CN110869173A - 用于估计器械定位的系统与方法 - Google Patents

用于估计器械定位的系统与方法 Download PDF

Info

Publication number
CN110869173A
CN110869173A CN201880044521.3A CN201880044521A CN110869173A CN 110869173 A CN110869173 A CN 110869173A CN 201880044521 A CN201880044521 A CN 201880044521A CN 110869173 A CN110869173 A CN 110869173A
Authority
CN
China
Prior art keywords
instrument
motion
estimate
data
motion estimation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880044521.3A
Other languages
English (en)
Other versions
CN110869173B (zh
Inventor
赫德耶·拉菲-塔里
里特维克·乌马拉内尼
西蒙·韦·泉·林
普拉桑特·吉万
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Auris Health Inc
Original Assignee
Auris Surgical Robotics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Auris Surgical Robotics Inc filed Critical Auris Surgical Robotics Inc
Publication of CN110869173A publication Critical patent/CN110869173A/zh
Application granted granted Critical
Publication of CN110869173B publication Critical patent/CN110869173B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/70Manipulators specially adapted for use in surgery
    • A61B34/77Manipulators with motion or force scaling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61GTRANSPORT, PERSONAL CONVEYANCES, OR ACCOMMODATION SPECIALLY ADAPTED FOR PATIENTS OR DISABLED PERSONS; OPERATING TABLES OR CHAIRS; CHAIRS FOR DENTISTRY; FUNERAL DEVICES
    • A61G13/00Operating tables; Auxiliary appliances therefor
    • A61G13/10Parts, details or accessories
    • A61G13/12Rests specially adapted therefor; Arrangements of patient-supporting surfaces
    • A61G13/1205Rests specially adapted therefor; Arrangements of patient-supporting surfaces for specific parts of the body
    • A61G13/1245Knees, upper or lower legs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00367Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like
    • A61B2017/00398Details of actuation of instruments, e.g. relations between pushing buttons, or the like, and activation of the tool, working tip, or the like using powered actuators, e.g. stepper motors, solenoids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00743Type of operation; Specification of treatment sites
    • A61B2017/00809Lung operations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/10Computer-aided planning, simulation or modelling of surgical operations
    • A61B2034/101Computer-aided simulation of surgical operations
    • A61B2034/105Modelling of the patient, e.g. for ligaments or bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2048Tracking techniques using an accelerometer or inertia sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2051Electromagnetic tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2055Optical tracking systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2059Mechanical position encoders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2061Tracking techniques using shape-sensors, e.g. fiber shape sensors with Bragg gratings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/20Surgical navigation systems; Devices for tracking or guiding surgical instruments, e.g. for frameless stereotaxis
    • A61B2034/2046Tracking techniques
    • A61B2034/2065Tracking using image or pattern recognition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/301Surgical robots for introducing or steering flexible instruments inserted into the body, e.g. catheters or endoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0807Indication means
    • A61B2090/0811Indication means for the position of a particular part of an instrument with respect to the rest of the instrument, e.g. position of the anvil of a stapling instrument
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/08Accessories or related features not otherwise provided for
    • A61B2090/0818Redundant systems, e.g. using two independent measuring systems and comparing the signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/30Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure
    • A61B2090/306Devices for illuminating a surgical field, the devices having an interrelation with other surgical devices or with a surgical procedure using optical fibres
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras
    • A61B2090/3614Image-producing devices, e.g. surgical cameras using optical fibre
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/005Auxiliary appliance with suction drainage system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2217/00General characteristics of surgical instruments
    • A61B2217/002Auxiliary appliance
    • A61B2217/007Auxiliary appliance with irrigation system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/36Image-producing devices or illumination devices not otherwise provided for
    • A61B90/361Image-producing devices, e.g. surgical cameras

Abstract

描述了用于估计器械定位的系统和方法。所述方法和系统可以获得基于机器人数据的第一运动估计以及基于位置传感器数据的第二运动估计。所述方法和系统可以基于第一运动估计与第二运动估计的比较来确定运动估计差别。基于运动估计差别,所述方法和系统可以更新针对根据机器人数据可得出的定位的权重因数或者针对根据位置传感器数据可得出的定位的权重因数。基于更新的权重因数,所述方法和系统可以确定器械的定位/位置估计。所述方法和系统可以提高在器械经历屈曲或迟滞的情况下位置估计的准确性。

Description

用于估计器械定位的系统与方法
技术领域
本申请总体上涉及估计器械的定位,并且更具体地涉及用于基于定位输入数据的比较来估计机器人使能医疗器械(robotically-enabled medical instrument)的定位的系统和方法。
背景技术
医疗过程诸如内窥镜检查可能包括出于诊断和/或治疗目的而访问患者的腔网络的内部以及使患者的腔网络的内部可视化。例如,支气管镜检查是允许医师检查患者肺部的气道例如支气管和细支气管的医疗过程。在此过程中,可以将一种纤细、柔性的器械——称为支气管镜——插入患者的嘴巴,然后向下经过患者的喉咙进入肺部。该器械通过肺部的气道被导航到被确定用于随后的诊断和/或治疗的组织部位。
在某些过程中,可以使用机器人使能医疗系统来控制器械的插入和/或操纵。该机器人使能医疗系统可以包括机器人臂或者具有用于在医疗过程期间控制器械的位置的操纵器组件的其他器械定位装置。
发明内容
在第一方面,描述了其上存储有指令的非暂态计算机可读存储介质。所述指令在被执行时使装置的处理器执行至少以下操作:基于与器械的物理操纵有关的机器人数据获得器械的第一运动估计;基于从至少一个位置传感器接收的位置传感器数据获得器械的第二运动估计;基于第一运动估计与第二运动估计的比较确定运动估计差别;基于运动估计差别,更新(a)针对根据机器人数据可得出的定位的权重因数,或者(b)针对根据位置传感器数据可得出的定位的权重因数;并基于所更新的权重因数确定器械的定位/位置估计。
非暂态计算机可读存储介质可以包括任意组合的以下特征中的一个或更多个:(a)其中,指令在被执行时使处理器:当运动估计差别指示第二运动估计超过第一运动估计时,执行:减小针对根据机器人数据可得出的定位的权重因数,或者增大针对根据位置传感器数据可得出的定位的权重因数;(b)其中,指令在被执行时使处理器:当运动估计差别指示第二运动估计超过第一运动估计时,确定器械已经历了迟滞状况;(c)其中,指令在被执行时使处理器:当运动估计差别指示第一运动估计超过第二运动估计时,减小针对根据机器人数据可得出的定位的权重因数,或者增大针对根据位置传感器数据可得出的定位的权重因数;(d)其中,指令在被执行时使处理器:当运动估计差别指示第一运动估计超过第二估计时,确定器械已经历了屈曲状况;(e)其中,指令在被执行时使处理器将针对根据机器人数据可得出的定位的权重因数更新为零;(f)其中,指令在被执行时使处理器通过确定第一运动估计与第二运动估计之间的差来确定运动估计差别;(g)其中,指令在被执行时使处理器:当差超过差别阈值时,更新针对根据机器人数据可得出的定位的权重因数或者针对根据位置传感器数据可得出的定位的权重因数;(h)其中,指令在被执行时使处理器执行:通过基于间隔期间的机器人数据确定器械的位置的变化来获得第一运动估计,并且通过基于间隔期间的位置传感器数据确定器械的位置的变化来获得第二运动估计;(i)其中,间隔是时间间隔;(j)其中,间隔是距离间隔;(k)其中,基于所更新的权重因数、根据机器人数据可得出的定位以及根据位置传感器数据可得出的定位来确定位置估计;(l)其中,位置传感器定位在器械上;(m)其中,位置传感器包括电磁(EM)传感器;(n)其中位置传感器包括定位在器械上的成像装置,并且其中,处理器还被配置成根据由成像装置捕获的图像来确定位置信息;(o)其中,至少一个位置传感器包括以下中至少之一:形状感测纤维(shape-sensingfiber)、加速度计、陀螺仪、电磁传感器、成像装置和超声传感器;(p)其中,指令在被执行时使处理器执行:基于从定位在器械上的成像装置接收到的视觉数据获得器械的第三运动估计,基于第二运动估计与第三运动估计的比较确定运动估计差别,并基于运动估计差别,更新针对根据视觉数据可得出的定位的权重因数;(q)其中,指令在被执行时使处理器:当运动估计差别指示第二运动估计超过第三运动估计时,执行:增大针对根据位置传感器数据可得出的定位的权重因数,或者减小针对根据视觉可得出的定位的权重因数;(r)其中,指令在被执行时使处理器:当运动估计差别指示第二运动估计超过第三运动估计时,确定器械经历了迟滞状况;(s)其中,指令在被执行时使处理器:当运动估计差别指示第三运动估计超过第二运动估计时,增大针对根据位置传感器数据可得出的定位的权重因数,或者减小针对根据视觉数据可得出的定位的权重因数;以及/或者(t)其中,指令在被执行时使处理器:当运动估计差别指示第三运动估计超过第二估计时,确定器械经历了屈曲状况。
在另一方面,描述了机器人系统。该机器人系统包括:器械,其具有长形体和设置在长形体上的至少一个位置传感器;器械定位装置,其附接至器械并被配置成移动器械;至少一个计算机可读存储器,其具有存储于其上的可执行指令;一个或更多个处理器,其与至少一个计算机可读存储器通信,并被配置成执行指令以使系统执行至少以下操作:基于与用器械定位装置对器械进行的物理操纵有关的机器人数据,获得器械的第一运动估计;基于从至少一个位置传感器接收的位置传感器数据,获得器械的第二运动估计;基于第一运动估计与第二运动估计的比较确定运动估计差别;基于该运动估计差别,更新:针对根据机器人数据可得出的定位的权重因数,或者针对根据位置传感器数据可得出的定位的权重因数;并基于所更新的权重因数确定器械的定位/位置估计。
该系统可以以包括任意组合的以下特征中的一个或更多个:(a)其中,器械包括内窥镜;(b)其中,器械定位装置包括机器人臂;(c)其中,至少一个位置传感器包括电磁传感器;(d)其中,至少一个位置传感器包括定位在器械上的成像装置,并且其中,指令还使一个或更多个处理器根据由成像装置捕获的图像确定位置信息;(e)其中,至少一个位置传感器包括:形状感测纤维、加速度计、陀螺仪、电磁传感器、成像装置或超声传感器;(f)其中,指令在被执行时使一个或更多个处理器:当运动估计差别指示第二运动估计超过第一运动估计时,执行:减小针对根据机器人数据可得出的定位的权重因数,或者增大针对根据位置传感器数据可得出的定位的权重因数;(f)其中,指令在被执行时使一个或更多个处理器:当运动估计差别指示第二运动估计超过第一运动估计时,确定器械经历了迟滞状况;(g)其中,指令在被执行时使一个或更多个处理器:当运动估计差别指示第一运动估计超过第二运动估计时,执行:减小针对根据机器人数据可得出的定位的权重因数,或者增大针对根据位置传感器数据可得出的定位的权重因数;(h)其中,指令在被执行时使一个或更多个处理器:当运动估计差别指示第一运动估计超过第二运动估计时,确定器械经历了屈曲状况;(i)其中,指令在被执行时使一个或更多个处理器:当运动估计差别指示第二运动估计超过第一运动估计时,将针对根据机器人数据可得出的定位的权重因数更新为零;(j)其中,指令在被执行时使一个或更多个处理器:当运动估计差别指示第一运动估计超过第二运动估计时,将针对根据位置传感器数据可得出的定位的权重因数更新为零;(k)在被执行时使一个或更多个处理器通过确定第一运动估计与第二运动估计之间的差来确定运动估计差别;(l)其中,指令在被执行时使一个或更多个处理器:当差超过差别阈值时,更新:针对根据机器人数据可得出的定位的权重因数,或者针对根据位置传感器数据可得出的定位的权重因数;(m)其中,指令在被执行时使一个或更多个处理器执行:通过基于间隔期间的机器人数据确定器械的位置的变化来获得第一运动估计,并且通过基于间隔期间的位置传感器数据确定器械的位置的变化来获得第二运动估计;(n)其中,间隔是时间间隔;以及/或者(o)其中,间隔是距离间隔。
在另一方面,描述了一种用于在身体的内部区域内导航器械的方法。该方法包括:基于与器械的物理操纵有关的机器人数据获得器械的第一运动估计;基于从至少一个位置传感器接收的位置传感器数据获得器械的第二运动估计;基于第一运动估计与第二运动估计的比较确定运动估计差别;基于该运动估计差别更新:针对根据机器人数据可得出的定位的权重因数,或者针对根据位置传感器数据可得出的定位的权重因数;基于所更新的权重因数确定器械的定位/位置估计。
该方法可以包括任意组合的以下特征中的一个或更多个:(a)其中,更新权重因数包括:当运动估计差别指示第二运动估计超过第一运动估计时,减小针对根据机器人数据可得出的定位的权重因数,或者增大针对根据位置传感器数据可得出的定位的权重因数;(b)当运动估计差别指示第二运动估计超过第一运动估计时,确定器械经历了迟滞状况;(c)其中,更新权重因数包括:当运动估计差别指示第一运动估计超过第二运动估计时,减小针对根据机器人数据可得出的定位的权重因数,或者增大针对根据位置传感器数据可得出的定位的权重因数;(d)当运动估计差别指示第一运动估计超过第二运动估计时,确定器械经历了屈曲状况;(e)当运动估计差别指示第二运动估计超过第一运动估计时,将针对根据机器人数据可得出的定位的权重因数更新为零;(f)当运动估计差别指示第一运动估计超过第二运动估计时,将针对根据位置传感器数据可得出的定位的权重因数更新为零;(g)确定运动估计差别包括确定第一运动估计与第二运动估计之间的差;(h)确定差包括确定差的大小;(i)当差超过差别阈值时,更新针对根据机器人数据可得出的定位的权重因数或者针对根据位置传感器数据可得出的定位的权重因数;(j)获得第一运动估计包括基于间隔期间的机器人数据确定器械的位置的变化,以及获得第二运动估计包括基于间隔期间的位置传感器数据确定器械的位置的变化;(k)其中,间隔是时间间隔;(l)其中,间隔是距离间隔;(m)其中,位置传感器定位在器械上;(n)其中,位置传感器包括电磁传感器;(o)其中,位置传感器包括定位在器械上的成像装置,并且其中,该方法还包括根据由成像装置捕获的图像确定位置信息;以及/或者(p)其中,位置传感器包括形状感测纤维、加速度计、陀螺仪、电磁传感器、成像装置或超声传感器。
附图说明
在下文中将结合附图来描述所公开的方面,提供这些附图是为了说明而不是限制所公开的方面,其中,相似的附图标记表示相似的元件。
图1示出了被布置用于诊断性和/或治疗性支气管镜检查过程的基于推车的机器人系统的实施方式。
图2描绘了图1的机器人系统的另外的方面。
图3示出了被布置用于输尿管镜检查的图1的机器人系统的实施方式。
图4示出了被布置用于血管医疗过程的图1的机器人系统的实施方式。
图5示出了被布置用于支气管镜检查过程的基于手术台的机器人系统的实施方式。
图6提供了图5的机器人系统的替选视图。
图7示出了被配置成收起机器人臂的示例系统。
图8示出了被配置用于输尿管镜检查过程的基于手术台的机器人系统的实施方式。
图9示出了被配置用于腹腔镜检查过程的基于手术台的机器人系统的实施方式。
图10示出了具有俯仰或倾斜调整的图5至图9的基于手术台的机器人系统的实施方式。
图11提供了图5至图10的基于手术台的机器人系统的手术台与柱之间的接口的详细图示。
图12示出了示例性器械驱动器。
图13示出了具有成对的器械驱动器的示例性医疗器械。
图14示出了器械驱动器和器械的替选设计,其中驱动单元的轴线平行于器械的长形轴的轴线。
图15描绘了示出根据示例实施方式的定位系统的框图,该定位系统估计图1至图10的机器人系统的一个或更多个元件的定位,例如图13至图14的器械的定位。
图16描绘了更详细地示出图15的定位系统的另一框图。
图17A示出了经历屈曲状况的医疗器械的示例。
图17B示出了经历迟滞状况的医疗器械的示例。
图18A是示出用于基于机器人数据与位置传感器数据的比较来确定医疗器械的定位/位置估计的示例方法的流程图。
图18B是示出用于基于视觉数据与位置传感器数据的比较来确定医疗器械的定位/位置估计的示例方法的流程图。
图19是示出被配置成通过定位输入数据的比较来提供对器械定位的估计的实施方式或机器人使能医疗系统的框图。
具体实施方式
1.概述
本公开内容的各方面可以被集成到能够执行各种医疗过程的机器人使能的医疗系统中,各种医疗过程包括诸如腹腔镜检查的微创过程以及诸如内窥镜检查的无创过程二者。在内窥镜检查过程中,系统可以能够执行支气管镜检查、输尿管镜检查、胃镜检查等。
除了执行广泛的医疗过程之外,系统可以提供另外的益处例如增强的成像和指导以帮助医师。另外,该系统可以为医师提供根据人体工程学位置执行医疗过程的能力,而不需要笨拙的臂运动和定位。更进一步地,该系统可以为医师提供以改进的易用性执行医疗过程的能力,使得系统的一个或更多个器械可以由单个用户控制。
出于说明的目的,下面将结合附图描述各种实施方式。应当理解的是,所公开的构思的许多其他实现方式是可能的,并且利用所公开的实现方式可以实现各种优点。本文中包括标题以供参考,并且有助于定位各个部分。这些标题不意在限制关于标题所描述的构思的范围。这样的构思可以在整个说明书中具有适用性。
A.机器人系统-推车。
取决于具体过程,可以以各种方式配置机器人使能的医疗系统。图1示出了被布置用于诊断性和/或治疗性支气管镜检查过程的基于推车的机器人使能系统10的实施方式。在支气管镜检查期间,系统10可以包括推车11,推车11具有一个或更多个机器人臂12,用于将医疗器械例如可操纵的内窥镜13——其可以是用于支气管镜检查的特定于过程的支气管镜——递送到自然孔口进入点(即,在本示例中为定位在手术台上的患者的嘴),以递送诊断和/或治疗工具。如图所示,推车11可以被定位在患者的上躯干附近,以便提供对进入点的接近。类似地,机器人臂12可以被致动以相对于进入点定位支气管镜。当利用胃镜——一种用于胃肠(GI)医疗过程的专用内窥镜——执行胃肠医疗过程时,也可以利用图1中的布置。图2更详细地描述了推车的示例实施方式。
继续参照图1,一旦推车11被正确定位,机器人臂12就可以以机器人方式、手动地或以其组合方式将可操纵内窥镜13插入到患者内。如图所示,可操纵内窥镜13可以包括至少两个伸缩部分(telescoping parts),例如内引导件部分和外护套部分,每个部分耦接到来自一组器械驱动器28的单独的器械驱动器,每个器械驱动器耦接到单独的机器人臂的远端。便于将引导件部分与护套部分同轴对准的器械驱动器28的这种线性布置产生“虚拟轨道”29,可以通过将一个或更多个机器人臂12操纵到不同角度和/或位置来在空间中重新定位“虚拟轨道”29。在图中使用虚线描绘了本文描述的虚拟轨道,并且因此虚线不描绘系统的任何物理结构。器械驱动器28沿着虚拟轨道29的平移使内引导件部分相对于外护套部分伸缩,或者使内窥镜13相对于患者前进或回缩。虚拟轨道29的角度可以基于临床应用或医师偏好来调整、平移和枢转。例如,在支气管镜检查中,所示的虚拟轨道29的角度和位置代表了在向医师提供对内窥镜13的接近同时使由于使内窥镜13弯曲到患者的嘴中而产生的摩擦最小化之间的折衷。
可以使用来自机器人系统的精确命令在插入之后沿着患者的气管和肺引导内窥镜13,直到到达目标目的地或手术部位。为了增强导航通过患者的肺网络和/或到达期望的目标,内窥镜13可以被操纵成从外护套部分伸缩地延伸内引导件部分,以获得增强的接合和更大的弯曲半径。使用单独的器械驱动器28还允许引导件部分和护套部分被彼此独立地驱动。
例如,可以引导内窥镜13以将活检针递送至目标,例如,患者肺内的病变或结节。可以沿着工作通道部署针以获得要由病理学家分析的组织样本,该工作通道沿着内窥镜的长度延伸。取决于病理学结果,可以沿着内窥镜的工作通道部署附加工具以用于附加活检。在识别出结节是恶性的之后,内窥镜13可以通过内窥镜递送工具以切除潜在的癌组织。在一些情况下,可能需要在分开的过程中递送诊断和治疗处理。在那些情况下,内窥镜13也可以用于递送基准(fiducial)以“标记”目标结节的定位。在其他情况下,可以在同一过程期间递送诊断和治疗处理。
系统10还可以包括可移动塔(tower)30,该可移动塔30可以经由支承线缆连接至推车11以向推车11提供对控制、电子、流控、光学、传感器和/或电力的支持。将这样的功能放置在塔30中允许可以由操作医师和他/她的工作人员更容易地调整和/或重新定位的更小形状因子的推车11。此外,在推车/手术台与支持塔30之间的功能划分减少了手术室的混乱并且有利于改善临床工作流程。虽然推车11可以定位成靠近患者,但是塔30可以被收起在远程位置中以在过程期间不挡道。
为了支持上述机器人系统,塔30可以包括基于计算机的控制系统的一个或多个部件,该基于计算机的控制系统将计算机程序指令存储在例如非暂态计算机可读存储介质例如永久性磁存储驱动器、固态驱动器等内。这些指令的执行——无论是在塔30中还是在推车11中发生——都可以控制整个系统或其子系统。例如,当由计算机系统的处理器执行时,指令可以使机器人系统的部件致动相关的托架和臂安装件,致动机器人臂,以及控制医疗器械。例如,响应于接收到控制信号,机器人臂的关节中的马达可以将臂定位成特定姿势。
塔30还可以包括泵、流量计、阀控制器和/或流体入口,以向可以通过内窥镜13部署的系统提供受控的冲洗和抽吸能力。这些部件也可以使用塔30的计算机系统来控制。在一些实施方式中,冲洗和抽吸能力可以通过一个或多个单独的线缆直接递送至内窥镜13。
塔30可以包括电压和浪涌保护器,电压和浪涌保护器被设计成向推车11提供经滤波和受保护的电力,从而避免在推车11中放置电力变压器和其他辅助电力部件,从而产生更小、更可移动的推车11。
塔30还可以包括部署在整个机器人系统10中的传感器的支持设备。例如,塔30可以包括用于检测、接收和处理从整个机器人系统10中的光学传感器或摄像装置接收到的数据的光电子设备。与控制系统结合,这样的光电子设备可以用于生成实时图像以显示在部署在整个系统中的任何数量的控制台中,包括在塔30中的控制台。类似地,塔30还可以包括用于接收和处理从部署的电磁(EM)传感器接收到的信号的电子子系统。塔30还可以用于容纳和定位有EM场发生器,以由医疗器械中或医疗器械上的EM传感器检测。
除了在系统的其余部分中可用的其他控制台例如安装在推车顶部的控制台之外,塔30还可以包括控制台31。控制台31可以包括用于医师操作者的用户接口和显示屏,例如触摸屏。系统10中的控制台通常设计成提供机器人控制以及医疗过程的手术前信息和实时信息,例如,内窥镜13的导航和定位信息。当控制台31不是仅医师可用的控制台时,控制台31可以由第二操作者例如护士使用,以监测患者的健康或重要器官以及系统的操作,以及提供特定于医疗过程的数据,例如导航和定位信息。
塔30可以通过一个或更多个线缆或连接装置(未示出)耦接至推车11和内窥镜13。在一些实施方式中,可以通过单个线缆将来自塔30的支持功能提供至推车11,从而简化手术室并且使手术室不杂乱。在其他实施方式中,特定功能可以耦接在单独的线缆和连接装置中。例如,尽管可以通过单个电力线缆向推车提供电力,但也可以通过单独的线缆提供对控制、光学、流控和/或导航的支持。
图2提供了来自图1所示的基于推车的机器人使能系统的推车的实施方式的详细图示。推车11总体上包括长形的支承结构14(通常称为“柱”)、推车基部15和在柱14的顶部处的控制台16。柱14可以包括用于支承一个或更多个机器人臂12(图2中示出三个)的部署的一个或更多个托架,例如托架17(替选地“臂支承件”)。托架17可以包括可单独配置的臂安装件,这些臂安装件沿着垂直轴线旋转以调整机器人臂12的基部,以相对于患者更好地定位。托架17还包括托架接口19,托架接口19允许托架17沿着柱14竖直平移。
托架接口19通过诸如槽20的槽连接至柱14,所述槽被定位在柱14的相对侧以引导托架17的竖直平移。槽20包含用于相对于推车基部15将托架定位和保持在各种竖直高度处的竖直平移接口。托架17的竖直平移允许推车11调整机器人臂12的可达范围以满足各种手术台高度、患者大小和医师偏好。类似地,托架17上的可单独配置的臂安装件允许机器人臂12的机器人臂基部21以各种配置成一定角度。
在一些实施方式中,槽20可以补充有槽盖,槽盖与槽表面齐平且平行,以防止在托架17竖直平移时灰尘和流体进入柱14的内部腔室和竖直平移接口。可以通过位于槽20的竖直顶部和底部附近的弹簧卷轴对来部署槽盖。盖在卷轴内盘绕直到被部署成在托架17竖直地上下平移时从盖的盘绕状态延伸和回缩。当托架17朝卷轴平移时,卷轴的弹簧加载提供了将盖回缩到卷轴中的力,而当托架17平移远离卷轴时也保持紧密密封。盖可以使用例如托架接口19中的支架连接至托架17,以确保在托架17平移时盖适当地延伸和回缩。
柱14可以在内部包括诸如齿轮和马达的机构,这些机构被设计成使用竖直对准的导螺杆,以响应于控制信号来以机械化方式平移托架17,所述控制信号是响应于用户输入例如来自控制台16的输入而生成的。
机器人臂12通常可以包括由一系列连接件23分开的机器人臂基部21和端部执行器22,一系列连接件23由一系列关节24连接,每个关节包括独立的致动器,每个致动器包括独立可控的马达。每个独立可控的关节表示机器人臂可用的独立自由度。臂12中的每一个具有七个关节,并且因此提供七个自由度。多个关节引起多个自由度,从而允许“冗余”自由度。冗余自由度允许机器人臂12使用不同的连接件位置和关节角度将它们各自的端部执行器22定位在空间中的特定位置、取向和轨迹处。这允许系统从空间中的期望点定位和引导医疗器械,同时允许医师将臂关节移动到远离患者的临床有利位置以产生更大的接近,同时避免臂碰撞。
推车基部15在地板上平衡柱14、托架17和臂12的重量。因此,推车基部15容纳较重的部件,例如电子器件、马达、电源以及使得能够移动和/或固定推车的部件。例如,推车基部15包括允许推车在医疗过程之前容易地在室中移动的可滚动的轮形脚轮25。在到达适当位置之后,可以使用轮锁固定脚轮25,以在医疗过程期间将推车11保持在适当位置。
定位在柱14的竖直端部处的控制台16允许用于接收用户输入的用户接口和显示屏(或两用装置,例如触摸屏26)两者向医师用户提供手术前数据和手术中数据两者。触摸屏26上的潜在手术前数据可以包括手术前计划、从手术前计算机化断层层析成像(CT)扫描得出的导航和绘图数据和/或来自手术前患者面谈的注释。显示器上的手术中数据可以包括从工具、传感器提供的光学信息和来自传感器的坐标信息以及重要的患者统计数据,例如呼吸、心率和/或脉搏。控制台16可以被定位和倾斜成允许医师从柱14的与托架17相对的侧面接近控制台。从该位置,医师可以在从推车11后面操作控制台16时观察控制台16、机器人臂12和患者。如所示出的,控制台16还包括用于帮助操纵和稳定推车11的手柄27。
图3示出了被布置成用于输尿管镜检查的机器人使能系统10的实施方式。在输尿管镜检查过程中,推车11可以被定位成将输尿管镜32——即,被设计成穿过患者的尿道和输尿管的特定于医疗过程的内窥镜——递送到患者的下腹部区域。在输尿管镜检查中,可以期望输尿管镜32直接与患者的尿道对准以减少该区域中的敏感解剖结构上的摩擦和力。如所示出的,推车11可以在手术台的脚部处对准,以允许机器人臂12定位输尿管镜32,以直接线性进入患者的尿道。从手术台的脚部,机器人臂12可以沿着虚拟轨道33将输尿管镜32通过尿道直接插入患者的下腹部。
在插入到尿道中之后,使用与支气管镜检查中类似的控制技术,输尿管镜32可以被导航到膀胱、输尿管和/或肾中以用于诊断和/或治疗应用。例如,可以使用沿着输尿管镜32的工作通道部署的激光或超声碎石装置将输尿管镜32引导到输尿管和肾中以打碎积聚的肾结石。在碎石完成之后,可以使用沿着输尿管镜32部署的篮状件移除所得到的结石碎片。
图4示出了类似地被布置成用于血管医疗过程的机器人使能系统的实施方式。在血管医疗过程中,系统10可以被配置成使得推车11可以将医疗器械34例如可操纵导管递送至患者腿部的股动脉中的进入点。股动脉呈现用于导航的较大直径以及到患者心脏的相对较少迂回曲折路径两者,这简化了导航。如在输尿管镜检查过程中,推车11可以被定位成朝向患者的腿和下腹部,以允许机器人臂12提供直接线性进入患者的大腿/髋部区域中的股动脉进入点的虚拟轨道35。在插入动脉后,可以通过平移器械驱动器28来引导和插入医疗器械34。替选地,推车可以被定位在患者的上腹部周围,以到达替选的血管进入点,例如,肩部和腕部附近的颈动脉和臂动脉。
B.机器人系统-手术台。
机器人使能医疗系统的实施方式还可以包含患者手术台。通过移除推车,包含手术台减少了手术室内的重要设备的量,这允许更大地接近患者。图5示出了被布置成用于支气管镜检查过程的这样的机器人使能系统的实施方式。系统36包括用于将平台38(示为“手术台”或“床”)支承在地面上的支承结构或柱37。与基于推车的系统非常相似,系统36的机器人臂39的端部执行器包括器械驱动器42,器械驱动器42被设计成通过或沿着由器械驱动器42的线性对准形成的虚拟轨道41来操纵长形的医疗器械,例如图5中的支气管镜40。实际上,通过将发射器和检测器放置在手术台38周围,可以将用于提供荧光成像的C形臂定位在患者的上腹部区域上方。
出于讨论的目的,图6提供了没有患者和医疗器械的系统36的替选视图。如所示出的,柱37可以包括在系统36中被示为环形的一个或更多个托架43,一个或更多个机器人臂39可以基于一个或更多个托架43。托架43可以沿着沿柱37的长度延伸的竖直柱接口44平移,以提供不同的有利点,机器人臂39可以被定位成从这些有利点到达患者。托架43可以使用位于柱37内的机械马达绕柱37旋转,以允许机器人臂39接近手术台38的多个侧面,例如患者的两侧。在具有多个托架的实施方式中,托架可以单独地定位在柱上,并且可以独立于其他托架而平移和/或旋转。尽管托架43不需要围绕柱37或甚至是圆形的,但所示的环形形状有利于托架43绕柱37旋转,同时保持结构平衡。托架43的旋转和平移允许系统将医疗器械例如内窥镜和腹腔镜对准到患者上的不同进入点中。
臂39可以通过一组臂安装件45安装在托架上,该组臂安装件45包括一系列关节,这些关节可以单独地旋转和/或可伸缩地延伸,以为机器人臂39提供附加的可配置性。此外,臂安装件45可以被定位在托架43上,使得当托架43适当地旋转时,臂安装件45可以被定位在手术台38的相同侧(如图6所示)、手术台38的相对侧(如图9所示)或手术台38的相邻侧(未示出)。
柱37在结构上为手术台38提供支承并且为托架的竖直平移提供路径。在内部,柱37可以配备有用于引导托架的竖直平移的导螺杆,以及使所述基于托架的导螺杆的平移机械化的马达。柱37还可以将电力信号和控制信号传送至托架43和安装在托架43上的机器人臂39。
手术台基部46提供与图2所示的推车11中的推车基部15类似的功能,容纳较重的部件以平衡手术台/床38、柱37、托架43和机器人臂39。手术台基部46也可以包含用于在医疗过程期间提供稳定性的刚性脚轮。从手术台基部46的底部部署的脚轮可以在基部46的两侧沿相反方向延伸,并且当系统36需要移动时回缩。
继续图6,系统36还可以包括塔(未示出),该塔在手术台与塔之间划分系统36的功能以减小手术台的形状因子和体积。如在较早公开的实施方式中,塔可以为手术台提供各种支持功能,例如处理、计算和控制能力、电力、流控和/或光学和传感器处理。塔还可以是可移动的以被定位成远离患者,从而改善医师的接近并且使手术室不杂乱。此外,将部件放置在塔中允许手术台基部中的更多储存空间用于机器人臂的潜在收起。塔还可以包括控制台,该控制台提供用于用户输入的用户接口例如键盘和/或下垂件(pendant)以及用于手术前和手术中信息例如实时成像、导航和跟踪信息的显示屏(或触摸屏)。
在一些实施方式中,手术台基部可以在不使用时收起和储存机器人臂。图7示出了在基于手术台的系统的实施方式中收起机器人臂的系统47。在系统47中,托架48可以竖直平移到基部49中以使机器人臂50、臂安装件51和托架48收起在基部49内。基部盖52可以平移和回缩打开以绕柱53部署托架48、臂安装件51和臂50,以及关闭以在不使用时收起托架48、臂安装件51和臂50以保护它们。可以沿着基部盖52的开口的边缘用膜54密封基部盖52,以防止在关闭时灰尘和流体进入。
图8示出了被配置成用于输尿管镜检查过程的机器人使能的基于手术台的系统的实施方式。在输尿管镜检查中,手术台38可以包括用于将患者定位成与柱37和手术台基部46成偏角的旋转部分55。旋转部分55可以绕枢转点(例如,位于患者头部下方)旋转或枢转,以将旋转部分55的底部部分定位成远离柱37。例如,旋转部分55的枢转允许C形臂(未示出)定位在患者的下腹部上方,而不与手术台38下方的柱(未示出)争夺空间。通过绕柱37旋转托架35(未示出),机器人臂39可以沿着虚拟轨道57将输尿管镜56直接插入患者的腹股沟区域中以到达尿道。在输尿管镜检查中,镫58也可以固定至手术台38的旋转部分55,以在医疗过程期间支承患者的腿的位置,并且允许清楚地进入患者的腹股沟区域。
在腹腔镜检查过程中,通过患者腹壁中的一个或多个小切口,可以将微创器械(形状细长以适应一个或更多个切口的大小)插入患者的解剖结构中。在患者的腹腔膨胀之后,可以引导通常称为腹腔镜的器械执行外科手术任务或者医疗任务,例如抓取、切割、切除、缝合等。图9示出了用于腹腔镜检查过程的机器人使能的基于手术台的系统的实施方式。如图9所示,系统36的托架43可以被旋转并且竖直调整成将成对的机器人臂39定位在手术台38的相对侧,使得可以使用臂安装件45将腹腔镜59定位成穿过患者两侧的最小切口到达他/她的腹腔。
为了适应腹腔镜检查过程,机器人使能手术台系统还可以将平台倾斜到期望的角度。图10示出了具有俯仰或倾斜调整的机器人使能医疗系统的实施方式。如图10所示,系统36可以适应手术台38的倾斜,以将手术台的一部分定位在比另一部分距地面更远的距离处。此外,臂安装件45可以旋转以匹配倾斜,使得臂39与手术台38保持相同的平面关系。为了适应更陡的角度,柱37还可以包括伸缩部分60,伸缩部分60允许柱37的竖直延伸以防止手术台38接触地面或与基部46碰撞。
图11提供了手术台38与柱37之间的接口的详细图示。俯仰旋转机构61可以被配置成以多个自由度改变手术台38相对于柱37的俯仰角。可以通过将正交轴线1、2定位在柱-手术台接口处来实现俯仰旋转机构61,每个轴线由单独的马达3、4响应于电俯仰角命令来致动。沿着一个螺杆5的旋转将使得能够沿一个轴线1进行倾斜调整,而沿着另一个螺杆6的旋转将使得能够沿着另一个轴线2进行倾斜调整。
例如,当试图将手术台定位在头低脚高(Trendelenburg)位置,即,将患者的下腹部定位在比患者的下腹部距地面更高的位置)以用于下腹部外科手术时,俯仰调整特别有用。头低脚高位置使患者的内部器官通过重力滑向他/她的上腹部,从而清出腹腔以使微创工具进入并且执行下腹部外科手术过程或者医疗过程,例如腹腔镜前列腺切除术。
C.器械驱动器和接口。
系统的机器人臂的端部执行器包括:(i)器械驱动器(替选地称为“器械驱动机构”或“器械装置操纵器”),其包含用于致动医疗器械的机电装置;以及(ii)可移除或可拆卸的医疗器械,其可以没有任何机电部件例如马达。该二分法可能是由对医疗过程中使用的医疗器械进行消毒的需要以及由于昂贵的重要设备的复杂机械组件和敏感电子器件而不能对昂贵的重要设备进行充分消毒所驱动的。因此,医疗器械可以被设计成从器械驱动器(以及因此从系统)拆卸、移除和互换,以便由医师或医师的工作人员单独消毒或处置。相反,器械驱动器不需要被更改或消毒,并且可以被覆盖以便保护。
图12示出了示例器械驱动器。定位在机器人臂的远端处的器械驱动器62包括一个或更多个驱动单元63,一个或更多个驱动单元63被布置有平行轴线以经由驱动轴64向医疗器械提供受控的扭矩。每个驱动单元63包括用于与器械相互作用的单独的驱动轴64、用于将马达轴旋转转换成期望扭矩的齿轮头65、用于生成驱动扭矩的马达66、用于测量马达轴的速度并且向控制电路提供反馈的编码器67以及用于接收控制信号并且致动驱动单元的控制电路68。每个驱动单元63被独立地控制和机动化,器械驱动器62可以向医疗器械提供多个(如图12所示为四个)独立的驱动输出。在操作中,控制电路68将接收控制信号,将马达信号传输至马达66,将由编码器67测量的得到的马达速度与期望速度进行比较,以及调制马达信号以生成期望扭矩。
对于需要无菌环境的过程,机器人系统可以包含驱动接口,例如连接至无菌布单(drape)的无菌适配器,该驱动接口位于器械驱动器与医疗器械之间。无菌适配器的主要目的是将角运动从器械驱动器的驱动轴传递到器械的驱动输入,同时保持驱动轴与驱动输入之间的物理分离并且因此保持无菌性。因此,示例无菌适配器可以包括旨在与器械驱动器的驱动轴和器械上的驱动输入配合的一系列旋转输入和输出。连接至无菌适配器的由薄的柔性材料例如透明或半透明塑料组成的无菌布单被设计成覆盖主要设备,例如器械驱动器、机器人臂和推车(在基于推车的系统中)或手术台(在基于手术台的系统中)。使用该布单将允许主要设备定位在患者附近,同时仍然位于不需要消毒的区域(即,非无菌区)。在无菌布单的另一侧,医疗器械可以在需要消毒的区域(即无菌区)与患者对接。
D.医疗器械。
图13示出了具有成对器械驱动器的示例医疗器械。与被设计成与机器人系统一起使用的其他器械类似,医疗器械70包括长形轴71(或长形体)和器械基部72。器械基部72——由于其意在被设计用于由医师进行的手动交互,因此也被称为“器械手柄”——通常可以包括可旋转的驱动输入73例如插座、滑轮或卷轴,驱动输入73被设计成与延伸通过机器人臂76的远端处的器械驱动器75上的驱动接口的驱动输出74配合。当物理连接、闩锁和/或耦接时,器械基部72的配合的驱动输入73可以与器械驱动器75中的驱动输出74共享旋转轴线,以允许扭矩从驱动输出74传递到驱动输入73。在一些实施方式中,驱动输出74可以包括花键,这些花键被设计成与驱动输入73上的插座配合。
长形轴71被设计成例如如在内窥镜检查中通过解剖结构开口或内腔或例如如在腹腔镜检查中通过微创切口来进行递送。长形轴66可以是柔性的(例如,具有类似于内窥镜的特性)或刚性的(例如,具有类似于腹腔镜的特性),或者包含柔性部分和刚性部分两者的定制组合。当被设计用于腹腔镜检查时,刚性长形轴的远端可以连接至端部执行器,该端部执行器包括由具有旋转轴线的U形夹形成的有关节的腕部和手术工具或者医疗器械,例如抓握器或剪刀,当驱动输入响应于从器械驱动器75的驱动输出74接收的扭矩而旋转时,可以基于来自腱的力来致动该端部执行器。当被设计成用于内窥镜检查时,柔性长形轴的远端可以包括可操纵或可控制的弯曲区段,该弯曲区段可以基于从器械驱动器75的驱动输出74接收到的扭矩而被接合和弯曲。
使用长形轴71内的腱沿着长形轴71传递来自器械驱动器75的扭矩。这些单独的腱例如拉线可以单独地锚定至器械手柄72内的单独的驱动输入73。从手柄72沿着长形轴71内的一个或更多个牵引内腔来引导腱并且将腱锚定在长形轴71的远侧部分处。在腹腔镜检查中,这些腱可以耦接至远端安装的端部执行器,例如腕部、抓握器或剪刀。在这样的布置下,施加在驱动输入73上的扭矩将张力传递到腱,从而使端部执行器以某种方式致动。在腹腔镜检查中,腱可以使关节绕轴线旋转,从而使端部执行器沿一个方向或另一个方向移动。替选地,腱可以在长形轴71的远端处连接至抓握器的一个或更多个钳口,其中来自腱的张力使抓握器闭合。
在内窥镜检查中,腱可以经由粘合剂、控制环或其他机械固定件耦接至沿着长形轴71定位(例如,在远端处)的弯曲或接合区段。当固定地附接至弯曲区段的远端时,将沿着腱传递施加在驱动输入73上的扭矩,从而使较软的弯曲区段(有时称为可接合区段或区域)弯曲或接合。沿着非弯曲部分,使单独的牵引内腔螺旋或盘旋可以是有利的,所述牵引内腔沿着内窥镜轴的壁(或在内部)引导各个单独的腱,以平衡由牵引线中的张力产生的径向力。为了特定目的,可以改变或设计螺旋的角度和/或其之间的间隔,其中更紧的螺旋在负载力下呈现更小的轴压缩,而更小的螺旋量在负载力下引起更大的轴压缩,但也呈现有限的弯曲。在范围(spectrum)的另一端,牵引内腔可以被引导成平行于长形轴71的纵向轴线以允许在期望的弯曲或可接合区段中进行受控接合。
在内窥镜检查中,长形轴71容纳多个部件以辅助机器人医疗过程。轴可以包括用于将手术工具(或医疗器械)、冲洗和/或抽吸部署到轴71的远端处的手术区域的工作通道。轴71还可以容纳电线和/或光纤以向远侧端部(distal tip)处的光学组件/从远侧端部处的光学组件传递信号,该光学组件可以包括光学摄像装置。轴71也可以容纳光纤,以将光从位于近端的光源(例如,发光二极管)传送到轴的远端。
在器械70的远端处,远侧端部还可以包括用于将用于诊断和/或治疗、冲洗和抽吸的工具递送至手术部位的工作通道的开口。远侧端部还可以包括用于摄像装置例如纤维镜或数码摄像装置的端口,该摄像装置用于捕获内部解剖空间的图像。相关地,远侧端部还可以包括用于光源的端口,所述光源用于在使用摄像装置时照亮解剖空间。
在图13的示例中,驱动轴轴线以及从而的驱动输入轴线与长形轴的轴线正交。然而,该布置使长形轴71的滚动能力复杂化。当腱从驱动输入73延伸出去并且进入到长形轴71内的牵引内腔时,在保持驱动输入73静止的同时沿着长形轴71的轴线滚动长形轴71会引起腱的不期望的缠结。所得到的这样的腱的缠结可能扰乱旨在在内窥镜检查过程期间预测柔性长形轴的移动的任何控制算法。
图14示出了器械驱动器和器械的替选设计,其中驱动单元的轴线平行于器械的长形轴的轴线。如所示出的,圆形器械驱动器80包括四个驱动单元,四个驱动单元的驱动输出81在机器人臂82的端部处平行对准。驱动单元和它们各自的驱动输出81被容纳在器械驱动器80的旋转组件83中,旋转组件83由组件83内的驱动单元之一驱动。响应于由旋转驱动单元提供的扭矩,旋转组件83沿着圆形轴承旋转,该圆形轴承将旋转组件83连接至器械驱动器的非旋转部分84。可以通过电接触将电力和控制信号从器械驱动器80的非旋转部分84传送至旋转组件83,电接触可以通过电刷滑环连接(未示出)的旋转来保持。在其他实施方式中,旋转组件83可以响应于集成到不可旋转部分84中的单独的驱动单元,并且因此不平行于其他驱动单元。旋转机构83允许器械驱动器80使驱动单元及其各自的驱动输出81作为单个单元绕器械驱动器轴线85旋转。
与较早公开的实施方式类似,器械86可以包括长形轴部分88和器械基部87(出于讨论的目的,示为具有透明的外部表层),该器械基部87包括被配置成接收器械驱动器80中的驱动输出81的多个驱动输入89(例如,插座、滑轮和卷轴)。与先前公开的实施方式不同,器械轴88从器械基部87的中心延伸,其中器械轴88的轴线基本平行于驱动输入89的轴线,而不是如图13的设计中那样正交。
当耦接至器械驱动器80的旋转组件83时,包括器械基部87和器械轴88的医疗器械86与旋转组件83结合绕器械驱动器轴线85旋转。由于器械轴88被定位在器械基部87的中心处,因此器械轴88在被附接时与器械驱动器轴线85共轴。因此,旋转组件83的旋转使器械轴88绕其自身的纵向轴线旋转。此外,当器械基部87与器械轴88一起旋转时,连接至器械基部87中的驱动输入89的任何腱在旋转期间都不会缠结。因此,驱动输出81、驱动输入89和器械轴88的轴线的平行允许轴旋转而不会使任何控制腱缠结。
E.导航和控制。
传统的内窥镜检查可以包括使用荧光镜检查(例如,如可以通过C形臂递送的)和其他形式的基于辐射的成像模态,以向操作医师提供腔内指导。相比之下,本公开内容所设想的机器人系统可以提供基于非辐射的导航和定位装置,以减少医师暴露于辐射并且减少手术室内的设备的数量。如本文所使用的,术语“定位”可以指确定和/或监测对象在参考坐标系中的位置。诸如手术前绘图(mapping)、计算机视觉、实时EM跟踪和机器人命令数据的技术可以单独地或组合地使用以实现无辐射操作环境。在其他情况下,在仍使用基于辐射的成像模态的情况下,可以单独地或组合地使用手术前绘图、计算机视觉、实时EM跟踪和机器人命令数据,以改进仅通过基于辐射的成像模态获得的信息。
图15是示出根据示例实施方式的估计机器人系统的一个或更多个元件的定位例如器械的定位的定位系统90的框图。定位系统90可以是被配置成执行一个或更多个指令的一个或更多个计算机装置的集合。计算机装置可以由以上讨论的一个或更多个部件中的处理器(或多个处理器)和计算机可读存储器来实施。作为示例而非限制,计算机装置可以位于图1所示的塔30、图1至图4所示的推车、图5至图10所示的床等中。
如图15所示,定位系统90可以包括定位模块95,定位模块95处理输入数据91至94以生成医疗器械的远侧端部的定位数据96。定位数据96可以是表示器械的远端相对于参考系的定位和/或取向的数据或逻辑。参考系可以是相对于患者的解剖结构或相对于已知对象例如EM场生成器(参见下文关于EM场生成器的讨论)的参考系。
现在更详细地描述各种输入数据91至94。手术前绘图可以通过使用低剂量CT扫描的集合来完成。手术前CT扫描被重构成三维图像,这些三维图像被可视化为例如患者的内部解剖结构的剖面图的“切片”。当以解剖腔的聚合的基于图像的模型的形式分析时,可以生成患者的解剖结构例如患者的肺网络的空间和结构。可以从CT图像确定和近似诸如中心线几何形状的技术,以形成患者的解剖结构的三维体积,该三维体积被称为模型数据91(在仅使用手术前CT扫描生成的情况下,也被称为“手术前模型数据”)。在美国专利申请第14/523,760号中讨论了中心线几何形状的使用,该申请的全部内容并入本文中。网络拓扑模型也可以从CT图像中得出,并且特别适于支气管镜检查。
在一些实施方式中,器械可以配备有摄像装置以提供视觉数据92。定位模块95可以处理视觉数据以实现一个或更多个基于视觉的定位跟踪。例如,手术前模型数据可以与视觉数据92结合使用,以实现对医疗器械(例如,内窥镜或通过内窥镜的工作通道前进的器械)的基于计算机视觉的跟踪。例如,使用手术前模型数据91,机器人系统可以基于内窥镜的预期行进路径从模型生成预期内窥镜图像的库,每个图像链接至模型内的位置。在手术中,机器人系统可以参考该库,以将在摄像装置(例如,在内窥镜远端处的摄像装置)处捕获的实时图像与图像库中的图像进行比较,以辅助定位。
其他基于计算机视觉的跟踪技术使用特征跟踪来确定摄像装置的运动,并且因此确定内窥镜的运动。定位模块95的一些特征可以识别手术前模型数据91中的与解剖内腔对应的圆形几何结构并且跟踪那些几何结构的变化,以确定选择了哪个解剖内腔以及摄像装置的相对旋转和/或平移运动。拓扑图的使用可以进一步增强基于视觉的算法或技术。
光流——另一种基于计算机视觉的技术——可以分析视觉数据92中的视频序列中的图像像素的位移和平移以推断摄像装置移动。光流技术的示例可以包括运动检测、对象分割计算、亮度、运动补偿编码、立体视差测量等。通过多次迭代进行多个帧的比较,可以确定摄像装置(以及因此确定内窥镜)的移动和定位。
定位模块95可以使用实时EM跟踪来生成内窥镜在全局坐标系中的实时定位,该实时定位可以被配准到由手术前模型表示的患者的解剖结构。在EM跟踪中,嵌入在医疗器械(例如,内窥镜工具)中的一个或更多个定位和取向中的包括一个或更多个传感器线圈的EM传感器(或跟踪器)测量由定位在已知定位处的一个或更多个静态EM场生成器产生的EM场的变化。由EM传感器检测的定位信息被存储为EM数据93。EM场生成器(或发送器)可以靠近患者放置,以产生嵌入的传感器可以检测到的低强度磁场。磁场在EM传感器的传感器线圈中感应出小电流,可以对这些小电流进行分析以确定EM传感器与EM场生成器之间的距离和角度。这些距离和取向可以在手术中“配准”到患者的解剖结构(例如,手术前模型),以确定将坐标系中的单个定位与患者的解剖结构的手术前模型中的位置对准的几何变换。一旦被配准,嵌入在医疗器械(例如,内窥镜的远侧端部)的一个或更多个位置中的EM跟踪器可以提供对医疗器械通过患者的解剖结构的进展的实时指示。
机器人命令和运动学数据94也可以由定位模块95使用以提供机器人系统的定位数据96。可以在手术前校准期间确定从接合命令得到的装置俯仰和偏航。在手术中,这些校准测量可以与已知的插入深度信息结合使用,以估计器械的位置。替选地,可以结合EM、视觉和/或拓扑建模来分析这些计算,以估计医疗器械在网络内的位置。
如图15所示,定位模块95可以使用多个其他输入数据。例如,尽管在图15中未示出,但是利用形状感测纤维的器械可以提供定位模块95可以用来确定器械的定位和形状的形状数据。
定位模块95可以组合地使用输入数据91至94。在一些情况下,这样的组合可以使用概率方法,其中定位模块95向从输入数据91至94中的每一个确定的定位分配置信度权重。因此,在EM数据可能不可靠的情况下(可能是存在EM干扰的情况),由EM数据93确定的定位的置信度可能降低,并且定位模块95可能更多地依赖于视觉数据92和/或机器人命令和运动学数据94。
如以上所讨论的,本文讨论的机器人系统可以被设计成包含以上技术中的一个或更多个的组合。基于塔、床和/或推车的机器人系统的基于计算机的控制系统可以将计算机程序指令存储在例如非暂态计算机可读存储介质例如永久性磁存储驱动器、固态驱动器等内,计算机程序指令在执行时使系统接收并且分析传感器数据和用户命令,生成整个系统的控制信号并且显示导航和定位数据,例如器械在全局坐标系内的位置、解剖图等。2.通过 定位输入数据的比较估计器械定位。
机器人使能医疗系统诸如上面参照图1至图15描述的那些可以被配置成在医疗手术或外科手术例如内窥镜手术或腹腔镜手术期间提供器械位置或定位的估计。在手术期间,医师可以引导或指导器械穿过患者的内部区域(例如内腔、内腔网络、腔等)。为了帮助医师,可以例如利用定位系统90(图15)来确定器械的定位/位置估计并向用户显示。
图16描绘了更详细地示出定位系统90的实施方式的框图。在示出的示例中,定位系统90被配置成接收和处理视觉数据92、位置传感器数据93(例如EM数据)和机器人数据94(例如机器人命令和运动学数据),从而提供作为输出的定位数据96。定位数据96可以包括例如器械的位置估计。
尽管在图16中示出将视觉数据92、位置传感器数据93和机器人数据94作为输入数据,定位系统90还可以接收和处理如上所描述的其他类型的输入数据。作为一个示例,定位系统90还可以接收和处理如前面所描述的手术前模型数据91。
如图所示,定位模块95可以包括基于视觉的模块101、基于位置传感器的模块103和基于机器人的模块105。模块101、103、105中的每个模块可以包括用于接收和处理各种输入数据的软件和/或硬件。在一些实施方式中,模块101、103、105中的一个或更多个可以彼此组合以及/或者与其他模块(例如定位/位置估计器模块108)组合。在2016年9月16日提交的美国申请第15/268,238号中详细描述了示例模块,该申请于2017年8月8日发布为美国专利第9,727,963号,其通过引用并入本文。
基于视觉的模块101可以被配置成接收和处理视觉数据92。可以从成像装置(例如纤维镜或摄像装置)接收视觉数据92。成像装置可以定位在器械上。视觉数据92可以包括一个或更多个图像或视频。基于视觉的模块101可以被配置成根据视觉数据92确定基于视觉的定位/位置估计102。例如,基于视觉的模块101可以处理从定位在器械上的器械装置接收的图像,以确定器械相对于如上所描述的手术前模型(例如手术前模型数据91)的位置。
基于位置传感器的模块103可以被配置成接收和处理位置传感器数据93。可以从一个或更多个位置传感器接收位置传感器数据93。可以将位置传感器定位在器械上。位置传感器可以是例如EM传感器、形状感测纤维、加速度计、陀螺仪、成像装置、超声传感器等。基于位置传感器的模块103可以被配置成根据位置传感器数据93确定基于位置传感器的定位/位置估计104。例如,基于位置传感器的模块103可以处理从器械上的EM传感器接收到的数据,以确定器械相对于手术前模型的坐标系的位置。
基于机器人的模块105可以被配置成接收和处理机器人数据94。机器人数据94可以包括用于控制器械的形状和移动的插入和/或接合(articulation)命令。基于机器人的模块105可以被配置成根据机器人数据94确定基于机器人的定位/位置估计106。例如,在过程期间,在由一个或更多个机器人臂或其他器械定位装置执行时,可以将已知插入深度或命令的插入深度的信息以及/或者器械的接合角或侧倾角的信息用于估计器械的位置。
如图所示,可以将基于视觉的位置估计102、基于位置传感器的位置估计104和基于机器人的位置估计106输入到定位估计器模块108中。也可以将其他输入(未示出)提供给定位估计器模块108。可以以硬件、软件或其组合来实现定位估计器模块108。
定位估计器模块108可以被配置成组合基于视觉的位置估计102、基于位置传感器的位置估计104和/或基于机器人的位置估计106以输出定位数据96。定位估计器模块可以使用将置信度权重(或权重因数)分配给基于视觉的位置估计102、基于位置传感器的位置估计104和/或基于机器人的位置估计106的概率方法来确定该组合。在一些实施方式中,定位估计器模块108和/或定位系统90的另一部件或模块可以确定针对基于视觉的位置估计102、基于位置传感器的位置估计104和/或基于机器人的位置估计106中的每一个的权重因数。权重因数可以用于增加或减少基于视觉的位置估计102、基于位置传感器的位置估计104和/或基于机器人的位置估计106对确定输出定位数据96的贡献。
例如,在一些情况下,可以将基于视觉的位置估计102、基于位置传感器的位置估计104和/或基于机器人的位置估计106中的之一确定为与基于视觉的位置估计102、基于位置传感器的位置估计104和/或基于机器人的位置估计106中的另一个相比而言较不可靠。较不可靠的一个(或多个)的权重因数可以减小,以及/或者较可靠一个(或多个)的权重因数可以增大。结果,因为较可靠的输入已经被较重地加权,因此输出定位数据96可以为器械提供较可靠的位置估计。
作为另一示例,可以将基于视觉的位置估计102、基于位置传感器的位置估计104和/或基于机器人的位置估计106中的一个或更多个的权重因数设置为零以消除这些输入估计中的一个或更多个对确定定位数据96的贡献。
定位估计器模块108(以及/或者定位系统90的其他部件(多个部件)(例如基于视觉的模块101、基于位置传感器的模块103和/或基于机器人的模块105)可以被配置成确定针对基于视觉的位置估计102、基于位置传感器的位置估计104和/或基于机器人的位置估计106中的每一个的权重因数。通常,当确定特定输入位置估计不可靠时,可以减小其权重因数,以及/或者当确定特定输入位置估计可靠时,可以增大其权重因数。
本文描述的一些机器人使能医疗系统的优点是其包括定位系统90,该定位系统处理多种类型的输入数据(例如视觉数据92、位置传感器数据93和/或机器人数据94)以产生多个位置估计(例如基于视觉的位置估计102、基于位置传感器的位置估计104和/或基于机器人的位置估计106),这些位置估计被组合在一起(例如根据权重因数)以确定器械的位置估计(例如定位数据96)。这会是有利的,因为如果确定特定数据输入较不可靠(在特定情况中或特定情形下),可以减少或消除该数据输入对最终确定的位置估计的贡献。
另外,本文描述的系统会是有利的,因为由于存在多个数据输入和输入位置估计,因此可以将它们彼此比较以确定各种数据输入和位置估计的可靠性和准确性。如下所述,多个数据输入和输入位置估计之间的比较可以用于确定和/或设置权重因数。这可以进一步改善器械的最终确定的位置估计,从而可以改善医疗过程期间器械的导航和跟踪。
本公开内容的其余部分描述了如何利用输入数据或输入位置估计的比较来估计和改善器械定位。为了便于描述,通过示例描述了器械屈曲(instrument buckling)和器械迟滞(instrument hysteresis)的特定使用情况。其他使用情况也是可能的。
A.器械屈曲的示例。
这部分描述了器械屈曲,并提供了可以利用各种输入数据或输入位置估计的比较来确定或改善器械位置估计的第一示例。
图17A示出了经历屈曲状况的医疗器械100的示例。器械100可以是例如上面描述的内窥镜13(图1)、输尿管镜32(图3)、器械34(图4)、输尿管镜56(图8)、腹腔镜59(图9)、器械70(图13)或器械86(图14)或者本文描述的任何其他医疗器械,例如器械200(下面参照图19进行描述)。如图17A所示,器械100包括在近端114和远端115之间延伸的长形轴113。近端114可以连接到器械定位装置111诸如机器人臂的器械驱动器。如上所述,可以移动器械定位装置111以将器械100插入患者体内或者从患者体内缩回。器械定位装置111还可以被配置成接合器械100(例如,控制器械100的形状或姿势)。为了便于说明,除了长形轴113的一部分(包括远端115)可以定位在患者内部且长形轴113的另一部分(包括近端114)和器械定位装置111可以定位在患者外部的一般表示之外,未示出患者的解剖结构。但是,应当理解,在患者内部,长形轴113可以遵循器械100插入其中的患者的解剖结构的总体形状。
在图17A中,为了说明屈曲状况,以实线示出了器械100的第一状态,并且以虚线示出了器械100的第二状态。在第二状态(虚线)下,器械100已经屈曲(即经历了屈曲状况)。如图所示,从第一状态移动到第二状态,器械定位装置111前进了第一距离D1。附接至器械定位装置111的器械100的长形轴113的近端114也前进了距离D1。然而,长形轴113的远端115仅前进了距离D2,距离D2小于距离D1。如图所示,长形轴113已屈曲、弯弓、弯曲、偏转或者以其他非规划的方式变形,使得器械100经历了如图17A中的虚线所示出的屈曲状况。
例如,当器械100进入患者体内时,可能会发生屈曲。器械定位装置111可以使器械100前进距离D1进入患者。在没有屈曲的情况下,通常预计器械100的远侧端部115也前进距离D1。然而,在某些情况下,远侧端部115可能会卡在或阻塞在患者的解剖结构内,使得远侧端部115仅前进距离D2,距离D2小于距离D1。在一些情况下,远侧端部115可能根本不前进,使得距离D2为零。在远侧端部115被卡住或阻塞的情况下,器械屈曲,并且长形轴113以非规划的方式变形(例如屈曲、弯弓、弯曲或者其他方式变形)。
应该理解的是,尽管图17A示出了在第一状态(实线)下以大体笔直的方式设置的长形轴113和在第二状态或屈曲状况(虚线)下以近似弯曲的方式设置的长形轴113,通常,当长形轴113定位在体内时可以遵循患者的解剖结构,并且屈曲可以表现为长形轴113的任何数量的变形。不管长形轴113形成的形状如何,只要当基于例如近端114处的运动D1,远端115处的运动D2小于远端115处的预期的运动时,就会发生屈曲状况。
包括器械100的机器人使能医疗系统可以被配置成提供对例如器械100的远端115的位置估计。该系统可以包括上面(例如在图15和图16中)描述的定位系统90。如前所述,定位系统90处理并组合多种类型的输入数据以确定位置估计。
器械定位装置111的移动可以生成机器人数据94或者基于机器人数据94。例如,机器人数据94可以指示器械100向前移动了距离D1。基于机器人的模块105可以处理机器人数据94以提供基于机器人的位置估计106,基于机器人的位置估计106指示器械100的远端115已经从其先前位置前进了距离D1。然而,如图17A中所示出的,因为器械100已经屈曲,因此远侧端部115仅前进了距离D2(而不是距离D1)。
定位系统90可以从位置传感器接收位置传感器数据93作为输入。在该示例中,可以将位置传感器定位在长形轴113的远端115处。当器械100从第一状态(实线)移动到第二状态(虚线)时,位置传感器(被定位在远侧端部115处)可以将位置传感器数据93提供给定位系统90。基于位置传感器的模块103可以处理位置传感器数据93以提供基于位置传感器的位置估计104,该基于位置传感器的位置估计104指示远端115前进了距离D2。
定位系统90可以比较基于机器人的位置估计106和基于位置传感器的位置估计104,以确定针对每个的权重因数。在该示例中,定位系统90可以确定基于机器人的位置估计106所指示的移动超过基于位置传感器的位置估计104所指示的移动达D1与D2的差。定位系统90可以被配置成根据该差识别出发生了屈曲状况,并且可以相应地减小针对基于机器人的位置估计106的权重因数以及/或者增大针对基于位置传感器的位置估计104的权重因数。定位系统90然后可以根据所确定的权重因数来组合基于机器人的位置估计106与基于位置传感器的位置估计104,以提供和输出器械100的位置估计作为定位数据96。由于定位系统90已经确定器械100已屈曲(通过比较基于机器人的位置估计106和基于位置传感器的位置估计104)并相应地调整了权重因数,因此可以改善作为位置数据96输出的估计位置的准确性。
可以在基于视觉的位置估计102与基于位置传感器的位置估计104和/或基于机器人的位置估计106之间进行类似的比较,以检测屈曲并提供准确性增加的位置估计。下面将在对器械迟滞的示例的讨论之后,更详细地描述这些比较。
B.器械迟滞的示例。
器械迟滞提供了另一个示例,该示例示出了可以利用各种输入数据或输入位置估计的比较来确定或改善器械位置估计。应当理解,如本文所使用的术语“迟滞”可以指医疗器械可能经历的特定类别的迟滞状况。这种特定类别的迟滞可能与医疗器械从变形的形状返回至或者转变为自然状态的情况有关。一个非常特定的示例是医疗装置从屈曲状况返回至非屈曲状况(或较小屈曲的状态)的情况。现在说明这种类型的迟滞状况的示例。
图17B示出了经历某种类型的迟滞状况的医疗器械100的示例。如前所述,器械100可以是上面描述的例如内窥镜13(图1)、输尿管镜32(图3)、器械34(图4)、输尿管镜56(图8)、腹腔镜59(图59)、器械70(图13)或器械86(图14)或者本文所描述的任何其他医疗器械,例如下面所描述的器械200(图19)。
在图17B中,以实线示出了器械100的第一状态,并且以虚线示出了器械100的第二状态。在第二状态(虚线)下,器械100经历了迟滞。如图所示,在第一状态(实线)下,器械100的长形轴113处于屈曲、弯弓、弯曲、或偏转的位置。从第一状态移动到第二状态,器械定位装置111可以前进第一距离D1。附接到器械定位装置111的器械100的长形轴113的近端114也前进距离D1。在迟滞的一些示例中,器械定位装置111和近端114可能根本不前进(即距离D1可能为零)。
然而,当器械100经历了迟滞时,长形轴113的远端115前进距离D2,距离D2大于距离D1。这可能是由器械的屈曲、弯弓、弯曲、或偏转的长形轴113松弛到较伸展的位置引起的。当被阻塞在或者卡在患者解剖结构上的器械113突然变得自由时,也可能发生迟滞现象。在这两种情况下,远端115前进距离D2,该距离D2大于近端114和器械定位装置111前进的距离D1。
再次,应该理解的是,尽管图17B示出了在第一状态(实线)下以大体弯曲的方式设置的长形轴113以及在第二状态(虚线)下以近似笔直的方式设置的长形轴113,通常,当长形轴113定位在体内时可以遵循患者的解剖结构,并且迟滞可以表现在长形轴113的任何数量的位置。不管长形轴113形成的形状如何,只要当基于例如近端114处的运动D1,远端115处的运动D2大于远端115处的预期的运动时,就会发生迟滞状况。
就定位系统90而言,在迟滞状况期间,器械定位装置111的移动可以生成机器人数据94。机器人数据94可以指示器械100向前移动了距离D1。基于机器人的模块105可以处理机器人数据94以提供基于机器人的位置估计106,基于机器人的位置估计106指示器械100的远端115已经从其先前位置前进了距离D1。然而,如图17B中所示出的,因为器械100经历了迟滞,因此远侧端部115前进了距离D2。
当器械100从第一状态(实线)移动到第二状态(虚线)时,位置传感器(定位在远侧端部115处)可以将位置传感器数据93提供给定位系统90。基于位置传感器的模块103可以处理位置传感器数据93以提供指示远侧端部115已前进了距离D2的基于位置传感器的位置估计104。
定位系统90可以比较基于机器人的位置估计106和基于位置传感器的位置估计104,以确定针对每个的权重因数。在该示例中,定位系统90可以确定由基于位置传感器的位置估计104所指示的移动超过由基于机器人的位置估计106所指示的移动达D1与D2的差。定位系统90可以被配置成从该差中识别出发生了迟滞状况,并且可以相应地减小针对基于机器人的位置估计106的权重因数并且增大针对基于位置传感器的位置估计104的权重因数。定位系统90然后可以根据所确定的权重因数来组合基于机器人的位置估计106和基于位置传感器的位置估计104,以确定并输出器械的位置估计作为定位数据96。由于定位系统90已经确定器械100经历了迟滞状况(通过比较基于机器人的位置估计106和基于位置传感器的位置估计104)并相应地调整了权重因数,因此可以改善作为定位数据96输出的估计位置的准确性。
可以在基于视觉的位置估计102与基于位置传感器的位置估计104和/或基于机器人的位置估计106之间进行类似的比较,以检测迟滞并提供准确性增加的位置估计。下面将更详细地描述这些比较。
C.利用输入数据的比较确定器械位置的示例方法。
图18A是示出基于机器人数据94和位置传感器数据93的比较来确定或改善医疗器械100的位置估计的准确性的示例方法200的流程图。可以在特定机器人系统例如图1至图15等中示出的机器人系统中实现方法200。可以在图15和图16的定位系统90中或者通过图15和图16的定位系统90实现方法200。在一些实施方式中,可以将一个或更多个计算机装置配置成执行方法200。可以通过上面描述的一个或更多个部件中的一个或更多个处理器和计算机可读存储器来体现计算机装置。该计算机可读存储器可以存储可由处理器执行以执行方法200的指令。所述指令可以包括一个或更多个软件模块。作为示例而非限制,计算机装置可以位于图1所示的塔30、图1至图4所示的推车、图5至图10所示的床等中。
图18A示出的方法200开始于框201。在框201处,基于与器械的物理操纵有关的机器人数据(例如机器人数据94)获得器械的第一运动估计。如上所述,机器人数据94可以包括与器械100或器械的一部分(例如远端115)的物理移动有关的数据。机器人数据94的示例可以包括指示远端115到达特定的解剖部位以及/或者(例如以特定的俯仰、滚动、偏航、插入和/或回缩)改变其取向的命令数据。机器人数据94可以包括表示器械100的长形轴113的机械移动例如用于驱动医疗器械100的实际移动或者控制医疗器械100的姿态的一个或更多个拉线(pull wire)或者腱(tendon)的运动的数据。机器人数据94可以包括与一个或更多个器械定位装置111例如先前描述的机器人臂的运动有关的数据。可以根据机器人数据94确定位置或移动(位置变化)。
运动估计可以包括器械100的移动的估计。可以确定一定间隔上的运动估计。在一些实现方式中,间隔是时间间隔。例如,在框201处,方法200可以包括基于机器人数据94针对在时间间隔期间诸如约0.1秒、0.2秒、0.25秒、0.5秒、0.75秒、1秒、1.5秒、2秒或5秒期间位置的变化来确定估计。与所列出的示例相比,较短和较长的其他时间间隔也是可以的。
在一些实现方式中,间隔是距离间隔。例如,在框201处,方法200可以包括基于机器人数据94针对在距离间隔内诸如约0.1毫米、0.2毫米、0.25毫米、0.5毫米、0.75毫米、1毫米、1.5毫米、2毫米、5毫米、10毫米、15毫米、20毫米、25毫米、30毫米、35毫米、40毫米、45毫米或50毫米内位置的变化来确定估计。与所列出的示例相比,较短和较长的其他距离间隔也是可以的。距离间隔可以表示器械定位装置111、长形轴113的近端114和/或长形轴113的远端115移动的距离;命令的插入距离;器械100的命令的行进距离;测量的插入距离;器械100的测量的行进距离;由基于视觉的模块101、基于位置传感器的模块103、基于机器人的模块105和/或定位估计器模块108等确定的器械100的估计的行进距离,等等。
在一些实现方式中,间隔是滚动窗口或帧。该间隔可以是时间或距离的滚动窗口或帧,从而在当前时间点紧之前的时间窗口或距离窗口上提供器械100的运动估计。例如,在每个时间点,框201可以包括确定表示在每个时间点紧之前的时间间隔上的位置变化的新的运动估计。
在一些实现方式中,框201包括与一个或更多个其他数据输入结合根据机器人数据91获得运动估计。例如,可以在框201处使用例如机器人数据91和手术前模型数据94中的一者或两者来确定运动估计。
在框203处,基于从至少一个位置传感器接收到的位置传感器数据(例如位置传感器数据93)来获得第二运动估计。如上所述,可以从一个或更多个位置传感器接收位置传感器数据93。在一些实施方式中,将位置传感器定位在器械100上,例如定位在器械100的远端114上。可以从相对于坐标系的位置传感器数据93中得出位置传感器的位置。可以将位置传感器的坐标系配准到手术前模型的坐标系,从而可以相对于手术前模型确定位置。
位置传感器可以是用于确定位置的任何类型的传感器。例如,位置传感器可以是如上所述的EM传感器。EM传感器可以提供位置传感器数据93,从中可以相对于由EM场发生器产生的EM场得出EM传感器的位置。在另一个示例中,位置传感器可以是定位在器械上的EM场发生器,并且可以相对于位于患者体外的EM传感器确定EM场发生器的位置。
在其他示例中,位置传感器可以是形状感测纤维、加速度计、陀螺仪和/或超声传感器。在另一个示例中,位置传感器可以是成像装置。成像装置可以定位在器械上。可以分析成像装置的输出(例如图像或视频)以确定位置信息。
通过分析间隔期间的位置传感器数据93,可以根据位置传感器数据93获得运动估计。在一些实现方式中,间隔可以是如上所述的时间间隔或距离间隔。间隔也可以是滚动间隔(rolling interval)或帧。
在一些实现方式中,用于根据位置传感器数据93获得运动估计的间隔可以是与用于根据机器人数据94获得运动估计的间隔相同的间隔。例如,在框203处使用的间隔可以与在框201处使用的间隔匹配。
在一些实施方式中,框201和框203的顺序可以改变。在一些实施方式中,框201和框203可以基本上同时发生。
在框205处,方法200包括基于第一运动估计与第二运动估计的比较来确定运动估计差别(motion estimate disparity)。运动估计差别可以代表或指示在框201处根据机器人数据94获得的运动估计与在框203处根据位置传感器数据93获得的运动估计之间的差。在一些实现方式中,确定运动估计差别包括取在框201处根据机器人数据94获得的运动估计与在框203处根据位置传感器数据93获得的运动估计之间的差。在一些实施方式中,确定运动估计差别包括取根据(例如在间隔期间的)机器人数据94获得的最终位置与根据(在间隔期间的)位置传感器数据93获得的最终位置之间的差。
在框207处,方法207包括基于运动估计差别来更新:(a)针对根据机器人数据(例如,机器人数据94)可得出的定位的权重因数;以及/或者(b)针对根据位置传感器数据(例如,位置传感器数据93)可得出的定位的权重因数。如上所述,当组合根据不同类型的输入数据估计的位置时,定位系统90可以使用权重因数。
例如,框207可以包括当运动估计差别指示基于机器人数据94的运动估计(框201)超过基于位置传感器数据93的运动估计(框203)时,减小针对根据机器人数据94可得出的定位的权重因数以及/或者增大针对根据位置传感器数据93可得出的定位的权重因数。基于机器人数据94的运动估计超过基于位置传感器数据93的运动估计可以指示器械100经历了屈曲状况。例如,如图17A所示出的,当器械定位装置111和器械100的近端114移动的距离大于器械100的远端115移动的距离时,可能发生屈曲。在这种情况下,因为基于机器人数据94的运动估计超过了基于位置传感器数据93的运动估计,因此运动估计差别指示屈曲。框207可以包括减小针对根据机器人数据94可得出的定位的权重因数以及/或者增大针对根据位置传感器数据93可得出的定位的权重因数。结果,定位系统90输出较多根据位置传感器数据93而较少根据机器人数据94得出的定位数据96。这可以导致对器械100的位置的较准确的估计。
作为另一个示例,框207可以包括当运动估计差别指示基于位置传感器数据93的运动估计(框203)超过了基于机器人数据94的运动估计(框201)时,减小针对根据机器人数据94可得出的定位的权重因数和/或增大针对根据位置传感器数据93可得出的定位的权重因数。基于位置传感器数据93的运动估计超过基于机器人数据94的运动估计可以指示器械100经历了迟滞状况。例如,如图17B所示,当器械100的远端115移动的距离大于器械定位装置111和器械100的近端114移动的距离时,会发生迟滞。在这种情况下,因为基于位置传感器数据93的运动估计超过了基于机器人数据94的运动估计,因此运动估计差别指示迟滞。框207可以包括减小针对根据机器人数据94可得出的定位的权重因数以及/或者增大针对根据位置传感器数据93可得出的定位的权重因数。结果,定位系统90输出较多根据位置传感器数据93而较少根据机器人数据94得出的定位数据96。这可以导致对器械100的位置进行较准确的估计。
在一些实现方式中,针对根据机器人数据94可得出的定位的权重因数以与运动估计差别的大小有关的方式减小,以及/或者针对根据位置传感器数据93可得出的定位的权重因数以与运动估计差别的大小有关的方式增大。例如,运动估计差别越大,相应权重因数的增大和/或减小越多。在一些实施方式中,权重因数与运动估计差别的大小成比例地增大和/或减小。
在一些实施方式中,仅当运动估计差别超过阈值时才更新权重因数。例如,运动估计差别大于阈值可以指示屈曲状况或者迟滞状况。该阈值可以是例如大约5毫米、10毫米、15毫米、20毫米、25毫米、30毫米、35毫米、40毫米、45毫米、50毫米、55毫米或60毫米的距离。短于或长于所列出的示例的用于阈值的其他距离也是可以的。
在一些实施方式中,减小权重因数可以包括将权重因数设置为零,使得在确定从定位系统90输出的定位数据96时根本不使用相关的输入数据。例如,在一些实现方式中,框207可以包括将针对根据机器人数据94可得出的定位的权重因数更新为零。即,在一些实现方式中,当运动估计差别指示屈曲或迟滞时,将针对根据机器人数据94可得出的定位的权重因数设置为零,使得机器人数据94不被用于确定器械100的最终位置估计。
在框209处,基于更新的权重因数确定定位/位置估计。如前所述,可以从定位系统90输出位置估计作为定位数据96。定位系统90基于输入数据91至94中的一个或更多个来确定位置估计,并且根据相关的权重因数对每个输入数据的贡献进行加权。相应地,在例如器械100经历屈曲状况或迟滞状况的情况下,方法200可以通过减少机器人数据94的贡献和/或增加位置传感器数据93的贡献来提供针对器械的改善的估计位置。
在一些实施方式中,方法200还可以包括提供器械100经历了迟滞状况或屈曲状况的指示或警报。例如,当运动估计差别指示迟滞或屈曲时,可以向医师提供指示(例如视觉警报或听觉警报)。在另一个示例中,在检测到迟滞状况或屈曲状况时,方法200可以移动(或改变移动)器械100。例如,系统可以使器械的力矩松弛或减小器械的力矩。在某些情况下,所采取的动作至少部分地取决于运动估计差别的程度。例如,对于运动估计差别低于某个阈值的情况,系统可以提供警报,而对于运动估计差别高于某个阈值的情况,系统可以使器械的力矩松弛或减小器械的力矩。
现在在进行其余公开内容之前先讨论用于计算估计的距离的一些其他细节。如上所述,可以使用滚动距离窗口来比较根据传感器定位(例如位置传感器数据93)和机器人命令(例如机器人数据94)确定的移动的估计变化。滚动窗口可以是将差别存储为根据传感器定位SL确定的移动和根据机器人数据RD确定的移动的对(pairs)的数据结构。因此,对于给定的点t,可以通过求出SLt和RDt之间的差来计算差别。在另一实施方式中,除了存储可用于得到差别的数据之外,滚动窗口仅包括针对每个点t的差别。用于存储滚动窗口中的值的数据结构可以包括数组、多维数组、查找表或任何其他合适的数据结构。
本文的大部分讨论集中在根据机器人数据和传感器定位确定的移动之间的差别的比较。但是,仅此方法可能会导致误报。在命令器械进行接合(articulate)——其将导致机器人数据中没有运动数据,但位置传感器中有一些运动——(例如在柔性装置中或经由腕部结构的角运动)的情况下可能会出现这种情况。为了避免这样的误报,当机器人数据指示执行了接合命令时,系统可以重新初始化用于跟踪历史差别的窗口(或多个窗口)。系统可以通过将用于存储值的窗口的数据结构清零来重新初始化窗口。由于初始化窗口会导致数据丢失,进而可能导致无法检测到屈曲,因此系统仅在接合命令超过某个角度量时才可以使用接合阈值来重新初始化窗口。这将限制较大接合运动的重新初始化,这可能对导致误报产生较大影响。
图18B是示出用于基于视觉数据92和位置传感器数据93的比较来确定医疗器械100的位置估计的示例性方法220的流程图。可以在某些机器人系统例如图1至图15等中示出的机器人系统中实现方法220。可以在图15和图16的定位系统90中实现方法220或者通过图15和图16的定位系统90实现方法220。在一些实施方式中,可以将一个或更多个计算机装置配置成执行方法200。可以通过上述一个或更多个部件中的处理器(或多个处理器)和计算机可读存储器来体现计算机装置。计算机可读存储器可以存储可以由处理器执行以执行方法220的指令。所述指令可以包括一个或更多个软件模块。作为示例而非限制,计算机装置可以位于图1所示的塔30、图1至图4所示的推车、图5至图10所示的床等中。
方法220开始于框221。在框221处,基于视觉数据92获得运动估计。如上所述,可以从成像装置接收视觉数据92。成像装置可以定位在器械100上。视觉数据92可以包括图像或视频。视觉数据92可以用于以各种方式确定位置估计。例如,视觉数据92的基于对象的分析可以检测和分析在视觉数据92的视场中存在的对象,诸如分支开口或粒子,以确定位置。在一些实现方式中,结合一个或更多个其他数据输入来分析视觉数据92。例如,可以结合机器人数据94和手术前模型数据91之一或两者来分析视觉数据92,以确定基于视觉的位置估计。
在框221处,可以基于根据视觉数据92得到的位置估计来确定基于视觉的运动估计。例如,可以确定一定间隔上的位置变化。在一些实施方式中,间隔可以是如上所述的时间间隔或距离间隔。间隔可以是滚动间隔或帧。
在框223处,基于位置传感器数据93获得运动估计。框223可与先前描述的框203基本相似。在一些实施方式中,在与基于视觉数据92的运动估计相同的间隔上确定基于位置传感器数据93获得的运动估计。例如,在框203处使用的间隔可以与在框201处使用的间隔匹配。
在一些实施方式中,框221和框223的顺序可以改变。在一些实施方式中,框221和框223可以基本同时发生。
在框225,方法220包括确定运动估计差别。运动估计差别可以代表或指示在框221处根据视觉数据92获得的运动估计与在框223处根据位置传感器数据93获得的运动估计之间的差。可以如上所述确定运动估计差别。
在框227处,方法227包括更新针对根据视觉数据92可得出的定位的权重因数以及/或者针对根据位置传感器数据93可得出的定位的权重因数。例如,框227可包括当运动估计差别指示基于视觉数据92的运动估计(框221)超过基于位置传感器数据93的运动估计(框223)时,减小针对根据视觉数据92可得出的定位的权重因数以及/或者增大针对根据位置传感器数据93可得出的定位的权重因数。基于视觉数据92的运动估计超过基于位置传感器数据93的运动估计可以指示器械100经历了屈曲状况(图17A)。在这样的情况下,因为基于视觉数据92的运动估计超过基于位置传感器数据93的运动估计,因此运动估计差别指示屈曲。因此,框207可以包括减小针对根据视觉数据92可得出的定位的权重因数以及/或者增大针对根据位置传感器数据93可得出的定位的权重因数。结果,定位系统90输出较多根据位置传感器数据93而较少根据视觉数据92得出的定位数据96。这可以导致对器械100的位置的较准确的估计。
作为另一示例,框227可以包括:当运动估计差别指示基于位置传感器数据93的运动估计(框223)超过基于视觉数据92的运动估计(框221)时,减小针对根据视觉数据92可得出的定位的权重因数,以及/或者增大针对根据位置传感器数据93可得出的定位的权重因数。基于位置传感器数据93的运动估计超过基于机器人数据94的运动估计可以指示器械100经历了迟滞状况(图17B)。在这样的情况下,因为基于位置传感器数据93的运动估计超过基于视觉数据92的运动估计,因此运动估计差别指示迟滞。因此,框227可以包括减小针对根据视觉数据92可得出的定位的权重因数,以及/或者增大针对根据位置传感器数据93可得出的定位的权重因数。结果,定位系统90输出较多根据位置传感器数据93而较少根据视觉数据92得出的定位数据96。这可以导致对器械100的位置的较准确的估计。
可以以与以上关于方法200的框207讨论的方式类似的方式来减小针对根据视觉数据92可得出的定位的权重因数,以及/或者增大针对根据位置传感器数据93可得出的定位的权重因数。
在框229处,基于更新的权重因数确定定位/位置估计。如前所述,可以从定位系统90输出位置估计作为定位数据96。定位系统90基于输入数据91至94中的一个或更多个来确定位置估计,并且根据相关的权重因数对每个输入数据的贡献进行加权。因此,在例如器械100经历屈曲状况或迟滞状况的情况下,方法220可以通过减少视觉数据92的贡献和/或增加位置传感器数据93的贡献来提供针对器械的改善的估计位置。
D.利用输入数据的比较确定器械位置的示例系统。
图19是示出被配置成使用本文所述的方法利用定位输入数据的比较来提供器械定位的估计的实施方式或者机器人使能医疗系统300的框图。系统300包括处理器310和存储器312。存储器312可以存储配置处理器310执行例如上述方法200和/或220的指令或者指示处理器310执行例如上述方法200和/或220的指令。
系统300还包括器械302。该器械302可以是例如内窥镜13(图1)、输尿管镜32(图3)、器械34(图4)、输尿管镜56(图8)、腹腔镜59(图9)、器械70(图13)、器械86(图14)、或者上述器械100、或者本文所述的任何其他医疗器械、或其变型(多种变型)。器械302可以包括位置传感器304和成像装置306。器械302可以附接至器械定位装置308,并被配置成操纵和移动器械302。器械定位装置308可以是机器人臂或其部件(多个部件)。在一些实施方式中,可以通过处理器310控制器械定位装置308。
可以从位置传感器304接收位置传感器数据316以及/或者可以通过位置传感器304生成位置传感器数据316。位置传感器304可以定位在器械302上。位置传感器可以是形状感测纤维、加速度计、陀螺仪、电磁传感器、成像装置或超声传感器。
可以从成像装置306接收视觉数据318以及/或者可以通过成像装置306生成视觉数据318。成像装置306可以定位在器械304上。成像装置306可以是被配置成将表示接收到的光的能量转换成电信号的任何光敏衬底或光敏结构,例如电荷耦合器件(CCD)或互补金属氧化物半导体(CMOS)图像传感器。在一些示例中,成像装置306可以包括一个或更多个光纤。例如,成像装置102可以是被配置成将代表图像的光从器械300的远端传输到目镜和/或图像传感器的光纤束。然后,可以将由成像装置306捕获的图像作为单独的帧或一系列连续的帧(例如视频)发送至计算机系统用于存储或显示。由成像装置306捕获的图像可以被定位系统90用作视觉数据92,以确定器械100的估计位置。
可以从器械定位装置308接收以及/或者由器械定位装置308生成机器人命令和运动学数据320。如上所述,机器人命令和运动学数据320可以包括与器械300的物理运动有关的数据,例如指示器械300到达特定的解剖部位和/或改变其取向(例如,以特定的俯仰、滚动、偏航、插入和/或回缩)的数据。机器人命令和运动学数据320还可以包括代表器械300的机械移动的数据,例如与驱动器械300的实际移动或控制器械300的姿势的一个或更多个拉线或者腱的运动有关的数据。
可以将位置传感器数据316、视觉数据318和机器人数据320作为数据输入提供给处理器310。处理器310可以执行本文所述的方法,以确定和输出关于器械302的定位/位置估计326的信息。在所示的实施方式中,将关于位置估计326的信息输出至显示器324。在一些实施方式中可以存储位置估计326。通过实现本文所描述的方法,在器械300经历屈曲或迟滞的情况下,位置估计326可以呈现出改善的准确性。
3.实现系统和术语
本文公开的实现方式提供了用于通过输入数据的比较来确定器械位置的系统、方法和装置。本文所述的各种实现方式提供了在医疗过程期间器械的改善的导航和跟踪。
应该注意的是,如本文所使用的术语“耦接(couple)”、“耦接(coupling)”、“已耦接(coupled)”或词语耦接的其他变体可以指示间接连接或者直接连接。例如,如果第一部件“耦接”至第二部件,则第一部件可以经由另一部件间接连接至第二部件,或者直接连接至第二部件。
本文描述的位置估计和机器人运动致动功能可以作为一个或更多个指令存储在处理器可读介质或者计算机可读介质上。术语“计算机可读介质”是指可以由计算机或处理器访问的任何可用介质。作为示例而非限制,这样的介质可以包括随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、闪存、致密盘只读存储器(CD-ROM)或其他光盘存储装置、磁盘存储装置或其他磁性存储装置,或可用于以指令或数据结构形式存储所需程序代码以及可由计算机访问的任何其他介质。应当注意,计算机可读介质可以是有形的并且是非暂态的。如本文所使用的,术语“代码”可以指计算装置或处理器可执行的软件、指令、代码或数据。
本文公开的方法包括用于实现所描述的方法的一个或更多个步骤或动作。在不脱离权利要求的范围的情况下,方法步骤和/或动作可以彼此互换。换句话说,除非正在描述的方法的正确操作要求特定顺序的步骤或动作,否则再不脱离权利要求的范围的情况下可以修改特定步骤和/或动作的顺序和/或使用。
如本文所用,术语“多个”表示两个或更多个。例如,多个部件表示两个或更多个部件。术语“确定”涵盖多种动作,因此,“确定”可以包括计算、运算、处理、得到、调查、查找(例如,在表、数据库或其他数据结构中查找)、确认等等。同样,“确定”可以包括接收(例如接收信息)、访问(例如访问存储器中的数据)等。同样,“确定”可以包括解析、选择、挑选、建立等。
除非另有明确说明,否则短语“基于”并不意味着“仅基于”。换句话说,短语“基于”既描述了“仅基于”又描述了“至少基于”。
如本文所使用的,术语“近似地”是指长度、厚度、数量、时间段或其他可测量值的测量范围。为了在所公开的装置、系统和技术中起作用,这样的测量范围涵盖指定值的或者根据指定值的+/-10%或更小、优选+/-5%或更小、更优选+/-1%或更小、更更优选+/-0.1%或更小的变化,只要这种变化是适当的。
提供了对所公开的实现方式的先前描述,以使得本领域的任何技术人员能够制造或使用本发明。对这些实现方式的各种修改对于本领域技术人员而言将是明显的,并且在不脱离本发明的范围的情况下,本文中定义的一般原理可以应用于其他实现方式。例如,应当理解的是,本领域普通技术人员将能够采用多个相应的替代和等同的结构细节,诸如紧固、安装、耦接或者接合工具部件的等同方式、用于产生特定致动运动的等同机制,以及用于递送电能的等同机制。因此,本发明不意在限于本文中所示的实现方式,而是与符合本文中公开的原理和新颖特征的最宽范围一致。

Claims (55)

1.一种其上存储有指令的非暂态计算机可读存储介质,所述指令在被执行时使装置的处理器执行至少以下操作:
基于与器械的物理操纵有关的机器人数据获得所述器械的第一运动估计;
基于从至少一个位置传感器接收的位置传感器数据获得所述器械的第二运动估计;
基于所述第一运动估计与所述第二运动估计的比较确定运动估计差别;
基于所述运动估计差别,更新:(a)针对根据所述机器人数据可得出的定位的权重因数、或者(b)针对根据所述位置传感器数据可得出的定位的权重因数;以及
基于所更新的权重因数确定所述器械的位置估计。
2.根据权利要求1所述的非暂态计算机可读存储介质,其中,所述指令在被执行时使所述处理器:当所述运动估计差别指示所述第二运动估计超过所述第一运动估计时,执行(a)减小针对根据所述机器人数据可得出的定位的权重因数,或者(b)增大针对根据所述位置传感器数据可得出的定位的权重因数。
3.根据权利要求1所述的非暂态计算机可读存储介质,其中,所述指令在被执行时使所述处理器:当所述运动估计差别指示所述第二运动估计超过所述第一运动估计时,确定所述器械经历了迟滞状况。
4.根据权利要求1所述的非暂态计算机可读存储介质,其中,所述指令在被执行时使所述处理器:当所述运动估计差别指示所述第一运动估计超过所述第二运动估计时,执行(a)减小针对根据所述机器人数据可得出的定位的权重因数,或者(b)增大针对根据所述位置传感器数据可得出的定位的权重因数。
5.根据权利要求1所述的非暂态计算机可读存储介质,其中,所述指令在被执行时使所述处理器:当所述运动估计差别指示所述第一运动估计超过所述第二估计时,确定所述器械经历了屈曲状况。
6.根据权利要求1所述的非暂态计算机可读存储介质,其中,所述指令在被执行时使所述处理器将针对根据所述机器人数据可得出的定位的权重因数更新为零。
7.根据权利要求1所述的非暂态计算机可读存储介质,其中,所述指令在被执行时使所述处理器通过确定所述第一运动估计与所述第二运动估计之间的差来确定所述运动估计差别。
8.根据权利要求7所述的非暂态计算机可读存储介质,其中,所述指令在被执行时使所述处理器:当所述差超过差别阈值时,更新(a)针对根据所述机器人数据可得出的定位的权重因数、或者(b)针对根据所述位置传感器数据可得出的定位的权重因数。
9.根据权利要求1所述的非暂态计算机可读存储介质,其中,所述指令在被执行时使所述处理器执行:
通过基于间隔期间的所述机器人数据确定所述器械的位置的变化来获得所述第一运动估计;以及
通过基于所述间隔期间的所述位置传感器数据确定所述器械的位置的变化来获得所述第二运动估计。
10.根据权利要求9所述的非暂态计算机可读存储介质,其中,所述间隔是时间间隔。
11.根据权利要求9所述的非暂态计算机可读存储介质,其中,所述间隔是距离间隔。
12.根据权利要求1所述的非暂态计算机可读存储介质,其中,基于所更新的权重因数、根据所述机器人数据可得出的定位以及根据所述位置传感器数据可得出的定位来确定所述位置估计。
13.根据权利要求1所述的非暂态计算机可读存储介质,其中,所述位置传感器定位在所述器械上。
14.根据权利要求1所述的非暂态计算机可读存储介质,其中,所述位置传感器包括电磁传感器。
15.根据权利要求1所述的非暂态计算机可读存储介质,其中,所述位置传感器包括定位在所述器械上的成像装置,并且其中,所述处理器还被配置成根据由所述成像装置捕获的图像来确定位置信息。
16.根据权利要求1所述的非暂态计算机可读存储介质,其中,所述至少一个位置传感器包括以下中至少之一:形状感测纤维、加速度计、陀螺仪、电磁传感器、成像装置和超声波传感器。
17.根据权利要求1所述的非暂态计算机可读存储介质,其中,所述指令在被执行时使所述处理器执行:
基于从定位在所述器械上的成像装置接收的视觉数据获得所述器械的第三运动估计;
基于所述第二运动估计与所述第三运动估计的比较确定所述运动估计差别;以及
基于所述运动估计差别,更新(c)针对根据所述视觉数据可得出的定位的权重因数。
18.根据权利要求17所述的非暂态计算机可读存储介质,其中,所述指令在被执行时使所述处理器:当所述运动估计差别指示所述第二运动估计超过所述第三运动估计时,执行(b)增大针对根据所述位置传感器数据可得出的定位的权重因数,或者(c)减小针对根据所述视觉可得出的定位的权重因数。
19.根据权利要求17所述的非暂态计算机可读存储介质,其中,所述指令在被执行时使所述处理器:当所述运动估计差别指示所述第二运动估计超过所述第三运动估计时,确定所述器械经历了迟滞状况。
20.根据权利要求17所述的非暂态计算机可读存储介质,其中,所述指令在被执行时使所述处理器:当所述运动估计差别指示所述第三运动估计超过所述第二运动估计时,执行(b)增大针对根据所述位置传感器数据可得出的定位的权重因数,或者(c)减小针对根据所述视觉数据可得出的定位的权重因数。
21.根据权利要求17所述的非暂态计算机可读存储介质,其中,所述指令在被执行时使所述处理器:当所述运动估计差别指示所述第三运动估计超过所述第二估计时,确定所述器械经历了屈曲状况。
22.一种机器人系统,包括:
器械,其具有长形体和设置在所述长形体上的至少一个位置传感器;
器械定位装置,其附接至所述器械并被配置成移动所述器械;
至少一个计算机可读存储器,其具有存储于其上的可执行指令;以及
一个或更多个处理器,其与所述至少一个计算机可读存储器通信,并被配置成执行所述指令以使所述系统执行至少以下操作:
基于与用所述器械定位装置对所述器械进行的物理操纵有关的机器人数据,获得所述器械的第一运动估计;
基于从至少一个位置传感器接收的位置传感器数据获得所述器械的第二运动估计;
基于所述第一运动估计与所述第二运动估计的比较确定运动估计差别;
基于所述运动估计差别,更新:(a)针对根据所述机器人数据可得出的定位的权重因数,或者(b)针对根据所述位置传感器数据可得出的定位的权重因数;以及
基于所更新的权重因数确定所述器械的位置估计。
23.根据权利要求22所述的系统,其中,所述器械包括内窥镜。
24.根据权利要求22所述的系统,其中,所述器械定位装置包括机器人臂。
25.根据权利要求22所述的系统,其中,所述至少一个位置传感器包括电磁传感器。
26.根据权利要求22所述的系统,其中,所述至少一个位置传感器包括定位在所述器械上的成像装置,并且其中,所述指令还使所述一个或更多个处理器根据由所述成像装置捕获的图像来确定位置信息。
27.根据权利要求22所述的系统,其中,所述至少一个位置传感器包括形状感测纤维、加速度计、陀螺仪、电磁传感器、成像装置或超声传感器。
28.根据权利要求22所述的系统,其中,所述指令在被执行时使所述一个或更多个处理器:当所述运动估计差别指示所述第二运动估计超过所述第一运动估计时,执行(a)减小针对根据所述机器人数据可得出的定位的权重因数,或者(b)增大针对根据所述位置传感器数据可得出的定位的权重因数。
29.根据权利要求22所述的系统,其中,所述指令在被执行时使所述一个或更多个处理器:当所述运动估计差别指示所述第二运动估计超过所述第一运动估计时,确定所述器械经历了迟滞状况。
30.根据权利要求22所述的系统,其中,所述指令在被执行时使所述一个或更多个处理器:当所述运动估计差别指示所述第一运动估计超过所述第二运动估计时,执行(a)减小针对根据所述机器人数据可得出的定位的权重因数,或者(b)增大针对根据所述位置传感器数据可得出的定位的权重因数。
31.根据权利要求22所述的系统,其中,所述指令在被执行时使所述一个或更多个处理器:当所述运动估计差别指示所述第一运动估计超过所述第二运动估计时,确定所述器械经历了屈曲状况。
32.根据权利要求22所述的系统,其中,所述指令在被执行时使所述一个或更多个处理器:当所述运动估计差别指示所述第二运动估计超过所述第一运动估计时,将针对根据所述机器人数据可得出的定位的权重因数更新为零。
33.根据权利要求22所述的系统,其中,所述指令被执行时使所述一个或更多个处理器:当所述运动估计差别指示所述第一运动估计超过所述第二运动估计时,将针对根据所述位置传感器数据可得出的定位的权重因数更新为零。
34.根据权利要求22所述的系统,其中,所述指令在被执行时使所述一个或更多个处理器通过确定所述第一运动估计与所述第二运动估计之间的差来确定所述运动估计差别。
35.根据权利要求34所述的系统,其中,所述指令在被执行时使所述一个或更多个处理器:当所述差超过差别阈值时,更新(a)针对根据所述机器人数据可得出的定位的权重因数、或者(b)针对根据所述位置传感器数据可得出的定位的权重因数。
36.根据权利要求22所述的系统,其中,所述指令在被执行时使所述一个或更多个处理器执行:
通过基于间隔期间的所述机器人数据确定所述器械的位置的变化来获得所述第一运动估计;以及
通过基于所述间隔期间的所述位置传感器数据确定所述器械的位置的变化来获得所述第二运动估计。
37.根据权利要求36所述的系统,其中,所述间隔是时间间隔。
38.根据权利要求36所述的系统,其中,所述间隔是距离间隔。
39.一种用于在身体的内部区域内导航器械的方法,所述方法包括:
基于与器械的物理操纵有关的机器人数据获得所述器械的第一运动估计;
基于从至少一个位置传感器接收的位置传感器数据获得所述器械的第二运动估计;
基于所述第一运动估计与所述第二运动估计的比较确定运动估计差别;
基于所述运动估计差别,更新:(a)针对根据所述机器人数据可得出的定位的权重因数、或者(b)针对根据所述位置传感器数据可得出的定位的权重因数;以及
基于所更新的权重因数确定所述器械的位置估计。
40.根据权利要求39所述的方法,其中,更新所述权重因数包括:当所述运动估计差别指示所述第二运动估计超过所述第一运动估计时,(a)减小针对根据所述机器人数据可得出的定位的权重因数,或者(b)增大针对根据所述位置传感器数据可得出的定位的权重因数。
41.根据权利要求39所述的方法,还包括:当所述运动估计差别指示所述第二运动估计超过所述第一运动估计时,确定所述器械经历了迟滞状况。
42.根据权利要求39所述的方法,其中,更新所述权重因数包括:当所述运动估计差别指示所述第一运动估计超过所述第二运动估计时,(a)减小针对根据所述机器人数据可得出的定位的权重因数,或者(b)增大针对根据所述位置传感器数据可得出的定位的权重因数。
43.根据权利要求39所述的方法,还包括:当所述运动估计差别指示所述第一运动估计超过所述第二运动估计时,确定所述器械经历了屈曲状况。
44.根据权利要求39所述的方法,还包括:当所述运动估计差别指示所述第二运动估计超过所述第一运动估计时,将针对根据所述机器人数据可得出的定位的权重因数更新为零。
45.根据权利要求39所述的方法,还包括:当所述运动估计差别指示所述第一运动估计超过所述第二运动估计时,将针对根据所述位置传感器数据可得出的定位的权重因数更新为零。
46.根据权利要求39所述的方法,其中,确定所述运动估计差别包括确定所述第一运动估计与所述第二运动估计之间的差。
47.根据权利要求46所述的方法,其中,确定所述差包括确定所述差的大小。
48.根据权利要求39所述的方法,还包括:当所述差超过差别阈值时,更新:(a)针对根据所述机器人数据可得出的定位的权重因数,或者(b)针对根据所述位置传感器数据可得出的定位的权重因数。
49.根据权利要求39所述的方法,其中:
获得所述第一运动估计包括基于间隔期间的所述机器人数据确定所述器械的位置的变化;以及
获得所述第二运动估计包括基于所述间隔期间的所述位置传感器数据确定所述器械的位置的变化。
50.根据权利要求49所述的方法,其中,所述间隔是时间间隔。
51.根据权利要求49所述的方法,其中,所述间隔是距离间隔。
52.根据权利要求39所述的方法,其中,所述位置传感器定位在所述器械上。
53.根据权利要求39所述的方法,其中,所述位置传感器包括电磁传感器。
54.根据权利要求39所述的方法,其中,所述位置传感器包括定位在所述器械上的成像装置,并且其中,所述方法还包括根据由所述成像装置捕获的图像来确定位置信息。
55.根据权利要求39所述的方法,其中,所述位置传感器包括形状感测纤维、加速度计、陀螺仪、电磁传感器、成像装置或超声传感器。
CN201880044521.3A 2017-12-14 2018-12-13 用于估计器械定位的系统与方法 Active CN110869173B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201762598934P 2017-12-14 2017-12-14
US62/598,934 2017-12-14
PCT/US2018/065530 WO2019118767A1 (en) 2017-12-14 2018-12-13 System and method for estimating instrument location

Publications (2)

Publication Number Publication Date
CN110869173A true CN110869173A (zh) 2020-03-06
CN110869173B CN110869173B (zh) 2023-11-17

Family

ID=66815369

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880044521.3A Active CN110869173B (zh) 2017-12-14 2018-12-13 用于估计器械定位的系统与方法

Country Status (7)

Country Link
US (2) US11510736B2 (zh)
EP (1) EP3684562A4 (zh)
JP (1) JP7322026B2 (zh)
KR (1) KR20200100613A (zh)
CN (1) CN110869173B (zh)
AU (1) AU2018384820A1 (zh)
WO (1) WO2019118767A1 (zh)

Families Citing this family (185)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8414505B1 (en) 2001-02-15 2013-04-09 Hansen Medical, Inc. Catheter driver system
WO2005087128A1 (en) 2004-03-05 2005-09-22 Hansen Medical, Inc. Robotic catheter system
US9232959B2 (en) 2007-01-02 2016-01-12 Aquabeam, Llc Multi fluid tissue resection methods and devices
ES2769535T3 (es) 2008-03-06 2020-06-26 Aquabeam Llc Ablación de tejido y cauterización con energía óptica transportada en una corriente de fluido
US8218847B2 (en) 2008-06-06 2012-07-10 Superdimension, Ltd. Hybrid registration method
US9254123B2 (en) 2009-04-29 2016-02-09 Hansen Medical, Inc. Flexible and steerable elongate instruments with shape control and support elements
US8672837B2 (en) 2010-06-24 2014-03-18 Hansen Medical, Inc. Methods and devices for controlling a shapeable medical device
US20120071752A1 (en) 2010-09-17 2012-03-22 Sewell Christopher M User interface and method for operating a robotic medical system
US9138166B2 (en) 2011-07-29 2015-09-22 Hansen Medical, Inc. Apparatus and methods for fiber integration and registration
ES2687817T3 (es) 2012-02-29 2018-10-29 Procept Biorobotics Corporation Resección y tratamiento de tejido guiado por imagen automatizada
US20130317519A1 (en) 2012-05-25 2013-11-28 Hansen Medical, Inc. Low friction instrument driver interface for robotic systems
US20140148673A1 (en) 2012-11-28 2014-05-29 Hansen Medical, Inc. Method of anchoring pullwire directly articulatable region in catheter
US10231867B2 (en) 2013-01-18 2019-03-19 Auris Health, Inc. Method, apparatus and system for a water jet
US10149720B2 (en) 2013-03-08 2018-12-11 Auris Health, Inc. Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment
US9566414B2 (en) 2013-03-13 2017-02-14 Hansen Medical, Inc. Integrated catheter and guide wire controller
US9057600B2 (en) 2013-03-13 2015-06-16 Hansen Medical, Inc. Reducing incremental measurement sensor error
US20140277334A1 (en) 2013-03-14 2014-09-18 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US9326822B2 (en) 2013-03-14 2016-05-03 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US9173713B2 (en) 2013-03-14 2015-11-03 Hansen Medical, Inc. Torque-based catheter articulation
US11213363B2 (en) 2013-03-14 2022-01-04 Auris Health, Inc. Catheter tension sensing
US20140276936A1 (en) 2013-03-15 2014-09-18 Hansen Medical, Inc. Active drive mechanism for simultaneous rotation and translation
US10376672B2 (en) 2013-03-15 2019-08-13 Auris Health, Inc. Catheter insertion system and method of fabrication
US9452018B2 (en) 2013-03-15 2016-09-27 Hansen Medical, Inc. Rotational support for an elongate member
US9271663B2 (en) 2013-03-15 2016-03-01 Hansen Medical, Inc. Flexible instrument localization from both remote and elongation sensors
US9629595B2 (en) 2013-03-15 2017-04-25 Hansen Medical, Inc. Systems and methods for localizing, tracking and/or controlling medical instruments
US9283046B2 (en) 2013-03-15 2016-03-15 Hansen Medical, Inc. User interface for active drive apparatus with finite range of motion
US20140276647A1 (en) 2013-03-15 2014-09-18 Hansen Medical, Inc. Vascular remote catheter manipulator
US9014851B2 (en) 2013-03-15 2015-04-21 Hansen Medical, Inc. Systems and methods for tracking robotically controlled medical instruments
US9408669B2 (en) 2013-03-15 2016-08-09 Hansen Medical, Inc. Active drive mechanism with finite range of motion
US10849702B2 (en) 2013-03-15 2020-12-01 Auris Health, Inc. User input devices for controlling manipulation of guidewires and catheters
US11020016B2 (en) 2013-05-30 2021-06-01 Auris Health, Inc. System and method for displaying anatomy and devices on a movable display
WO2014201165A1 (en) 2013-06-11 2014-12-18 Auris Surgical Robotics, Inc. System for robotic assisted cataract surgery
US10426661B2 (en) 2013-08-13 2019-10-01 Auris Health, Inc. Method and apparatus for laser assisted cataract surgery
EP3243476B1 (en) 2014-03-24 2019-11-06 Auris Health, Inc. Systems and devices for catheter driving instinctiveness
US10046140B2 (en) 2014-04-21 2018-08-14 Hansen Medical, Inc. Devices, systems, and methods for controlling active drive systems
US10569052B2 (en) 2014-05-15 2020-02-25 Auris Health, Inc. Anti-buckling mechanisms for catheters
US9744335B2 (en) 2014-07-01 2017-08-29 Auris Surgical Robotics, Inc. Apparatuses and methods for monitoring tendons of steerable catheters
US10792464B2 (en) 2014-07-01 2020-10-06 Auris Health, Inc. Tool and method for using surgical endoscope with spiral lumens
US9561083B2 (en) 2014-07-01 2017-02-07 Auris Surgical Robotics, Inc. Articulating flexible endoscopic tool with roll capabilities
US9633431B2 (en) 2014-07-02 2017-04-25 Covidien Lp Fluoroscopic pose estimation
US9603668B2 (en) 2014-07-02 2017-03-28 Covidien Lp Dynamic 3D lung map view for tool navigation inside the lung
CN107427327A (zh) 2014-09-30 2017-12-01 奥瑞斯外科手术机器人公司 具有虚拟轨迹和柔性内窥镜的可配置机器人外科手术系统
US10499999B2 (en) 2014-10-09 2019-12-10 Auris Health, Inc. Systems and methods for aligning an elongate member with an access site
US10314463B2 (en) 2014-10-24 2019-06-11 Auris Health, Inc. Automated endoscope calibration
US9974525B2 (en) 2014-10-31 2018-05-22 Covidien Lp Computed tomography enhanced fluoroscopic system, device, and method of utilizing the same
US11819636B2 (en) 2015-03-30 2023-11-21 Auris Health, Inc. Endoscope pull wire electrical circuit
US20160287279A1 (en) 2015-04-01 2016-10-06 Auris Surgical Robotics, Inc. Microsurgical tool for robotic applications
WO2016164824A1 (en) 2015-04-09 2016-10-13 Auris Surgical Robotics, Inc. Surgical system with configurable rail-mounted mechanical arms
WO2016187054A1 (en) 2015-05-15 2016-11-24 Auris Surgical Robotics, Inc. Surgical robotics system
US10716525B2 (en) 2015-08-06 2020-07-21 Covidien Lp System and method for navigating to target and performing procedure on target utilizing fluoroscopic-based local three dimensional volume reconstruction
US10674982B2 (en) 2015-08-06 2020-06-09 Covidien Lp System and method for local three dimensional volume reconstruction using a standard fluoroscope
US10702226B2 (en) 2015-08-06 2020-07-07 Covidien Lp System and method for local three dimensional volume reconstruction using a standard fluoroscope
EP3346899B1 (en) 2015-09-09 2022-11-09 Auris Health, Inc. Instrument device manipulator for a surgical robotics system
JP6824967B2 (ja) 2015-09-18 2021-02-03 オーリス ヘルス インコーポレイテッド 管状網のナビゲーション
US9955986B2 (en) 2015-10-30 2018-05-01 Auris Surgical Robotics, Inc. Basket apparatus
US9949749B2 (en) 2015-10-30 2018-04-24 Auris Surgical Robotics, Inc. Object capture with a basket
US10639108B2 (en) 2015-10-30 2020-05-05 Auris Health, Inc. Process for percutaneous operations
US10143526B2 (en) 2015-11-30 2018-12-04 Auris Health, Inc. Robot-assisted driving systems and methods
US10932861B2 (en) 2016-01-14 2021-03-02 Auris Health, Inc. Electromagnetic tracking surgical system and method of controlling the same
US10932691B2 (en) 2016-01-26 2021-03-02 Auris Health, Inc. Surgical tools having electromagnetic tracking components
US11324554B2 (en) 2016-04-08 2022-05-10 Auris Health, Inc. Floating electromagnetic field generator system and method of controlling the same
US10454347B2 (en) 2016-04-29 2019-10-22 Auris Health, Inc. Compact height torque sensing articulation axis assembly
US11037464B2 (en) 2016-07-21 2021-06-15 Auris Health, Inc. System with emulator movement tracking for controlling medical devices
US10463439B2 (en) 2016-08-26 2019-11-05 Auris Health, Inc. Steerable catheter with shaft load distributions
US11241559B2 (en) 2016-08-29 2022-02-08 Auris Health, Inc. Active drive for guidewire manipulation
KR20230096148A (ko) 2016-08-31 2023-06-29 아우리스 헬스, 인코포레이티드 길이 보존 수술용 기구
US9931025B1 (en) * 2016-09-30 2018-04-03 Auris Surgical Robotics, Inc. Automated calibration of endoscopes with pull wires
US10543048B2 (en) 2016-12-28 2020-01-28 Auris Health, Inc. Flexible instrument insertion using an adaptive insertion force threshold
US10244926B2 (en) 2016-12-28 2019-04-02 Auris Health, Inc. Detecting endolumenal buckling of flexible instruments
US10136959B2 (en) 2016-12-28 2018-11-27 Auris Health, Inc. Endolumenal object sizing
US11793579B2 (en) 2017-02-22 2023-10-24 Covidien Lp Integration of multiple data sources for localization and navigation
JP7159192B2 (ja) 2017-03-28 2022-10-24 オーリス ヘルス インコーポレイテッド シャフト作動ハンドル
KR102558061B1 (ko) 2017-03-31 2023-07-25 아우리스 헬스, 인코포레이티드 생리적 노이즈를 보상하는 관강내 조직망 항행을 위한 로봇 시스템
KR20230106716A (ko) 2017-04-07 2023-07-13 아우리스 헬스, 인코포레이티드 환자 삽입기(Introducer) 정렬
US10285574B2 (en) 2017-04-07 2019-05-14 Auris Health, Inc. Superelastic medical instrument
KR20240035632A (ko) 2017-05-12 2024-03-15 아우리스 헬스, 인코포레이티드 생검 장치 및 시스템
AU2018270785B2 (en) 2017-05-17 2023-11-23 Auris Health, Inc. Exchangeable working channel
US10022192B1 (en) 2017-06-23 2018-07-17 Auris Health, Inc. Automatically-initialized robotic systems for navigation of luminal networks
EP3645100A4 (en) 2017-06-28 2021-03-17 Auris Health, Inc. INSTRUMENT INSERTION COMPENSATION
EP3644885B1 (en) 2017-06-28 2023-10-11 Auris Health, Inc. Electromagnetic field generator alignment
JP7330902B2 (ja) 2017-06-28 2023-08-22 オーリス ヘルス インコーポレイテッド 電磁歪み検出
US11026758B2 (en) 2017-06-28 2021-06-08 Auris Health, Inc. Medical robotics systems implementing axis constraints during actuation of one or more motorized joints
US10699448B2 (en) 2017-06-29 2020-06-30 Covidien Lp System and method for identifying, marking and navigating to a target using real time two dimensional fluoroscopic data
US10426559B2 (en) 2017-06-30 2019-10-01 Auris Health, Inc. Systems and methods for medical instrument compression compensation
US10464209B2 (en) 2017-10-05 2019-11-05 Auris Health, Inc. Robotic system with indication of boundary for robotic arm
US10145747B1 (en) 2017-10-10 2018-12-04 Auris Health, Inc. Detection of undesirable forces on a surgical robotic arm
US10016900B1 (en) 2017-10-10 2018-07-10 Auris Health, Inc. Surgical robotic arm admittance control
CN111163697B (zh) 2017-10-10 2023-10-03 柯惠有限合伙公司 用于在荧光三维重构中识别和标记目标的系统和方法
US11058493B2 (en) 2017-10-13 2021-07-13 Auris Health, Inc. Robotic system configured for navigation path tracing
US10555778B2 (en) 2017-10-13 2020-02-11 Auris Health, Inc. Image-based branch detection and mapping for navigation
KR102645922B1 (ko) 2017-12-06 2024-03-13 아우리스 헬스, 인코포레이티드 지시되지 않은 기구 롤을 수정하기 위한 시스템 및 방법
WO2019113391A1 (en) 2017-12-08 2019-06-13 Auris Health, Inc. System and method for medical instrument navigation and targeting
CN116059454A (zh) 2017-12-08 2023-05-05 奥瑞斯健康公司 用于执行医疗手术的系统和用以移除肾结石的医疗装置
EP3723655A4 (en) 2017-12-11 2021-09-08 Auris Health, Inc. SYSTEMS AND METHODS FOR INSTRUMENT-BASED INSERTION ARCHITECTURES
KR20200100613A (ko) 2017-12-14 2020-08-26 아우리스 헬스, 인코포레이티드 기구 위치 추정을 위한 시스템 및 방법
KR20200101334A (ko) 2017-12-18 2020-08-27 아우리스 헬스, 인코포레이티드 관강내 조직망 내 기구 추적 및 항행을 위한 방법 및 시스템
USD932628S1 (en) 2018-01-17 2021-10-05 Auris Health, Inc. Instrument cart
CN111885980B (zh) 2018-01-17 2023-03-28 奥瑞斯健康公司 具有可调式臂支撑件的外科平台
USD901018S1 (en) 2018-01-17 2020-11-03 Auris Health, Inc. Controller
USD873878S1 (en) 2018-01-17 2020-01-28 Auris Health, Inc. Robotic arm
USD924410S1 (en) 2018-01-17 2021-07-06 Auris Health, Inc. Instrument tower
US10888386B2 (en) 2018-01-17 2021-01-12 Auris Health, Inc. Surgical robotics systems with improved robotic arms
USD901694S1 (en) 2018-01-17 2020-11-10 Auris Health, Inc. Instrument handle
US10893842B2 (en) 2018-02-08 2021-01-19 Covidien Lp System and method for pose estimation of an imaging device and for determining the location of a medical device with respect to a target
US10905498B2 (en) 2018-02-08 2021-02-02 Covidien Lp System and method for catheter detection in fluoroscopic images and updating displayed position of catheter
US10930064B2 (en) 2018-02-08 2021-02-23 Covidien Lp Imaging reconstruction system and method
JP7301884B2 (ja) 2018-02-13 2023-07-03 オーリス ヘルス インコーポレイテッド 医療用器具を駆動するためのシステム及び方法
CN117017505A (zh) 2018-03-28 2023-11-10 奥瑞斯健康公司 复合器械和机器人系统
EP3773131A4 (en) 2018-03-28 2021-12-15 Auris Health, Inc. LOCATION SENSOR RECORDING SYSTEMS AND METHODS
JP7225259B2 (ja) 2018-03-28 2023-02-20 オーリス ヘルス インコーポレイテッド 器具の推定位置を示すためのシステム及び方法
KR20210010871A (ko) 2018-05-18 2021-01-28 아우리스 헬스, 인코포레이티드 로봇식 원격작동 시스템을 위한 제어기
CN110831486B (zh) 2018-05-30 2022-04-05 奥瑞斯健康公司 用于基于定位传感器的分支预测的系统和方法
KR20210018858A (ko) 2018-05-31 2021-02-18 아우리스 헬스, 인코포레이티드 관상 네트워크의 경로-기반 내비게이션
CN112236083A (zh) 2018-05-31 2021-01-15 奥瑞斯健康公司 用于导航检测生理噪声的管腔网络的机器人系统和方法
WO2019232236A1 (en) 2018-05-31 2019-12-05 Auris Health, Inc. Image-based airway analysis and mapping
EP3813714A4 (en) 2018-06-07 2022-02-09 Auris Health, Inc. HIGH FORCE INSTRUMENT ROBOTIC MEDICAL SYSTEMS
EP3813632A4 (en) 2018-06-27 2022-03-09 Auris Health, Inc. ALIGNMENT AND MOUNTING SYSTEMS FOR MEDICAL INSTRUMENTS
WO2020005370A1 (en) 2018-06-27 2020-01-02 Auris Health, Inc. Systems and techniques for providing multiple perspectives during medical procedures
JP7391886B2 (ja) 2018-06-28 2023-12-05 オーリス ヘルス インコーポレイテッド 滑車共有を組み込んだ医療システム
US11071591B2 (en) 2018-07-26 2021-07-27 Covidien Lp Modeling a collapsed lung using CT data
US11705238B2 (en) 2018-07-26 2023-07-18 Covidien Lp Systems and methods for providing assistance during surgery
KR20230169481A (ko) 2018-08-07 2023-12-15 아우리스 헬스, 인코포레이티드 카테터 제어와의 변형-기반 형상 감지의 조합
CN112566584A (zh) 2018-08-15 2021-03-26 奥瑞斯健康公司 用于组织烧灼的医疗器械
US10639114B2 (en) 2018-08-17 2020-05-05 Auris Health, Inc. Bipolar medical instrument
AU2019326548B2 (en) 2018-08-24 2023-11-23 Auris Health, Inc. Manually and robotically controllable medical instruments
MX2021003099A (es) 2018-09-17 2021-05-13 Auris Health Inc Sistemas y metodos para procedimientos medicos concomitantes.
EP3813634A4 (en) 2018-09-26 2022-04-06 Auris Health, Inc. ARTICULATING MEDICAL INSTRUMENTS
CN112770689A (zh) 2018-09-26 2021-05-07 奥瑞斯健康公司 用于抽吸和冲洗的系统和器械
CN112752534A (zh) 2018-09-28 2021-05-04 奥瑞斯健康公司 用于手动和机器人驱动医疗器械的装置、系统和方法
AU2019347767A1 (en) 2018-09-28 2021-04-08 Auris Health, Inc. Systems and methods for docking medical instruments
US11944388B2 (en) 2018-09-28 2024-04-02 Covidien Lp Systems and methods for magnetic interference correction
US11576738B2 (en) 2018-10-08 2023-02-14 Auris Health, Inc. Systems and instruments for tissue sealing
US11877806B2 (en) 2018-12-06 2024-01-23 Covidien Lp Deformable registration of computer-generated airway models to airway trees
US11045075B2 (en) 2018-12-10 2021-06-29 Covidien Lp System and method for generating a three-dimensional model of a surgical site
US11801113B2 (en) 2018-12-13 2023-10-31 Covidien Lp Thoracic imaging, distance measuring, and notification system and method
US11617493B2 (en) 2018-12-13 2023-04-04 Covidien Lp Thoracic imaging, distance measuring, surgical awareness, and notification system and method
WO2020131186A1 (en) 2018-12-20 2020-06-25 Auris Health, Inc. Systems and methods for robotic arm alignment and docking
US11950863B2 (en) 2018-12-20 2024-04-09 Auris Health, Inc Shielding for wristed instruments
WO2020140072A1 (en) 2018-12-28 2020-07-02 Auris Health, Inc. Percutaneous sheath for robotic medical systems and methods
US11357593B2 (en) 2019-01-10 2022-06-14 Covidien Lp Endoscopic imaging with augmented parallax
EP3883492A4 (en) 2019-01-25 2022-11-30 Auris Health, Inc. VESSEL SEALING DEVICE HAVING HEATING AND COOLING CAPABILITIES
US11625825B2 (en) 2019-01-30 2023-04-11 Covidien Lp Method for displaying tumor location within endoscopic images
US11925333B2 (en) 2019-02-01 2024-03-12 Covidien Lp System for fluoroscopic tracking of a catheter to update the relative position of a target and the catheter in a 3D model of a luminal network
US11564751B2 (en) 2019-02-01 2023-01-31 Covidien Lp Systems and methods for visualizing navigation of medical devices relative to targets
US11744643B2 (en) 2019-02-04 2023-09-05 Covidien Lp Systems and methods facilitating pre-operative prediction of post-operative tissue function
EP3890644A4 (en) 2019-02-08 2022-11-16 Auris Health, Inc. MANIPULATION AND CLOT REMOVAL WITH ROBOTIC CONTROL
CN113453642A (zh) 2019-02-22 2021-09-28 奥瑞斯健康公司 具有用于可调式臂支撑件的机动臂的外科平台
US11090122B2 (en) * 2019-02-25 2021-08-17 Verb Surgical Inc. Systems and methods for magnetic sensing and docking with a trocar
US10945904B2 (en) 2019-03-08 2021-03-16 Auris Health, Inc. Tilt mechanisms for medical systems and applications
WO2020197671A1 (en) 2019-03-22 2020-10-01 Auris Health, Inc. Systems and methods for aligning inputs on medical instruments
WO2020197625A1 (en) 2019-03-25 2020-10-01 Auris Health, Inc. Systems and methods for medical stapling
US11617627B2 (en) 2019-03-29 2023-04-04 Auris Health, Inc. Systems and methods for optical strain sensing in medical instruments
US11819285B2 (en) 2019-04-05 2023-11-21 Covidien Lp Magnetic interference detection systems and methods
CN114173698A (zh) 2019-04-08 2022-03-11 奥瑞斯健康公司 用于伴随规程的系统、方法和工作流程
US11369386B2 (en) 2019-06-27 2022-06-28 Auris Health, Inc. Systems and methods for a medical clip applier
EP3989793A4 (en) 2019-06-28 2023-07-19 Auris Health, Inc. CONSOLE OVERLAY ITS METHODS OF USE
WO2020263949A1 (en) 2019-06-28 2020-12-30 Auris Health, Inc. Medical instruments including wrists with hybrid redirect surfaces
USD978348S1 (en) 2019-08-15 2023-02-14 Auris Health, Inc. Drive device for a medical instrument
USD975275S1 (en) 2019-08-15 2023-01-10 Auris Health, Inc. Handle for a medical instrument
JP2022544554A (ja) 2019-08-15 2022-10-19 オーリス ヘルス インコーポレイテッド 複数の屈曲部を有する医療デバイス
US11896330B2 (en) 2019-08-15 2024-02-13 Auris Health, Inc. Robotic medical system having multiple medical instruments
US11269173B2 (en) 2019-08-19 2022-03-08 Covidien Lp Systems and methods for displaying medical video images and/or medical 3D models
CN114340542B (zh) 2019-08-30 2023-07-21 奥瑞斯健康公司 用于位置传感器的基于权重的配准的系统和方法
EP4021329A4 (en) 2019-08-30 2023-05-03 Auris Health, Inc. SYSTEM AND METHOD FOR INSTRUMENT IMAGE RELIABILITY
US11324558B2 (en) 2019-09-03 2022-05-10 Auris Health, Inc. Electromagnetic distortion detection and compensation
US11864935B2 (en) 2019-09-09 2024-01-09 Covidien Lp Systems and methods for pose estimation of a fluoroscopic imaging device and for three-dimensional imaging of body structures
US11931111B2 (en) 2019-09-09 2024-03-19 Covidien Lp Systems and methods for providing surgical guidance
US11234780B2 (en) 2019-09-10 2022-02-01 Auris Health, Inc. Systems and methods for kinematic optimization with shared robotic degrees-of-freedom
US11627924B2 (en) 2019-09-24 2023-04-18 Covidien Lp Systems and methods for image-guided navigation of percutaneously-inserted devices
US10959792B1 (en) 2019-09-26 2021-03-30 Auris Health, Inc. Systems and methods for collision detection and avoidance
WO2021064536A1 (en) 2019-09-30 2021-04-08 Auris Health, Inc. Medical instrument with capstan
US11737835B2 (en) 2019-10-29 2023-08-29 Auris Health, Inc. Braid-reinforced insulation sheath
WO2021137104A1 (en) 2019-12-31 2021-07-08 Auris Health, Inc. Dynamic pulley system
JP2023508719A (ja) 2019-12-31 2023-03-03 オーリス ヘルス インコーポレイテッド 経皮的アクセスのための位置合わせインターフェース
CN114901194A (zh) 2019-12-31 2022-08-12 奥瑞斯健康公司 解剖特征识别和瞄准
US11660147B2 (en) 2019-12-31 2023-05-30 Auris Health, Inc. Alignment techniques for percutaneous access
WO2021137071A1 (en) 2019-12-31 2021-07-08 Auris Health, Inc. Advanced basket drive mode
CN111202651B (zh) * 2020-01-20 2022-01-25 武汉联影智融医疗科技有限公司 手术辅助机器人系统、支撑解锁机构及其解锁方法
US11380060B2 (en) 2020-01-24 2022-07-05 Covidien Lp System and method for linking a segmentation graph to volumetric data
US11847730B2 (en) 2020-01-24 2023-12-19 Covidien Lp Orientation detection in fluoroscopic images
US11819288B2 (en) * 2020-03-19 2023-11-21 Verb Surgical Inc. Trocar pose estimation using machine learning for docking surgical robotic arm to trocar
EP4171427A1 (en) 2020-06-29 2023-05-03 Auris Health, Inc. Systems and methods for detecting contact between a link and an external object
US11357586B2 (en) 2020-06-30 2022-06-14 Auris Health, Inc. Systems and methods for saturated robotic movement
CN115734765A (zh) 2020-06-30 2023-03-03 奥瑞斯健康公司 具有碰撞接近度指示器的机器人医疗系统
US11950950B2 (en) 2020-07-24 2024-04-09 Covidien Lp Zoom detection and fluoroscope movement detection for target overlay

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030105603A1 (en) * 2001-11-30 2003-06-05 Michael Hardesty System for calibrating the axes on a computer numeric controlled machining system and method thereof
US7850642B2 (en) * 2004-03-05 2010-12-14 Hansen Medical, Inc. Methods using a robotic catheter system
CN102341055A (zh) * 2008-12-31 2012-02-01 直观外科手术操作公司 用于定位图像中手术器械的基准标记设计和探测
CN103533909A (zh) * 2011-05-13 2014-01-22 直观外科手术操作公司 用于控制工具运动的标架的位置和定向的估计
US20150297864A1 (en) * 2014-04-21 2015-10-22 Hansen Medical, Inc. Devices, systems, and methods for controlling active drive systems
CN105643642A (zh) * 2014-12-02 2016-06-08 宁夏巨能机器人系统有限公司 一种机器臂的定位方法

Family Cites Families (784)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2556601A (en) 1947-02-10 1951-06-12 Niles Bement Pond Co Multiple tapping head
US2566183A (en) 1947-05-29 1951-08-28 Skilsaw Inc Portable power-driven tool
US2623175A (en) 1949-03-25 1952-12-23 Radiart Corp Reel antenna
US2730699A (en) 1952-02-01 1956-01-10 Gen Dynamics Corp Telemetering system
US2884808A (en) 1957-10-23 1959-05-05 Mueller Co Drive for drilling machine
US3294183A (en) 1964-09-30 1966-12-27 Black & Decker Mfg Co Power driven tools
US3472083A (en) 1967-10-25 1969-10-14 Lawrence S Schnepel Torque wrench
US3513724A (en) 1968-07-17 1970-05-26 Monogram Ind Inc Speed reduction mechanism
US3595074A (en) 1968-10-30 1971-07-27 Clarence Johnson Torque transducer
JPS5025234B1 (zh) 1970-02-20 1975-08-21
JPS4921672Y1 (zh) 1970-08-21 1974-06-10
GB1372327A (en) 1971-10-11 1974-10-30 Commissariat Energie Atomique Articulated manipulator
US3734207A (en) 1971-12-27 1973-05-22 M Fishbein Battery powered orthopedic cutting tool
US3926386A (en) 1974-07-09 1975-12-16 Us Air Force Spool for wire deployment
US3921536A (en) 1975-01-30 1975-11-25 Hall Ski Lift Company Inc Cable grip tester
DE2524605A1 (de) 1975-06-03 1976-12-23 Heinz Peter Dipl Brandstetter Vorrichtung zum messen von mechanischer arbeit und leistung
US4115869A (en) 1976-10-12 1978-09-19 Bell & Howell Company Methods and apparatus for processing data including a characteristic mark or error
SE414272B (sv) 1978-10-17 1980-07-21 Viggo Ab Kanyl- eller kateteraggregat
US4241884A (en) 1979-03-20 1980-12-30 George Lynch Powered device for controlling the rotation of a reel
AT365363B (de) 1979-09-20 1982-01-11 Philips Nv Aufzeichnungs- und/oder wiedergabegeraet
CH643092A5 (de) 1980-02-18 1984-05-15 Gruenbaum Heinrich Leuzinger Vorrichtung zum messen des von einem elektromotor ausgeuebten drehmomentes.
US4357843A (en) 1980-10-31 1982-11-09 Peck-O-Matic, Inc. Tong apparatus for threadedly connecting and disconnecting elongated members
JPS57144633A (en) 1981-03-05 1982-09-07 Inoue Japax Res Inc Wire electrode feeder
US4507026A (en) 1982-09-29 1985-03-26 Boeing Aerospace Company Depth control assembly
US4555960A (en) 1983-03-23 1985-12-03 Cae Electronics, Ltd. Six degree of freedom hand controller
US4644237A (en) 1985-10-17 1987-02-17 International Business Machines Corp. Collision avoidance system
US4688555A (en) 1986-04-25 1987-08-25 Circon Corporation Endoscope with cable compensating mechanism
US4784150A (en) 1986-11-04 1988-11-15 Research Corporation Surgical retractor and blood flow monitor
US4748969A (en) 1987-05-07 1988-06-07 Circon Corporation Multi-lumen core deflecting endoscope
US4745908A (en) 1987-05-08 1988-05-24 Circon Corporation Inspection instrument fexible shaft having deflection compensation means
US4907168A (en) 1988-01-11 1990-03-06 Adolph Coors Company Torque monitoring apparatus
US4857058A (en) 1988-07-11 1989-08-15 Payton Hugh W Support patch for intravenous catheter
US4945790A (en) 1989-08-07 1990-08-07 Arthur Golden Multi-purpose hand tool
JP2750201B2 (ja) 1990-04-13 1998-05-13 オリンパス光学工業株式会社 内視鏡の挿入状態検出装置
US5194791A (en) 1990-07-19 1993-03-16 Mcdonnell Douglas Corporation Compliant stereo vision target
US5350101A (en) 1990-11-20 1994-09-27 Interventional Technologies Inc. Device for advancing a rotatable tube
US5251611A (en) 1991-05-07 1993-10-12 Zehel Wendell E Method and apparatus for conducting exploratory procedures
US5234428A (en) 1991-06-11 1993-08-10 Kaufman David I Disposable electrocautery/cutting instrument with integral continuous smoke evacuation
JP3067346B2 (ja) 1991-10-30 2000-07-17 株式会社町田製作所 内視鏡用重力方向指示装置
JPH05146975A (ja) 1991-11-26 1993-06-15 Bridgestone Corp 多軸電動オートナツトランナ
US5256150A (en) 1991-12-13 1993-10-26 Endovascular Technologies, Inc. Large-diameter expandable sheath and method
US5550953A (en) * 1994-04-20 1996-08-27 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration On-line method and apparatus for coordinated mobility and manipulation of mobile robots
US5207128A (en) 1992-03-23 1993-05-04 Weatherford-Petco, Inc. Tong with floating jaws
US5709661A (en) 1992-04-14 1998-01-20 Endo Sonics Europe B.V. Electronic catheter displacement sensor
US5603318A (en) 1992-04-21 1997-02-18 University Of Utah Research Foundation Apparatus and method for photogrammetric surgical localization
US5408263A (en) 1992-06-16 1995-04-18 Olympus Optical Co., Ltd. Electronic endoscope apparatus
GB2280343A (en) 1993-07-08 1995-01-25 Innovative Care Ltd A laser targeting device for use with image intensifiers
US5524180A (en) 1992-08-10 1996-06-04 Computer Motion, Inc. Automated endoscope system for optimal positioning
US5368564A (en) 1992-12-23 1994-11-29 Angeion Corporation Steerable catheter
US5526812A (en) 1993-06-21 1996-06-18 General Electric Company Display system for enhancing visualization of body structures during medical procedures
NL9301210A (nl) 1993-07-09 1995-02-01 Robert Philippe Koninckx Beeldweergavestelsel met beeldpositiecorrectie.
US5779623A (en) 1993-10-08 1998-07-14 Leonard Medical, Inc. Positioner for medical instruments
US6059718A (en) 1993-10-18 2000-05-09 Olympus Optical Co., Ltd. Endoscope form detecting apparatus in which coil is fixedly mounted by insulating member so that form is not deformed within endoscope
US6154000A (en) 1994-09-07 2000-11-28 Omnitek Research & Development, Inc. Apparatus for providing a controlled deflection and/or actuator apparatus
US5559294A (en) 1994-09-15 1996-09-24 Condux International, Inc. Torque measuring device
DE69528998T2 (de) 1994-10-07 2003-07-03 St Louis University St Louis Chirurgische navigationsanordnung einschliesslich referenz- und ortungssystemen
US6690963B2 (en) 1995-01-24 2004-02-10 Biosense, Inc. System for determining the location and orientation of an invasive medical instrument
US6246898B1 (en) 1995-03-28 2001-06-12 Sonometrics Corporation Method for carrying out a medical procedure using a three-dimensional tracking and imaging system
DE19625850B4 (de) 1995-06-27 2008-01-31 Matsushita Electric Works, Ltd., Kadoma Planetengetriebe
CA2231425A1 (en) 1995-09-20 1997-03-27 Texas Heart Institute Detecting thermal discrepancies in vessel walls
US5769086A (en) 1995-12-06 1998-06-23 Biopsys Medical, Inc. Control system and method for automated biopsy device
US6332089B1 (en) 1996-02-15 2001-12-18 Biosense, Inc. Medical procedures and apparatus using intrabody probes
US6203493B1 (en) 1996-02-15 2001-03-20 Biosense, Inc. Attachment with one or more sensors for precise position determination of endoscopes
US6063095A (en) 1996-02-20 2000-05-16 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US5855583A (en) 1996-02-20 1999-01-05 Computer Motion, Inc. Method and apparatus for performing minimally invasive cardiac procedures
US6436107B1 (en) 1996-02-20 2002-08-20 Computer Motion, Inc. Method and apparatus for performing minimally invasive surgical procedures
US5842390A (en) 1996-02-28 1998-12-01 Frank's Casing Crew And Rental Tools Inc. Dual string backup tong
US5672877A (en) 1996-03-27 1997-09-30 Adac Laboratories Coregistration of multi-modality data in a medical imaging system
US5792135A (en) 1996-05-20 1998-08-11 Intuitive Surgical, Inc. Articulated surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
WO1999050721A1 (en) 1997-09-19 1999-10-07 Massachusetts Institute Of Technology Robotic apparatus
US5797900A (en) 1996-05-20 1998-08-25 Intuitive Surgical, Inc. Wrist mechanism for surgical instrument for performing minimally invasive surgery with enhanced dexterity and sensitivity
US6047080A (en) 1996-06-19 2000-04-04 Arch Development Corporation Method and apparatus for three-dimensional reconstruction of coronary vessels from angiographic images
US5767840A (en) 1996-06-28 1998-06-16 International Business Machines Corporation Six-degrees-of-freedom movement sensor having strain gauge mechanical supports
US5831614A (en) 1996-07-01 1998-11-03 Sun Microsystems, Inc. X-Y viewport scroll using location of display with respect to a point
US6004016A (en) 1996-08-06 1999-12-21 Trw Inc. Motion planning and control for systems with multiple mobile objects
DE19649082C1 (de) 1996-11-27 1998-01-08 Fraunhofer Ges Forschung Vorrichtung zur Fernsteuerung eines Werkzeugs
US8182469B2 (en) 1997-11-21 2012-05-22 Intuitive Surgical Operations, Inc. Surgical accessory clamp and method
US7963913B2 (en) 1996-12-12 2011-06-21 Intuitive Surgical Operations, Inc. Instrument interface of a robotic surgical system
US6331181B1 (en) 1998-12-08 2001-12-18 Intuitive Surgical, Inc. Surgical robotic tools, data architecture, and use
EP1491139B1 (en) 1997-01-03 2007-08-29 Biosense Webster, Inc. Bend-responsive catheter
DE69815260T2 (de) 1997-01-24 2004-05-13 Koninklijke Philips Electronics N.V. Bildanzeigevorrichtung
DE19717108A1 (de) 1997-04-23 1998-11-05 Stm Medtech Starnberg Stülpschlauchsystem
US6185478B1 (en) 1997-05-29 2001-02-06 Seiko Epson Corporation Printing apparatus, control method for a printing apparatus, and recording medium for recording a control program for a printing apparatus
US6231565B1 (en) 1997-06-18 2001-05-15 United States Surgical Corporation Robotic arm DLUs for performing surgical tasks
US6246784B1 (en) 1997-08-19 2001-06-12 The United States Of America As Represented By The Department Of Health And Human Services Method for segmenting medical images and detecting surface anomalies in anatomical structures
US5921968A (en) 1997-11-25 1999-07-13 Merit Medical Systems, Inc. Valve apparatus with adjustable quick-release mechanism
GB2334270A (en) 1998-02-14 1999-08-18 Weatherford Lamb Apparatus for attachment to pipe handling arm
US20080177285A1 (en) 1998-02-24 2008-07-24 Hansen Medical, Inc. Surgical instrument
US6810281B2 (en) 2000-12-21 2004-10-26 Endovia Medical, Inc. Medical mapping system
IL123646A (en) 1998-03-11 2010-05-31 Refael Beyar Remote control catheterization
FR2779339B1 (fr) 1998-06-09 2000-10-13 Integrated Surgical Systems Sa Procede et appareil de mise en correspondance pour la chirurgie robotisee, et dispositif de mise en correspondance en comportant application
US6425865B1 (en) 1998-06-12 2002-07-30 The University Of British Columbia Robotically assisted medical ultrasound
AU5391999A (en) 1998-08-04 2000-02-28 Intuitive Surgical, Inc. Manipulator positioning linkage for robotic surgery
US6198974B1 (en) 1998-08-14 2001-03-06 Cordis Webster, Inc. Bi-directional steerable catheter
US6171234B1 (en) 1998-09-25 2001-01-09 Scimed Life Systems, Inc. Imaging gore loading tool
WO2000028882A2 (en) 1998-11-18 2000-05-25 Microdexterity Systems, Inc. Medical manipulator for use with an imaging device
US6459926B1 (en) 1998-11-20 2002-10-01 Intuitive Surgical, Inc. Repositioning and reorientation of master/slave relationship in minimally invasive telesurgery
US6620173B2 (en) 1998-12-08 2003-09-16 Intuitive Surgical, Inc. Method for introducing an end effector to a surgical site in minimally invasive surgery
US6493608B1 (en) 1999-04-07 2002-12-10 Intuitive Surgical, Inc. Aspects of a control system of a minimally invasive surgical apparatus
US6394998B1 (en) 1999-01-22 2002-05-28 Intuitive Surgical, Inc. Surgical tools for use in minimally invasive telesurgical applications
US6084371A (en) 1999-02-19 2000-07-04 Lockheed Martin Energy Research Corporation Apparatus and methods for a human de-amplifier system
AU3187000A (en) 1999-03-07 2000-09-28 Discure Ltd. Method and apparatus for computerized surgery
US6179776B1 (en) 1999-03-12 2001-01-30 Scimed Life Systems, Inc. Controllable endoscopic sheath apparatus and related method of use
US6501981B1 (en) 1999-03-16 2002-12-31 Accuray, Inc. Apparatus and method for compensating for respiratory and patient motions during treatment
US6289579B1 (en) 1999-03-23 2001-09-18 Motorola, Inc. Component alignment and transfer apparatus
US6594552B1 (en) 1999-04-07 2003-07-15 Intuitive Surgical, Inc. Grip strength with tactile feedback for robotic surgery
US10820949B2 (en) 1999-04-07 2020-11-03 Intuitive Surgical Operations, Inc. Medical robotic system with dynamically adjustable slave manipulator characteristics
US8442618B2 (en) 1999-05-18 2013-05-14 Mediguide Ltd. Method and system for delivering a medical device to a selected position within a lumen
US7386339B2 (en) 1999-05-18 2008-06-10 Mediguide Ltd. Medical imaging and navigation system
JP2003508133A (ja) 1999-08-27 2003-03-04 ヴォルシュレーガー ヘルムート カテーテル取扱装置
US8768516B2 (en) 2009-06-30 2014-07-01 Intuitive Surgical Operations, Inc. Control of medical robotic system manipulator about kinematic singularities
US9272416B2 (en) * 1999-09-17 2016-03-01 Intuitive Surgical Operations, Inc. Phantom degrees of freedom for manipulating the movement of mechanical bodies
US8004229B2 (en) 2005-05-19 2011-08-23 Intuitive Surgical Operations, Inc. Software center and highly configurable robotic systems for surgery and other uses
US8271130B2 (en) 2009-03-09 2012-09-18 Intuitive Surgical Operations, Inc. Master controller having redundant degrees of freedom and added forces to create internal motion
US7037258B2 (en) 1999-09-24 2006-05-02 Karl Storz Imaging, Inc. Image orientation for endoscopic video displays
US7366562B2 (en) 2003-10-17 2008-04-29 Medtronic Navigation, Inc. Method and apparatus for surgical navigation
US6466198B1 (en) 1999-11-05 2002-10-15 Innoventions, Inc. View navigation and magnification of a hand-held device with a display
FI114282B (fi) 1999-11-05 2004-09-30 Polar Electro Oy Menetelmä, järjestely ja sykemittari sydämen lyönnin tunnistamiseksi
US6755797B1 (en) * 1999-11-29 2004-06-29 Bowles Fluidics Corporation Method and apparatus for producing oscillation of a bladder
US7747312B2 (en) 2000-01-04 2010-06-29 George Mason Intellectual Properties, Inc. System and method for automatic shape registration and instrument tracking
US6427783B2 (en) 2000-01-12 2002-08-06 Baker Hughes Incorporated Steerable modular drilling assembly
US6458076B1 (en) 2000-02-01 2002-10-01 5 Star Medical Multi-lumen medical device
US6615109B1 (en) 2000-02-10 2003-09-02 Sony Corporation System and method for generating an action of an automatic apparatus
DE10011790B4 (de) 2000-03-13 2005-07-14 Siemens Ag Medizinisches Instrument zum Einführen in ein Untersuchungsobjekt, sowie medizinisches Untersuchungs- oder Behandlungsgerät
US7181289B2 (en) 2000-03-20 2007-02-20 Pflueger D Russell Epidural nerve root access catheter and treatment methods
US6858005B2 (en) 2000-04-03 2005-02-22 Neo Guide Systems, Inc. Tendon-driven endoscope and methods of insertion
US6837846B2 (en) 2000-04-03 2005-01-04 Neo Guide Systems, Inc. Endoscope having a guide tube
DE10025285A1 (de) * 2000-05-22 2001-12-06 Siemens Ag Vollautomatische, robotergestützte Kameraführung unter Verwendung von Positionssensoren für laparoskopische Eingriffe
DE10033723C1 (de) 2000-07-12 2002-02-21 Siemens Ag Visualisierung von Positionen und Orientierung von intrakorporal geführten Instrumenten während eines chirurgischen Eingriffs
WO2002007587A2 (en) 2000-07-14 2002-01-31 Xillix Technologies Corporation Compact fluorescent endoscopy video system
US20020100254A1 (en) 2000-10-12 2002-08-01 Dsd Communications, Inc. System and method for targeted advertising and marketing
DE50113363D1 (de) 2000-10-20 2008-01-24 Deere & Co Bedienungselement
US6487940B2 (en) 2001-01-23 2002-12-03 Associated Toolmakers Incorporated Nut driver
US6676557B2 (en) 2001-01-23 2004-01-13 Black & Decker Inc. First stage clutch
CN100491914C (zh) 2001-01-30 2009-05-27 Z-凯特公司 器具的校准器及跟踪器系统
US8414505B1 (en) 2001-02-15 2013-04-09 Hansen Medical, Inc. Catheter driver system
EP3097863A1 (en) 2001-02-15 2016-11-30 Hansen Medical, Inc. Flexible instrument
US7766894B2 (en) 2001-02-15 2010-08-03 Hansen Medical, Inc. Coaxial catheter system
US6612143B1 (en) 2001-04-13 2003-09-02 Orametrix, Inc. Robot and method for bending orthodontic archwires and other medical devices
JP3808321B2 (ja) 2001-04-16 2006-08-09 ファナック株式会社 ロボット制御装置
US6640412B2 (en) 2001-04-26 2003-11-04 Endovascular Technologies, Inc. Method for loading a stent using a collapsing machine
US7766856B2 (en) 2001-05-06 2010-08-03 Stereotaxis, Inc. System and methods for advancing a catheter
EP1389958B1 (en) 2001-05-06 2008-10-29 Stereotaxis, Inc. System for advancing a catheter
US7635342B2 (en) 2001-05-06 2009-12-22 Stereotaxis, Inc. System and methods for medical device advancement and rotation
US7607440B2 (en) 2001-06-07 2009-10-27 Intuitive Surgical, Inc. Methods and apparatus for surgical planning
US20060199999A1 (en) 2001-06-29 2006-09-07 Intuitive Surgical Inc. Cardiac tissue ablation instrument with flexible wrist
CA2351993C (en) 2001-06-29 2003-02-18 New World Technologie Inc. Torque tool
US20040243147A1 (en) 2001-07-03 2004-12-02 Lipow Kenneth I. Surgical robot and robotic controller
US6835173B2 (en) 2001-10-05 2004-12-28 Scimed Life Systems, Inc. Robotic endoscope
US6812842B2 (en) 2001-12-20 2004-11-02 Calypso Medical Technologies, Inc. System for excitation of a leadless miniature marker
US7277833B2 (en) 2002-02-06 2007-10-02 Siemens Corporate Research, Inc. Modeling of the workspace and active pending behavior of an endscope using filter functions
US7747311B2 (en) 2002-03-06 2010-06-29 Mako Surgical Corp. System and method for interactive haptic positioning of a medical device
DE10210646A1 (de) 2002-03-11 2003-10-09 Siemens Ag Verfahren zur Bilddarstellung eines in einen Untersuchungsbereich eines Patienten eingebrachten medizinischen Instruments
US20050256398A1 (en) 2004-05-12 2005-11-17 Hastings Roger N Systems and methods for interventional medicine
US7998062B2 (en) 2004-03-29 2011-08-16 Superdimension, Ltd. Endoscope structures and techniques for navigating to a target in branched structure
CN1658789A (zh) 2002-04-17 2005-08-24 超级测量有限公司 内窥镜结构和用于引导到分枝组织中一目标的技术
US7822466B2 (en) 2002-04-25 2010-10-26 The Johns Hopkins University Robot for computed tomography interventions
US6830545B2 (en) 2002-05-13 2004-12-14 Everest Vit Tube gripper integral with controller for endoscope of borescope
WO2003101300A2 (en) 2002-06-04 2003-12-11 Koninklijke Philips Electronics N.V. Rotational angiography based hybrid 3-d reconstruction of coronary arterial structure
CA2489584C (en) 2002-06-17 2011-02-15 Mazor Surgical Technologies Ltd. Robot for use with orthopaedic inserts
WO2004000151A1 (en) 2002-06-25 2003-12-31 Michael Nicholas Dalton Apparatus and method for superimposing images over an object
US7044936B2 (en) 2002-08-21 2006-05-16 Arrow International Inc. Catheter connector with pivot lever spring latch
AU2003275402A1 (en) 2002-09-30 2004-04-19 Stereotaxis, Inc. A method and apparatus for improved surgical navigation employing electronic indentification with automatically actuated flexible medical devices
KR100449765B1 (ko) 2002-10-12 2004-09-22 삼성에스디아이 주식회사 리튬전지용 리튬메탈 애노드
US6899672B2 (en) 2002-11-08 2005-05-31 Scimed Life Systems, Inc. Endoscopic imaging system including removable deflection device
WO2004044847A1 (en) 2002-11-13 2004-05-27 Koninklijke Philips Electronics N.V. Medical viewing system and method for detecting boundary structures
US7599730B2 (en) 2002-11-19 2009-10-06 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US7697972B2 (en) 2002-11-19 2010-04-13 Medtronic Navigation, Inc. Navigation system for cardiac therapies
US20040186349A1 (en) 2002-12-24 2004-09-23 Usgi Medical Corp. Apparatus and methods for achieving endoluminal access
US7660623B2 (en) 2003-01-30 2010-02-09 Medtronic Navigation, Inc. Six degree of freedom alignment display for medical procedures
EP1442720A1 (en) 2003-01-31 2004-08-04 Tre Esse Progettazione Biomedica S.r.l Apparatus for the maneuvering of flexible catheters in the human cardiovascular system
US7246273B2 (en) 2003-02-28 2007-07-17 Sony Corporation Method of, apparatus and graphical user interface for automatic diagnostics
FR2852226B1 (fr) 2003-03-10 2005-07-15 Univ Grenoble 1 Instrument medical localise a ecran orientable
US7203277B2 (en) 2003-04-25 2007-04-10 Brainlab Ag Visualization device and method for combined patient and object image data
EP1644782B1 (en) 2003-06-20 2009-03-04 Fanuc Robotics America, Inc. Multiple robot arm tracking and mirror jog
US20050004579A1 (en) 2003-06-27 2005-01-06 Schneider M. Bret Computer-assisted manipulation of catheters and guide wires
US9002518B2 (en) 2003-06-30 2015-04-07 Intuitive Surgical Operations, Inc. Maximum torque driving of robotic surgical tools in robotic surgical systems
US7822461B2 (en) 2003-07-11 2010-10-26 Siemens Medical Solutions Usa, Inc. System and method for endoscopic path planning
EP2316328B1 (en) 2003-09-15 2012-05-09 Super Dimension Ltd. Wrap-around holding device for use with bronchoscopes
US7835778B2 (en) 2003-10-16 2010-11-16 Medtronic Navigation, Inc. Method and apparatus for surgical navigation of a multiple piece construct for implantation
US7280863B2 (en) 2003-10-20 2007-10-09 Magnetecs, Inc. System and method for radar-assisted catheter guidance and control
US20050107917A1 (en) 2003-11-14 2005-05-19 Smith Paul E. Robotic system for sequencing multiple specimens between a holding tray and a microscope
WO2005053912A1 (en) 2003-12-01 2005-06-16 Newsouth Innovations Pty Limited A method for controlling a system formed from interdependent units
US7172580B2 (en) 2003-12-11 2007-02-06 Cook Incorporated Hemostatic valve assembly
US7901348B2 (en) 2003-12-12 2011-03-08 University Of Washington Catheterscope 3D guidance and interface system
US8287584B2 (en) 2005-11-14 2012-10-16 Sadra Medical, Inc. Medical implant deployment tool
JP2005192632A (ja) 2003-12-26 2005-07-21 Olympus Corp 被検体内移動状態検出システム
US8021301B2 (en) * 2003-12-26 2011-09-20 Fujifilm Corporation Ultrasonic image processing apparatus, ultrasonic image processing method and ultrasonic image processing program
JP4651379B2 (ja) 2003-12-26 2011-03-16 富士フイルム株式会社 超音波画像処理装置及び超音波画像処理方法、並びに、超音波画像処理プログラム
US20050193451A1 (en) 2003-12-30 2005-09-01 Liposonix, Inc. Articulating arm for medical procedures
US7344494B2 (en) 2004-02-09 2008-03-18 Karl Storz Development Corp. Endoscope with variable direction of view module
US8046049B2 (en) 2004-02-23 2011-10-25 Biosense Webster, Inc. Robotically guided catheter
US7204168B2 (en) 2004-02-25 2007-04-17 The University Of Manitoba Hand controller and wrist device
WO2005087128A1 (en) 2004-03-05 2005-09-22 Hansen Medical, Inc. Robotic catheter system
US8052636B2 (en) 2004-03-05 2011-11-08 Hansen Medical, Inc. Robotic catheter system and methods
AU2005228956B2 (en) 2004-03-23 2011-08-18 Boston Scientific Limited In-vivo visualization system
US9345456B2 (en) 2004-03-24 2016-05-24 Devicor Medical Products, Inc. Biopsy device
WO2005092188A1 (ja) 2004-03-29 2005-10-06 Olympus Corporation 被検体内位置検出システム
JP3922284B2 (ja) 2004-03-31 2007-05-30 有限会社エスアールジェイ 保持装置
US20070208252A1 (en) 2004-04-21 2007-09-06 Acclarent, Inc. Systems and methods for performing image guided procedures within the ear, nose, throat and paranasal sinuses
US7720521B2 (en) 2004-04-21 2010-05-18 Acclarent, Inc. Methods and devices for performing procedures within the ear, nose, throat and paranasal sinuses
US7462175B2 (en) 2004-04-21 2008-12-09 Acclarent, Inc. Devices, systems and methods for treating disorders of the ear, nose and throat
DE102004020465B3 (de) 2004-04-26 2005-09-01 Aumann Gmbh Drahtzugregler für Wickelmaschinen
US8155403B2 (en) 2004-05-05 2012-04-10 University Of Iowa Research Foundation Methods and devices for airway tree labeling and/or matching
US7303528B2 (en) 2004-05-18 2007-12-04 Scimed Life Systems, Inc. Serialization of single use endoscopes
US7632265B2 (en) 2004-05-28 2009-12-15 St. Jude Medical, Atrial Fibrillation Division, Inc. Radio frequency ablation servo catheter and method
US10258285B2 (en) 2004-05-28 2019-04-16 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for automated creation of ablation lesions
US7974674B2 (en) 2004-05-28 2011-07-05 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic surgical system and method for surface modeling
US20060209019A1 (en) * 2004-06-01 2006-09-21 Energid Technologies Corporation Magnetic haptic feedback systems and methods for virtual reality environments
IL162318A (en) 2004-06-03 2011-07-31 Tal Wenderow Transmission for a remote catheterization system
US7197354B2 (en) 2004-06-21 2007-03-27 Mediguide Ltd. System for determining the position and orientation of a catheter
US7772541B2 (en) 2004-07-16 2010-08-10 Luna Innnovations Incorporated Fiber optic position and/or shape sensing based on rayleigh scatter
US8005537B2 (en) 2004-07-19 2011-08-23 Hansen Medical, Inc. Robotically controlled intravascular tissue injection system
US20060025668A1 (en) 2004-08-02 2006-02-02 Peterson Thomas H Operating table with embedded tracking technology
US10809071B2 (en) * 2017-10-17 2020-10-20 AI Incorporated Method for constructing a map while performing work
US8239002B2 (en) 2004-08-12 2012-08-07 Novatek Medical Ltd. Guiding a tool for medical treatment by detecting a source of radioactivity
US7395116B2 (en) 2004-08-19 2008-07-01 Medtronic, Inc. Lead body-to-connector transition zone
JP4709513B2 (ja) 2004-08-19 2011-06-22 オリンパス株式会社 電動湾曲制御装置
JP4695420B2 (ja) 2004-09-27 2011-06-08 オリンパス株式会社 湾曲制御装置
US7831294B2 (en) 2004-10-07 2010-11-09 Stereotaxis, Inc. System and method of surgical imagining with anatomical overlay for navigation of surgical devices
US7536216B2 (en) 2004-10-18 2009-05-19 Siemens Medical Solutions Usa, Inc. Method and system for virtual endoscopy with guidance for biopsy
US9049954B2 (en) 2004-11-03 2015-06-09 Cambridge International, Inc. Hanger bar assembly for architectural mesh and the like
JP4874259B2 (ja) 2004-11-23 2012-02-15 ヌームアールエックス・インコーポレーテッド 標的部位にアクセスするための操縦可能な装置
US20060200026A1 (en) 2005-01-13 2006-09-07 Hansen Medical, Inc. Robotic catheter system
WO2006078678A2 (en) 2005-01-18 2006-07-27 Traxtal Inc. Method and apparatus for guiding an instrument to a target in the lung
US7763015B2 (en) 2005-01-24 2010-07-27 Intuitive Surgical Operations, Inc. Modular manipulator support for robotic surgery
US7314097B2 (en) 2005-02-24 2008-01-01 Black & Decker Inc. Hammer drill with a mode changeover mechanism
US8335357B2 (en) 2005-03-04 2012-12-18 Kabushiki Kaisha Toshiba Image processing apparatus
US8182433B2 (en) 2005-03-04 2012-05-22 Endosense Sa Medical apparatus system having optical fiber load sensing capability
US8945095B2 (en) 2005-03-30 2015-02-03 Intuitive Surgical Operations, Inc. Force and torque sensing for surgical instruments
US20060237205A1 (en) 2005-04-21 2006-10-26 Eastway Fair Company Limited Mode selector mechanism for an impact driver
WO2006119495A2 (en) 2005-05-03 2006-11-09 Hansen Medical, Inc. Robotic catheter system
US7789874B2 (en) 2005-05-03 2010-09-07 Hansen Medical, Inc. Support assembly for robotic catheter system
US20070016130A1 (en) 2005-05-06 2007-01-18 Leeflang Stephen A Complex Shaped Steerable Catheters and Methods for Making and Using Them
US7860609B2 (en) 2005-05-06 2010-12-28 Fanuc Robotics America, Inc. Robot multi-arm control system
US20060258935A1 (en) 2005-05-12 2006-11-16 John Pile-Spellman System for autonomous robotic navigation
US9789608B2 (en) 2006-06-29 2017-10-17 Intuitive Surgical Operations, Inc. Synthetic representation of a surgical robot
US10555775B2 (en) 2005-05-16 2020-02-11 Intuitive Surgical Operations, Inc. Methods and system for performing 3-D tool tracking by fusion of sensor and/or camera derived data during minimally invasive robotic surgery
US7756563B2 (en) 2005-05-23 2010-07-13 The Penn State Research Foundation Guidance method based on 3D-2D pose estimation and 3D-CT registration with application to live bronchoscopy
US7889905B2 (en) 2005-05-23 2011-02-15 The Penn State Research Foundation Fast 3D-2D image registration method with application to continuously guided endoscopy
JP4813190B2 (ja) 2005-05-26 2011-11-09 オリンパスメディカルシステムズ株式会社 カプセル型医療装置
US8104479B2 (en) 2005-06-23 2012-01-31 Volcano Corporation Pleated bag for interventional pullback systems
US20070005002A1 (en) 2005-06-30 2007-01-04 Intuitive Surgical Inc. Robotic surgical instruments for irrigation, aspiration, and blowing
WO2007005976A1 (en) 2005-07-01 2007-01-11 Hansen Medical, Inc. Robotic catheter system
GB2428110A (en) 2005-07-06 2007-01-17 Armstrong Healthcare Ltd A robot and method of registering a robot.
US20070123748A1 (en) 2005-07-14 2007-05-31 Dwight Meglan Robot for minimally invasive interventions
US20070043455A1 (en) 2005-07-26 2007-02-22 Viswanathan Raju R Apparatus and methods for automated sequential movement control for operation of a remote navigation system
US8583220B2 (en) 2005-08-02 2013-11-12 Biosense Webster, Inc. Standardization of catheter-based treatment for atrial fibrillation
US8657814B2 (en) 2005-08-22 2014-02-25 Medtronic Ablation Frontiers Llc User interface for tissue ablation system
CA2620196A1 (en) 2005-08-24 2007-03-01 Traxtal Inc. System, method and devices for navigated flexible endoscopy
US20070073136A1 (en) 2005-09-15 2007-03-29 Robert Metzger Bone milling with image guided surgery
US8079950B2 (en) 2005-09-29 2011-12-20 Intuitive Surgical Operations, Inc. Autofocus and/or autoscaling in telesurgery
US7835785B2 (en) 2005-10-04 2010-11-16 Ascension Technology Corporation DC magnetic-based position and orientation monitoring system for tracking medical instruments
JP4763420B2 (ja) 2005-10-27 2011-08-31 オリンパスメディカルシステムズ株式会社 内視鏡用操作補助装置
JP5121132B2 (ja) 2005-11-02 2013-01-16 オリンパスメディカルシステムズ株式会社 内視鏡システム、及び内視鏡用操作補助装置
US7384351B2 (en) 2005-11-22 2008-06-10 Bridgestone Sports Co., Ltd. Golf ball
US8303505B2 (en) 2005-12-02 2012-11-06 Abbott Cardiovascular Systems Inc. Methods and apparatuses for image guided medical procedures
US20070149946A1 (en) 2005-12-07 2007-06-28 Viswanathan Raju R Advancer system for coaxial medical devices
US8190238B2 (en) 2005-12-09 2012-05-29 Hansen Medical, Inc. Robotic catheter system and methods
US8498691B2 (en) 2005-12-09 2013-07-30 Hansen Medical, Inc. Robotic catheter system and methods
DE102005059271B4 (de) 2005-12-12 2019-02-21 Siemens Healthcare Gmbh Kathetervorrichtung
US9586327B2 (en) 2005-12-20 2017-03-07 Intuitive Surgical Operations, Inc. Hook and pivot electro-mechanical interface for robotic medical arms
US8672922B2 (en) 2005-12-20 2014-03-18 Intuitive Surgical Operations, Inc. Wireless communication in a robotic surgical system
US7819859B2 (en) 2005-12-20 2010-10-26 Intuitive Surgical Operations, Inc. Control system for reducing internally generated frictional and inertial resistance to manual positioning of a surgical manipulator
US9266239B2 (en) 2005-12-27 2016-02-23 Intuitive Surgical Operations, Inc. Constraint based control in a minimally invasive surgical apparatus
US9962066B2 (en) 2005-12-30 2018-05-08 Intuitive Surgical Operations, Inc. Methods and apparatus to shape flexible entry guides for minimally invasive surgery
US7930065B2 (en) 2005-12-30 2011-04-19 Intuitive Surgical Operations, Inc. Robotic surgery system including position sensors using fiber bragg gratings
US8469945B2 (en) 2006-01-25 2013-06-25 Intuitive Surgical Operations, Inc. Center robotic arm with five-bar spherical linkage for endoscopic camera
US8161977B2 (en) 2006-01-31 2012-04-24 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
EP1815950A1 (en) 2006-02-03 2007-08-08 The European Atomic Energy Community (EURATOM), represented by the European Commission Robotic surgical system for performing minimally invasive medical procedures
EP1815949A1 (en) 2006-02-03 2007-08-08 The European Atomic Energy Community (EURATOM), represented by the European Commission Medical robotic system with manipulator arm of the cylindrical coordinate type
JP4789000B2 (ja) 2006-02-16 2011-10-05 Smc株式会社 減速比自動切換装置
US9675375B2 (en) 2006-03-29 2017-06-13 Ethicon Llc Ultrasonic surgical system and method
US8191359B2 (en) 2006-04-13 2012-06-05 The Regents Of The University Of California Motion estimation using hidden markov model processing in MRI and other applications
US8112292B2 (en) 2006-04-21 2012-02-07 Medtronic Navigation, Inc. Method and apparatus for optimizing a therapy
US8628520B2 (en) 2006-05-02 2014-01-14 Biosense Webster, Inc. Catheter with omni-directional optical lesion evaluation
JP4822142B2 (ja) 2006-05-02 2011-11-24 国立大学法人名古屋大学 内視鏡挿入支援システム及び内視鏡挿入支援方法
DE102006021373A1 (de) 2006-05-08 2007-11-15 Siemens Ag Röntgendiagnostikeinrichtung
EP1854425A1 (de) * 2006-05-11 2007-11-14 BrainLAB AG Medizintechnische Positionsbestimmung mit redundanten Positionserfassungseinrichtungen und Prioritätsgewichtung für die Positionserfassungseinrichtungen
EP2329788A3 (en) 2006-05-17 2011-11-16 Hansen Medical, Inc. Robotic instrument system
CN101522134B (zh) 2006-06-05 2012-06-27 泰克尼恩研究和发展基金有限公司 挠性针的受控导向
US7505810B2 (en) 2006-06-13 2009-03-17 Rhythmia Medical, Inc. Non-contact cardiac mapping, including preprocessing
US8419717B2 (en) 2006-06-13 2013-04-16 Intuitive Surgical Operations, Inc. Control system configured to compensate for non-ideal actuator-to-joint linkage characteristics in a medical robotic system
US9345387B2 (en) 2006-06-13 2016-05-24 Intuitive Surgical Operations, Inc. Preventing instrument/tissue collisions
EP2040635A1 (en) 2006-06-14 2009-04-01 MacDonald Dettwiler & Associates Inc. Surgical manipulator with right-angle pulley drive mechanisms
US8303449B2 (en) 2006-08-01 2012-11-06 Techtronic Power Tools Technology Limited Automatic transmission for a power tool
JP4755047B2 (ja) 2006-08-08 2011-08-24 テルモ株式会社 作業機構及びマニピュレータ
US8040127B2 (en) 2006-08-15 2011-10-18 General Electric Company Multi-sensor distortion mapping method and system
JP4878526B2 (ja) 2006-09-05 2012-02-15 国立大学法人 名古屋工業大学 可撓性線状体の圧縮力計測装置
US8150498B2 (en) 2006-09-08 2012-04-03 Medtronic, Inc. System for identification of anatomical landmarks
US7824328B2 (en) 2006-09-18 2010-11-02 Stryker Corporation Method and apparatus for tracking a surgical instrument during surgery
CN100546540C (zh) 2006-09-19 2009-10-07 上海宏桐实业有限公司 心内膜三维导航系统
US7940977B2 (en) 2006-10-25 2011-05-10 Rcadia Medical Imaging Ltd. Method and system for automatic analysis of blood vessel structures to identify calcium or soft plaque pathologies
US20080108870A1 (en) 2006-11-06 2008-05-08 Wiita Bruce E Apparatus and method for stabilizing an image from an endoscopic camera
US9129359B2 (en) 2006-11-10 2015-09-08 Covidien Lp Adaptive navigation technique for navigating a catheter through a body channel or cavity
US20140163664A1 (en) 2006-11-21 2014-06-12 David S. Goldsmith Integrated system for the ballistic and nonballistic infixion and retrieval of implants with or without drug targeting
US7936922B2 (en) 2006-11-22 2011-05-03 Adobe Systems Incorporated Method and apparatus for segmenting images
EP2087469A2 (en) 2006-12-01 2009-08-12 Thomson Licensing Estimating a location of an object in an image
US7699809B2 (en) 2006-12-14 2010-04-20 Urmey William F Catheter positioning system
DE102006061178A1 (de) 2006-12-22 2008-06-26 Siemens Ag System zur Durchführung und Überwachung minimal-invasiver Eingriffe
US7783133B2 (en) 2006-12-28 2010-08-24 Microvision, Inc. Rotation compensation and image stabilization system
US9220439B2 (en) 2006-12-29 2015-12-29 St. Jude Medical, Atrial Fibrillation Division, Inc. Navigational reference dislodgement detection method and system
US20080183068A1 (en) 2007-01-25 2008-07-31 Warsaw Orthopedic, Inc. Integrated Visualization of Surgical Navigational and Neural Monitoring Information
US20080183188A1 (en) 2007-01-25 2008-07-31 Warsaw Orthopedic, Inc. Integrated Surgical Navigational and Neuromonitoring System
WO2008095032A2 (en) 2007-01-30 2008-08-07 Hansen Medical, Inc. Robotic instrument systems controlled using kinematics and mechanics models
US20080183064A1 (en) 2007-01-30 2008-07-31 General Electric Company Multi-sensor distortion detection method and system
US9037215B2 (en) 2007-01-31 2015-05-19 The Penn State Research Foundation Methods and apparatus for 3D route planning through hollow organs
US8672836B2 (en) 2007-01-31 2014-03-18 The Penn State Research Foundation Method and apparatus for continuous guidance of endoscopy
US20080195081A1 (en) 2007-02-02 2008-08-14 Hansen Medical, Inc. Spinal surgery methods using a robotic instrument system
JP4914735B2 (ja) 2007-02-14 2012-04-11 オリンパスメディカルシステムズ株式会社 処置具の位置制御を行う内視鏡システム
US20080249536A1 (en) 2007-02-15 2008-10-09 Hansen Medical, Inc. Interface assembly for controlling orientation of robotically controlled medical instrument
EP2143038A4 (en) 2007-02-20 2011-01-26 Philip L Gildenberg VIDEOSTEREREOTAXY- AND AUDIOSTEREOTAXY-ASSISTED SURGICAL PROCEDURES AND METHODS
US20080214925A1 (en) 2007-03-01 2008-09-04 Civco Medical Instruments Co., Inc. Device for precision positioning of instruments at a mri scanner
US8542900B2 (en) 2007-03-08 2013-09-24 Sync-Rx Ltd. Automatic reduction of interfering elements from an image stream of a moving organ
EP2117436A4 (en) 2007-03-12 2011-03-02 David Tolkowsky DEVICES AND METHODS FOR PERFORMING MEDICAL OPERATIONS IN ARBORESCENT LUMINUM STRUCTURES
JP4550849B2 (ja) 2007-03-22 2010-09-22 株式会社東芝 アーム搭載移動ロボット
EP1972416B1 (en) 2007-03-23 2018-04-25 Honda Research Institute Europe GmbH Robots with occlusion avoidance functionality
US8391957B2 (en) 2007-03-26 2013-03-05 Hansen Medical, Inc. Robotic catheter systems and methods
US7695154B2 (en) 2007-04-05 2010-04-13 Dpm Associates, Llc Illuminating footwear accessory
JP5177352B2 (ja) 2007-04-10 2013-04-03 国立大学法人 名古屋工業大学 線状体の駆動装置
US8738181B2 (en) 2007-04-16 2014-05-27 Alexander Greer Methods, devices, and systems for automated movements involving medical robots
JP5444209B2 (ja) 2007-04-16 2014-03-19 ニューロアーム サージカル リミテッド フレームマッピングおよびフォースフィードバックの方法、装置およびシステム
EP2142071B1 (en) 2007-04-20 2018-04-04 Cook Medical Technologies LLC Steerable overtube
EP2142095A1 (en) 2007-05-02 2010-01-13 Earlysense Ltd. Monitoring, predicting and treating clinical episodes
US8934961B2 (en) 2007-05-18 2015-01-13 Biomet Manufacturing, Llc Trackable diagnostic scope apparatus and methods of use
US20090030307A1 (en) 2007-06-04 2009-01-29 Assaf Govari Intracorporeal location system with movement compensation
WO2008154408A1 (en) 2007-06-06 2008-12-18 Tobey Wayland E Modular hybrid snake arm
US9138129B2 (en) 2007-06-13 2015-09-22 Intuitive Surgical Operations, Inc. Method and system for moving a plurality of articulated instruments in tandem back towards an entry guide
US9089256B2 (en) 2008-06-27 2015-07-28 Intuitive Surgical Operations, Inc. Medical robotic system providing an auxiliary view including range of motion limitations for articulatable instruments extending out of a distal end of an entry guide
US9084623B2 (en) * 2009-08-15 2015-07-21 Intuitive Surgical Operations, Inc. Controller assisted reconfiguration of an articulated instrument during movement into and out of an entry guide
US9096033B2 (en) 2007-06-13 2015-08-04 Intuitive Surgical Operations, Inc. Surgical system instrument sterile adapter
US20080319491A1 (en) 2007-06-19 2008-12-25 Ryan Schoenefeld Patient-matched surgical component and methods of use
EP2158834A4 (en) 2007-06-20 2012-12-05 Olympus Medical Systems Corp ENDOSCOPIC SYSTEM, IMAGING SYSTEM, AND IMAGE PROCESSING DEVICE
US20130165945A9 (en) 2007-08-14 2013-06-27 Hansen Medical, Inc. Methods and devices for controlling a shapeable instrument
EP2626030A3 (en) 2007-08-14 2017-03-08 Koninklijke Philips N.V. Robotic instrument systems and methods utilizing optical fiber sensors
US20090076476A1 (en) 2007-08-15 2009-03-19 Hansen Medical, Inc. Systems and methods employing force sensing for mapping intra-body tissue
US7998020B2 (en) 2007-08-21 2011-08-16 Stereotaxis, Inc. Apparatus for selectively rotating and/or advancing an elongate device
US20090082722A1 (en) 2007-08-21 2009-03-26 Munger Gareth T Remote navigation advancer devices and methods of use
ES2442007T3 (es) 2007-08-28 2014-02-07 Marel A/S Dispositivo de agarre, por ejemplo para un robot
ES2661490T3 (es) 2007-09-13 2018-04-02 Toby D. Henderson Sistema de posicionador de pacientes
US8180428B2 (en) 2007-10-03 2012-05-15 Medtronic, Inc. Methods and systems for use in selecting cardiac pacing sites
US10498269B2 (en) 2007-10-05 2019-12-03 Covidien Lp Powered surgical stapling device
CN100522507C (zh) 2007-10-19 2009-08-05 哈尔滨工业大学 机器人灵巧手手指内集成电路板之间的柔性连线结构
US8396595B2 (en) 2007-11-01 2013-03-12 Honda Motor Co., Ltd. Real-time self collision and obstacle avoidance using weighting matrix
JP2009139187A (ja) 2007-12-05 2009-06-25 Sumitomo Heavy Ind Ltd トルク測定装置
JP5017076B2 (ja) 2007-12-21 2012-09-05 テルモ株式会社 マニピュレータシステム及びマニピュレータの制御方法
US8473031B2 (en) 2007-12-26 2013-06-25 Intuitive Surgical Operations, Inc. Medical robotic system with functionality to determine and display a distance indicated by movement of a tool robotically manipulated by an operator
WO2009088863A2 (en) 2008-01-02 2009-07-16 Cyberoptics Corporation Gantry position tracking using redundant position sensors
BRPI0906703A2 (pt) 2008-01-16 2019-09-24 Catheter Robotics Inc sistema de inserção de cateter remotamente controlado
US20090184825A1 (en) 2008-01-23 2009-07-23 General Electric Company RFID Transponder Used for Instrument Identification in an Electromagnetic Tracking System
WO2009097461A1 (en) 2008-01-29 2009-08-06 Neoguide Systems Inc. Apparatus and methods for automatically controlling an endoscope
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
KR100927096B1 (ko) 2008-02-27 2009-11-13 아주대학교산학협력단 기준 좌표상의 시각적 이미지를 이용한 객체 위치 측정방법
US8219179B2 (en) 2008-03-06 2012-07-10 Vida Diagnostics, Inc. Systems and methods for navigation within a branched structure of a body
AP2010005387A0 (en) 2008-03-07 2010-10-31 Novozymes Adenium Biotech As Use of defensins against tuberculosis.
JP5322153B2 (ja) 2008-03-25 2013-10-23 Ntn株式会社 医療用線状体の駆動装置
US8343096B2 (en) 2008-03-27 2013-01-01 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter system
US8317745B2 (en) 2008-03-27 2012-11-27 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter rotatable device cartridge
US8808164B2 (en) 2008-03-28 2014-08-19 Intuitive Surgical Operations, Inc. Controlling a robotic surgical tool with a display monitor
US8155479B2 (en) 2008-03-28 2012-04-10 Intuitive Surgical Operations Inc. Automated panning and digital zooming for robotic surgical systems
US7886743B2 (en) 2008-03-31 2011-02-15 Intuitive Surgical Operations, Inc. Sterile drape interface for robotic surgical instrument
JP5424570B2 (ja) 2008-04-10 2014-02-26 Hoya株式会社 電子内視鏡用プロセッサ、ビデオスコープ及び電子内視鏡装置
US7938809B2 (en) 2008-04-14 2011-05-10 Merit Medical Systems, Inc. Quick release hemostasis valve
US9002076B2 (en) 2008-04-15 2015-04-07 Medtronic, Inc. Method and apparatus for optimal trajectory planning
US8532734B2 (en) 2008-04-18 2013-09-10 Regents Of The University Of Minnesota Method and apparatus for mapping a structure
US9125562B2 (en) 2009-07-01 2015-09-08 Avinger, Inc. Catheter-based off-axis optical coherence tomography imaging system
WO2009137410A1 (en) 2008-05-06 2009-11-12 Corindus Ltd. Catheter system
WO2009140281A2 (en) 2008-05-12 2009-11-19 Longyear Tm, Inc. Open-faced rod spinner
KR101479233B1 (ko) 2008-05-13 2015-01-05 삼성전자 주식회사 로봇 및 그 협조작업 제어방법
US8218846B2 (en) 2008-05-15 2012-07-10 Superdimension, Ltd. Automatic pathway and waypoint generation and navigation method
JP5372407B2 (ja) 2008-05-23 2013-12-18 オリンパスメディカルシステムズ株式会社 医療機器
US20110015650A1 (en) 2008-06-11 2011-01-20 Seung Wook Choi Instrument of robot arm for surgery
US7720322B2 (en) 2008-06-30 2010-05-18 Intuitive Surgical, Inc. Fiber optic shape sensor
US20100030061A1 (en) 2008-07-31 2010-02-04 Canfield Monte R Navigation system for cardiac therapies using gating
JP2010035768A (ja) 2008-08-04 2010-02-18 Olympus Medical Systems Corp 能動駆動式医療機器
CN102046059A (zh) 2008-08-08 2011-05-04 松下电器产业株式会社 吸尘器的控制装置及控制方法、吸尘器、吸尘器的控制程序以及集成电子电路
EP2153794B1 (en) 2008-08-15 2016-11-09 Stryker European Holdings I, LLC System for and method of visualizing an interior of a body
JP2010046384A (ja) 2008-08-25 2010-03-04 Terumo Corp 医療用マニピュレータ及び実験装置
US8126114B2 (en) 2008-09-12 2012-02-28 Accuray Incorporated Seven or more degrees of freedom robotic manipulator having at least one redundant joint
US8390438B2 (en) 2008-09-24 2013-03-05 St. Jude Medical, Atrial Fibrillation Division, Inc. Robotic catheter system including haptic feedback
WO2010044852A2 (en) 2008-10-14 2010-04-22 University Of Florida Research Foundation, Inc. Imaging platform to provide integrated navigation capabilities for surgical guidance
JP5403785B2 (ja) 2008-10-15 2014-01-29 国立大学法人 名古屋工業大学 挿入装置
BRPI0921731B1 (pt) 2008-10-31 2018-01-02 Chevron Phillips Chemical Company Lp “sistema catalisador, processo de oligomerização e processo para a preparação de um sistema catalisador”
US9610131B2 (en) 2008-11-05 2017-04-04 The Johns Hopkins University Rotating needle driver and apparatuses and methods related thereto
US8720448B2 (en) 2008-11-07 2014-05-13 Hansen Medical, Inc. Sterile interface apparatus
US8083691B2 (en) 2008-11-12 2011-12-27 Hansen Medical, Inc. Apparatus and method for sensing force
US20100121139A1 (en) 2008-11-12 2010-05-13 Ouyang Xiaolong Minimally Invasive Imaging Systems
US20100125284A1 (en) 2008-11-20 2010-05-20 Hansen Medical, Inc. Registered instrument movement integration
US8095223B2 (en) 2008-11-26 2012-01-10 B. Braun Medical, Inc. Apparatus and method for inserting a catheter
WO2010068783A1 (en) 2008-12-12 2010-06-17 Corindus Inc. Remote catheter procedure system
US8335590B2 (en) 2008-12-23 2012-12-18 Intuitive Surgical Operations, Inc. System and method for adjusting an image capturing device attribute using an unused degree-of-freedom of a master control device
US8374723B2 (en) 2008-12-31 2013-02-12 Intuitive Surgical Operations, Inc. Obtaining force information in a minimally invasive surgical procedure
US8602031B2 (en) 2009-01-12 2013-12-10 Hansen Medical, Inc. Modular interfaces and drive actuation through barrier
JP4585048B2 (ja) 2009-01-15 2010-11-24 オリンパスメディカルシステムズ株式会社 内視鏡システム
ITBO20090004U1 (it) 2009-02-11 2010-08-12 Tre Esse Progettazione Biomedica S R L Manipolatore robotico per la manovra a distanza di cateteri steerable nel sistema cardiovascolare umano.
KR100961661B1 (ko) 2009-02-12 2010-06-09 주식회사 래보 수술용 항법 장치 및 그 방법
US8694129B2 (en) 2009-02-13 2014-04-08 Cardiac Pacemakers, Inc. Deployable sensor platform on the lead system of an implantable device
US8423182B2 (en) 2009-03-09 2013-04-16 Intuitive Surgical Operations, Inc. Adaptable integrated energy control system for electrosurgical tools in robotic surgical systems
US8120301B2 (en) 2009-03-09 2012-02-21 Intuitive Surgical Operations, Inc. Ergonomic surgeon control console in robotic surgical systems
CN102405022B (zh) 2009-03-14 2015-02-04 瓦索斯蒂奇股份有限公司 血管进入和闭合装置
EP2233103B1 (de) 2009-03-26 2017-11-15 W & H Dentalwerk Bürmoos GmbH Medizinisches, insbesondere dentales, Handstück
US10004387B2 (en) 2009-03-26 2018-06-26 Intuitive Surgical Operations, Inc. Method and system for assisting an operator in endoscopic navigation
US8337397B2 (en) 2009-03-26 2012-12-25 Intuitive Surgical Operations, Inc. Method and system for providing visual guidance to an operator for steering a tip of an endoscopic device toward one or more landmarks in a patient
US9002427B2 (en) 2009-03-30 2015-04-07 Lifewave Biomedical, Inc. Apparatus and method for continuous noninvasive measurement of respiratory function and events
EP2241179B1 (en) 2009-04-16 2017-05-17 DeLaval Holding AB A milking parlour and method for operating the same
KR101030371B1 (ko) 2009-04-27 2011-04-20 국립암센터 최소 침습 수술을 위한 내시경 조정 장치
CN102413756B (zh) 2009-04-29 2015-04-01 皇家飞利浦电子股份有限公司 从单目内窥镜图像估计实时深度
WO2010128411A1 (en) 2009-05-08 2010-11-11 Koninklijke Philips Electronics, N.V. Real-time scope tracking and branch labeling without electro-magnetic tracking and pre-operative scan roadmaps
US8675736B2 (en) 2009-05-14 2014-03-18 Qualcomm Incorporated Motion vector processing
GB0908368D0 (en) 2009-05-15 2009-06-24 Univ Leuven Kath Adjustable remote center of motion positioner
CN102292991B (zh) * 2009-05-15 2014-10-08 夏普株式会社 图像处理装置和图像处理方法
JP5836267B2 (ja) 2009-05-18 2015-12-24 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 電磁追跡内視鏡システムのためのマーカーなし追跡の位置合わせおよび較正のための方法およびシステム
US20100292565A1 (en) 2009-05-18 2010-11-18 Andreas Meyer Medical imaging medical device navigation from at least two 2d projections from different angles
ES2388029B1 (es) 2009-05-22 2013-08-13 Universitat Politècnica De Catalunya Sistema robótico para cirugia laparoscópica.
US10537713B2 (en) 2009-05-25 2020-01-21 Stereotaxis, Inc. Remote manipulator device
CN102368944B (zh) 2009-06-11 2015-07-08 奥林巴斯医疗株式会社 医疗用控制装置
WO2011001569A1 (ja) 2009-07-02 2011-01-06 パナソニック株式会社 ロボット、ロボットアームの制御装置、及びロボットアームの制御プログラム
WO2011005335A1 (en) 2009-07-10 2011-01-13 Tyco Healthcare Group Lp Shaft constructions for medical devices with an articulating tip
US20110015484A1 (en) 2009-07-16 2011-01-20 Alvarez Jeffrey B Endoscopic robotic catheter system
US20110015648A1 (en) 2009-07-16 2011-01-20 Hansen Medical, Inc. Endoscopic robotic catheter system
US9492927B2 (en) 2009-08-15 2016-11-15 Intuitive Surgical Operations, Inc. Application of force feedback on an input device to urge its operator to command an articulated instrument to a preferred pose
GB0915200D0 (en) 2009-09-01 2009-10-07 Ucl Business Plc Method for re-localising sites in images
US8277417B2 (en) 2009-09-23 2012-10-02 James J. Fedinec Central venous catheter kit with line gripping and needle localizing devices
US20110071541A1 (en) 2009-09-23 2011-03-24 Intuitive Surgical, Inc. Curved cannula
US9724167B2 (en) 2009-10-01 2017-08-08 Mako Surgical Corp. System with brake to limit manual movement of member and control system for same
JP5783904B2 (ja) 2009-10-14 2015-09-24 国立大学法人 名古屋工業大学 挿入装置および訓練装置
US20110092808A1 (en) 2009-10-20 2011-04-21 Magnetecs, Inc. Method for acquiring high density mapping data with a catheter guidance system
JP5077323B2 (ja) 2009-10-26 2012-11-21 株式会社安川電機 ロボット制御システム
WO2011055245A1 (en) 2009-11-04 2011-05-12 Koninklijke Philips Electronics N.V. Collision avoidance and detection using distance sensors
JP4781492B2 (ja) * 2009-11-10 2011-09-28 オリンパスメディカルシステムズ株式会社 多関節マニピュレータ装置及びそれを有する内視鏡システム
EP2498860B1 (en) 2009-11-12 2013-07-17 Koninklijke Philips Electronics N.V. A steering system and a catcher system
KR101762638B1 (ko) 2009-11-13 2017-07-28 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 최소 침습 수술 시스템에서 손 제스처 제어를 위한 방법 및 장치
CN104799890B (zh) 2009-11-13 2017-03-22 直观外科手术操作公司 弯曲套管和机器人操纵器
JP5750116B2 (ja) 2009-11-16 2015-07-15 コーニンクレッカ フィリップス エヌ ヴェ 内視鏡支援ロボットのための人‐ロボット共用制御
US8932211B2 (en) 2012-06-22 2015-01-13 Macroplata, Inc. Floating, multi-lumen-catheter retractor system for a minimally-invasive, operative gastrointestinal treatment
DE102010031274B4 (de) 2009-12-18 2023-06-22 Robert Bosch Gmbh Handwerkzeugmaschine mit Kühlung des Getriebes
US8374819B2 (en) 2009-12-23 2013-02-12 Biosense Webster (Israel), Ltd. Actuator-based calibration system for a pressure-sensitive catheter
US20110152880A1 (en) 2009-12-23 2011-06-23 Hansen Medical, Inc. Flexible and steerable elongate instruments with torsion control
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US9675302B2 (en) 2009-12-31 2017-06-13 Mediguide Ltd. Prolapse detection and tool dislodgement detection
CN102883651B (zh) 2010-01-28 2016-04-27 宾夕法尼亚州研究基金会 可应用于支气管镜引导的基于图像的全局配准系统和方法
US8668638B2 (en) 2010-02-11 2014-03-11 Intuitive Surgical Operations, Inc. Method and system for automatically maintaining an operator selected roll orientation at a distal tip of a robotic endoscope
WO2011102012A1 (ja) 2010-02-22 2011-08-25 オリンパスメディカルシステムズ株式会社 医療機器
EP2542290B1 (en) 2010-03-02 2019-11-06 Corindus, Inc. Robotic catheter system with variable drive mechanism
US9610133B2 (en) 2010-03-16 2017-04-04 Covidien Lp Wireless laparoscopic camera
WO2011114568A1 (ja) 2010-03-17 2011-09-22 オリンパスメディカルシステムズ株式会社 内視鏡システム
DE102010012621A1 (de) 2010-03-24 2011-09-29 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur automatischen Adaption eines Referenzbildes
US8425455B2 (en) 2010-03-30 2013-04-23 Angiodynamics, Inc. Bronchial catheter and method of use
IT1401669B1 (it) 2010-04-07 2013-08-02 Sofar Spa Sistema di chirurgia robotizzata con controllo perfezionato.
US8581905B2 (en) 2010-04-08 2013-11-12 Disney Enterprises, Inc. Interactive three dimensional displays on handheld devices
JP4679668B1 (ja) 2010-04-21 2011-04-27 日本ライフライン株式会社 カテーテル
WO2011134083A1 (en) 2010-04-28 2011-11-03 Ryerson University System and methods for intraoperative guidance feedback
US9950139B2 (en) 2010-05-14 2018-04-24 C. R. Bard, Inc. Catheter placement device including guidewire and catheter control elements
DE102010029275A1 (de) 2010-05-25 2011-12-01 Siemens Aktiengesellschaft Verfahren zum Bewegen eines Instrumentenarms eines Laparoskopierobotors in einer vorgebbare Relativlage zu einem Trokar
DE102010029745A1 (de) 2010-06-07 2011-12-08 Kuka Laboratories Gmbh Werkstück-Handhabungssystem und Verfahren zum Manipulieren von Werkstücken mittels kooperierender Manipulatoren
US20120101369A1 (en) 2010-06-13 2012-04-26 Angiometrix Corporation Methods and systems for determining vascular bodily lumen information and guiding medical devices
US20120130217A1 (en) 2010-11-23 2012-05-24 Kauphusman James V Medical devices having electrodes mounted thereon and methods of manufacturing therefor
US8672837B2 (en) 2010-06-24 2014-03-18 Hansen Medical, Inc. Methods and devices for controlling a shapeable medical device
US8460236B2 (en) 2010-06-24 2013-06-11 Hansen Medical, Inc. Fiber optic instrument sensing system
US8226580B2 (en) 2010-06-30 2012-07-24 Biosense Webster (Israel), Ltd. Pressure sensing for a multi-arm catheter
US10737398B2 (en) 2010-07-08 2020-08-11 Vanderbilt University Continuum devices and control methods thereof
WO2012018816A2 (en) 2010-08-02 2012-02-09 The Johns Hopkins University Tool exchange interface and control algorithm for cooperative surgical robots
US20120071753A1 (en) 2010-08-20 2012-03-22 Mark Hunter Apparatus and method for four dimensional soft tissue navigation including endoscopic mapping
WO2012035923A1 (ja) 2010-09-14 2012-03-22 オリンパスメディカルシステムズ株式会社 内視鏡システム及び視界不良判定方法
US20120071752A1 (en) 2010-09-17 2012-03-22 Sewell Christopher M User interface and method for operating a robotic medical system
EP2627278B1 (en) 2010-10-11 2015-03-25 Ecole Polytechnique Fédérale de Lausanne (EPFL) Mechanical manipulator for surgical instruments
CN201884596U (zh) 2010-11-02 2011-06-29 李国铭 差速器
US9101379B2 (en) 2010-11-12 2015-08-11 Intuitive Surgical Operations, Inc. Tension control in actuation of multi-joint medical instruments
KR101993815B1 (ko) 2010-11-15 2019-06-27 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 수술 기구에서 기구 샤프트 감김과 단부 작동기 작동의 해제
JP5669529B2 (ja) 2010-11-17 2015-02-12 オリンパス株式会社 撮像装置、プログラム及びフォーカス制御方法
US9066086B2 (en) 2010-12-08 2015-06-23 Industrial Technology Research Institute Methods for generating stereoscopic views from monoscopic endoscope images and systems using the same
US8812079B2 (en) 2010-12-22 2014-08-19 Biosense Webster (Israel), Ltd. Compensation for magnetic disturbance due to fluoroscope
EP2476455A1 (de) 2011-01-13 2012-07-18 BIOTRONIK SE & Co. KG Implantierbare Elektrodenleitung
US20120191083A1 (en) 2011-01-20 2012-07-26 Hansen Medical, Inc. System and method for endoluminal and translumenal therapy
DE102011003118A1 (de) 2011-01-25 2012-07-26 Krones Aktiengesellschaft Verschließeinrichtung
DE102011011497A1 (de) 2011-02-17 2012-08-23 Kuka Roboter Gmbh Chirurgisches Instrument
KR101964579B1 (ko) 2011-02-18 2019-04-03 디퍼이 신테스 프로덕츠, 인코포레이티드 일체형 내비게이션 및 안내 시스템을 갖는 도구와 관련 장치 및 방법
US10391277B2 (en) 2011-02-18 2019-08-27 Voxel Rad, Ltd. Systems and methods for 3D stereoscopic angiovision, angionavigation and angiotherapeutics
FR2972915B1 (fr) 2011-03-24 2013-04-19 Gen Electric Systeme d'imagerie medicale multiplan
US10362963B2 (en) 2011-04-14 2019-07-30 St. Jude Medical, Atrial Fibrillation Division, Inc. Correction of shift and drift in impedance-based medical device navigation using magnetic field information
CA2833387A1 (en) 2011-05-03 2012-11-08 Shifamed Holdings, Llc Steerable delivery sheaths
US9572481B2 (en) 2011-05-13 2017-02-21 Intuitive Surgical Operations, Inc. Medical system with multiple operating modes for steering a medical instrument through linked body passages
US8900131B2 (en) 2011-05-13 2014-12-02 Intuitive Surgical Operations, Inc. Medical system providing dynamic registration of a model of an anatomical structure for image-guided surgery
JP6061926B2 (ja) 2011-06-27 2017-01-18 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 身体管腔のライブ3d画像を提供するためのシステム、その作動方法及びコンピュータプログラム
EP2731517A2 (en) 2011-07-11 2014-05-21 Medical Vision Research & Development AB Status control for electrically powered surgical tool systems
US20130018306A1 (en) 2011-07-13 2013-01-17 Doron Moshe Ludwin System for indicating catheter deflection
JP5931497B2 (ja) 2011-08-04 2016-06-08 オリンパス株式会社 手術支援装置およびその組立方法
US9173683B2 (en) 2011-08-31 2015-11-03 DePuy Synthes Products, Inc. Revisable orthopedic anchor and methods of use
CN102973317A (zh) 2011-09-05 2013-03-20 周宁新 微创手术机器人机械臂布置结构
FR2979532B1 (fr) 2011-09-07 2015-02-20 Robocath Module et procede d'entrainement d'organes medicaux souples allonges et systeme robotise associe
AU2012304408B2 (en) 2011-09-08 2017-03-30 Apn Health, Llc Automatically determining 3D catheter location and orientation using 2D fluoroscopy only
WO2013038313A1 (en) 2011-09-13 2013-03-21 Koninklijke Philips Electronics N.V. Vascular outlining with ostia visualization
EP2755591B1 (en) 2011-09-16 2020-11-18 Auris Health, Inc. System for displaying an image of a patient anatomy on a movable display
WO2013043804A1 (en) 2011-09-20 2013-03-28 Corindus, Inc. Catheter force measurement apparatus and method
US9452276B2 (en) 2011-10-14 2016-09-27 Intuitive Surgical Operations, Inc. Catheter with removable vision probe
EP3372143B1 (en) 2011-10-21 2020-09-02 Viking Systems, Inc. Steerable electronic stereoscopic endoscope
DE112012004860T5 (de) 2011-11-22 2014-11-20 Ascension Technology Corp. Verfolgen eines Führungsdrahtes
US9504604B2 (en) 2011-12-16 2016-11-29 Auris Surgical Robotics, Inc. Lithotripsy eye treatment
US8920368B2 (en) 2011-12-22 2014-12-30 St. Jude Medical, Atrial Fibrillation Division, Inc. Multi-user touch-based control of a remote catheter guidance system (RCGS)
US20130246334A1 (en) 2011-12-27 2013-09-19 Mcafee, Inc. System and method for providing data protection workflows in a network environment
US9636040B2 (en) 2012-02-03 2017-05-02 Intuitive Surgical Operations, Inc. Steerable flexible needle with embedded shape sensing
US20130218005A1 (en) 2012-02-08 2013-08-22 University Of Maryland, Baltimore Minimally invasive neurosurgical intracranial robot system and method
US20150051482A1 (en) 2012-02-09 2015-02-19 Koninklijke Philips N.V Shaft tracker for real-time navigation tracking
US9129417B2 (en) 2012-02-21 2015-09-08 Siemens Aktiengesellschaft Method and system for coronary artery centerline extraction
WO2013126659A1 (en) 2012-02-22 2013-08-29 Veran Medical Technologies, Inc. Systems, methods, and devices for four dimensional soft tissue navigation
US10383765B2 (en) 2012-04-24 2019-08-20 Auris Health, Inc. Apparatus and method for a global coordinate system for use in robotic surgery
US20140142591A1 (en) 2012-04-24 2014-05-22 Auris Surgical Robotics, Inc. Method, apparatus and a system for robotic assisted surgery
DE102012207060A1 (de) 2012-04-27 2013-10-31 Deutsches Zentrum für Luft- und Raumfahrt e.V. Roboteranordnung zum Einsatz in medizinischen Bereichen
EP2849668B1 (en) 2012-05-14 2018-11-14 Intuitive Surgical Operations Inc. Systems and methods for registration of a medical device using rapid pose search
US10039473B2 (en) 2012-05-14 2018-08-07 Intuitive Surgical Operations, Inc. Systems and methods for navigation based on ordered sensor records
US9700737B2 (en) 2012-05-15 2017-07-11 Koninklijke Philips N.V. Brachytherapy apparatus
US20130317519A1 (en) 2012-05-25 2013-11-28 Hansen Medical, Inc. Low friction instrument driver interface for robotic systems
JP2014004310A (ja) 2012-05-31 2014-01-16 Canon Inc 医療器具
WO2013181516A1 (en) 2012-06-01 2013-12-05 Intuitive Surgical Operations, Inc. Systems and methods for avoiding collisions between manipulator arms using a null-space
WO2013192598A1 (en) 2012-06-21 2013-12-27 Excelsius Surgical, L.L.C. Surgical robot platform
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
EP2866642B1 (en) 2012-06-28 2017-09-13 Koninklijke Philips N.V. Fiber optic sensor guided navigation for vascular visualization and monitoring
DE102012220116A1 (de) 2012-06-29 2014-01-02 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mobil handhabbare Vorrichtung, insbesondere zur Bearbeitung oder Beobachtung eines Körpers, und Verfahren zur Handhabung, insbesondere Kalibrierung, einer Vorrichtung
BR112015001895A2 (pt) 2012-08-02 2017-07-04 Koninklijke Philips Nv sistema cirúrgico robótico, e método robótico
US9226796B2 (en) 2012-08-03 2016-01-05 Stryker Corporation Method for detecting a disturbance as an energy applicator of a surgical instrument traverses a cutting path
US9183354B2 (en) 2012-08-15 2015-11-10 Musc Foundation For Research Development Systems and methods for image guided surgery
KR102147826B1 (ko) 2012-08-15 2020-10-14 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 로봇 암의 수동식 운동에 의해 제어되는 이동가능한 수술용 장착 플랫폼
CA2893369A1 (en) 2012-08-24 2014-02-27 University Of Houston Robotic device and systems for image-guided and robot-assisted surgery
US9008757B2 (en) 2012-09-26 2015-04-14 Stryker Corporation Navigation system including optical and non-optical sensors
JP6219396B2 (ja) 2012-10-12 2017-10-25 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 分岐した解剖学的構造における医療デバイスの位置決定
US20140107390A1 (en) 2012-10-12 2014-04-17 Elekta Ab (Publ) Implementation and experimental results of real-time 4d tumor tracking using multi-leaf collimator (mlc), and/or mlc-carriage (mlc-bank), and/or treatment table (couch)
WO2014074481A2 (en) 2012-11-07 2014-05-15 Dana Automotive Systems Group, Llc A clutch management system
GB201220688D0 (en) 2012-11-16 2013-01-02 Trw Ltd Improvements relating to electrical power assisted steering systems
WO2014081725A2 (en) 2012-11-20 2014-05-30 University Of Washington Through Its Center For Commercialization Electromagnetic sensor integration with ultrathin scanning fiber endoscope
US8671817B1 (en) 2012-11-28 2014-03-18 Hansen Medical, Inc. Braiding device for catheter having acuately varying pullwires
US20140148673A1 (en) 2012-11-28 2014-05-29 Hansen Medical, Inc. Method of anchoring pullwire directly articulatable region in catheter
US8894610B2 (en) 2012-11-28 2014-11-25 Hansen Medical, Inc. Catheter having unirail pullwire architecture
LU92104B1 (en) 2012-11-28 2014-05-30 Iee Sarl Method and system for determining a ventilatory threshold
JP2014134530A (ja) 2012-12-14 2014-07-24 Panasonic Corp 力計測装置、力計測方法、力計測プログラム、力計測用集積電子回路、並びに、マスタースレーブ装置
JP6045417B2 (ja) 2012-12-20 2016-12-14 オリンパス株式会社 画像処理装置、電子機器、内視鏡装置、プログラム及び画像処理装置の作動方法
US10231867B2 (en) 2013-01-18 2019-03-19 Auris Health, Inc. Method, apparatus and system for a water jet
DE102013100605A1 (de) 2013-01-22 2014-07-24 Rg Mechatronics Gmbh Robotersystem und Verfahren zum Steuern eines Robotersystems für die minimal invasive Chirurgie
US11172809B2 (en) 2013-02-15 2021-11-16 Intuitive Surgical Operations, Inc. Vision probe with access port
DE102013002813B4 (de) 2013-02-19 2017-11-09 Rg Mechatronics Gmbh Haltevorrichtung mit wenigstens einer Klemmbacke für ein chirurgisches Robotersystem
DE102013002818A1 (de) 2013-02-19 2014-08-21 Rg Mechatronics Gmbh Haltevorrichtung für ein chirurgisches Instrument und eine Schleuse sowie Verfahren zum Betreiben eines Roboters mit einer solchen Haltevorrichtung
EA033708B1 (ru) 2013-02-26 2019-11-19 Ahmet Sinan Kabakci Роботизированная манипуляционная система
US9459087B2 (en) 2013-03-05 2016-10-04 Ezono Ag Magnetic position detection system
WO2014136576A1 (ja) 2013-03-06 2014-09-12 オリンパスメディカルシステムズ株式会社 内視鏡システム
US10431438B2 (en) 2013-03-06 2019-10-01 Jx Nippon Mining & Metals Corporation Titanium target for sputtering and manufacturing method thereof
US9668814B2 (en) 2013-03-07 2017-06-06 Hansen Medical, Inc. Infinitely rotatable tool with finite rotating drive shafts
US10080576B2 (en) 2013-03-08 2018-09-25 Auris Health, Inc. Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment
US10149720B2 (en) 2013-03-08 2018-12-11 Auris Health, Inc. Method, apparatus, and a system for facilitating bending of an instrument in a surgical or medical robotic environment
US9867635B2 (en) 2013-03-08 2018-01-16 Auris Surgical Robotics, Inc. Method, apparatus and system for a water jet
US20140296655A1 (en) 2013-03-11 2014-10-02 ROPAMedics LLC Real-time tracking of cerebral hemodynamic response (rtchr) of a subject based on hemodynamic parameters
WO2014141968A1 (ja) 2013-03-12 2014-09-18 オリンパスメディカルシステムズ株式会社 内視鏡システム
US9057600B2 (en) 2013-03-13 2015-06-16 Hansen Medical, Inc. Reducing incremental measurement sensor error
US20140276389A1 (en) 2013-03-13 2014-09-18 Sean Walker Selective grip device for drive mechanism
US20170303941A1 (en) 2013-03-14 2017-10-26 The General Hospital Corporation System and method for guided removal from an in vivo subject
US9173713B2 (en) 2013-03-14 2015-11-03 Hansen Medical, Inc. Torque-based catheter articulation
US9326822B2 (en) 2013-03-14 2016-05-03 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US9889568B2 (en) 2013-03-14 2018-02-13 Sri International Compact robotic wrist
US9498601B2 (en) 2013-03-14 2016-11-22 Hansen Medical, Inc. Catheter tension sensing
US20140277334A1 (en) 2013-03-14 2014-09-18 Hansen Medical, Inc. Active drives for robotic catheter manipulators
US11213363B2 (en) 2013-03-14 2022-01-04 Auris Health, Inc. Catheter tension sensing
US9014851B2 (en) 2013-03-15 2015-04-21 Hansen Medical, Inc. Systems and methods for tracking robotically controlled medical instruments
US9301723B2 (en) 2013-03-15 2016-04-05 Covidien Lp Microwave energy-delivery device and system
US9918659B2 (en) 2013-03-15 2018-03-20 Intuitive Surgical Operations, Inc. Shape sensor systems for tracking interventional instruments and mehods of use
US9271663B2 (en) 2013-03-15 2016-03-01 Hansen Medical, Inc. Flexible instrument localization from both remote and elongation sensors
US9629595B2 (en) 2013-03-15 2017-04-25 Hansen Medical, Inc. Systems and methods for localizing, tracking and/or controlling medical instruments
US20140276647A1 (en) 2013-03-15 2014-09-18 Hansen Medical, Inc. Vascular remote catheter manipulator
US20170238807A9 (en) 2013-03-15 2017-08-24 LX Medical, Inc. Tissue imaging and image guidance in luminal anatomic structures and body cavities
US9408669B2 (en) 2013-03-15 2016-08-09 Hansen Medical, Inc. Active drive mechanism with finite range of motion
US9452018B2 (en) 2013-03-15 2016-09-27 Hansen Medical, Inc. Rotational support for an elongate member
US20140276936A1 (en) 2013-03-15 2014-09-18 Hansen Medical, Inc. Active drive mechanism for simultaneous rotation and translation
US20140276394A1 (en) 2013-03-15 2014-09-18 Hansen Medical, Inc. Input device for controlling a catheter
US9782198B2 (en) 2013-03-28 2017-10-10 Koninklijke Philips N.V. Localization of robotic remote center of motion point using custom trocar
US10271810B2 (en) * 2013-04-02 2019-04-30 St. Jude Medical International Holding S.à r. l. Enhanced compensation of motion in a moving organ using processed reference sensor data
RU2699331C2 (ru) 2013-04-12 2019-09-04 Конинклейке Филипс Н.В. Чувствительный к форме ультразвуковой зонд
WO2014169103A2 (en) 2013-04-12 2014-10-16 Ninepoint Medical, Inc. Multiple aperture, multiple modal optical systems and methods
US9414859B2 (en) 2013-04-19 2016-08-16 Warsaw Orthopedic, Inc. Surgical rod measuring system and method
US9387045B2 (en) 2013-05-14 2016-07-12 Intuitive Surgical Operations, Inc. Grip force normalization for surgical instrument
US9592095B2 (en) 2013-05-16 2017-03-14 Intuitive Surgical Operations, Inc. Systems and methods for robotic medical system integration with external imaging
US11020016B2 (en) 2013-05-30 2021-06-01 Auris Health, Inc. System and method for displaying anatomy and devices on a movable display
US20140364739A1 (en) 2013-06-06 2014-12-11 General Electric Company Systems and methods for analyzing a vascular structure
WO2014201165A1 (en) 2013-06-11 2014-12-18 Auris Surgical Robotics, Inc. System for robotic assisted cataract surgery
US20140375784A1 (en) 2013-06-21 2014-12-25 Omnivision Technologies, Inc. Image Sensor With Integrated Orientation Indicator
WO2015002097A1 (ja) 2013-07-02 2015-01-08 オリンパスメディカルシステムズ株式会社 医療機器
JP6037964B2 (ja) 2013-07-26 2016-12-07 オリンパス株式会社 マニピュレータシステム
US10426661B2 (en) 2013-08-13 2019-10-01 Auris Health, Inc. Method and apparatus for laser assisted cataract surgery
CN105451802B (zh) 2013-08-15 2019-04-19 直观外科手术操作公司 用于导管定位和插入的图形用户界面
KR102354675B1 (ko) 2013-08-15 2022-01-24 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 의료 절차 확인을 위한 시스템 및 방법
US9993614B2 (en) 2013-08-27 2018-06-12 Catheter Precision, Inc. Components for multiple axis control of a catheter in a catheter positioning system
US10098565B2 (en) 2013-09-06 2018-10-16 Covidien Lp System and method for lung visualization using ultrasound
JP6506295B2 (ja) 2013-09-20 2019-04-24 ザ ブリガム アンド ウィメンズ ホスピタル インコーポレイテッドThe Brigham and Women’s Hospital, Inc. 制御装置、及び腱駆動装置
WO2015049612A2 (en) 2013-10-02 2015-04-09 Koninklijke Philips N.V. Hub design and methods for optical shape sensing registration
DE102013220798A1 (de) 2013-10-15 2015-04-16 Kuka Laboratories Gmbh Verfahren zum Handhaben von Objekten mittels wenigstens zweier Industrieroboter, und zugehöriger Industrieroboter
US9763741B2 (en) 2013-10-24 2017-09-19 Auris Surgical Robotics, Inc. System for robotic-assisted endolumenal surgery and related methods
US9713509B2 (en) 2013-10-24 2017-07-25 Auris Surgical Robotics, Inc. Instrument device manipulator with back-mounted tool attachment mechanism
CN103565529B (zh) 2013-11-11 2015-06-17 哈尔滨工程大学 一种机器人辅助微创外科手术多功能器械臂
US9314191B2 (en) 2013-11-19 2016-04-19 Pacesetter, Inc. Method and system to measure cardiac motion using a cardiovascular navigation system
US9962226B2 (en) 2013-11-28 2018-05-08 Alcon Pharmaceuticals Ltd. Ophthalmic surgical systems, methods, and devices
KR102337440B1 (ko) 2013-12-09 2021-12-10 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 장치-인지 가요성 도구 정합을 위한 시스템 및 방법
CN103735313B (zh) 2013-12-11 2016-08-17 中国科学院深圳先进技术研究院 一种手术机器人及其状态监测方法
CN105828738B (zh) 2013-12-20 2018-10-09 奥林巴斯株式会社 柔性机械手用引导部件和柔性机械手
JP6659547B2 (ja) * 2013-12-20 2020-03-04 インテュイティブ サージカル オペレーションズ, インコーポレイテッド 医療処置トレーニングのためのシミュレータシステム
US9539020B2 (en) 2013-12-27 2017-01-10 Ethicon Endo-Surgery, Llc Coupling features for ultrasonic surgical instrument
CN103767659B (zh) 2014-01-02 2015-06-03 中国人民解放军总医院 消化内窥镜机器人
US11617623B2 (en) 2014-01-24 2023-04-04 Koninklijke Philips N.V. Virtual image with optical shape sensing device perspective
JP2017511707A (ja) 2014-01-24 2017-04-27 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 経食道心エコープローブ用のセンサレス力制御
EP3979210A1 (en) 2014-02-04 2022-04-06 Intuitive Surgical Operations, Inc. Systems and methods for non-rigid deformation of tissue for virtual navigation of interventional tools
US11051878B2 (en) 2014-02-06 2021-07-06 St. Jude Medical, Cardiology Division, Inc. Elongate medical device including chamfered ring electrode and variable shaft
WO2015120108A1 (en) 2014-02-07 2015-08-13 Covidien Lp Input device assemblies for robotic surgical systems
US20150223902A1 (en) 2014-02-07 2015-08-13 Hansen Medical, Inc. Navigation with 3d localization using 2d images
EP3104803B1 (en) 2014-02-11 2021-09-15 KB Medical SA Sterile handle for controlling a robotic surgical system from a sterile field
WO2015126815A1 (en) 2014-02-18 2015-08-27 Siemens Aktiengesellschaft System and method for real-time simulation of patient-specific cardiac electrophysiology including the effect of the electrical conduction system of the heart
JP6353665B2 (ja) 2014-02-21 2018-07-04 オリンパス株式会社 マニピュレータの初期化方法、マニピュレータ、およびマニピュレータシステム
EP3107479A4 (en) 2014-02-21 2017-07-12 Intuitive Surgical Operations, Inc. Mechanical joints, and related systems and methods
JP6138071B2 (ja) 2014-02-26 2017-05-31 オリンパス株式会社 弛み補正機構、マニピュレータ及びマニピュレータシステム
JP6270537B2 (ja) 2014-02-27 2018-01-31 オリンパス株式会社 医療用システム
JP6549604B2 (ja) 2014-02-27 2019-07-24 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 治療手順を実行するためのシステム
KR20150103938A (ko) 2014-03-04 2015-09-14 현대자동차주식회사 리튬황 배터리 분리막
US10952751B2 (en) 2014-03-17 2021-03-23 Marksman Targeting, Inc. Surgical targeting systems and methods
US10548459B2 (en) 2014-03-17 2020-02-04 Intuitive Surgical Operations, Inc. Systems and methods for control of imaging instrument orientation
CN104931059B (zh) 2014-03-21 2018-09-11 比亚迪股份有限公司 车载救援导航系统和方法
EP3243476B1 (en) 2014-03-24 2019-11-06 Auris Health, Inc. Systems and devices for catheter driving instinctiveness
US10912523B2 (en) 2014-03-24 2021-02-09 Intuitive Surgical Operations, Inc. Systems and methods for anatomic motion compensation
US20150305650A1 (en) 2014-04-23 2015-10-29 Mark Hunter Apparatuses and methods for endobronchial navigation to and confirmation of the location of a target tissue and percutaneous interception of the target tissue
US10569052B2 (en) 2014-05-15 2020-02-25 Auris Health, Inc. Anti-buckling mechanisms for catheters
AU2015258819B2 (en) 2014-05-16 2019-12-12 Applied Medical Resources Corporation Electrosurgical system
US9549781B2 (en) 2014-05-30 2017-01-24 The Johns Hopkins University Multi-force sensing surgical instrument and method of use for robotic surgical systems
WO2015188071A2 (en) 2014-06-05 2015-12-10 Medrobotics Corporation Articulating robotic probes, systems and methods incorporating the same, and methods for performing surgical procedures
CN104055520B (zh) 2014-06-11 2016-02-24 清华大学 人体器官运动监测方法和手术导航系统
US20160270865A1 (en) 2014-07-01 2016-09-22 Auris Surgical Robotics, Inc. Reusable catheter with disposable balloon attachment and tapered tip
US9744335B2 (en) 2014-07-01 2017-08-29 Auris Surgical Robotics, Inc. Apparatuses and methods for monitoring tendons of steerable catheters
US9788910B2 (en) 2014-07-01 2017-10-17 Auris Surgical Robotics, Inc. Instrument-mounted tension sensing mechanism for robotically-driven medical instruments
US9561083B2 (en) 2014-07-01 2017-02-07 Auris Surgical Robotics, Inc. Articulating flexible endoscopic tool with roll capabilities
US20170007337A1 (en) 2014-07-01 2017-01-12 Auris Surgical Robotics, Inc. Driver-mounted torque sensing mechanism
US10159533B2 (en) 2014-07-01 2018-12-25 Auris Health, Inc. Surgical system with configurable rail-mounted mechanical arms
US10792464B2 (en) 2014-07-01 2020-10-06 Auris Health, Inc. Tool and method for using surgical endoscope with spiral lumens
US20160000414A1 (en) 2014-07-02 2016-01-07 Covidien Lp Methods for marking biopsy location
US9770216B2 (en) 2014-07-02 2017-09-26 Covidien Lp System and method for navigating within the lung
US9633431B2 (en) 2014-07-02 2017-04-25 Covidien Lp Fluoroscopic pose estimation
CA2953133A1 (en) 2014-07-02 2016-01-07 Covidien Lp System and method of providing distance and orientation feedback while navigating in 3d
US9603668B2 (en) 2014-07-02 2017-03-28 Covidien Lp Dynamic 3D lung map view for tool navigation inside the lung
KR102628063B1 (ko) 2014-07-22 2024-01-23 엑시미스 서지컬 인코포레이티드 대용적 조직 감소 및 제거 시스템 및 방법
US20160051221A1 (en) 2014-08-25 2016-02-25 Covidien Lp System and Method for Planning, Monitoring, and Confirming Treatment
JP6460690B2 (ja) 2014-09-16 2019-01-30 キヤノン株式会社 ロボット装置、ロボット制御方法、プログラム及び記録媒体
EP3193727A1 (en) 2014-09-18 2017-07-26 Koninklijke Philips N.V. Ultrasound imaging apparatus
CN107427327A (zh) 2014-09-30 2017-12-01 奥瑞斯外科手术机器人公司 具有虚拟轨迹和柔性内窥镜的可配置机器人外科手术系统
US10441374B2 (en) 2014-10-08 2019-10-15 Mohammad Ali Tavallaei System for catheter manipulation
CA2964459A1 (en) 2014-10-15 2016-04-21 Vincent Suzara Magnetic field structures, field generators, navigation and imaging for untethered robotic device enabled medical procedure
US10314463B2 (en) 2014-10-24 2019-06-11 Auris Health, Inc. Automated endoscope calibration
DE102014222293A1 (de) 2014-10-31 2016-05-19 Siemens Aktiengesellschaft Verfahren zur automatischen Überwachung des Eindringverhaltens eines von einem Roboterarm gehaltenen Trokars und Überwachungssystem
JP2017537149A (ja) 2014-11-11 2017-12-14 ヴァンダービルト ユニバーシティー 急性腎傷害を制限するための方法
KR102425170B1 (ko) 2014-11-13 2022-07-26 인튜어티브 서지컬 오퍼레이션즈 인코포레이티드 정위 데이터를 필터링하기 위한 시스템 및 방법
WO2016087970A1 (en) 2014-12-01 2016-06-09 Koninklijke Philips N.V. Virtually-oriented electromagnetic tracking coil for catheter based navigation
US9949719B2 (en) 2014-12-16 2018-04-24 General Electric Company Breast imaging method and system
WO2016098251A1 (ja) 2014-12-19 2016-06-23 オリンパス株式会社 挿抜支援装置及び挿抜支援方法
CN106998993B (zh) 2014-12-19 2019-01-08 奥林巴斯株式会社 插拔辅助装置及插拔辅助方法
US9931168B2 (en) 2015-01-12 2018-04-03 Biomet Manufacuturing. LLC Plan implementation
WO2016134297A1 (en) 2015-02-20 2016-08-25 Nostix, Llc Medical device position location systems, devices and methods
CN107257670B (zh) 2015-02-26 2021-03-16 柯惠Lp公司 用软件及导管以机器人方式控制远程运动中心
JP6348078B2 (ja) 2015-03-06 2018-06-27 富士フイルム株式会社 分岐構造判定装置、分岐構造判定装置の作動方法および分岐構造判定プログラム
AU2016229897B2 (en) 2015-03-10 2020-07-16 Covidien Lp Measuring health of a connector member of a robotic surgical system
US10413377B2 (en) 2015-03-19 2019-09-17 Medtronic Navigation, Inc. Flexible skin based patient tracker for optical navigation
EP3260051A4 (en) 2015-03-25 2019-01-23 Sony Corporation MEDICAL CARRYING DEVICE
JP6371729B2 (ja) 2015-03-25 2018-08-08 富士フイルム株式会社 内視鏡検査支援装置、内視鏡検査支援装置の作動方法および内視鏡支援プログラム
US9302702B1 (en) 2015-03-27 2016-04-05 Proterra Inc. Steering control mechanisms for an electric vehicle
JP6360455B2 (ja) 2015-03-30 2018-07-18 富士フイルム株式会社 検査画像閲覧支援装置、その作動方法及び作動プログラム
US10226193B2 (en) 2015-03-31 2019-03-12 Medtronic Ps Medical, Inc. Wireless pressure measurement and monitoring for shunts
US20160287279A1 (en) 2015-04-01 2016-10-06 Auris Surgical Robotics, Inc. Microsurgical tool for robotic applications
WO2016164824A1 (en) 2015-04-09 2016-10-13 Auris Surgical Robotics, Inc. Surgical system with configurable rail-mounted mechanical arms
CN105030331A (zh) 2015-04-24 2015-11-11 长春理工大学 位置传感器与三维腹腔镜摄像机标定装置及方法
US9802317B1 (en) * 2015-04-24 2017-10-31 X Development Llc Methods and systems for remote perception assistance to facilitate robotic object manipulation
WO2016187054A1 (en) 2015-05-15 2016-11-24 Auris Surgical Robotics, Inc. Surgical robotics system
JP6157792B2 (ja) 2015-06-01 2017-07-05 オリンパス株式会社 医療用マニピュレータ
US20160354057A1 (en) 2015-06-08 2016-12-08 General Electric Company Ultrasound imaging system and ultrasound-based method for guiding a catheter
JP6549711B2 (ja) 2015-06-11 2019-07-24 オリンパス株式会社 内視鏡装置及び内視鏡装置の作動方法
WO2016205653A1 (en) 2015-06-19 2016-12-22 SolidEnergy Systems Multi-layer polymer coated li anode for high density li metal battery
CN108024698B (zh) 2015-08-14 2020-09-15 直观外科手术操作公司 用于图像引导外科手术的配准系统和方法
CN105147393B (zh) 2015-08-19 2017-06-20 哈尔滨工业大学 一种微创机器人持镜机械臂
JP2018527144A (ja) 2015-08-27 2018-09-20 フォーカル ヘルスケア インコーポレイテッド ステッパとスタビライザとの間の可動式接続器
US10736518B2 (en) 2015-08-31 2020-08-11 Masimo Corporation Systems and methods to monitor repositioning of a patient
US20170056215A1 (en) 2015-09-01 2017-03-02 Medtronic, Inc. Stent assemblies including passages to provide blood flow to coronary arteries and methods of delivering and deploying such stent assemblies
EP3346899B1 (en) 2015-09-09 2022-11-09 Auris Health, Inc. Instrument device manipulator for a surgical robotics system
CN108348139B (zh) 2015-09-17 2021-11-09 恩达马斯特有限公司 改进的挠性机器人内窥镜系统
JP6824967B2 (ja) * 2015-09-18 2021-02-03 オーリス ヘルス インコーポレイテッド 管状網のナビゲーション
US10441371B2 (en) 2015-10-02 2019-10-15 Vanderbilt University Concentric tube robot
ES2940439T3 (es) 2015-10-13 2023-05-08 Lightlab Imaging Inc Sistema de obtención de imágenes intravasculares y métodos para determinar el ángulo de visión del plano de corte de la rama lateral
ITUB20154977A1 (it) 2015-10-16 2017-04-16 Medical Microinstruments S R L Strumento medicale e metodo di fabbricazione di detto strumento medicale
US20170106904A1 (en) 2015-10-16 2017-04-20 Ford Global Technologies, Llc Control Method For Vehicle With Electronic Steering Column Lock
US9949749B2 (en) 2015-10-30 2018-04-24 Auris Surgical Robotics, Inc. Object capture with a basket
US9955986B2 (en) 2015-10-30 2018-05-01 Auris Surgical Robotics, Inc. Basket apparatus
US10639108B2 (en) 2015-10-30 2020-05-05 Auris Health, Inc. Process for percutaneous operations
CN108348296B (zh) 2015-11-12 2021-06-11 柯惠Lp公司 机器人外科手术系统和监测施加的力的方法
US10143526B2 (en) * 2015-11-30 2018-12-04 Auris Health, Inc. Robot-assisted driving systems and methods
US11172895B2 (en) 2015-12-07 2021-11-16 Covidien Lp Visualization, navigation, and planning with electromagnetic navigation bronchoscopy and cone beam computed tomography integrated
CN105559850B (zh) 2015-12-17 2017-08-25 天津工业大学 一种用于机器人辅助外科具有力传感功能的手术钻器械
US10932861B2 (en) 2016-01-14 2021-03-02 Auris Health, Inc. Electromagnetic tracking surgical system and method of controlling the same
US10932691B2 (en) 2016-01-26 2021-03-02 Auris Health, Inc. Surgical tools having electromagnetic tracking components
US10470719B2 (en) 2016-02-01 2019-11-12 Verily Life Sciences Llc Machine learnt model to detect REM sleep periods using a spectral analysis of heart rate and motion
US10485579B2 (en) 2016-02-25 2019-11-26 Indian Wells Medical, Inc. Steerable endoluminal punch
CA3013225A1 (en) 2016-03-04 2017-09-08 Covidien Lp Electromechanical surgical systems and robotic surgical instruments thereof
EP3432984B1 (en) 2016-03-24 2019-07-31 Koninklijke Philips N.V. Treatment assessment device
EP3435904A1 (en) 2016-03-31 2019-02-06 Koninklijke Philips N.V. Image guided robot for catheter placement
US11324554B2 (en) 2016-04-08 2022-05-10 Auris Health, Inc. Floating electromagnetic field generator system and method of controlling the same
US10786224B2 (en) 2016-04-21 2020-09-29 Covidien Lp Biopsy devices and methods of use thereof
US10454347B2 (en) 2016-04-29 2019-10-22 Auris Health, Inc. Compact height torque sensing articulation axis assembly
US10888428B2 (en) 2016-05-12 2021-01-12 University Of Notre Dame Du Lac Additive manufacturing device for biomaterials
US10470839B2 (en) 2016-06-02 2019-11-12 Covidien Lp Assessment of suture or staple line integrity and localization of potential tissue defects along the suture or staple line
US10806516B2 (en) 2016-06-20 2020-10-20 General Electric Company Virtual 4D stent implantation path assessment
WO2018005842A1 (en) 2016-06-30 2018-01-04 Intuitive Surgical Operations, Inc. Graphical user interface for displaying guidance information in a plurality of modes during an image-guided procedure
JP7022709B2 (ja) 2016-07-01 2022-02-18 インテュイティブ サージカル オペレーションズ, インコーポレイテッド コンピュータ支援医療システム及び方法
US11037464B2 (en) 2016-07-21 2021-06-15 Auris Health, Inc. System with emulator movement tracking for controlling medical devices
US10398517B2 (en) 2016-08-16 2019-09-03 Ethicon Llc Surgical tool positioning based on sensed parameters
US11241559B2 (en) 2016-08-29 2022-02-08 Auris Health, Inc. Active drive for guidewire manipulation
US10238455B2 (en) 2016-08-31 2019-03-26 Covidien Lp Pathway planning for use with a navigation planning and procedure system
KR20230096148A (ko) 2016-08-31 2023-06-29 아우리스 헬스, 인코포레이티드 길이 보존 수술용 기구
US20180055576A1 (en) * 2016-09-01 2018-03-01 Covidien Lp Respiration motion stabilization for lung magnetic navigation system
CN115336961A (zh) 2016-09-21 2022-11-15 直观外科手术操作公司 用于器械弯折检测的系统和方法
US9931025B1 (en) 2016-09-30 2018-04-03 Auris Surgical Robotics, Inc. Automated calibration of endoscopes with pull wires
CN109715104B (zh) 2016-10-04 2022-10-18 直观外科手术操作公司 计算机辅助远程操作手术系统和方法
US10286556B2 (en) 2016-10-16 2019-05-14 The Boeing Company Method and apparatus for compliant robotic end-effector
US10278778B2 (en) 2016-10-27 2019-05-07 Inneroptic Technology, Inc. Medical device navigation using a virtual 3D space
US10543048B2 (en) 2016-12-28 2020-01-28 Auris Health, Inc. Flexible instrument insertion using an adaptive insertion force threshold
US10136959B2 (en) 2016-12-28 2018-11-27 Auris Health, Inc. Endolumenal object sizing
AU2017388217B2 (en) 2016-12-28 2022-10-27 Auris Health, Inc. Apparatus for flexible instrument insertion
US10244926B2 (en) 2016-12-28 2019-04-02 Auris Health, Inc. Detecting endolumenal buckling of flexible instruments
CN107028659B (zh) 2017-01-23 2023-11-28 新博医疗技术有限公司 一种ct图像引导下的手术导航系统及导航方法
US11842030B2 (en) 2017-01-31 2023-12-12 Medtronic Navigation, Inc. Method and apparatus for image-based navigation
US10820951B2 (en) 2017-03-14 2020-11-03 Verb Surgical Inc. Techniques for damping vibration in a robotic surgical system
WO2018175737A1 (en) 2017-03-22 2018-09-27 Intuitive Surgical Operations, Inc. Systems and methods for intelligently seeding registration
US11078945B2 (en) 2017-03-26 2021-08-03 Verb Surgical Inc. Coupler to attach robotic arm to surgical table
JP7159192B2 (ja) 2017-03-28 2022-10-24 オーリス ヘルス インコーポレイテッド シャフト作動ハンドル
US10475235B2 (en) 2017-03-29 2019-11-12 Fujifilm Corporation Three-dimensional image processing apparatus, three-dimensional image processing method, and three-dimensional image processing program
KR102558061B1 (ko) 2017-03-31 2023-07-25 아우리스 헬스, 인코포레이티드 생리적 노이즈를 보상하는 관강내 조직망 항행을 위한 로봇 시스템
KR20230106716A (ko) 2017-04-07 2023-07-13 아우리스 헬스, 인코포레이티드 환자 삽입기(Introducer) 정렬
US10285574B2 (en) 2017-04-07 2019-05-14 Auris Health, Inc. Superelastic medical instrument
US20180308247A1 (en) 2017-04-25 2018-10-25 Best Medical International, Inc. Tissue imaging system and method for tissue imaging
KR20240035632A (ko) 2017-05-12 2024-03-15 아우리스 헬스, 인코포레이티드 생검 장치 및 시스템
AU2018270785B2 (en) 2017-05-17 2023-11-23 Auris Health, Inc. Exchangeable working channel
US10022192B1 (en) 2017-06-23 2018-07-17 Auris Health, Inc. Automatically-initialized robotic systems for navigation of luminal networks
JP7330902B2 (ja) 2017-06-28 2023-08-22 オーリス ヘルス インコーポレイテッド 電磁歪み検出
US11026758B2 (en) 2017-06-28 2021-06-08 Auris Health, Inc. Medical robotics systems implementing axis constraints during actuation of one or more motorized joints
EP3644885B1 (en) 2017-06-28 2023-10-11 Auris Health, Inc. Electromagnetic field generator alignment
EP3645100A4 (en) 2017-06-28 2021-03-17 Auris Health, Inc. INSTRUMENT INSERTION COMPENSATION
US10426559B2 (en) 2017-06-30 2019-10-01 Auris Health, Inc. Systems and methods for medical instrument compression compensation
US10593052B2 (en) 2017-08-23 2020-03-17 Synaptive Medical (Barbados) Inc. Methods and systems for updating an existing landmark registration
US10464209B2 (en) 2017-10-05 2019-11-05 Auris Health, Inc. Robotic system with indication of boundary for robotic arm
US10016900B1 (en) 2017-10-10 2018-07-10 Auris Health, Inc. Surgical robotic arm admittance control
US10145747B1 (en) 2017-10-10 2018-12-04 Auris Health, Inc. Detection of undesirable forces on a surgical robotic arm
US11058493B2 (en) 2017-10-13 2021-07-13 Auris Health, Inc. Robotic system configured for navigation path tracing
US10555778B2 (en) 2017-10-13 2020-02-11 Auris Health, Inc. Image-based branch detection and mapping for navigation
KR102645922B1 (ko) 2017-12-06 2024-03-13 아우리스 헬스, 인코포레이티드 지시되지 않은 기구 롤을 수정하기 위한 시스템 및 방법
WO2019113391A1 (en) 2017-12-08 2019-06-13 Auris Health, Inc. System and method for medical instrument navigation and targeting
CN116059454A (zh) 2017-12-08 2023-05-05 奥瑞斯健康公司 用于执行医疗手术的系统和用以移除肾结石的医疗装置
EP3723655A4 (en) 2017-12-11 2021-09-08 Auris Health, Inc. SYSTEMS AND METHODS FOR INSTRUMENT-BASED INSERTION ARCHITECTURES
KR20200100613A (ko) 2017-12-14 2020-08-26 아우리스 헬스, 인코포레이티드 기구 위치 추정을 위한 시스템 및 방법
KR20200101334A (ko) 2017-12-18 2020-08-27 아우리스 헬스, 인코포레이티드 관강내 조직망 내 기구 추적 및 항행을 위한 방법 및 시스템
CN111885980B (zh) 2018-01-17 2023-03-28 奥瑞斯健康公司 具有可调式臂支撑件的外科平台
US10888386B2 (en) 2018-01-17 2021-01-12 Auris Health, Inc. Surgical robotics systems with improved robotic arms
JP7301884B2 (ja) 2018-02-13 2023-07-03 オーリス ヘルス インコーポレイテッド 医療用器具を駆動するためのシステム及び方法
JP2021514761A (ja) 2018-03-01 2021-06-17 オーリス ヘルス インコーポレイテッド マッピング及びナビゲーションのための方法及びシステム
JP2019154816A (ja) 2018-03-13 2019-09-19 ソニー・オリンパスメディカルソリューションズ株式会社 医療用画像処理装置、医療用観察装置、及び医療用観察装置の作動方法
EP3773131A4 (en) 2018-03-28 2021-12-15 Auris Health, Inc. LOCATION SENSOR RECORDING SYSTEMS AND METHODS
JP7225259B2 (ja) 2018-03-28 2023-02-20 オーリス ヘルス インコーポレイテッド 器具の推定位置を示すためのシステム及び方法
CN117017505A (zh) 2018-03-28 2023-11-10 奥瑞斯健康公司 复合器械和机器人系统
KR20200139200A (ko) 2018-03-29 2020-12-11 아우리스 헬스, 인코포레이티드 회전 오프셋을 갖는 다기능 엔드 이펙터를 가진 로봇식 의료 시스템
CN110831486B (zh) 2018-05-30 2022-04-05 奥瑞斯健康公司 用于基于定位传感器的分支预测的系统和方法
WO2019232236A1 (en) 2018-05-31 2019-12-05 Auris Health, Inc. Image-based airway analysis and mapping
KR20210018858A (ko) 2018-05-31 2021-02-18 아우리스 헬스, 인코포레이티드 관상 네트워크의 경로-기반 내비게이션
CN112236083A (zh) 2018-05-31 2021-01-15 奥瑞斯健康公司 用于导航检测生理噪声的管腔网络的机器人系统和方法
US10744981B2 (en) 2018-06-06 2020-08-18 Sensata Technologies, Inc. Electromechanical braking connector
EP3813714A4 (en) 2018-06-07 2022-02-09 Auris Health, Inc. HIGH FORCE INSTRUMENT ROBOTIC MEDICAL SYSTEMS
WO2020005370A1 (en) 2018-06-27 2020-01-02 Auris Health, Inc. Systems and techniques for providing multiple perspectives during medical procedures
JP7391886B2 (ja) 2018-06-28 2023-12-05 オーリス ヘルス インコーポレイテッド 滑車共有を組み込んだ医療システム
KR20230169481A (ko) 2018-08-07 2023-12-15 아우리스 헬스, 인코포레이티드 카테터 제어와의 변형-기반 형상 감지의 조합
CN112566584A (zh) 2018-08-15 2021-03-26 奥瑞斯健康公司 用于组织烧灼的医疗器械
US10639114B2 (en) 2018-08-17 2020-05-05 Auris Health, Inc. Bipolar medical instrument
AU2019326548B2 (en) 2018-08-24 2023-11-23 Auris Health, Inc. Manually and robotically controllable medical instruments
CN112770689A (zh) 2018-09-26 2021-05-07 奥瑞斯健康公司 用于抽吸和冲洗的系统和器械
EP3813634A4 (en) 2018-09-26 2022-04-06 Auris Health, Inc. ARTICULATING MEDICAL INSTRUMENTS
KR20210069670A (ko) 2018-09-28 2021-06-11 아우리스 헬스, 인코포레이티드 동시 내시경술 및 경피 의료 절차를 위한 로봇 시스템 및 방법
AU2019347767A1 (en) 2018-09-28 2021-04-08 Auris Health, Inc. Systems and methods for docking medical instruments
CN112752534A (zh) 2018-09-28 2021-05-04 奥瑞斯健康公司 用于手动和机器人驱动医疗器械的装置、系统和方法
US11576738B2 (en) 2018-10-08 2023-02-14 Auris Health, Inc. Systems and instruments for tissue sealing
US11950863B2 (en) 2018-12-20 2024-04-09 Auris Health, Inc Shielding for wristed instruments
WO2020140072A1 (en) 2018-12-28 2020-07-02 Auris Health, Inc. Percutaneous sheath for robotic medical systems and methods
CN113453642A (zh) 2019-02-22 2021-09-28 奥瑞斯健康公司 具有用于可调式臂支撑件的机动臂的外科平台

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030105603A1 (en) * 2001-11-30 2003-06-05 Michael Hardesty System for calibrating the axes on a computer numeric controlled machining system and method thereof
US7850642B2 (en) * 2004-03-05 2010-12-14 Hansen Medical, Inc. Methods using a robotic catheter system
CN102341055A (zh) * 2008-12-31 2012-02-01 直观外科手术操作公司 用于定位图像中手术器械的基准标记设计和探测
CN103533909A (zh) * 2011-05-13 2014-01-22 直观外科手术操作公司 用于控制工具运动的标架的位置和定向的估计
US20150297864A1 (en) * 2014-04-21 2015-10-22 Hansen Medical, Inc. Devices, systems, and methods for controlling active drive systems
CN105643642A (zh) * 2014-12-02 2016-06-08 宁夏巨能机器人系统有限公司 一种机器臂的定位方法

Also Published As

Publication number Publication date
EP3684562A4 (en) 2021-06-30
KR20200100613A (ko) 2020-08-26
CN110869173B (zh) 2023-11-17
AU2018384820A1 (en) 2020-05-21
EP3684562A1 (en) 2020-07-29
WO2019118767A1 (en) 2019-06-20
US20230049292A1 (en) 2023-02-16
JP2021506366A (ja) 2021-02-22
JP7322026B2 (ja) 2023-08-07
US11510736B2 (en) 2022-11-29
US20190183585A1 (en) 2019-06-20

Similar Documents

Publication Publication Date Title
CN110869173B (zh) 用于估计器械定位的系统与方法
CN110809453B (zh) 用于腔网络内的器械跟踪和导航的方法和系统
US11759090B2 (en) Image-based airway analysis and mapping
US11850008B2 (en) Image-based branch detection and mapping for navigation
CN110831535B (zh) 配置用于导航路径跟踪的机器人系统
CN110831534B (zh) 用于医疗仪器导航和瞄准的系统和方法
US20210161603A1 (en) Electromagnetic field generator alignment
US11395703B2 (en) Electromagnetic distortion detection
CN110831536A (zh) 用于针对非命令器械滚转进行校正的系统和方法
CN114641252A (zh) 电磁畸变检测和补偿
CN114340542A (zh) 用于位置传感器的基于权重的配准的系统和方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
CB03 Change of inventor or designer information

Inventor after: Hudeye Rafi-Tari

Inventor after: Rietvik Umalaneni

Inventor after: Lin Weiquan

Inventor after: Prashant Giovann

Inventor before: Hudeye Rafi-Tari

Inventor before: Rietvik Umalaneni

Inventor before: Simon Wei Spring Forest

Inventor before: Prashant Giovann

CB03 Change of inventor or designer information
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant