en) | 1999-02-09 | 2001-11-20 | Schlumberger Technology Corp. | Completion equipment having a plurality of fluid paths for use in a well |
US6218333B1 (en) | 1999-02-15 | 2001-04-17 | Shell Oil Company | Preparation of a hydrotreating catalyst |
US6283230B1 (en) | 1999-03-01 | 2001-09-04 | Jasper N. Peters | Method and apparatus for lateral well drilling utilizing a rotating nozzle |
US6155117A (en) | 1999-03-18 | 2000-12-05 | Mcdermott Technology, Inc. | Edge detection and seam tracking with EMATs |
US6561269B1 (en) * | 1999-04-30 | 2003-05-13 | The Regents Of The University Of California | Canister, sealing method and composition for sealing a borehole |
US6110358A (en) | 1999-05-21 | 2000-08-29 | Exxon Research And Engineering Company | Process for manufacturing improved process oils using extraction of hydrotreated distillates |
EG22117A (en) | 1999-06-03 | 2002-08-30 | Exxonmobil Upstream Res Co | Method and apparatus for controlling pressure and detecting well control problems during drilling of an offshore well using a gas-lifted riser |
US6260615B1 (en) * | 1999-06-25 | 2001-07-17 | Baker Hughes Incorporated | Method and apparatus for de-icing oilwells |
US6257334B1 (en) | 1999-07-22 | 2001-07-10 | Alberta Oil Sands Technology And Research Authority | Steam-assisted gravity drainage heavy oil recovery process |
US6269310B1 (en) | 1999-08-25 | 2001-07-31 | Tomoseis Corporation | System for eliminating headwaves in a tomographic process |
US6740853B1 (en) * | 1999-09-29 | 2004-05-25 | Tokyo Electron Limited | Multi-zone resistance heater |
US6193010B1 (en) | 1999-10-06 | 2001-02-27 | Tomoseis Corporation | System for generating a seismic signal in a borehole |
US6196350B1 (en) | 1999-10-06 | 2001-03-06 | Tomoseis Corporation | Apparatus and method for attenuating tube waves in a borehole |
DE19948819C2 (de) * | 1999-10-09 | 2002-01-24 | Airbus Gmbh | Heizleiter mit einem Anschlußelement und/oder einem Abschlußelement sowie ein Verfahren zur Herstellung desselben |
US6288372B1 (en) | 1999-11-03 | 2001-09-11 | Tyco Electronics Corporation | Electric cable having braidless polymeric ground plane providing fault detection |
US6353706B1 (en) | 1999-11-18 | 2002-03-05 | Uentech International Corporation | Optimum oil-well casing heating |
US6417268B1 (en) | 1999-12-06 | 2002-07-09 | Hercules Incorporated | Method for making hydrophobically associative polymers, methods of use and compositions |
US6318468B1 (en) | 1999-12-16 | 2001-11-20 | Consolidated Seven Rocks Mining, Ltd. | Recovery and reforming of crudes at the heads of multifunctional wells and oil mining system with flue gas stimulation |
US6422318B1 (en) | 1999-12-17 | 2002-07-23 | Scioto County Regional Water District #1 | Horizontal well system |
US6364721B2 (en) | 1999-12-27 | 2002-04-02 | Stewart, Iii Kenneth G. | Wire connector |
US6452105B2 (en) * | 2000-01-12 | 2002-09-17 | Meggitt Safety Systems, Inc. | Coaxial cable assembly with a discontinuous outer jacket |
US6679332B2 (en) | 2000-01-24 | 2004-01-20 | Shell Oil Company | Petroleum well having downhole sensors, communication and power |
US6715550B2 (en) | 2000-01-24 | 2004-04-06 | Shell Oil Company | Controllable gas-lift well and valve |
US20020036085A1 (en) | 2000-01-24 | 2002-03-28 | Bass Ronald Marshall | Toroidal choke inductor for wireless communication and control |
US6633236B2 (en) | 2000-01-24 | 2003-10-14 | Shell Oil Company | Permanent downhole, wireless, two-way telemetry backbone using redundant repeaters |
US6758277B2 (en) * | 2000-01-24 | 2004-07-06 | Shell Oil Company | System and method for fluid flow optimization |
US7259688B2 (en) | 2000-01-24 | 2007-08-21 | Shell Oil Company | Wireless reservoir production control |
SE0000688L (sv) * | 2000-03-02 | 2001-05-21 | Sandvik Ab | Bergborrkrona samt förfarande för dess tillverkning |
US7170424B2 (en) | 2000-03-02 | 2007-01-30 | Shell Oil Company | Oil well casting electrical power pick-off points |
OA12225A (en) | 2000-03-02 | 2006-05-10 | Shell Int Research | Controlled downhole chemical injection. |
MY128294A (en) | 2000-03-02 | 2007-01-31 | Shell Int Research | Use of downhole high pressure gas in a gas-lift well |
US6357526B1 (en) | 2000-03-16 | 2002-03-19 | Kellogg Brown & Root, Inc. | Field upgrading of heavy oil and bitumen |
CN2431398Y (zh) * | 2000-03-27 | 2001-05-23 | 刘景斌 | 石油加热炉 |
US6485232B1 (en) | 2000-04-14 | 2002-11-26 | Board Of Regents, The University Of Texas System | Low cost, self regulating heater for use in an in situ thermal desorption soil remediation system |
US6918444B2 (en) | 2000-04-19 | 2005-07-19 | Exxonmobil Upstream Research Company | Method for production of hydrocarbons from organic-rich rock |
GB0009662D0 (en) | 2000-04-20 | 2000-06-07 | Scotoil Group Plc | Gas and oil production |
US6715546B2 (en) | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ production of synthesis gas from a hydrocarbon containing formation through a heat source wellbore |
US20030085034A1 (en) | 2000-04-24 | 2003-05-08 | Wellington Scott Lee | In situ thermal processing of a coal formation to produce pyrolsis products |
US6742593B2 (en) | 2000-04-24 | 2004-06-01 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using heat transfer from a heat transfer fluid to heat the formation |
US6698515B2 (en) | 2000-04-24 | 2004-03-02 | Shell Oil Company | In situ thermal processing of a coal formation using a relatively slow heating rate |
US6588504B2 (en) | 2000-04-24 | 2003-07-08 | Shell Oil Company | In situ thermal processing of a coal formation to produce nitrogen and/or sulfur containing formation fluids |
ATE313695T1 (de) * | 2000-04-24 | 2006-01-15 | Shell Int Research | Elektrische bohrlochheizvorrichtung und verfahren |
US7011154B2 (en) | 2000-04-24 | 2006-03-14 | Shell Oil Company | In situ recovery from a kerogen and liquid hydrocarbon containing formation |
US6715548B2 (en) * | 2000-04-24 | 2004-04-06 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce nitrogen containing formation fluids |
US7096953B2 (en) | 2000-04-24 | 2006-08-29 | Shell Oil Company | In situ thermal processing of a coal formation using a movable heating element |
US6584406B1 (en) | 2000-06-15 | 2003-06-24 | Geo-X Systems, Ltd. | Downhole process control method utilizing seismic communication |
WO2002057805A2 (en) | 2000-06-29 | 2002-07-25 | Tubel Paulo S | Method and system for monitoring smart structures utilizing distributed optical sensors |
US6585046B2 (en) | 2000-08-28 | 2003-07-01 | Baker Hughes Incorporated | Live well heater cable |
US6412559B1 (en) | 2000-11-24 | 2002-07-02 | Alberta Research Council Inc. | Process for recovering methane and/or sequestering fluids |
US20020110476A1 (en) | 2000-12-14 | 2002-08-15 | Maziasz Philip J. | Heat and corrosion resistant cast stainless steels with improved high temperature strength and ductility |
US20020112987A1 (en) | 2000-12-15 | 2002-08-22 | Zhiguo Hou | Slurry hydroprocessing for heavy oil upgrading using supported slurry catalysts |
US20020112890A1 (en) | 2001-01-22 | 2002-08-22 | Wentworth Steven W. | Conduit pulling apparatus and method for use in horizontal drilling |
US6516891B1 (en) | 2001-02-08 | 2003-02-11 | L. Murray Dallas | Dual string coil tubing injector assembly |
US6821501B2 (en) | 2001-03-05 | 2004-11-23 | Shell Oil Company | Integrated flameless distributed combustion/steam reforming membrane reactor for hydrogen production and use thereof in zero emissions hybrid power system |
US20020153141A1 (en) | 2001-04-19 | 2002-10-24 | Hartman Michael G. | Method for pumping fluids |
US6900383B2 (en) | 2001-03-19 | 2005-05-31 | Hewlett-Packard Development Company, L.P. | Board-level EMI shield that adheres to and conforms with printed circuit board component and board surfaces |
US6694161B2 (en) | 2001-04-20 | 2004-02-17 | Monsanto Technology Llc | Apparatus and method for monitoring rumen pH |
US7055600B2 (en) | 2001-04-24 | 2006-06-06 | Shell Oil Company | In situ thermal recovery from a relatively permeable formation with controlled production rate |
US7004247B2 (en) | 2001-04-24 | 2006-02-28 | Shell Oil Company | Conductor-in-conduit heat sources for in situ thermal processing of an oil shale formation |
CN100545415C (zh) | 2001-04-24 | 2009-09-30 | 国际壳牌研究有限公司 | 现场处理含烃地层的方法 |
WO2002086029A2 (en) | 2001-04-24 | 2002-10-31 | Shell Oil Company | In situ recovery from a relatively low permeability formation containing heavy hydrocarbons |
AU2002345858A1 (en) | 2001-07-03 | 2003-01-29 | Cci Thermal Technologies, Inc. | Corrugated metal ribbon heating element |
US6766817B2 (en) | 2001-07-25 | 2004-07-27 | Tubarc Technologies, Llc | Fluid conduction utilizing a reversible unsaturated siphon with tubarc porosity action |
US6566895B2 (en) * | 2001-07-27 | 2003-05-20 | The United States Of America As Represented By The Secretary Of The Navy | Unbalanced three phase delta power measurement apparatus and method |
US20030029617A1 (en) | 2001-08-09 | 2003-02-13 | Anadarko Petroleum Company | Apparatus, method and system for single well solution-mining |
US6591908B2 (en) | 2001-08-22 | 2003-07-15 | Alberta Science And Research Authority | Hydrocarbon production process with decreasing steam and/or water/solvent ratio |
US6695062B2 (en) | 2001-08-27 | 2004-02-24 | Baker Hughes Incorporated | Heater cable and method for manufacturing |
MY129091A (en) | 2001-09-07 | 2007-03-30 | Exxonmobil Upstream Res Co | Acid gas disposal method |
US6755251B2 (en) | 2001-09-07 | 2004-06-29 | Exxonmobil Upstream Research Company | Downhole gas separation method and system |
US6470977B1 (en) | 2001-09-18 | 2002-10-29 | Halliburton Energy Services, Inc. | Steerable underreaming bottom hole assembly and method |
US6886638B2 (en) | 2001-10-03 | 2005-05-03 | Schlumbergr Technology Corporation | Field weldable connections |
US7090013B2 (en) | 2001-10-24 | 2006-08-15 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation to produce heated fluids |
US7077199B2 (en) | 2001-10-24 | 2006-07-18 | Shell Oil Company | In situ thermal processing of an oil reservoir formation |
US7165615B2 (en) | 2001-10-24 | 2007-01-23 | Shell Oil Company | In situ recovery from a hydrocarbon containing formation using conductor-in-conduit heat sources with an electrically conductive material in the overburden |
US6969123B2 (en) | 2001-10-24 | 2005-11-29 | Shell Oil Company | Upgrading and mining of coal |
US7104319B2 (en) | 2001-10-24 | 2006-09-12 | Shell Oil Company | In situ thermal processing of a heavy oil diatomite formation |
US6759364B2 (en) | 2001-12-17 | 2004-07-06 | Shell Oil Company | Arsenic removal catalyst and method for making same |
US6583351B1 (en) | 2002-01-11 | 2003-06-24 | Bwx Technologies, Inc. | Superconducting cable-in-conduit low resistance splice |
US6684948B1 (en) | 2002-01-15 | 2004-02-03 | Marshall T. Savage | Apparatus and method for heating subterranean formations using fuel cells |
US6679326B2 (en) | 2002-01-15 | 2004-01-20 | Bohdan Zakiewicz | Pro-ecological mining system |
US7032809B1 (en) | 2002-01-18 | 2006-04-25 | Steel Ventures, L.L.C. | Seam-welded metal pipe and method of making the same without seam anneal |
US6854534B2 (en) | 2002-01-22 | 2005-02-15 | James I. Livingstone | Two string drilling system using coil tubing |
US6773311B2 (en) | 2002-02-06 | 2004-08-10 | Fci Americas Technology, Inc. | Electrical splice connector |
US7513318B2 (en) * | 2002-02-19 | 2009-04-07 | Smith International, Inc. | Steerable underreamer/stabilizer assembly and method |
US6958195B2 (en) | 2002-02-19 | 2005-10-25 | Utc Fuel Cells, Llc | Steam generator for a PEM fuel cell power plant |
CH695967A5 (de) * | 2002-04-03 | 2006-10-31 | Studer Ag Draht & Kabelwerk | Elektrokabel. |
US6853196B1 (en) * | 2002-04-12 | 2005-02-08 | Sandia Corporation | Method and apparatus for electrical cable testing by pulse-arrested spark discharge |
US7563983B2 (en) | 2002-04-23 | 2009-07-21 | Ctc Cable Corporation | Collet-type splice and dead end for use with an aluminum conductor composite core reinforced cable |
US7093370B2 (en) | 2002-08-01 | 2006-08-22 | The Charles Stark Draper Laboratory, Inc. | Multi-gimbaled borehole navigation system |
WO2004018828A1 (en) | 2002-08-21 | 2004-03-04 | Presssol Ltd. | Reverse circulation directional and horizontal drilling using concentric coil tubing |
US6713728B1 (en) * | 2002-09-26 | 2004-03-30 | Xerox Corporation | Drum heater |
WO2004038175A1 (en) | 2002-10-24 | 2004-05-06 | Shell Internationale Research Maatschappij B.V. | Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation |
WO2004042188A2 (en) | 2002-11-06 | 2004-05-21 | Canitron Systems, Inc. | Down hole induction heating tool and method of operating and manufacturing same |
US6740857B1 (en) * | 2002-12-06 | 2004-05-25 | Chromalox, Inc. | Cartridge heater with moisture resistant seal and method of manufacturing same |
JP4163941B2 (ja) | 2002-12-24 | 2008-10-08 | 松下電器産業株式会社 | 無線送信装置及び無線送信方法 |
US7048051B2 (en) | 2003-02-03 | 2006-05-23 | Gen Syn Fuels | Recovery of products from oil shale |
US7055602B2 (en) * | 2003-03-11 | 2006-06-06 | Shell Oil Company | Method and composition for enhanced hydrocarbons recovery |
US7121342B2 (en) | 2003-04-24 | 2006-10-17 | Shell Oil Company | Thermal processes for subsurface formations |
US6951250B2 (en) | 2003-05-13 | 2005-10-04 | Halliburton Energy Services, Inc. | Sealant compositions and methods of using the same to isolate a subterranean zone from a disposal well |
US6807220B1 (en) * | 2003-05-23 | 2004-10-19 | Mrl Industries | Retention mechanism for heating coil of high temperature diffusion furnace |
RU2349745C2 (ru) | 2003-06-24 | 2009-03-20 | Эксонмобил Апстрим Рисерч Компани | Способ обработки подземного пласта для конверсии органического вещества в извлекаемые углеводороды (варианты) |
US6881897B2 (en) | 2003-07-10 | 2005-04-19 | Yazaki Corporation | Shielding structure of shielding electric wire |
US7114880B2 (en) | 2003-09-26 | 2006-10-03 | Carter Jr Ernest E | Process for the excavation of buried waste |
US7147057B2 (en) | 2003-10-06 | 2006-12-12 | Halliburton Energy Services, Inc. | Loop systems and methods of using the same for conveying and distributing thermal energy into a wellbore |
EA010677B1 (ru) | 2003-11-03 | 2008-10-30 | Эксонмобил Апстрим Рисерч Компани | Способ извлечения углеводородов из непроницаемых нефтеносных сланцев |
US20070000810A1 (en) | 2003-12-19 | 2007-01-04 | Bhan Opinder K | Method for producing a crude product with reduced tan |
US7648625B2 (en) | 2003-12-19 | 2010-01-19 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US20060289340A1 (en) | 2003-12-19 | 2006-12-28 | Brownscombe Thomas F | Methods for producing a total product in the presence of sulfur |
US7402547B2 (en) | 2003-12-19 | 2008-07-22 | Shell Oil Company | Systems and methods of producing a crude product |
US7337841B2 (en) | 2004-03-24 | 2008-03-04 | Halliburton Energy Services, Inc. | Casing comprising stress-absorbing materials and associated methods of use |
CA2579496A1 (en) | 2004-04-23 | 2005-11-03 | Shell Internationale Research Maatschappij B.V. | Subsurface electrical heaters using nitride insulation |
JP2008510032A (ja) | 2004-08-10 | 2008-04-03 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | 炭化水素供給原料から中間留分生成物及び低級オレフィンを製造する方法及び装置 |
US7582203B2 (en) | 2004-08-10 | 2009-09-01 | Shell Oil Company | Hydrocarbon cracking process for converting gas oil preferentially to middle distillate and lower olefins |
US7398823B2 (en) | 2005-01-10 | 2008-07-15 | Conocophillips Company | Selective electromagnetic production tool |
US7918992B2 (en) | 2005-04-11 | 2011-04-05 | Shell Oil Company | Systems, methods, and catalysts for producing a crude product |
US7601320B2 (en) | 2005-04-21 | 2009-10-13 | Shell Oil Company | System and methods for producing oil and/or gas |
AU2006239988B2 (en) | 2005-04-22 | 2010-07-01 | Shell Internationale Research Maatschappij B.V. | Reduction of heat loads applied to frozen barriers and freeze wells in subsurface formations |
EA011905B1 (ru) | 2005-04-22 | 2009-06-30 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Способ конверсии in situ с использованием нагревающей системы с замкнутым контуром |
US7600585B2 (en) * | 2005-05-19 | 2009-10-13 | Schlumberger Technology Corporation | Coiled tubing drilling rig |
US20070044957A1 (en) | 2005-05-27 | 2007-03-01 | Oil Sands Underground Mining, Inc. | Method for underground recovery of hydrocarbons |
US7849934B2 (en) | 2005-06-07 | 2010-12-14 | Baker Hughes Incorporated | Method and apparatus for collecting drill bit performance data |
US7441597B2 (en) | 2005-06-20 | 2008-10-28 | Ksn Energies, Llc | Method and apparatus for in-situ radiofrequency assisted gravity drainage of oil (RAGD) |
US20060175061A1 (en) | 2005-08-30 | 2006-08-10 | Crichlow Henry B | Method for Recovering Hydrocarbons from Subterranean Formations |
US7303007B2 (en) | 2005-10-07 | 2007-12-04 | Weatherford Canada Partnership | Method and apparatus for transmitting sensor response data and power through a mud motor |
AU2006306471B2 (en) | 2005-10-24 | 2010-11-25 | Shell Internationale Research Maatschapij B.V. | Cogeneration systems and processes for treating hydrocarbon containing formations |
US7124584B1 (en) | 2005-10-31 | 2006-10-24 | General Electric Company | System and method for heat recovery from geothermal source of heat |
US7743826B2 (en) | 2006-01-20 | 2010-06-29 | American Shale Oil, Llc | In situ method and system for extraction of oil from shale |
JP4298709B2 (ja) | 2006-01-26 | 2009-07-22 | 矢崎総業株式会社 | シールド電線の端末処理方法および端末処理装置 |
EP1984599B1 (en) | 2006-02-16 | 2012-03-21 | Chevron U.S.A., Inc. | Kerogen extraction from subterranean oil shale resources |
US7654320B2 (en) | 2006-04-07 | 2010-02-02 | Occidental Energy Ventures Corp. | System and method for processing a mixture of hydrocarbon and CO2 gas produced from a hydrocarbon reservoir |
CA2649850A1 (en) | 2006-04-21 | 2007-11-01 | Osum Oil Sands Corp. | Method of drilling from a shaft for underground recovery of hydrocarbons |
WO2007126676A2 (en) | 2006-04-21 | 2007-11-08 | Exxonmobil Upstream Research Company | In situ co-development of oil shale with mineral recovery |
AU2007240367B2 (en) | 2006-04-21 | 2011-04-07 | Shell Internationale Research Maatschappij B.V. | High strength alloys |
ITMI20061648A1 (it) | 2006-08-29 | 2008-02-29 | Star Progetti Tecnologie Applicate Spa | Dispositivo di irraggiamento di calore tramite infrarossi |
US7665524B2 (en) | 2006-09-29 | 2010-02-23 | Ut-Battelle, Llc | Liquid metal heat exchanger for efficient heating of soils and geologic formations |
US20080078552A1 (en) | 2006-09-29 | 2008-04-03 | Osum Oil Sands Corp. | Method of heating hydrocarbons |
BRPI0719868A2 (pt) | 2006-10-13 | 2014-06-10 | Exxonmobil Upstream Res Co | Métodos para abaixar a temperatura de uma formação subsuperficial, e para formar uma parede congelada em uma formação subsuperficial |
BRPI0719858A2 (pt) | 2006-10-13 | 2015-05-26 | Exxonmobil Upstream Res Co | Fluido de hidrocarbonetos, e, método para produzir fluidos de hidrocarbonetos. |
CN101595273B (zh) | 2006-10-13 | 2013-01-02 | 埃克森美孚上游研究公司 | 用于原位页岩油开发的优化的井布置 |
US7405358B2 (en) | 2006-10-17 | 2008-07-29 | Quick Connectors, Inc | Splice for down hole electrical submersible pump cable |
JP5330999B2 (ja) | 2006-10-20 | 2013-10-30 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ | 流体によるタールサンド地層の複数部分中での炭化水素の移動 |
US7823655B2 (en) | 2007-09-21 | 2010-11-02 | Canrig Drilling Technology Ltd. | Directional drilling control |
US7730936B2 (en) | 2007-02-07 | 2010-06-08 | Schlumberger Technology Corporation | Active cable for wellbore heating and distributed temperature sensing |
US20080216321A1 (en) | 2007-03-09 | 2008-09-11 | Eveready Battery Company, Inc. | Shaving aid delivery system for use with wet shave razors |
WO2008123352A1 (ja) | 2007-03-28 | 2008-10-16 | Nec Corporation | 半導体装置 |
WO2008131171A1 (en) | 2007-04-20 | 2008-10-30 | Shell Oil Company | Parallel heater system for subsurface formations |
AU2008253749B2 (en) | 2007-05-15 | 2014-03-20 | Exxonmobil Upstream Research Company | Downhole burner wells for in situ conversion of organic-rich rock formations |
WO2009012374A1 (en) | 2007-07-19 | 2009-01-22 | Shell Oil Company | Methods for producing oil and/or gas |
CA2700732A1 (en) | 2007-10-19 | 2009-04-23 | Shell Internationale Research Maatschappij B.V. | Cryogenic treatment of gas |
CA2705198A1 (en) | 2007-11-19 | 2009-05-28 | Shell Internationale Research Maatschappij B.V. | Systems and methods for producing oil and/or gas |
EA022380B1 (ru) | 2008-02-07 | 2015-12-30 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Способ и композиция для улучшенного извлечения углеводородов |
WO2009100301A1 (en) | 2008-02-07 | 2009-08-13 | Shell Oil Company | Method and composition for enhanced hydrocarbons recovery |
US7888933B2 (en) | 2008-02-15 | 2011-02-15 | Schlumberger Technology Corporation | Method for estimating formation hydrocarbon saturation using nuclear magnetic resonance measurements |
CA2716233A1 (en) | 2008-02-19 | 2009-08-27 | Baker Hughes Incorporated | Downhole measurement while drilling system and method |
US20090260811A1 (en) | 2008-04-18 | 2009-10-22 | Jingyu Cui | Methods for generation of subsurface heat for treatment of a hydrocarbon containing formation |
US8151907B2 (en) | 2008-04-18 | 2012-04-10 | Shell Oil Company | Dual motor systems and non-rotating sensors for use in developing wellbores in subsurface formations |
US8277642B2 (en) | 2008-06-02 | 2012-10-02 | Korea Technology Industries, Co., Ltd. | System for separating bitumen from oil sands |
WO2010045097A1 (en) | 2008-10-13 | 2010-04-22 | Shell Oil Company | Circulated heated transfer fluid heating of subsurface hydrocarbon formations |
US20120018421A1 (en) | 2009-04-02 | 2012-01-26 | Tyco Thermal Controls Llc | Mineral insulated skin effect heating cable |
US20100258291A1 (en) | 2009-04-10 | 2010-10-14 | Everett De St Remey Edward | Heated liners for treating subsurface hydrocarbon containing formations |
CA2760967C (en) | 2009-05-15 | 2017-08-29 | American Shale Oil, Llc | In situ method and system for extraction of oil from shale |
US8356935B2 (en) | 2009-10-09 | 2013-01-22 | Shell Oil Company | Methods for assessing a temperature in a subsurface formation |
US8816203B2 (en) | 2009-10-09 | 2014-08-26 | Shell Oil Company | Compacted coupling joint for coupling insulated conductors |
US8502120B2 (en) | 2010-04-09 | 2013-08-06 | Shell Oil Company | Insulating blocks and methods for installation in insulated conductor heaters |
US8939207B2 (en) | 2010-04-09 | 2015-01-27 | Shell Oil Company | Insulated conductor heaters with semiconductor layers |
US8739874B2 (en) | 2010-04-09 | 2014-06-03 | Shell Oil Company | Methods for heating with slots in hydrocarbon formations |
US8464792B2 (en) | 2010-04-27 | 2013-06-18 | American Shale Oil, Llc | Conduction convection reflux retorting process |
RU2587459C2 (ru) | 2011-04-08 | 2016-06-20 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Системы для соединения изолированных проводников |
CA2791725A1 (en) | 2011-10-07 | 2013-04-07 | Shell Internationale Research Maatschappij B.V. | Treating hydrocarbon formations using hybrid in situ heat treatment and steam methods |
-
2008
- 2008-04-18 WO PCT/US2008/060743 patent/WO2008131171A1/en active Search and Examination
- 2008-04-18 EP EP08746207.3A patent/EP2137375A4/en not_active Withdrawn
- 2008-04-18 AU AU2008242799A patent/AU2008242799B2/en not_active Ceased
- 2008-04-18 CA CA 2684422 patent/CA2684422A1/en not_active Abandoned
- 2008-04-18 WO PCT/US2008/060750 patent/WO2008131177A1/en active Application Filing
- 2008-04-18 CA CA2684437A patent/CA2684437C/en not_active Expired - Fee Related
- 2008-04-18 CN CN200880017260A patent/CN101680286A/zh active Pending
- 2008-04-18 MX MX2009011117A patent/MX2009011117A/es active IP Right Grant
- 2008-04-18 WO PCT/US2008/060811 patent/WO2008131212A2/en active Application Filing
- 2008-04-18 US US12/106,109 patent/US8327681B2/en not_active Expired - Fee Related
- 2008-04-18 CA CA2684430A patent/CA2684430C/en not_active Expired - Fee Related
- 2008-04-18 JP JP2010504263A patent/JP5149959B2/ja not_active Expired - Fee Related
- 2008-04-18 CA CA2684485A patent/CA2684485C/en active Active
- 2008-04-18 BR BRPI0810052A patent/BRPI0810052A2/pt not_active IP Right Cessation
- 2008-04-18 AU AU2008242805A patent/AU2008242805B2/en not_active Ceased
- 2008-04-18 WO PCT/US2008/060741 patent/WO2008131169A2/en active Application Filing
- 2008-04-18 AU AU2008242801A patent/AU2008242801B2/en not_active Ceased
- 2008-04-18 WO PCT/US2008/060746 patent/WO2008131173A1/en active Application Filing
- 2008-04-18 AU AU2008242797A patent/AU2008242797B2/en not_active Ceased
- 2008-04-18 US US12/106,134 patent/US7950453B2/en not_active Expired - Fee Related
- 2008-04-18 US US12/105,974 patent/US9181780B2/en not_active Expired - Fee Related
- 2008-04-18 BR BRPI0810053A patent/BRPI0810053A2/pt not_active IP Right Cessation
- 2008-04-18 WO PCT/US2008/060748 patent/WO2008131175A1/en active Search and Examination
- 2008-04-18 MX MX2009011190A patent/MX2009011190A/es active IP Right Grant
- 2008-04-18 US US12/106,042 patent/US7832484B2/en not_active Expired - Fee Related
- 2008-04-18 US US12/106,060 patent/US7931086B2/en not_active Expired - Fee Related
- 2008-04-18 WO PCT/US2008/060740 patent/WO2008131168A1/en active Application Filing
- 2008-04-18 CN CN2008800172674A patent/CN101680292B/zh not_active Expired - Fee Related
- 2008-04-18 EA EA200901431A patent/EA015915B1/ru not_active IP Right Cessation
- 2008-04-18 GB GB0917562A patent/GB2460980B/en not_active Expired - Fee Related
- 2008-04-18 WO PCT/US2008/060757 patent/WO2008131182A1/en active Application Filing
- 2008-04-18 AU AU2008242810A patent/AU2008242810B2/en not_active Ceased
- 2008-04-18 EP EP20080746209 patent/EP2142758A1/en not_active Withdrawn
- 2008-04-18 CA CA2684486A patent/CA2684486C/en not_active Expired - Fee Related
- 2008-04-18 BR BRPI0810026A patent/BRPI0810026A2/pt not_active IP Right Cessation
- 2008-04-18 CN CN200880017329.1A patent/CN101688442B/zh not_active Expired - Fee Related
- 2008-04-18 BR BRPI0810356 patent/BRPI0810356A2/pt not_active IP Right Cessation
- 2008-04-18 US US12/105,997 patent/US8662175B2/en not_active Expired - Fee Related
- 2008-04-18 US US12/106,086 patent/US8459359B2/en not_active Expired - Fee Related
- 2008-04-18 AU AU2008242807A patent/AU2008242807B2/en not_active Ceased
- 2008-04-18 CA CA2684466A patent/CA2684466C/en not_active Expired - Fee Related
- 2008-04-18 MX MX2009011118A patent/MX2009011118A/es active IP Right Grant
- 2008-04-18 CA CA 2684471 patent/CA2684471A1/en not_active Abandoned
- 2008-04-18 GB GB0917869.0A patent/GB2462020B/en not_active Expired - Fee Related
- 2008-04-18 US US12/106,035 patent/US7798220B2/en not_active Expired - Fee Related
- 2008-04-18 US US12/106,115 patent/US7841425B2/en not_active Expired - Fee Related
- 2008-04-18 WO PCT/US2008/060754 patent/WO2008131180A1/en active Application Filing
- 2008-04-18 WO PCT/US2008/060752 patent/WO2008131179A1/en active Search and Examination
- 2008-04-18 CA CA2684420A patent/CA2684420C/en not_active Expired - Fee Related
- 2008-04-18 CN CN2008800172265A patent/CN101680287B/zh not_active Expired - Fee Related
- 2008-04-18 NZ NZ58135908A patent/NZ581359A/xx not_active IP Right Cessation
- 2008-04-18 US US12/106,026 patent/US7841408B2/en not_active Expired - Fee Related
- 2008-04-18 CA CA2684468A patent/CA2684468C/en active Active
- 2008-04-18 US US12/106,065 patent/US8791396B2/en active Active
- 2008-04-18 US US12/106,128 patent/US7849922B2/en not_active Expired - Fee Related
- 2008-04-18 US US12/106,008 patent/US8381815B2/en not_active Expired - Fee Related
- 2008-04-18 US US12/106,139 patent/US20090120646A1/en not_active Abandoned
- 2008-04-18 CA CA2684442A patent/CA2684442C/en not_active Expired - Fee Related
- 2008-04-18 AU AU2008242796A patent/AU2008242796B2/en not_active Ceased
- 2008-04-18 KR KR1020097021901A patent/KR20100015733A/ko active IP Right Grant
- 2008-04-18 US US12/106,078 patent/US8042610B2/en not_active Expired - Fee Related
- 2008-04-18 EA EA200901429A patent/EA017711B1/ru not_active IP Right Cessation
- 2008-04-18 AU AU2008242808A patent/AU2008242808B2/en not_active Ceased
- 2008-04-18 AU AU2008242803A patent/AU2008242803B2/en not_active Ceased
-
2012
- 2012-03-23 GB GB1205244.5A patent/GB2485951B/en not_active Expired - Fee Related
- 2012-03-23 GB GB1205245.2A patent/GB2486613B/en not_active Expired - Fee Related
-
2015
- 2015-09-11 US US14/851,607 patent/US20160084051A1/en not_active Abandoned
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6605566B2 (en) * | 2000-08-23 | 2003-08-12 | Institut Francais Du Petrole | Supported bimetallic catalyst with a strong interaction between a group VIII metal and tin, and its use in a catalytic reforming process |
US20030201098A1 (en) * | 2001-10-24 | 2003-10-30 | Karanikas John Michael | In situ recovery from a hydrocarbon containing formation using one or more simulations |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11618849B2 (en) | 2016-06-24 | 2023-04-04 | Cleansorb Limited | Shale treatment |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EA015915B1 (ru) | Регулирование и оценивание режима давления при обработке пластов битуминозных песков | |
RU2454534C2 (ru) | Способ обработки пласта битуминозных песков и транспортное топливо, изготовленное с использованием способа | |
RU2415259C2 (ru) | Последовательное нагревание множества слоев углеводородсодержащего пласта | |
RU2487236C2 (ru) | Способ обработки подземного пласта (варианты) и моторное топливо, полученное с использованием способа | |
KR101434259B1 (ko) | 탄화수소 함유 지층을 처리하기 위한 병합 발생 시스템 및방법 | |
EP1381749A2 (en) | Method for in situ recovery from a tar sands formation and a blending agent produced by such a method | |
AU2002304692A1 (en) | Method for in situ recovery from a tar sands formation and a blending agent produced by such a method | |
RU2305175C2 (ru) | Термообработка углеводородсодержащего пласта по месту залегания и повышение качества получаемых флюидов перед последующей обработкой |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s) |
Designated state(s): AM AZ BY KG MD TJ TM |
|
MM4A | Lapse of a eurasian patent due to non-payment of renewal fees within the time limit in the following designated state(s) |
Designated state(s): KZ RU |