CN108554988A - 采用液体浸渍表面的装置 - Google Patents

采用液体浸渍表面的装置 Download PDF

Info

Publication number
CN108554988A
CN108554988A CN201810161139.2A CN201810161139A CN108554988A CN 108554988 A CN108554988 A CN 108554988A CN 201810161139 A CN201810161139 A CN 201810161139A CN 108554988 A CN108554988 A CN 108554988A
Authority
CN
China
Prior art keywords
liquid
certain embodiments
liquid infiltration
drop
wetted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810161139.2A
Other languages
English (en)
Other versions
CN108554988B (zh
Inventor
拉吉夫·迪米曼
J·戴维·史密斯
克里帕·K·瓦拉纳斯
埃内斯托·礼萨加杜尼奥·卡韦略
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Massachusetts Institute of Technology
Original Assignee
Massachusetts Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Massachusetts Institute of Technology filed Critical Massachusetts Institute of Technology
Publication of CN108554988A publication Critical patent/CN108554988A/zh
Application granted granted Critical
Publication of CN108554988B publication Critical patent/CN108554988B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B17/00Methods preventing fouling
    • B08B17/02Preventing deposition of fouling or of dust
    • B08B17/06Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement
    • B08B17/065Preventing deposition of fouling or of dust by giving articles subject to fouling a special shape or arrangement the surface having a microscopic surface pattern to achieve the same effect as a lotus flower
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D15/00De-icing or preventing icing on exterior surfaces of aircraft
    • B64D15/02De-icing or preventing icing on exterior surfaces of aircraft by ducted hot gas or liquid
    • B64D15/06Liquid application
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/16Antifouling paints; Underwater paints
    • C09D5/1681Antifouling coatings characterised by surface structure, e.g. for roughness effect giving superhydrophobic coatings or Lotus effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/006Preventing deposits of ice
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • Y10T428/24372Particulate matter

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Laminated Bodies (AREA)
  • Lubricants (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Reinforced Plastic Materials (AREA)
  • Nanotechnology (AREA)
  • Materials For Medical Uses (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Eyeglasses (AREA)
  • Prostheses (AREA)
  • Wind Motors (AREA)
  • Mirrors, Picture Frames, Photograph Stands, And Related Fastening Devices (AREA)
  • Protection Of Pipes Against Damage, Friction, And Corrosion (AREA)
  • Optical Elements Other Than Lenses (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Paper (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Moulding By Coating Moulds (AREA)

Abstract

本发明涉及采用液体浸渍表面的装置。一种具有液体浸渍表面(120)的制品,所述表面(120)上面具有结构矩阵(124),这些结构间隔得足够接近以在彼此之间或在其内部稳定地容纳液体(126),并且优选地还在其上面具有薄膜。所述表面(120)使所述制品具有有利的非润湿性质。相较于先前的包括夹带在表面织构(108)内的气体(110)(例如空气)的非润湿表面(104),这些液体浸渍表面(120)可抗刺穿和结霜,并且因此更稳固。

Description

采用液体浸渍表面的装置
本申请是申请日为2011年11月22日、申请号为201180073070.4、发明名称为“采用液体浸渍表面的装置”的发明专利申请的分案申请。
相关申请的交叉引用
本申请要求2011年8月5日提交的美国临时专利申请No.61/515,395的优先权和权益,该临时专利申请以全文引用的方式并入本文中。
技术领域
本发明整体涉及非润湿和低粘附性表面。更具体地讲,在某些实施方案中,本发明涉及抗液体刺穿、结冰、结垢、水合物形成和/或具有防污性的非润湿表面。
背景技术
在过去的十年中微米/纳米工程化表面的出现为增强热流体科学中的多种物理现象开辟了新的技术。例如,使用微米/纳米表面织构提供了非润湿表面,该表面能够实现更小的粘性阻力、降低对冰和其它材料的粘附力、自清洁性和斥水性。这些改进一般是因固体表面与相邻液体之间的接触减少(即更少的润湿)而产生。
一种受关注的非润湿表面是超疏水表面。一般而言,超疏水表面在本质上疏水的表面,如疏水性涂层上包括微米/纳米级粗糙度。超疏水表面借助于微米/纳米表面织构内的气-水界面来阻止与水接触。
现有非润湿表面(例如超疏水、超疏油和超斥金属的表面)的缺点之一是它们易受刺穿影响,这会破坏表面的非润湿能力。当撞击液体(例如液滴或液流)取代表面织构内所夹带的空气时发生刺穿。先前旨在防止刺穿的诸多努力集中于将表面织构尺寸从微米级降低至纳米级。
现有非润湿表面的另一个缺点是它们易受冰的形成和粘附的影响。例如,当在现有超疏水表面上形成霜时,这些表面就变成亲水性的。在冷冻条件下,水滴可以粘附于表面,并且冰会积聚。冰的移除可能是困难的,因为冰会与表面的织构互锁在一起。类似地,当这些表面例如在脱盐或油气应用中,暴露于以盐饱和的溶液时,在表面上产生积垢并且导致失去功能性。现有非润湿表面的类似局限性包括在表面上形成水合物以及形成其它有机或无机沉积物的问题。
需要更稳固的非润湿表面(例如超疏水表面、超疏油表面和超斥金属的表面)存在需要。具体地讲,需要可抗刺穿和结冰的非润湿表面。
发明概述
本文描述了非润湿表面,其包括在表面上的微米/纳米工程化结构的矩阵或在表面上的充液孔隙或其它微小的孔之内浸渍的液体。相较于先前的包括夹带在表面织构内的气体(例如空气)的非润湿表面,这些液体浸渍表面可抗刺穿和结霜,因此更稳固。本发明在本质上是基本的并可用于受益于非润湿表面的任何应用中。例如,本文所述的方法可以用于减小输油和输气管线中的粘性阻力,防止在飞行器和/或电力线上结冰,并且使撞击液体的积聚减至最少。
本文所述的方法和设备相较于现有非润湿表面,即本文中所称的气体浸渍表面具有数项优点。例如,与气体浸渍表面相比,液体浸渍表面的抗刺穿性要高得多。这使得液体浸渍表面能够承受液体撞击期间较高的压力(例如较高的液滴速度)。在某些实施方案中,液体浸渍表面通过使用微米级表面织构而不是先前的气体浸渍表面方法中所利用的纳米级织构来阻止刺穿。使用微米级织构而不是纳米级织构极其有利的至少一部分原因是在于微米级结构成本较低并且更容易制造。
通过恰当地选择浸渍液体,可容易地定制本文所述的液体浸渍表面使得适应多种应用。例如,固体表面上水阻力的减小可以借助于以油作为浸渍液体来实现,这是因为水可容易地在油上滑动。使用油作为浸渍液体还适合于防止结霜和结冰。在本申请中,霜和冰可仅形成于表面织构的顶端,从而大大地降低了结冰速率和粘附强度。
在一个方面,本发明涉及一种包含液体浸渍表面的制品,所述表面包含结构矩阵,这些结构间隔得足够以在彼此之间或在其内部稳定地容纳液体。在某些实施方案中,该液体在室温下的粘度不大于约1000cP(或cSt),不大于约100cP(或cSt),或不大于约50cP(或cSt)。在某些实施方案中,该液体在室温下的蒸气压不大于约20mm Hg,不大于约1mm Hg,或不大于约0.1mmHg。
在某些实施方案中,所述结构具有基本上均匀的高度并且其中该液体填充所述结构之间的间隙并对所述结构涂布在所述结构的顶部上厚度达至少约5nm的涂层。在某些实施方案中,所述结构界定孔隙或其它孔并且该液体填充所述结构。
在某些实施方案中,该液体的后退接触角为0°,使得该液体在所述结构的顶部上形成稳定薄膜。
在某些实施方案中,该矩阵的结构间间隔为约1微米至约100微米。在某些实施方案中,该矩阵的结构间间隔为约5纳米至约1微米。在某些实施方案中,该矩阵具有分级结构。例如,所述分级结构可以是上面包含纳米级结构的微米级结构。
在某些实施方案中,所述结构的高度不大于约100微米。在某些实施方案中,所述结构为柱状物。在某些实施方案中,所述结构包括一个或多个球形粒子、纳米针、纳米草和/或提供表面粗糙度的不规则几何形状结构。在某些实施方案中,所述结构包含一个或多个孔隙、孔穴、连通孔隙和/或连通孔穴。在某些实施方案中,该表面包含多孔介质,其具有不同尺寸的多个孔隙。
在某些实施方案中,液体包括全氟化碳液体、全氟氟化真空油(例如Krytox 1506或Fromblin 06/6)、氟化冷却剂(例如全氟三戊胺,以FC-70出售,由3M制造)、离子液体、与水不可混溶的氟化离子液体、包含PDMS的硅酮油、氟化硅酮油、液态金属、电流变流体、磁流变流体、铁磁流体、介电液体、烃类液体、碳氟化合物液体、制冷剂、真空油、相变材料、半液体、润滑脂、滑液和/或体液。
在某些实施方案中,该制品为蒸汽轮机部件、燃气轮机部件、飞行器部件或风轮机部件,并且液体浸渍表面被构造为用于排斥撞击液体。在某些实施方案中,该制品为眼镜、护目镜、滑雪面罩、钢盔、钢盔护面罩或镜子,并且该液体浸渍表面被构造为用于抑制在其上面成雾。在某些实施方案中,该制品为飞行器部件、风轮机部件、电力传输线或防风罩,并且该液体浸渍表面被构造为用于抑制在其上面结冰。在某些实施方案中,该制品为管线(或其一部分或涂层),并且该液体浸渍表面被构造为用于抑制在其上面形成水合物和/或能增强流体在其上面流动的滑动性(降低阻力)。在某些实施方案中,该制品为换热器部件或输油或输气管线(或其一部分或涂层),并且该液体浸渍表面被构造为用于抑制在其上面形成和/或粘附盐。在某些实施方案中,该液体浸渍表面被构造为用于抑制腐蚀。
在某些实施方案中,该制品为人造关节,并且该液体浸渍表面被构造为用于减小配合表面之间的摩擦力和/或提供对关节持久的润滑作用。在某些实施方案中,该制品为发动机部件(例如活塞或汽缸),并且该液体浸渍表面被构造为用于提供对该部分持久的润滑作用。在某些实施方案中,该液体浸渍表面被构造为用于随着时间的推移从该表面释放液体,从而随着时间的推移提供润滑作用。
在某些实施方案中,该液体浸渍表面为防污表面,其被构造成防止碎屑吸附在其上面。在某些实施方案中,该制品为换热器部件,并且该液体浸渍表面被构造成有助于冷凝物在其上面流落,从而增强冷凝传热。
附图说明
参考下文描述的图和权利要求,可更好地理解本发明的目的和特征。
图1a为根据本发明的某些实施方案的接触非润湿表面的液体的示意性剖视图。
图1b为根据本发明的某些实施方案的刺穿了非润湿表面的液体的示意性剖视图。
图1c为根据本发明的某些实施方案的与液体浸渍表面接触的液体的示意性剖视图。
图2a为根据本发明的某些实施方案的停留在液体浸渍表面上的液滴的示意性剖视图。
图2b为根据本发明的某些实施方案的包括柱状物的非润湿表面的SEM图像。
图2c为根据本发明的某些实施方案的包括柱状物的非润湿表面的示意性透视图。
图2d为根据本发明的某些实施方案的包括柱状物的非润湿表面的示意性顶部剖视图。
图3包括根据本发明的某些实施方案的微织构表面的照片。
图4a和4b包括根据本发明的某些实施方案分别示出水滴在气体浸渍表面和液体浸渍表面上的撞击的一系列高速视频图像。
图5包括根据本发明的某些实施方案显示出液滴撞击相对于水平线倾斜25°的液体浸渍表面的一系列高速视频图像。
图6a-6d包括根据本发明的某些实施方案显示出在气体浸渍的非润湿表面上的结霜形成的一系列ESEM图像。
图7a-7c包括根据本发明的某些实施方案来自针对干燥和结霜超疏水表面进行的液滴撞击试验的图像。
图8为根据本发明的某些实施方案的测量的归一化冰粘附强度与归一化表面积的关系图。
图9为根据本发明的某些实施方案的滚出角与表面固体分率的关系图。
图10、11和12为根据本发明的某些实施方案的有关液滴在倾斜液体浸渍表面上的滚动速度的图。
图13和14包括根据本发明的某些实施方案的有关在浸渍有硅酮油的微柱表面上的结霜成核现象的环境SEM(ESEM)图像。
图15为根据本发明的某些实施方案的有关水滴在具有柱状物结构的矩阵并浸渍有硅酮油的表面上的图像,其将刺穿状态与非润湿状态相对比。
图16为根据本发明的某些实施方案示出6种液体浸渍表面润湿状态的示意图。
图17为根据本发明的某些实施方案显示出有关图16所示的6种液体浸渍表面润湿状态的条件的示意图。
具体实施方式
可以想到,要求保护的本发明的组合物、混合物、系统、装置、方法和工艺涵盖使用来自本文所述的实施方案的信息发展而成的变化和修改。本文所述的组合物、混合物、系统、装置、方法和工艺的修改和/或变更可以由本领域的技术人员来进行。
在本说明书全文中,如果将制品、装置和系统描述为具有、包括或包含特定组分,或如果将工艺和方法描述为具有、包括或包含特定步骤,则另外可想到,存在基本上由、或由所述组分组成的本发明制品、装置和系统,并且存在基本上由、或由所述工艺步骤组成的本发明工艺和方法。
类似地,如果将制品、装置、混合物和组合物描述为具有、包括或包含特定化合物和/或材料,则另外可以想到,存在基本上由、或由所述化合物和/或材料组成的本发明制品、装置、混合物和组合物。
应了解,步骤的顺序或执行某些操作的顺序并不重要,只要本发明仍然是可操作的即可。此外,两个或更多个步骤或操作可以同时进行。
在本文中,例如在发明背景部分中对任何公开的提及并不是承认该公开相对于本文提出的任何权利要求为现有技术。该发明背景部分的呈提出是出于清晰性目的,而不是意谓相对于任何权利要求对现有技术的描述。
在某些实施方案中,液体与固体之间的静态接触角θ被定义为由液滴在固体表面上形成的角,如在三个相,即固体、液体和蒸气相遇的接触线处的切线与水平线之间测得。该术语“接触角”通常意指静态接触角θ,这是因为液体仅仅停留在固体上,而没有任何移动。
如本文中所用的动态接触角θd为由移动液体在固体表面上所形成的接触角。在液滴撞击的情形下,θd可在前进或后退运动期间存在。
如本文中所用,若某一表面与液体的动态接触角为至少90度,则该表面为“非润湿的”。非润湿表面的例子包括例如超疏水表面、超疏油表面和超斥金属的表面。
如本文中所用,接触角滞后(CAH)为CAH=θar,其中θa和θr分别为由液体在固体表面上形成的前进和后退接触角。前进接触角θa为在接触线刚要前进时的瞬间形成的接触角,而后退接触角θr为在接触线刚要后退时形成的接触角。
图1a为根据本发明的一个实施方案的与常规或先前的非润湿表面104(即气体浸渍表面)接触的接触液体102的示意性剖视图。表面104包括固体106,其具有由柱状物108界定的表面织构。柱状物108之间的区域被气体110如空气所占据。如图所示,尽管接触液体102能够接触柱状物108的顶部,但气-液界面112防止液体102润湿整个表面104。
参见图1b,在某些情形下,接触液体102可以取代浸渍气体并在固体106的柱状物108之内发生刺穿现象。例如在液滴以高速撞击表面104时会发生刺穿现象。当刺穿现象发生,占据柱状物108之间的区域的气体被接触液体102部分或完全取代,并且表面104可能会失去其非润湿能力。
参见图1c,在某些实施方案中,提供非润湿液体浸渍表面120,其包括固体122,该固体具有浸渍有浸渍液体126,而非气体的织构(例如柱状物124)。在所示实施方案中,与表面接触的接触液体128停留在表面120的柱状物124(或其它织构)上。在柱状物124之间的区域内,接触液体128由浸渍液体126所支承。在某些实施方案中,接触液体128与浸渍液体126不可混溶。例如,接触液体128可以是水,而浸渍液体126可以是油。
固体122可以包括任何本质上疏水、疏油和/或斥金属的材料或涂层。例如,固体122可以包括:烃类,例如烷烃;以及含氟聚合物,例如特氟隆(teflon)、三氯(1H,1H,2H,2H-全氟辛基)甲硅烷(TCS)、十八烷基三氯甲硅烷(OTS)、十七氟-1,1,2,2-四氢癸基三氯甲硅烷、含氟POSS和/或其它含氟聚合物。另外可用于固体122的材料或涂层包括∶陶瓷、聚合材料、氟化材料、金属间化合物(intermetallic compound)和复合材料。聚合材料可包括例如聚四氟乙烯、含氟丙烯酸酯、含氟氨基甲酸酯、氟硅酮、氟硅烷、改性碳酸酯、氯硅烷、硅酮、聚二甲硅氧烷(PDMS)和/或其组合。陶瓷可包括例如碳化钛、氮化钛、氮化铬、氮化硼、碳化铬、碳化钼、碳氮化钛、无电镀镍、氮化锆、氟化二氧化硅、二氧化钛、氧化钽、氮化钽、类金刚石碳、氟化类金刚石碳和/或其组合。金属间化合物可包括例如铝化镍、铝化钛和/或其组合。
液体浸渍表面120之内的织构为物理织构或表面粗糙度。所述织构可以是无规则的,包括分形或图案化。在某些实施方案中,所述织构为微米级或纳米级结构。例如,所述织构的长度尺度L(例如平均孔隙直径或平均突起高度)可小于约100微米,小于约10微米,小于约1微米,小于约0.1微米,或小于约0.01微米。在某些实施方案中,所述织构包括柱状物124或其它突起,例如球形或半球形突起。可以优选圆形突起以避免有尖锐的固体边缘并使液体边缘的销锁减至最小。可以使用任何常规方法,例如包括如光刻(lithography)、自组装和沉积的机械和/或化学方法来将织构引入至表面中。
浸渍液体126可以为能够提供所需非润湿性质的任何类型的液体。例如,浸渍液体126可以是基于油或基于水的(即含水的)。在某些实施方案中,浸渍液体126为离子液体(例如BMI-IM)。可能的浸渍液体的其它例子包括十六烷、真空泵油(例如06/6、1506)、硅油(例如10cSt或1000cSt)、碳氟化合物(例如全氟三戊胺、FC-70)、剪切变稀流体、剪切增稠流体、液体聚合物、溶解聚合物、粘弹性流体和/或液体含氟POSS。在某些实施方案中,浸渍液体为(或包含)液态金属、介电流体、铁磁流体、磁流变(MR)流体、电流变(ER)流体、离子流体、烃类液体和/或碳氟化合物液体。在一个实施方案中,通过引入纳米粒子来使浸渍液体126可在剪切下增稠。剪切增稠浸渍液体126可以为例如防止刺穿并且抵抗撞击液体的冲击所需。
为了使表面120上浸渍液体126的蒸发减至最低程度,一般需要使用具有低蒸气压(例如小于0.1mmHg,小于0.001mmHg,小于0.00001mmHg,或小于0.000001mmHg)的浸渍液体126。在某些实施方案中,浸渍液体126的冰点小于-20℃,小于-40℃,或约-60℃。在某些实施方案中,浸渍液体126的表面张力为约15mN/m,约20mN/m,或约40mN/m。在某些实施方案中,浸渍液体126的粘度为约10cSt至约1000cSt。
可以使用任何用于将液体施加至固体的常规方法来将浸渍液体126引入至表面120。在某些实施方案中,使用如浸涂、刮涂或辊涂等的涂布方法来施加浸渍液体126。或者,可以通过使液体材料流过表面120(例如在管线中)来引入和/或补充浸渍液体126。在施加了浸渍液体126之后,毛细管力使液体保持在适当位置。毛细管力大致与结构间距离或孔隙半径的倒数成比例,并且可对结构进行设计以至于纵使表面发生移动且纵使表面上的空气或其它流体发生移动,液体仍保持在适当位置(例如,其中表面120在有空气冲流而过的飞行器的外表面上,或在有油和/或其它流体流过的管线中)。在某些实施方案中,使用纳米级结构(例如1纳米至1微米),其中高动力、体力、重力和/或剪切力例如对于在快速流动的管线中、在飞机上、在风轮机叶片上等所用的表面而言,可对移动液体膜构成威胁。小的结构还可以用于提供稳固性和抗冲击性。
相较于气体浸渍表面,本文所述的液体浸渍表面提供数项优点。例如,因为液体在很大压力范围内不可压缩,因此液体浸渍表面一般更具抗刺穿性。在某些实施方案中,虽然可能必需要用纳米级(例如小于1微米)织构来避免气体浸渍表面的刺穿,但微米级(例如1微米至约100微米)织构足以避免液体浸渍表面的刺穿。如所述,微米级织构的制造要容易得多并且比纳米级织构要实用。
液体浸渍表面也可用于降低固体表面与流动液体之间的粘性阻力。一般而言,由液体在固体表面上流动所产生的粘性阻力或剪切应力与液体粘度和接近于表面的剪切速率成正比。一种常规的假设为与固体表面接触的液体分子在所谓的"无滑动"边界条件下,粘附于该表面。尽管在液体与表面之间会出现一些滑动,但无滑动边界条件为在多数应用中有用的假设。
在某些实施方案中,如液体浸渍表面等的非润湿表面是合乎需要的,因为它们在固体表面处引起很大的滑动。例如,再次参见图1a和1c,当接触液体102、128由浸渍液体126或气体支承时,液-液或气-液界面相对于下面的固体材料,可自由流动或滑动。由于此滑动,可以实现阻力的减小多达40%。然而,如所提及的,气体浸渍表面易受刺穿影响。当气体浸渍表面上发生刺穿现象时,会失去阻力减小的益处。
本文所述的液体浸渍表面的另一个优点为它们可用于将霜或冰的形成和粘附减至最少。理论上,先前的(即浸渍气体的)超疏水表面通过迫使冰停留在低表面能微米级和/或纳米级表面织构上以致于冰主要接触空气来减少冰的形成和粘附。然而,实际上,这些气体浸渍表面事实上会导致冰的形成和粘附增加。例如,当使气体浸渍表面的温度低于冰点时,气体浸渍表面上会开始积霜,这使得该表面从超疏水的转变成亲水性的。当水接触现在的亲水表面时,水会渗入亲水性织构并冻结。气体浸渍表面与冰之间的粘附结合会因为冰与表面织构之间的互锁而加强。类似地,本文所述的液体浸渍表面在表面上的成核会造成问题的情形下是有用的,例如可用于减少积垢、水合物形成、外科手术植入物上的斑块积聚等等。
根据经典的成核理论,在无规则热运动下聚集在一起的水分子团簇必须达到临界尺寸以维持生长。平坦表面上的临界尺寸晶芽的异相成核的自由能垒ΔG*和相应的成核速度表示如下:
J=J0exp(ΔG′/kT)。 (2)
参数m为如下给出的界面能比率:
其中σSV、σSI和σIV分别为基底-蒸气、基底-冰和冰-蒸气界面的界面能。在用临界半径rc定义自由能时,将基底和冰假定为各向同性的,并且将成核粒子假定为球形。临界半径rc则可用开尔文方程(Kelvin equation)定义:
ln(p/po)=2σIV/nlkTrc。 (4)
针对固体的成核实验证实其成核能垒比根据方程式1预估的自由能垒要低得多。这很可能是由于纳米级异质性和粗糙度所致,因为表面的高表面能膜片和纳米级孔穴可以充当成核点。然而,液体通常非常平滑和均质,并且已用实验方法证明水在液体上的成核与经典理论相当一致。因此,对于疏水液体而言的结霜成核或冷凝的能垒一般比固体要高得多。在某些实施方案中,使液体浸渍表面的织构内浸渍液体可防止在这些区域内成核并且迫使在表面织构的顶端(例如柱状物的顶部)上优选成核。就结冰而言,使用液体浸渍表面克服或减少了在浸气超疏水表面的情况下所遇到的冰的形成和粘附的挑战:。
在某些实施方案中,本文所述的液体浸渍表面具有有利的液滴滚出性质,该性质将液体或冰层在表面上的积聚减至最少。为了防止结冰,例如,重要的是表面能够使超冷液滴(例如冻雨)在所述液滴冻结之前流落。否则,具有足够高的速度的液滴(如雨滴)会渗入表面织构并且保持销锁直到冰形成为止。有利的是,在某些实施方案中,本文所述的液体浸渍表面具有低滚出角(即与某一表面接触的液滴将要开始从该表面滚出或滑下时该表面的角度或斜率)。与液体浸渍表面相关的低滚出角允许与表面接触的液滴在液体可冻结并且冰可积聚下来之前容易地从该表面滚出。如下文更详细的描述,水在一个表面(即,浸渍有十六烷的经十八烷基三氯甲硅烷处理过的硅酮柱状物表面)上的滚出角经测量为1.7°±0.1°。在某些实施方案中,液体浸渍表面的滚出角小于约2°,或小于约1°。
图2为根据本发明的某些实施方案的停留在液体浸渍表面204上的液滴202的示意性剖视图。在一个实施方案中,液滴边缘的决定其移动性的形态受浸渍液体126的性质影响。例如,如图所示,液滴可“吸取(pick up)”局部地接近液滴边缘的浸渍液体126。浸渍液体126在液滴边缘处的汇聚会产生销锁力。在液滴滚出期间,销锁力和粘性力阻止液滴由于重力所引起的移动。对于倾斜α角度的表面,液滴滚出的力平衡方程式如下给出:
其中Vρgs inα为液滴上的重力,πr2(1-φ)μνo/h为粘性力,并且为销锁力。在该方程式中,V为液滴体积,ρ为非润湿液体的密度,φ为表面固体分率(与非润湿相直接接触的基底的面积分率),μ为浸渍液体的动态粘度,vo为液滴滑动速度(特征掉落速度),h为剪切浸渍液体所越过的整个特征长度尺度(例如表面柱状物高度或其它表面织构高度),α为基底相对于水平线所构成的角度,g为重力加速度,r为非润湿液滴的接触半径,θa和θr为非润湿液滴的前进和后退接触角,并且γw为与蒸气平衡的非润湿液体的表面能。
图2b至2d示出非润湿表面250,其包括基底部分252和大致方形的柱状物254的阵列,所述柱状物具有柱状物顶部256。如图所示,柱状物254具有高度h、边长a和柱状物间隔b(即相邻柱状物表面之间的距离)。基底部分252在柱状物260之间包括基底区域258。表面250的表面固体分率φ如下给出:φ=a2/(a+b)2
在某些实施方案中,浸渍液体的选择影响着液滴滚出进行时的速度。例如,若液体具有高粘度,则滚出可进行得非常缓慢。
本文所述的液体浸渍表面具有跨越许多不同行业的多种应用。例如,在某些实施方案中,使用液体浸渍表面来排斥液体。有许多物理过程涉及液体撞击在固体表面上。例子包括水滴撞击蒸汽轮机叶片、油滴撞击燃气轮机叶片和雨滴撞击飞行器和风轮机表面。对于蒸气-燃气轮机,夹带在蒸气中的水滴撞击和粘附涡轮叶片,从而降低涡轮功率输出。然而,通过对涡轮叶片施加液体浸渍表面,可使液滴从叶片滑落,并且可显著地改善涡轮功率输出。在一个实施方案中,液体浸渍表面对冷凝呈现高能垒,并且适合作为如窗户、玻璃和/或镜子的表面的防雾涂层。
在某些实施方案中,使用液体浸渍表面来提供疏冰性(ice-phobicity),从而防止或最小化结冰现象。冰可在如飞行器、风轮机、电力传输线和防风罩等的许多情形下形成于表面上。相较于普通的表面,形成于液体浸渍表面上的冰展现的粘附要少得多并且因此可以容易地加以移除,从而导致有效的节能。液体浸渍表面在其原子级上光滑和低能量的表面使得对去升华作用(结霜)呈现高能垒的意义上也具有斥冰性。在某些实施方案中,液体浸渍表面抑制从冻雨发生宏观结冰现象。对于飞行器而言,因为液体浸渍表面使得冰和霜的粘附减少,因此可显著地减少对飞行器除冰所需的能量和对环境有害的化学物质。当在电力传输线上使用液体浸渍表面时,很少会结冰,并且可更容易地除冰。液体浸渍表面还可以显著地减少风轮机上的结冰现象,从而提高涡轮机效率。
在某些实施方案中,使用液体浸渍表面来提供疏水合物性(hydrate-phobicity),从而防止或最小化水合物形成现象。在深海钻探和/或抽取期间会在输油和输气管线中形成水合物。水合物可堵塞管线并且导致液体压力剧烈升高。通过选择适合的浸渍液体,液体浸渍表面对水合物成核呈现高能垒,并且因此阻止水合物形成。此外,相较于普通的表面,形成于液体浸渍表面上的水合物显示的粘附强度要低得多,并且因此可以容易地加以移除。在某些实施方案中,浸渍液体为与原有涂层一起供给的永久性液体。或者,浸渍液体可以由存在于管线中的油连续地供给。
在某些实施方案中,使用液体浸渍表面来提供疏盐性(salt-phobicity),从而防止或最小化盐或矿物积垢的形成现象。盐可在如发电厂和脱盐工厂中的换热器等的基于水或基于蒸气的工业设施中形成于固体表面上。盐可能也会形成于输油和输气管线的表面上。盐的形成会降低换热器的热性能,并且还会需要高代价的维修和/或停工期。相较于普通的表面,液体浸渍表面对盐成核展现高能垒,这可抗盐的形成并且导致粘附强度要低得多,因而有助于简单的移除。浸渍液体可以是与原有涂层一起供给的永久性液体,和/或它可以由相邻液相(例如存在于输油或输气管线中的油)连续地供给或补充。
在某些实施方案中,使用液体浸渍表面来降低固体表面与流动液体之间的粘性阻力。如在管线中输送原油等的许多工程应用需要经由管道长距离地输送液体。由于在液体与相邻表面之间存在阻力,因此与输送这些液体相关的能量消耗往往有重要的。使用液体浸渍表面可以大大地降低这些应用中的能量消耗。通过适当地选择浸渍液体,液体浸渍表面可以展现增强接触液体的滑动并且因此使得液体-固体阻力大幅减小。在某些实施方案中,液体浸渍表面可以有效地用于人造动脉和/或静脉中。
在某些实施方案中,液体浸渍表面可用于抑制腐蚀。通过使用抗腐蚀性浸渍液体,可以保护下面的固体材料不受腐蚀环境影响。另外,液体浸渍表面使液滴流落的能力能减少腐蚀,因为可更容易地从表面移除湿气。
液体浸渍表面还可以用于支架、人造动脉和/或其它外科手术植入物中,以防止或减少在其上面发生沉积物积聚。
在某些实施方案中,使用液体浸渍表面来提供自润滑的骨关节。例如,液体浸渍表面可以用作在膝盖和/或臀部置换手术期间植入的人造关节用材料。液体浸渍表面可使配合表面之间的摩擦力显著地减小并且还提供持久的润滑作用。浸渍液体可以是在植入之前并入的永久性液体,或者它可以由身体内存在的润滑流体(例如滑液)连续地供给。
存在许多其它应用,其中液体浸渍表面可以用于提供润滑作用。例如,液体浸渍表面可以用于轴承中,用于活塞/汽缸表面上,和/或用于其中相邻移动表面之间的摩擦力减小是有益的任何其它汽车或机械装置或装备中。在一个实施方案中,表面内的浸渍液体提供润滑剂的持久供给,并且因此可减少向必需位置施加润滑剂所需花费的时间和能量。
液体浸渍表面还可以用于提供防污性和/或自清洁性。例如,液体浸渍表面可以通过借助于其低表面抗吸附碎屑来用于防污。在某些实施方案中,液体浸渍表面上的粒子和化学物质被从所述表面流落的液滴所吸附并带走。这种自清洁性对于如自清洁性玻璃(例如,用于窗户、玻璃和/或镜子的自清洁性玻璃)和工业涂层等的许多应用而言是重要的。
液体浸渍表面还可以用于促进水分凝结。例如,液体浸渍表面可以用于使冷凝物容易地流落并且从而增强冷凝传热(例如滴状冷凝)。在某些实施方案中,液体浸渍表面被施用于换热器,范围从蒸气冷凝器至HVAC冷凝器,直至用于使天然气液化的天然气冷凝器。
在某些实施方案中,本文所述的液体浸渍表面可用于如滑雪镜/护目镜(例如防雾镜)、滑雪橇、滑雪板、滑冰鞋、游泳衣等等的运动装备上的涂层。
图15为有关水滴在具有柱状物结构的矩阵并浸渍有硅酮油的表面上的图像,其将刺穿状态与非润湿状态相对比。在显示刺穿状态(该种状态可能不利于需要极具非润湿性的表面的某些实施方案)的例子中,液滴为水,浸渍液体为硅酮油,并且表面为具有10微米方形柱状物且这些柱状物具有10微米间隔的未经处理的硅。在刺穿状态下,液体不会从表面滚出。在显示非润湿状态(该状态有利于需要非润湿性的某些实施方案)的例子中,除了表面是用OTS(十八烷基三氯甲硅烷)处理之外,其它条件都相同。可以使用其它涂层。
图16为根据本发明的某些实施方案示出6种液体浸渍表面润湿状态的示意图。6种表面润湿状态(状态1至状态6)取决于图16底部所示的4种润湿条件(条件1至4)。在大多数实施方案中,优选非润湿状态(状态1至4)。另外,在薄膜稳定地形成于柱状物(或表面上的其它结构)的顶部上时,如在非润湿状态1和3中,可以观察到更优选的非润湿性质(和本文所述的其它相关性质)。
为了实现非润湿状态,更优选浸渍液体相较于非润湿液体具有低固体表面能和低表面能。例如,优选低于约25mJ/m2的表面能。低表面能液体包括某些烃类和碳氟化合物类液体,例如硅酮油、全氟化碳液体、全氟化真空油(例如Krytox 1506或Fromblin 06/6)、氟化冷却剂(如全氟三戊胺)(例如FC-70,由3M出售,或FC-43)、与水不可混溶的氟化离子液体、包含PDMS的硅酮油和氟化硅酮油。
低表面能固体的例子包括以下项:以烃链封端的硅烷(如十八烷基三氯甲硅烷)、以碳氟化合物链封端的硅烷(例如氟硅烷)、以烃链封端的硫醇(如丁硫醇)和以碳氟化合物链封端的硫醇(例如全氟癸烷硫醇)。在某些实施方案中,表面包含低表面能固体,如含氟聚合物,例如倍半硅氧烷,如氟癸基多面体低聚倍半硅氧烷。在某些实施方案中,含氟聚合物为(或包含)四氟乙烯(ETFE)、氟化乙烯-丙烯共聚物(FEP)、聚偏二氟乙烯(PVDF)、全氟烷氧基四氟乙烯共聚物(PFA)、聚四氟乙烯(PTFE)、四氟乙烯、全氟甲基乙烯基醚共聚物(MFA)、乙烯-氯三氟乙烯共聚物(ECTFE)、乙烯-四氟乙烯共聚物(ETFE)、全氟聚醚或特克氟隆(Tecnoflon)。
在图16中,γ_wv为与蒸气平衡的非润湿相的表面能;γ_ow为非润湿相与浸渍液体之间的界面能;γ_ov为与蒸气平衡的浸渍液体相的表面能;γ_sv为与蒸气平衡的固体的表面能;γ_so为浸渍相与固体之间的界面能;γ_sw为固体与非润湿相之间的界面能;r=总表面积除以投影表面积;θ_c1、θ_c2、θ_c3、θ_c4、θ_w1、θ_w2为由非润湿相在各润湿状态下所构成的宏观接触角;θ*_os(v)为当环绕织构化基底的相为蒸气时油在织构化基底上的宏观接触角;θ_os(v)为当环绕油滴的相为蒸气时油在相同化学性质的光滑固体基底上的接触角;θ*_os(w)为当环绕油滴的相为水时油在织构化基底上的宏观接触角;并且θ_os(w)为当环绕油滴的相为水时油在与织构化表面具有相同化学性质的光滑基底上的接触角。
图17为根据本发明的某些实施方案显示出有关图16所示的6种液体浸渍表面润湿状态的条件的示意图。
实验实施例
图3包括根据本发明的某些实施方案的微织构表面302的照片。表面302是由硅制成并且包括以25μm间距隔开的10μm柱形物的方形图案。如图所示,表面302的底部部分304浸渍有十六烷(浸渍液体),而顶部部分306浸渍有空气(即无浸渍液体)。十六烷的边缘308界定顶部部分306与底部部分304之间的边界。浸渍十六烷是通过如下步骤来实现:(i)使表面302的底部部分304浸于十六烷浴液中,和(ii)借助于浸涂机,将底部部分304以缓慢速率(10mm/min)从十六烷中抽出。该浸渍是稳固的,因为在用冲击速度为约5m/s的水喷射器喷射时十六烷保持在适当位置。在表面302的底层部分304(即,表面302的浸液部分)上测量7μL水滴的接触角滞后和滚出角。接触角滞后(CAH)和滚出角两者都极低∶CAH小于1°,而滚出角仅为1.7±0.1°。
图4a和4b分别示出显示水滴402在气体浸渍表面404和液体浸渍表面406上的撞击的一系列高速视频图像。正如上文所讨论,当液滴撞击表面时,它可在表面上施加很大压力。即使是毫米级的液滴以小于约5m/s的速度撞击表面时也是如此。由于这些压力的结果,液滴可刺穿气体浸渍表面,从而使得气体浸渍表面失去其增强液滴流落的特性。液滴刺穿现象示于图4a中,其中显示液滴粘附于气体浸渍表面404,而不是从表面弹开。为了防止粘附,先前利用气体浸渍表面的方法强调引入纳米级织构。然而,利用液体浸渍表面方法,即使是大约10μm的微米级织构也可以成功地使撞击液滴流落。这显示于图4b中,其中当存在空气时水滴所刺穿的相同微米织构在它浸渍有十六烷时能完全地排斥该液滴。这些图中的尺度棒408为3mm。
图5包括显示出液滴502撞击相对于水平线倾斜25°的液体浸渍表面504的一系列高速视频图像。在这一情形下水滴502在表面504上滑动并且最终弹开,这证明液体浸渍表面504可以成功地使撞击液滴流落,并且针对刺穿现象是稳固的。在这种情况下水滴直径为2.5mm。液体浸渍表面504为在以25μm间距隔开的10μm方形硅制柱状物的阵列中含有十六烷浸渍液体的微织构表面。
图6a至6d包括根据本发明的某些实施方案显示出在浸气超疏水表面602上的结霜形成的一系列ESEM图像。超疏水表面602包括宽度、边缘-边缘间距和纵横比分别为15μm、30μm和7的疏水性方形柱状物604的阵列。图6a示出干燥表面(即无霜),而图6b至6d示出霜606在表面上的形成。柱状物上的疏水性涂层的固有水接触角为110°。借助于ESEM的冷台附件将表面温度维持为-13℃。在实验开始时,将腔室压力维持为约100Pa,完全低于饱和压力,以确保有干燥表面。接着缓慢增加腔室中的蒸气压直到观察到结霜成核现象。由于表面具有均匀的固有润湿性,因此结霜成核和生长的发生在所有可及区域(包括柱状物顶部、侧壁和凹部)均无任何特定的空间偏好性。
图7a至7c示出根据本发明的某些实施方案来自针对干燥和结霜超疏水表面进行的液滴撞击试验的图像。使用半径为1mm的水滴并以0.7m/s的速度撞击表面来进行测试。图7a为宽度、边缘-边缘间距和纵横比分别为10μm、20μm和1的代表性硅柱状物阵列表面702的顶视图SEM图像。图7b包括有关液滴撞击干燥表面704的一系列高速视频图像。如图所示,液滴从表面704弹回,因为抗润湿毛细管压力大于动态润湿压力。图7c包括液滴撞击覆盖有霜706的表面的一系列高速视频图像。结果显示霜706会改变表面的润湿性,使得表面变得亲水,并且致使撞击液滴发生Cassie至Wenzel的润湿性转变,随后发生销锁,并在表面上形成"Wenzel"冰。
图8为根据本发明的某些实施方案的测量的归一化冰粘附强度与归一化表面积的关系图。归一化冰粘附强度为将如针对织构化表面测得的冰粘附强度除以如针对光滑表面测得的冰粘附强度。归一化表面积为用投影面积归一化的总表面积。如图所示,发现归一化冰粘附强度随着归一化表面积增加而增加,并且显示明显的线性趋势。针对数据的最佳线性拟合(实线,相关系数R2=0.96)的斜率为1并且经过原点(使用虚线外推),表明冰接触所有可及表面区域,包括柱状物的侧面。冰与织构化表面的互锁导致粘附强度增大。该图中的插图(a)-(d)为显示极佳复制质量的间隔从疏到密的代表性复制PDMS柱状物阵列(分别地,a=15μm、h=l0μm、b=45、30、15和5μm,其中a、h和b为图2C和2D中所示的尺寸)的顶视图光学图像。
使用具有倾斜台的Rame-hart测角仪进行滚出实验来测量浸渍有十六烷并经十八烷基三氯甲硅烷处理过的硅酮柱状物表面(柱状物间隔为25μm)的液滴流落性质。针对7μl液滴测得滚出角为1.7°±0.1°。前进和后退接触角分别为98°±1°和97°±1°。这种极低的滚出角允许液体浸渍表面能使液滴快速地流落(例如在它们在冻雨应用中发生冻结之前)。
图9和图10显示有关水滴在液体浸渍表面上的移动性的实验测量结果。图9为有关表面(结构尺寸a和b如图2D中所示)中浸渍的4种不同流体的滚出角α(或倾斜角)与表面固体分率φ的函数关系图。注意到,"空气"状况代表常规的超疏水表面(即气体浸渍表面)。该图显示对于硅酮油而言,滚出角α极小(小于5°),并且不受固体分率φ的显著影响。对于不会完全地润湿浸渍表面的离子液体(即BMI-IM)而言,滚出角α相对较大,几乎等同于空气状况,并且随着固体分率φ增加而增大,这是由于液滴在微柱上发生的销锁增大所致。这很可能是因为固体分率φ的增加意谓着在单位面积内有更多微柱。图10为有关1000cSt硅酮油在其中表面倾斜30°的测试中的水滴滑动速度vo与固体分率φ的函数关系图。该图显示当固体分率φ增加时,滑动速度vo减小,这是由于销锁增大所致。
图11和12显示另外针对具有不同粘度的不同浸渍流体当表面倾斜30°时有关水滴滑动速度vo的实验测量结果。这些图显示滑动速度vo在空气下要高于硅酮油的情况,但滑动速度vo随着固体分率φ增加而减小的趋势相同,这是由于销锁增大所致。图12为有关10cSt硅酮油的滑动速度vo与固体分率φ的函数关系图。该图显示滑动速度vo的量值大于1000cSt情况下的值,但小于空气情况下的值。随着固体分率φ而变化的趋势保持相同。图10和图12中的测量结果显示液滴移动性(例如滑动速度vo)在浸渍液体粘度减小时增大。这表明最大的移动性很可能由低粘度浸渍流体(如空气)来实现。
在一项实验中,改变浸渍液体的粘度来测定粘度对液滴撞击的影响。该测试所用的表面包括硅微柱(10×10×10μm),其柱状物间隔为10μm。当浸渍液体的粘度为10cSt时,撞击水滴能够从液体浸渍表面弹开。相比之下,当浸渍液体的粘度为1000cSt时,撞击水滴保留在表面上(即它不会从表面上弹开)。然而,不同于针对气体浸渍表面所进行的类似撞击实验,液滴能够随后从表面上滚出,不过滑动速度较慢。
图13和14包括有关浸渍有硅酮油的微柱表面上的结霜成核的环境SEM(ESEM)图像。图13显示在引起成核之前的表面1402。图14显示成核期间的表面1404并且表明霜1306具有在微柱顶部上成核的倾向。
等效性
尽管已经参考特定优选的实施方案具体地显示并描述了本发明,但本领域技术人员应了解,在不脱离由所附权利要求所界定的本发明的精神和范围的情况下,可在本发明中作出各种形式上和细节上的变化。

Claims (10)

1.一种制品,其包含液体浸渍表面,所述表面包含结构矩阵,所述结构间隔得足够接近以在彼此之间或在其内部稳定地容纳液体。
2.根据权利要求1所述的制品,其中所述液体在室温下的粘度不大于约1000cP。
3.根据权利要求1或2所述的制品,其中所述液体在室温下的蒸气压不大于约20mm Hg。
4.根据权利要求2所述的制品,其中所述液体在室温下的粘度不大于约100cP。
5.根据权利要求2所述的制品,其中所述液体在室温下的粘度不大于约50cP。
6.根据前述权利要求中任一项所述的制品,其中所述结构具有基本上均匀的高度并且其中所述液体填充所述结构之间的间隙并对所述结构涂布在所述结构的顶部上厚度达至少约5nm的涂层。
7.根据前述权利要求中任一项所述的制品,其中所述结构界定孔隙或其它孔并且其中所述液体填充所述结构。
8.根据前述权利要求中任一项所述的制品,其中所述液体的后退接触角为0°,使得所述液体在所述结构的顶部上形成稳定薄膜。
9.根据前述权利要求中任一项所述的制品,其中所述矩阵的结构间间隔为约1微米至约100微米。
10.根据前述权利要求中任一项所述的制品,其中所述矩阵的结构间间隔为约5纳米至约1微米。
CN201810161139.2A 2011-08-05 2011-11-22 采用液体浸渍表面的装置 Active CN108554988B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161515395P 2011-08-05 2011-08-05
US61/515,395 2011-08-05
CN201180073070.4A CN103917306B (zh) 2011-08-05 2011-11-22 采用液体浸渍表面的装置
PCT/US2011/061898 WO2013022467A2 (en) 2011-08-05 2011-11-22 Liquid-impregnated surfaces, methods of making, and devices incorporating the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN201180073070.4A Division CN103917306B (zh) 2011-08-05 2011-11-22 采用液体浸渍表面的装置

Publications (2)

Publication Number Publication Date
CN108554988A true CN108554988A (zh) 2018-09-21
CN108554988B CN108554988B (zh) 2022-03-22

Family

ID=45509633

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201810161139.2A Active CN108554988B (zh) 2011-08-05 2011-11-22 采用液体浸渍表面的装置
CN201180073070.4A Active CN103917306B (zh) 2011-08-05 2011-11-22 采用液体浸渍表面的装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN201180073070.4A Active CN103917306B (zh) 2011-08-05 2011-11-22 采用液体浸渍表面的装置

Country Status (18)

Country Link
US (3) US20130032316A1 (zh)
EP (1) EP2739410B1 (zh)
JP (8) JP2014531989A (zh)
KR (5) KR20220012400A (zh)
CN (2) CN108554988B (zh)
AU (4) AU2011374899A1 (zh)
BR (1) BR112014002585B8 (zh)
CA (1) CA2844301C (zh)
CL (1) CL2014000292A1 (zh)
CO (1) CO6960531A2 (zh)
EA (1) EA201490202A1 (zh)
IL (2) IL230691A0 (zh)
MX (1) MX344038B (zh)
MY (1) MY163331A (zh)
NZ (1) NZ620507A (zh)
SG (2) SG2014008338A (zh)
WO (1) WO2013022467A2 (zh)
ZA (1) ZA201400806B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114750963A (zh) * 2022-06-16 2022-07-15 中国空气动力研究与发展中心低速空气动力研究所 一种低温热二极管防冰装置

Families Citing this family (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2665782A2 (en) 2011-01-19 2013-11-27 President and Fellows of Harvard College Slippery surfaces with high pressure stability, optical transparency, and self-healing characteristics
WO2012100100A2 (en) 2011-01-19 2012-07-26 President And Fellows Of Harvard College Slippery liquid-infused porous surfaces and biological applications thereof
CA2847545A1 (en) 2011-08-03 2013-02-07 Massachusetts Institute Of Technology Articles for manipulating impinging liquids and methods of manufacturing same
AU2011374899A1 (en) 2011-08-05 2014-02-20 Massachusetts Institute Of Technology Devices incorporating a liquid - impregnated surface
US11092977B1 (en) 2017-10-30 2021-08-17 Zane Coleman Fluid transfer component comprising a film with fluid channels
US20130220813A1 (en) * 2012-02-29 2013-08-29 Massachusetts Institute Of Technology Articles and methods for modifying condensation on surfaces
JP2015510857A (ja) 2012-03-23 2015-04-13 マサチューセッツ インスティテュート オブ テクノロジー 食品包装および食品加工装置のための自己潤滑性表面
WO2013141953A2 (en) 2012-03-23 2013-09-26 Massachusetts Institute Of Technology Liquid-encapsulated rare-earth based ceramic surfaces
US20130337027A1 (en) 2012-05-24 2013-12-19 Massachusetts Institute Of Technology Medical Devices and Implements with Liquid-Impregnated Surfaces
US9625075B2 (en) 2012-05-24 2017-04-18 Massachusetts Institute Of Technology Apparatus with a liquid-impregnated surface to facilitate material conveyance
EA201491958A1 (ru) 2012-05-24 2015-05-29 Массачусетс Инститьют Оф Текнолоджи Устройство с содержащей пропиточную жидкость поверхностью
US9732988B1 (en) * 2012-05-30 2017-08-15 Thermal Storage Systems Thermal storage device including a plurality of discrete canisters
WO2013184559A1 (en) * 2012-06-03 2013-12-12 Massachusetts Institute Of Technology Superhydrophobic surfaces
JP2015525132A (ja) 2012-06-13 2015-09-03 マサチューセッツ インスティテュート オブ テクノロジー 表面上の液体を浮上させるための物品および方法ならびにそれを組み入れたデバイス
US9597482B2 (en) * 2012-06-18 2017-03-21 Smart Iv Llc Apparatus and method for monitoring catheter insertion
KR102300462B1 (ko) 2012-07-12 2021-09-08 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 미끄러운 자기-윤활성 중합체 표면
US20150210951A1 (en) 2012-07-13 2015-07-30 President And Fellows Of Harvard College Multifunctional repellent materials
US9630224B2 (en) 2012-07-13 2017-04-25 President And Fellows Of Harvard College Slippery liquid-infused porous surfaces having improved stability
EP2873630B1 (en) * 2012-07-13 2018-04-04 Toyo Seikan Group Holdings, Ltd. Packaging container with excellent content slipperiness
US20140178611A1 (en) 2012-11-19 2014-06-26 Massachusetts Institute Of Technology Apparatus and methods employing liquid-impregnated surfaces
WO2014078867A1 (en) * 2012-11-19 2014-05-22 Massachusetts Institute Of Technology Apparatus and methods employing liquid-impregnated surfaces
KR101753676B1 (ko) * 2013-02-14 2017-07-04 도요세이칸 그룹 홀딩스 가부시키가이샤 유동성 물질에 대한 미끄러짐성이 뛰어난 주출도구
KR20150125666A (ko) 2013-02-15 2015-11-09 메사추세츠 인스티튜트 오브 테크놀로지 적상 응축을 위한 그래프팅된 중합체 표면, 및 연관된 용도 및 제조의 결합 방법
EP2962053A2 (en) * 2013-03-01 2016-01-06 Massachusetts Institute of Technology Articles and methods providing liquid-impregnated scale-phobic surfaces
WO2014209441A2 (en) * 2013-03-13 2014-12-31 President And Fellows Of Harvard College Solidifiable composition for preparation of liquid-infused slippery surfaces and methods of applying
EP2969257B1 (en) * 2013-03-15 2018-05-02 Liquiglide Inc. Apparatus having a durable liquid-impregnated surface.
EP2986390A1 (en) 2013-04-16 2016-02-24 Massachusetts Institute of Technology System and method for unipolar separation of emulsions and other mixtures
EP3000599B1 (en) 2013-05-23 2018-04-04 Toyo Seikan Group Holdings, Ltd. Multilayer structure having liquid layer on surface
US11148309B2 (en) 2013-06-05 2021-10-19 The Gillette Company Llc Razor components with novel coating
JP6052641B2 (ja) * 2013-07-12 2016-12-27 日産自動車株式会社 防汚フィルム及びこれを用いた自動車部品
JP6206391B2 (ja) * 2013-07-26 2017-10-04 東洋製罐グループホールディングス株式会社 表面に液層を有する構造体
JP5673870B1 (ja) * 2013-07-26 2015-02-18 東洋製罐グループホールディングス株式会社 表面に液層を有する樹脂構造体
US9585757B2 (en) 2013-09-03 2017-03-07 Massachusetts Institute Of Technology Orthopaedic joints providing enhanced lubricity
US10870505B2 (en) 2013-09-17 2020-12-22 LiquiGlide Inc. Articles and methods for forming liquid films on surfaces, in devices incorporating the same
US20150083227A1 (en) * 2013-09-26 2015-03-26 General Electric Company Reduced fluid drag across a solid surface with a textured coating
WO2015056285A1 (ja) * 2013-10-15 2015-04-23 株式会社Natomics 熱交換面の保全方法および湿り空気の冷却方法
US9850046B2 (en) * 2013-11-06 2017-12-26 The Procter & Gamble Company Flexible containers with vent systems
EP3066029B1 (en) 2013-11-06 2018-04-25 The Procter and Gamble Company Flexible containers having flexible valves
MX2016005515A (es) 2013-11-06 2016-07-22 Procter & Gamble Envases flexibles faciles de vaciar.
US20150144522A1 (en) * 2013-11-25 2015-05-28 LiquiGlide Inc. Nucleation and destabilization of liquids on liquid-impregnated surfaces
US20150179321A1 (en) 2013-12-20 2015-06-25 Massachusetts Institute Of Technology Controlled liquid/solid mobility using external fields on lubricant-impregnated surfaces
US20150231306A1 (en) * 2014-02-19 2015-08-20 Lenn R. Hann Coated medical device
JP5807692B2 (ja) * 2014-02-27 2015-11-10 東洋製罐株式会社 液注出用プラスチック成形体
JP2015193922A (ja) * 2014-03-24 2015-11-05 三菱重工業株式会社 撥液化する表面微細構造並びにその製造方法、熱交換器、および空気調和機の構成要素
CN106660353B (zh) 2014-04-25 2019-04-19 东洋制罐集团控股株式会社 在表面上具有液膜的结构体
JP6610541B2 (ja) * 2014-05-30 2019-11-27 東洋製罐グループホールディングス株式会社 液層を表面に有する構造体
WO2015196052A1 (en) 2014-06-19 2015-12-23 Massachusetts Institute Of Technology Lubricant-impregnated surfaces for electrochemical applications, and devices and systems using same
CN106470840B (zh) 2014-06-20 2018-11-16 东洋制罐株式会社 表面上形成液膜的结构体和液膜形成用涂布液
DE102014219653A1 (de) * 2014-09-29 2016-03-31 Siemens Aktiengesellschaft Schaufel einer Turbine mit beschichtetem Schaufelblatt
MX2017005336A (es) 2014-10-28 2017-08-15 3M Innovative Properties Co Componentes de un sistema de aplicacion por pulverizacion que comprende una superficie repelente y metodos.
US20160122677A1 (en) * 2014-10-30 2016-05-05 The Trustees Of Princeton University Liquid-Infused Surfaces Featuring Reduced Drag Characteristics, and Methods for Fabricating the Same
CN107108112B (zh) * 2014-11-13 2018-12-04 东洋制罐集团控股株式会社 对水性液体的滑动性优异的中空成形体
US10843402B2 (en) 2015-03-13 2020-11-24 Carbon, Inc. Three-dimensional printing with reduced pressure build plate unit
WO2016149104A1 (en) 2015-03-13 2016-09-22 Carbon3D, Inc. Three-dimensional printing with flexible build plates
US10017300B2 (en) 2015-04-10 2018-07-10 The Procter & Gamble Company Flexible containers with product dispensing visibility
WO2016164692A1 (en) 2015-04-10 2016-10-13 The Procter & Gamble Company Flexible containers with integral dispensing spout
US10144522B2 (en) 2015-04-16 2018-12-04 The Boeing Company Weeping ferrofluid anti-ice system
JP5968491B1 (ja) * 2015-04-20 2016-08-10 東洋製罐株式会社 液膜を有する構造体及びその製造方法
JP6587823B2 (ja) 2015-04-24 2019-10-09 東洋製罐株式会社 表面に固体粒子が分布している容器
US10434542B2 (en) 2015-04-24 2019-10-08 The Penn State Research Foundation Slippery rough surfaces
JP6001726B1 (ja) 2015-05-21 2016-10-05 東洋製罐株式会社 表面にゲル状被覆を有する構造体
JP6504523B2 (ja) * 2015-06-15 2019-04-24 日産自動車株式会社 帯電防止構造体、その製造方法及び帯電防止防汚構造体
JP6515696B2 (ja) * 2015-06-16 2019-05-22 日産自動車株式会社 防汚構造体の製造方法
KR101994778B1 (ko) 2015-07-01 2019-07-01 도요세이칸 그룹 홀딩스 가부시키가이샤 표면에 액막이 형성되어 있는 구조체
RU2665519C1 (ru) * 2015-07-17 2018-08-30 Ниссан Мотор Ко., Лтд. Противозагрязнительная структура и способ ее изготовления
FR3039508B1 (fr) * 2015-07-28 2017-09-01 Thales Sa Rechauffage pour equipement d'aeronef
JP6051278B1 (ja) 2015-08-21 2016-12-27 東洋製罐株式会社 液膜を有する構造体及びその製造方法
US10221321B2 (en) 2015-08-28 2019-03-05 Battelle Memorial Institute Paintable hydrophobic and lubricant-infused surface coatings and processes for making and using same
US11168276B2 (en) 2015-08-28 2021-11-09 Battelle Memorial Institute Reinforced composites with repellent and slippery properties
CN105287107B (zh) * 2015-09-14 2018-11-23 清华大学 一种基于液态金属柔性复合材料的固定用绷带
JP6560073B2 (ja) * 2015-09-16 2019-08-14 コスモ石油ルブリカンツ株式会社 磁気粘性流体組成物
CA3003259A1 (en) 2015-10-28 2017-05-04 3M Innovative Properties Company Spray application system components comprising a repellent surface & methods
WO2017074708A1 (en) 2015-10-28 2017-05-04 3M Innovative Properties Company Articles subject to ice formation comprising a repellent surface
US20170122115A1 (en) * 2015-10-29 2017-05-04 General Electric Company Systems and methods for superhydrophobic surface enhancement of turbine components
WO2017087880A1 (en) * 2015-11-19 2017-05-26 Colorado State University Research Foundation Devices and methods for sorting droplets by surface tension
US10519854B2 (en) 2015-11-20 2019-12-31 Tenneco Inc. Thermally insulated engine components and method of making using a ceramic coating
US10578050B2 (en) 2015-11-20 2020-03-03 Tenneco Inc. Thermally insulated steel piston crown and method of making using a ceramic coating
CN108367861B (zh) 2015-12-01 2022-07-01 东洋制罐集团控股株式会社 低温环境下贮存用包装体及其使用方法
US10577511B2 (en) 2016-01-20 2020-03-03 Battelle Memorial Institute Stretchable hydrophobic materials and methods for making the same
WO2017142405A1 (en) 2016-02-16 2017-08-24 Materiomics B.V. Surface topographies for altering the physiology of living cells
US11302467B2 (en) * 2016-03-28 2022-04-12 University Of Houston System Magnetic surfaces and uses thereof
WO2017173110A1 (en) 2016-03-31 2017-10-05 Coty Inc. Cosmetic applicator
WO2017189475A1 (en) 2016-04-26 2017-11-02 3M Innovative Properties Company Articles subject to ice formation comprising a repellent surface comprising a siloxane material
JP6022099B1 (ja) * 2016-05-17 2016-11-09 株式会社Natomics 結露または着霜抑制用担体および該担体を有する熱交換器
MX2018013953A (es) 2016-05-20 2019-03-21 Nissan Motor Estructura antiincrustante y componente de automovil provisto con dicha estructura antiincrustante.
KR102167919B1 (ko) * 2016-06-13 2020-10-20 닛산 지도우샤 가부시키가이샤 방오 구조체 및 해당 방오 구조체를 사용한 자동차 부품
US10568240B2 (en) * 2016-06-30 2020-02-18 Ford Global Technologies, Llc Coolant flow distribution using coating materials
US11014299B2 (en) 2016-07-01 2021-05-25 Carbon, Inc. Three-dimensional printing with build plates having reduced pressure and/or channels for increased fluid flow
US10371097B2 (en) 2016-07-07 2019-08-06 General Electric Company Non-Newtonian materials in aircraft engine airfoils
US20180009201A1 (en) * 2016-07-07 2018-01-11 General Electric Company Foam based non-newtonian materials for use with aircraft engine components
US10787231B2 (en) * 2016-07-29 2020-09-29 California Institute Of Technology Systems, methods, and apparatuses for reducing hydrodynamic frictional drag
WO2018026024A1 (ko) 2016-08-01 2018-02-08 주식회사 큐리오시스 액체 패터닝 장치 및 액체 패터닝 방법
KR102559987B1 (ko) 2016-08-16 2023-07-26 도날드슨 컴파니, 인코포레이티드 탄화수소 유체-물 분리
WO2018034352A1 (ja) * 2016-08-19 2018-02-22 国立大学法人東北大学 潜熱蓄熱装置
WO2018051410A1 (ja) * 2016-09-13 2018-03-22 日産自動車株式会社 防汚構造体
US20180306027A1 (en) * 2016-09-23 2018-10-25 Terves Inc. Method of Assuring Dissolution of Degradable Tools
BE1024827B1 (fr) * 2016-12-15 2018-07-17 Safran Aero Boosters S.A. Aube glaciophobe de compresseur de turbomachine axiale
CN106865487A (zh) * 2017-01-10 2017-06-20 长春理工大学 液体注入型超滑表面及其激光精密微加工方法
US10501640B2 (en) 2017-01-31 2019-12-10 Arizona Board Of Regents On Behalf Of Arizona State University Nanoporous materials, method of manufacture and methods of use
ES2677444B1 (es) * 2017-02-01 2019-05-09 Gamesa Innovation & Technology S L Empleo de materiales de cambio de fase para retardar la formación de hielo o producir deshielo en aerogeneradores
CA3054951A1 (en) 2017-03-02 2018-09-07 Bahar M. ALIPOUR Systems and methods for creating durable lubricious surfaces via interfacial modification
JP2018154364A (ja) 2017-03-17 2018-10-04 東洋製罐株式会社 粘稠物質用小容量容器
WO2018173713A1 (ja) 2017-03-22 2018-09-27 東洋製罐株式会社 油膜形成能を有する表面を備えた構造体及び油膜形成方法
EP3609797A4 (en) * 2017-04-13 2021-02-24 Liquiglide Inc. DURABLE LUBRICATED SURFACES
US11484630B2 (en) 2017-04-20 2022-11-01 Colorado State University Research Foundation Hemocompatibility of superhemophobic titania surfaces
DE102017210282A1 (de) * 2017-06-20 2018-12-20 Mahle International Gmbh Kolben für einen Verbrennungsmotor mit Flüssigmetallkühlung
KR101987700B1 (ko) 2017-07-19 2019-06-11 엘지전자 주식회사 열교환기의 윤활층 형성 방법
US11045710B2 (en) * 2017-08-17 2021-06-29 University Of South Carolina Non-newtonian materials for the prevention of mild traumatic brain injury
CN107557784A (zh) * 2017-08-31 2018-01-09 江苏大学 一种涂覆磁流体的织构化表面润滑基体及其处理方法
CN214726511U (zh) 2017-10-27 2021-11-16 卡本有限公司 通过增材制造来生产三维物体的设备
WO2019099156A1 (en) * 2017-11-15 2019-05-23 Laitram, L.L.C. Superhydrophobic plastic conveyor components and methods for their molding
US11098261B2 (en) * 2017-11-16 2021-08-24 Massachusetts Institute Of Technology Lubricant infused surfaces
US10253451B1 (en) 2017-12-07 2019-04-09 The United States Of America As Represented By The Secretary Of The Army Dual hierarchical omniphobic and superomniphobic coatings
EP3726092A1 (en) * 2017-12-15 2020-10-21 Shenzhen Royole Technologies Co., Ltd Flexible impact-resistant protective material and flexible impact-resistant protective cover plate using same
WO2019126448A1 (en) 2017-12-20 2019-06-27 Massachusetts Institute Of Technology Bubble gas harvesting and/or transport methods and associated systems and articles
WO2019126438A1 (en) 2017-12-20 2019-06-27 Massachusetts Institute Of Technology Foam reduction and/or prevention methods and associated systems and articles
US11168643B2 (en) 2018-02-21 2021-11-09 Tenneco Inc. Coating to reduce coking deposits on steel pistons
US10399256B1 (en) 2018-04-17 2019-09-03 Goodrich Corporation Sealed circuit card assembly
US11441817B2 (en) 2018-04-19 2022-09-13 Massachusetts Institute Of Technology Photothermal trap
CN112105877B (zh) * 2018-05-10 2022-12-27 尼蓝宝股份有限公司 相变屏障及其使用方法
WO2020033690A1 (en) * 2018-08-08 2020-02-13 Northwestern University Serrated surfaces for anti-icing applications
US11192305B2 (en) 2018-08-24 2021-12-07 Carbon, Inc. Window cassettes for reduced polymerization inhibitor irregularity during additive manufacturing
US11407183B2 (en) 2018-08-31 2022-08-09 Carbon, Inc. Additively manufactured objects with pre-formed bonding features and methods of making the same
CN113226111A (zh) * 2018-10-15 2021-08-06 玛丽索尔·西玛德 具有排斥性表面的化妆品涂抹器
WO2020096768A1 (en) 2018-11-08 2020-05-14 Exxonmobil Research And Engineering Company Species extraction apparatus comprising an additively manufactured matrix structure for using an absorptive liquid on said matrix structure
EP3877076A1 (en) 2018-11-08 2021-09-15 ExxonMobil Research and Engineering Company High surface area solids and application of these solids in methods for enabling liquid-based extraction or enzymatic reactions
CN109682879A (zh) * 2018-12-21 2019-04-26 浙江工业大学 一种液滴弹跳智能监测设备
WO2020180826A1 (en) * 2019-03-01 2020-09-10 The Board Of Trustees Of The University Of Illinois Compositions and methods for inhibiting ice formation on surfaces
CA3137020A1 (en) 2019-04-16 2020-10-22 LiquiGlide Inc. Lubricious surfaces, systems and methods for making the same
EP3959295B1 (en) 2019-04-22 2023-07-26 The Board of Trustees of the University of Illinois Heat and mass transfer component comprising a lubricant-impregnated surface
US11840023B2 (en) 2019-08-30 2023-12-12 Carbon, Inc. Mutliphysics model for inverse warping of data file in preparation for additive manufacturing
WO2021040898A1 (en) 2019-08-30 2021-03-04 Carbon, Inc. Divided resin cassettes for enhanced work flow in additive manufacturing of dental products and the like
JP2021161962A (ja) 2020-03-31 2021-10-11 三菱パワー株式会社 蒸気タービン及び翼
JP7351785B2 (ja) * 2020-03-31 2023-09-27 三菱重工業株式会社 蒸気タービン、翼、及び蒸気タービンの性能と信頼性の向上方法
CN112727922B (zh) * 2020-12-24 2022-11-08 北华航天工业学院 一种降低摩擦损耗和提高静压支承性能的磁液双悬浮轴承涂层处理方法
CN116162285A (zh) * 2023-03-01 2023-05-26 西南科技大学 一种多孔pdms浸润有机油防冰润滑表面的制备及应用

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1344297A (zh) * 1999-03-25 2002-04-10 威廉·巴思洛特 制备可去除的自净表面的方法
WO2003087604A1 (de) * 2002-04-17 2003-10-23 Röhm GmbH & Co. KG Festkörper mit mikrostrukturierter oberfläche
US20040037961A1 (en) * 2002-08-26 2004-02-26 Cedric Dieleman Production of surfaces to which liquids do not adhere
CN1608174A (zh) * 2001-12-22 2005-04-20 莱宝真空有限公司 物体的涂覆方法
KR20090020008A (ko) * 2007-08-22 2009-02-26 부산대학교 산학협력단 초소수성 기판
EP2163295A1 (en) * 2008-09-15 2010-03-17 Services Pétroliers Schlumberger A micro-structured surface having tailored wetting properties
JP2010167929A (ja) * 2009-01-23 2010-08-05 Toyota Central R&D Labs Inc 流動抵抗低減構造及び流動抵抗低減方法
WO2010096073A1 (en) * 2009-02-17 2010-08-26 The Board Of Trustees Of The University Of Illinois Flexible microstructured superhydrophobic materials

Family Cites Families (179)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3784471A (en) * 1970-05-11 1974-01-08 Avco Corp Solid additives dispersed in perfluorinated liquids with perfluoroalkyl ether dispersants
US4069933A (en) 1976-09-24 1978-01-24 Owens-Illinois, Inc. Polyethylene terephthalate bottle for carbonated beverages having reduced bubble nucleation
US4125152A (en) 1977-09-19 1978-11-14 Borg-Warner Corporation Scale resistant heat transfer surfaces and a method for their preparation
US4204021A (en) 1978-12-26 1980-05-20 Ferro Corporation Article of manufacture having composite layer affording abrasion resistant and release properties
US4316745A (en) 1980-07-18 1982-02-23 Blount David H Process for the production of cellulose-silicate products
US4503099A (en) 1983-06-15 1985-03-05 Borg-Warner Corporation Heat transfer surfaces having scale resistant polymer coatings thereon
JPS6075236A (ja) 1983-09-30 1985-04-27 Morinaga & Co Ltd ゼリ−を載置したチヨコレ−ト菓子の製造法
US5133516A (en) 1985-05-31 1992-07-28 Minnesota Mining And Manufacturing Co. Drag reduction article
DE3670860D1 (de) 1985-12-23 1990-06-07 Standard Oil Co Ohio Fluor enthaltende beschichtungszusammensetzung auf der basis von epoxydharzen und fluorkohlenstoffharzen sowie verfahren zu ihrer herstellung.
US4780211A (en) * 1986-11-07 1988-10-25 Desalination Systems, Inc. Method of dewatering using PTFE membrane
JPH01170932A (ja) 1987-12-25 1989-07-06 Nippon Sheet Glass Co Ltd 低摩擦薄膜付き製品
BR9003370A (pt) 1990-07-13 1992-01-21 Petroleo Brasileiro Sa Sistema de producao de oleo e gas em aguas profundas
US5083606A (en) 1990-08-09 1992-01-28 Texas Utilities Electric Company Structure and method for on-line inspection of condenser tubes
AU3663693A (en) 1992-02-21 1993-09-13 Ronald K. Dunton Poly(fluorinated ethylene) coatings
JPH05240251A (ja) * 1992-02-28 1993-09-17 Ntn Corp 焼結含油軸受
FR2733512B1 (fr) 1995-04-26 1997-07-04 Inst Francais Du Petrole Procede pour inhiber ou retarder la formation, la croissance et/ou l'agglomeration des hydrates dans les effluents de production
US5674592A (en) 1995-05-04 1997-10-07 Minnesota Mining And Manufacturing Company Functionalized nanostructured films
FR2735211B1 (fr) 1995-06-06 1997-07-18 Inst Francais Du Petrole Procede de transport d'un fluide tel un gaz sec, susceptible de former des hydrates
US5936040A (en) 1995-06-08 1999-08-10 Exxon Production Research Company Method for inhibiting hydrate formation using maleimide copolymers
US5684068A (en) 1995-07-31 1997-11-04 International Cellulose Corp. Spray-on insulation
WO1997007320A1 (en) 1995-08-16 1997-02-27 Exxon Production Research Company A method for predetermining a polymer for inhibiting hydrate formation
US5624713A (en) * 1996-01-25 1997-04-29 Zardoz Llc Method of increasing lubricity of snow ski bases
US6028234A (en) 1996-12-17 2000-02-22 Mobil Oil Corporation Process for making gas hydrates
US20030134035A1 (en) 1997-03-20 2003-07-17 Unisearch Limited, A.C.N. 000 263 025 Hydrophobic films
US5955165A (en) 1997-04-22 1999-09-21 The Proctor & Gamble Company Apparatus for handling viscous materials, composition for making such apparatus, method of making such apparatus
DE19818956A1 (de) 1997-05-23 1998-11-26 Huels Chemische Werke Ag Materialien mit mikrorauhen, bakterienabweisenden Oberflächen
EP0896123B1 (fr) 1997-08-05 2005-07-27 Institut Français du Pétrole Procédé pour ralentir la croissance et/ou l'agglomération et éventuellement retarder la formation d'hydrates dans un effluent de production
US6127320A (en) 1998-01-19 2000-10-03 University Of Cincinnati Methods and compositions for increasing lubricity of rubber surfaces
IL129538A (en) 1998-05-13 2002-02-10 Nestle Sa Method and apparatus for the moulding of iced confectionary articles
CA2280299A1 (en) 1998-08-14 2000-02-14 Newell Operating Company Method and apparatus for forming a decorative pattern in a liquid coating applicator
US6389820B1 (en) 1999-02-12 2002-05-21 Mississippi State University Surfactant process for promoting gas hydrate formation and application of the same
KR100722731B1 (ko) 1999-03-31 2007-05-29 미쓰비시 마테리알 가부시키가이샤 다면체 유기규소 화합물 및 그의 제조방법
DE19917366A1 (de) * 1999-04-16 2000-10-19 Inst Neue Mat Gemein Gmbh Mit einer mikrostrukturierten Oberfläche versehene Substrate, Verfahren zu ihrer Herstellung und ihre Verwendung
US6247603B1 (en) 1999-08-20 2001-06-19 Continental Plastic Containers, Inc. Container coating for increasing product outage
GB9927629D0 (en) 1999-11-24 2000-01-19 Croda Int Plc Compounds
DE10001135A1 (de) 2000-01-13 2001-07-19 Inst Neue Mat Gemein Gmbh Verfahren zur Herstellung eines mikrostrukturierten Oberflächenreliefs durch Prägen thixotroper Schichten
US20030096083A1 (en) 2000-03-20 2003-05-22 Robert Morgan Surface, method for the production therof and an object provided with said surface
JP2002120861A (ja) 2000-10-18 2002-04-23 Hiromichi Inagaki 水膜介在剥離性粘性物の包装材料、包装袋、及び包装容器
US20020103467A1 (en) 2001-01-31 2002-08-01 Kubalak Thomas P. Urine collection bags for urinary catheter systems
US6531206B2 (en) 2001-02-07 2003-03-11 3M Innovative Properties Company Microstructured surface film assembly for liquid acquisition and transport
DE10110589A1 (de) 2001-03-06 2002-09-12 Creavis Tech & Innovation Gmbh Geometrische Formgebung von Oberflächen mit Lotus-Effekt
AU780675B2 (en) 2001-03-27 2005-04-07 Denso Corporation Hydrophilic modification method and heat exchanger treated thereby
US20020171067A1 (en) * 2001-05-04 2002-11-21 Jolly Mark R. Field responsive shear thickening fluid
JP2005537034A (ja) 2001-06-23 2005-12-08 シュペート ベルント 表面特性を改善した本体
EP1275624B1 (en) 2001-06-29 2007-08-15 Crystal Systems Inc. Antifogging product, inorganic hydrophilic hard layer forming material and process for producing antifogging lens
JP3830806B2 (ja) * 2001-11-09 2006-10-11 株式会社クリスタルシステム 防曇性部材
DE10138036A1 (de) 2001-08-03 2003-02-20 Creavis Tech & Innovation Gmbh Strukturierte Oberflächen mit Lotus-Effekt
PL204021B1 (pl) 2001-11-02 2009-12-31 Cnt Spo & Lstrok Ka Z Ogranicz Powłoka superhydrofobowa
DE60334767D1 (de) 2002-02-19 2010-12-16 Kazuhiko Ishihara Künstliches gelenkglied aus einem polymeren material
JP4156945B2 (ja) * 2002-02-19 2008-09-24 株式会社神戸製鋼所 高分子材料製人工関節部材
US20060013735A1 (en) * 2002-02-22 2006-01-19 Joachim Engelking Ultraphobic surface having a multitude of reversibly producible hydrophilic and/or oleophilic areas
DE10210666A1 (de) 2002-03-12 2003-10-02 Creavis Tech & Innovation Gmbh Formgebungsverfahren zur Herstellung von Formkörpern mit zumindest einer Oberfläche, die selbstreinigende Eigenschaften aufweist sowie mit diesem Verfahren hergestellte Formkörper
DE10218871A1 (de) 2002-04-26 2003-11-13 Degussa Verfahren zur Imprägnierung von porösen mineralischen Substraten
WO2003103836A1 (en) 2002-06-11 2003-12-18 Kionix, Inc. Methods and devices for microfluidic extraction
JP2004037764A (ja) * 2002-07-02 2004-02-05 Fuji Xerox Co Ltd 画像定着装置、およびそれを用いた電子写真装置
KR100624877B1 (ko) 2002-07-08 2006-09-18 한국과학기술연구원 젖음성 향상을 위한 습표면 열교환기의 표면처리방법
US20040219373A1 (en) 2003-02-19 2004-11-04 Rhodia Chimie Textile coating formulations comprising crosslinkable liquid silicones, metal alkoxides and functional coreactants
US7972616B2 (en) 2003-04-17 2011-07-05 Nanosys, Inc. Medical device applications of nanostructured surfaces
US7803574B2 (en) 2003-05-05 2010-09-28 Nanosys, Inc. Medical device applications of nanostructured surfaces
US7344783B2 (en) 2003-07-09 2008-03-18 Shell Oil Company Durable hydrophobic surface coatings using silicone resins
US20050016489A1 (en) 2003-07-23 2005-01-27 Endicott Mark Thomas Method of producing coated engine components
US20060007515A1 (en) 2003-11-13 2006-01-12 Dmitri Simonian Surface lubrication in microstructures
TWI233968B (en) 2004-02-09 2005-06-11 Newcera Technology Co Ltd Highly non-compact and lubricant-containing non-metallic bearing
US7488515B2 (en) 2004-03-19 2009-02-10 All-Clad Metalcrafters Llc Method of making non-stick cookware
EP2275698B1 (en) 2004-06-07 2014-12-31 NTN Corporation Method of manufacturing a rolling bearing retainer
US7458384B1 (en) * 2004-07-15 2008-12-02 University Of Central Florida Research Foundation, Inc. Surfactant incorporated nanostructure for pressure drop reduction in oil and gas lines
US7258731B2 (en) 2004-07-27 2007-08-21 Ut Battelle, Llc Composite, nanostructured, super-hydrophobic material
US8361553B2 (en) 2004-07-30 2013-01-29 Kimberly-Clark Worldwide, Inc. Methods and compositions for metal nanoparticle treated surfaces
CN1613920A (zh) 2004-09-10 2005-05-11 中国科学院长春应用化学研究所 一种热障涂层材料
US20060078724A1 (en) 2004-10-07 2006-04-13 Bharat Bhushan Hydrophobic surface with geometric roughness pattern
US7722951B2 (en) 2004-10-15 2010-05-25 Georgia Tech Research Corporation Insulator coating and method for forming same
JP2006143988A (ja) 2004-10-20 2006-06-08 Yushiro Chem Ind Co Ltd 塑性加工用潤滑被膜、塑性加工用潤滑被膜形成用組成物、塑性加工用素材、塑性加工品の製造方法並びに金属管、金属線又は金属棒の製造方法
GB0424387D0 (en) 2004-11-04 2004-12-08 Univ Heriot Watt Novel hydrate based systems
DE102004062739A1 (de) 2004-12-27 2006-07-06 Degussa Ag Selbstreinigende Oberflächen mit durch hydrophobe Partikel gebildeten Erhebungen, mit verbesserter mechanischer Festigkeit
US20060153745A1 (en) 2005-01-11 2006-07-13 Applera Corporation Fluid processing device for oligonucleotide synthesis and analysis
WO2006132694A2 (en) 2005-04-01 2006-12-14 Clemson University Ultrahydrophobic substrates
WO2006116424A2 (en) 2005-04-26 2006-11-02 Nanosys, Inc. Paintable nanofiber coatings
US7597148B2 (en) 2005-05-13 2009-10-06 Baker Hughes Incorporated Formation and control of gas hydrates
US8322430B2 (en) 2005-06-03 2012-12-04 Shell Oil Company Pipes, systems, and methods for transporting fluids
CN100344341C (zh) 2005-06-09 2007-10-24 南京大学 一种超疏水/超亲油的油水分离网
CA2612005C (en) * 2005-06-17 2013-10-29 Georgia Tech Research Corporation Coated microstructures and method of manufacture thereof
EP1750018A3 (en) * 2005-08-03 2011-12-14 General Electric Company Surfaces and articles resistant to impacting liquids
US20070028588A1 (en) 2005-08-03 2007-02-08 General Electric Company Heat transfer apparatus and systems including the apparatus
US20070031639A1 (en) 2005-08-03 2007-02-08 General Electric Company Articles having low wettability and methods for making
US7540475B2 (en) * 2005-09-16 2009-06-02 Battelle Memorial Institute Mixing in wicking structures and the use of enhanced mixing within wicks in microchannel devices
US7687593B2 (en) 2005-09-28 2010-03-30 Chisso Corporation Fluorinated polymer and polymer composition
JP4149507B2 (ja) * 2005-09-29 2008-09-10 松下電器産業株式会社 電子回路構成部材のマウント方法およびマウント装置
US8084116B2 (en) 2005-09-30 2011-12-27 Alcatel Lucent Surfaces physically transformable by environmental changes
US20070178374A1 (en) * 2006-02-01 2007-08-02 Lucent Technologies Inc. Multi-layered apparatus for stopping projectiles
WO2007095058A2 (en) 2006-02-08 2007-08-23 Acrymed, Inc. Methods and compositions for metal nanoparticle treated surfaces
EP1989529A4 (en) * 2006-02-13 2010-09-01 Agency Science Tech & Res PROCESS FOR PROCESSING A BIOLOGICAL AND / OR CHEMICAL SAMPLE
JP4297221B2 (ja) 2006-02-15 2009-07-15 株式会社ホソカワ粉体技術研究所 薬剤溶出型ステントの製造方法
US20070231542A1 (en) 2006-04-03 2007-10-04 General Electric Company Articles having low wettability and high light transmission
JP4788443B2 (ja) * 2006-04-03 2011-10-05 マツダ株式会社 摺動部材
KR20090017660A (ko) 2006-05-31 2009-02-18 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 인터랙션 시스템 및 물체를 하이라이트하는 방법
US8354160B2 (en) 2006-06-23 2013-01-15 3M Innovative Properties Company Articles having durable hydrophobic surfaces
US8417486B2 (en) 2009-10-30 2013-04-09 Saudi Arabian Oil Company System, method, and program product for synthesizing heat exchanger networks and identifying optimal topology for future retrofit
JP5006394B2 (ja) 2006-07-05 2012-08-22 ポステック アカデミー−インダストリー ファンデーション 極疎水性表面加工方法
US20080026505A1 (en) 2006-07-28 2008-01-31 Nirupama Chakrapani Electronic packages with roughened wetting and non-wetting zones
DE102006038703B4 (de) 2006-08-18 2009-12-17 Christian-Albrechts-Universität Zu Kiel Verfahren und Vorrichtung zur Erzeugung von oxidischen Nanopartikeln aus einem Oxidpartikel bildenden Material
EP1892458A1 (en) 2006-08-22 2008-02-27 Nederlandse Organisatie voor toegepast- natuurwetenschappelijk onderzoek TNO Controlled formation of hydrates
US20080113188A1 (en) * 2006-11-09 2008-05-15 Shah Pratik B Hydrophobic organic-inorganic hybrid silane coatings
US7622197B2 (en) 2006-11-20 2009-11-24 Ferroxy-Aled, Llc Seasoned ferrous cookware
US8047235B2 (en) 2006-11-30 2011-11-01 Alcatel Lucent Fluid-permeable body having a superhydrophobic surface
US20080145631A1 (en) * 2006-12-19 2008-06-19 General Electric Company Articles having antifouling surfaces and methods for making
JP2008223003A (ja) * 2006-12-28 2008-09-25 Toto Ltd 自己浄化性部材およびコーティング組成物
FR2913231B1 (fr) 2007-03-02 2009-07-10 Essilor Int Article ayant une surface nanotexturee a proprietes superhydrophobes.
US7791815B2 (en) 2007-03-13 2010-09-07 Varioptic S.A. Dielectric coatings for electrowetting applications
JP4218729B2 (ja) 2007-03-15 2009-02-04 東洋製罐株式会社 非油性内容物用ポリエチレン製容器
JP2008240910A (ja) 2007-03-27 2008-10-09 Ntn Corp 焼結含油軸受
US10202711B2 (en) 2007-05-09 2019-02-12 Massachusetts Institute Of Technology Tunable surface
US8003178B2 (en) 2007-05-15 2011-08-23 Kraft Foods Global Brands Llc Container with improved release properties
WO2008147568A1 (en) 2007-05-24 2008-12-04 Digital Biosystems Electrowetting based digital microfluidics
EP2211926A2 (en) 2007-10-10 2010-08-04 Miv Therapeutics Inc. Lipid coatings for implantable medical devices
WO2009070796A1 (en) 2007-11-29 2009-06-04 President And Fellows Of Harvard College Assembly and deposition of materials using a superhydrophobic surface structure
US8308940B2 (en) * 2007-12-06 2012-11-13 The Board Of Trustees Of The University Of Illinois Chromatography devices and methods
US7897271B2 (en) 2007-12-18 2011-03-01 General Electric Company Wetting resistant materials and articles made therewith
US7901798B2 (en) 2007-12-18 2011-03-08 General Electric Company Wetting resistant materials and articles made therewith
US7892660B2 (en) 2007-12-18 2011-02-22 General Electric Company Wetting resistant materials and articles made therewith
US7887934B2 (en) 2007-12-18 2011-02-15 General Electric Company Wetting resistant materials and articles made therewith
US7934888B2 (en) 2008-01-18 2011-05-03 Viv Suppression, Inc. Marine anti-foulant system and methods for using same
WO2009094466A2 (en) 2008-01-22 2009-07-30 University Of Florida Research Foundation, Inc. Contact lenses for extended release of bioactive agents containing diffusion attenuators
US20110003143A1 (en) 2008-02-25 2011-01-06 Central Glass Company, Limited Organosol Containing Magnesium Fluoride Hydroxide, and Manufacturing Method Therefor
JP2009241943A (ja) 2008-03-31 2009-10-22 Snt Co コート剤及びその乾燥塗膜を表面に有する包装材料
CN101269960B (zh) 2008-04-30 2011-05-11 哈尔滨工业大学 一种复合稀土锆酸盐热障涂层陶瓷材料的制备方法
WO2009134367A1 (en) * 2008-04-30 2009-11-05 Nanosys, Inc. Non-fouling surfaces for reflective spheres
US8377390B1 (en) 2008-05-29 2013-02-19 Stc.Unm Anisotropic wetting behavior on one-dimensional patterned surfaces for applications to microfluidic devices
US20100004373A1 (en) 2008-07-02 2010-01-07 Jingxu Zhu Compositions and processes for producing durable hydrophobic and/or olephobic surfaces
US20100028604A1 (en) * 2008-08-01 2010-02-04 The Ohio State University Hierarchical structures for superhydrophobic surfaces and methods of making
GB0817175D0 (en) 2008-09-19 2008-10-29 Liquavista Bv Improvements in relation to electrowetting elements
US20100112286A1 (en) * 2008-11-03 2010-05-06 Bahadur Vaibhav A Superhydrophobic surfaces
US20100135949A1 (en) 2008-12-01 2010-06-03 Becton, Dickinson And Company Antimicrobial compositions
US8334031B2 (en) 2008-12-08 2012-12-18 General Electric Company Wetting resistant material and articles made therewith
US7977267B2 (en) 2008-12-16 2011-07-12 General Electric Company Wetting resistant materials and articles made therewith
WO2010070461A1 (en) * 2008-12-16 2010-06-24 Koninklijke Philips Electronics N. V. Hydrophobic valve
WO2010082710A1 (en) 2009-01-14 2010-07-22 University-Industry Cooperation Group Of Kyung Hee University Method for preparing a highly durable reverse osmosis membrane
US20100218517A1 (en) 2009-02-27 2010-09-02 Stephen John Luther Cascading ice luge, apparatus, and methods therefore
US8235096B1 (en) * 2009-04-07 2012-08-07 University Of Central Florida Research Foundation, Inc. Hydrophilic particle enhanced phase change-based heat exchange
US20100285272A1 (en) * 2009-05-06 2010-11-11 Shari Elizabeth Koval Multi-length scale textured glass substrates for anti-fingerprinting
US9028958B2 (en) * 2009-05-08 2015-05-12 The Regents Of The University Of California Superhydrophilic nanostructure
US20100330340A1 (en) 2009-05-12 2010-12-30 University Of Massachusetts Superhydrophobic surfaces for drag reduction
TWI386297B (zh) 2009-08-20 2013-02-21 Nat Univ Tsing Hua 製造具有超斥水性及高透光性之塑膠表面的方法
JP5287807B2 (ja) 2009-10-28 2013-09-11 株式会社デンソー ガスセンサ素子
JP2011126080A (ja) 2009-12-16 2011-06-30 Canon Inc 記録媒体
US9150735B2 (en) 2010-01-14 2015-10-06 National University Of Singapore Superhydrophilic and water-capturing surfaces
US20130227972A1 (en) 2010-01-28 2013-09-05 Wisconsin Alumni Research Foundation Patterned superhydrophobic surfaces to reduce ice formation, adhesion, and accretion
US20130062285A1 (en) 2010-05-11 2013-03-14 The Regents Of The University Of California Oil-Tolerant Polymer Membranes for Oil-Water Separations
US20110287217A1 (en) * 2010-05-21 2011-11-24 Prantik Mazumder Superoleophobic substrates and methods of forming same
US9186631B2 (en) 2010-06-14 2015-11-17 The Regents Of The University Of Michigan Superhydrophilic and oleophobic porous materials and methods for making and using the same
WO2012024099A1 (en) 2010-08-16 2012-02-23 Board Of Trustees Of Michigan State University Water and oil separation system
US20120107558A1 (en) * 2010-11-01 2012-05-03 Shari Elizabeth Koval Transparent substrate having durable hydrophobic/oleophobic surface
EP2636748A4 (en) 2010-11-05 2014-04-02 Ezaki Glico Co SUGAR-CONTAINING AMINOGLUCAN, METHOD FOR THE PRODUCTION THEREOF AND USE THEREOF
CN102002298A (zh) 2010-12-16 2011-04-06 广东嘉宝莉化工集团有限公司 一种水性抗污防粘贴涂料及其生产方法
WO2012100100A2 (en) * 2011-01-19 2012-07-26 President And Fellows Of Harvard College Slippery liquid-infused porous surfaces and biological applications thereof
EP2665782A2 (en) * 2011-01-19 2013-11-27 President and Fellows of Harvard College Slippery surfaces with high pressure stability, optical transparency, and self-healing characteristics
CN102790021B (zh) 2011-05-20 2015-06-17 奇鋐科技股份有限公司 散热单元及其制造方法以及散热模组
BR112013032015A2 (pt) 2011-06-21 2016-12-20 Akzo Nobel Coatings Int Bv estrutura revestida com um sistema de revestimento de liberação da incrustação biocida, método de controle da taxa de liberação de biocida a partir de um sistema de revestimento de liberação da incrustação
CA2847545A1 (en) 2011-08-03 2013-02-07 Massachusetts Institute Of Technology Articles for manipulating impinging liquids and methods of manufacturing same
AU2011374899A1 (en) 2011-08-05 2014-02-20 Massachusetts Institute Of Technology Devices incorporating a liquid - impregnated surface
WO2013074994A1 (en) 2011-11-16 2013-05-23 Massachusetts Institute Of Technology Articles and methods providing scale-phobic surfaces
JP5899995B2 (ja) 2012-02-14 2016-04-06 セイコーエプソン株式会社 インクセット、半導体実装基板および電子機器
JP2013168399A (ja) 2012-02-14 2013-08-29 Seiko Epson Corp 電磁波シールド膜形成用組成物、電磁波シールド膜、電磁波シールド膜の製造方法および電子機器
US20130220813A1 (en) 2012-02-29 2013-08-29 Massachusetts Institute Of Technology Articles and methods for modifying condensation on surfaces
US20150111063A1 (en) 2012-03-23 2015-04-23 Massachusetts Institute Of Technology Hydrophobic materials incorporating rare earth elements and methods of manufacture
JP2015510857A (ja) 2012-03-23 2015-04-13 マサチューセッツ インスティテュート オブ テクノロジー 食品包装および食品加工装置のための自己潤滑性表面
US20130251942A1 (en) 2012-03-23 2013-09-26 Gisele Azimi Hydrophobic Materials Incorporating Rare Earth Elements and Methods of Manufacture
WO2013141953A2 (en) 2012-03-23 2013-09-26 Massachusetts Institute Of Technology Liquid-encapsulated rare-earth based ceramic surfaces
EA201491958A1 (ru) 2012-05-24 2015-05-29 Массачусетс Инститьют Оф Текнолоджи Устройство с содержащей пропиточную жидкость поверхностью
US20130337027A1 (en) 2012-05-24 2013-12-19 Massachusetts Institute Of Technology Medical Devices and Implements with Liquid-Impregnated Surfaces
US20130335697A1 (en) 2012-05-24 2013-12-19 Massachusetts Institute Of Technology Contact lens with liquid-impregnated surface
US9625075B2 (en) 2012-05-24 2017-04-18 Massachusetts Institute Of Technology Apparatus with a liquid-impregnated surface to facilitate material conveyance
JP2015525132A (ja) 2012-06-13 2015-09-03 マサチューセッツ インスティテュート オブ テクノロジー 表面上の液体を浮上させるための物品および方法ならびにそれを組み入れたデバイス
US20140178611A1 (en) 2012-11-19 2014-06-26 Massachusetts Institute Of Technology Apparatus and methods employing liquid-impregnated surfaces
WO2014078867A1 (en) 2012-11-19 2014-05-22 Massachusetts Institute Of Technology Apparatus and methods employing liquid-impregnated surfaces
EP2955120A4 (en) 2013-02-08 2016-10-26 Toyo Seikan Group Holdings Ltd CONTAINER WITH EXCELLENT SLIDING CHARACTERISTICS
EP2962053A2 (en) 2013-03-01 2016-01-06 Massachusetts Institute of Technology Articles and methods providing liquid-impregnated scale-phobic surfaces
CL2013002101A1 (es) 2013-07-23 2014-08-29 Univ Chile Aditivo que confiere propiedades biocidas a distintos materiales que comprende un material de soporte o portador modificado con un agente bacteriano que forma estructuras nanometricas sobre la superficie externa de dicho material de soporte; y metodo para preparacion de dicho aditivo.
US20160296985A1 (en) 2013-11-18 2016-10-13 Massachusetts Institute Of Technology Articles for manipulating impinging liquids and associated methods
US20150179321A1 (en) 2013-12-20 2015-06-25 Massachusetts Institute Of Technology Controlled liquid/solid mobility using external fields on lubricant-impregnated surfaces

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1344297A (zh) * 1999-03-25 2002-04-10 威廉·巴思洛特 制备可去除的自净表面的方法
CN1608174A (zh) * 2001-12-22 2005-04-20 莱宝真空有限公司 物体的涂覆方法
WO2003087604A1 (de) * 2002-04-17 2003-10-23 Röhm GmbH & Co. KG Festkörper mit mikrostrukturierter oberfläche
US20040037961A1 (en) * 2002-08-26 2004-02-26 Cedric Dieleman Production of surfaces to which liquids do not adhere
KR20090020008A (ko) * 2007-08-22 2009-02-26 부산대학교 산학협력단 초소수성 기판
EP2163295A1 (en) * 2008-09-15 2010-03-17 Services Pétroliers Schlumberger A micro-structured surface having tailored wetting properties
JP2010167929A (ja) * 2009-01-23 2010-08-05 Toyota Central R&D Labs Inc 流動抵抗低減構造及び流動抵抗低減方法
WO2010096073A1 (en) * 2009-02-17 2010-08-26 The Board Of Trustees Of The University Of Illinois Flexible microstructured superhydrophobic materials

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114750963A (zh) * 2022-06-16 2022-07-15 中国空气动力研究与发展中心低速空气动力研究所 一种低温热二极管防冰装置
CN114750963B (zh) * 2022-06-16 2022-08-16 中国空气动力研究与发展中心低速空气动力研究所 一种低温热二极管防冰装置

Also Published As

Publication number Publication date
AU2017202946A1 (en) 2017-05-25
US11933551B2 (en) 2024-03-19
AU2019216670A1 (en) 2019-09-05
BR112014002585A2 (pt) 2017-02-21
KR20220012400A (ko) 2022-02-03
JP2017094739A (ja) 2017-06-01
BR112014002585B1 (pt) 2021-02-09
JP2024056916A (ja) 2024-04-23
IL257873A (en) 2018-05-31
CO6960531A2 (es) 2014-05-30
US20130034695A1 (en) 2013-02-07
JP2022133368A (ja) 2022-09-13
SG10201609944TA (en) 2017-01-27
MY163331A (en) 2017-09-15
CA2844301C (en) 2020-02-18
CL2014000292A1 (es) 2014-09-26
WO2013022467A3 (en) 2013-06-13
SG2014008338A (en) 2014-03-28
US20180180364A1 (en) 2018-06-28
BR112014002585B8 (pt) 2022-09-06
JP2017094738A (ja) 2017-06-01
EP2739410B1 (en) 2023-03-29
US8574704B2 (en) 2013-11-05
KR20180049191A (ko) 2018-05-10
JP2021062629A (ja) 2021-04-22
CN108554988B (zh) 2022-03-22
EP2739410A2 (en) 2014-06-11
KR20190104235A (ko) 2019-09-06
CA2844301A1 (en) 2013-02-14
JP2019116096A (ja) 2019-07-18
US20130032316A1 (en) 2013-02-07
KR102018037B1 (ko) 2019-09-05
CN103917306A (zh) 2014-07-09
WO2013022467A2 (en) 2013-02-14
IL230691A0 (en) 2014-03-31
JP2014531989A (ja) 2014-12-04
MX344038B (es) 2016-12-02
MX2014001442A (es) 2014-09-12
CN103917306B (zh) 2018-04-03
AU2017202946B2 (en) 2019-05-16
AU2021209186A1 (en) 2021-08-19
ZA201400806B (en) 2015-05-27
KR20140047136A (ko) 2014-04-21
NZ620507A (en) 2015-10-30
EA201490202A1 (ru) 2014-07-30
IL257873B (en) 2020-04-30
AU2011374899A1 (en) 2014-02-20
JP2021062630A (ja) 2021-04-22
KR20200044985A (ko) 2020-04-29

Similar Documents

Publication Publication Date Title
CN103917306B (zh) 采用液体浸渍表面的装置
Kreder et al. Design of anti-icing surfaces: smooth, textured or slippery?
Barthwal et al. Fabrication of robust and durable slippery anti-icing coating on textured superhydrophobic aluminum surfaces with infused silicone oil
Sarshar et al. Anti-icing or deicing: Icephobicities of superhydrophobic surfaces with hierarchical structures
US20180161836A1 (en) Articles and methods for modifying condensation on surfaces
US20170014865A1 (en) Coating compositions, applications thereof, and methods of forming
CN109719109A (zh) 采用液体浸渍表面的装置和方法
Singh et al. Implementing superhydrophobic surfaces within various condensation environments: A review
Kadlaskar et al. Cost-effective surface modification for Galinstan® lyophobicity
Zhu et al. Infusing silicone and camellia seed oils into micro-/nanostructures for developing novel anti-icing/frosting surfaces for food freezing applications
WO2014011372A2 (en) Refrigerant repelling surfaces
CN113710779A (zh) 包含润滑剂浸渍的表面的传热和传质部件
Heskes Ice Adhesion and Formation on Aluminum Surfaces

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant