CN1806090A - 处理地下地层以将有机物转化成可采出的烃的方法 - Google Patents

处理地下地层以将有机物转化成可采出的烃的方法 Download PDF

Info

Publication number
CN1806090A
CN1806090A CN200480016754.0A CN200480016754A CN1806090A CN 1806090 A CN1806090 A CN 1806090A CN 200480016754 A CN200480016754 A CN 200480016754A CN 1806090 A CN1806090 A CN 1806090A
Authority
CN
China
Prior art keywords
section
well
electric current
bite
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200480016754.0A
Other languages
English (en)
Other versions
CN100392206C (zh
Inventor
W·A·西明戈顿
M·M·托马斯
Q·R·帕赛
A·W·M·艾-拉巴
J·H·莫斯
R·D·卡敏斯克
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ExxonMobil Upstream Research Co
Original Assignee
Exxon Production Research Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxon Production Research Co filed Critical Exxon Production Research Co
Publication of CN1806090A publication Critical patent/CN1806090A/zh
Application granted granted Critical
Publication of CN100392206C publication Critical patent/CN100392206C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2401Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection by means of electricity
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2405Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection in association with fracturing or crevice forming processes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

提供一种包括如下步骤的方法:在地层中提供井,在所述地层中建立一个或多个断面(12),使每个断面与至少一口所述井(16,18)交叉,在所述断面中放置导电材料,产生流过断面和所述材料的电流,从而由材料内的电阻产生足够热量(10)将地层中的有机物热解为可采出的烃。

Description

处理地下地层以将有机物转化成可采出的烃的方法
技术领域
本发明涉及处理地下地层以将有机物转化成可采出的烃的方法。更具体地,本发明涉及包括以下步骤的方法:在所述地层中提供井,在所述地层中建立断面,使每个断面与至少一口井交叉,在断面中放置导电材料,产生流过断面和导电材料的电流,从而由材料内的电阻产生足够热量而将有机物热解为可采出的烃。
背景技术
在权利要求书之前提供参考文献列表。文中提及的所有REF.No均指表中参考文献。
油页岩、生油岩和其它富含有机物岩石含有油母,即受热将转化为可采出的油气的固体烃前体。由含油母的岩石生产油气存在两个主要问题。第一,固体油母必须转化为可流过岩石的油气。油母被加热时经过热解,即打开键并形成更小分子如油气的化学反应。从油页岩和其它富含有机物岩石生产烃的第二个问题是这些岩石通常具有很低的渗透率。通过加热岩石并将油母转化为油气,可提高渗透率。
已经提出几种技术用于尝试从含油母岩生产油气。
近地表油页岩在地表进行开采和干馏已经超过一个世纪。在1862年,James Young开始加工Scottish油页岩,并且该工业持续了约100年。商业油页岩干馏也在其它国家例如澳大利亚、巴西、中国、爱沙尼亚、法国、俄罗斯、南非、西班牙和瑞典进行。但这种作法近年来已经大部分停止,因为这种作法被证实为不经济或由于废页岩处理的环境限制(REF.26)。另外,地表干馏需要开采油页岩,这限制了其在浅地层的应用。
在美国开发了现场干馏油页岩的技术,并用Green River油页岩进行中试。现场处理提供许多优点,因为它降低了与原料处理和废页岩处理相关的成本。对于现场中试,油页岩首先被碎石化,然后注入空气进行燃烧。具有基本均匀的碎片大小和基本均匀的空隙体积分布的碎石层是燃烧驱油效率的主要成功因素。碎片大小的量级为几英寸。
两种改进的现场中试由Occidental和Rio Blanco(REF.1、REF.21)完成。部分油页岩被采出以形成空隙体积,然后剩余的油页岩用炸药碎石化。空气由碎石腔的顶部注入,油页岩被点燃,燃烧前缘向下移动。干馏油向前排出至底部并在那里被收集。
在另一个中试中,“真正的”现场GEOKINETICS方法产生一个具有精确设计爆破位置的碎石化空间,该空间提升了12米的上覆层(REF.23)。空气通过碎石化空间一端的井眼注入,并且燃烧前缘水平移动。在燃烧前方的油页岩被干馏;油排出到碎石化空间的底部并到达尽头的采出井。
这些现场燃烧中试的结果都表明技术成功,但这些方法都没有商业化,这是由于据认为它们并不经济。油页岩碎石化和空气压缩是主要的成本支出。
一些设计者和发明人都提出在断面油页岩中现场燃烧,但在其中进行的现场试验显示从井眼的有限到达距离(REF.10、REF.11、REF.17)。
利用来自受热井眼的热传导的热现场干馏方法由Ljungstrom在1940年发明,并由Swedish Shale Oil Co.首先用于工业设备,该设备从1944年运转至50年代(REF.19、REF.24)。该方法被应用于Norrtorp,Sweden附近6-24m深处的可渗透油页岩。所述区域被开发成为六角形式样,用六口注热井围绕一口产气井。井间距为2.2m。井眼中的电阻加热器在5个月的时段内提供热量,将采出井的温度提高至约400℃。当温度达到280℃时,开始产生烃蒸气并在加热期间内持续产生。蒸汽凝结为相对密度为0.87的轻油产品。
Van Meurs和其它人进一步开发了从井眼导热的方法(REF.24)。他们的专利方法将该方法用于不渗透油页岩,其具有600℃注热井并且井间距大于6m。他们建议热喷射井可使用电阻加热器或燃气燃烧加热器进行加热。发明人在露头油页岩地层进行了现场试验,井深6-12m和井间距0.6m。三个月后,整个测试区域温度达到300℃。油产率为Fischer Assay的90%。发明人观察到井眼间的渗透率提高,并且他们认为这可能是油母成为烃反应的体积膨胀形成水平断面的结果。
由于传导加热限于几米的距离,来自井眼的传导加热必须开发间隔非常近的井。这限制了该方法经济应用于非常浅的油页岩(低井耗)和/或非常厚的油页岩(更高单井产量)。
Covell和其它人提出通过气化和燃烧下面煤层来干馏油页岩的碎石状层(REF.5)。他们的方法称为总源头能量提取(Total ResourceEnergy Extraction)(TREE),引起热废气(727℃)从煤层向上对流到碎石状油页岩层。模型预测操作时间为20天,并估算油产率为FischerAssay的89%。通过将热废气注入油页岩块层大型试验显示出相当多的结焦和裂化,使油回收率降低至Fischer Assay的68%。同现场油页岩干馏一样,包括这一方法中的油页岩碎石化将它局限于浅油页岩并且是昂贵的。
Passey等人描述了一种由富含有机物岩石生产烃的方法,该方法通过在相邻油气层中进行油的现场燃烧而进行(REF.16)。富含有机物岩石被来自相邻油气层中所达到的高温热传导加热。当加热到超过250℃温度时,富含有机物岩石中的油母被转化为油气,然后被采出。由于油母转化而使富含有机物岩石的渗透率提高。这一方法局限于在相邻地层内具有油气层的富含有机物岩石。
在通过电磁加热地层的现场干馏中,电磁能量穿过地层,并且岩石通过电阻或通过电介质吸收的能量被加热。就我们所知,该技术还没有应用于油页岩,但已经在重油地层中进行过现场试验。
在地下地层中电阻加热的技术能力已经在重油中试中被证实,其中应用“电预热”使电流在两井间流动以降低粘度,并且为后续蒸汽驱建立井间连通通道(REF.4)。在地下地层中的电阻加热已经申请专利,并通过在层叠的导电断面间或在同一口井中的电极间运行交流电或射频电能而商业应用(REF.14、REF.6、REF.15、REF.12)。REF.7描述了在电地下地层中在不同井间通过交流电流的电阻加热。其它文献描述了在井眼中建立有效电极的方法(REF.20、REF.8)。REF.27描述一种使电流流过连接两口井的断面使得电流开始流过周围地层主体的方法;地层加热主要是由于大的地层电阻产生的。
具有低频电磁激发的地层的电阻加热局限于低于现场水的沸点的温度,以保持岩石的电流载带能力。因此,其不适用于在转化生产时间内需要较高温度的油母转化。
高频加热(射频或微波频率)提供跨过干燥岩石的能力,因此它可用于加热到较高温度。小型现场试验证实可实现高温和油母转化(REF.2)。渗透局限于几米(REF.25),因此该方法可能需要许多井眼,因此不可能获得经济成功。
在这些使用电极将电激发直接传送至地层的方法中,电能穿过地层并转化为热能。一份专利提出只在一口井中加热来自导电断面支撑剂的气体水合物,同时电流流入断面并预测到达地面(REF.9)。
即使考虑现有可用的和提出的技术,提出处理地下地层将有机物转化成可采出的烃的方法也是有利的。
因此,本发明的目的是提出改进的方法。本发明的其它目的通过随后的描述将更清楚。
发明内容
提供处理包含固体有机物的地下地层的方法。在一个实施方案中,本发明的方法包括如下步骤:(a)提供一口或多口井,所述井贯穿地下地层内的处理间隔;(b)从至少一口所述井建立至少一个断面,使所述断面与至少一口所述井交叉;(c)在所述断面内放置导电材料;和(d)使电流流过所述断面,从而所述电流流过至少部分所述导电材料并通过所述部分导电材料内的电阻产生足够的热量,以将至少部分所述固体有机物热解为可采出的烃。在一个实施方案中,所述导电材料包括支撑剂。在一个实施方案中,所述导电材料包括导电水泥。在一个实施方案中,一个或多个所述断面与至少两口所述井交叉。在一个实施方案中,所述地下地层包括油页岩。在一个实施方案中,所述井基本是垂直的。在一个实施方案中,所述井基本是水平的。在一个实施方案中,所述断面基本是水平的。在一个实施方案中,所述断面基本是垂直的。在一个实施方案中,所述断面基本纵向延伸至其由之建立的井。
在本发明的一个实施方案中,提供一种处理包含固体有机物的地下地层的方法,其中所述方法包括如下步骤:(a)提供一口或多口井,所述井贯穿地下地层内的处理间隔;(b)从至少一口所述井建立至少一个断面,使所述断面与至少一口所述井交叉;(c)在所述断面内放置导电支撑剂材料;和(d)使电流流过所述断面,从而使所述电流流过至少部分所述导电支撑剂材料并通过所述部分导电支撑剂材料内的电阻产生足够的热量,以将至少部分所述固体有机物热解为可采出的烃。
在另一个实施方案中,提供一种处理包含固体有机物的地下地层的方法,其中所述方法包括如下步骤:(a)提供两口或多口井,所述井贯穿地下地层内的处理间隔;(b)从至少一口所述井建立至少一个断面,使所述断面与至少两口所述井交叉;(c)在所述断面内放置导电材料;和(d)使电流流过所述断面,从而所述电流流过至少部分所述导电材料并通过所述部分导电材料内的电阻产生足够的热量,以将至少部分所述固体有机物热解为可采出的烃。
在另一个实施方案中,提供一种处理包含固体有机物的地下地层的方法,其中所述方法包括如下步骤:(a)提供两口或多口井,所述井贯穿地下地层内的处理间隔;(b)从至少一口所述井建立至少一个断面,使所述断面与至少两口所述井交叉;(c)在所述断面内放置导电支撑剂材料;和(d)使电流流过所述断面,从而使所述电流流过至少部分所述导电支撑剂材料并通过所述部分导电支撑剂材料内的电阻产生足够的热量,以将至少部分所述固体有机物热解为可采出的烃。
在另一个实施方案中,提供一种处理含烃的重油或焦油砂地下地层的方法,其中所述方法包括如下步骤:(a)提供一口或多口井,所述井贯穿地下地层内的处理间隔;(b)从至少一口所述井建立至少一个断面,使所述断面与至少一口所述井交叉;(c)在所述断面内放置导电材料;和(d)使电流流过所述断面,从而所述电流流过至少部分所述导电材料并通过所述部分导电材料内的电阻产生足够的热量,以降低至少部分所述烃的粘度。
本发明使用导电材料作为电阻加热器。电流主要流过含有导电材料的电阻加热器。在电阻加热器内,电能转化为热能并通过热传导输送至地层。
广义地说,本发明是从富含有机物岩石(例如生油岩、油页岩)生产烃的方法。该方法使用电加热富含有机物岩石。现场电加热器是通过将导电材料输送入应用该方法的含有机物地层的断面中而形成的。描述本发明时,使用“水力断面”这一用语。但本发明并不限于用于水力断面中。本发明适用于由本领域技术人员认为合适的任何方式产生的任何断面。在本发明的一个实施方案中,正如将与附图一起描述的,导电材料可包括支撑剂材料;但本发明并不局限于此。图1显示本发明应用的一个实施例,其中热量10通过一个基本水平的水力断面12传送,该断面主要由砂粒大小的导电材料颗粒(图1中未示出)支撑。电压14被施加到贯穿断面12的两口井16和18上。优选AC电压14,因为与DC电压相比,AC更容易产生并将电化学腐蚀减到最小。但任何形式的电能包括不限于DC,都适用于本发明。被支撑断面12充当发热元件;电流从中流过通过电阻发热产生热量10。热量10通过热传导传递至断面12周围的富含有机物岩石15。结果,富含有机物岩石15被充分加热,将岩石15中含有的油母转化为烃。所产生的烃随后使用公知的采油方法采出。图1用一个水平水力断面12和一对竖井16,18描述了本发明的方法。本发明方法不限于图1所示实施方案。可能的变体包括使用水平井和/或垂直断面。商业应用可包括具有图形或线性形式的多个断面和多口井。本发明与其它处理含有机物地层的方法的关键区别特征是通过电流流过含导电材料的断面形成现场发热元件,从而通过材料内的电阻产生足够的热量将至少部分有机物热解为可采出的烃。
正如本领域技术人员熟知的,任何一种产生流过断面中导电材料的电压/电流的方法都可使用。尽管富含有机物岩石类型、生成可采出烃需要的热量和相应所需电流量是变化的,但可通过本领域技术人员熟知的方法进行估算。例如,Green River油页岩动力学参数表明加热速率为100℃(180°F)/年,完全油母转化将在约324℃(615°F)的温度下进行。50%转化将在约291℃(555°F)的温度下发生。近断面的油页岩将在数月内被加热到转化温度,但要达到产生经济回报的热渗透深度可能需要几年。
在热转化过程中,油页岩渗透率可能提高。这可能是由固体油母被转化为液体或气体烃后流动的孔体积提高引起的,或是由于在油母转化为烃并在封闭系统内经历明显体积增大而形成断面的缘故。如果最初的渗透率太低以至于不能释放烃,过量的孔压将最终导致断裂。
所生成的烃可从将电能传送到导电断面的同一口井采出,或可使用另外的井。正如本领域技术人员熟知的,任何一种采出可采出烃的方法都可使用。
附图说明
通过下面的详细说明和所附的附图将更易理解本发明的优点,在附图中:
图1描述本发明的一个实施方案;
图2描述本发明的另一个实施方案;
图3、图4和图5描述测试本发明方法的实验室试验。
尽管将结合优选实施方案对本发明进行描述,应理解本发明并不限于此。相反,本发明意图包括所有的替代、改进和等同形式,如所附权利要求书中定义,所有这些均包括在本发明的实质和范围内。
具体实施方式
现参照图2,该图描述本发明一个优选实施方案。图2显示该方法的一个应用实施例,其中热量通过许多基本垂直的水力断面22传送,所述断面由导电材料颗粒(图2中未示出)支撑。每个水力断面22均纵向延伸至其由之建立的井。电压24被施加于贯穿地层22的两口或多口井26、28上。在该实施方案中,井26基本是水平的,井28基本是垂直的。优选AC电压24,因为与DC电压相比,AC更容易产生并将电化学腐蚀减到最小。但任何形式的电能包括不限于DC,都适用于本发明。如图2所示,在该实施方案中,产生电压24的电路的正极端在井26处,电路的负极端在井28处。被支撑断面22充当发热元件;电流流过被支撑断面22通过电阻发热产生热量。该热量通过热传导传递,断面22周围的富所含机物岩石25。结果,富含有机物岩石25被充分加热,将岩石25中所含的油母转化为烃。产生的烃随后用公知的开采方法采出。使用本发明的这一实施方案,与图1所示实施方案相比,更大量的富含有机物岩石可以被加热并且加热可以更均匀,使得更少量的富含有机物岩石被加热超过完全油母转化所需的水平。图2所示实施方案并不打算限制本发明的任何方面。
向其内部放置导电材料的断面可以基本垂直或基本水平。这样的断面可以但不必需基本纵向延伸至其由之建立的井。
任何合适的材料都可用作导电断面支撑剂。正如本领域技术人员熟知的,为了适用,待选材料优选符合一定的标准。在预期现场压力下支撑剂层的电阻优选足够高以提供电阻发热,同时也要足够低以使设计的电流从一口井传至另一口井。支撑材料也优选满足断面支撑剂的常用标准:如强度足以保持断面打开,并且密度足够低可泵送入断面。方法的经济应用可设立能接受的支撑剂成本上限。正如本领域技术人员熟知的,任何合适的支撑剂材料或导电材料都可使用。三类合适的支撑剂包括:(i)薄金属涂覆沙;(ii)复合金属/陶瓷材料,和(iii)碳基材料。一类合适的非支撑剂导电材料包括导电水泥。更具体地,绿或黑碳化硅、碳化硼或焙烧石油焦可用作支撑剂。本领域技术人员有能力选择用于本发明的合适支撑剂或非支撑剂导电材料。导电材料不要求是均匀的,而是可以包括两种或多种合适的导电材料的混合物。
实施例
进行实验室试验,试验结果表明本发明在实验室内成功将岩石中的油母转化为可采出烃。现参照图3和图4,芯部样品30取自含油母地下地层。如图3所示,芯部样品30被切割成两部分32和34。样品32部分被雕刻出深度约.25mm(1/16英寸)的沟槽36,将替代支撑剂材料38(直径约.1mm(0.02英寸)的#170铸钢丸)放入沟槽36内。如图所示,使用足够量的支撑剂材料38部分填充沟槽36。设置电极35和37与支撑剂材料38接触,如图所示。如图4所示,样品32和34部分接触放置,像芯部样品30重新合在一起,并且放入不锈钢套管40中,用3个不锈钢软管夹42夹紧。收紧软管夹42对替代支撑剂施加压力(图4未示出),正如在实际应用中需要支撑剂支撑的现场压力。将热电偶(图中未示出)插入芯部样品30约沟槽36和芯部样品30外径的中间位置处。在施加电流之前测量电极35和37间的电阻为822欧姆。
然后将整个组件放入带有玻璃里衬的压力容器(图中未示出),所述容器将收集任何产生的烃。压力容器配备有电进料。压力容器被抽空并充入500psi氩,为实验提供化学惰性气氛。将18-19安培的电流施用于电极35和37间5小时。约1小时后芯部样品30内的热电偶测量的温度为268℃,并随后渐减至约250℃。用本领域技术人员熟知的计算方法,沟槽36所在位置达到的高温为约350℃至约400℃。
实验完成并将芯部样品30冷却至室温后,将压力容器打开并在进行实验的玻璃内衬的底部回收0.15ml油。芯部样品30从压力容器中移出,并再次测量电极35和37间的电阻。实验后电阻测量值为49欧姆。
图5包括:(i)曲线图52,其纵坐标51是实验中消耗的电功率,单位为瓦特,其横坐标53表示实验中经过的时间,单位为分钟;(ii)曲线图62,其纵坐标61是整个实验中芯部样品30(图3和图4)内的热电偶测量的温度,单位为℃,其横坐标63表示实验中经过的时间,单位为分钟;和(iii)曲线图72,其纵坐标71是实验过程中测量的电极35和37(图3和图4)间的电阻。单位为欧姆,其横坐标73表示实验中经过的时间,单位为分钟。在曲线图72中只包括在加热实验过程中测量的电阻,实验前和实验后的电阻测量值(822和49欧姆)被省略了。
芯部样品30冷却至室温后,将其移出压力容器并拆卸。观察到替代支撑剂38在几处被实验过程中从油页岩产生的焦油状的烃或沥青浸渍。因为在实验过程中的热膨胀使芯部样品30中产生剖面裂缝。观察到邻近替代支撑剂38的转化的油页岩的新月形剖面。
尽管本发明可用于将油页岩中的固体有机质转化为可采出烃,但本发明还可用于重油储层或焦油砂。在这些情况下,所供给的电热将用于降低烃粘度。此外,尽管本发明已经通过一个或多个优选实施方案进行了描述,应该理解的是可以进行其它改进而不偏离本发明的范围,本发明的范围在下面的权利要求书中定义。
                           参考文献列表
REF.1:Berry,K.L.,Hutson,R.L.,Sterrett,J.S.,and Knepper,J.C.,1982,Modified in situ retorting results of two field retorts,Gary,J.H.,ed.,15th Oil ShaleSymp.,CSM,p.385-396.
REF.2:Bridges,J.E.,Krstansky,J.J.,Taflove,A.,and Sresty,G.,1983,TheIITRI in situ fuel recovery process,J.Microwave Power,v.18,p.3-14.
REF.3:Bouck,L.S.,1977,Recovery of geothermal energy,U.S.Patent4,030,549.
REF.4:Chute,F.S.,and Vermeulen,F.E.,1988,Present and potentialapplications of electromagnetic heating in the in situ recovery of oil,AOSTRA J.Res.,v.4,p.19-33.
REF.5:Covell,J.R.,Fahy,J.L.,Schreiber,J.,Suddeth,B.C.,and Trudell,L.,1984,Indirect in situ retorting of oil shale using the TREE process,Gary,J.H.,ed.,17th Oil Shale Symposium Proceedings,Colorado School of Mines,p.46-58.
REF.6:Crowson,F.L.,1971,Method and appatatus for electrically heating asubsurface formation,U.S.Patent 3,620,300.
REF.7:Gill,W.G.,1972,Electrical method and apparatus for the recovery ofoil,U.S.Patent 3,642,066.
REF.8:Gipson,L.P.,and Montgomery,C.T.,1997,Method for increasingthe production of petroleum from a subterranean formation penetrated by a wellbore,U.S.Patent 5,620,049.
REF.9:Gipson,L.P.,and Montgomery,C.T.,2000,Method of treatingsubterranean gas hydrate formations,U.S.Patent 6,148,911.
REF.10:Humphrey,J.P.,1978,Energy from in situ processing of Antrim oilshale,DOE Report FE-2346-29.
REF.11:Lekas,M.A.,Lekas,M.J.,and Strickland,F.G.,1991,Initialevaluation of fracturing oil shale with propellants for in situ retorting-Phase 2,DOEReport DOE/MC/11076-3064.
REF.12:Little,W.E.,and McLendon,T.R.,1987,Method for in situ heatingof hydrocarbonaceous formations,U.S.Patent 4,705,108.
REF.13:Oil & Gas Journal,1998,Aussie oil shale project moves to Stage 2,Oct.26,p.42.
REF.14:Orkiszewski,J.,Hill,J.L.,McReynolds,P.S.,and Boberg,T.C.,1964,Method and apparatus for electrical heating of oil-bearing formations,U.S.Patent 3,149,672.
REF.15:Osborne,J.S.,1983,In situ oil shale process,U.S.Patent4,401,162.
REF.16:Passey,Q.R.,Thomas,M.M.,and Bohacs,K.M.,2001,WO 01/81505.
REF.17:Pittman,R.W.,Fontaine,M.F.,1984,In situ production ofhydrocarbons including shale oil,U.S.Patent 4,487,260.
REF.18:Riva,D.and Hopkins,P.,1998,Suncor down under:the Stuart OilShale Project,Annual Meeting of the Canadian Inst.of Mining,Metallurgy,andPetroleum,Montreal,May 3-7.
REF.19:Salamonsson,G.,1951,The Ljungstrom in situ method for shale-oilrecovery,Sell,G.,ed.,Proc.of the 2nd Oil Shale and Cannel Coal Conf.,v.2,Glasgow,July 1950,Institute of Petroleum,London,p.260-280.
REF.20:Segalman,D.J.,1986,Electrode well method and apparatus,U.S.Patent 4,567,945.
REF.21:Stevens,A.L.,and Zahradnik,R.L.,1983,Results from thesimultaneous processing of modified in situ retorts 7&8,Gary,J.H.,ed.,16th OilShale Symp.,CSM,p.267-280.
REF.22:Tissot,B.P.,and Welte,D.H.,1984,Petroleum Formation andOccurrence,New York,Springer-Verlag,p.699.
REF.23:Tyner,C.E.,Parrish,R.L.,and Major,B.H.,1982,Sandia/Geokinetics Retort 23:a horizontal in situ retorting experiment,Gary,J.H.,ed.,15th Oil Shale Symp.,CSM,p.370-384.
REF.24:Van Meurs,P.,DeRouffiguan,E.P.,Vinegar,H.J.,and Lucid,M.F.,1989,Conductively heating a subterranean oil shale to create permeability andsubsequently produce oil,U.S.Patent 4,886,118.
REF.25:Vermeulen,F.E.,1989,Electrical heating of reservoirs,Hepler,L.,and Hsi,C.,eds.,AOSTRA Technical Handbook on Oil Sands,Bitumens,and HeavyOils,Chapt.13,p.339-376.
REF.26:Yen,T.F.,and Chilingarian,G.V.,1976,Oil Shale,Amsterdam,Elsevier,p.292.
REF.27:Parker,H.W.1960,In Situ Electrolinking of Oil Shale,U.S.Patent3,137,347.

Claims (13)

1.一种处理含固体有机物的地下地层的方法,所述方法包括:
(a)提供一口或多口井,所述井贯穿地下地层内的处理间隔;
(b)从至少一口所述井建立至少一个断面,使所述断面与至少一口所述井交叉;
(c)在所述断面内放置导电材料;和
(d)使电流流过所述断面,从而使所述电流流过至少部分所述导电材料并通过所述部分导电材料内的电阻产生足够的热量,以将至少部分所述固体有机物热解为可采出的烃。
2.权利要求1的方法,其中所述地下地层包含油页岩。
3.权利要求1的方法,其中所述井基本是垂直的。
4.权利要求1的方法,其中所述井基本是水平的。
5.权利要求1的方法,其中所述断面基本是水平的。
6.权利要求1的方法,其中所述断面基本是垂直的。
7.权利要求1的方法,其中所述断面基本纵向延伸至其由之建立的井。
8.权利要求1的方法,其中所述导电材料包括支撑剂材料。
9.权利要求1的方法,其中所述导电材料包括导电水泥。
10.一种处理含固体有机物的地下地层的方法,所述方法包括:
(a)提供一口或多口井,所述井贯穿地下地层内的处理间隔;
(b)从至少一口所述井建立至少一个断面,使所述断面与至少一口所述井交叉;
(c)在所述断面内放置导电支撑剂材料;和
(d)使电流流过所述断面,从而使所述电流流过至少部分所述导电支撑剂材料并通过所述部分导电支撑剂材料内的电阻产生足够的热量,以将至少部分所述固体有机物热解为可采出的烃。
11.一种处理含固体有机物的地下地层的方法,所述方法包括:
(a)提供两口或多口井,所述井贯穿地下地层内的处理间隔;
(b)从至少一口所述井建立至少一个断面,使所述断面与至少两口所述井交叉;
(c)在所述断面内放置导电材料;和
(d)使电流流过所述断面,从而使所述电流流过至少部分所述导电材料并通过所述部分导电材料内的电阻产生足够的热量,以将至少部分所述固体有机物热解为可采出的烃。
12.一种处理含固体有机物的地下地层的方法,所述方法包括:
(a)提供两口或多口井,所述井贯穿地下地层内的处理间隔;
(b)从至少一口所述井建立至少一个断面,使所述断面与至少两口所述井交叉;
(c)在所述断面内放置导电支撑剂材料;和
(d)使电流流过所述断面,从而使所述电流流过至少部分所述导电支撑剂材料并通过所述部分导电支撑剂材料内的电阻产生足够的热量,以将至少部分所述固体有机物热解为可采出的烃。
13.一种处理含烃的重油或焦油砂地下地层的方法,所述方法包括:
(a)提供一口或多口井,所述井贯穿地下地层内的处理间隔;
(b)从至少一口所述井建立至少一个断面,使所述断面与至少一口所述井交叉;
(c)在所述断面内放置导电材料;和
(d)使电流流过所述断面,从而使所述电流流过至少部分所述导电材料并通过所述部分导电材料内的电阻产生足够的热量,以降低至少部分所述烃的粘度。
CNB2004800167540A 2003-06-24 2004-04-14 处理地下地层以将有机物转化成可采出的烃的方法 Expired - Fee Related CN100392206C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US48213503P 2003-06-24 2003-06-24
US60/482,135 2003-06-24
US51199403P 2003-10-16 2003-10-16
US60/511,994 2003-10-16

Publications (2)

Publication Number Publication Date
CN1806090A true CN1806090A (zh) 2006-07-19
CN100392206C CN100392206C (zh) 2008-06-04

Family

ID=34107672

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800167540A Expired - Fee Related CN100392206C (zh) 2003-06-24 2004-04-14 处理地下地层以将有机物转化成可采出的烃的方法

Country Status (5)

Country Link
US (1) US7331385B2 (zh)
CN (1) CN100392206C (zh)
JO (1) JO2447B1 (zh)
RU (1) RU2349745C2 (zh)
WO (1) WO2005010320A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102197191A (zh) * 2008-08-29 2011-09-21 西门子公司 就地提取沥青或特重油的方法和设备
CN102203379A (zh) * 2008-10-29 2011-09-28 埃克森美孚上游研究公司 加热地下地层以转化有机物成为烃流体的电传导方法
CN102261238A (zh) * 2011-08-12 2011-11-30 中国石油天然气股份有限公司 微波加热地下油页岩开采油气的方法及其模拟实验系统
CN102781548A (zh) * 2009-12-16 2012-11-14 红叶资源公司 去除和凝聚蒸汽的方法
CN101595273B (zh) * 2006-10-13 2013-01-02 埃克森美孚上游研究公司 用于原位页岩油开发的优化的井布置
CN101563524B (zh) * 2006-10-13 2013-02-27 埃克森美孚上游研究公司 原位加热开发油页岩与开发更深的烃源结合
CN103403292A (zh) * 2011-02-23 2013-11-20 道达尔公司 碳氢化合物的生产方法及施用其的装置
CN103555314A (zh) * 2013-05-27 2014-02-05 新疆准东石油技术股份有限公司 一种支撑剂及其制备方法
CN104204405A (zh) * 2012-03-29 2014-12-10 国际壳牌研究有限公司 电致裂地层
CN109891048A (zh) * 2015-08-31 2019-06-14 森科能源公司 用于控制烃的生产的系统和方法
CN111980653A (zh) * 2020-09-15 2020-11-24 吉林大学 一种基于冷热交替碎岩控制方向压裂造缝的方法

Families Citing this family (133)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1276967B1 (en) * 2000-04-24 2006-07-26 Shell Internationale Researchmaatschappij B.V. A method for treating a hydrocarbon containing formation
US7631691B2 (en) * 2003-06-24 2009-12-15 Exxonmobil Upstream Research Company Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
CA2563585C (en) 2004-04-23 2013-06-18 Shell Internationale Research Maatschappij B.V. Reducing viscosity of oil for production from a hydrocarbon containing formation
WO2006116078A1 (en) 2005-04-22 2006-11-02 Shell Internationale Research Maatschappij B.V. Insulated conductor temperature limited heater for subsurface heating coupled in a three-phase wye configuration
US7860377B2 (en) 2005-04-22 2010-12-28 Shell Oil Company Subsurface connection methods for subsurface heaters
ATE499428T1 (de) * 2005-10-24 2011-03-15 Shell Int Research Verfahren zur filterung eines in einem in-situ- wärmebehandlungsprozess erzeugten flüssigkeitsstroms
WO2007086993A1 (en) 2006-01-30 2007-08-02 Exxonmobil Upstream Research Company Method for spatial filtering of electromagnetic survey data
RU2455381C2 (ru) 2006-04-21 2012-07-10 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Высокопрочные сплавы
WO2007126676A2 (en) 2006-04-21 2007-11-08 Exxonmobil Upstream Research Company In situ co-development of oil shale with mineral recovery
WO2008048448A2 (en) * 2006-10-13 2008-04-24 Exxonmobil Upstream Research Company Heating an organic-rich rock formation in situ to produce products with improved properties
CA2663823C (en) * 2006-10-13 2014-09-30 Exxonmobil Upstream Research Company Enhanced shale oil production by in situ heating using hydraulically fractured producing wells
CA2666300A1 (en) 2006-10-13 2008-04-24 Exxonmobil Upstream Research Company Testing apparatus for applying a stress to a test sample
AU2007313393B2 (en) * 2006-10-13 2013-08-15 Exxonmobil Upstream Research Company Improved method of developing a subsurface freeze zone using formation fractures
RU2460871C2 (ru) 2006-10-20 2012-09-10 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. СПОСОБ ТЕРМИЧЕСКОЙ ОБРАБОТКИ in situ С ИСПОЛЬЗОВАНИЕМ НАГРЕВАТЕЛЬНОЙ СИСТЕМЫ С ЗАМКНУТЫМ КОНТУРОМ
JO2601B1 (en) * 2007-02-09 2011-11-01 ريد لييف ريسورسيز ، انك. Methods of extraction of hydrocarbons from hydrocarbons using existing infrastructure and accompanying systems
US7862706B2 (en) * 2007-02-09 2011-01-04 Red Leaf Resources, Inc. Methods of recovering hydrocarbons from water-containing hydrocarbonaceous material using a constructed infrastructure and associated systems
CA2676086C (en) 2007-03-22 2015-11-03 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
WO2008115359A1 (en) * 2007-03-22 2008-09-25 Exxonmobil Upstream Research Company Granular electrical connections for in situ formation heating
AU2014206234B2 (en) * 2007-03-22 2016-01-14 Exxonmobil Upstream Research Company Resistive heater for in situ formation heating
CA2684437C (en) 2007-04-20 2015-11-24 Shell Internationale Research Maatschappij B.V. In situ heat treatment of a tar sands formation after drive process treatment
CN101680284B (zh) * 2007-05-15 2013-05-15 埃克森美孚上游研究公司 用于原位转化富含有机物岩层的井下燃烧器井
US8122955B2 (en) * 2007-05-15 2012-02-28 Exxonmobil Upstream Research Company Downhole burners for in situ conversion of organic-rich rock formations
US8146664B2 (en) * 2007-05-25 2012-04-03 Exxonmobil Upstream Research Company Utilization of low BTU gas generated during in situ heating of organic-rich rock
US20080290719A1 (en) 2007-05-25 2008-11-27 Kaminsky Robert D Process for producing Hydrocarbon fluids combining in situ heating, a power plant and a gas plant
RU2465624C2 (ru) 2007-10-19 2012-10-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Регулируемый трансформатор с переключаемыми ответвлениями
US8082995B2 (en) 2007-12-10 2011-12-27 Exxonmobil Upstream Research Company Optimization of untreated oil shale geometry to control subsidence
US8003844B2 (en) * 2008-02-08 2011-08-23 Red Leaf Resources, Inc. Methods of transporting heavy hydrocarbons
EP2098683A1 (en) 2008-03-04 2009-09-09 ExxonMobil Upstream Research Company Optimization of untreated oil shale geometry to control subsidence
US20090260823A1 (en) 2008-04-18 2009-10-22 Robert George Prince-Wright Mines and tunnels for use in treating subsurface hydrocarbon containing formations
AU2009249493B2 (en) * 2008-05-23 2015-05-07 Exxonmobil Upstream Research Company Field management for substantially constant composition gas generation
WO2010045098A1 (en) 2008-10-13 2010-04-22 Shell Oil Company Circulated heated transfer fluid systems used to treat a subsurface formation
US8349171B2 (en) * 2009-02-12 2013-01-08 Red Leaf Resources, Inc. Methods of recovering hydrocarbons from hydrocarbonaceous material using a constructed infrastructure and associated systems maintained under positive pressure
US8366917B2 (en) * 2009-02-12 2013-02-05 Red Leaf Resources, Inc Methods of recovering minerals from hydrocarbonaceous material using a constructed infrastructure and associated systems
MA33112B1 (fr) * 2009-02-12 2012-03-01 Red Leaf Resources Inc Systemes de barriere et de collecte de vapeur pour infrastructures de commande encapsulees
UA104015C2 (ru) * 2009-02-12 2013-12-25 Ред Лиф Рисорсиз, Инк. Инфраструктура с контролированной проницаемостью и способ получения углеводородов из углеводородсодержащих материалов
US8323481B2 (en) * 2009-02-12 2012-12-04 Red Leaf Resources, Inc. Carbon management and sequestration from encapsulated control infrastructures
US8490703B2 (en) * 2009-02-12 2013-07-23 Red Leaf Resources, Inc Corrugated heating conduit and method of using in thermal expansion and subsidence mitigation
US8365478B2 (en) 2009-02-12 2013-02-05 Red Leaf Resources, Inc. Intermediate vapor collection within encapsulated control infrastructures
EA019629B1 (ru) * 2009-02-12 2014-05-30 Ред Лиф Рисорсиз, Инк. Сочлененная система соединения трубопровода
BRPI1008388A2 (pt) * 2009-02-23 2017-06-27 Exxonmobil Upstream Res Co método e sistema para recuperar hidrocarbonetos de uma formação de subsuperfície em uma área de desenvolvimento, e, método para tratar água em uma instalação de tratamento de água
WO2010118315A1 (en) 2009-04-10 2010-10-14 Shell Oil Company Treatment methodologies for subsurface hydrocarbon containing formations
ES2792357T3 (es) 2009-04-20 2020-11-11 Exxonmobil Upstream Res Co Procedimiento para predecir el flujo de fluido
CN102421988A (zh) * 2009-05-05 2012-04-18 埃克森美孚上游研究公司 通过基于一种或更多生产资源的可用性控制生产操作来将源自地下地层的有机物转化为可生产的烃
CA2704575C (en) 2009-05-20 2016-01-19 Conocophillips Company Wellhead hydrocarbon upgrading using microwaves
US8365823B2 (en) * 2009-05-20 2013-02-05 Conocophillips Company In-situ upgrading of heavy crude oil in a production well using radio frequency or microwave radiation and a catalyst
US8555970B2 (en) * 2009-05-20 2013-10-15 Conocophillips Company Accelerating the start-up phase for a steam assisted gravity drainage operation using radio frequency or microwave radiation
WO2011002557A1 (en) 2009-07-02 2011-01-06 Exxonmobil Upstream Research Company System and method for enhancing the production of hydrocarbons
US8230934B2 (en) * 2009-10-02 2012-07-31 Baker Hughes Incorporated Apparatus and method for directionally disposing a flexible member in a pressurized conduit
US9920596B2 (en) * 2009-11-23 2018-03-20 Conocophillips Company Coal bed methane recovery
US8656998B2 (en) * 2009-11-23 2014-02-25 Conocophillips Company In situ heating for reservoir chamber development
AP3601A (en) 2009-12-03 2016-02-24 Red Leaf Resources Inc Methods and systems for removing fines from hydrocarbon-containing fluids
US8863839B2 (en) 2009-12-17 2014-10-21 Exxonmobil Upstream Research Company Enhanced convection for in situ pyrolysis of organic-rich rock formations
DE102010020154B4 (de) * 2010-03-03 2014-08-21 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur "in-situ"-Förderung von Bitumen oder Schwerstöl
US9127538B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Methodologies for treatment of hydrocarbon formations using staged pyrolyzation
US9127523B2 (en) 2010-04-09 2015-09-08 Shell Oil Company Barrier methods for use in subsurface hydrocarbon formations
US8820406B2 (en) 2010-04-09 2014-09-02 Shell Oil Company Electrodes for electrical current flow heating of subsurface formations with conductive material in wellbore
US8631866B2 (en) 2010-04-09 2014-01-21 Shell Oil Company Leak detection in circulated fluid systems for heating subsurface formations
CN101892826B (zh) * 2010-04-30 2013-11-06 钟立国 气体与电加热辅助重力泄油的方法
BR112013001022A2 (pt) 2010-08-30 2016-05-24 Exxonmobil Upstream Res Compony redução de olefina para geração de óleo por pirólise in situ
WO2012030425A1 (en) 2010-08-30 2012-03-08 Exxonmobil Upstream Research Company Wellbore mechanical integrity for in situ pyrolysis
US8616273B2 (en) 2010-11-17 2013-12-31 Harris Corporation Effective solvent extraction system incorporating electromagnetic heating
US9033033B2 (en) 2010-12-21 2015-05-19 Chevron U.S.A. Inc. Electrokinetic enhanced hydrocarbon recovery from oil shale
BR112013015960A2 (pt) 2010-12-22 2018-07-10 Chevron Usa Inc recuperação e conversão de querogênio no local
FR2972756B1 (fr) * 2011-03-14 2014-01-31 Total Sa Fracturation electrique d'un reservoir
US9016370B2 (en) 2011-04-08 2015-04-28 Shell Oil Company Partial solution mining of hydrocarbon containing layers prior to in situ heat treatment
US8839856B2 (en) 2011-04-15 2014-09-23 Baker Hughes Incorporated Electromagnetic wave treatment method and promoter
WO2012177346A1 (en) * 2011-06-23 2012-12-27 Exxonmobil Upstream Research Company Electrically conductive methods for in situ pyrolysis of organic-rich rock formations
RU2477788C1 (ru) * 2011-10-04 2013-03-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ подземной газификации
CN103958824B (zh) 2011-10-07 2016-10-26 国际壳牌研究有限公司 用于加热地下地层的循环流体系统的热膨胀调节
AU2012332851B2 (en) * 2011-11-04 2016-07-21 Exxonmobil Upstream Research Company Multiple electrical connections to optimize heating for in situ pyrolysis
US8701788B2 (en) 2011-12-22 2014-04-22 Chevron U.S.A. Inc. Preconditioning a subsurface shale formation by removing extractible organics
US8851177B2 (en) 2011-12-22 2014-10-07 Chevron U.S.A. Inc. In-situ kerogen conversion and oxidant regeneration
US9181467B2 (en) 2011-12-22 2015-11-10 Uchicago Argonne, Llc Preparation and use of nano-catalysts for in-situ reaction with kerogen
CN102536184A (zh) * 2012-01-17 2012-07-04 中国石油大学(华东) 火烧煤层开采煤层气的方法
AU2012367826A1 (en) 2012-01-23 2014-08-28 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
AU2012367347A1 (en) 2012-01-23 2014-08-28 Genie Ip B.V. Heater pattern for in situ thermal processing of a subsurface hydrocarbon containing formation
US20130292114A1 (en) * 2012-05-04 2013-11-07 Michael W. Lin Methods For Containment and Improved Recovery in Heated Hydrocarbon Containing Formations By Optimal Placement of Fractures and Production Wells
WO2013165711A1 (en) 2012-05-04 2013-11-07 Exxonmobil Upstream Research Company Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material
US8992771B2 (en) 2012-05-25 2015-03-31 Chevron U.S.A. Inc. Isolating lubricating oils from subsurface shale formations
RU2518581C2 (ru) * 2012-07-17 2014-06-10 Александр Петрович Линецкий Способ разработки нефтегазовых, сланцевых  и угольных месторождений
US9028171B1 (en) * 2012-09-19 2015-05-12 Josh Seldner Geothermal pyrolysis process and system
US20140096952A1 (en) * 2012-10-04 2014-04-10 Geosierra Llc Enhanced hydrocarbon recovery from a single well by electrical resistive heating of a single inclusion in an oil sand formation
US20140096953A1 (en) * 2012-10-04 2014-04-10 Geosierra Llc Enhanced hydrocarbon recovery from multiple wells by electrical resistive heating of oil sand formations
US20140096951A1 (en) * 2012-10-04 2014-04-10 Geosierra Llc Enhanced hydrocarbon recovery from a single well by electrical resistive heating of multiple inclusions in an oil sand formation
US9115576B2 (en) * 2012-11-14 2015-08-25 Harris Corporation Method for producing hydrocarbon resources with RF and conductive heating and related apparatuses
RU2521255C1 (ru) * 2012-12-10 2014-06-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Национальный исследовательский Томский политехнический университет" Способ подземной газификации
BR112015015733A2 (pt) 2013-01-04 2017-07-11 Carbo Ceramics Inc partículas de areia revestidas com resina eletricamente condutivas e métodos para detectar, localizar e caracterizar as partículas de areia eletricamente condutivas
US11008505B2 (en) 2013-01-04 2021-05-18 Carbo Ceramics Inc. Electrically conductive proppant
US9434875B1 (en) 2014-12-16 2016-09-06 Carbo Ceramics Inc. Electrically-conductive proppant and methods for making and using same
CN103174406B (zh) 2013-03-13 2015-12-02 吉林大学 一种油页岩地下原位加热的方法
US9097097B2 (en) 2013-03-20 2015-08-04 Baker Hughes Incorporated Method of determination of fracture extent
RU2543235C2 (ru) * 2013-07-23 2015-02-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный архитектурно-строительный университет" КГАСУ Способ разработки сланцевых месторождений
WO2015053731A1 (ru) * 2013-10-07 2015-04-16 Эдуард Анатольевич ТРОЦЕНКО Способ подземной газификации углеводородсодержащего пласта
US9512699B2 (en) 2013-10-22 2016-12-06 Exxonmobil Upstream Research Company Systems and methods for regulating an in situ pyrolysis process
US9394772B2 (en) 2013-11-07 2016-07-19 Exxonmobil Upstream Research Company Systems and methods for in situ resistive heating of organic matter in a subterranean formation
RU2560040C1 (ru) * 2014-06-03 2015-08-20 Открытое акционерное общество "Татнефть" имени В.Д. Шашина Способ разработки залежи высоковязкой нефти и битума
US9551210B2 (en) 2014-08-15 2017-01-24 Carbo Ceramics Inc. Systems and methods for removal of electromagnetic dispersion and attenuation for imaging of proppant in an induced fracture
WO2016081103A1 (en) 2014-11-21 2016-05-26 Exxonmobil Upstream Research Comapny Mitigating the effects of subsurface shunts during bulk heating of a subsurface formation
US9719328B2 (en) 2015-05-18 2017-08-01 Saudi Arabian Oil Company Formation swelling control using heat treatment
US10113402B2 (en) 2015-05-18 2018-10-30 Saudi Arabian Oil Company Formation fracturing using heat treatment
PE20181181A1 (es) 2015-09-30 2018-07-20 Red Leaf Resources Inc Calentamiento programado por zonas de materiales portadores de hidrocarburo
WO2018136100A1 (en) 2017-01-23 2018-07-26 Halliburton Energy Services, Inc. Fracturing treatments in subterranean formations using inorganic cements and electrically controlled propellants
WO2018136095A1 (en) 2017-01-23 2018-07-26 Halliburton Energy Services, Inc. Fracturing treatments in subterranean formations using electrically controlled propellants
WO2018136093A1 (en) 2017-01-23 2018-07-26 Halliburton Energy Services, Inc. Enhancing complex fracture networks in subterranean formations
CN109505591B (zh) * 2017-09-13 2021-10-29 中国石油化工股份有限公司 确定缝洞型油藏未充填溶洞渗透率界限的方法及系统
US10941644B2 (en) 2018-02-20 2021-03-09 Saudi Arabian Oil Company Downhole well integrity reconstruction in the hydrocarbon industry
US20190257973A1 (en) * 2018-02-20 2019-08-22 Saudi Arabian Oil Company 3-dimensional scanner for downhole well integrity reconstruction in the hydrocarbon industry
US10641079B2 (en) 2018-05-08 2020-05-05 Saudi Arabian Oil Company Solidifying filler material for well-integrity issues
US11187068B2 (en) 2019-01-31 2021-11-30 Saudi Arabian Oil Company Downhole tools for controlled fracture initiation and stimulation
US11125075B1 (en) 2020-03-25 2021-09-21 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11414963B2 (en) 2020-03-25 2022-08-16 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11280178B2 (en) 2020-03-25 2022-03-22 Saudi Arabian Oil Company Wellbore fluid level monitoring system
US11414984B2 (en) 2020-05-28 2022-08-16 Saudi Arabian Oil Company Measuring wellbore cross-sections using downhole caliper tools
US11414985B2 (en) 2020-05-28 2022-08-16 Saudi Arabian Oil Company Measuring wellbore cross-sections using downhole caliper tools
US11631884B2 (en) 2020-06-02 2023-04-18 Saudi Arabian Oil Company Electrolyte structure for a high-temperature, high-pressure lithium battery
US11391104B2 (en) 2020-06-03 2022-07-19 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11149510B1 (en) 2020-06-03 2021-10-19 Saudi Arabian Oil Company Freeing a stuck pipe from a wellbore
US11719089B2 (en) 2020-07-15 2023-08-08 Saudi Arabian Oil Company Analysis of drilling slurry solids by image processing
AR123020A1 (es) 2020-07-21 2022-10-26 Red Leaf Resources Inc Métodos para procesar en etapas esquistos bituminosos
US11255130B2 (en) 2020-07-22 2022-02-22 Saudi Arabian Oil Company Sensing drill bit wear under downhole conditions
US11506044B2 (en) 2020-07-23 2022-11-22 Saudi Arabian Oil Company Automatic analysis of drill string dynamics
US11867008B2 (en) 2020-11-05 2024-01-09 Saudi Arabian Oil Company System and methods for the measurement of drilling mud flow in real-time
US11434714B2 (en) 2021-01-04 2022-09-06 Saudi Arabian Oil Company Adjustable seal for sealing a fluid flow at a wellhead
US11697991B2 (en) 2021-01-13 2023-07-11 Saudi Arabian Oil Company Rig sensor testing and calibration
US11572752B2 (en) 2021-02-24 2023-02-07 Saudi Arabian Oil Company Downhole cable deployment
US11727555B2 (en) 2021-02-25 2023-08-15 Saudi Arabian Oil Company Rig power system efficiency optimization through image processing
US11846151B2 (en) 2021-03-09 2023-12-19 Saudi Arabian Oil Company Repairing a cased wellbore
US11725504B2 (en) 2021-05-24 2023-08-15 Saudi Arabian Oil Company Contactless real-time 3D mapping of surface equipment
US11619097B2 (en) 2021-05-24 2023-04-04 Saudi Arabian Oil Company System and method for laser downhole extended sensing
US11624265B1 (en) 2021-11-12 2023-04-11 Saudi Arabian Oil Company Cutting pipes in wellbores using downhole autonomous jet cutting tools
US11867012B2 (en) 2021-12-06 2024-01-09 Saudi Arabian Oil Company Gauge cutter and sampler apparatus
US11954800B2 (en) 2021-12-14 2024-04-09 Saudi Arabian Oil Company Converting borehole images into three dimensional structures for numerical modeling and simulation applications
US11739616B1 (en) 2022-06-02 2023-08-29 Saudi Arabian Oil Company Forming perforation tunnels in a subterranean formation

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3137347A (en) * 1960-05-09 1964-06-16 Phillips Petroleum Co In situ electrolinking of oil shale
US3149672A (en) * 1962-05-04 1964-09-22 Jersey Prod Res Co Method and apparatus for electrical heating of oil-bearing formations
US3642066A (en) * 1969-11-13 1972-02-15 Electrothermic Co Electrical method and apparatus for the recovery of oil
US3620300A (en) * 1970-04-20 1971-11-16 Electrothermic Co Method and apparatus for electrically heating a subsurface formation
US4030549A (en) * 1976-01-26 1977-06-21 Cities Service Company Recovery of geothermal energy
US4401162A (en) * 1981-10-13 1983-08-30 Synfuel (An Indiana Limited Partnership) In situ oil shale process
US4412585A (en) * 1982-05-03 1983-11-01 Cities Service Company Electrothermal process for recovering hydrocarbons
US4886118A (en) * 1983-03-21 1989-12-12 Shell Oil Company Conductively heating a subterranean oil shale to create permeability and subsequently produce oil
US4567945A (en) * 1983-12-27 1986-02-04 Atlantic Richfield Co. Electrode well method and apparatus
US4487260A (en) * 1984-03-01 1984-12-11 Texaco Inc. In situ production of hydrocarbons including shale oil
US4705108A (en) * 1986-05-27 1987-11-10 The United States Of America As Represented By The United States Department Of Energy Method for in situ heating of hydrocarbonaceous formations
US4926941A (en) * 1989-10-10 1990-05-22 Shell Oil Company Method of producing tar sand deposits containing conductive layers
US5620049A (en) * 1995-12-14 1997-04-15 Atlantic Richfield Company Method for increasing the production of petroleum from a subterranean formation penetrated by a wellbore
US6148911A (en) * 1999-03-30 2000-11-21 Atlantic Richfield Company Method of treating subterranean gas hydrate formations
US6918444B2 (en) 2000-04-19 2005-07-19 Exxonmobil Upstream Research Company Method for production of hydrocarbons from organic-rich rock
US7011154B2 (en) * 2000-04-24 2006-03-14 Shell Oil Company In situ recovery from a kerogen and liquid hydrocarbon containing formation
EP1276967B1 (en) * 2000-04-24 2006-07-26 Shell Internationale Researchmaatschappij B.V. A method for treating a hydrocarbon containing formation
US6607036B2 (en) * 2001-03-01 2003-08-19 Intevep, S.A. Method for heating subterranean formation, particularly for heating reservoir fluids in near well bore zone
CN100545415C (zh) * 2001-04-24 2009-09-30 国际壳牌研究有限公司 现场处理含烃地层的方法
US6991036B2 (en) * 2001-04-24 2006-01-31 Shell Oil Company Thermal processing of a relatively permeable formation
US20030079877A1 (en) * 2001-04-24 2003-05-01 Wellington Scott Lee In situ thermal processing of a relatively impermeable formation in a reducing environment
US7004251B2 (en) * 2001-04-24 2006-02-28 Shell Oil Company In situ thermal processing and remediation of an oil shale formation
US6969123B2 (en) * 2001-10-24 2005-11-29 Shell Oil Company Upgrading and mining of coal
US7104319B2 (en) * 2001-10-24 2006-09-12 Shell Oil Company In situ thermal processing of a heavy oil diatomite formation
AU2002353888B1 (en) 2001-10-24 2008-03-13 Shell Internationale Research Maatschappij B.V. In situ thermal processing of a hydrocarbon containing formation using a natural distributed combustor
US6923155B2 (en) * 2002-04-23 2005-08-02 Electro-Motive Diesel, Inc. Engine cylinder power measuring and balance method
CA2503394C (en) * 2002-10-24 2011-06-14 Shell Canada Limited Temperature limited heaters for heating subsurface formations or wellbores
CA2524689C (en) * 2003-04-24 2012-05-22 Shell Canada Limited Thermal processes for subsurface formations
CA2563585C (en) * 2004-04-23 2013-06-18 Shell Internationale Research Maatschappij B.V. Reducing viscosity of oil for production from a hydrocarbon containing formation
US7860377B2 (en) * 2005-04-22 2010-12-28 Shell Oil Company Subsurface connection methods for subsurface heaters

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101595273B (zh) * 2006-10-13 2013-01-02 埃克森美孚上游研究公司 用于原位页岩油开发的优化的井布置
CN101563524B (zh) * 2006-10-13 2013-02-27 埃克森美孚上游研究公司 原位加热开发油页岩与开发更深的烃源结合
US8813835B2 (en) 2008-08-29 2014-08-26 Siemens Aktiengesellschaft Method and device for the “in-situ” conveying of bitumen or very heavy oil
CN102197191A (zh) * 2008-08-29 2011-09-21 西门子公司 就地提取沥青或特重油的方法和设备
CN102197191B (zh) * 2008-08-29 2016-04-13 西门子公司 就地提取沥青或特重油的方法和设备
CN102203379A (zh) * 2008-10-29 2011-09-28 埃克森美孚上游研究公司 加热地下地层以转化有机物成为烃流体的电传导方法
CN102781548A (zh) * 2009-12-16 2012-11-14 红叶资源公司 去除和凝聚蒸汽的方法
CN102781548B (zh) * 2009-12-16 2015-04-15 红叶资源公司 去除和凝聚蒸汽的方法
CN103403292A (zh) * 2011-02-23 2013-11-20 道达尔公司 碳氢化合物的生产方法及施用其的装置
CN102261238A (zh) * 2011-08-12 2011-11-30 中国石油天然气股份有限公司 微波加热地下油页岩开采油气的方法及其模拟实验系统
CN104204405A (zh) * 2012-03-29 2014-12-10 国际壳牌研究有限公司 电致裂地层
CN104204405B (zh) * 2012-03-29 2017-10-24 国际壳牌研究有限公司 电致裂地层
CN103555314A (zh) * 2013-05-27 2014-02-05 新疆准东石油技术股份有限公司 一种支撑剂及其制备方法
CN103555314B (zh) * 2013-05-27 2015-12-09 新疆准东石油技术股份有限公司 一种支撑剂及其制备方法
CN109891048A (zh) * 2015-08-31 2019-06-14 森科能源公司 用于控制烃的生产的系统和方法
CN109891048B (zh) * 2015-08-31 2022-05-17 森科能源公司 用于控制烃的生产的系统和方法
CN111980653A (zh) * 2020-09-15 2020-11-24 吉林大学 一种基于冷热交替碎岩控制方向压裂造缝的方法
CN111980653B (zh) * 2020-09-15 2022-03-25 吉林大学 一种基于冷热交替碎岩控制方向压裂造缝的方法

Also Published As

Publication number Publication date
US7331385B2 (en) 2008-02-19
RU2006101868A (ru) 2006-06-10
JO2447B1 (en) 2008-10-09
AU2004260008A1 (en) 2005-02-03
WO2005010320A1 (en) 2005-02-03
RU2349745C2 (ru) 2009-03-20
CN100392206C (zh) 2008-06-04
US20070000662A1 (en) 2007-01-04

Similar Documents

Publication Publication Date Title
CN100392206C (zh) 处理地下地层以将有机物转化成可采出的烃的方法
US7631691B2 (en) Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
RU2263774C2 (ru) Способ получения углеводородов из богатой органическими соединениями породы
US4705108A (en) Method for in situ heating of hydrocarbonaceous formations
AU2011296522B2 (en) Olefin reduction for in situ pyrolysis oil generation
CN108756839B (zh) 油页岩隔热增效原位转化方法及系统
US20120325458A1 (en) Electrically Conductive Methods For In Situ Pyrolysis of Organic-Rich Rock Formations
CN102428252A (zh) 用于从页岩原位提取油的方法和系统
AU2001250938A1 (en) Method for production of hydrocarbons from organic-rich rock
CN102947539A (zh) 传导对流回流干馏方法
CN102656337A (zh) 用于原位热解富含有机物岩层的增强的对流
CN103069104A (zh) 原位热解的井筒机械完整性
CN1666006A (zh) 通过u形开口现场加热含有烃的地层的方法与系统
CN106978998A (zh) 水平井造缝方法及地下油页岩开采油气的方法
WO2014014390A2 (ru) Способ разработки месторождений и извлечения нефти и газа из нефтегазовых и сланцевых пластов
CN106753503A (zh) 一种油页岩原位催化氧化法提取页岩油气的方法
CN106437657A (zh) 一种利用流体对油页岩进行原位改造和开采的方法
CN109736762A (zh) 一种油页岩原位催化氧化法提取页岩油气的方法
US20150192002A1 (en) Method of recovering hydrocarbons from carbonate and shale formations
WO2023078085A1 (zh) 中低熟富有机质页岩自生热原位转化开发方法
CN1717532A (zh) 在对含烃地层进行就地热处理过程中阻止井眼变形的方法
CN112031723A (zh) 一种电加热辅助加氢裂解干酪根的开发页岩油的方法
AU2004260008B2 (en) Methods of treating a subterranean formation to convert organic matter into producible hydrocarbons
CN1014336B (zh) 就地蒸汽驱采油方法
CN117888870A (zh) 一种油页岩原位转化制油气制氢的工艺方法及系统

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080604

Termination date: 20150414

EXPY Termination of patent right or utility model