RU2560040C1 - Способ разработки залежи высоковязкой нефти и битума - Google Patents

Способ разработки залежи высоковязкой нефти и битума Download PDF

Info

Publication number
RU2560040C1
RU2560040C1 RU2014122713/03A RU2014122713A RU2560040C1 RU 2560040 C1 RU2560040 C1 RU 2560040C1 RU 2014122713/03 A RU2014122713/03 A RU 2014122713/03A RU 2014122713 A RU2014122713 A RU 2014122713A RU 2560040 C1 RU2560040 C1 RU 2560040C1
Authority
RU
Russia
Prior art keywords
horizontal
wells
well
electrodes
extreme
Prior art date
Application number
RU2014122713/03A
Other languages
English (en)
Inventor
Илфат Нагимович Файзуллин
Камиль Мансурович Гарифов
Олег Вячеславович Салимов
Радик Зяузятович Зиятдинов
Ильдар Ильясович Гирфанов
Original Assignee
Открытое акционерное общество "Татнефть" имени В.Д. Шашина
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Татнефть" имени В.Д. Шашина filed Critical Открытое акционерное общество "Татнефть" имени В.Д. Шашина
Priority to RU2014122713/03A priority Critical patent/RU2560040C1/ru
Application granted granted Critical
Publication of RU2560040C1 publication Critical patent/RU2560040C1/ru

Links

Images

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к нефтегазодобывающей промышленности и предназначено для разработки залежи высоковязкой нефти и битума путем нагревания. Способ разработки залежи высоковязкой нефти и битума включает разбуривание залежи скважинами с горизонтальными стволами, направленными параллельно друг другу. Причем между двумя горизонтальными стволами крайних скважин бурят добывающую скважину с горизонтальным стволом, при этом в горизонтальные стволы двух крайних скважин устанавливают электроды. На устье скважины соединяют электроды с высокочастотной установкой. В горизонтальный ствол добывающей скважины спускают электроцентробежный насос. Производят прогрев залежи электрическим током с помощью установленных в горизонтальных стволах двух крайних скважин электродов - анода и катода, а отбор разогретой нефти из залежи на дневную поверхность осуществляют электроцентробежным насосом из горизонтального ствола добывающей скважины. На одной глубине бурят две крайние скважины с равными по длине горизонтальными стволами, направленными параллельно друг другу на расстоянии 40 м между устьями .Затем по всей длине горизонтальных стволов этих скважин выполняют гидравлический разрыв пласта с образованием продольных трещин с последующим их креплением токопроводящим материалом. Далее перпендикулярно забоям горизонтальных стволов крайних скважин бурят третью скважину с горизонтальным стволом. Причем горизонтальный ствол третьей скважины не пересекает горизонтальные стволы крайних скважин, но пробурен в пределах трещин гидравлического разрыва пласта, выполненного из горизонтальных стволов крайних скважин,

Description

Предложение относится к нефтегазодобывающей промышленности и предназначено для разработки залежи высоковязкой нефти и битума путем нагревания.
Известен способ разработки залежи высоковязкой нефти и битума (Вахитов Г.Г., Симкин Э.М. Использование физических полей для извлечения нефти из пластов. - М.: Недра, 1985, с.192-194), включающий воздействие электрическим полем на пласт через скважины.
Недостатком способа является низкая эффективность разработки залежи высоковязкой нефти и битума из-за недостаточного охвата пласта электрическим полем и прогреванием.
Известен способ разработки залежи высоковязкой нефти и битума (патент RU №2418163, МПК E21B 43/24, опубл. 10.05.2011 г.), включающий строительство скважины с подземной емкостью, вскрытие пласта горизонтальными скважинами, устья которых обвязаны через дистанционно управляемые задвижки и коллектор с подземной емкостью, прогрев пласта, сбор продукции в подземной емкости и ее откачку на поверхность насосами, при этом прогрев пласта для приведения его продукции в текучее состояние осуществляют комбинированным воздействием электромагнитных и акустических полей, создаваемых излучателями, помещенными в горизонтальные скважины с возможностью периодического перемещения и соединенными через устьевые уплотнители и соответствующие линии передач внутри скважины с наземными генераторами высокочастотных и акустических колебаний, причем прогрев участков пласта начинают согласно принятой технологии добычи от устья горизонтальных скважин до забоя для попутного прогрева в последующем неохваченных полями участков пласта теплом протекающей продукции, оптимальной температуры которой достигают регулированием дебита дистанционно управляемыми задвижками, при этом продукция пласта в гравитационном режиме и под действием пластового давления поступает в подземную емкость, а насосы для откачки продукции помещают в дополнительную скважину, соединенную с наземной системой улавливания легких фракций и перфорированную в зоне подземной емкости, при этом генераторы высокочастотных и акустических колебаний помещают в зоне пласта в скважине, а на разрабатываемом месторождении строят скважины, охватывая всю его площадь, а расстояния между ними выбирают больше двойных длин горизонтальных скважин.
Недостатки способа:
- во-первых, сложный технологический процесс реализации способа;
- во-вторых, дороговизна осуществления способа, связанная с применением большого количества технологического оборудования (наземные генераторы высокочастотных и акустических колебаний, излучателями, подземная емкость и т.д.) и строительством дополнительной скважины. Все эти большие затраты повышают себестоимость добычи нефти;
- в-третьих, небольшой охват тепловым воздействием залежи и, как следствие, низкие коэффициенты охвата и нефтеотдачи залежи высоковязкой нефти и битума.
Наиболее близким по технической сущности является способ разработки залежи высоковязкой нефти и битума (патент RU №2085715, МПК E21B 43/24,опубл. 27.07.1997 г.), включающий разбуривание залежи скважинами с горизонтальными стволами, направленными параллельно друг другу, причем между двумя горизонтальными столами крайних скважин бурят добывающую скважину с горизонтальным стволом, при этом в горизонтальные стволы двух крайних скважин устанавливают электроды, а на устье скважины соединяют электроды с высокочастотной установкой, в горизонтальный ствол добывающей скважины спускают электроцентробежный насос двустороннего действия, производят прогрев залежи электрическим током с помощью установленных в горизонтальных стволах двух крайних скважин электродов - анода и катода, после прогрева залежи разогретую продукцию из горизонтального ствола добывающей скважины направляют в неохваченную электрическим полем часть залежи с последующей откачкой путем реверса насоса разогретой нефти на дневную поверхность.
Недостатки способа:
-во-первых, низкая эффективность прогревания залежи электрическим током, создаваемым высокочастотной установкой, обусловленная точечным прогреванием электродами ограниченной площади залежи в «пятке» горизонтальной скважины с получением ограниченного объема «горячей» нефти, и последующей закачкой реверсивным насосом этого объема «горячей» нефти через перфорационные отверстия, выполненные в «носке» горизонтальных скважин с целью разогревания залежи высоковязкой нефти и битума на забоях горизонтальных скважин. Кроме того, все это осложняет технологический процесс реализации способа.
-во-вторых, небольшой охват (10-12 м) залежи прогреванием электрическим полем в «пятке» горизонтальной скважины и еще меньший охват (5-6 м) залежи прогреванием «горячей» нефтью в «носке» горизонтальной скважины и, как следствие, неравномерный прогрев залежи, приводящий к низкой нефтеотдаче залежи высоковязкой нефти и битума;
- в-третьих, низкие объемы отбора (дебит) разогретой нефти из добывающих скважин при разработке залежи обусловлены тем, что перед отбором «горячая» нефть закачивается обратно в залежь с целью ее прогревания, где частично успевает остыть и обратно уже не отбирается;
- в-четвертых, низкая надежность реализации способа, так как необходимо применять насосы специальной конструкции для реверсирования продукции в скважине, которые будут работать в неблагоприятных горизонтальных условиях, и для разработки всей залежи потребуется большое количество дорогой насосной техники.
Техническими задачами изобретения являются повышение эффективности прогревания залежи высоковязкой нефти и битума, упрощение технологического процесса реализации способа, а также увеличение охвата залежи прогреванием, повышение объемов отбора разогретой нефти и повышение надежности реализации способа.
Поставленные технические задачи решаются способом разработки залежи высоковязкой нефти и битума, включающим разбуривание залежи скважинами с горизонтальными стволами, направленными параллельно друг другу, причем между двумя горизонтальными стволами крайних скважин бурят добывающую скважину с горизонтальным стволом, при этом в горизонтальные стволы двух крайних скважин устанавливают электроды, а на устье скважины соединяют электроды с высокочастотной установкой, в горизонтальный ствол добывающей скважины спускают электроцентробежный насос, производят прогрев залежи электрическим током с помощью установленных в горизонтальных стволах двух крайних скважин электродов: анода и катода, а отбор разогретой нефти из залежи на дневную поверхность осуществляют электроцентробежным насосом из горизонтального ствола добывающей скважины.
Новым является то, что на одной глубине бурят две крайние скважины с равными по длине горизонтальными стволами, направленными параллельно друг другу на расстоянии 40 м между устьями, затем по всей длине горизонтальных стволов этих скважин выполняют гидравлический разрыв пласта с образованием продольных трещин с последующим их креплением токопроводящим материалом, далее перпендикулярно забоям горизонтальных стволов крайних скважин бурят третью скважину с горизонтальным стволом, причем горизонтальный ствол третьей скважины не пересекает горизонтальные стволы крайних скважин, но пробурен в пределах трещин гидравлического разрыва пласта, выполненных из горизонтальных стволов крайних скважин, при этом левее и правее крайних скважин, а также между ними параллельно их горизонтальным стволам на равноудаленном расстоянии пробуривают три добывающих скважины с горизонтальными стволами, длины которых равны длинам горизонтальных стволов крайних скважин, причем горизонтальные стволы добывающих скважин выполняют на 15 м ниже горизонтальных стволов крайних скважин, далее в горизонтальные стволы скважин устанавливают электроды: катоды и аноды, при этом в крайних скважинах устанавливают катоды, а в третьей скважине - анод, причем в качестве электродов, спускаемых в скважину, используют колонны насосных штанг, при этом на устье скважин обвязывают электроды с электрической подстанцией и оснащают добывающие скважины электроцентробежными насосами, осуществляют прогревание залежи с помощью крайних скважин по всей длине их горизонтального ствола, а отбор разогретой нефти осуществляют с помощью электроцентробежных насосов через горизонтальные стволы добывающих скважин.
На фиг. 1 и 2 изображены схемы предлагаемого способа разработки залежи высоковязкой нефти и битума.
Способ разработки залежи высоковязкой нефти и битума включает разбуривание залежи 1 (см. фиг. 1 и 2) скважинами с горизонтальными стволами. На одной глубине бурят две крайние скважины 2 и 3 соответственно с равными по длине L горизонтальными стволами 4 и 5, например длиной L=200 м, направленными параллельно друг другу на расстоянии а=40 м.
Затем по всей длине горизонтальных стволов 4 и 5 соответственно скважин 2 и 3 выполняют гидравлический разрыв пласта с образованием продольных трещин 6 (на фиг. 1 и 2 изображены условно) с последующим креплением этих трещин токопроводящим материалом 7.
Для получения продольных трещин 6 необходимо пробурить горизонтальные стволы 4 и 5 скважин 2 и 3 соответственно в направлении максимального напряжения σmax.
Гидравлический разрыв пласта производят любым известным способом, например как описано в патенте RU №2485306, МПК E21B 43/26, опубл. 20.06.2013 г.
Вследствие проведения гидравлического разрыва пласта в залежи 1 по всей длине горизонтальных стволов 4 и 5 крайних скважин 2 и 3 развивается продольная трещина 6 (см. фиг. 2) высотой до 10 м.
Далее перпендикулярно забоям горизонтальных стволов 4 и 5 (см. фиг. 1 и 2) двух крайних скважин 2 и 3 бурят третью скважину 8 с горизонтальным стволом 9, причем горизонтальный ствол 9 третьей скважины 8 (см. фиг. 2) не пересекает горизонтальные стволы 4 и 5 (см. фиг. 1 и 2) крайних скважин 2 и 3, но пробурен в пределах продольных трещин 6 гидравлического разрыва пласта, выполненных из горизонтальных стволов 4 и 5 соответственно крайних скважин 2 и 3.
В качестве токопроводящего материала, закачиваемого в продольные трещины 6 горизонтальных стволов 4 и 5 соответствующих скважин 2 и 3 с целью их крепления, например, используют искусственный графит, смешанный с алюминиевой пудрой в соотношении 3:1 по массе. Графит искусственный имеет следующие физико-химические свойства:
- насыпная масса, г/см, не менее0,05;
- углерод, %, не менее99,0;
- влажность, %, не более1,0;
- сера, %, не более0,05;
- зольность, %, не более1,0.
Пудра алюминиевая выпускается по ГОСТ 5494-95.
Например, для крепления одного горизонтального ствола длиной 200 м необходимо использовать 12 тонн графита гранулированного и 4 тонны пудры алюминиевой.
Смешивание графита искусственного массой 12 т и алюминиевой пудры массой 4 т производят на устье скважины в бункере смесительного агрегата (на фиг. 1 и 2 не показан).
Левее и правее крайних скважин 2 и 3 (см. фиг. 1 и 2) соответственно, а также между ними параллельно их горизонтальным стволам 4 и 5 соответственно на равноудаленном расстоянии пробуривают три добывающих скважины 10, 11, 12 с горизонтальными стволами 13, 14 и 15, длины которых равны длинам горизонтальных стволов 4 и 5, соответственно крайних скважин 2 и 3, т.е. L=200 м. Таким образом, расстояние b между горизонтальными стволами 13 и 15 добывающих скважин 10 и 12 равно 80 м, а расстояния между скважинами 10, 2, 11, 3, 12 равны между собой и составляют 20 м.
Горизонтальные стволы 13, 14 и 15 соответствующих добывающих скважин 10, 11 и 12 выполняют на 15-20 метров ниже горизонтальных стволов 4 и 5 крайних скважин 2 и 3.
Далее в горизонтальные стволы 4, 5 и 9 соответствующих скважин 2, 3 и 8 устанавливают электроды: катоды и аноды соответственно 16 и 17, причем в горизонтальные стволы 4 и 5 крайних скважин 2 и 3 устанавливают катоды 16, а в горизонтальный ствол 9 третьей скважины 8 в интервале пересечений с трещинами 6 горизонтальных стволов 4 и 5 крайних скважин 2 и 3 устанавливают аноды 17. В качестве электродов, спускаемых в скважину, можно использовать колонну насосных штанг диаметром 22 мм. На устье скважин 2, 3 и 8 соединяют электроды 16 и 17 с электрической подстанцией 18, например, подстанция КТП ТВ 630/10/0,4, выпускаемая ООО «УралТрансформатор» (г. Екатеринбург, Россия). Оснащают добывающие скважины 10, 11 и 12 погружными электроцентробежными насосами, которые размещают выше соответствующих горизонтальных стволов 13, 14 и 15.
Начинают разработку залежи 1. Запускают электрическую подстанцию 18 в работу, которая подает электрический ток на электроды - 16 катоды «+» и аноды 17 «-», от которых электрический ток проходит через закрепленные токопроводящим материалом 7 трещины 6 по всей длине (L) горизонтальных стволов 4 и 5 крайних скважин 2 и 3, при этом закрепленные токопроводящим материалом 7 трещины 6 работают как нагревательные элементы.
Вырабатываемое тепло от трещин 6 передается в окружающую горную породу (залежь 1), вызывая их прогревание. В результате высоковязкая нефть и битум, находящиеся в залежи 1, разогреваются до температуры, достаточной для ее течения в залежи 1 под действием сил гравитации. Вводят добывающие скважины 10, 11, 12 в эксплуатацию.
Повышается эффективность прогревания залежи высоковязкой нефти и битума вследствие того, что прогревание залежи 1 происходит по всей длине (L=200 м) горизонтальных стволов 4 и 5 крайних скважин 2 и 3, при этом исключается точечное прогревание залежи электрическим полем, создаваемым между электродами высокочастотной установки с последующей закачкой ограниченного объема «горячей» нефти в другую часть залежи, поэтому упрощается технологический процесс реализации способа.
В результате реализации способа в крайних скважинах образуются продольные трещины с высотой до 10 м, что позволяет увеличить охват залежи тепловым воздействием до 15 м, при этом происходит равномерное прогревание залежи по всей длине горизонтального ствола, увеличивается нефтеотдача залежи высоковязкой нефти и битума. Разогретые высоковязкая нефть и битум под действием сил гравитации стекают вниз в горизонтальные стволы 13, 14 и 15 соответствующих добывающих скважин 11, 12 и 13, откуда погружными электроцентробежными насосами отбираются на дневную поверхность. Исключается обратная закачка «горячей» нефти в залежь, где она успевает частично остыть, а наличие трех добывающих скважин 11, 12, и 13, горизонтальные стволы 14, 15 и 16 которых пробурены параллельно на равноудаленном расстоянии друг от друга, позволяют увеличить объемы отбора (дебит) разогретой нефти из залежи 1.
При реализации предлагаемого способа исключается применение погружных электроцентробежных насосов специальной конструкции для реверсирования продукции в скважине, поэтому вследствие исключения реверсирования нет необходимости размещать насосы в горизонтальных условиях, в связи с чем улучшаются условия работы погружных электроцентробежных насосов и повышается надежность реализации способа.
Предлагаемый способ разработки залежи высоковязкой нефти и битума позволяет повысить эффективность прогревания залежи высоковязкой нефти и битума нагреванием, упростить технологический процесс реализации способа, а также увеличить охват залежи прогреванием, повысить объемы отбора разогретой нефти и повысить надежность реализации способа.

Claims (1)

  1. Способ разработки залежи высоковязкой нефти и битума, включающий разбуривание залежи скважинами с горизонтальными стволами, направленными параллельно друг другу, причем между двумя горизонтальными стволами крайних скважин бурят добывающую скважину с горизонтальным стволом, при этом в горизонтальные стволы двух крайних скважин устанавливают электроды, а на устье скважины соединяют электроды с высокочастотной установкой, в горизонтальный ствол добывающей скважины спускают электроцентробежный насос, производят прогрев залежи электрическим током с помощью установленных в горизонтальных стволах двух крайних скважин электродов - анода и катода, а отбор разогретой нефти из залежи на дневную поверхность осуществляют электроцентробежным насосом из горизонтального ствола добывающей скважины, отличающийся тем, на одной глубине бурят две крайние скважины с равными по длине горизонтальными стволами, направленными параллельно друг другу на расстоянии 40 м между устьями, затем по всей длине горизонтальных стволов этих скважин выполняют гидравлический разрыв пласта с образованием продольных трещин с последующим их креплением токопроводящим материалом, далее перпендикулярно забоям горизонтальных стволов крайних скважин бурят третью скважину с горизонтальным стволом, причем горизонтальный ствол третьей скважины не пересекает горизонтальные стволы крайних скважин, но пробурен в пределах трещин гидравлического разрыва пласта, выполненных из горизонтальных стволов крайних скважин, при этом левее и правее крайних скважин, а также между ними параллельно их горизонтальным стволам на равноудаленном расстоянии пробуривают три добывающие скважины с горизонтальными стволами, длины которых равны длинам горизонтальных стволов крайних скважин, причем горизонтальные стволы добывающих скважин выполняют на 15 м ниже горизонтальных стволов крайних скважин, далее в горизонтальные стволы скважин устанавливают электроды - катоды и аноды, при этом в крайних скважинах устанавливают катоды, а в третьей скважине - анод, причем в качестве электродов, спускаемых в скважину, используют колонны насосных штанг, при этом на устье скважин обвязывают электроды с электрической подстанцией и оснащают добывающие скважины электроцентробежными насосами, осуществляют прогревание залежи с помощью крайних скважин по всей длине их горизонтального ствола, а отбор разогретой нефти осуществляют с помощью электроцентробежных насосов через горизонтальные стволы добывающих скважин.
RU2014122713/03A 2014-06-03 2014-06-03 Способ разработки залежи высоковязкой нефти и битума RU2560040C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2014122713/03A RU2560040C1 (ru) 2014-06-03 2014-06-03 Способ разработки залежи высоковязкой нефти и битума

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2014122713/03A RU2560040C1 (ru) 2014-06-03 2014-06-03 Способ разработки залежи высоковязкой нефти и битума

Publications (1)

Publication Number Publication Date
RU2560040C1 true RU2560040C1 (ru) 2015-08-20

Family

ID=53880503

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2014122713/03A RU2560040C1 (ru) 2014-06-03 2014-06-03 Способ разработки залежи высоковязкой нефти и битума

Country Status (1)

Country Link
RU (1) RU2560040C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112112578A (zh) * 2020-11-23 2020-12-22 东营市金亿来石油机械有限公司 一种防偏转的空心抽油杆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236039A (en) * 1992-06-17 1993-08-17 General Electric Company Balanced-line RF electrode system for use in RF ground heating to recover oil from oil shale
RU2044874C1 (ru) * 1993-03-22 1995-09-27 Бакулин Виктор Николаевич Способ термошахтного извлечения высоковязкой нефти из пласта
RU2085715C1 (ru) * 1994-07-18 1997-07-27 Гамбар Закиевич Закиев Способ разработки залежей высоковязких нефтей и битумов
RU2210664C1 (ru) * 2002-07-02 2003-08-20 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ разработки залежи высоковязкой нефти
RU2303692C2 (ru) * 2001-10-26 2007-07-27 Электро-Петролеум, Инк. Электрохимический способ вторичной добычи нефти путем инициирования в ней окислительно-восстановительных реакций
RU2349745C2 (ru) * 2003-06-24 2009-03-20 Эксонмобил Апстрим Рисерч Компани Способ обработки подземного пласта для конверсии органического вещества в извлекаемые углеводороды (варианты)

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5236039A (en) * 1992-06-17 1993-08-17 General Electric Company Balanced-line RF electrode system for use in RF ground heating to recover oil from oil shale
RU2044874C1 (ru) * 1993-03-22 1995-09-27 Бакулин Виктор Николаевич Способ термошахтного извлечения высоковязкой нефти из пласта
RU2085715C1 (ru) * 1994-07-18 1997-07-27 Гамбар Закиевич Закиев Способ разработки залежей высоковязких нефтей и битумов
RU2303692C2 (ru) * 2001-10-26 2007-07-27 Электро-Петролеум, Инк. Электрохимический способ вторичной добычи нефти путем инициирования в ней окислительно-восстановительных реакций
RU2210664C1 (ru) * 2002-07-02 2003-08-20 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ разработки залежи высоковязкой нефти
RU2349745C2 (ru) * 2003-06-24 2009-03-20 Эксонмобил Апстрим Рисерч Компани Способ обработки подземного пласта для конверсии органического вещества в извлекаемые углеводороды (варианты)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112112578A (zh) * 2020-11-23 2020-12-22 东营市金亿来石油机械有限公司 一种防偏转的空心抽油杆

Similar Documents

Publication Publication Date Title
US3105545A (en) Method of heating underground formations
US20090139716A1 (en) Method of recovering bitumen from a tunnel or shaft with heating elements and recovery wells
CN105863569A (zh) 一种单井压裂重力自循环开采干热岩地热方法
RU2582251C1 (ru) Способ разработки послойно-зонально-неоднородной залежи сверхвязкой нефти или битума
RU2560040C1 (ru) Способ разработки залежи высоковязкой нефти и битума
RU2433256C1 (ru) Способ разработки залежи высоковязкой нефти или битумов
RU2528760C1 (ru) Способ разработки изометрических залежей природного битума
US20200018140A1 (en) Method for Increasing Petroleum Yield
RU2454532C1 (ru) Способ разработки залежи высоковязкой нефти
RU2560016C1 (ru) Способ добычи высоковязкой нефти и битума
RU2597303C1 (ru) Способ разработки залежи высоковязкой нефти и битума
RU2543843C1 (ru) Термошахтный способ разработки высоковязкой нефти
RU2555163C1 (ru) Способ разработки залежи высоковязкой нефти горизонтальными скважинами
RU2287679C1 (ru) Способ разработки залежи высоковязкой нефти или битума
RU2564311C1 (ru) Способ добычи высоковязкой нефти и битума
RU2504646C1 (ru) Способ разработки залежей нефти с применением заводнения
RU2618542C1 (ru) Способ разработки залежи нефти трещинами гидроразрыва пласта
CA2963459A1 (en) The method of thermal reservoir stimulation
RU2627345C1 (ru) Способ разработки залежи высоковязкой нефти или битума с применением трещин гидроразрыва пласта
US10125587B1 (en) Systems and methods for the in situ recovery of hydrocarbonaceous products from oil shale and/or oil sands
RU2544938C1 (ru) Способ проводки горизонтальной скважины в пласте малой толщины
RU2431743C1 (ru) Способ разработки месторождений высоковязких нефтей и битумов скважинами с наклонно-горизонтальными участками
RU2652245C1 (ru) Способ разработки залежи битуминозной нефти
RU2268356C1 (ru) Способ теплового воздействия на залежь высоковязкой нефти
RU2505668C1 (ru) Способ разработки нефтяной залежи с применением разветвленных горизонтальных скважин