CN1280392A - 半导体存储元件的电容器及其制造方法 - Google Patents

半导体存储元件的电容器及其制造方法 Download PDF

Info

Publication number
CN1280392A
CN1280392A CN00124028A CN00124028A CN1280392A CN 1280392 A CN1280392 A CN 1280392A CN 00124028 A CN00124028 A CN 00124028A CN 00124028 A CN00124028 A CN 00124028A CN 1280392 A CN1280392 A CN 1280392A
Authority
CN
China
Prior art keywords
film
capacitor
semiconductor memory
memory element
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00124028A
Other languages
English (en)
Other versions
CN100383971C (zh
Inventor
朱光喆
李起正
韩一根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Hyundai Electronics Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR10-1999-0026510A external-priority patent/KR100504434B1/ko
Priority claimed from KR10-1999-0049503A external-priority patent/KR100373159B1/ko
Application filed by Hyundai Electronics Industries Co Ltd filed Critical Hyundai Electronics Industries Co Ltd
Publication of CN1280392A publication Critical patent/CN1280392A/zh
Application granted granted Critical
Publication of CN100383971C publication Critical patent/CN100383971C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/0217Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02183Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing tantalum, e.g. Ta2O5
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02337Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
    • H01L21/0234Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour treatment by exposure to a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02345Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light
    • H01L21/02348Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to radiation, e.g. visible light treatment by exposure to UV light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02356Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment to change the morphology of the insulating layer, e.g. transformation of an amorphous layer into a crystalline layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • H01L21/321After treatment
    • H01L21/3211Nitridation of silicon-containing layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/55Capacitors with a dielectric comprising a perovskite structure material
    • H01L28/56Capacitors with a dielectric comprising a perovskite structure material the dielectric comprising two or more layers, e.g. comprising buffer layers, seed layers, gradient layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • H01L28/84Electrodes with an enlarged surface, e.g. formed by texturisation being a rough surface, e.g. using hemispherical grains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Memories (AREA)
  • Chemical Vapour Deposition (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明提供一种在电介质膜和上部电极之间具有台阶覆盖好的导电性阻挡层的半导体存储元件的电容器。本发明的特征在于,包括,在半导体衬底上形成下部电极的工序;对所述下部电极的表面进行氮化处理、以便阻止在该表面的自然氧化膜产生的工序;在所述下部电极上形成作为电介质膜的Ta2O5膜的工序;在所述Ta2O5膜上形成由氮化硅膜构成的导电性阻挡层的工序;以及在所述导电性阻挡层上形成上部电极的工序。

Description

半导体存储元件的电容器及其制造方法
本发明涉及半导体存储元件的电容器及其制造方法,特别是涉及在电介质膜和上部电极之间具有台阶覆盖良好的导电性阻挡层的半导体存储元件的电容器及其制造方法。
近来,随着构成DRAM半导体元件的存储单元数量的增加,各存储单元占有面积日益减少。另一方面,为了正确地读出存储数据,各存储单元内形成的电容器必须有足够的容量。因此,现在的DRAM半导体元件要求存储单元形成占据面积既小、容量又大的电容器。电容器的静电容量(capacitance)是通过采用高介电常数的绝缘体、或者扩大下部电极表面积来增大的。目前的高集成化的DRAM半导体元件中,采用介电常数比NO(氮化物-氧化物)膜更高的Ta2O5作为电介质,形成3维的下部电极。
图1是显示已有的半导体存储元件的电容器的剖面图。如图1所示,在预定部位形成场氧化膜11的半导体衬底10上,按公知方式形成下部带有栅绝缘膜12的栅电极13。在栅电极13两侧的半导体衬底10上形成结区14,形成MOS晶体管。在形成了MOS晶体管的半导体衬底10上形成第一层间绝缘膜16和第二层间绝缘膜18。在第一和第二层间绝缘膜16、18内形成存储结点接触孔h,以露出结区14。采用公知方式在存储结点接触孔h内形成圆筒状的下部电极20,与露出的结区14接触。为了进一步增大下部电极20的表面积,在下部电极20的表面形成HSG(半球形颗粒)膜21。可以采用PECVD(等离子体增强化学汽相淀积)或者LPCVD(低压化学汽相淀积)方式形成Ta2O5膜23。此时,采用PECVD方式形成的Ta2O5膜的膜质好,但是由于台阶覆盖(step coverage)特性差,所以已有的Ta2O5膜22是采用台阶覆盖特性好的LPCVD方式形成的。之后,通过预定的热处理工序使Ta2O5膜22结晶化。在Ta2O5膜22上形成用作导电性阻挡层(conduction barrier)的氮化钛膜(TiN:23)。采用LPCVD方式或者溅射方式形成氮化钛膜23。在氮化钛膜上形成掺杂多晶硅膜构成的上部电极24。
但是,以Ta2O5膜为电介质膜的已有电容器存在以下问题。
首先,由于一般的Ta2O5膜具有不稳定的化学计量比(stoichiometry),所以Ta和O的组成比例产生差异。因此,在薄膜内产生代位式Ta原子即空位原子(vacancy atom)。这种空位原子是氧空位(oxygen vacancy),所以成为产生漏电流的原因,可以通过构成Ta2O5膜的组成元素的含量和结合程度来调节空位原子的量,但是难以完全去除。现在,为了稳定Ta2O5膜的不稳定化学计量比,通过Ta2O5膜的氧化去除Ta2O5膜内的代位型Ta原子。但是,当为了防止漏电流而对Ta2O5膜进行氧化时,则出现以下问题。即,Ta2O5膜与多晶硅形成的下部电极的氧化反应性大。因此,为了氧化代位型Ta原子而进行氧化处理时,在Ta2O5膜与下部电极之间产生介电常数低的自然氧化膜,氧移动到Ta2O5膜和下部电极的界面,从而降低界面的均匀性。
而且,作为前驱物(precusor)使用的Ta(OC2H5)5的有机物和O2(或者N2O)气体发生反应,从而在Ta2O5膜内产生碳原子(C)、碳化合物(CH4、C2H4)和H2O等杂质。这些杂质增大了电容器的漏电流,并且降低了Ta2O5膜的介电常数,所以难以获得大容量的电容器。
另一方面,在上部电极24和Ta2O5膜22之间用作导电性阻挡层的TiN膜23也存在以下的问题。
首先,对采用LPCVD方式形成用作导电性阻挡层的TiN膜23时的问题进行说明。作为采用LPCVD方式形成的TiN膜的源气体一般地使用TiCl4气体和NH3气体。此时,由于TiCl4气体具有在600℃以上高温分解的特性,所以实际上在比600℃更高的温度形成TiN膜,以便易于调节TiN膜内部的Cl的浓度。但是,在形成TiN膜时实施高温工序时,Ta2O5膜22和构成下部电极20的原子间则发生相互扩散,由于反应性大的NH4气体而使反应室内的气体反应活泼,在膜内或者表面上产生过量的微粒。因此,电介质膜的均匀性降低。
另外,当在低温形成TiN膜时,由于难以调节TiN膜内的Cl量,TiN膜内便残留过量的Cl。这样,残留量过量Cl的TiN膜难以用作导电性阻挡层,所以电容器产生漏电流。
而且,采用溅射方式形成的TiN膜23,由于台阶覆盖特性极差,所以难以在Ta2O5膜22上均匀蒸镀200-400A的厚度。因此,HSG膜21的晶粒之间形成空隙,电容器的特性降低。
并且,TiN膜23和Ta2O5膜22在687K(414℃)的温度发生如下反应。
亦即,在687K的温度范围内,TiN膜23和Ta2O5膜24反应,在TiN膜23和Ta2O5膜22的界面产生不希望的TiO2电介质(图中无显示)。TiO2电介质增大了电介质膜的膜厚度,降低了电容量。但是,由于TiO2本身具有高漏电流特性,所以增大了电介质膜的漏电流。
因此,本发明的目的在于防止下部电极和Ta2O5膜之间产生自然氧化膜,从而改善电介质膜的均匀性。
而且,本发明的另一目的在于减少漏电流的发生,确保大的电容量。
本发明的又一目的在于形成台阶覆盖特性良好的导电性阻挡层。
为了实现所述目的,本发明为一种半导体存储元件的电容器,其特征在于,包括,下部电极;在所述下部电极表面上形成的用于抑制自然氧化膜的氮化硅膜;在所述氮化硅膜上形成的电介质膜;和在所述电介质膜上形成的上部电极,所述电介质膜是Ta2O5膜。
而且,本发明为一种半导体存储元件的电容器,其特征在于,包括,下部电极;在所述下部电极表面上形成的用于抑制自然氧化膜的氮化硅膜;在所述氮化硅膜上形成的电介质膜;在所述电介质膜表面形成的由氮化硅膜构成的导电性阻挡层;和在所述导电性阻挡层上形成的上部电极,所述电介质膜是Ta2O5膜。
而且,本发明的特征在于,包括,在半导体衬底上形成下部电极的工序;对所述下部电极表面进行氮化处理的工序;在进行了所述氮化处理的下部电极上蒸镀Ta2O5膜作为电介质膜的工序;和在所述电介质膜上形成上部电极的工序。
而且,本发明的特征在于,包括,在半导体衬底上形成下部电极的工序;在所述下部电极表面上进行阻止自然氧化膜发生的该表面氮化处理工序;在所述下部电极上形成Ta2O5膜作为电介质膜的工序;在所述Ta2O5膜上形成由氮化硅构成的导电性阻挡层的工序;和在所述导电性阻挡层上形成上部电极的工序。
再有,本发明的特征在于,包括,在半导体衬底上形成下部电极的工序;在保持200-700℃的温度和NH3或N2/H2等离子体气体的反应室内,对所述下部电极表面进行阻止该表面的自然氧化膜的产生的氮化处理的工序;在所述下部电极上形成Ta2O5膜作为电介质膜的工序;对所述Ta2O5膜热处理使其结晶化的工序;在保持200-400℃的温度和含氮等离子体气体的反应室内,在所述Ta2O5膜上形成由氮化硅膜构成的导电性阻挡层的工序;和在所述导电性阻挡层上形成上部电极的工序,所述下部电极的表面氮化处理工序、Ta2O5膜的形成工序、所述Ta2O5膜热处理结晶化的工序和形成导电性阻挡层的工序是在同一反应室就地(in-situ)进行的。
图1是显示已有的半导体存储元件的电容器的剖面图。
图2A-图2D是用于说明本发明第1实施例的半导体存储元件的电容器制造方法的剖面图。
图3是用于说明本发明第2实施例的半导体存储元件的电容器的剖面图。
图4A和图4B是说明本发明实施例3的半导体存储元件的电容器的剖面图。
以下,详细说明本发明的优选的实施例。
(实施例1)
参见图2A,在具有预定导电性的半导体衬底30的预定部位,按公知方式形成场氧化膜31。在半导体衬底30上的预定部位形成底部具有栅绝缘膜32的栅电极33,在栅电极33的两侧按公知方式形成隔离层34。在栅电极33两侧的半导体衬底30上形成结区35从而制成MOS晶体管。在形成了MOS晶体管的半导体衬底30上形成第1层间绝缘膜36和第2层间绝缘膜38。之后,对第2和第1层间绝缘膜38、36进行布图,以便露出结区35之中的任一个,形成存储结点接触孔H。形成圆筒状的下部电极40,以便与露出的结区35接触。为了增大下部电极40的表面积,采用公知方式在下部电极40的表面形成HSG膜41。
之后,为了防止在含有HSG膜41的下部电极40和以后形成的电介质膜(图中无显示)之间的界面上产生低介电自然氧化膜,对含有HSG膜41的下部电极40和第2层间绝缘膜38的表面进行氮化处理。在保持NH3气体或N2/H2气体等离子体状态的LPCVD(低压化学汽相淀积)反应室内进行表面氮化处理,应在200-700℃、优选300-500℃的温度进行。
参见图2B,在第1氮化硅膜42表面形成作为电介质膜的Ta2O5膜43。采用化学汽相淀积方式例如LPCVD方式形成本发明的Ta2O5膜43,采用Ta(O(C2H5)5(乙醇钽)这样的有机物作为前驱物。其中,Ta(OC2H5)5这样的有机物由于公知的为液态,转变为蒸汽状态后,供给到LPCVD反应室内。亦即,采用MFC(质流控制器)这样的流量调节器使液态的前驱物定量化后,通过包含小孔(orifice)或喷嘴(nozzle)的蒸发器或蒸发管进行蒸发,而形成Ta化学蒸汽。之后,应按80-100mg/min的流量向LPCVD反应室内供给Ta化学蒸汽。此时,蒸发器和成为Ta蒸汽的流动路径(flow path)的供给管的温度应保持在150-200℃,以便能够防止Ta化学蒸汽冷凝。采用这种方法供给到LPCVD反应室内的Ta化学蒸汽与反应气体的过剩的O2气体(过量气体)发生相互反应,在HSG膜41上形成厚约100-150A的非晶态的Ta2O5膜43。此时,为了使产生的颗粒最小化,边抑制Ta化学蒸汽和O2气体在反应室内的汽相反应(gas phase reaction),边使化学反应仅产生于晶片表面。这里,通过反应气体等的流量和反应室内的压力来调节汽相反应。而且,在本实施例中,为了能够抑制汽相反应,按10-500sccm程度的流量向LPCVD反应室内供给反应气体的O2气体,LPCVD反应室内的温度优选保持在300-500℃。此时,在LPCVD反应室内在不停止真空状态的同时就地进行Ta2O5膜的形成工序和下部电极表面的氮化处理工序。由此,不会产生附加的自然氧化和颗粒等。
之后,为了除去Ta2O5膜43内残留的代位型Ta原子(氧空位原子)和未结合碳成分,首先在300-500℃的温度和O3或UV-O3气氛下,对Ta2O5膜43进行低温退火。之后,为了边除去低温退火工序尚未除去而残留的碳化合物等,边使Ta2O5膜43结晶化,在700-950℃的温度和N2O、O2或N2气氛中进行5-30分钟的高温退火。此时,采用就地同时进行退火工序、下部电极表面的氮化处理工序和Ta2O5膜的形成工序。
之后,如图2C所示,在Ta2O5膜43上蒸镀作为导电性阻挡层的第2氮化硅膜44。通过采用等离子体的氮化处理、采用电炉的氮化处理或者RTN方式、按就地或者分批方式形成第2氮化硅膜44。首先,采用等离子体的氮化处理,是在含氮气体例如NH3、N2/O2或N2O气氛中,在200-400℃的温度下进行的。另一方面,采用电炉的氮化处理和RTN工序,分别在NH3、N2O2或N2O气氛中,在750-950℃的温度下进行的。这里,通过采用等离子体的氮化处理形成作为导电性阻挡层的第2氮化硅膜44的情况,下部电极表面氮化处理工序、Ta2O5膜的形成工序和Ta2O5膜的退火工序都是就地共同进行的。
然后,参见图2D,在第2氮化硅膜44上形成上部电极45。可以采用掺杂的多晶硅膜或TiN、TaN、W、WN、WSi、Ru、RuO2、Ir、IrO2或Pt这样的金属层制成上部电极45。采用掺杂的多晶硅膜作为上部电极45的情况,优选蒸镀约1000-1500A厚的掺杂多晶硅膜。另外,采用金属层作为上部电极45的情况,优选制成100-600A厚的金属层。总之,可以采用CVD方式制成多晶硅膜,可以采用LPCVD、PECVD、RF磁溅射法中的任一种制成金属层。
根据本实施例,在形成Ta2O5膜43之前就地进行氮化处理,在用于除去代位型Ta原子和杂质进行的氧化工序时,可以抑制下部电极40和Ta2O5膜43的氧化反应,减少氧的移动。由此,可以降低电介质膜的等效厚度,确保下部电极40和Ta2O5膜43之间界面的均匀性。
由于就地进行下部电极表面的氮化处理、Ta2O5膜的形成工序、Ta2O5膜的热处理工序和导电性阻挡层用的氮化硅膜的形成工序,所以能够防止附加的自然氧化和颗粒的产生。
而且,由于是通过在NH3、N2/O2或N2O气氛中的等离子体处理、电炉氮化处理或者RTN工序制成作为导电性阻挡层的氮化硅膜44,所以能够在Ta2O5膜上均匀地蒸镀10-20A的厚度。因此,改善了导电性阻挡层的台阶覆盖特性。
而且,由于无需用于形成TiN膜的TiCl4源气体,所以能够防止反应室内和Ta2O5膜43内受Cl离子的污染,防止漏电流。总之,在特定温度下氮化硅膜构成的导电性阻挡层和Ta2O5膜之间不会产生反应,所以不会产生因反应副产物引起漏电流和有效厚度的增加。
而且,由于采用介电常数非常高的Ta2O5膜作为电介质膜,所以可以得到具有高电容量的电容器。
(实施例2)
除了下部电极的结构之外,其余与实施例1相同。
如图3所示,按层叠结构形成本实施例的下部电极400。即使层叠结构的下部电极400的表面积比圆柱形的下部电极的表面积小,由于采用介电常数优异的Ta2O5膜作为电介质膜,所以可以得到所期容量的电容器。此时,在层叠结构的下部电极400的表面可以形成HSG膜41。
(实施例3)
除了Ta2O5膜的制造方法之外,其余与实施例1或2相同。而且,直至形成第1氮化硅膜42的全工序,都与实施例1或实施例2相同,所以本实施例仅说明Ta2O5膜制造方法。
参见图4A,在约400-450℃的温度下,在第1氧化硅膜42上形成厚53-57A的第1Ta2O5膜43-1。之外,为了除去第1 Ta2O5膜43-1膜内存在的代位型Ta分子和碳成分,在N2O或O2等离子体状态就地进行退火。或者采用UV-O3可非就地除去第1 Ta2O5膜43-1膜内存在的代位型Ta分子和碳成分。之后,按与第1 Ta2O5膜43-1的形成条件相同的方法,在已退火的第1Ta2O5膜43-1表面形成第2Ta2O5膜43-2膜。
然后,如图4B所示,如除去第1Ta2O5膜43-1膜内存在的代位型Ta分子和碳成分那样,对第2Ta2O5膜43-2膜进一步进行等离子体退火。由于等离子体退火工序,第1Ta2O5膜43-1膜和第2Ta2O5膜43-2膜为单层。
正如以上详细说明,本发明具有如下效果。
首先,通过在形成Ta2O5膜43之前就地进行氮化处理,在进行用于除去代位型Ta原子和杂质的氧化工序时,可以抑制下部电极40和Ta2O5膜43的氧化反应,减少氧的移动。由此,可以降低电介质膜的等效厚度,确保下部电极40和Ta2O5膜43之间界面的均匀性。
而且,由于就地进行下部电极的表面氮化处理、Ta2O5膜的形成工序、Ta2O5膜的热处理工序和导电性阻挡层用的氮化硅膜的形成工序,所以能够防止附加的自然氧化和颗粒的产生。
而且,作为导电性阻挡层的氮化硅膜,是利用NH3、N2/O2或N2O气氛中的等离子体处理或者RTN工序形成的,所以与可能发生的台阶高差无关都能够在Ta2O5膜上均匀地蒸镀10-20A的厚度。因此,改善了导电性阻挡层的台阶覆盖特性。
而且,由于无需用于形成TiN膜的TiCl4源气体,所以能够防止反应室内和Ta2O5膜43内的Cl离子的污染,防止漏电流。总之,在特定温度下氮化硅膜构成的导电性阻挡层和Ta2O5膜之间不发生反应,所以不发生因反应副产物引起漏电流和有效厚度的增加。
而且,由于在形成导电性阻挡层的同时Ta2O5膜结晶化,所以能够减少制造工序。
而且,由于采用介电常数非常高的Ta2O5膜作为电介质膜,所以可以得到具有大电容量的电容器。

Claims (39)

1.一种半导体存储元件的电容器,包括:
下部电极;
在所述下部电极表面上形成的抑制自然氧化膜用的氮化硅膜;
在所述氮化硅膜上形成的电介质膜;和
在所述电介质膜上形成的上部电极,
其特征在于,所述电介质膜是Ta2O5膜。
2.根据权利要求1的半导体存储元件的电容器,其特征在于,在所述电介质膜和所述上部电极之间还含有氮化硅膜构成的导电性阻挡层。
3.根据权利要求2的半导体存储元件的电容器,其特征在于,所述导电性阻挡层的厚度是10-20A。
4.根据权利要求1的半导体存储元件的电容器,其特征在于,所述下部电极是在表面形成有HSG膜的圆柱形或层叠结构。
5.根据权利要求1的半导体存储元件的电容器,其特征在于,所述Ta2O5膜具有100-150A的厚度。
6.根据权利要求1的半导体存储元件的电容器,其特征在于,所述上部电极由掺杂的多晶硅膜形成。
7.根据权利要求1的半导体存储元件的电容器,其特征在于,所述上部电极由金属层形成。
8.根据权利要求6的半导体存储元件的电容器,其特征在于,所述金属层是TiN、TaN、W、WN、WSi、Ru、RuO2、Ir、IrO2、Pt中的任意一种。
9.一种半导体存储元件的电容器,包括:
下部电极;
在所述下部电极表面上形成的抑制自然氧化膜用的氮化硅膜;
在所述氮化硅膜上形成的电介质膜;
在所述电介质膜表面上形成的氮化硅膜构成的导电性阻挡层;和
在所述导电性阻挡层上形成的上部电极,
其特征在于,所述电介质膜是Ta2O5膜。
10.根据权利要求9的半导体存储元件的电容器,其特征在于,所述导电性阻挡层的厚度是10-20A。
11.根据权利要求9的半导体存储元件的电容器,其特征在于,所述下部电极是在表面形成有HSG膜的圆柱形或层叠结构。
12.根据权利要求9的半导体存储元件的电容器,其特征在于,所述Ta2O5膜具有100-150A的厚度。
13.根据权利要求9的半导体存储元件的电容器,其特征在于,所述上部电极由掺杂的多晶硅膜形成。
14.根据权利要求9的半导体存储元件的电容器,其特征在于,所述上部电极由金属层形成。
15.根据权利要求14的半导体存储元件的电容器,其特征在于,所述金属层是TiN、TaN、W、WN、WSi、Ru、RuO2、Ir、IrO2、Pt中的任意一种。
16.一种半导体存储元件的电容器的制造方法,其特征在于,包括:
在半导体衬底上形成下部电极的工序;
对所述下部电极的表面进行氮化处理的工序;
在所述表面已做氮化处理的下部电极上蒸镀作为电介质膜的Ta2O5膜的工序;和
在所述电介质膜上形成上部电极的工序。
17.根据权利要求16的半导体存储元件的电容器的制造方法,其特征在于,Ta化学蒸汽和O2气体在CVD反应室内进行表面化学反应,形成所述Ta2O5膜。
18.根据权利要求16的半导体存储元件的电容器的制造方法,其特征在于,在所述Ta2O5膜的形成工序和上部电极的形成工序之间,在200-400℃的温度和O3及UV-O3气氛中,对所述Ta2O5膜进行低温热处理的工序,和在750-950℃的温度中进行高温热处理的工序。
19.根据权利要求16的半导体存储元件的电容器的制造方法,其特征在于,Ta2O5膜的形成工序包括:
第1Ta2O5膜的形成工序;
对所述第1Ta2O5膜进行第1热处理的工序;
在所述热处理后的第1Ta2O5膜上形成第2Ta2O5膜的工序;和
对所述第2Ta2O5膜进行第2热处理的工序。
20.根据权利要求19的半导体存储元件的电容器的制造方法,其特征在于,所述第1热处理工序或者第2热处理工序为N2O或O2等离子体处理或者UV-O3处理。
21.根据权利要求16的半导体存储元件的电容器的制造方法,其特征在于,在保持200-700℃的温度和NH3或N2/H2等离子体的反应室内,就地进行所述下部电极的表面氮化处理。
22.根据权利要求16的半导体存储元件的电容器的制造方法,其特征在于,在所述Ta2O5膜的形成工序和所述上部电极的形成工序之间,还含有在上部形成由氮化硅膜构成的导电性阻挡层的工序。
23.根据权利要求22的半导体存储元件的电容器的制造方法,其特征在于,在200-400℃的温度和含氮的等离子体气氛中形成所述导电性阻挡层。
24.根据权利要求22的半导体存储元件的电容器的制造方法,其特征在于,在具有750-950℃的温度和含氮气氛的电炉内形成所述导电性阻挡层。
25.根据权利要求22的半导体存储元件的电容器的制造方法,其特征在于,在750-950℃的温度和含氮气氛中通过RTN形成所述导电性阻挡层。
26.一种半导体存储元件的电容器的制造方法,其特征在于,包括:
在半导体衬底上形成下部电极的工序;
对所述下部电极的表面进行氮化处理,以便阻止其表面产生自然氧化膜的工序;
在所述下部电极上形成作为电介质膜的Ta2O5膜的工序;
在Ta2O5膜上形成由氮化硅膜构成的导电性阻挡层的工序;和
在所述导电性阻挡层上形成上部电极的工序。
27.根据权利要求26的半导体存储元件的电容器的制造方法,其特征在于,Ta化学蒸汽和O2气体在CVD反应室内进行表面化学反应,形成所述Ta2O5膜。
28.根据权利要求26的半导体存储元件的电容器的制造方法,其特征在于,在所述Ta2O5膜的形成工序和上部电极的形成工序之间,在200-400℃的温度和O3及UV-O3气氛中,对所述Ta2O5膜进行低温热处理的工序,和在750-950℃的温度中进行高温热处理的工序。
29.根据权利要求26的半导体存储元件的电容器的制造方法,其特征在于,Ta2O5膜的形成工序包括:
第1Ta2O5膜的形成工序;
对所述第1Ta2O5膜进行第1热处理的工序;
在所述热处理后的第1Ta2O5膜上形成第2Ta2O5膜的工序;和
对所述第2Ta2O5膜进行第2热处理的工序。
30.根据权利要求29的半导体存储元件的电容器的制造方法,其特征在于,所述第1热处理工序或者第2热处理工序为N2O或O2等离子体处理或者UV-O3处理。
31.根据权利要求26的半导体存储元件的电容器的制造方法,其特征在于,在保持200-700℃的温度和NH3或N2/H2等离子体的反应室内,就地进行所述下部电极的表面氮化处理。
32.根据权利要求26的半导体存储元件的电容器的制造方法,其特征在于,采用含氮气体,通过200-400℃的温度的等离子体处理,形成所述导电性阻挡层。
33.根据权利要求26的半导体存储元件的电容器的制造方法,其特征在于,在含氮气氛的电炉内在750-950℃的温度形成所述导电性阻挡层。
34.根据权利要求26的半导体存储元件的电容器的制造方法,其特征在于,在含氛成份的气氛、在750-950℃的温度按RTN形成所述导电性阻挡层。
35.一种半导体存储元件的制造方法,包括:
在半导体衬底上形成下部电极的工序;
在保持200-700℃的温度和NH3或N2/H2等离子体的反应室内,对所述下部电极的表面进行氮化处理,以便阻止产生自然氧化膜的工序;
在所述下部电极上形成作为电介质膜的Ta2O5膜的工序;
对所述Ta2O5膜进行热处理而结晶化的工序;
在保持200-400℃的温度和含氮等离子体的反应室内,在所述Ta2O5膜上形成由氮化硅膜构成的导电性阻挡层的工序;和
在所述导电性阻挡层上形成上部电极的工序,
其特征在于,在同一的反应室内就地进行所述下部电极的表面氮化处理工序、Ta2O5膜的形成工序、所述Ta2O5膜的热处理从而结晶化的工序和形成导电性阻挡层的工序。
36.根据权利要求35的半导体存储元件的制造方法,其特征在于,Ta化学蒸汽和O2气体在CVD反应室内进行表面化学反应,从而形成所述Ta2O5膜。
37.根据权利要求36的半导体存储元件的电容器的制造方法,其特征在于,所述Ta2O5膜的热处理工序为在200-400℃的温度和O3及UV-O3气氛中进行低温热处理的工序和在750-950℃的温度进行高温热处理的工序。
38.根据权利要求35的半导体存储元件的电容器的制造方法,其特征在于,Ta2O5膜的形成工序包括:
第1Ta2O5膜的形成工序;
对所述第1Ta2O5膜进行第1热处理的工序;
在所述热处理后的第1Ta2O5膜上形成第2Ta2O5膜的工序;和
对所述第2Ta2O5膜进行第2热处理的工序。
39.根据权利要求38的半导体存储元件的电容器的制造方法,其特征在于,所述第1热处理工序或者第2热处理工序为N2O或O2等离子体处理或者UV-O3处理。
CNB001240285A 1999-07-02 2000-07-02 半导体存储元件的电容器及其制造方法 Expired - Fee Related CN100383971C (zh)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR26510/1999 1999-07-02
KR26510/99 1999-07-02
KR10-1999-0026510A KR100504434B1 (ko) 1999-07-02 1999-07-02 반도체장치의 커패시터 제조방법
KR49503/1999 1999-11-09
KR49503/99 1999-11-09
KR10-1999-0049503A KR100373159B1 (ko) 1999-11-09 1999-11-09 반도체 소자의 캐패시터 제조방법

Publications (2)

Publication Number Publication Date
CN1280392A true CN1280392A (zh) 2001-01-17
CN100383971C CN100383971C (zh) 2008-04-23

Family

ID=26635696

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB001240285A Expired - Fee Related CN100383971C (zh) 1999-07-02 2000-07-02 半导体存储元件的电容器及其制造方法

Country Status (6)

Country Link
US (2) US6376299B1 (zh)
JP (1) JP2001053253A (zh)
CN (1) CN100383971C (zh)
DE (1) DE10032213B8 (zh)
GB (1) GB2358284B (zh)
TW (1) TW449912B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100452320C (zh) * 2004-06-30 2009-01-14 海力士半导体有限公司 形成半导体器件的电容器的方法
CN112018090A (zh) * 2020-07-21 2020-12-01 中国科学院微电子研究所 一种电容结构及其制备方法和半导体器件

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100373159B1 (ko) * 1999-11-09 2003-02-25 주식회사 하이닉스반도체 반도체 소자의 캐패시터 제조방법
JP2001351913A (ja) * 2000-06-07 2001-12-21 Nec Corp 半導体装置及びその製造方法
KR100384850B1 (ko) * 2000-12-14 2003-05-22 주식회사 하이닉스반도체 탄탈륨옥사이드 유전막 형성 방법
KR100360413B1 (ko) * 2000-12-19 2002-11-13 삼성전자 주식회사 2단계 열처리에 의한 반도체 메모리 소자의 커패시터 제조방법
KR100387264B1 (ko) * 2000-12-29 2003-06-12 주식회사 하이닉스반도체 반도체 소자의 캐패시터 제조 방법
KR100393209B1 (ko) * 2001-01-18 2003-07-31 삼성전자주식회사 금속 산화막을 유전막으로 하는 반도체 커패시터의 형성방법
US6620702B2 (en) * 2001-06-25 2003-09-16 Taiwan Semiconductor Manufacturing Co., Ltd. Method of producing low thermal budget high dielectric constant structures
US6706635B2 (en) * 2002-06-05 2004-03-16 Texas Instruments Incorporated Innovative method to build a high precision analog capacitor with low voltage coefficient and hysteresis
KR100507860B1 (ko) * 2002-06-21 2005-08-18 주식회사 하이닉스반도체 산화저항막을 구비한 캐패시터 및 그 제조 방법
KR100728962B1 (ko) * 2004-11-08 2007-06-15 주식회사 하이닉스반도체 지르코늄산화막을 갖는 반도체소자의 캐패시터 및 그 제조방법
JP2006319077A (ja) * 2005-05-12 2006-11-24 Elpida Memory Inc 金属酸化物誘電体膜の形成方法及び半導体記憶装置の製造方法
KR100675895B1 (ko) * 2005-06-29 2007-02-02 주식회사 하이닉스반도체 반도체소자의 금속배선구조 및 그 제조방법
KR101352237B1 (ko) * 2008-08-13 2014-01-16 엘지디스플레이 주식회사 유기전계발광표시장치의 제조방법
KR102430400B1 (ko) * 2017-12-29 2022-08-05 어플라이드 머티어리얼스, 인코포레이티드 디스플레이 애플리케이션들을 위한 저장 커패시터들의 누설 전류를 감소시키는 방법

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4130694A (en) 1977-08-15 1978-12-19 Bell Telephone Laboratories, Incorporated Amorphous metal oxide material between electrodes of a cell
JPS5745968A (en) * 1980-08-29 1982-03-16 Ibm Capacitor with double dielectric unit
JPS62136035A (ja) 1985-12-10 1987-06-19 Fujitsu Ltd 半導体装置の製造方法
JPS6338248A (ja) 1986-08-04 1988-02-18 Hitachi Ltd 半導体装置およびその製造方法
JPH01173622A (ja) 1987-12-26 1989-07-10 Fujitsu Ltd 窒化膜の形成方法
JP2829023B2 (ja) 1989-02-28 1998-11-25 株式会社東芝 半導体集積回路用キャパシタ
JP2518406B2 (ja) * 1989-06-23 1996-07-24 日本電気株式会社 容量絶縁膜の形成方法
JPH05167008A (ja) 1991-12-12 1993-07-02 Oki Electric Ind Co Ltd 半導体素子の製造方法
JPH05335483A (ja) 1992-05-29 1993-12-17 Oki Electric Ind Co Ltd 半導体装置の製造方法
JPH05343639A (ja) * 1992-06-10 1993-12-24 Toshiba Corp 電子部品
JP3141553B2 (ja) * 1992-08-06 2001-03-05 日本電気株式会社 半導体装置の製造方法
KR960005681B1 (ko) * 1992-11-07 1996-04-30 금성일렉트론주식회사 반도체 메모리 장치의 캐패시터 제조방법
JPH06163819A (ja) 1992-11-18 1994-06-10 Oki Electric Ind Co Ltd 半導体装置のキャパシタ構造
JP2786071B2 (ja) * 1993-02-17 1998-08-13 日本電気株式会社 半導体装置の製造方法
JPH0714993A (ja) 1993-06-18 1995-01-17 Mitsubishi Electric Corp 半導体装置およびその製造方法
JPH0745467A (ja) 1993-07-26 1995-02-14 Alps Electric Co Ltd 誘電体およびこの誘電体を有するキャパシタ
JPH0766369A (ja) * 1993-08-26 1995-03-10 Nec Corp 半導体装置の製造方法
US5330931A (en) 1993-09-22 1994-07-19 Northern Telecom Limited Method of making a capacitor for an integrated circuit
US5508881A (en) 1994-02-01 1996-04-16 Quality Microcircuits Corporation Capacitors and interconnect lines for use with integrated circuits
US5362632A (en) * 1994-02-08 1994-11-08 Micron Semiconductor, Inc. Barrier process for Ta2 O5 capacitor
KR950034588A (ko) * 1994-03-17 1995-12-28 오가 노리오 탄탈계 고유전체재료 및 고유전체막의 형성방법 및 반도체장치
US5753945A (en) 1995-06-29 1998-05-19 Northern Telecom Limited Integrated circuit structure comprising a zirconium titanium oxide barrier layer and method of forming a zirconium titanium oxide barrier layer
KR0155879B1 (ko) 1995-09-13 1998-12-01 김광호 오산화 이탄탈륨 유전막 커패시터 제조방법
US5786248A (en) * 1995-10-12 1998-07-28 Micron Technology, Inc. Semiconductor processing method of forming a tantalum oxide containing capacitor
KR0165484B1 (ko) * 1995-11-28 1999-02-01 김광호 탄탈륨산화막 증착 형성방법 및 그 장치
US5631188A (en) 1995-12-27 1997-05-20 Taiwan Semiconductor Manufacturing Company Ltd. Low voltage coefficient polysilicon capacitor
JPH09266289A (ja) * 1996-03-29 1997-10-07 Mitsubishi Electric Corp 半導体記憶装置およびその製造方法
US5930584A (en) * 1996-04-10 1999-07-27 United Microelectronics Corp. Process for fabricating low leakage current electrode for LPCVD titanium oxide films
JPH1012837A (ja) * 1996-06-19 1998-01-16 Hitachi Ltd 半導体集積回路装置の製造方法
KR100235938B1 (ko) * 1996-06-24 1999-12-15 김영환 반구형 실리콘 제조방법
JP3432359B2 (ja) * 1996-06-28 2003-08-04 沖電気工業株式会社 半導体装置およびその製造方法
KR100207485B1 (ko) * 1996-07-23 1999-07-15 윤종용 반도체장치의 커패시터 제조방법
US5872415A (en) 1996-08-16 1999-02-16 Kobe Steel Usa Inc. Microelectronic structures including semiconductor islands
US5776660A (en) 1996-09-16 1998-07-07 International Business Machines Corporation Fabrication method for high-capacitance storage node structures
US5980977A (en) 1996-12-09 1999-11-09 Pinnacle Research Institute, Inc. Method of producing high surface area metal oxynitrides as substrates in electrical energy storage
JPH10229080A (ja) * 1996-12-10 1998-08-25 Sony Corp 酸化物の処理方法、アモルファス酸化膜の形成方法およびアモルファス酸化タンタル膜
JPH10189908A (ja) * 1996-12-20 1998-07-21 Texas Instr Japan Ltd 金属酸化物キャパシタの作製方法及び半導体メモリ装置の製造方法
US5936831A (en) 1997-03-06 1999-08-10 Lucent Technologies Inc. Thin film tantalum oxide capacitors and resulting product
US6218260B1 (en) * 1997-04-22 2001-04-17 Samsung Electronics Co., Ltd. Methods of forming integrated circuit capacitors having improved electrode and dielectric layer characteristics and capacitors formed thereby
US5977582A (en) 1997-05-23 1999-11-02 Lucent Technologies Inc. Capacitor comprising improved TaOx -based dielectric
GB2326279B (en) * 1997-06-11 2002-07-31 Hyundai Electronics Ind Method of forming a capacitor of a semiconductor device
FR2766211B1 (fr) * 1997-07-15 1999-10-15 France Telecom PROCEDE DE DEPOT D'UNE COUCHE DIELECTRIQUE DE Ta2O5
US5910880A (en) 1997-08-20 1999-06-08 Micron Technology, Inc. Semiconductor circuit components and capacitors
US5837576A (en) 1997-10-31 1998-11-17 Vanguard International Semiconductor Corporation Method for forming a capacitor using a silicon oxynitride etching stop layer
US6165833A (en) * 1997-12-19 2000-12-26 Micron Technology, Inc. Semiconductor processing method of forming a capacitor
TW357430B (en) 1997-12-22 1999-05-01 United Microelectronics Corp Manufacturing method of capacitors
JPH11233723A (ja) 1998-02-13 1999-08-27 Sony Corp 電子素子およびその製造方法ならびに誘電体キャパシタおよびその製造方法ならびに光学素子およびその製造方法
JP3189813B2 (ja) * 1998-11-30 2001-07-16 日本電気株式会社 半導体装置の製造方法
GB2347787A (en) * 1998-12-04 2000-09-13 Samsung Electronics Co Ltd Method of forming a tantalum oxide containing capacitor
KR100304699B1 (ko) * 1999-01-05 2001-09-26 윤종용 탄탈륨 산화막을 갖춘 커패시터 제조방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100452320C (zh) * 2004-06-30 2009-01-14 海力士半导体有限公司 形成半导体器件的电容器的方法
CN112018090A (zh) * 2020-07-21 2020-12-01 中国科学院微电子研究所 一种电容结构及其制备方法和半导体器件

Also Published As

Publication number Publication date
CN100383971C (zh) 2008-04-23
JP2001053253A (ja) 2001-02-23
DE10032213B4 (de) 2008-10-09
US20020100959A1 (en) 2002-08-01
DE10032213A1 (de) 2001-05-31
DE10032213B8 (de) 2009-02-12
TW449912B (en) 2001-08-11
GB2358284A (en) 2001-07-18
US6376299B1 (en) 2002-04-23
GB2358284B (en) 2004-07-14
GB0015991D0 (en) 2000-08-23

Similar Documents

Publication Publication Date Title
KR100415538B1 (ko) 이중 유전막을 구비한 캐패시터 및 그 제조 방법
KR100351450B1 (ko) 비휘발성 메모리 소자 및 그 제조방법
CN1187810C (zh) 半导体器件的电容器的制造方法
CN1280392A (zh) 半导体存储元件的电容器及其制造方法
JP4247421B2 (ja) 半導体装置のキャパシターの製造方法
KR100417855B1 (ko) 반도체소자의 캐패시터 및 그 제조방법
US20030116795A1 (en) Method of manufacturing a tantalum pentaoxide - aluminum oxide film and semiconductor device using the film
US6740553B1 (en) Capacitor for semiconductor memory device and method of manufacturing the same
KR100335775B1 (ko) 반도체 소자의 캐패시터 제조 방법
US6410400B1 (en) Method of manufacturing Ta2O5capacitor using Ta2O5thin film as dielectric layer
KR100328454B1 (ko) 반도체 소자의 캐패시터 제조 방법
CN1168144C (zh) 半导体存储元件的电容器及其制造方法
US6531372B2 (en) Method of manufacturing capacitor of semiconductor device using an amorphous TaON
KR100431740B1 (ko) 고유전막을 구비한 반도체소자 및 그 제조 방법
US6780792B2 (en) Semiconductor circuit constructions, capacitor constructions, and methods of forming semiconductor circuit constructions and capacitor constructions
JP2001057414A (ja) 半導体メモリ素子のキャパシタ及びその製造方法
KR20040100766A (ko) 원자층 증착법을 이용한 복합 유전막의 연속 형성방법 및이를 이용한 캐패시터의 제조방법
KR100388203B1 (ko) 반도체 소자의 캐패시터 제조방법
KR100882090B1 (ko) 반도체소자의 캐패시터 제조방법
KR100327587B1 (ko) TaON박막을 갖는 커패시터 제조방법
KR100549567B1 (ko) 반도체장치의 캐퍼시터 형성방법
KR100358065B1 (ko) 반도체 소자의 캐패시터 제조 방법
KR20020002722A (ko) 반도체 소자의 커패시터 제조 방법
KR20010003783A (ko) 반도체 소자의 캐패시터 제조 방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080423

Termination date: 20160702

CF01 Termination of patent right due to non-payment of annual fee