US20080290719A1 - Process for producing Hydrocarbon fluids combining in situ heating, a power plant and a gas plant - Google Patents

Process for producing Hydrocarbon fluids combining in situ heating, a power plant and a gas plant Download PDF

Info

Publication number
US20080290719A1
US20080290719A1 US12/154,238 US15423808A US2008290719A1 US 20080290719 A1 US20080290719 A1 US 20080290719A1 US 15423808 A US15423808 A US 15423808A US 2008290719 A1 US2008290719 A1 US 2008290719A1
Authority
US
United States
Prior art keywords
gas
organic
gas stream
rich rock
stream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/154,238
Inventor
Robert D. Kaminsky
Michele M. Thomas
Lauren Blanton
Eric D. Nelson
William A. Symington
Original Assignee
Kaminsky Robert D
Thomas Michele M
Lauren Blanton
Nelson Eric D
Symington William A
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US93194007P priority Critical
Application filed by Kaminsky Robert D, Thomas Michele M, Lauren Blanton, Nelson Eric D, Symington William A filed Critical Kaminsky Robert D
Priority to US12/154,238 priority patent/US20080290719A1/en
Publication of US20080290719A1 publication Critical patent/US20080290719A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/02Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal by distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G31/00Refining of hydrocarbon oils in the absence of hydrogen, by methods not otherwise provided for
    • C10G31/09Refining of hydrocarbon oils in the absence of hydrogen, by methods not otherwise provided for by filtration
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B41/00Equipment or details not covered by groups E21B15/00 - E21B40/00
    • E21B41/005Waste disposal systems
    • E21B41/0057Disposal of a fluid by injection into a subterranean formation
    • E21B41/0064Carbon dioxide sequestration
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/34Arrangements for separating materials produced by the well
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/103Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with afterburner in exhaust boiler
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/207Acid gases, e.g. H2S, COS, SO2, HCN
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4037In-situ processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/28Propane and butane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]

Abstract

An in situ method of producing hydrocarbon fluids from an organic-rich rock formation is provided. The method may include heating an organic-rich rock formation, for example an oil shale formation, in situ to pyrolyze formation hydrocarbons, for example kerogen, to form a production fluid containing hydrocarbon fluids. The method may include separating the production fluid into at least a gas stream and a liquid stream, where the gas stream is a low BTU gas stream. The low BTU gas stream is then fed to a gas turbine where it is combusted and is used to generate electricity.

Description

    CROSS-REFERENCE TO RELATED APPLICATIONS
  • This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/931,940, filed May 25, 2007. That application is titled “A Process for Producing Hydrocarbon Fluids Combining In Situ Heating, a Power Plant and a Gas Plant,” and is incorporated herein in its entirety by reference.
  • This application is related to co-pending, concurrently filed, and commonly assigned U.S. Patent Application [Attorney Docket No. 2007EM147] entitled “Utilization of Low BTU Gas Generated During In Situ Heating of Organic-Rich Rock”, which claims the benefit of U.S. Provisional Patent Application Ser. No. 60/931,820, filed May 25, 2007, the disclosures of which are hereby incorporated herein in their entirety by reference.
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to the field of hydrocarbon recovery from subsurface formations. More specifically, the present invention relates to in situ recovery of hydrocarbon fluids from organic-rich rock formations, including, for example, oil shale formations, coal formations and tar sands formations.
  • 2. Background of the Invention
  • Certain geological formations are known to contain an organic matter known as “kerogen.” Kerogen is a solid, carbonaceous material. When kerogen is imbedded in rock formations, the mixture is referred to as oil shale. This is true whether or not the mineral is, in fact, technically shale, that is, a rock formed from compacted clay.
  • Kerogen is subject to decomposing upon exposure to heat over a period of time. Upon heating, kerogen molecularly decomposes to produce oil, gas, and carbonaceous coke. Small amounts of water may also be generated. The oil, gas and water fluids are mobile within the rock matrix, while the carbonaceous coke remains essentially immobile.
  • Oil shale formations are found in various areas world-wide, including the United States. Oil shale formations tend to reside at relatively shallow depths. In the United States, oil shale is most notably found in Wyoming, Colorado, and Utah. These formations are often characterized by limited permeability. Some consider oil shale formations to be hydrocarbon deposits which have not yet experienced the years of heat and pressure thought to be required to create conventional oil and gas reserves.
  • The decomposition rate of kerogen to produce mobile hydrocarbons is temperature dependent. Temperatures generally in excess of 270° C. (518° F.) over the course of many months may be required for substantial conversion. At higher temperatures substantial conversion may occur within shorter times. When kerogen is heated, chemical reactions break the larger molecules forming the solid kerogen into smaller molecules of oil and gas. The thermal conversion process is referred to as pyrolysis or retorting.
  • Attempts have been made for many years to extract oil from oil shale formations. Near-surface oil shales have been mined and retorted at the surface for over a century. In 1862, James Young began processing Scottish oil shales. The industry lasted for about 100 years. Commercial oil shale retorting through surface mining has been conducted in other countries as well such as Australia, Brazil, China, Estonia, France, Russia, South Africa, Spain, and Sweden. However, the practice has been mostly discontinued in recent years because it proved to be uneconomical or because of environmental constraints on spent shale disposal. (See T. F. Yen, and G. V. Chilingarian, “Oil Shale,” Amsterdam, Elsevier, p. 292, the entire disclosure of which is incorporated herein by reference.) Further, surface retorting requires mining of the oil shale, which limits application to very shallow formations.
  • In the United States, the existence of oil shale deposits in northwestern Colorado has been known since the early 1900's. While research projects have been conducted in this area from time to time, no serious commercial development has been undertaken. Most research on oil shale production has been carried out in the latter half of the 1900's. The majority of this research was on shale oil geology, geochemistry, and retorting in surface facilities.
  • In 1947, U.S. Pat. No. 2,732,195 issued to Ljungstrom. That patent, entitled “Method of Treating Oil Shale and Recovery of Oil and Other Mineral Products Therefrom,” proposed the application of heat at high temperatures to the oil shale formation in situ to distill and produce hydrocarbons. The '195 Ljungstrom patent is incorporated herein by reference.
  • Ljungstrom coined the phrase “heat supply channels” to describe bore holes drilled into the formation. The bore holes received an electrical heat conductor which transferred heat to the surrounding oil shale. Thus, the heat supply channels served as heat injection wells. The electrical heating elements in the heat injection wells were placed within sand or cement or other heat-conductive material to permit the heat injection well to transmit heat into the surrounding oil shale while preventing the inflow of fluid. According to Ljungstrom, the “aggregate” was heated to between 500° and 1,000° C. in some applications.
  • Along with the heat injection wells, fluid producing wells were also completed in near proximity to the heat injection wells. As kerogen was pyrolyzed upon heat conduction into the rock matrix, the resulting oil and gas would be recovered through the adjacent production wells.
  • Ljungstrom applied his approach of thermal conduction from heated wellbores through the Swedish Shale Oil Company. A full scale plant was developed that operated from 1944 into the 1950's. (See G. Salamonsson, “The Ljungstrom In Situ Method for Shale-Oil Recovery,” 2nd Oil Shale and Cannel Coal Conference, v. 2, Glasgow, Scotland, Institute of Petroleum, London, p. 260-280 (1951), the entire disclosure of which is incorporated herein by reference.)
  • Additional in situ methods have been proposed. These methods generally involve the injection of heat and/or solvent into a subsurface oil shale. Heat may be in the form of heated methane (see U.S. Pat. No. 3,241,611 to J. L. Dougan), flue gas, or superheated steam (see U.S. Pat. No. 3,400,762 to D. W. Peacock). Heat may also be in the form of electric resistive heating, dielectric heating, radio frequency (RF) heating (U.S. Pat. No. 4,140,180, assigned to the FIT Research Institute in Chicago, Ill.) or oxidant injection to support in situ combustion. In some instances, artificial permeability has been created in the matrix to aid the movement of pyrolyzed fluids. Permeability generation methods include mining, rubblization, hydraulic fracturing (see U.S. Pat. No. 3,468,376 to M. L. Slusser and U.S. Pat. No. 3,513,914 to J. V. Vogel), explosive fracturing (see U.S. Pat. No. 1,422,204 to W. W. Hoover, et al.), heat fracturing (see U.S. Pat. No. 3,284,281 to R. W. Thomas), and steam fracturing (see U.S. Pat. No. 2,952,450 to H. Purre).
  • In 1989, U.S. Pat. No. 4,886,118 issued to Shell Oil Company, the entire disclosure of which is incorporated herein by reference. That patent, entitled “Conductively Heating a Subterranean Oil Shale to Create Permeability and Subsequently Produce Oil,” declared that “[c]ontrary to the implications of . . . prior teachings and beliefs . . . the presently described conductive heating process is economically feasible for use even in a substantially impermeable subterranean oil shale.” (col. 6, In. 50-54). Despite this declaration, it is noted that few, if any, commercial in situ shale oil operations have occurred other than Ljungstrom's application. The '118 patent proposed controlling the rate of heat conduction within the rock surrounding each heat injection well to provide a uniform heat front.
  • Additional history behind oil shale retorting and shale oil recovery can be found in co-owned patent publication WO 2005/010320 entitled “Methods of Treating a Subterranean Formation to Convert Organic Matter into Producible Hydrocarbons,” and in patent publication WO 2005/045192 entitled “Hydrocarbon Recovery from Impermeable Oil Shales.” The Background and technical disclosures of these two patent publications are incorporated herein by reference.
  • A need exists for improved processes for the production of shale oil. In addition, a need exists for improved methods of producing shale oil with improved properties. Further, a need exists for a process that is able to utilize low quality gas and/or gas with a changing quality over time that is produced from in situ heating. Further, a need exists for a process that is able generate electricity from a low quality gas and/or gas with a changing quality over time that is produced from in situ heating.
  • SUMMARY OF THE INVENTION
  • In one embodiment, the invention includes an in situ method of producing hydrocarbon fluids from an organic-rich rock formation. The method includes heating an organic-rich rock formation in situ and producing a production fluid from the organic-rich rock formation, where the production fluid is at least partially generated as a result of pyrolysis of formation hydrocarbons located in the organic-rich rock formation. The production fluid may include hydrocarbon fluids. The method may further include separating the production fluid into at least a first gas stream and a first liquid stream, where the first gas stream includes greater than 10 mole percent hydrocarbon gas and greater than 10 mole percent carbon dioxide. The method may further include passing the first gas stream through a first gas turbine to form a first gas turbine exhaust stream, where the first gas turbine is configured to provide energy to a first electrical generator. The method may further include generating electricity in the first electrical generator in response to the gas turbine exhaust stream.
  • In one embodiment, the invention includes an in situ method of producing hydrocarbon fluids from an organic-rich rock formation. The method includes heating an organic-rich rock formation in situ and producing a production fluid from the organic-rich rock formation, where the production fluid is at least partially generated as a result of pyrolysis of formation hydrocarbons located in the organic-rich rock formation. The production fluid may include hydrocarbon fluids. The method may further include separating the production fluid into at least a first gas stream and a first liquid stream, where the first gas stream includes greater than 10 mole percent hydrocarbon gas and has a lower heating value of less than 800 BTU/SCF (British thermal unit per standard cubic foot). The method may further include passing the first gas stream through a first gas turbine to form a first gas turbine exhaust stream, where the first gas turbine is configured to provide energy to a first electrical generator. The method may further include generating electricity in the first electrical generator in response to the gas turbine exhaust stream.
  • In one embodiment, the invention includes an in situ method of producing hydrocarbon fluids from an organic-rich rock formation. The method includes heating an organic-rich rock formation in situ and producing a production fluid from the organic-rich rock formation, where the production fluid is at least partially generated as a result of pyrolysis of formation hydrocarbons located in the organic-rich rock formation. The production fluid may include hydrocarbon fluids. The method may further include separating the production fluid into at least a first gas stream and a first liquid stream. The method may further include monitoring the first gas stream to determine a first property of the first gas stream prior to substantial combustion of the first gas stream in a first gas turbine combustor. The method may further include adjusting a control measure to change the first property of the first gas stream. The method may further include passing the first gas stream through a first gas turbine to form a first gas turbine exhaust stream, where the first gas turbine is configured to provide energy to a first electrical generator. The method may further include generating electricity in the first electrical generator in response to the gas turbine exhaust stream.
  • In one embodiment, the invention includes an in situ method of producing hydrocarbon fluids from an organic-rich rock formation. The method includes heating an organic-rich rock formation in situ with an electrical resistance heater configured to produce heat from electricity and producing a production fluid from the organic-rich rock formation, where the production fluid is at least partially generated as a result of pyrolysis of formation hydrocarbons located in the organic-rich rock formation. The production fluid may include hydrocarbon fluids. The method may further include separating the production fluid into at least a first gas stream and a first liquid stream, where the first gas stream comprises greater than 5 mole percent hydrocarbon gas and greater than 10 mole percent carbon dioxide. The method may further include passing the first gas stream through a first gas turbine to form a first gas turbine exhaust stream, where the first gas turbine is configured to provide energy to a first electrical generator. The method may further include generating electricity in the first electrical generator in response to the gas turbine exhaust stream. The method may further include passing the gas turbine exhaust stream to a steam generator to produce steam. The method may further include passing the steam through a steam turbine, where the steam turbine is configured to provide energy to a second electrical generator in response to the steam. The method may further include generating electricity in the second electrical generator.
  • In one embodiment, the invention includes an in situ method of producing hydrocarbon fluids from an organic-rich rock formation. The method includes heating an organic-rich rock formation in situ with an electrical resistance heater configured to produce heat from electricity and producing a production fluid from the organic-rich rock formation, where the production fluid is at least partially generated as a result of pyrolysis of formation hydrocarbons located in the organic-rich rock formation. The production fluid may include hydrocarbon fluids. The method may further include separating the production fluid into at least a first gas stream and a first liquid stream, where the first gas stream includes greater than 5 mole percent hydrocarbon gas and greater than 10 mole percent carbon dioxide. The method may further include passing the first gas stream through a first gas turbine to form a first gas turbine exhaust stream, where the first gas turbine is configured to provide energy to a first electrical generator. The method may further include generating electricity in the first electrical generator in response to the gas turbine exhaust stream.
  • In one embodiment, the invention includes an in situ method of producing hydrocarbon fluids from an organic-rich rock formation. The method includes heating an organic-rich rock formation in situ with an electrical resistance heater configured to produce heat from electricity and producing a production fluid from the organic-rich rock formation, where the production fluid is at least partially generated as a result of pyrolysis of formation hydrocarbons located in the organic-rich rock formation. The production fluid may include hydrocarbon fluids. The method may further include separating the production fluid into at least a first gas stream and a first liquid stream, where the first gas stream includes greater than 5 mole percent hydrocarbon gas and has a heating value of less than 800 BTU/SCF. The method may further include passing the first gas stream through a first gas turbine to form a first gas turbine exhaust stream, where the first gas turbine is configured to provide energy to a first electrical generator. The method may further include generating electricity in the first electrical generator in response to the gas turbine exhaust stream.
  • In one embodiment, the invention includes an in situ method of producing hydrocarbon fluids from an organic-rich rock formation. The method includes heating an organic-rich rock formation in situ and producing a production fluid from the organic-rich rock formation, where the production fluid is at least partially generated as a result of pyrolysis of formation hydrocarbons located in the organic-rich rock formation. The production fluid may include hydrocarbon fluids. The method may further include separating the production fluid into at least a first gas stream and a first liquid stream, where the first gas stream includes greater than 5 mole percent hydrocarbon gas and has a heating value of between 200 BTU/SCF and 800 BTU/SCF. The method may further include passing the first gas stream through a first gas turbine to form a first gas turbine exhaust stream, where the first gas turbine is configured to provide energy to a first electrical generator. The method may further include generating electricity in the first electrical generator in response to the gas turbine exhaust stream.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • So that the manner in which the features of the present invention can be better understood, certain drawings, graphs and flow charts are appended hereto. It is to be noted, however, that the drawings illustrate only selected embodiments of the inventions and are therefore not to be considered limiting of scope, for the inventions may admit to other equally effective embodiments and applications.
  • FIG. 1 is a cross-sectional isomeric view of an illustrative subsurface area. The subsurface area includes an organic-rich rock matrix that defines a subsurface formation.
  • FIG. 2 is a flow chart demonstrating a general method of in situ thermal recovery of oil and gas from an organic-rich rock formation, in one embodiment.
  • FIG. 3 is a cross-sectional side view of an illustrative oil shale formation that is within or connected to groundwater aquifers and a formation leaching operation.
  • FIG. 4 is a plan view of an illustrative heater well pattern, around a production well. Two layers of heater wells are shown.
  • FIG. 5 is a bar chart comparing one ton of Green River oil shale before and after a simulated in situ, retorting process.
  • FIG. 6 is a process flow diagram of exemplary surface processing facilities for a subsurface formation development.
  • FIG. 7 is a graph of the weight percent of each carbon number pseudo component occurring from C6 to C38 for laboratory experiments conducted at three different stress levels.
  • FIG. 8 is a graph of the weight percent ratios of each carbon number pseudo component occurring from C6 to C38 as compared to the C20 pseudo component for laboratory experiments conducted at three different stress levels.
  • FIG. 9 is a graph of the weight percent ratios of each carbon number pseudo component occurring from C6 to C38 as compared to the C25 pseudo component for laboratory experiments conducted at three different stress levels.
  • FIG. 10 is a graph of the weight percent ratios of each carbon number pseudo component occurring from C6 to C38 as compared to the C29 pseudo component for laboratory experiments conducted at three different stress levels.
  • FIG. 11 is a graph of the weight percent of normal alkane hydrocarbon compounds occurring from normal-C6 to normal-C38 for laboratory experiments conducted at three different stress levels.
  • FIG. 12 is a graph of the weight percent of normal alkane hydrocarbon compounds occurring from normal-C6 to normal-C38 as compared to the normal-C20 hydrocarbon compound for laboratory experiments conducted at three different stress levels.
  • FIG. 13 is a graph of the weight percent of normal alkane hydrocarbon compounds occurring from normal-C6 to normal-C38 as compared to the normal-C25 hydrocarbon compound for laboratory experiments conducted at three different stress levels.
  • FIG. 14 is a graph of the weight percent of normal alkane hydrocarbon compounds occurring from normal-C6 to normal-C38 as compared to the normal-C29 hydrocarbon compound for laboratory experiments conducted at three different stress levels.
  • FIG. 15 is a graph of the weight ratio of normal alkane hydrocarbon compounds to pseudo components for each carbon number from C6 to C38 for laboratory experiments conducted at three different stress levels.
  • FIG. 16 is a bar graph showing the concentration, in molar percentage, of the hydrocarbon species present in the gas samples taken from duplicate laboratory experiments conducted at three different stress levels.
  • FIG. 17 is an exemplary view of the gold tube apparatus used in the unstressed Parr heating test described in Example 1.
  • FIG. 18 is a cross-sectional view of the Parr vessel used in Examples 1-5.
  • FIG. 19 is gas chromatogram of gas sampled from Example 1.
  • FIG. 20 is a whole oil gas chromatogram of liquid sampled from Example 1.
  • FIG. 21 is an exemplary view of a Berea cylinder, Berea plugs, and an oil shale core specimen as used in Examples 2-5.
  • FIG. 22 is an exemplary view of the mini load frame and sample assembly used in Examples 2-5.
  • FIG. 23 is gas chromatogram of gas sampled from Example 2.
  • FIG. 24 is gas chromatogram of gas sampled from Example 3.
  • FIG. 25 is a whole oil gas chromatogram of liquid sampled from Example 3.
  • FIG. 26 is gas chromatogram of gas sampled from Example 4.
  • FIG. 27 is a whole oil gas chromatogram of liquid sampled from Example 4.
  • FIG. 28 is gas chromatogram of gas sampled from Example 5.
  • FIG. 29 is a process flow diagram of exemplary processing facilities that may be used in some embodiments of the invention.
  • FIG. 30 is an alternative process flow diagram of exemplary processing facilities that may be used in some embodiments of the invention.
  • FIG. 31 is an alternative process flow diagram of exemplary processing facilities that may be used in some embodiments of the invention.
  • FIG. 32 is a graph of several gaseous species evolved from laboratory heating of Colorado oil shale. The left y-axis reports the concentration in mol % of the measured gaseous species, including CO2, H2, methane, ethane, and CO, evolved over a 12-hour experiment. The x-axis represents time and is in terms of hours.
  • FIG. 33 is an alternative process flow diagram of exemplary processing facilities that may be used in some embodiments of the invention.
  • FIG. 34 is an alternative process flow diagram of exemplary processing facilities that may be used in some embodiments of the invention.
  • FIG. 35 is an alternative process flow diagram of exemplary processing facilities that may be used in some embodiments of the invention.
  • DETAILED DESCRIPTION OF CERTAIN EMBODIMENTS Definitions
  • As used herein, the term “hydrocarbon(s)” refers to organic material with molecular structures containing carbon bonded to hydrogen. Hydrocarbons may also include other elements, such as, but not limited to, halogens, metallic elements, nitrogen, oxygen, and/or sulfur.
  • As used herein, the term “hydrocarbon fluids” refers to a hydrocarbon or mixtures of hydrocarbons that are gases or liquids. For example, hydrocarbon fluids may include a hydrocarbon or mixtures of hydrocarbons that are gases or liquids at formation conditions, at processing conditions or at ambient conditions (15° C. and 1 atm pressure). Hydrocarbon fluids may include, for example, oil, natural gas, coal bed methane, shale oil, pyrolysis oil, pyrolysis gas, a pyrolysis product of coal, and other hydrocarbons that are in a gaseous or liquid state.
  • As used herein, the terms “produced fluids” and “production fluids” refer to liquids and/or gases removed from a subsurface formation, including, for example, an organic-rich rock formation. Produced fluids may include both hydrocarbon fluids and non-hydrocarbon fluids. Production fluids may include, but are not limited to, pyrolyzed shale oil, synthesis gas, a pyrolysis product of coal, carbon dioxide, hydrogen sulfide and water (including steam). Produced fluids may include both hydrocarbon fluids and non-hydrocarbon fluids.
  • As used herein, the term “condensable hydrocarbons” means those hydrocarbons that condense at 25° C. and one atmosphere absolute pressure. Condensable hydrocarbons may include a mixture of hydrocarbons having carbon numbers greater than 4.
  • As used herein, the term “non-condensable hydrocarbons” means those hydrocarbons that do not condense at 25° C. and one atmosphere absolute pressure. Non-condensable hydrocarbons may include hydrocarbons having carbon numbers less than 5.
  • As used herein, the term “heavy hydrocarbons” refers to hydrocarbon fluids that are highly viscous at ambient conditions (15° C. and 1 atm pressure). Heavy hydrocarbons may include highly viscous hydrocarbon fluids such as heavy oil, tar, and/or asphalt. Heavy hydrocarbons may include carbon and hydrogen, as well as smaller concentrations of sulfur, oxygen, and nitrogen. Additional elements may also be present in heavy hydrocarbons in trace amounts. Heavy hydrocarbons may be classified by API gravity. Heavy hydrocarbons generally have an API gravity below about 20 degrees. Heavy oil, for example, generally has an API gravity of about 10-20 degrees, whereas tar generally has an API gravity below about 10 degrees. The viscosity of heavy hydrocarbons is generally greater than about 100 centipoise at 15° C.
  • As used herein, the term “solid hydrocarbons” refers to any hydrocarbon material that is found naturally in substantially solid form at formation conditions. Non-limiting examples include kerogen, coal, shungites, asphaltites, and natural mineral waxes.
  • As used herein, the term “formation hydrocarbons” refers to both heavy hydrocarbons and solid hydrocarbons that are contained in an organic-rich rock formation. Formation hydrocarbons may be, but are not limited to, kerogen, oil shale, coal, bitumen, tar, natural mineral waxes, and asphaltites.
  • As used herein, the term “tar” refers to a viscous hydrocarbon that generally has a viscosity greater than about 10,000 centipoise at 15° C. The specific gravity of tar generally is greater than 1.000. Tar may have an API gravity less than 10 degrees.
  • As used herein, the term “kerogen” refers to a solid, insoluble hydrocarbon that principally contains carbon, hydrogen, nitrogen, oxygen, and sulfur. Oil shale contains kerogen.
  • As used herein, the term “bitumen” refers to a non-crystalline solid or viscous hydrocarbon material that is substantially soluble in carbon disulfide.
  • As used herein, the term “oil” refers to a hydrocarbon fluid containing a mixture of condensable hydrocarbons.
  • As used herein, the term “subsurface” refers to geologic strata occurring below the earth's surface.
  • As used herein, the term “hydrocarbon-rich formation” refers to any formation that contains more than trace amounts of hydrocarbons. For example, a hydrocarbon-rich formation may include portions that contain hydrocarbons at a level of greater than 5 volume percent. The hydrocarbons located in a hydrocarbon-rich formation may include, for example, oil, natural gas, heavy hydrocarbons, and solid hydrocarbons.
  • As used herein, the term “organic-rich rock” refers to any rock matrix holding solid hydrocarbons and/or heavy hydrocarbons. Rock matrices may include, but are not limited to, sedimentary rocks, shales, siltstones, sands, silicilytes, carbonates, and diatomites.
  • As used herein, the term “formation” refers to any finite subsurface region. The formation may contain one or more hydrocarbon-containing layers, one or more non-hydrocarbon containing layers, an overburden, and/or an underburden of any subsurface geologic formation. An “overburden” and/or an “underburden” is geological material above or below the formation of interest. An overburden or underburden may include one or more different types of substantially impermeable materials. For example, overburden and/or underburden may include rock, shale, mudstone, or wet/tight carbonate (i.e., an impermeable carbonate without hydrocarbons). An overburden and/or an underburden may include a hydrocarbon-containing layer that is relatively impermeable. In some cases, the overburden and/or underburden may be permeable.
  • As used herein, the term “organic-rich rock formation” refers to any formation containing organic-rich rock. Organic-rich rock formations include, for example, oil shale formations, coal formations, and tar sands formations.
  • As used herein, the term “pyrolysis” refers to the breaking of chemical bonds through the application of heat. For example, pyrolysis may include transforming a compound into one or more other substances by heat alone or by heat in combination with an oxidant. Pyrolysis may include modifying the nature of the compound by addition of hydrogen atoms which may be obtained from molecular hydrogen, water, carbon dioxide, or carbon monoxide. Heat may be transferred to a section of the formation to cause pyrolysis.
  • As used herein, the term “water-soluble minerals” refers to minerals that are soluble in water. Water-soluble minerals include, for example, nahcolite (sodium bicarbonate), soda ash (sodium carbonate), dawsonite (NaAl(CO3)(OH)2), or combinations thereof. Substantial solubility may require heated water and/or a non-neutral pH solution.
  • As used herein, the term “formation water-soluble minerals” refers to water-soluble minerals that are found naturally in a formation.
  • As used herein, the term “migratory contaminant species” refers to species that are both soluble or moveable in water or an aqueous fluid, and are considered to be potentially harmful or of concern to human health or the environment. Migratory contaminant species may include inorganic and organic contaminants. Organic contaminants may include saturated hydrocarbons, aromatic hydrocarbons, and oxygenated hydrocarbons. Inorganic contaminants may include metal contaminants, and ionic contaminants of various types that may significantly alter pH or the formation fluid chemistry. Aromatic hydrocarbons may include, for example, benzene, toluene, xylene, ethylbenzene, and tri-methylbenzene, and various types of polyaromatic hydrocarbons such as anthracenes, naphthalenes, chrysenes and pyrenes. Oxygenated hydrocarbons may include, for example, alcohols, ketones, phenols, and organic acids such as carboxylic acid. Metal contaminants may include, for example, arsenic, boron, chromium, cobalt, molybdenum, mercury, selenium, lead, vanadium, nickel or zinc. Ionic contaminants include, for example, sulfides, sulfates, chlorides, fluorides, ammonia, nitrates, calcium, iron, magnesium, potassium, lithium, boron, and strontium.
  • As used herein, the term “cracking” refers to a process involving decomposition and molecular recombination of organic compounds to produce a greater number of molecules than were initially present. In cracking, a series of reactions take place accompanied by a transfer of hydrogen atoms between molecules. For example, naphtha may undergo a thermal cracking reaction to form ethene and H2 among other molecules.
  • As used herein, the term “sequestration” refers to the storing of a fluid that is a by-product of a process rather than discharging the fluid to the atmosphere or open environment.
  • As used herein, the term “subsidence” refers to a downward movement of a surface relative to an initial elevation of the surface.
  • As used herein, the term “thickness” of a layer refers to the distance between the upper and lower boundaries of a cross section of a layer, wherein the distance is measured normal to the average tilt of the cross section.
  • As used herein, the term “thermal fracture” refers to fractures created in a formation caused directly or indirectly by expansion or contraction of a portion of the formation and/or fluids within the formation, which in turn is caused by increasing/decreasing the temperature of the formation and/or fluids within the formation, and/or by increasing/decreasing a pressure of fluids within the formation due to heating. Thermal fractures may propagate into or form in neighboring regions significantly cooler than the heated zone.
  • As used herein, the term “hydraulic fracture” refers to a fracture at least partially propagated into a formation, wherein the fracture is created through injection of pressurized fluids into the formation. The fracture may be artificially held open by injection of a proppant material. Hydraulic fractures may be substantially horizontal in orientation, substantially vertical in orientation, or oriented along any other plane.
  • As used herein, the term “wellbore” refers to a hole in the subsurface made by drilling or insertion of a conduit into the subsurface. A wellbore may have a substantially circular cross section, or other cross-sectional shapes (e.g., circles, ovals, squares, rectangles, triangles, slits, or other regular or irregular shapes). As used herein, the term “well”, when referring to an opening in the formation, may be used interchangeably with the term “wellbore.”
  • DESCRIPTION OF SPECIFIC EMBODIMENTS
  • The inventions are described herein in connection with certain specific embodiments. However, to the extent that the following detailed description is specific to a particular embodiment or a particular use, such is intended to be illustrative only and is not to be construed as limiting the scope of the invention.
  • As discussed herein, some embodiments of the invention include or have application related to an in situ method of recovering natural resources. The natural resources may be recovered from an organic-rich rock formation, including, for example, an oil shale formation. The organic-rich rock formation may include formation hydrocarbons, including, for example, kerogen, coal, and heavy hydrocarbons. In some embodiments of the invention the natural resources may include hydrocarbon fluids, including, for example, products of the pyrolysis of formation hydrocarbons such as shale oil. In some embodiments of the invention the natural resources may also include water-soluble minerals, including, for example, nahcolite (sodium bicarbonate, or 2NaHCO3), soda ash (sodium carbonate, or Na2CO3) and dawsonite (NaAl(CO3)(OH)2).
  • FIG. 1 presents a perspective view of an illustrative oil shale development area 10. A surface 12 of the development area 10 is indicated. Below the surface is an organic-rich rock formation 16. The illustrative subsurface formation 16 contains formation hydrocarbons (such as, for example, kerogen) and possibly valuable water-soluble minerals (such as, for example, nahcolite). It is understood that the representative formation 16 may be any organic-rich rock formation, including a rock matrix containing coal or tar sands, for example. In addition, the rock matrix making up the formation 16 may be permeable, semi-permeable or non-permeable. The present inventions are particularly advantageous in oil shale development areas initially having very limited or effectively no fluid permeability.
  • In order to access formation 16 and recover natural resources therefrom, a plurality of wellbores is formed. Wellbores are shown at 14 in FIG. 1. The representative wellbores 14 are essentially vertical in orientation relative to the surface 12. However, it is understood that some or all of the wellbores 14 could deviate into an obtuse or even horizontal orientation. In the arrangement of FIG. 1, each of the wellbores 14 is completed in the oil shale formation 16. The completions may be either open or cased hole. The well completions may also include propped or unpropped hydraulic fractures emanating therefrom.
  • In the view of FIG. 1, only seven wellbores 14 are shown. However, it is understood that in an oil shale development project, numerous additional wellbores 14 will most likely be drilled. The wellbores 14 may be located in relatively close proximity, being from 10 feet to up to 300 feet in separation. In some embodiments, a well spacing of 15 to 25 feet is provided. Typically, the wellbores 14 are also completed at shallow depths, being from 200 to 5,000 feet at total depth. In some embodiments the oil shale formation targeted for in situ retorting is at a depth greater than 200 feet below the surface or alternatively 400 feet below the surface. Alternatively, conversion and production occur at depths between 500 and 2,500 feet.
  • The wellbores 14 will be selected for certain functions and may be designated as heat injection wells, water injection wells, oil production wells and/or water-soluble mineral solution production wells. In one aspect, the wellbores 14 are dimensioned to serve two, three, or all four of these purposes. Suitable tools and equipment may be sequentially run into and removed from the wellbores 14 to serve the various purposes.
  • A fluid processing facility 17 is also shown schematically. The fluid processing facility 17 is equipped to receive fluids produced from the organic-rich rock formation 16 through one or more pipelines or flow lines 18. The fluid processing facility 17 may include equipment suitable for receiving and separating oil, gas, and water produced from the heated formation. The fluid processing facility 17 may further include equipment for separating out dissolved water-soluble minerals and/or migratory contaminant species, including, for example, dissolved organic contaminants, metal contaminants, or ionic contaminants in the produced water recovered from the organic-rich rock formation 16. The contaminants may include, for example, aromatic hydrocarbons such as benzene, toluene, xylene, and tri-methylbenzene. The contaminants may also include polyaromatic hydrocarbons such as anthracene, naphthalene, chrysene and pyrene. Metal contaminants may include species containing arsenic, boron, chromium, mercury, selenium, lead, vanadium, nickel, cobalt, molybdenum, or zinc. Ionic contaminant species may include, for example, sulfates, chlorides, fluorides, lithium, potassium, aluminum, ammonia, and nitrates.
  • In order to recover oil, gas, and sodium (or other) water-soluble minerals, a series of steps may be undertaken. FIG. 2 presents a flow chart demonstrating a method of in situ thermal recovery of oil and gas from an organic-rich rock formation 100, in one embodiment. It is understood that the order of some of the steps from FIG. 2 may be changed, and that the sequence of steps is merely for illustration.
  • First, the oil shale (or other organic-rich rock) formation 16 is identified within the development area 10. This step is shown in box 110. Optionally, the oil shale formation may contain nahcolite or other sodium minerals. The targeted development area within the oil shale formation may be identified by measuring or modeling the depth, thickness and organic richness of the oil shale as well as evaluating the position of the organic-rich rock formation relative to other rock types, structural features (e.g. faults, anticlines or synclines), or hydrogeological units (i.e. aquifers). This is accomplished by creating and interpreting maps and/or models of depth, thickness, organic richness and other data from available tests and sources. This may involve performing geological surface surveys, studying outcrops, performing seismic surveys, and/or drilling boreholes to obtain core samples from subsurface rock. Rock samples may be analyzed to assess kerogen content and hydrocarbon fluid generating capability.
  • The kerogen content of the organic-rich rock formation may be ascertained from outcrop or core samples using a variety of data. Such data may include organic carbon content, hydrogen index, and modified Fischer assay analyses. Subsurface permeability may also be assessed via rock samples, outcrops, or studies of ground water flow. Furthermore the connectivity of the development area to ground water sources may be assessed.
  • Next, a plurality of wellbores 14 is formed across the targeted development area 10. This step is shown schematically in box 115. The purposes of the wellbores 14 are set forth above and need not be repeated. However, it is noted that for purposes of the wellbore formation step of box 115, only a portion of the wells need be completed initially. For instance, at the beginning of the project heat injection wells are needed, while a majority of the hydrocarbon production wells are not yet needed. Production wells may be brought in once conversion begins, such as after 4 to 12 months of heating.
  • It is understood that petroleum engineers will develop a strategy for the best depth and arrangement for the wellbores 14, depending upon anticipated reservoir characteristics, economic constraints, and work scheduling constraints. In addition, engineering staff will determine what wellbores 14 shall be used for initial formation 16 heating. This selection step is represented by box 120.
  • Concerning heat injection wells, there are various methods for applying heat to the organic-rich rock formation 16. The present methods are not limited to the heating technique employed unless specifically so stated in the claims. The heating step is represented generally by box 130. Preferably, for in situ processes the heating of a production zone takes place over a period of months, or even four or more years. The formation 16 is heated to a temperature sufficient to pyrolyze at least a portion of the oil shale in order to convert the kerogen to hydrocarbon fluids. The bulk of the target zone of the formation may be heated to between 270° C. to 800° C. Alternatively, the targeted volume of the organic-rich formation is heated to at least 350° C. to create production fluids. The conversion step is represented in FIG. 2 by box 135. The resulting liquids and hydrocarbon gases may be refined into products which resemble common commercial petroleum products. Such liquid products include transportation fuels such as diesel, jet fuel and naptha. Generated gases include light alkanes, light alkenes, H2, CO2, CO, and NH3.
  • Conversion of the oil shale will create permeability in the oil shale section in rocks that were originally impermeable. Preferably, the heating and conversion processes of boxes 130 and 135, occur over a lengthy period of time. In one aspect, the heating period is from three months to four or more years. Also as an optional part of box 135, the formation 16 may be heated to a temperature sufficient to convert at least a portion of nahcolite, if present, to soda ash. Heat applied to mature the oil shale and recover oil and gas will also convert nahcolite to sodium carbonate (soda ash), a related sodium mineral. The process of converting nahcolite (sodium bicarbonate) to soda ash (sodium carbonate) is described herein.
  • In connection with the heating step 130, the rock formation 16 may optionally be fractured to aid heat transfer or later hydrocarbon fluid production. The optional fracturing step is shown in box 125. Fracturing may be accomplished by creating thermal fractures within the formation through application of heat. By heating the organic-rich rock and transforming the kerogen to oil and gas, the permeability of portions of the formation are increased via thermal fracture formation and subsequent production of a portion of the hydrocarbon fluids generated from the kerogen. Alternatively, a process known as hydraulic fracturing may be used. Hydraulic fracturing is a process known in the art of oil and gas recovery where a fracture fluid is pressurized within the wellbore above the fracture pressure of the formation, thus developing fracture planes within the formation to relieve the pressure generated within the wellbore. Hydraulic fractures may be used to create additional permeability in portions of the formation and/or be used to provide a planar source for heating.
  • As part of the hydrocarbon fluid production process 100, certain wells 14 may be designated as oil and gas production wells. This step is depicted by box 140. Oil and gas production might not be initiated until it is determined that the kerogen has been sufficiently retorted to allow maximum recovery of oil and gas from the formation 16. In some instances, dedicated production wells are not drilled until after heat injection wells (box 130) have been in operation for a period of several weeks or months. Thus, box 140 may include the formation of additional wellbores 14. In other instances, selected heater wells are converted to production wells.
  • After certain wellbores 14 have been designated as oil and gas production wells, oil and/or gas is produced from the wellbores 14. The oil and/or gas production process is shown at box 145. At this stage (box 145), any water-soluble minerals, such as nahcolite and converted soda ash may remain substantially trapped in the rock formation 16 as finely disseminated crystals or nodules within the oil shale beds, and are not produced. However, some nahcolite and/or soda ash may be dissolved in the water created during heat conversion (box 135) within the formation.
  • Box 150 presents an optional next step in the oil and gas recovery method 100. Here, certain wellbores 14 are designated as water or aqueous fluid injection wells. Aqueous fluids are solutions of water with other species. The water may constitute “brine,” and may include dissolved inorganic salts of chloride, sulfates and carbonates of Group I and II elements of The Periodic Table of Elements. Organic salts can also be present in the aqueous fluid. The water may alternatively be fresh water containing other species. The other species may be present to alter the pH. Alternatively, the other species may reflect the availability of brackish water not saturated in the species wished to be leached from the subsurface. Preferably, the water injection wells are selected from some or all of the wellbores used for heat injection or for oil and/or gas production. However, the scope of the step of box 150 may include the drilling of yet additional wellbores 14 for use as dedicated water injection wells. In this respect, it may be desirable to complete water injection wells along a periphery of the development area 10 in order to create a boundary of high pressure.
  • Next, optionally water or an aqueous fluid is injected through the water injection wells and into the oil shale formation 16. This step is shown at box 155. The water may be in the form of steam or pressurized hot water. Alternatively the injected water may be cool and becomes heated as it contacts the previously heated formation. The injection process may further induce fracturing. This process may create fingered caverns and brecciated zones in the nahcolite-bearing intervals some distance, for example up to 200 feet out, from the water injection wellbores. In one aspect, a gas cap, such as nitrogen, may be maintained at the top of each “cavern” to prevent vertical growth.
  • Along with the designation of certain wellbores 14 as water injection wells, the design engineers may also designate certain wellbores 14 as water or water-soluble mineral solution production wells. This step is shown in box 160. These wells may be the same as wells used to previously produce hydrocarbons or inject heat. These recovery wells may be used to produce an aqueous solution of dissolved water-soluble minerals and other species, including, for example, migratory contaminant species. For example, the solution may be one primarily of dissolved soda ash. This step is shown in box 165. Alternatively, single wellbores may be used to both inject water and then to recover a sodium mineral solution. Thus, box 165 includes the option of using the same wellbores 14 for both water injection and solution production (Box 165).
  • Temporary control of the migration of the migratory contaminant species, especially during the pyrolysis process, can be obtained via placement of the injection and production wells 14 such that fluid flow out of the heated zone is minimized. Typically, this involves placing injection wells at the periphery of the heated zone so as to cause pressure gradients which prevent flow inside the heated zone from leaving the zone.
  • FIG. 3 is a cross-sectional view of an illustrative oil shale formation that is within or connected to ground water aquifers and a formation leaching operation. Four separate oil shale formation zones are depicted (23, 24, 25 and 26) within the oil shale formation. The water aquifers are below the ground surface 27, and are categorized as an upper aquifer 20 and a lower aquifer 22. Intermediate the upper and lower aquifers are an aquitard 21. It can be seen that certain zones of the formation are both aquifers or aquitards and oil shale zones. A plurality of wells (28, 29, 30 and 31) is shown traversing vertically downward through the aquifers. One of the wells is serving as a water injection well 31, while another is serving as a water production well 30. In this way, water is circulated 32 through at least the lower aquifer 22.
  • FIG. 3 shows diagrammatically the water circulation 32 through an oil shale volume that was heated 33, that resides within or is connected to an aquifer 22, and from which hydrocarbon fluids were previously recovered. Introduction of water via the water injection well 31 forces water into the previously heated oil shale 33 and water-soluble minerals and migratory contaminants species are swept to the water production well 30. The water may then processed in a facility 34 wherein the water-soluble minerals (e.g. nahcolite or soda ash) and the migratory contaminants may be substantially removed from the water stream. Water is then reinjected into the oil shale volume 33 and the formation leaching is repeated. This leaching with water is intended to continue until levels of migratory contaminant species are at environmentally acceptable levels within the previously heated oil shale zone 33. This may require 1 cycle, 2 cycles, 5 cycles 10 cycles or more cycles of formation leaching, where a single cycle indicates injection and production of approximately one pore volume of water. It is understood that there may be numerous water injection and water production wells in an actual oil shale development. Moreover, the system may include monitoring wells (28 and 29) which can be utilized during the oil shale heating phase, the shale oil production phase, the leaching phase, or during any combination of these phases to monitor for migratory contaminant species and/or water-soluble minerals.
  • In order to expand upon various features and methods for shale oil development, certain sections are specifically entitled below.
  • In some fields, formation hydrocarbons, such as oil shale, may exist in more than one subsurface formation. In some instances, the organic-rich rock formations may be separated by rock layers that are hydrocarbon-free or that otherwise have little or no commercial value. Therefore, it may be desirable for the operator of a field under hydrocarbon development to undertake an analysis as to which of the subsurface, organic-rich rock formations to target or in which order they should be developed.
  • The organic-rich rock formation may be selected for development based on various factors. One such factor is the thickness of the hydrocarbon containing layer within the formation. Greater pay zone thickness may indicate a greater potential volumetric production of hydrocarbon fluids. Each of the hydrocarbon containing layers may have a thickness that varies depending on, for example, conditions under which the formation hydrocarbon containing layer was formed. Therefore, an organic-rich rock formation will typically be selected for treatment if that formation includes at least one formation hydrocarbon-containing layer having a thickness sufficient for economical production of produced fluids.
  • An organic-rich rock formation may also be chosen if the thickness of several layers that are closely spaced together is sufficient for economical production of produced fluids. For example, an in situ conversion process for formation hydrocarbons may include selecting and treating a layer within an organic-rich rock formation having a thickness of greater than about 5 meters, 10 meters, 50 meters, or even 100 meters. In this manner, heat losses (as a fraction of total injected heat) to layers formed above and below an organic-rich rock formation may be less than such heat losses from a thin layer of formation hydrocarbons. A process as described herein, however, may also include selecting and treating layers that may include layers substantially free of formation hydrocarbons or thin layers of formation hydrocarbons.
  • The richness of one or more organic-rich rock formations may also be considered. Richness may depend on many factors including the conditions under which the formation hydrocarbon containing layer was formed, an amount of formation hydrocarbons in the layer, and/or a composition of formation hydrocarbons in the layer. A thin and rich formation hydrocarbon layer may be able to produce significantly more valuable hydrocarbons than a much thicker, less rich formation hydrocarbon layer. Of course, producing hydrocarbons from a formation that is both thick and rich is desirable.
  • The kerogen content of an organic-rich rock formation may be ascertained from outcrop or core samples using a variety of data. Such data may include organic carbon content, hydrogen index, and modified Fischer assay analyses. The Fischer Assay is a standard method which involves heating a sample of a formation hydrocarbon containing layer to approximately 500° C. in one hour, collecting fluids produced from the heated sample, and quantifying the amount of fluids produced.
  • Subsurface formation permeability may also be assessed via rock samples, outcrops, or studies of ground water flow. Furthermore the connectivity of the development area to ground water sources may be assessed. Thus, an organic-rich rock formation may be chosen for development based on the permeability or porosity of the formation matrix even if the thickness of the formation is relatively thin.
  • Other factors known to petroleum engineers may be taken into consideration when selecting a formation for development. Such factors include depth of the perceived pay zone, stratigraphic proximity of fresh ground water to kerogen-containing zones, continuity of thickness, and other factors. For instance, the assessed fluid production content within a formation will also effect eventual volumetric production.
  • In producing hydrocarbon fluids from an oil shale field, it may be desirable to control the migration of pyrolyzed fluids. In some instances, this includes the use of injection wells, particularly around the periphery of the field. Such wells may inject water, steam, CO2, heated methane, or other fluids to drive cracked kerogen fluids inwardly towards production wells. In some embodiments, physical barriers may be placed around the area of the organic-rich rock formation under development. One example of a physical barrier involves the creation of freeze walls. Freeze walls are formed by circulating refrigerant through peripheral wells to substantially reduce the temperature of the rock formation. This, in turn, prevents the pyrolyzation of kerogen present at the periphery of the field and the outward migration of oil and gas. Freeze walls will also cause native water in the formation along the periphery to freeze.
  • The use of subsurface freezing to stabilize poorly consolidated soils or to provide a barrier to fluid flow is known in the art. Shell Exploration and Production Company has discussed the use of freeze walls for oil shale production in several patents, including U.S. Pat. No. 6,880,633 and U.S. Pat. No. 7,032,660. Shell's '660 patent uses subsurface freezing to protect against groundwater flow and groundwater contamination during in situ shale oil production. Additional patents that disclose the use of so-called freeze walls are U.S. Pat. No. 3,528,252, U.S. Pat. No. 3,943,722, U.S. Pat. No. 3,729,965, U.S. Pat. No. 4,358,222, U.S. Pat. No. 4,607,488 and WO Pat. No. 98996480.
  • Another example of a physical barrier that may be used to limit fluid flow into or out of an oil shale field is the creation of grout walls. Grout walls are formed by injecting cement into the formation to fill permeable pathways. In the context of an oil shale field, cement would be injected along the periphery of the field. This prevents the movement of pyrolyzed fluids out of the field under development, and the movement of water from adjacent aquifers into the field.
  • As noted above, several different types of wells may be used in the development of an organic-rich rock formation, including, for example, an oil shale field. For example, the heating of the organic-rich rock formation may be accomplished through the use of heater wells. The heater wells may include, for example, electrical resistance heating elements. The production of hydrocarbon fluids from the formation may be accomplished through the use of wells completed for the production of fluids. The injection of an aqueous fluid may be accomplished through the use of injection wells. Finally, the production of an aqueous solution may be accomplished through use of solution production wells.
  • The different wells listed above may be used for more than one purpose. Stated another way, wells initially completed for one purpose may later be used for another purpose, thereby lowering project costs and/or decreasing the time required to perform certain tasks. For example, one or more of the production wells may also be used as injection wells for later injecting water into the organic-rich rock formation. Alternatively, one or more of the production wells may also be used as solution production wells for later producing an aqueous solution from the organic-rich rock formation.
  • In other aspects, production wells (and in some circumstances heater wells) may initially be used as dewatering wells (e.g., before heating is begun and/or when heating is initially started). In addition, in some circumstances dewatering wells can later be used as production wells (and in some circumstances heater wells). As such, the dewatering wells may be placed and/or designed so that such wells can be later used as production wells and/or heater wells. The heater wells may be placed and/or designed so that such wells can be later used as production wells and/or dewatering wells. The production wells may be placed and/or designed so that such wells can be later used as dewatering wells and/or heater wells. Similarly, injection wells may be wells that initially were used for other purposes (e.g., heating, production, dewatering, monitoring, etc.), and injection wells may later be used for other purposes. Similarly, monitoring wells may be wells that initially were used for other purposes (e.g., heating, production, dewatering, injection, etc.). Finally, monitoring wells may later be used for other purposes such as water production.
  • The wellbores for the various wells may be located in relatively close proximity, being from 10 feet to up to 300 feet in separation. Alternatively, the wellbores may be spaced from 30 to 200 feet or 50 to 100 feet. Typically, the wellbores are also completed at shallow depths, being from 200 to 5,000 feet at total depth. Alternatively, the wellbores may be completed at depths from 1,000 to 4,000 feet, or 1,500 to 3,500 feet. In some embodiments, the oil shale formation targeted for in situ retorting is at a depth greater than 200 feet below the surface. In alternative embodiments, the oil shale formation targeted for in situ retorting is at a depth greater than 500, 1,000, or 1,500 feet below the surface. In alternative embodiments, the oil shale formation targeted for in situ retorting is at a depth between 200 and 5,000 feet, alternatively between 1,000 and 4,000 ft, 1,200 and 3,700 feet, or 1,500 and 3,500 feet below the surface.
  • It is desirable to arrange the various wells for an oil shale field in a pre-planned pattern. For instance, heater wells may be arranged in a variety of patterns including, but not limited to triangles, squares, hexagons, and other polygons. The pattern may include a regular polygon to promote uniform heating through at least the portion of the formation in which the heater wells are placed. The pattern may also be a line drive pattern. A line drive pattern generally includes a first linear array of heater wells, a second linear array of heater wells, and a production well or a linear array of production wells between the first and second linear array of heater wells. Interspersed among the heater wells are typically one or more production wells. The injection wells may likewise be disposed within a repetitive pattern of units, which may be similar to or different from that used for the heater wells.
  • One method to reduce the number of wells is to use a single well as both a heater well and a production well. Reduction of the number of wells by using single wells for sequential purposes can reduce project costs. One or more monitoring wells may be disposed at selected points in the field. The monitoring wells may be configured with one or more devices that measure a temperature, a pressure, and/or a property of a fluid in the wellbore. In some instances, a heater well may also serve as a monitoring well, or otherwise be instrumented.
  • Another method for reducing the number of heater wells is to use well patterns. Regular patterns of heater wells equidistantly spaced from a production well may be used. The patterns may form equilateral triangular arrays, hexagonal arrays, or other array patterns. The arrays of heater wells may be disposed such that a distance between each heater well is less than about 70 feet (21 m). A portion of the formation may be heated with heater wells disposed substantially parallel to a boundary of the hydrocarbon formation.
  • In alternative embodiments, the array of heater wells may be disposed such that a distance between each heater well may be less than about 100 feet, or 50 feet, or 30 feet. Regardless of the arrangement of or distance between the heater wells, in certain embodiments, a ratio of heater wells to production wells disposed within a organic-rich rock formation may be greater than about 5, 8, 10, 20, or more.
  • In one embodiment, individual production wells are surrounded by at most one layer of heater wells. This may include arrangements such as 5-spot, 7-spot, or 9-spot arrays, with alternating rows of production and heater wells. In another embodiment, two layers of heater wells may surround a production well, but with the heater wells staggered so that a clear pathway exists for the majority of flow away from the further heater wells. Flow and reservoir simulations may be employed to assess the pathways and temperature history of hydrocarbon fluids generated in si