RU2349745C2 - Способ обработки подземного пласта для конверсии органического вещества в извлекаемые углеводороды (варианты) - Google Patents

Способ обработки подземного пласта для конверсии органического вещества в извлекаемые углеводороды (варианты) Download PDF

Info

Publication number
RU2349745C2
RU2349745C2 RU2006101868/03A RU2006101868A RU2349745C2 RU 2349745 C2 RU2349745 C2 RU 2349745C2 RU 2006101868/03 A RU2006101868/03 A RU 2006101868/03A RU 2006101868 A RU2006101868 A RU 2006101868A RU 2349745 C2 RU2349745 C2 RU 2349745C2
Authority
RU
Russia
Prior art keywords
conductive material
electrically conductive
well
wells
electrodes
Prior art date
Application number
RU2006101868/03A
Other languages
English (en)
Other versions
RU2006101868A (ru
Inventor
Вилль м А. САЙМИНГТОН (US)
Вилльям А. Саймингтон
Мишель М. ТОМАС (US)
Мишель М. ТОМАС
Куинн Р. ПАССИ (US)
Куинн Р. ПАССИ
Абдель Вадуд М. ЭЛЬ-РАББА (US)
Абдель Вадуд М. ЭЛЬ-РАББА
Джефф Х. МОСС (US)
Джефф Х. МОСС
Роберт Д. КАМИНСКИ (US)
Роберт Д. Камински
Original Assignee
Эксонмобил Апстрим Рисерч Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Эксонмобил Апстрим Рисерч Компани filed Critical Эксонмобил Апстрим Рисерч Компани
Publication of RU2006101868A publication Critical patent/RU2006101868A/ru
Application granted granted Critical
Publication of RU2349745C2 publication Critical patent/RU2349745C2/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2401Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2405Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection in association with fracturing or crevice forming processes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

Настоящая группа изобретений относится к обработке подземного пласта для конверсии органического вещества в извлекаемые углеводороды. Техническим результатом изобретения является повышение эффективности способа. В соответствии с изобретением способ включает следующие этапы: обеспечивание, по меньшей мере, одной скважины, проходящей в обрабатываемый интервал в подземном пласте; создание, по меньшей мере, одного разрыва от, по меньшей мере, одной скважины, который пересекает, по меньшей мере, одну скважину; помещение электропроводного материала в разрыве; осуществление контакта двух электродов с электропроводным материалом; приложение напряжения к двум электродам для пропускания электрического тока по разрыву таким образом, что электрический ток проходит, по меньшей мере, по части электропроводного материала и достаточное тепло вырабатывают электрическим удельным сопротивлением в части электропроводного материала для осуществления пиролиза, по меньшей мере, части твердого органического вещества в извлекаемые углеводороды. 2 н. и 10 з.п. ф-лы, 5 ил.

Description

Область техники
Настоящее изобретение относится к способам обработки подземного пласта для конверсии органического вещества в извлекаемые углеводороды. В частности, настоящее изобретение относится к способам, которые включают следующие этапы: обеспечение скважин в пласте, создание разрывов в пласте, каждый из которых пересекает, по меньшей мере одну, скважину; размещение электропроводного материала в разрывах и пропускание электрического тока по разрывам и по электропроводному материалу для получения достаточного количества тепла, вырабатываемого электрическим удельным сопротивлением в электропроводном материале для осуществления пиролиза органического вещества в извлекаемые углеводороды.
Предшествующий уровень техники
Figure 00000001
Figure 00000002
Figure 00000003
Figure 00000004
Нефтяные сланцы, нефтематеринские породы и другие имеющие значительное содержание органических веществ породы содержат кероген - твердый предшественник углеводорода, который при его конверсии дает извлекаемые нефть и газ в результате его нагревания. Добыча нефти и газа из содержащих кероген пород сопряжена с двумя трудностями. Во-первых, твердый кероген необходимо превратить в нефть и газ, которые будут протекать через породу. При нагревании керогена он подвергается пиролизу, химическим реакциям, которые нарушают связи и формируют такие меньшие молекулы, как нефть и газ. Вторая трудность добычи углеводорода из нефтяных сланцев и других имеющих значительное содержание органического вещества пород заключается в том, что эти породы обычно имеют очень низкую проницаемость. При нагревании породы и преобразования керогена в нефть и газ проницаемость повышается.
Для добычи нефти и газа из содержащих кероген пород предложено несколько технологий.
Приповерхностные нефтяные.сланцы разрабатывают и перегоняют на поверхности уже в течение более ста лет. В 1862 г. Джеймс Янг начал перерабатывать шотландские сланцы, и это предприятие действовало почти 100 лет. Промышленная перегонка нефтяных сланцев также проводится в таких странах, как Австралия, Бразилия, Китай, Эстония, Франция, Россия, Южная Африка, Испания и Швеция. Но эта работа в последние годы почти прекратилась, поскольку оказалась нерентабельной и ввиду экологических ограничений, налагаемых на удаление отработанных сланцев (ссылка 26). Помимо этого, для перегонки на поверхности требуется разработка нефтяного сланца, и это обстоятельство ограничивает ее пластами малой глубины залегания.
Способы перегонки нефтяных сланцев на месте были разработаны и прошли экспериментальные испытания на месторождении «Грин Ривер» в Соединенных Штатах. Переработка на месте дает некоторые преимущества, т.к. снижаются затраты на погрузку/разгрузку материала и на удаление отработанных сланцев. Согласно проводимым на месте экспериментальным испытаниям нефтяные сланцы сначала дробили, и потом сжигание проводили при помощи нагнетания воздуха. Для эффективного охвата сжиганием главным условием является обеспечение раздробленного слоя, имеющего, по существу, единообразный размер дробления и, по существу, единообразное распределение незаполненного продуктом пространства пласта. Размер дробления составлял порядка нескольких дюймов.
Два модифицированных экспериментальных испытания были проведены компаниями «Оксидентал» и «Рио Бланко» (ссылки 1, 21). Часть нефтяных сланцев добывалась для создания незаполненного продуктом пространства пласта, и затем остальную их часть дробили с помощью взрывчатых веществ. Воздух нагнетали сверху камеры дробления, затем сланец поджигали, и фронт сжигания перемещался вниз. Перегоняемая нефть перед этим фронтом стекала вниз и там отбиралась.
В другом экспериментальном испытании «настоящий» геокинетический способ создавал объем раздробления, и согласно этому способу выполняли точно рассчитанное размещение взрывчатых веществ, взрыв которых поднимал 12-метровую верхнюю часть разреза (ссылка 23). Воздух нагнетали по стволам скважин в конце объема раздробления, и фронт сжигания перемещался горизонтально. Нефтяные сланцы перегонялись впереди горения; нефть стекала книзу раздробленного объема и, в конечном счете, в добывающие скважины.
Результаты этих проводимых на месте экспериментальных испытаний по сжиганию были успешными, но эти способы внедрены не были по той причине, что их сочли экономически невыгодными. Основными затратами были расходы на раздробление нефтяного сланца и на сжатие воздуха.
Некоторые изобретатели предложили сжигание на месте в нефтяных сланцах, в которых выполнены гидравлические разрывы, но проведенные полевые испытания обеспечивали ограниченную зону досягания от ствола скважины (ссылки 10, 11, 17).
Перегонка на месте за счет теплопроводности от нагретых стволов скважин была изобретена Люнгстремом в 1940 г. и впервые была выполнена компанией "Swedish Shale Oil Co.", действующее предприятие которой работало с 1944 г. до 1950-х гг. (ссылки 19, 24). Этот способ применялся для проницаемых нефтяных сланцев на глубине 6-24 м в Норрторпе, Швеция. Это месторождение разрабатывалось шестиугольными участками, и при этом вокруг каждой подающей пар скважины находились шесть нагревающих скважин. Интервал между скважинами составлял 2,2 м. Электрические резистивные нагреватели в стволах скважины подавали тепло в течение пяти месяцев, и при этом температура в эксплуатационных скважинах поднималась до 400°С. Добыча углеводородов паром начиналась с 280°С и продолжалась и после нагревания. Пары конденсировались в легкую нефтепродукцию с удельным весом 0,87.
Van Meurs и др. разработали метод теплопроводного нагревания из стволов скважин (ссылка 24). Запатентованный ими способ заключается в нагревании непроницаемых нефтяных сланцев нагревающими скважинами до 600°С с интервалом между скважинами свыше 6 м. Согласно этому техническому решению теплонагнетательные скважины можно нагревать либо электрическими резистивными нагревателями, либо газовыми нагревателями. Авторы указанного способа провели полевые испытания в обнажающемся нефтесланцевом пласте в скважинах глубиной 6-12 м с интервалом 0,6 м. После трех месяцев температура в испытательном участке достигла 300°С. Показатели дебита нефти согласно пробе Фишера составили 90%. Авторы отметили, что проницаемость повышалась между скважинами, и они полагают, что это может быть обусловлено горизонтальными разрывами, сформированными объемным расширением вследствие реакции конверсии керогена в углеводороды.
Поскольку теплопроводное нагревание ограничено расстояниями в несколько метров, теплопроводное нагревание из стволов скважин нужно создавать в очень тесно расположенных друг к другу скважинах. Это обстоятельство ограничивает экономическую применимость этого способа для нефтяных сланцев очень малой глубины залегания.
Covell и др. предложили перегонку раздробленного слоя нефтяного сланца путем газификации и сжигания находящегося под ними угольного пласта (ссылка 5). Для этого способа, названного «полным извлечением энергии запаса месторождения», требуется направленная вверх конвекция горячих дымовых газов (727°С) из угольного пласта в раздробленный слой нефтяного сланца. Модели прогнозируют срок эксплуатации длительностью в 20 суток с дебитом нефти в 89% по пробе Фишера. Крупномасштабные эксперименты с нагнетанием горячих дымовых газов в слои блоков нефтяных сланцев показали значительное закоксовывание и растрескивание с дебитом нефти в 68% по пробе Фишера. Как и в случае перегонки нефтяных сланцев на месте, раздробление нефтяных сланцев согласно этому способу ограничивает его нефтяными сланцами малой глубины залегания и связано со значительными затратами.
Passey и др. предлагают способ получения углеводородов из имеющих значительное содержание органических веществ пород путем выполнения на месте сжигания нефти в прилегающем продуктивном пласте (ссылка 16). При нагревании до температур свыше 250°С кероген в упомянутых породах превращается в нефть и газ затем добываемые. Проницаемость пород, имеющих значительное содержание органических веществ, возрастает в результате преобразования керогена. Этот способ ограничен имеющими значительное содержание органических веществ породами, которые имеют природный нефтяной резервуар в примыкающем пласте.
При перегонке на месте электромагнитным нагреванием пласта электромагнитная энергия проходит по пласту, и порода нагревается за счет электрического сопротивления или за счет поглощения диэлектрической энергии. Насколько нам известно, этот способ не применялся для нефтяных сланцев, но были проведены полевые испытания в пластах тяжелой нефти.
Техническая возможность проведения нагрева сопротивлением в подземном пласте продемонстрирована в экспериментальном испытании с тяжелой нефтью, в котором «электрический предварительный нагрев» был использован для пропускания электрического тока между двумя скважинами в целях уменьшения вязкости и создания каналов сообщения между скважинами для совместного следования с потоком водяного пара (ссылка 4). Нагрев сопротивлением в подземном пласте запатентован и применен в промышленном масштабе при помощи метода пропускания переменного тока или радиочастотной электроэнергии между расположенными друг над другом проводящими разрывами или электродами в одной и той же скважине (ссылки 14, 6, 15, 12). Ссылка №7 описывает нагрев сопротивлением в пласте путем пропускания переменного тока между разными скважинами. Другие ссылки описывают способы создания эффективного электрода в стволе скважины (ссылки 20, 8). Ссылка №27 описывает способ, согласно которому электрический ток проходит по разрыву, соединяющему две скважины для начала протекания тока в толще окружающего пласта, при этом пласт нагревается в первую очередь в связи с объемным электрическим сопротивлением пласта.
Нагрев сопротивлением пласта низкочастотным электромагнитным возбуждением ограничен температурами ниже температуры кипения воды в данном месте для обеспечения пропускной способности породы по току. Поэтому конверсия керогена не является применимой в тех случаях, когда для конверсии в промышленном масштабе нужны гораздо более высокие температуры.
Высокочастотное нагревание (радио- или сверхвысокая частота) обеспечивает возможность закорачивания сухой породы, чтобы ее можно было использовать для осуществления нагревания до более высоких температур. Маломасштабный полевой эксперимент подтвердил, что высокие температуры и конверсия керогена достижимы (ссылка №2). Проникновение ограничивается несколькими метрами (ссылка №25), и поэтому для этого способа потребуется большое число стволов скважин, и его экономичность будет маловероятной.
Согласно способам, которые применяют электрод для приложения электрического возбуждения непосредственно к пласту, электрическая энергия проходит по пласту и преобразуется в тепло. Один из патентов предлагает тепловое нагревание газового гидрата от электропроводного расклинивающего наполнителя только в одной скважине, причем ток идет в разрыв и предположительно в землю (ссылка №9).
Даже ввиду существующих и предлагаемых в настоящее время технологий целесообразно обеспечить усовершенствованные способы обработки пластов для конверсии органического материала в извлекаемые углеводороды.
Поэтому цель настоящего изобретения заключается в создании упомянутых усовершенствованных способов. Прочие объекты настоящего изобретения поясняются в приводимом ниже описании изобретения.
Сущность изобретения
Согласно изобретению создан способ обработки подземного пласта, содержащего твердое органическое вещество, включающий следующие этапы:
обеспечение, по меньшей мере, одной скважины, проходящей в обрабатываемый интервал в подземном пласте;
создание, по меньшей мере, одного разрыва от, по меньшей мере, одной скважины, который пересекает, по меньшей мере, одну скважину;
помещение электропроводного материала в разрыве;
осуществление контакта двух электродов с электропроводным материалом;
приложение напряжения к двум электродам для пропускания электрического тока по разрыву таким образом, что электрический ток проходит по, по меньшей мере, части электропроводного материала, и достаточное тепло вырабатывается электрическим удельным сопротивлением в части электропроводного материала для осуществления пиролиза, по меньшей мере, части твердого органического вещества в извлекаемые углеводороды.
Подземный пласт может содержать нефтяные сланцы.
Скважины могут быть, по существу, вертикальными или горизонтальными.
Разрыв может быть, по существу, горизонтальным, вертикальным или продольным по отношению к скважине, от которой он создан.
Электропроводный материал может содержать расклинивающий наполнитель.
Электропроводным материалом может быть электропроводный цемент.
При осуществлении способа могут обеспечиваться, по меньшей мере, две скважины, проходящие в обрабатываемый интервал в подземном пласте, и разрыв пересекает, по меньшей мере, две скважины.
Согласно другому варианту выполнения способ обработки подземного пласта тяжелой нефти или битуминозного песка, содержащего углеводороды, включает следующие этапы:
обеспечение, по меньшей мере, одной скважины, проходящей в обрабатываемый интервал в подземном пласте;
создание, по меньшей мере, одного разрыва от, по меньшей мере, одной скважины, который пересекает, по меньшей мере, одну скважину;
помещение электропроводного расклинивающего материала в разрыв;
осуществление контакта двух электродов с электропроводным материалом;
приложение напряжения к двум электродам для пропускания электрического тока по разрыву таким образом, что электрический ток проходит по, по меньшей мере, части электропроводного материала, и достаточное тепло вырабатывается электрическим удельным сопротивлением в части электропроводного материала для уменьшения вязкости, по меньшей мере, части углеводородов.
Настоящее изобретение использует электропроводный материал в качестве резистивного нагревателя. Электрический ток проходит в основном по резистивному нагревателю, состоящему из электропроводного материала. В этом резистивном нагревателе электроэнергия преобразуется в тепловую энергию, и эта энергия транспортируется в пласт теплопередачей.
В общем, настоящее изобретение представляет собой способ получения углеводородов из пород, имеющих значительное содержание органических веществ (т.е. нефтематеринских пород, нефтяных сланцев). Этот способ применяет электрическое нагревание пород, имеющих значительное содержание органических веществ. Действующий на месте электрический нагреватель создается введением электропроводного материала в разрыв в содержащем органические вещества пласте, в котором выполняется данный способ. В описании настоящего изобретения используется термин «гидравлический разрыв». Но изобретение не ограничивается его применением в гидравлических разрывах. Настоящее изобретение целесообразно для его применения в любом разрыве, созданном любым целесообразным по мнению специалиста образом.
Краткое описание чертежей
Преимущества настоящего изобретения поясняются из приводимого ниже подробного описания со ссылкой на прилагаемые чертежи, на которых изображено следующее:
фиг.1 показывает один вариант осуществления настоящего изобретения;
фиг.2 показывает другой вариант осуществления настоящего изобретения;
фиг.3, 4, и 5 показывают лабораторный эксперимент, проведенный для испытания способа согласно настоящему изобретению.
Изобретение поясняется описанием предпочтительных вариантов осуществления изобретения, но подразумевается, что изобретение не ограничивается ими. Напротив, изобретение включает все альтернативы, модификации и эквиваленты, которые можно включить в идею и диапазон настоящего описания, определяемые прилагаемой формулой изобретения.
Подробное описание изобретения
Фиг.1 показывает вариант применения данного способа.
Согласно способу, показанному на фиг.1, тепло 10 направляют через, по существу, горизонтальный гидравлический разрыв 12, расклиненный имеющими, по существу, размер песка частицами электропроводного материала (на фиг.1 не показано). Напряжение 14 прилагается в две скважины 16 и 18, проходящие в разрыв 12. Предпочтительным является переменное напряжение 14, т.к. переменный ток легче генерировать и он сводит к минимуму электрохимическую коррозию, в противоположность постоянному напряжению. Но для данного изобретения целесообразной является любая форма электрической энергии, включая, помимо прочего, постоянный ток. Расклиненный разрыв 12 действует как нагревающий элемент, проходящий по нему электрический ток генерирует тепло 10 за счет нагрева сопротивлением. Тепло 10 передается за счет теплопроводности в породу 15, имеющую значительное содержание органических веществ и окружающую разрыв 12. В результате этого имеющая значительное содержание органических веществ порода 15 нагревается в достаточной степени, чтобы преобразовать содержащийся в породе 15 кероген в углеводороды. Сформированные углеводороды затем добывают известными способами. Фиг.1 показывает способ согласно настоящему изобретению с одним горизонтальным гидравлическим разрывом 12 и одной парой вертикальных скважин 16, 18. Способ согласно настоящему изобретению не ограничивается осуществлением согласно фиг.1. Возможные варианты включают использование горизонтальных скважин и/или вертикальных разрывов. Производственные варианты могут предусматривать применение нескольких разрывов и нескольких скважин, расположенных в определенной конфигурации или линейно. Главное отличие настоящего изобретения от прочих способов обработки пластов пород, имеющих органическое вещество, заключается в том, что выполненный на месте нагревающий элемент создается проведением электрического тока по разрыву, содержащему электропроводный материал, в результате чего достаточное тепло генерируется электрическим удельным сопротивлением в материале в целях осуществления пиролиза, по меньшей мере, части органического вещества в извлекаемые углеводороды.
Для генерирования напряжения/тока в электропроводном материале в разрывах можно использовать любые средства, известные специалистам в данной области техники. Хотя количество тепла и соответствующее количество электрического тока, требуемые для формирования извлекаемых углеводородов, могут изменяться в зависимости от типа пород, имеющих значительное содержание органических веществ, эти количества можно определить методами, известными из уровня техники. Например, кинетические параметры для нефтяных сланцев месторождения Грин Ривер указывают на то, что при нагревании порядка 100°С (180°F) в год полная конверсия керогена произойдет при температуре около 324°С (615°F). Пятьдесят процентов конверсии произойдет при температуре около 291°С (555°F), но, вероятно, потребуется несколько лет, чтобы достичь таких значений глубины проникновения тепла, которые нужны для формирования экономичных запасов.
Вероятно, что в ходе термической конверсии проницаемость нефтяных сланцев повысится. Это может быть обусловлено увеличенным объемом пор, имеющимся для протекания при конверсии твердого керогена в жидкие или газообразные углеводороды, либо это может быть обусловлено формированием разрывов при конверсии керогена в углеводороды с одновременным существенным увеличением его объема в замкнутой системе. Если первоначальная проницаемость слишком низка для обеспечения возможности выхода углеводородов, то излишнее поровое давление обязательно станет причиной образования разрывов.
Образованные углеводороды можно добывать по тем же скважинам, по которым электроэнергия поступает в проводящие разрывы, либо можно использовать дополнительные скважины. Можно использовать любой известный специалистам способ добычи извлекаемых углеводородов.
На Фиг.2 показан предпочтительный вариант осуществления настоящего изобретения. Фиг.2 показывает вариант применения способа, согласно которому тепло подается по множеству, по существу, вертикальных гидравлических разрывов 22, расклиненных частицами электропроводного материала (на фиг.2 не показано). Каждый гидравлический разрыв 22 является продольным по отношению к скважине, от которой он создан. Напряжение 24 прилагается по двум или более скважинам 26, 28, проходящим в разрывы 22. В этом варианте осуществления скважины 26 являются, по существу, горизонтальными, и скважины 28 являются, по существу, вертикальными. Переменное напряжение 24 является предпочтительным, поскольку переменный ток легче генерировать, и он сводит к минимуму электрохимическую коррозию - в противоположность постоянному напряжению. Для применения в настоящем изобретении целесообразным является любой вид энергии, включая, помимо прочего, постоянный ток. Согласно Фиг.2 положительные выводы электрических цепей, генерирующих напряжение 24, расположены в скважинах 26, и отрицательные выводы цепей находятся в скважинах 28. Расклиненные разрывы 22 действуют как нагревающие элементы, электрический ток, проходящий по расклиненным разрывам 22, генерирует тепло за счет нагрева сопротивлением. Это тепло передается теплопередачей породам 25, имеющим значительное содержание органических веществ и окружающим разрывы 22. В результате этого порода 25, имеющая значительное содержание органических веществ, нагревается в достаточной степени, чтобы преобразовать в углеводород кероген, содержащийся в породе 25. Образованные углеводороды затем добывают с помощью хорошо известных способов добычи. При помощи этого варианта осуществления настоящего изобретения, по сравнению с вариантом согласно фиг.1, обеспечивается возможность нагрева большего объема пород, имеющих значительное содержание органических веществ, и более единообразное нагревание, в результате чего нагреваться будет меньший объем пород, имеющих значительное содержание органических веществ, чем требуемый для полной конверсии керогена. Вариант согласно Фиг.2 не ограничивает какую бы то ни было особенность настоящего изобретения.
Разрывы, в которых помещается проводящий материал, могут быть, по существу, вертикальными или, по существу, горизонтальными. Этот разрыв может быть, но необязательно, по существу, продольным по отношению к скважине, от которой он создан.
В качестве электропроводного расклинивающего наполнителя можно использовать любые соответствующие материалы. Материал должен предпочтительно соответствовать нескольким критериям, известным из уровня техники. Электрическое удельное сопротивление слоя расклинивающего наполнителя, который предположительно будет подвергаться воздействию напряжений, является предпочтительно достаточно высоким, чтобы обеспечивать нагрев сопротивлением, и при этом достаточно низким, чтобы проводить предполагаемый электрический ток от одной скважины к другой. Материал расклинивающего наполнителя также должен предпочтительно соответствовать обычным критериям расклинивающих наполнителей, т.е. он должен обладать достаточной прочностью, чтобы удерживать разрыв в раскрытом положении, и иметь достаточную плотность для его закачки в разрыв. Нормы экономичности могут ограничивать верхний предел допустимой стоимости расклинивающего наполнителя. Можно использовать любой известный из уровня техники материал для расклинивающего наполнителя. Три соответствующих класса расклинивающего наполнителя включают песок с тонким металлическим покрытием, композитные металлокерамические материалы, материалы на основе углерода. Соответствующий класс не являющегося расклинивающим наполнителем электропроводного материала содержит проводящие цементы. В частности, в качестве расклинивающего наполнителя можно использовать зеленый или черный карбид кремния, карбид бора или прокаленный нефтяной кокс. Для его использования в данном изобретении специалисты могут выбрать соответствующий расклинивающий или не являющийся расклинивающим электропроводный материал. От электропроводного материала не требуется, чтобы он был однородным, и он может представлять собой смесь двух или более соответствующих электропроводных материалов.
ПРИМЕР
Было проведено лабораторное испытание, и его результаты показывают, что данное изобретение успешно преобразует кероген в породе в извлекаемые углеводороды в лабораторных условиях. Согласно фиг.3 и 4 из содержащего кероген подземного пласта был взят керн 30. Согласно фиг.3 керн 30 был разрезан на две части 32 и 34. Поддон 36 глубиной около 0,25 мм (1/16 дюйма) был врезан в часть 32 образца, и заменяющий расклинивающий наполнитель 38 (дробь №170 из литой стали диаметром около 0,1 мм (0,02 дюйма)) был помещен в поддоне 36. Согласно чертежу было использовано достаточное количество расклинивающего наполнителя 38 для существенного заполнения поддона 36. Электроды 35 и 37 были помещены в контакт с расклинивающим наполнителем 38. Согласно фиг.4 части 32 и 34 образца были помещены в контакт друг с другом в виде реконструкции керна 30 и помещены в гильзу 40 из нержавеющей стали, скрепленную тремя хомутами 42 из нержавеющей стали. Хомуты 42 стягивались для приложения напряжения к заменяющему расклинивающему наполнителю (на чертеже фиг.4 не показано), как и требуется от расклинивающего наполнителя для обеспечения напряжений на месте в действительных условиях. Термопара (на чертежах не показана) была вставлена в керн 30 почти посередине между поддоном 36 и наружным диаметром керна 30. Сопротивление между электродами 35 и 37 было измерено при 822 Ом до приложения электрического тока.
Всю сборку затем поместили в емкость под давлением (на чертежах не показано) со стеклянной облицовкой, на которой будут скапливаться формируемые углеводороды. Емкость под давлением имеет электрическое запитывание. В емкости под давлением был создан вакуум, и емкость была заполнена аргоном под давлением 500 фунтов/дюйм, чтобы обеспечить химически инертную атмосферу для эксперимента. Электрический ток в диапазоне 18-19 А протекал между электродами 35 и 37 в течение 5 часов. Термопара в керне 30 была измерена при температуре 268°С через примерно 1 час, и затем температуру постепенно снизили до 250°С. С помощью хорошо известной специалистам методики вычисления было определено, что высокая температура в местоположении поддона 36 составляла от 350°С до 400°С.
После завершения эксперимента и охлаждения керна 30 до температуры окружающей среды сосуд под давлением был открыт, и 0,15 мл нефти было получено со дна стеклянной облицовки, в которой проводился эксперимент. Керн 30 затем был удален из сосуда под давлением, и было измерено сопротивление электродов 35 и 37. Сопротивление после эксперимента составило 49 Ом.
Фиг.5 показывает график 52, на котором ордината 51 показывает электрическую мощность в ваттах, потребленную в эксперименте; и абсцисса 53 показывает длительность эксперимента в минутах; график 62, на котором ордината 61 показывает температуру в градусах Цельсия, измеряемую на термопаре в керне 30 (фиг.3 и 4) в течение эксперимента; и абсцисса 63 показывает длительность эксперимента в минутах; и график 72, ордината 71 которого показывает сопротивление в Омах, измеряемое в ходе эксперимента между электродами 35 и 37 (фиг.3 и 4), и абсцисса 73 показывает длительность эксперимента в минутах. Значения сопротивления, измеряемые в течение эксперимента нагревания, показаны на графике 72; значения сопротивления, измеренного (822 и 49 Ом) до и после эксперимента, не показаны.
После охлаждения керна 30 до температуры окружающей среды он был удален из емкости и разобран. Было отмечено, что заменяющий расклинивающий наполнитель 38 был в нескольких местах пропитан битуминозными углеводородами или битумом, сформированными из нефтяного сланца во время эксперимента. Сечение было сделано по трещине, возникшей в керне 30 по причине теплового расширения, имевшего место в течение эксперимента. Вблизи было отмечено имеющее форму полумесяца сечение подвергшегося конверсии нефтяного сланца вблизи расклинивающего наполнителя 38.
Настоящее изобретение применимо к конверсии твердого органического вещества в извлекаемые углеводороды в нефтяных сланцах, но оно также применимо и к пластам тяжелой нефти или к битуминозным пескам. В этих случаях прилагаемый электрический нагрев служит для снижения вязкости углеводородов. Настоящее изобретение изложено со ссылкой на одно или несколько осуществлений, но предполагается, что могут быть выполнены другие модификации в рамках объема настоящего изобретения, излагаемого в приводимой ниже формуле изобретения.

Claims (12)

1. Способ обработки подземного пласта, содержащего твердое органическое вещество, включающий следующие этапы:
обеспечение, по меньшей мере, одной скважины, проходящей в обрабатываемый интервал в подземном пласте;
создание, по меньшей мере, одного разрыва от, по меньшей мере, одной скважины, который пересекает, по меньшей мере, одну скважину;
помещение электропроводного материала в разрыве;
осуществление контакта двух электродов с электропроводным материалом;
приложение напряжения к двум электродам для пропускания электрического тока по разрыву таким образом, что электрический ток проходит по, по меньшей мере, части электропроводного материала и достаточное тепло вырабатывают электрическим удельным сопротивлением в части электропроводного материала для осуществления пиролиза, по меньшей мере, части твердого органического вещества в извлекаемые углеводороды.
2. Способ по п.1, в котором подземный пласт содержит нефтяные сланцы.
3. Способ по п.1, в котором скважины по существу являются вертикальными.
4. Способ по п.1, в котором скважины по существу являются горизонтальными.
5. Способ по п.1, в котором разрыв является по существу горизонтальным.
6. Способ по п.1, в котором разрыв является по существу вертикальным.
7. Способ по п.1, в котором разрыв является по существу продольным по отношению к скважине, от которой он создан.
8. Способ по п.1, в котором электропроводный материал содержит расклинивающий наполнитель.
9. Способ по п.1, в котором электропроводным материалом является электропроводный цемент.
10. Способ по п.1, в котором обеспечивают, по меньшей мере, две скважины, проходящие в обрабатываемый интервал в подземном пласте, и разрыв пересекает, по меньшей мере, две скважины.
11. Способ по п.10, в котором электропроводный материал является расклинивающим наполнителем.
12. Способ обработки подземного пласта тяжелой нефти или битуминозного песка, содержащего углеводороды, включающий следующие этапы:
обеспечение, по меньшей мере, одной скважины, проходящей в обрабатываемый интервал в подземном пласте;
создание, по меньшей мере, одного разрыва от, по меньшей мере, одной скважины, который пересекает, по меньшей мере, одну скважину;
помещение электропроводного расклинивающего материала в разрыв;
осуществление контакта двух электродов с электропроводным материалом;
приложение напряжения к двум электродам для пропускания электрического тока по разрыву таким образом, что электрический ток проходит по, по меньшей мере, части электропроводного материала и достаточное тепло вырабатывают электрическим удельным сопротивлением в части электропроводного материала для уменьшения вязкости по меньшей мере части углеводородов.
RU2006101868/03A 2003-06-24 2004-04-14 Способ обработки подземного пласта для конверсии органического вещества в извлекаемые углеводороды (варианты) RU2349745C2 (ru)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US48213503P 2003-06-24 2003-06-24
US60/482,135 2003-06-24
US51199403P 2003-10-16 2003-10-16
US60/511,994 2003-10-16

Publications (2)

Publication Number Publication Date
RU2006101868A RU2006101868A (ru) 2006-06-10
RU2349745C2 true RU2349745C2 (ru) 2009-03-20

Family

ID=34107672

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2006101868/03A RU2349745C2 (ru) 2003-06-24 2004-04-14 Способ обработки подземного пласта для конверсии органического вещества в извлекаемые углеводороды (варианты)

Country Status (5)

Country Link
US (1) US7331385B2 (ru)
CN (1) CN100392206C (ru)
JO (1) JO2447B1 (ru)
RU (1) RU2349745C2 (ru)
WO (1) WO2005010320A1 (ru)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2447274C2 (ru) * 2006-10-20 2012-04-10 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Нагревание углеводородсодержащих пластов в поэтапном процессе линейного вытеснения
RU2477788C1 (ru) * 2011-10-04 2013-03-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ подземной газификации
WO2014014390A2 (ru) * 2012-07-17 2014-01-23 Linetskiy Alexander Petrovich Способ разработки месторождений и извлечения нефти и газа из нефтегазовых и сланцевых пластов
WO2014046786A1 (en) * 2012-09-19 2014-03-27 Seldner Josh Geothermal pyrolysis process and system
RU2521255C1 (ru) * 2012-12-10 2014-06-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ подземной газификации
RU2543235C2 (ru) * 2013-07-23 2015-02-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный архитектурно-строительный университет" КГАСУ Способ разработки сланцевых месторождений
WO2015053731A1 (ru) * 2013-10-07 2015-04-16 Эдуард Анатольевич ТРОЦЕНКО Способ подземной газификации углеводородсодержащего пласта
RU2560040C1 (ru) * 2014-06-03 2015-08-20 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ разработки залежи высоковязкой нефти и битума
RU2588086C2 (ru) * 2011-03-14 2016-06-27 Тоталь С.А. Электрический и статический разрыв пласта
RU2589011C2 (ru) * 2010-03-03 2016-07-10 Сименс Акциенгезелльшафт УСТРОЙСТВО И СПОСОБ ДЛЯ ДОБЫЧИ НА МЕСТЕ ЗАЛЕГАНИЯ (in-situ) БИТУМА ИЛИ ТЯЖЕЛОЙ ФРАКЦИИ НЕФТИ
US9394775B2 (en) 2011-03-14 2016-07-19 Total S.A. Electrical fracturing of a reservoir
US9784084B2 (en) 2013-03-13 2017-10-10 Jilin University Method for heating oil shale subsurface in-situ

Families Citing this family (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NZ522211A (en) 2000-04-24 2004-05-28 Shell Int Research A method for treating a hydrocarbon containing formation
US20080087420A1 (en) * 2006-10-13 2008-04-17 Kaminsky Robert D Optimized well spacing for in situ shale oil development
US7631691B2 (en) * 2003-06-24 2009-12-15 Exxonmobil Upstream Research Company Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
WO2005103445A1 (en) 2004-04-23 2005-11-03 Shell Oil Company Subsurface electrical heaters using nitride insulation
US7546873B2 (en) 2005-04-22 2009-06-16 Shell Oil Company Low temperature barriers for use with in situ processes
CA2605729C (en) 2005-04-22 2015-07-07 Shell Internationale Research Maatschappij B.V. In situ conversion process utilizing a closed loop heating system
NZ567656A (en) * 2005-10-24 2012-04-27 Shell Int Research Methods of filtering a liquid stream produced from an in situ heat treatment process
GB2450641B (en) 2006-01-30 2010-06-09 Exxonmobil Upstream Res Co Method for spatial filtering of electromagnetic survey data
WO2007126676A2 (en) 2006-04-21 2007-11-08 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery
EP2010755A4 (en) 2006-04-21 2016-02-24 Shell Int Research HEATING SEQUENCE OF MULTIPLE LAYERS IN A FORMATION CONTAINING HYDROCARBONS
AU2007313395B2 (en) 2006-10-13 2013-11-07 Exxonmobil Upstream Research Company Enhanced shale oil production by in situ heating using hydraulically fractured producing wells
US20100095742A1 (en) 2006-10-13 2010-04-22 Symington William A Testing Apparatus For Applying A Stress To A Test Sample
US20080207970A1 (en) * 2006-10-13 2008-08-28 Meurer William P Heating an organic-rich rock formation in situ to produce products with improved properties
US8151884B2 (en) * 2006-10-13 2012-04-10 Exxonmobil Upstream Research Company Combined development of oil shale by in situ heating with a deeper hydrocarbon resource
AU2007313391B2 (en) 2006-10-13 2013-03-28 Exxonmobil Upstream Research Company Improved method of developing subsurface freeze zone
US7862706B2 (en) * 2007-02-09 2011-01-04 Red Leaf Resources, Inc. Methods of recovering hydrocarbons from water-containing hydrocarbonaceous material using a constructed infrastructure and associated systems
JO2601B1 (en) * 2007-02-09 2011-11-01 ريد لييف ريسورسيز ، انك. Methods of extraction of hydrocarbons from hydrocarbons using existing infrastructure and accompanying systems
AU2014206234B2 (en) * 2007-03-22 2016-01-14 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
CA2676086C (en) * 2007-03-22 2015-11-03 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
US8087460B2 (en) * 2007-03-22 2012-01-03 Exxonmobil Upstream Research Company Granular electrical connections for in situ formation heating
WO2008131179A1 (en) 2007-04-20 2008-10-30 Shell Oil Company In situ heat treatment from multiple layers of a tar sands formation
WO2008143745A1 (en) * 2007-05-15 2008-11-27 Exxonmobil Upstream Research Company Downhole burner wells for in situ conversion of organic-rich rock formations
WO2008143749A1 (en) * 2007-05-15 2008-11-27 Exxonmobil Upstream Research Company Downhole burners for in situ conversion of organic-rich rock formations
US8146664B2 (en) * 2007-05-25 2012-04-03 Exxonmobil Upstream Research Company Utilization of low BTU gas generated during in situ heating of organic-rich rock
CN101680293B (zh) 2007-05-25 2014-06-18 埃克森美孚上游研究公司 结合原位加热、动力装置和天然气处理装置产生烃流体的方法
US8113272B2 (en) 2007-10-19 2012-02-14 Shell Oil Company Three-phase heaters with common overburden sections for heating subsurface formations
US8082995B2 (en) * 2007-12-10 2011-12-27 Exxonmobil Upstream Research Company Optimization of untreated oil shale geometry to control subsidence
US8003844B2 (en) * 2008-02-08 2011-08-23 Red Leaf Resources, Inc. Methods of transporting heavy hydrocarbons
EP2098683A1 (en) 2008-03-04 2009-09-09 ExxonMobil Upstream Research Company Optimization of untreated oil shale geometry to control subsidence
AU2009251533B2 (en) 2008-04-18 2012-08-23 Shell Internationale Research Maatschappij B.V. Using mines and tunnels for treating subsurface hydrocarbon containing formations
CN102037211B (zh) 2008-05-23 2014-12-17 埃克森美孚上游研究公司 基本恒定组成气体生产的油田管理
DE102008044955A1 (de) 2008-08-29 2010-03-04 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur "in-situ"-Förderung von Bitumen oder Schwerstöl
EP2334894A1 (en) 2008-10-13 2011-06-22 Shell Oil Company Systems and methods of forming subsurface wellbores
US20100101793A1 (en) * 2008-10-29 2010-04-29 Symington William A Electrically Conductive Methods For Heating A Subsurface Formation To Convert Organic Matter Into Hydrocarbon Fluids
AU2010213717B2 (en) * 2009-02-12 2013-05-16 Red Leaf Resources, Inc. Articulated conduit linkage system
US8365478B2 (en) 2009-02-12 2013-02-05 Red Leaf Resources, Inc. Intermediate vapor collection within encapsulated control infrastructures
WO2010093957A2 (en) * 2009-02-12 2010-08-19 Red Leaf Resources, Inc. Convective heat systems for recovery of hydrocarbons from encapsulated permeability control infrastructures
US8366917B2 (en) * 2009-02-12 2013-02-05 Red Leaf Resources, Inc Methods of recovering minerals from hydrocarbonaceous material using a constructed infrastructure and associated systems
US8349171B2 (en) * 2009-02-12 2013-01-08 Red Leaf Resources, Inc. Methods of recovering hydrocarbons from hydrocarbonaceous material using a constructed infrastructure and associated systems maintained under positive pressure
CA2752499A1 (en) * 2009-02-12 2010-08-19 Red Leaf Resources, Inc. Vapor collection and barrier systems for encapsulated control infrastructures
US8490703B2 (en) * 2009-02-12 2013-07-23 Red Leaf Resources, Inc Corrugated heating conduit and method of using in thermal expansion and subsidence mitigation
US8323481B2 (en) * 2009-02-12 2012-12-04 Red Leaf Resources, Inc. Carbon management and sequestration from encapsulated control infrastructures
BRPI1008388A2 (pt) * 2009-02-23 2017-06-27 Exxonmobil Upstream Res Co método e sistema para recuperar hidrocarbonetos de uma formação de subsuperfície em uma área de desenvolvimento, e, método para tratar água em uma instalação de tratamento de água
US20100258291A1 (en) 2009-04-10 2010-10-14 Everett De St Remey Edward Heated liners for treating subsurface hydrocarbon containing formations
EP2422222B1 (en) 2009-04-20 2020-04-01 Exxonmobil Upstream Research Company Method for predicting fluid flow
CN102421988A (zh) * 2009-05-05 2012-04-18 埃克森美孚上游研究公司 通过基于一种或更多生产资源的可用性控制生产操作来将源自地下地层的有机物转化为可生产的烃
CA2704575C (en) 2009-05-20 2016-01-19 Conocophillips Company Wellhead hydrocarbon upgrading using microwaves
US8365823B2 (en) * 2009-05-20 2013-02-05 Conocophillips Company In-situ upgrading of heavy crude oil in a production well using radio frequency or microwave radiation and a catalyst
US8555970B2 (en) * 2009-05-20 2013-10-15 Conocophillips Company Accelerating the start-up phase for a steam assisted gravity drainage operation using radio frequency or microwave radiation
WO2011002557A1 (en) 2009-07-02 2011-01-06 Exxonmobil Upstream Research Company System and method for enhancing the production of hydrocarbons
US8230934B2 (en) 2009-10-02 2012-07-31 Baker Hughes Incorporated Apparatus and method for directionally disposing a flexible member in a pressurized conduit
US9920596B2 (en) * 2009-11-23 2018-03-20 Conocophillips Company Coal bed methane recovery
US8656998B2 (en) * 2009-11-23 2014-02-25 Conocophillips Company In situ heating for reservoir chamber development
AP3601A (en) 2009-12-03 2016-02-24 Red Leaf Resources Inc Methods and systems for removing fines from hydrocarbon-containing fluids
US8961652B2 (en) * 2009-12-16 2015-02-24 Red Leaf Resources, Inc. Method for the removal and condensation of vapors
US8863839B2 (en) 2009-12-17 2014-10-21 Exxonmobil Upstream Research Company Enhanced convection for in situ pyrolysis of organic-rich rock formations
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
US8701768B2 (en) 2010-04-09 2014-04-22 Shell Oil Company Methods for treating hydrocarbon formations
US9033042B2 (en) 2010-04-09 2015-05-19 Shell Oil Company Forming bitumen barriers in subsurface hydrocarbon formations
US8833453B2 (en) 2010-04-09 2014-09-16 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with tapered copper thickness
CN101892826B (zh) * 2010-04-30 2013-11-06 钟立国 气体与电加热辅助重力泄油的方法
AU2011296521B2 (en) 2010-08-30 2016-06-23 Exxonmobil Upstream Research Company Wellbore mechanical integrity for in situ pyrolysis
WO2012030426A1 (en) 2010-08-30 2012-03-08 Exxonmobil Upstream Research Company Olefin reduction for in situ pyrolysis oil generation
US8616273B2 (en) 2010-11-17 2013-12-31 Harris Corporation Effective solvent extraction system incorporating electromagnetic heating
US9033033B2 (en) 2010-12-21 2015-05-19 Chevron U.S.A. Inc. Electrokinetic enhanced hydrocarbon recovery from oil shale
BR112013015960A2 (pt) 2010-12-22 2018-07-10 Chevron Usa Inc recuperação e conversão de querogênio no local
FR2971809B1 (fr) * 2011-02-23 2014-02-28 Total Sa Procede de production d'hydrocarbures et installation pour la mise en oeuvre
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US8839856B2 (en) 2011-04-15 2014-09-23 Baker Hughes Incorporated Electromagnetic wave treatment method and promoter
WO2012177346A1 (en) * 2011-06-23 2012-12-27 Exxonmobil Upstream Research Company Electrically conductive methods for in situ pyrolysis of organic-rich rock formations
CN102261238A (zh) * 2011-08-12 2011-11-30 中国石油天然气股份有限公司 微波加热地下油页岩开采油气的方法及其模拟实验系统
US9309755B2 (en) 2011-10-07 2016-04-12 Shell Oil Company Thermal expansion accommodation for circulated fluid systems used to heat subsurface formations
US9080441B2 (en) 2011-11-04 2015-07-14 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
US9181467B2 (en) 2011-12-22 2015-11-10 Uchicago Argonne, Llc Preparation and use of nano-catalysts for in-situ reaction with kerogen
US8701788B2 (en) 2011-12-22 2014-04-22 Chevron U.S.A. Inc. Preconditioning a subsurface shale formation by removing extractible organics
US8851177B2 (en) 2011-12-22 2014-10-07 Chevron U.S.A. Inc. In-situ kerogen conversion and oxidant regeneration
CN102536184A (zh) * 2012-01-17 2012-07-04 中国石油大学(华东) 火烧煤层开采煤层气的方法
AU2012367347A1 (en) 2012-01-23 2014-08-28 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
AU2012367826A1 (en) 2012-01-23 2014-08-28 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
DE112013001734T5 (de) * 2012-03-29 2014-12-18 Shell Internationale Research Maatschappij B.V. Elektrische Frakturierung von Gesteinsformationen
US8770284B2 (en) 2012-05-04 2014-07-08 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US20130292114A1 (en) * 2012-05-04 2013-11-07 Michael W. Lin Methods For Containment and Improved Recovery in Heated Hydrocarbon Containing Formations By Optimal Placement of Fractures and Production Wells
US8992771B2 (en) 2012-05-25 2015-03-31 Chevron U.S.A. Inc. Isolating lubricating oils from subsurface shale formations
US20140096953A1 (en) * 2012-10-04 2014-04-10 Geosierra Llc Enhanced hydrocarbon recovery from multiple wells by electrical resistive heating of oil sand formations
US20140096951A1 (en) * 2012-10-04 2014-04-10 Geosierra Llc Enhanced hydrocarbon recovery from a single well by electrical resistive heating of multiple inclusions in an oil sand formation
US20140096952A1 (en) * 2012-10-04 2014-04-10 Geosierra Llc Enhanced hydrocarbon recovery from a single well by electrical resistive heating of a single inclusion in an oil sand formation
US9115576B2 (en) * 2012-11-14 2015-08-25 Harris Corporation Method for producing hydrocarbon resources with RF and conductive heating and related apparatuses
US9434875B1 (en) 2014-12-16 2016-09-06 Carbo Ceramics Inc. Electrically-conductive proppant and methods for making and using same
CN105229258A (zh) 2013-01-04 2016-01-06 卡博陶粒有限公司 电气地导电的支撑剂以及用于检测、定位和特征化该电气地导电的支撑剂的方法
US11008505B2 (en) 2013-01-04 2021-05-18 Carbo Ceramics Inc. Electrically conductive proppant
US9097097B2 (en) 2013-03-20 2015-08-04 Baker Hughes Incorporated Method of determination of fracture extent
CN103555314B (zh) * 2013-05-27 2015-12-09 新疆准东石油技术股份有限公司 一种支撑剂及其制备方法
US9512699B2 (en) 2013-10-22 2016-12-06 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
US9551210B2 (en) 2014-08-15 2017-01-24 Carbo Ceramics Inc. Systems and methods for removal of electromagnetic dispersion and attenuation for imaging of proppant in an induced fracture
AU2015350480A1 (en) 2014-11-21 2017-05-25 Exxonmobil Upstream Research Company Mitigating the effects of subsurface shunts during bulk heating of a subsurface formation
US9719328B2 (en) 2015-05-18 2017-08-01 Saudi Arabian Oil Company Formation swelling control using heat treatment
US10113402B2 (en) 2015-05-18 2018-10-30 Saudi Arabian Oil Company Formation fracturing using heat treatment
CA2902548C (en) * 2015-08-31 2019-02-26 Suncor Energy Inc. Systems and method for controlling production of hydrocarbons
EA036808B1 (ru) 2015-09-30 2020-12-23 Ред Лиф Рисорсиз, Инк. Постадийный зональный нагрев углеводородсодержащих материалов
US10738581B2 (en) 2017-01-23 2020-08-11 Halliburton Energy Services, Inc. Fracturing treatments in subterranean formations using electrically controlled propellants
US10858923B2 (en) 2017-01-23 2020-12-08 Halliburton Energy Services, Inc. Enhancing complex fracture networks in subterranean formations
CA3045427C (en) 2017-01-23 2021-02-09 Halliburton Energy Services, Inc. Fracturing treatments in subterranean formations using inorganic cements and electrically controlled propellants
CN109505591B (zh) * 2017-09-13 2021-10-29 中国石油化工股份有限公司 确定缝洞型油藏未充填溶洞渗透率界限的方法及系统
US10941644B2 (en) 2018-02-20 2021-03-09 Saudi Arabian Oil Company Downhole well integrity reconstruction in the hydrocarbon industry
US20190257973A1 (en) * 2018-02-20 2019-08-22 Saudi Arabian Oil Company 3-dimensional scanner for downhole well integrity reconstruction in the hydrocarbon industry
US10641079B2 (en) 2018-05-08 2020-05-05 Saudi Arabian Oil Company Solidifying filler material for well-integrity issues
US11187068B2 (en) 2019-01-31 2021-11-30 Saudi Arabian Oil Company Downhole tools for controlled fracture initiation and stimulation
US11125075B1 (en) 2020-03-25 2021-09-21 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11280178B2 (en) 2020-03-25 2022-03-22 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11414963B2 (en) 2020-03-25 2022-08-16 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11414985B2 (en) 2020-05-28 2022-08-16 Saudi Arabian Oil Company Measuring wellbore cross-sections using downhole caliper tools
US11414984B2 (en) 2020-05-28 2022-08-16 Saudi Arabian Oil Company Measuring wellbore cross-sections using downhole caliper tools
US11631884B2 (en) 2020-06-02 2023-04-18 Saudi Arabian Oil Company Electrolyte structure for a high-temperature, high-pressure lithium battery
US11149510B1 (en) 2020-06-03 2021-10-19 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11391104B2 (en) 2020-06-03 2022-07-19 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11719089B2 (en) 2020-07-15 2023-08-08 Saudi Arabian Oil Company Analysis of drilling slurry solids by image processing
AR123020A1 (es) 2020-07-21 2022-10-26 Red Leaf Resources Inc Métodos para procesar en etapas esquistos bituminosos
US11255130B2 (en) 2020-07-22 2022-02-22 Saudi Arabian Oil Company Sensing drill bit wear under downhole conditions
US11506044B2 (en) 2020-07-23 2022-11-22 Saudi Arabian Oil Company Automatic analysis of drill string dynamics
CN111980653B (zh) * 2020-09-15 2022-03-25 吉林大学 一种基于冷热交替碎岩控制方向压裂造缝的方法
US11867008B2 (en) 2020-11-05 2024-01-09 Saudi Arabian Oil Company System and methods for the measurement of drilling mud flow in real-time
US11434714B2 (en) 2021-01-04 2022-09-06 Saudi Arabian Oil Company Adjustable seal for sealing a fluid flow at a wellhead
US11697991B2 (en) 2021-01-13 2023-07-11 Saudi Arabian Oil Company Rig sensor testing and calibration
US11572752B2 (en) 2021-02-24 2023-02-07 Saudi Arabian Oil Company Downhole cable deployment
US11727555B2 (en) 2021-02-25 2023-08-15 Saudi Arabian Oil Company Rig power system efficiency optimization through image processing
US11846151B2 (en) 2021-03-09 2023-12-19 Saudi Arabian Oil Company Repairing a cased wellbore
US11725504B2 (en) 2021-05-24 2023-08-15 Saudi Arabian Oil Company Contactless real-time 3D mapping of surface equipment
US11619097B2 (en) 2021-05-24 2023-04-04 Saudi Arabian Oil Company System and method for laser downhole extended sensing
US11624265B1 (en) 2021-11-12 2023-04-11 Saudi Arabian Oil Company Cutting pipes in wellbores using downhole autonomous jet cutting tools
US11867012B2 (en) 2021-12-06 2024-01-09 Saudi Arabian Oil Company Gauge cutter and sampler apparatus
US11954800B2 (en) 2021-12-14 2024-04-09 Saudi Arabian Oil Company Converting borehole images into three dimensional structures for numerical modeling and simulation applications
US11739616B1 (en) 2022-06-02 2023-08-29 Saudi Arabian Oil Company Forming perforation tunnels in a subterranean formation

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3137347A (en) 1960-05-09 1964-06-16 Phillips Petroleum Co In situ electrolinking of oil shale
US3149672A (en) 1962-05-04 1964-09-22 Jersey Prod Res Co Method and apparatus for electrical heating of oil-bearing formations
US3642066A (en) 1969-11-13 1972-02-15 Electrothermic Co Electrical method and apparatus for the recovery of oil
US3620300A (en) 1970-04-20 1971-11-16 Electrothermic Co Method and apparatus for electrically heating a subsurface formation
US4030549A (en) 1976-01-26 1977-06-21 Cities Service Company Recovery of geothermal energy
US4401162A (en) 1981-10-13 1983-08-30 Synfuel (An Indiana Limited Partnership) In situ oil shale process
US4412585A (en) * 1982-05-03 1983-11-01 Cities Service Company Electrothermal process for recovering hydrocarbons
US4886118A (en) 1983-03-21 1989-12-12 Shell Oil Company Conductively heating a subterranean oil shale to create permeability and subsequently produce oil
US4567945A (en) 1983-12-27 1986-02-04 Atlantic Richfield Co. Electrode well method and apparatus
US4487260A (en) 1984-03-01 1984-12-11 Texaco Inc. In situ production of hydrocarbons including shale oil
US4705108A (en) 1986-05-27 1987-11-10 The United States Of America As Represented By The United States Department Of Energy Method for in situ heating of hydrocarbonaceous formations
US4926941A (en) 1989-10-10 1990-05-22 Shell Oil Company Method of producing tar sand deposits containing conductive layers
US5620049A (en) * 1995-12-14 1997-04-15 Atlantic Richfield Company Method for increasing the production of petroleum from a subterranean formation penetrated by a wellbore
US6148911A (en) * 1999-03-30 2000-11-21 Atlantic Richfield Company Method of treating subterranean gas hydrate formations
US6918444B2 (en) 2000-04-19 2005-07-19 Exxonmobil Upstream Research Company Method for production of hydrocarbons from organic-rich rock
US7011154B2 (en) 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
NZ522211A (en) 2000-04-24 2004-05-28 Shell Int Research A method for treating a hydrocarbon containing formation
US6607036B2 (en) 2001-03-01 2003-08-19 Intevep, S.A. Method for heating subterranean formation, particularly for heating reservoir fluids in near well bore zone
US7096942B1 (en) 2001-04-24 2006-08-29 Shell Oil Company In situ thermal processing of a relatively permeable formation while controlling pressure
US7040400B2 (en) 2001-04-24 2006-05-09 Shell Oil Company In situ thermal processing of a relatively impermeable formation using an open wellbore
NZ529140A (en) 2001-04-24 2005-07-29 Shell Int Research In situ recovery from a tar sands formation
US20030146002A1 (en) 2001-04-24 2003-08-07 Vinegar Harold J. Removable heat sources for in situ thermal processing of an oil shale formation
US7104319B2 (en) 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
US6969123B2 (en) 2001-10-24 2005-11-29 Shell Oil Company Upgrading and mining of coal
CN1671944B (zh) 2001-10-24 2011-06-08 国际壳牌研究有限公司 可拆卸加热器在含烃地层内的安装与使用
US6923155B2 (en) * 2002-04-23 2005-08-02 Electro-Motive Diesel, Inc. Engine cylinder power measuring and balance method
US8224163B2 (en) 2002-10-24 2012-07-17 Shell Oil Company Variable frequency temperature limited heaters
AU2004235350B8 (en) 2003-04-24 2013-03-07 Shell Internationale Research Maatschappij B.V. Thermal processes for subsurface formations
WO2005103445A1 (en) * 2004-04-23 2005-11-03 Shell Oil Company Subsurface electrical heaters using nitride insulation
US7546873B2 (en) 2005-04-22 2009-06-16 Shell Oil Company Low temperature barriers for use with in situ processes

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2451170C2 (ru) * 2006-10-20 2012-05-20 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Процесс поэтапного нагревания в шахматном порядке пластов, содержащих углеводороды
RU2452852C2 (ru) * 2006-10-20 2012-06-10 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Процесс поэтапного нагревания по спирали пластов, содержащих углеводороды
RU2447274C2 (ru) * 2006-10-20 2012-04-10 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Нагревание углеводородсодержащих пластов в поэтапном процессе линейного вытеснения
RU2589011C2 (ru) * 2010-03-03 2016-07-10 Сименс Акциенгезелльшафт УСТРОЙСТВО И СПОСОБ ДЛЯ ДОБЫЧИ НА МЕСТЕ ЗАЛЕГАНИЯ (in-situ) БИТУМА ИЛИ ТЯЖЕЛОЙ ФРАКЦИИ НЕФТИ
RU2588086C2 (ru) * 2011-03-14 2016-06-27 Тоталь С.А. Электрический и статический разрыв пласта
RU2592313C2 (ru) * 2011-03-14 2016-07-20 Тоталь С.А. Электрический разрыв пласта
US9394775B2 (en) 2011-03-14 2016-07-19 Total S.A. Electrical fracturing of a reservoir
RU2477788C1 (ru) * 2011-10-04 2013-03-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ подземной газификации
WO2014014390A2 (ru) * 2012-07-17 2014-01-23 Linetskiy Alexander Petrovich Способ разработки месторождений и извлечения нефти и газа из нефтегазовых и сланцевых пластов
RU2518581C2 (ru) * 2012-07-17 2014-06-10 Александр Петрович Линецкий Способ разработки нефтегазовых, сланцевых  и угольных месторождений
WO2014014390A3 (ru) * 2012-07-17 2014-03-20 Linetskiy Alexander Petrovich Способ разработки месторождений и извлечения нефти и газа из нефтегазовых и сланцевых пластов
WO2014046786A1 (en) * 2012-09-19 2014-03-27 Seldner Josh Geothermal pyrolysis process and system
RU2521255C1 (ru) * 2012-12-10 2014-06-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ подземной газификации
US9784084B2 (en) 2013-03-13 2017-10-10 Jilin University Method for heating oil shale subsurface in-situ
RU2543235C2 (ru) * 2013-07-23 2015-02-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный архитектурно-строительный университет" КГАСУ Способ разработки сланцевых месторождений
WO2015053731A1 (ru) * 2013-10-07 2015-04-16 Эдуард Анатольевич ТРОЦЕНКО Способ подземной газификации углеводородсодержащего пласта
RU2560040C1 (ru) * 2014-06-03 2015-08-20 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ разработки залежи высоковязкой нефти и битума

Also Published As

Publication number Publication date
RU2006101868A (ru) 2006-06-10
US7331385B2 (en) 2008-02-19
WO2005010320A1 (en) 2005-02-03
CN1806090A (zh) 2006-07-19
AU2004260008A1 (en) 2005-02-03
CN100392206C (zh) 2008-06-04
JO2447B1 (en) 2008-10-09
US20070000662A1 (en) 2007-01-04

Similar Documents

Publication Publication Date Title
RU2349745C2 (ru) Способ обработки подземного пласта для конверсии органического вещества в извлекаемые углеводороды (варианты)
US7631691B2 (en) Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
US8622127B2 (en) Olefin reduction for in situ pyrolysis oil generation
CA2502882C (en) Inhibiting wellbore deformation during in situ thermal processing of a hydrocarbon containing formation
AU2008242805B2 (en) In situ heat treatment of a tar sands formation after drive process treatment
US4817711A (en) System for recovery of petroleum from petroleum impregnated media
RU2487236C2 (ru) Способ обработки подземного пласта (варианты) и моторное топливо, полученное с использованием способа
RU2453692C2 (ru) Способ обработки пласта битуминозных песков и транспортное топливо, изготовленное с использованием способа
CA2626946C (en) Cogeneration systems and processes for treating hydrocarbon containing formations
AU2002304692B2 (en) Method for in situ recovery from a tar sands formation and a blending agent produced by such a method
US20100101793A1 (en) Electrically Conductive Methods For Heating A Subsurface Formation To Convert Organic Matter Into Hydrocarbon Fluids
WO2014139402A1 (zh) 一种油页岩地下原位加热的方法
US8720550B2 (en) Process for enhanced production of heavy oil using microwaves
RU2303693C2 (ru) Облагораживание и добыча угля
WO2015053731A1 (ru) Способ подземной газификации углеводородсодержащего пласта
CN102834587B (zh) 用于加热地下地层的循环流体系统的泄漏检测
AU2004260008B2 (en) Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150415